disk-io.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include "compat.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "tree-log.h"
  39. #include "free-space-cache.h"
  40. static struct extent_io_ops btree_extent_io_ops;
  41. static void end_workqueue_fn(struct btrfs_work *work);
  42. static void free_fs_root(struct btrfs_root *root);
  43. static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
  44. /*
  45. * end_io_wq structs are used to do processing in task context when an IO is
  46. * complete. This is used during reads to verify checksums, and it is used
  47. * by writes to insert metadata for new file extents after IO is complete.
  48. */
  49. struct end_io_wq {
  50. struct bio *bio;
  51. bio_end_io_t *end_io;
  52. void *private;
  53. struct btrfs_fs_info *info;
  54. int error;
  55. int metadata;
  56. struct list_head list;
  57. struct btrfs_work work;
  58. };
  59. /*
  60. * async submit bios are used to offload expensive checksumming
  61. * onto the worker threads. They checksum file and metadata bios
  62. * just before they are sent down the IO stack.
  63. */
  64. struct async_submit_bio {
  65. struct inode *inode;
  66. struct bio *bio;
  67. struct list_head list;
  68. extent_submit_bio_hook_t *submit_bio_start;
  69. extent_submit_bio_hook_t *submit_bio_done;
  70. int rw;
  71. int mirror_num;
  72. unsigned long bio_flags;
  73. struct btrfs_work work;
  74. };
  75. /* These are used to set the lockdep class on the extent buffer locks.
  76. * The class is set by the readpage_end_io_hook after the buffer has
  77. * passed csum validation but before the pages are unlocked.
  78. *
  79. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  80. * allocated blocks.
  81. *
  82. * The class is based on the level in the tree block, which allows lockdep
  83. * to know that lower nodes nest inside the locks of higher nodes.
  84. *
  85. * We also add a check to make sure the highest level of the tree is
  86. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  87. * code needs update as well.
  88. */
  89. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  90. # if BTRFS_MAX_LEVEL != 8
  91. # error
  92. # endif
  93. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  94. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  95. /* leaf */
  96. "btrfs-extent-00",
  97. "btrfs-extent-01",
  98. "btrfs-extent-02",
  99. "btrfs-extent-03",
  100. "btrfs-extent-04",
  101. "btrfs-extent-05",
  102. "btrfs-extent-06",
  103. "btrfs-extent-07",
  104. /* highest possible level */
  105. "btrfs-extent-08",
  106. };
  107. #endif
  108. /*
  109. * extents on the btree inode are pretty simple, there's one extent
  110. * that covers the entire device
  111. */
  112. static struct extent_map *btree_get_extent(struct inode *inode,
  113. struct page *page, size_t page_offset, u64 start, u64 len,
  114. int create)
  115. {
  116. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  117. struct extent_map *em;
  118. int ret;
  119. read_lock(&em_tree->lock);
  120. em = lookup_extent_mapping(em_tree, start, len);
  121. if (em) {
  122. em->bdev =
  123. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  124. read_unlock(&em_tree->lock);
  125. goto out;
  126. }
  127. read_unlock(&em_tree->lock);
  128. em = alloc_extent_map(GFP_NOFS);
  129. if (!em) {
  130. em = ERR_PTR(-ENOMEM);
  131. goto out;
  132. }
  133. em->start = 0;
  134. em->len = (u64)-1;
  135. em->block_len = (u64)-1;
  136. em->block_start = 0;
  137. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  138. write_lock(&em_tree->lock);
  139. ret = add_extent_mapping(em_tree, em);
  140. if (ret == -EEXIST) {
  141. u64 failed_start = em->start;
  142. u64 failed_len = em->len;
  143. free_extent_map(em);
  144. em = lookup_extent_mapping(em_tree, start, len);
  145. if (em) {
  146. ret = 0;
  147. } else {
  148. em = lookup_extent_mapping(em_tree, failed_start,
  149. failed_len);
  150. ret = -EIO;
  151. }
  152. } else if (ret) {
  153. free_extent_map(em);
  154. em = NULL;
  155. }
  156. write_unlock(&em_tree->lock);
  157. if (ret)
  158. em = ERR_PTR(ret);
  159. out:
  160. return em;
  161. }
  162. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  163. {
  164. return crc32c(seed, data, len);
  165. }
  166. void btrfs_csum_final(u32 crc, char *result)
  167. {
  168. *(__le32 *)result = ~cpu_to_le32(crc);
  169. }
  170. /*
  171. * compute the csum for a btree block, and either verify it or write it
  172. * into the csum field of the block.
  173. */
  174. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  175. int verify)
  176. {
  177. u16 csum_size =
  178. btrfs_super_csum_size(&root->fs_info->super_copy);
  179. char *result = NULL;
  180. unsigned long len;
  181. unsigned long cur_len;
  182. unsigned long offset = BTRFS_CSUM_SIZE;
  183. char *map_token = NULL;
  184. char *kaddr;
  185. unsigned long map_start;
  186. unsigned long map_len;
  187. int err;
  188. u32 crc = ~(u32)0;
  189. unsigned long inline_result;
  190. len = buf->len - offset;
  191. while (len > 0) {
  192. err = map_private_extent_buffer(buf, offset, 32,
  193. &map_token, &kaddr,
  194. &map_start, &map_len, KM_USER0);
  195. if (err)
  196. return 1;
  197. cur_len = min(len, map_len - (offset - map_start));
  198. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  199. crc, cur_len);
  200. len -= cur_len;
  201. offset += cur_len;
  202. unmap_extent_buffer(buf, map_token, KM_USER0);
  203. }
  204. if (csum_size > sizeof(inline_result)) {
  205. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  206. if (!result)
  207. return 1;
  208. } else {
  209. result = (char *)&inline_result;
  210. }
  211. btrfs_csum_final(crc, result);
  212. if (verify) {
  213. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  214. u32 val;
  215. u32 found = 0;
  216. memcpy(&found, result, csum_size);
  217. read_extent_buffer(buf, &val, 0, csum_size);
  218. if (printk_ratelimit()) {
  219. printk(KERN_INFO "btrfs: %s checksum verify "
  220. "failed on %llu wanted %X found %X "
  221. "level %d\n",
  222. root->fs_info->sb->s_id,
  223. (unsigned long long)buf->start, val, found,
  224. btrfs_header_level(buf));
  225. }
  226. if (result != (char *)&inline_result)
  227. kfree(result);
  228. return 1;
  229. }
  230. } else {
  231. write_extent_buffer(buf, result, 0, csum_size);
  232. }
  233. if (result != (char *)&inline_result)
  234. kfree(result);
  235. return 0;
  236. }
  237. /*
  238. * we can't consider a given block up to date unless the transid of the
  239. * block matches the transid in the parent node's pointer. This is how we
  240. * detect blocks that either didn't get written at all or got written
  241. * in the wrong place.
  242. */
  243. static int verify_parent_transid(struct extent_io_tree *io_tree,
  244. struct extent_buffer *eb, u64 parent_transid)
  245. {
  246. int ret;
  247. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  248. return 0;
  249. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  250. if (extent_buffer_uptodate(io_tree, eb) &&
  251. btrfs_header_generation(eb) == parent_transid) {
  252. ret = 0;
  253. goto out;
  254. }
  255. if (printk_ratelimit()) {
  256. printk("parent transid verify failed on %llu wanted %llu "
  257. "found %llu\n",
  258. (unsigned long long)eb->start,
  259. (unsigned long long)parent_transid,
  260. (unsigned long long)btrfs_header_generation(eb));
  261. }
  262. ret = 1;
  263. clear_extent_buffer_uptodate(io_tree, eb);
  264. out:
  265. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  266. GFP_NOFS);
  267. return ret;
  268. }
  269. /*
  270. * helper to read a given tree block, doing retries as required when
  271. * the checksums don't match and we have alternate mirrors to try.
  272. */
  273. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  274. struct extent_buffer *eb,
  275. u64 start, u64 parent_transid)
  276. {
  277. struct extent_io_tree *io_tree;
  278. int ret;
  279. int num_copies = 0;
  280. int mirror_num = 0;
  281. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  282. while (1) {
  283. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  284. btree_get_extent, mirror_num);
  285. if (!ret &&
  286. !verify_parent_transid(io_tree, eb, parent_transid))
  287. return ret;
  288. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  289. eb->start, eb->len);
  290. if (num_copies == 1)
  291. return ret;
  292. mirror_num++;
  293. if (mirror_num > num_copies)
  294. return ret;
  295. }
  296. return -EIO;
  297. }
  298. /*
  299. * checksum a dirty tree block before IO. This has extra checks to make sure
  300. * we only fill in the checksum field in the first page of a multi-page block
  301. */
  302. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  303. {
  304. struct extent_io_tree *tree;
  305. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  306. u64 found_start;
  307. int found_level;
  308. unsigned long len;
  309. struct extent_buffer *eb;
  310. int ret;
  311. tree = &BTRFS_I(page->mapping->host)->io_tree;
  312. if (page->private == EXTENT_PAGE_PRIVATE)
  313. goto out;
  314. if (!page->private)
  315. goto out;
  316. len = page->private >> 2;
  317. WARN_ON(len == 0);
  318. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  319. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  320. btrfs_header_generation(eb));
  321. BUG_ON(ret);
  322. found_start = btrfs_header_bytenr(eb);
  323. if (found_start != start) {
  324. WARN_ON(1);
  325. goto err;
  326. }
  327. if (eb->first_page != page) {
  328. WARN_ON(1);
  329. goto err;
  330. }
  331. if (!PageUptodate(page)) {
  332. WARN_ON(1);
  333. goto err;
  334. }
  335. found_level = btrfs_header_level(eb);
  336. csum_tree_block(root, eb, 0);
  337. err:
  338. free_extent_buffer(eb);
  339. out:
  340. return 0;
  341. }
  342. static int check_tree_block_fsid(struct btrfs_root *root,
  343. struct extent_buffer *eb)
  344. {
  345. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  346. u8 fsid[BTRFS_UUID_SIZE];
  347. int ret = 1;
  348. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  349. BTRFS_FSID_SIZE);
  350. while (fs_devices) {
  351. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  352. ret = 0;
  353. break;
  354. }
  355. fs_devices = fs_devices->seed;
  356. }
  357. return ret;
  358. }
  359. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  360. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  361. {
  362. lockdep_set_class_and_name(&eb->lock,
  363. &btrfs_eb_class[level],
  364. btrfs_eb_name[level]);
  365. }
  366. #endif
  367. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  368. struct extent_state *state)
  369. {
  370. struct extent_io_tree *tree;
  371. u64 found_start;
  372. int found_level;
  373. unsigned long len;
  374. struct extent_buffer *eb;
  375. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  376. int ret = 0;
  377. tree = &BTRFS_I(page->mapping->host)->io_tree;
  378. if (page->private == EXTENT_PAGE_PRIVATE)
  379. goto out;
  380. if (!page->private)
  381. goto out;
  382. len = page->private >> 2;
  383. WARN_ON(len == 0);
  384. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  385. found_start = btrfs_header_bytenr(eb);
  386. if (found_start != start) {
  387. if (printk_ratelimit()) {
  388. printk(KERN_INFO "btrfs bad tree block start "
  389. "%llu %llu\n",
  390. (unsigned long long)found_start,
  391. (unsigned long long)eb->start);
  392. }
  393. ret = -EIO;
  394. goto err;
  395. }
  396. if (eb->first_page != page) {
  397. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  398. eb->first_page->index, page->index);
  399. WARN_ON(1);
  400. ret = -EIO;
  401. goto err;
  402. }
  403. if (check_tree_block_fsid(root, eb)) {
  404. if (printk_ratelimit()) {
  405. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  406. (unsigned long long)eb->start);
  407. }
  408. ret = -EIO;
  409. goto err;
  410. }
  411. found_level = btrfs_header_level(eb);
  412. btrfs_set_buffer_lockdep_class(eb, found_level);
  413. ret = csum_tree_block(root, eb, 1);
  414. if (ret)
  415. ret = -EIO;
  416. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  417. end = eb->start + end - 1;
  418. err:
  419. free_extent_buffer(eb);
  420. out:
  421. return ret;
  422. }
  423. static void end_workqueue_bio(struct bio *bio, int err)
  424. {
  425. struct end_io_wq *end_io_wq = bio->bi_private;
  426. struct btrfs_fs_info *fs_info;
  427. fs_info = end_io_wq->info;
  428. end_io_wq->error = err;
  429. end_io_wq->work.func = end_workqueue_fn;
  430. end_io_wq->work.flags = 0;
  431. if (bio->bi_rw & (1 << BIO_RW)) {
  432. if (end_io_wq->metadata)
  433. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  434. &end_io_wq->work);
  435. else
  436. btrfs_queue_worker(&fs_info->endio_write_workers,
  437. &end_io_wq->work);
  438. } else {
  439. if (end_io_wq->metadata)
  440. btrfs_queue_worker(&fs_info->endio_meta_workers,
  441. &end_io_wq->work);
  442. else
  443. btrfs_queue_worker(&fs_info->endio_workers,
  444. &end_io_wq->work);
  445. }
  446. }
  447. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  448. int metadata)
  449. {
  450. struct end_io_wq *end_io_wq;
  451. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  452. if (!end_io_wq)
  453. return -ENOMEM;
  454. end_io_wq->private = bio->bi_private;
  455. end_io_wq->end_io = bio->bi_end_io;
  456. end_io_wq->info = info;
  457. end_io_wq->error = 0;
  458. end_io_wq->bio = bio;
  459. end_io_wq->metadata = metadata;
  460. bio->bi_private = end_io_wq;
  461. bio->bi_end_io = end_workqueue_bio;
  462. return 0;
  463. }
  464. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  465. {
  466. unsigned long limit = min_t(unsigned long,
  467. info->workers.max_workers,
  468. info->fs_devices->open_devices);
  469. return 256 * limit;
  470. }
  471. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  472. {
  473. return atomic_read(&info->nr_async_bios) >
  474. btrfs_async_submit_limit(info);
  475. }
  476. static void run_one_async_start(struct btrfs_work *work)
  477. {
  478. struct btrfs_fs_info *fs_info;
  479. struct async_submit_bio *async;
  480. async = container_of(work, struct async_submit_bio, work);
  481. fs_info = BTRFS_I(async->inode)->root->fs_info;
  482. async->submit_bio_start(async->inode, async->rw, async->bio,
  483. async->mirror_num, async->bio_flags);
  484. }
  485. static void run_one_async_done(struct btrfs_work *work)
  486. {
  487. struct btrfs_fs_info *fs_info;
  488. struct async_submit_bio *async;
  489. int limit;
  490. async = container_of(work, struct async_submit_bio, work);
  491. fs_info = BTRFS_I(async->inode)->root->fs_info;
  492. limit = btrfs_async_submit_limit(fs_info);
  493. limit = limit * 2 / 3;
  494. atomic_dec(&fs_info->nr_async_submits);
  495. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  496. waitqueue_active(&fs_info->async_submit_wait))
  497. wake_up(&fs_info->async_submit_wait);
  498. async->submit_bio_done(async->inode, async->rw, async->bio,
  499. async->mirror_num, async->bio_flags);
  500. }
  501. static void run_one_async_free(struct btrfs_work *work)
  502. {
  503. struct async_submit_bio *async;
  504. async = container_of(work, struct async_submit_bio, work);
  505. kfree(async);
  506. }
  507. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  508. int rw, struct bio *bio, int mirror_num,
  509. unsigned long bio_flags,
  510. extent_submit_bio_hook_t *submit_bio_start,
  511. extent_submit_bio_hook_t *submit_bio_done)
  512. {
  513. struct async_submit_bio *async;
  514. async = kmalloc(sizeof(*async), GFP_NOFS);
  515. if (!async)
  516. return -ENOMEM;
  517. async->inode = inode;
  518. async->rw = rw;
  519. async->bio = bio;
  520. async->mirror_num = mirror_num;
  521. async->submit_bio_start = submit_bio_start;
  522. async->submit_bio_done = submit_bio_done;
  523. async->work.func = run_one_async_start;
  524. async->work.ordered_func = run_one_async_done;
  525. async->work.ordered_free = run_one_async_free;
  526. async->work.flags = 0;
  527. async->bio_flags = bio_flags;
  528. atomic_inc(&fs_info->nr_async_submits);
  529. if (rw & (1 << BIO_RW_SYNCIO))
  530. btrfs_set_work_high_prio(&async->work);
  531. btrfs_queue_worker(&fs_info->workers, &async->work);
  532. while (atomic_read(&fs_info->async_submit_draining) &&
  533. atomic_read(&fs_info->nr_async_submits)) {
  534. wait_event(fs_info->async_submit_wait,
  535. (atomic_read(&fs_info->nr_async_submits) == 0));
  536. }
  537. return 0;
  538. }
  539. static int btree_csum_one_bio(struct bio *bio)
  540. {
  541. struct bio_vec *bvec = bio->bi_io_vec;
  542. int bio_index = 0;
  543. struct btrfs_root *root;
  544. WARN_ON(bio->bi_vcnt <= 0);
  545. while (bio_index < bio->bi_vcnt) {
  546. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  547. csum_dirty_buffer(root, bvec->bv_page);
  548. bio_index++;
  549. bvec++;
  550. }
  551. return 0;
  552. }
  553. static int __btree_submit_bio_start(struct inode *inode, int rw,
  554. struct bio *bio, int mirror_num,
  555. unsigned long bio_flags)
  556. {
  557. /*
  558. * when we're called for a write, we're already in the async
  559. * submission context. Just jump into btrfs_map_bio
  560. */
  561. btree_csum_one_bio(bio);
  562. return 0;
  563. }
  564. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  565. int mirror_num, unsigned long bio_flags)
  566. {
  567. /*
  568. * when we're called for a write, we're already in the async
  569. * submission context. Just jump into btrfs_map_bio
  570. */
  571. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  572. }
  573. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  574. int mirror_num, unsigned long bio_flags)
  575. {
  576. int ret;
  577. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  578. bio, 1);
  579. BUG_ON(ret);
  580. if (!(rw & (1 << BIO_RW))) {
  581. /*
  582. * called for a read, do the setup so that checksum validation
  583. * can happen in the async kernel threads
  584. */
  585. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  586. mirror_num, 0);
  587. }
  588. /*
  589. * kthread helpers are used to submit writes so that checksumming
  590. * can happen in parallel across all CPUs
  591. */
  592. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  593. inode, rw, bio, mirror_num, 0,
  594. __btree_submit_bio_start,
  595. __btree_submit_bio_done);
  596. }
  597. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  598. {
  599. struct extent_io_tree *tree;
  600. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  601. struct extent_buffer *eb;
  602. int was_dirty;
  603. tree = &BTRFS_I(page->mapping->host)->io_tree;
  604. if (!(current->flags & PF_MEMALLOC)) {
  605. return extent_write_full_page(tree, page,
  606. btree_get_extent, wbc);
  607. }
  608. redirty_page_for_writepage(wbc, page);
  609. eb = btrfs_find_tree_block(root, page_offset(page),
  610. PAGE_CACHE_SIZE);
  611. WARN_ON(!eb);
  612. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  613. if (!was_dirty) {
  614. spin_lock(&root->fs_info->delalloc_lock);
  615. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  616. spin_unlock(&root->fs_info->delalloc_lock);
  617. }
  618. free_extent_buffer(eb);
  619. unlock_page(page);
  620. return 0;
  621. }
  622. static int btree_writepages(struct address_space *mapping,
  623. struct writeback_control *wbc)
  624. {
  625. struct extent_io_tree *tree;
  626. tree = &BTRFS_I(mapping->host)->io_tree;
  627. if (wbc->sync_mode == WB_SYNC_NONE) {
  628. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  629. u64 num_dirty;
  630. unsigned long thresh = 32 * 1024 * 1024;
  631. if (wbc->for_kupdate)
  632. return 0;
  633. /* this is a bit racy, but that's ok */
  634. num_dirty = root->fs_info->dirty_metadata_bytes;
  635. if (num_dirty < thresh)
  636. return 0;
  637. }
  638. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  639. }
  640. static int btree_readpage(struct file *file, struct page *page)
  641. {
  642. struct extent_io_tree *tree;
  643. tree = &BTRFS_I(page->mapping->host)->io_tree;
  644. return extent_read_full_page(tree, page, btree_get_extent);
  645. }
  646. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  647. {
  648. struct extent_io_tree *tree;
  649. struct extent_map_tree *map;
  650. int ret;
  651. if (PageWriteback(page) || PageDirty(page))
  652. return 0;
  653. tree = &BTRFS_I(page->mapping->host)->io_tree;
  654. map = &BTRFS_I(page->mapping->host)->extent_tree;
  655. ret = try_release_extent_state(map, tree, page, gfp_flags);
  656. if (!ret)
  657. return 0;
  658. ret = try_release_extent_buffer(tree, page);
  659. if (ret == 1) {
  660. ClearPagePrivate(page);
  661. set_page_private(page, 0);
  662. page_cache_release(page);
  663. }
  664. return ret;
  665. }
  666. static void btree_invalidatepage(struct page *page, unsigned long offset)
  667. {
  668. struct extent_io_tree *tree;
  669. tree = &BTRFS_I(page->mapping->host)->io_tree;
  670. extent_invalidatepage(tree, page, offset);
  671. btree_releasepage(page, GFP_NOFS);
  672. if (PagePrivate(page)) {
  673. printk(KERN_WARNING "btrfs warning page private not zero "
  674. "on page %llu\n", (unsigned long long)page_offset(page));
  675. ClearPagePrivate(page);
  676. set_page_private(page, 0);
  677. page_cache_release(page);
  678. }
  679. }
  680. static struct address_space_operations btree_aops = {
  681. .readpage = btree_readpage,
  682. .writepage = btree_writepage,
  683. .writepages = btree_writepages,
  684. .releasepage = btree_releasepage,
  685. .invalidatepage = btree_invalidatepage,
  686. .sync_page = block_sync_page,
  687. };
  688. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  689. u64 parent_transid)
  690. {
  691. struct extent_buffer *buf = NULL;
  692. struct inode *btree_inode = root->fs_info->btree_inode;
  693. int ret = 0;
  694. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  695. if (!buf)
  696. return 0;
  697. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  698. buf, 0, 0, btree_get_extent, 0);
  699. free_extent_buffer(buf);
  700. return ret;
  701. }
  702. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  703. u64 bytenr, u32 blocksize)
  704. {
  705. struct inode *btree_inode = root->fs_info->btree_inode;
  706. struct extent_buffer *eb;
  707. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  708. bytenr, blocksize, GFP_NOFS);
  709. return eb;
  710. }
  711. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  712. u64 bytenr, u32 blocksize)
  713. {
  714. struct inode *btree_inode = root->fs_info->btree_inode;
  715. struct extent_buffer *eb;
  716. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  717. bytenr, blocksize, NULL, GFP_NOFS);
  718. return eb;
  719. }
  720. int btrfs_write_tree_block(struct extent_buffer *buf)
  721. {
  722. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  723. buf->start + buf->len - 1, WB_SYNC_ALL);
  724. }
  725. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  726. {
  727. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  728. buf->start, buf->start + buf->len - 1);
  729. }
  730. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  731. u32 blocksize, u64 parent_transid)
  732. {
  733. struct extent_buffer *buf = NULL;
  734. struct inode *btree_inode = root->fs_info->btree_inode;
  735. struct extent_io_tree *io_tree;
  736. int ret;
  737. io_tree = &BTRFS_I(btree_inode)->io_tree;
  738. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  739. if (!buf)
  740. return NULL;
  741. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  742. if (ret == 0)
  743. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  744. return buf;
  745. }
  746. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  747. struct extent_buffer *buf)
  748. {
  749. struct inode *btree_inode = root->fs_info->btree_inode;
  750. if (btrfs_header_generation(buf) ==
  751. root->fs_info->running_transaction->transid) {
  752. btrfs_assert_tree_locked(buf);
  753. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  754. spin_lock(&root->fs_info->delalloc_lock);
  755. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  756. root->fs_info->dirty_metadata_bytes -= buf->len;
  757. else
  758. WARN_ON(1);
  759. spin_unlock(&root->fs_info->delalloc_lock);
  760. }
  761. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  762. btrfs_set_lock_blocking(buf);
  763. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  764. buf);
  765. }
  766. return 0;
  767. }
  768. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  769. u32 stripesize, struct btrfs_root *root,
  770. struct btrfs_fs_info *fs_info,
  771. u64 objectid)
  772. {
  773. root->node = NULL;
  774. root->commit_root = NULL;
  775. root->sectorsize = sectorsize;
  776. root->nodesize = nodesize;
  777. root->leafsize = leafsize;
  778. root->stripesize = stripesize;
  779. root->ref_cows = 0;
  780. root->track_dirty = 0;
  781. root->fs_info = fs_info;
  782. root->objectid = objectid;
  783. root->last_trans = 0;
  784. root->highest_objectid = 0;
  785. root->name = NULL;
  786. root->in_sysfs = 0;
  787. root->inode_tree.rb_node = NULL;
  788. INIT_LIST_HEAD(&root->dirty_list);
  789. INIT_LIST_HEAD(&root->orphan_list);
  790. INIT_LIST_HEAD(&root->root_list);
  791. spin_lock_init(&root->node_lock);
  792. spin_lock_init(&root->list_lock);
  793. spin_lock_init(&root->inode_lock);
  794. mutex_init(&root->objectid_mutex);
  795. mutex_init(&root->log_mutex);
  796. init_waitqueue_head(&root->log_writer_wait);
  797. init_waitqueue_head(&root->log_commit_wait[0]);
  798. init_waitqueue_head(&root->log_commit_wait[1]);
  799. atomic_set(&root->log_commit[0], 0);
  800. atomic_set(&root->log_commit[1], 0);
  801. atomic_set(&root->log_writers, 0);
  802. root->log_batch = 0;
  803. root->log_transid = 0;
  804. extent_io_tree_init(&root->dirty_log_pages,
  805. fs_info->btree_inode->i_mapping, GFP_NOFS);
  806. memset(&root->root_key, 0, sizeof(root->root_key));
  807. memset(&root->root_item, 0, sizeof(root->root_item));
  808. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  809. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  810. root->defrag_trans_start = fs_info->generation;
  811. init_completion(&root->kobj_unregister);
  812. root->defrag_running = 0;
  813. root->defrag_level = 0;
  814. root->root_key.objectid = objectid;
  815. root->anon_super.s_root = NULL;
  816. root->anon_super.s_dev = 0;
  817. INIT_LIST_HEAD(&root->anon_super.s_list);
  818. INIT_LIST_HEAD(&root->anon_super.s_instances);
  819. init_rwsem(&root->anon_super.s_umount);
  820. return 0;
  821. }
  822. static int find_and_setup_root(struct btrfs_root *tree_root,
  823. struct btrfs_fs_info *fs_info,
  824. u64 objectid,
  825. struct btrfs_root *root)
  826. {
  827. int ret;
  828. u32 blocksize;
  829. u64 generation;
  830. __setup_root(tree_root->nodesize, tree_root->leafsize,
  831. tree_root->sectorsize, tree_root->stripesize,
  832. root, fs_info, objectid);
  833. ret = btrfs_find_last_root(tree_root, objectid,
  834. &root->root_item, &root->root_key);
  835. if (ret > 0)
  836. return -ENOENT;
  837. BUG_ON(ret);
  838. generation = btrfs_root_generation(&root->root_item);
  839. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  840. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  841. blocksize, generation);
  842. BUG_ON(!root->node);
  843. root->commit_root = btrfs_root_node(root);
  844. return 0;
  845. }
  846. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  847. struct btrfs_fs_info *fs_info)
  848. {
  849. struct extent_buffer *eb;
  850. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  851. u64 start = 0;
  852. u64 end = 0;
  853. int ret;
  854. if (!log_root_tree)
  855. return 0;
  856. while (1) {
  857. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  858. 0, &start, &end, EXTENT_DIRTY);
  859. if (ret)
  860. break;
  861. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  862. start, end, GFP_NOFS);
  863. }
  864. eb = fs_info->log_root_tree->node;
  865. WARN_ON(btrfs_header_level(eb) != 0);
  866. WARN_ON(btrfs_header_nritems(eb) != 0);
  867. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  868. eb->start, eb->len);
  869. BUG_ON(ret);
  870. free_extent_buffer(eb);
  871. kfree(fs_info->log_root_tree);
  872. fs_info->log_root_tree = NULL;
  873. return 0;
  874. }
  875. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  876. struct btrfs_fs_info *fs_info)
  877. {
  878. struct btrfs_root *root;
  879. struct btrfs_root *tree_root = fs_info->tree_root;
  880. struct extent_buffer *leaf;
  881. root = kzalloc(sizeof(*root), GFP_NOFS);
  882. if (!root)
  883. return ERR_PTR(-ENOMEM);
  884. __setup_root(tree_root->nodesize, tree_root->leafsize,
  885. tree_root->sectorsize, tree_root->stripesize,
  886. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  887. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  888. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  889. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  890. /*
  891. * log trees do not get reference counted because they go away
  892. * before a real commit is actually done. They do store pointers
  893. * to file data extents, and those reference counts still get
  894. * updated (along with back refs to the log tree).
  895. */
  896. root->ref_cows = 0;
  897. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  898. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  899. if (IS_ERR(leaf)) {
  900. kfree(root);
  901. return ERR_CAST(leaf);
  902. }
  903. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  904. btrfs_set_header_bytenr(leaf, leaf->start);
  905. btrfs_set_header_generation(leaf, trans->transid);
  906. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  907. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  908. root->node = leaf;
  909. write_extent_buffer(root->node, root->fs_info->fsid,
  910. (unsigned long)btrfs_header_fsid(root->node),
  911. BTRFS_FSID_SIZE);
  912. btrfs_mark_buffer_dirty(root->node);
  913. btrfs_tree_unlock(root->node);
  914. return root;
  915. }
  916. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  917. struct btrfs_fs_info *fs_info)
  918. {
  919. struct btrfs_root *log_root;
  920. log_root = alloc_log_tree(trans, fs_info);
  921. if (IS_ERR(log_root))
  922. return PTR_ERR(log_root);
  923. WARN_ON(fs_info->log_root_tree);
  924. fs_info->log_root_tree = log_root;
  925. return 0;
  926. }
  927. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  928. struct btrfs_root *root)
  929. {
  930. struct btrfs_root *log_root;
  931. struct btrfs_inode_item *inode_item;
  932. log_root = alloc_log_tree(trans, root->fs_info);
  933. if (IS_ERR(log_root))
  934. return PTR_ERR(log_root);
  935. log_root->last_trans = trans->transid;
  936. log_root->root_key.offset = root->root_key.objectid;
  937. inode_item = &log_root->root_item.inode;
  938. inode_item->generation = cpu_to_le64(1);
  939. inode_item->size = cpu_to_le64(3);
  940. inode_item->nlink = cpu_to_le32(1);
  941. inode_item->nbytes = cpu_to_le64(root->leafsize);
  942. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  943. btrfs_set_root_node(&log_root->root_item, log_root->node);
  944. WARN_ON(root->log_root);
  945. root->log_root = log_root;
  946. root->log_transid = 0;
  947. return 0;
  948. }
  949. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  950. struct btrfs_key *location)
  951. {
  952. struct btrfs_root *root;
  953. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  954. struct btrfs_path *path;
  955. struct extent_buffer *l;
  956. u64 generation;
  957. u32 blocksize;
  958. int ret = 0;
  959. root = kzalloc(sizeof(*root), GFP_NOFS);
  960. if (!root)
  961. return ERR_PTR(-ENOMEM);
  962. if (location->offset == (u64)-1) {
  963. ret = find_and_setup_root(tree_root, fs_info,
  964. location->objectid, root);
  965. if (ret) {
  966. kfree(root);
  967. return ERR_PTR(ret);
  968. }
  969. goto out;
  970. }
  971. __setup_root(tree_root->nodesize, tree_root->leafsize,
  972. tree_root->sectorsize, tree_root->stripesize,
  973. root, fs_info, location->objectid);
  974. path = btrfs_alloc_path();
  975. BUG_ON(!path);
  976. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  977. if (ret == 0) {
  978. l = path->nodes[0];
  979. read_extent_buffer(l, &root->root_item,
  980. btrfs_item_ptr_offset(l, path->slots[0]),
  981. sizeof(root->root_item));
  982. memcpy(&root->root_key, location, sizeof(*location));
  983. }
  984. btrfs_free_path(path);
  985. if (ret) {
  986. if (ret > 0)
  987. ret = -ENOENT;
  988. return ERR_PTR(ret);
  989. }
  990. generation = btrfs_root_generation(&root->root_item);
  991. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  992. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  993. blocksize, generation);
  994. root->commit_root = btrfs_root_node(root);
  995. BUG_ON(!root->node);
  996. out:
  997. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  998. root->ref_cows = 1;
  999. return root;
  1000. }
  1001. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1002. u64 root_objectid)
  1003. {
  1004. struct btrfs_root *root;
  1005. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1006. return fs_info->tree_root;
  1007. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1008. return fs_info->extent_root;
  1009. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1010. (unsigned long)root_objectid);
  1011. return root;
  1012. }
  1013. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1014. struct btrfs_key *location)
  1015. {
  1016. struct btrfs_root *root;
  1017. int ret;
  1018. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1019. return fs_info->tree_root;
  1020. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1021. return fs_info->extent_root;
  1022. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1023. return fs_info->chunk_root;
  1024. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1025. return fs_info->dev_root;
  1026. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1027. return fs_info->csum_root;
  1028. again:
  1029. spin_lock(&fs_info->fs_roots_radix_lock);
  1030. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1031. (unsigned long)location->objectid);
  1032. spin_unlock(&fs_info->fs_roots_radix_lock);
  1033. if (root)
  1034. return root;
  1035. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1036. if (ret == 0)
  1037. ret = -ENOENT;
  1038. if (ret < 0)
  1039. return ERR_PTR(ret);
  1040. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1041. if (IS_ERR(root))
  1042. return root;
  1043. WARN_ON(btrfs_root_refs(&root->root_item) == 0);
  1044. set_anon_super(&root->anon_super, NULL);
  1045. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1046. if (ret)
  1047. goto fail;
  1048. spin_lock(&fs_info->fs_roots_radix_lock);
  1049. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1050. (unsigned long)root->root_key.objectid,
  1051. root);
  1052. if (ret == 0)
  1053. root->in_radix = 1;
  1054. spin_unlock(&fs_info->fs_roots_radix_lock);
  1055. radix_tree_preload_end();
  1056. if (ret) {
  1057. if (ret == -EEXIST) {
  1058. free_fs_root(root);
  1059. goto again;
  1060. }
  1061. goto fail;
  1062. }
  1063. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1064. root->root_key.objectid);
  1065. WARN_ON(ret);
  1066. if (!(fs_info->sb->s_flags & MS_RDONLY))
  1067. btrfs_orphan_cleanup(root);
  1068. return root;
  1069. fail:
  1070. free_fs_root(root);
  1071. return ERR_PTR(ret);
  1072. }
  1073. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1074. struct btrfs_key *location,
  1075. const char *name, int namelen)
  1076. {
  1077. return btrfs_read_fs_root_no_name(fs_info, location);
  1078. #if 0
  1079. struct btrfs_root *root;
  1080. int ret;
  1081. root = btrfs_read_fs_root_no_name(fs_info, location);
  1082. if (!root)
  1083. return NULL;
  1084. if (root->in_sysfs)
  1085. return root;
  1086. ret = btrfs_set_root_name(root, name, namelen);
  1087. if (ret) {
  1088. free_extent_buffer(root->node);
  1089. kfree(root);
  1090. return ERR_PTR(ret);
  1091. }
  1092. ret = btrfs_sysfs_add_root(root);
  1093. if (ret) {
  1094. free_extent_buffer(root->node);
  1095. kfree(root->name);
  1096. kfree(root);
  1097. return ERR_PTR(ret);
  1098. }
  1099. root->in_sysfs = 1;
  1100. return root;
  1101. #endif
  1102. }
  1103. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1104. {
  1105. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1106. int ret = 0;
  1107. struct btrfs_device *device;
  1108. struct backing_dev_info *bdi;
  1109. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1110. if (!device->bdev)
  1111. continue;
  1112. bdi = blk_get_backing_dev_info(device->bdev);
  1113. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1114. ret = 1;
  1115. break;
  1116. }
  1117. }
  1118. return ret;
  1119. }
  1120. /*
  1121. * this unplugs every device on the box, and it is only used when page
  1122. * is null
  1123. */
  1124. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1125. {
  1126. struct btrfs_device *device;
  1127. struct btrfs_fs_info *info;
  1128. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1129. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1130. if (!device->bdev)
  1131. continue;
  1132. bdi = blk_get_backing_dev_info(device->bdev);
  1133. if (bdi->unplug_io_fn)
  1134. bdi->unplug_io_fn(bdi, page);
  1135. }
  1136. }
  1137. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1138. {
  1139. struct inode *inode;
  1140. struct extent_map_tree *em_tree;
  1141. struct extent_map *em;
  1142. struct address_space *mapping;
  1143. u64 offset;
  1144. /* the generic O_DIRECT read code does this */
  1145. if (1 || !page) {
  1146. __unplug_io_fn(bdi, page);
  1147. return;
  1148. }
  1149. /*
  1150. * page->mapping may change at any time. Get a consistent copy
  1151. * and use that for everything below
  1152. */
  1153. smp_mb();
  1154. mapping = page->mapping;
  1155. if (!mapping)
  1156. return;
  1157. inode = mapping->host;
  1158. /*
  1159. * don't do the expensive searching for a small number of
  1160. * devices
  1161. */
  1162. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1163. __unplug_io_fn(bdi, page);
  1164. return;
  1165. }
  1166. offset = page_offset(page);
  1167. em_tree = &BTRFS_I(inode)->extent_tree;
  1168. read_lock(&em_tree->lock);
  1169. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1170. read_unlock(&em_tree->lock);
  1171. if (!em) {
  1172. __unplug_io_fn(bdi, page);
  1173. return;
  1174. }
  1175. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1176. free_extent_map(em);
  1177. __unplug_io_fn(bdi, page);
  1178. return;
  1179. }
  1180. offset = offset - em->start;
  1181. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1182. em->block_start + offset, page);
  1183. free_extent_map(em);
  1184. }
  1185. /*
  1186. * If this fails, caller must call bdi_destroy() to get rid of the
  1187. * bdi again.
  1188. */
  1189. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1190. {
  1191. int err;
  1192. bdi->capabilities = BDI_CAP_MAP_COPY;
  1193. err = bdi_init(bdi);
  1194. if (err)
  1195. return err;
  1196. err = bdi_register(bdi, NULL, "btrfs-%d",
  1197. atomic_inc_return(&btrfs_bdi_num));
  1198. if (err)
  1199. return err;
  1200. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1201. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1202. bdi->unplug_io_data = info;
  1203. bdi->congested_fn = btrfs_congested_fn;
  1204. bdi->congested_data = info;
  1205. return 0;
  1206. }
  1207. static int bio_ready_for_csum(struct bio *bio)
  1208. {
  1209. u64 length = 0;
  1210. u64 buf_len = 0;
  1211. u64 start = 0;
  1212. struct page *page;
  1213. struct extent_io_tree *io_tree = NULL;
  1214. struct btrfs_fs_info *info = NULL;
  1215. struct bio_vec *bvec;
  1216. int i;
  1217. int ret;
  1218. bio_for_each_segment(bvec, bio, i) {
  1219. page = bvec->bv_page;
  1220. if (page->private == EXTENT_PAGE_PRIVATE) {
  1221. length += bvec->bv_len;
  1222. continue;
  1223. }
  1224. if (!page->private) {
  1225. length += bvec->bv_len;
  1226. continue;
  1227. }
  1228. length = bvec->bv_len;
  1229. buf_len = page->private >> 2;
  1230. start = page_offset(page) + bvec->bv_offset;
  1231. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1232. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1233. }
  1234. /* are we fully contained in this bio? */
  1235. if (buf_len <= length)
  1236. return 1;
  1237. ret = extent_range_uptodate(io_tree, start + length,
  1238. start + buf_len - 1);
  1239. return ret;
  1240. }
  1241. /*
  1242. * called by the kthread helper functions to finally call the bio end_io
  1243. * functions. This is where read checksum verification actually happens
  1244. */
  1245. static void end_workqueue_fn(struct btrfs_work *work)
  1246. {
  1247. struct bio *bio;
  1248. struct end_io_wq *end_io_wq;
  1249. struct btrfs_fs_info *fs_info;
  1250. int error;
  1251. end_io_wq = container_of(work, struct end_io_wq, work);
  1252. bio = end_io_wq->bio;
  1253. fs_info = end_io_wq->info;
  1254. /* metadata bio reads are special because the whole tree block must
  1255. * be checksummed at once. This makes sure the entire block is in
  1256. * ram and up to date before trying to verify things. For
  1257. * blocksize <= pagesize, it is basically a noop
  1258. */
  1259. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1260. !bio_ready_for_csum(bio)) {
  1261. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1262. &end_io_wq->work);
  1263. return;
  1264. }
  1265. error = end_io_wq->error;
  1266. bio->bi_private = end_io_wq->private;
  1267. bio->bi_end_io = end_io_wq->end_io;
  1268. kfree(end_io_wq);
  1269. bio_endio(bio, error);
  1270. }
  1271. static int cleaner_kthread(void *arg)
  1272. {
  1273. struct btrfs_root *root = arg;
  1274. do {
  1275. smp_mb();
  1276. if (root->fs_info->closing)
  1277. break;
  1278. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1279. mutex_lock(&root->fs_info->cleaner_mutex);
  1280. btrfs_clean_old_snapshots(root);
  1281. mutex_unlock(&root->fs_info->cleaner_mutex);
  1282. if (freezing(current)) {
  1283. refrigerator();
  1284. } else {
  1285. smp_mb();
  1286. if (root->fs_info->closing)
  1287. break;
  1288. set_current_state(TASK_INTERRUPTIBLE);
  1289. schedule();
  1290. __set_current_state(TASK_RUNNING);
  1291. }
  1292. } while (!kthread_should_stop());
  1293. return 0;
  1294. }
  1295. static int transaction_kthread(void *arg)
  1296. {
  1297. struct btrfs_root *root = arg;
  1298. struct btrfs_trans_handle *trans;
  1299. struct btrfs_transaction *cur;
  1300. unsigned long now;
  1301. unsigned long delay;
  1302. int ret;
  1303. do {
  1304. smp_mb();
  1305. if (root->fs_info->closing)
  1306. break;
  1307. delay = HZ * 30;
  1308. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1309. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1310. mutex_lock(&root->fs_info->trans_mutex);
  1311. cur = root->fs_info->running_transaction;
  1312. if (!cur) {
  1313. mutex_unlock(&root->fs_info->trans_mutex);
  1314. goto sleep;
  1315. }
  1316. now = get_seconds();
  1317. if (now < cur->start_time || now - cur->start_time < 30) {
  1318. mutex_unlock(&root->fs_info->trans_mutex);
  1319. delay = HZ * 5;
  1320. goto sleep;
  1321. }
  1322. mutex_unlock(&root->fs_info->trans_mutex);
  1323. trans = btrfs_start_transaction(root, 1);
  1324. ret = btrfs_commit_transaction(trans, root);
  1325. sleep:
  1326. wake_up_process(root->fs_info->cleaner_kthread);
  1327. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1328. if (freezing(current)) {
  1329. refrigerator();
  1330. } else {
  1331. if (root->fs_info->closing)
  1332. break;
  1333. set_current_state(TASK_INTERRUPTIBLE);
  1334. schedule_timeout(delay);
  1335. __set_current_state(TASK_RUNNING);
  1336. }
  1337. } while (!kthread_should_stop());
  1338. return 0;
  1339. }
  1340. struct btrfs_root *open_ctree(struct super_block *sb,
  1341. struct btrfs_fs_devices *fs_devices,
  1342. char *options)
  1343. {
  1344. u32 sectorsize;
  1345. u32 nodesize;
  1346. u32 leafsize;
  1347. u32 blocksize;
  1348. u32 stripesize;
  1349. u64 generation;
  1350. u64 features;
  1351. struct btrfs_key location;
  1352. struct buffer_head *bh;
  1353. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1354. GFP_NOFS);
  1355. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1356. GFP_NOFS);
  1357. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1358. GFP_NOFS);
  1359. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1360. GFP_NOFS);
  1361. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1362. GFP_NOFS);
  1363. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1364. GFP_NOFS);
  1365. struct btrfs_root *log_tree_root;
  1366. int ret;
  1367. int err = -EINVAL;
  1368. struct btrfs_super_block *disk_super;
  1369. if (!extent_root || !tree_root || !fs_info ||
  1370. !chunk_root || !dev_root || !csum_root) {
  1371. err = -ENOMEM;
  1372. goto fail;
  1373. }
  1374. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1375. INIT_LIST_HEAD(&fs_info->trans_list);
  1376. INIT_LIST_HEAD(&fs_info->dead_roots);
  1377. INIT_LIST_HEAD(&fs_info->hashers);
  1378. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1379. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1380. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1381. spin_lock_init(&fs_info->delalloc_lock);
  1382. spin_lock_init(&fs_info->new_trans_lock);
  1383. spin_lock_init(&fs_info->ref_cache_lock);
  1384. init_completion(&fs_info->kobj_unregister);
  1385. fs_info->tree_root = tree_root;
  1386. fs_info->extent_root = extent_root;
  1387. fs_info->csum_root = csum_root;
  1388. fs_info->chunk_root = chunk_root;
  1389. fs_info->dev_root = dev_root;
  1390. fs_info->fs_devices = fs_devices;
  1391. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1392. INIT_LIST_HEAD(&fs_info->space_info);
  1393. btrfs_mapping_init(&fs_info->mapping_tree);
  1394. atomic_set(&fs_info->nr_async_submits, 0);
  1395. atomic_set(&fs_info->async_delalloc_pages, 0);
  1396. atomic_set(&fs_info->async_submit_draining, 0);
  1397. atomic_set(&fs_info->nr_async_bios, 0);
  1398. fs_info->sb = sb;
  1399. fs_info->max_extent = (u64)-1;
  1400. fs_info->max_inline = 8192 * 1024;
  1401. if (setup_bdi(fs_info, &fs_info->bdi))
  1402. goto fail_bdi;
  1403. fs_info->btree_inode = new_inode(sb);
  1404. fs_info->btree_inode->i_ino = 1;
  1405. fs_info->btree_inode->i_nlink = 1;
  1406. fs_info->metadata_ratio = 8;
  1407. fs_info->thread_pool_size = min_t(unsigned long,
  1408. num_online_cpus() + 2, 8);
  1409. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1410. spin_lock_init(&fs_info->ordered_extent_lock);
  1411. sb->s_blocksize = 4096;
  1412. sb->s_blocksize_bits = blksize_bits(4096);
  1413. /*
  1414. * we set the i_size on the btree inode to the max possible int.
  1415. * the real end of the address space is determined by all of
  1416. * the devices in the system
  1417. */
  1418. fs_info->btree_inode->i_size = OFFSET_MAX;
  1419. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1420. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1421. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1422. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1423. fs_info->btree_inode->i_mapping,
  1424. GFP_NOFS);
  1425. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1426. GFP_NOFS);
  1427. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1428. spin_lock_init(&fs_info->block_group_cache_lock);
  1429. fs_info->block_group_cache_tree.rb_node = NULL;
  1430. extent_io_tree_init(&fs_info->freed_extents[0],
  1431. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1432. extent_io_tree_init(&fs_info->freed_extents[1],
  1433. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1434. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1435. fs_info->do_barriers = 1;
  1436. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1437. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1438. sizeof(struct btrfs_key));
  1439. insert_inode_hash(fs_info->btree_inode);
  1440. mutex_init(&fs_info->trans_mutex);
  1441. mutex_init(&fs_info->ordered_operations_mutex);
  1442. mutex_init(&fs_info->tree_log_mutex);
  1443. mutex_init(&fs_info->drop_mutex);
  1444. mutex_init(&fs_info->chunk_mutex);
  1445. mutex_init(&fs_info->transaction_kthread_mutex);
  1446. mutex_init(&fs_info->cleaner_mutex);
  1447. mutex_init(&fs_info->volume_mutex);
  1448. mutex_init(&fs_info->tree_reloc_mutex);
  1449. init_rwsem(&fs_info->extent_commit_sem);
  1450. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1451. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1452. init_waitqueue_head(&fs_info->transaction_throttle);
  1453. init_waitqueue_head(&fs_info->transaction_wait);
  1454. init_waitqueue_head(&fs_info->async_submit_wait);
  1455. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1456. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1457. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1458. if (!bh)
  1459. goto fail_iput;
  1460. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1461. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1462. sizeof(fs_info->super_for_commit));
  1463. brelse(bh);
  1464. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1465. disk_super = &fs_info->super_copy;
  1466. if (!btrfs_super_root(disk_super))
  1467. goto fail_iput;
  1468. ret = btrfs_parse_options(tree_root, options);
  1469. if (ret) {
  1470. err = ret;
  1471. goto fail_iput;
  1472. }
  1473. features = btrfs_super_incompat_flags(disk_super) &
  1474. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1475. if (features) {
  1476. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1477. "unsupported optional features (%Lx).\n",
  1478. (unsigned long long)features);
  1479. err = -EINVAL;
  1480. goto fail_iput;
  1481. }
  1482. features = btrfs_super_incompat_flags(disk_super);
  1483. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1484. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1485. btrfs_set_super_incompat_flags(disk_super, features);
  1486. }
  1487. features = btrfs_super_compat_ro_flags(disk_super) &
  1488. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1489. if (!(sb->s_flags & MS_RDONLY) && features) {
  1490. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1491. "unsupported option features (%Lx).\n",
  1492. (unsigned long long)features);
  1493. err = -EINVAL;
  1494. goto fail_iput;
  1495. }
  1496. printk("thread pool is %d\n", fs_info->thread_pool_size);
  1497. /*
  1498. * we need to start all the end_io workers up front because the
  1499. * queue work function gets called at interrupt time, and so it
  1500. * cannot dynamically grow.
  1501. */
  1502. btrfs_init_workers(&fs_info->workers, "worker",
  1503. fs_info->thread_pool_size);
  1504. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1505. fs_info->thread_pool_size);
  1506. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1507. min_t(u64, fs_devices->num_devices,
  1508. fs_info->thread_pool_size));
  1509. /* a higher idle thresh on the submit workers makes it much more
  1510. * likely that bios will be send down in a sane order to the
  1511. * devices
  1512. */
  1513. fs_info->submit_workers.idle_thresh = 64;
  1514. fs_info->workers.idle_thresh = 16;
  1515. fs_info->workers.ordered = 1;
  1516. fs_info->delalloc_workers.idle_thresh = 2;
  1517. fs_info->delalloc_workers.ordered = 1;
  1518. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1519. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1520. fs_info->thread_pool_size);
  1521. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1522. fs_info->thread_pool_size);
  1523. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1524. "endio-meta-write", fs_info->thread_pool_size);
  1525. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1526. fs_info->thread_pool_size);
  1527. /*
  1528. * endios are largely parallel and should have a very
  1529. * low idle thresh
  1530. */
  1531. fs_info->endio_workers.idle_thresh = 4;
  1532. fs_info->endio_meta_workers.idle_thresh = 4;
  1533. fs_info->endio_write_workers.idle_thresh = 2;
  1534. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1535. fs_info->endio_workers.atomic_worker_start = 1;
  1536. fs_info->endio_meta_workers.atomic_worker_start = 1;
  1537. fs_info->endio_write_workers.atomic_worker_start = 1;
  1538. fs_info->endio_meta_write_workers.atomic_worker_start = 1;
  1539. btrfs_start_workers(&fs_info->workers, 1);
  1540. btrfs_start_workers(&fs_info->submit_workers, 1);
  1541. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1542. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1543. btrfs_start_workers(&fs_info->endio_workers, 1);
  1544. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1545. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1546. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1547. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1548. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1549. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1550. nodesize = btrfs_super_nodesize(disk_super);
  1551. leafsize = btrfs_super_leafsize(disk_super);
  1552. sectorsize = btrfs_super_sectorsize(disk_super);
  1553. stripesize = btrfs_super_stripesize(disk_super);
  1554. tree_root->nodesize = nodesize;
  1555. tree_root->leafsize = leafsize;
  1556. tree_root->sectorsize = sectorsize;
  1557. tree_root->stripesize = stripesize;
  1558. sb->s_blocksize = sectorsize;
  1559. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1560. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1561. sizeof(disk_super->magic))) {
  1562. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1563. goto fail_sb_buffer;
  1564. }
  1565. mutex_lock(&fs_info->chunk_mutex);
  1566. ret = btrfs_read_sys_array(tree_root);
  1567. mutex_unlock(&fs_info->chunk_mutex);
  1568. if (ret) {
  1569. printk(KERN_WARNING "btrfs: failed to read the system "
  1570. "array on %s\n", sb->s_id);
  1571. goto fail_sb_buffer;
  1572. }
  1573. blocksize = btrfs_level_size(tree_root,
  1574. btrfs_super_chunk_root_level(disk_super));
  1575. generation = btrfs_super_chunk_root_generation(disk_super);
  1576. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1577. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1578. chunk_root->node = read_tree_block(chunk_root,
  1579. btrfs_super_chunk_root(disk_super),
  1580. blocksize, generation);
  1581. BUG_ON(!chunk_root->node);
  1582. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1583. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1584. sb->s_id);
  1585. goto fail_chunk_root;
  1586. }
  1587. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1588. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1589. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1590. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1591. BTRFS_UUID_SIZE);
  1592. mutex_lock(&fs_info->chunk_mutex);
  1593. ret = btrfs_read_chunk_tree(chunk_root);
  1594. mutex_unlock(&fs_info->chunk_mutex);
  1595. if (ret) {
  1596. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1597. sb->s_id);
  1598. goto fail_chunk_root;
  1599. }
  1600. btrfs_close_extra_devices(fs_devices);
  1601. blocksize = btrfs_level_size(tree_root,
  1602. btrfs_super_root_level(disk_super));
  1603. generation = btrfs_super_generation(disk_super);
  1604. tree_root->node = read_tree_block(tree_root,
  1605. btrfs_super_root(disk_super),
  1606. blocksize, generation);
  1607. if (!tree_root->node)
  1608. goto fail_chunk_root;
  1609. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1610. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1611. sb->s_id);
  1612. goto fail_tree_root;
  1613. }
  1614. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1615. tree_root->commit_root = btrfs_root_node(tree_root);
  1616. ret = find_and_setup_root(tree_root, fs_info,
  1617. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1618. if (ret)
  1619. goto fail_tree_root;
  1620. extent_root->track_dirty = 1;
  1621. ret = find_and_setup_root(tree_root, fs_info,
  1622. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1623. if (ret)
  1624. goto fail_extent_root;
  1625. dev_root->track_dirty = 1;
  1626. ret = find_and_setup_root(tree_root, fs_info,
  1627. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1628. if (ret)
  1629. goto fail_dev_root;
  1630. csum_root->track_dirty = 1;
  1631. btrfs_read_block_groups(extent_root);
  1632. fs_info->generation = generation;
  1633. fs_info->last_trans_committed = generation;
  1634. fs_info->data_alloc_profile = (u64)-1;
  1635. fs_info->metadata_alloc_profile = (u64)-1;
  1636. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1637. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1638. "btrfs-cleaner");
  1639. if (IS_ERR(fs_info->cleaner_kthread))
  1640. goto fail_csum_root;
  1641. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1642. tree_root,
  1643. "btrfs-transaction");
  1644. if (IS_ERR(fs_info->transaction_kthread))
  1645. goto fail_cleaner;
  1646. if (!btrfs_test_opt(tree_root, SSD) &&
  1647. !btrfs_test_opt(tree_root, NOSSD) &&
  1648. !fs_info->fs_devices->rotating) {
  1649. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1650. "mode\n");
  1651. btrfs_set_opt(fs_info->mount_opt, SSD);
  1652. }
  1653. if (btrfs_super_log_root(disk_super) != 0) {
  1654. u64 bytenr = btrfs_super_log_root(disk_super);
  1655. if (fs_devices->rw_devices == 0) {
  1656. printk(KERN_WARNING "Btrfs log replay required "
  1657. "on RO media\n");
  1658. err = -EIO;
  1659. goto fail_trans_kthread;
  1660. }
  1661. blocksize =
  1662. btrfs_level_size(tree_root,
  1663. btrfs_super_log_root_level(disk_super));
  1664. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1665. GFP_NOFS);
  1666. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1667. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1668. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1669. blocksize,
  1670. generation + 1);
  1671. ret = btrfs_recover_log_trees(log_tree_root);
  1672. BUG_ON(ret);
  1673. if (sb->s_flags & MS_RDONLY) {
  1674. ret = btrfs_commit_super(tree_root);
  1675. BUG_ON(ret);
  1676. }
  1677. }
  1678. if (!(sb->s_flags & MS_RDONLY)) {
  1679. ret = btrfs_recover_relocation(tree_root);
  1680. BUG_ON(ret);
  1681. }
  1682. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1683. location.type = BTRFS_ROOT_ITEM_KEY;
  1684. location.offset = (u64)-1;
  1685. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1686. if (!fs_info->fs_root)
  1687. goto fail_trans_kthread;
  1688. return tree_root;
  1689. fail_trans_kthread:
  1690. kthread_stop(fs_info->transaction_kthread);
  1691. fail_cleaner:
  1692. kthread_stop(fs_info->cleaner_kthread);
  1693. /*
  1694. * make sure we're done with the btree inode before we stop our
  1695. * kthreads
  1696. */
  1697. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1698. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1699. fail_csum_root:
  1700. free_extent_buffer(csum_root->node);
  1701. free_extent_buffer(csum_root->commit_root);
  1702. fail_dev_root:
  1703. free_extent_buffer(dev_root->node);
  1704. free_extent_buffer(dev_root->commit_root);
  1705. fail_extent_root:
  1706. free_extent_buffer(extent_root->node);
  1707. free_extent_buffer(extent_root->commit_root);
  1708. fail_tree_root:
  1709. free_extent_buffer(tree_root->node);
  1710. free_extent_buffer(tree_root->commit_root);
  1711. fail_chunk_root:
  1712. free_extent_buffer(chunk_root->node);
  1713. free_extent_buffer(chunk_root->commit_root);
  1714. fail_sb_buffer:
  1715. btrfs_stop_workers(&fs_info->fixup_workers);
  1716. btrfs_stop_workers(&fs_info->delalloc_workers);
  1717. btrfs_stop_workers(&fs_info->workers);
  1718. btrfs_stop_workers(&fs_info->endio_workers);
  1719. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1720. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1721. btrfs_stop_workers(&fs_info->endio_write_workers);
  1722. btrfs_stop_workers(&fs_info->submit_workers);
  1723. fail_iput:
  1724. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1725. iput(fs_info->btree_inode);
  1726. btrfs_close_devices(fs_info->fs_devices);
  1727. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1728. fail_bdi:
  1729. bdi_destroy(&fs_info->bdi);
  1730. fail:
  1731. kfree(extent_root);
  1732. kfree(tree_root);
  1733. kfree(fs_info);
  1734. kfree(chunk_root);
  1735. kfree(dev_root);
  1736. kfree(csum_root);
  1737. return ERR_PTR(err);
  1738. }
  1739. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1740. {
  1741. char b[BDEVNAME_SIZE];
  1742. if (uptodate) {
  1743. set_buffer_uptodate(bh);
  1744. } else {
  1745. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1746. printk(KERN_WARNING "lost page write due to "
  1747. "I/O error on %s\n",
  1748. bdevname(bh->b_bdev, b));
  1749. }
  1750. /* note, we dont' set_buffer_write_io_error because we have
  1751. * our own ways of dealing with the IO errors
  1752. */
  1753. clear_buffer_uptodate(bh);
  1754. }
  1755. unlock_buffer(bh);
  1756. put_bh(bh);
  1757. }
  1758. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1759. {
  1760. struct buffer_head *bh;
  1761. struct buffer_head *latest = NULL;
  1762. struct btrfs_super_block *super;
  1763. int i;
  1764. u64 transid = 0;
  1765. u64 bytenr;
  1766. /* we would like to check all the supers, but that would make
  1767. * a btrfs mount succeed after a mkfs from a different FS.
  1768. * So, we need to add a special mount option to scan for
  1769. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1770. */
  1771. for (i = 0; i < 1; i++) {
  1772. bytenr = btrfs_sb_offset(i);
  1773. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1774. break;
  1775. bh = __bread(bdev, bytenr / 4096, 4096);
  1776. if (!bh)
  1777. continue;
  1778. super = (struct btrfs_super_block *)bh->b_data;
  1779. if (btrfs_super_bytenr(super) != bytenr ||
  1780. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1781. sizeof(super->magic))) {
  1782. brelse(bh);
  1783. continue;
  1784. }
  1785. if (!latest || btrfs_super_generation(super) > transid) {
  1786. brelse(latest);
  1787. latest = bh;
  1788. transid = btrfs_super_generation(super);
  1789. } else {
  1790. brelse(bh);
  1791. }
  1792. }
  1793. return latest;
  1794. }
  1795. /*
  1796. * this should be called twice, once with wait == 0 and
  1797. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1798. * we write are pinned.
  1799. *
  1800. * They are released when wait == 1 is done.
  1801. * max_mirrors must be the same for both runs, and it indicates how
  1802. * many supers on this one device should be written.
  1803. *
  1804. * max_mirrors == 0 means to write them all.
  1805. */
  1806. static int write_dev_supers(struct btrfs_device *device,
  1807. struct btrfs_super_block *sb,
  1808. int do_barriers, int wait, int max_mirrors)
  1809. {
  1810. struct buffer_head *bh;
  1811. int i;
  1812. int ret;
  1813. int errors = 0;
  1814. u32 crc;
  1815. u64 bytenr;
  1816. int last_barrier = 0;
  1817. if (max_mirrors == 0)
  1818. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1819. /* make sure only the last submit_bh does a barrier */
  1820. if (do_barriers) {
  1821. for (i = 0; i < max_mirrors; i++) {
  1822. bytenr = btrfs_sb_offset(i);
  1823. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1824. device->total_bytes)
  1825. break;
  1826. last_barrier = i;
  1827. }
  1828. }
  1829. for (i = 0; i < max_mirrors; i++) {
  1830. bytenr = btrfs_sb_offset(i);
  1831. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1832. break;
  1833. if (wait) {
  1834. bh = __find_get_block(device->bdev, bytenr / 4096,
  1835. BTRFS_SUPER_INFO_SIZE);
  1836. BUG_ON(!bh);
  1837. wait_on_buffer(bh);
  1838. if (!buffer_uptodate(bh))
  1839. errors++;
  1840. /* drop our reference */
  1841. brelse(bh);
  1842. /* drop the reference from the wait == 0 run */
  1843. brelse(bh);
  1844. continue;
  1845. } else {
  1846. btrfs_set_super_bytenr(sb, bytenr);
  1847. crc = ~(u32)0;
  1848. crc = btrfs_csum_data(NULL, (char *)sb +
  1849. BTRFS_CSUM_SIZE, crc,
  1850. BTRFS_SUPER_INFO_SIZE -
  1851. BTRFS_CSUM_SIZE);
  1852. btrfs_csum_final(crc, sb->csum);
  1853. /*
  1854. * one reference for us, and we leave it for the
  1855. * caller
  1856. */
  1857. bh = __getblk(device->bdev, bytenr / 4096,
  1858. BTRFS_SUPER_INFO_SIZE);
  1859. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1860. /* one reference for submit_bh */
  1861. get_bh(bh);
  1862. set_buffer_uptodate(bh);
  1863. lock_buffer(bh);
  1864. bh->b_end_io = btrfs_end_buffer_write_sync;
  1865. }
  1866. if (i == last_barrier && do_barriers && device->barriers) {
  1867. ret = submit_bh(WRITE_BARRIER, bh);
  1868. if (ret == -EOPNOTSUPP) {
  1869. printk("btrfs: disabling barriers on dev %s\n",
  1870. device->name);
  1871. set_buffer_uptodate(bh);
  1872. device->barriers = 0;
  1873. /* one reference for submit_bh */
  1874. get_bh(bh);
  1875. lock_buffer(bh);
  1876. ret = submit_bh(WRITE_SYNC, bh);
  1877. }
  1878. } else {
  1879. ret = submit_bh(WRITE_SYNC, bh);
  1880. }
  1881. if (ret)
  1882. errors++;
  1883. }
  1884. return errors < i ? 0 : -1;
  1885. }
  1886. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1887. {
  1888. struct list_head *head;
  1889. struct btrfs_device *dev;
  1890. struct btrfs_super_block *sb;
  1891. struct btrfs_dev_item *dev_item;
  1892. int ret;
  1893. int do_barriers;
  1894. int max_errors;
  1895. int total_errors = 0;
  1896. u64 flags;
  1897. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1898. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1899. sb = &root->fs_info->super_for_commit;
  1900. dev_item = &sb->dev_item;
  1901. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1902. head = &root->fs_info->fs_devices->devices;
  1903. list_for_each_entry(dev, head, dev_list) {
  1904. if (!dev->bdev) {
  1905. total_errors++;
  1906. continue;
  1907. }
  1908. if (!dev->in_fs_metadata || !dev->writeable)
  1909. continue;
  1910. btrfs_set_stack_device_generation(dev_item, 0);
  1911. btrfs_set_stack_device_type(dev_item, dev->type);
  1912. btrfs_set_stack_device_id(dev_item, dev->devid);
  1913. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1914. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1915. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1916. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1917. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1918. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1919. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1920. flags = btrfs_super_flags(sb);
  1921. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1922. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1923. if (ret)
  1924. total_errors++;
  1925. }
  1926. if (total_errors > max_errors) {
  1927. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1928. total_errors);
  1929. BUG();
  1930. }
  1931. total_errors = 0;
  1932. list_for_each_entry(dev, head, dev_list) {
  1933. if (!dev->bdev)
  1934. continue;
  1935. if (!dev->in_fs_metadata || !dev->writeable)
  1936. continue;
  1937. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1938. if (ret)
  1939. total_errors++;
  1940. }
  1941. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1942. if (total_errors > max_errors) {
  1943. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1944. total_errors);
  1945. BUG();
  1946. }
  1947. return 0;
  1948. }
  1949. int write_ctree_super(struct btrfs_trans_handle *trans,
  1950. struct btrfs_root *root, int max_mirrors)
  1951. {
  1952. int ret;
  1953. ret = write_all_supers(root, max_mirrors);
  1954. return ret;
  1955. }
  1956. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1957. {
  1958. spin_lock(&fs_info->fs_roots_radix_lock);
  1959. radix_tree_delete(&fs_info->fs_roots_radix,
  1960. (unsigned long)root->root_key.objectid);
  1961. spin_unlock(&fs_info->fs_roots_radix_lock);
  1962. free_fs_root(root);
  1963. return 0;
  1964. }
  1965. static void free_fs_root(struct btrfs_root *root)
  1966. {
  1967. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  1968. if (root->anon_super.s_dev) {
  1969. down_write(&root->anon_super.s_umount);
  1970. kill_anon_super(&root->anon_super);
  1971. }
  1972. free_extent_buffer(root->node);
  1973. free_extent_buffer(root->commit_root);
  1974. kfree(root->name);
  1975. kfree(root);
  1976. }
  1977. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1978. {
  1979. int ret;
  1980. struct btrfs_root *gang[8];
  1981. int i;
  1982. while (1) {
  1983. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1984. (void **)gang, 0,
  1985. ARRAY_SIZE(gang));
  1986. if (!ret)
  1987. break;
  1988. for (i = 0; i < ret; i++)
  1989. btrfs_free_fs_root(fs_info, gang[i]);
  1990. }
  1991. return 0;
  1992. }
  1993. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1994. {
  1995. u64 root_objectid = 0;
  1996. struct btrfs_root *gang[8];
  1997. int i;
  1998. int ret;
  1999. while (1) {
  2000. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2001. (void **)gang, root_objectid,
  2002. ARRAY_SIZE(gang));
  2003. if (!ret)
  2004. break;
  2005. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2006. for (i = 0; i < ret; i++) {
  2007. root_objectid = gang[i]->root_key.objectid;
  2008. ret = btrfs_find_dead_roots(fs_info->tree_root,
  2009. root_objectid);
  2010. BUG_ON(ret);
  2011. btrfs_orphan_cleanup(gang[i]);
  2012. }
  2013. root_objectid++;
  2014. }
  2015. return 0;
  2016. }
  2017. int btrfs_commit_super(struct btrfs_root *root)
  2018. {
  2019. struct btrfs_trans_handle *trans;
  2020. int ret;
  2021. mutex_lock(&root->fs_info->cleaner_mutex);
  2022. btrfs_clean_old_snapshots(root);
  2023. mutex_unlock(&root->fs_info->cleaner_mutex);
  2024. trans = btrfs_start_transaction(root, 1);
  2025. ret = btrfs_commit_transaction(trans, root);
  2026. BUG_ON(ret);
  2027. /* run commit again to drop the original snapshot */
  2028. trans = btrfs_start_transaction(root, 1);
  2029. btrfs_commit_transaction(trans, root);
  2030. ret = btrfs_write_and_wait_transaction(NULL, root);
  2031. BUG_ON(ret);
  2032. ret = write_ctree_super(NULL, root, 0);
  2033. return ret;
  2034. }
  2035. int close_ctree(struct btrfs_root *root)
  2036. {
  2037. struct btrfs_fs_info *fs_info = root->fs_info;
  2038. int ret;
  2039. fs_info->closing = 1;
  2040. smp_mb();
  2041. kthread_stop(root->fs_info->transaction_kthread);
  2042. kthread_stop(root->fs_info->cleaner_kthread);
  2043. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2044. ret = btrfs_commit_super(root);
  2045. if (ret)
  2046. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2047. }
  2048. fs_info->closing = 2;
  2049. smp_mb();
  2050. if (fs_info->delalloc_bytes) {
  2051. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2052. (unsigned long long)fs_info->delalloc_bytes);
  2053. }
  2054. if (fs_info->total_ref_cache_size) {
  2055. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2056. (unsigned long long)fs_info->total_ref_cache_size);
  2057. }
  2058. free_extent_buffer(fs_info->extent_root->node);
  2059. free_extent_buffer(fs_info->extent_root->commit_root);
  2060. free_extent_buffer(fs_info->tree_root->node);
  2061. free_extent_buffer(fs_info->tree_root->commit_root);
  2062. free_extent_buffer(root->fs_info->chunk_root->node);
  2063. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2064. free_extent_buffer(root->fs_info->dev_root->node);
  2065. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2066. free_extent_buffer(root->fs_info->csum_root->node);
  2067. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2068. btrfs_free_block_groups(root->fs_info);
  2069. del_fs_roots(fs_info);
  2070. iput(fs_info->btree_inode);
  2071. btrfs_stop_workers(&fs_info->fixup_workers);
  2072. btrfs_stop_workers(&fs_info->delalloc_workers);
  2073. btrfs_stop_workers(&fs_info->workers);
  2074. btrfs_stop_workers(&fs_info->endio_workers);
  2075. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2076. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2077. btrfs_stop_workers(&fs_info->endio_write_workers);
  2078. btrfs_stop_workers(&fs_info->submit_workers);
  2079. btrfs_close_devices(fs_info->fs_devices);
  2080. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2081. bdi_destroy(&fs_info->bdi);
  2082. kfree(fs_info->extent_root);
  2083. kfree(fs_info->tree_root);
  2084. kfree(fs_info->chunk_root);
  2085. kfree(fs_info->dev_root);
  2086. kfree(fs_info->csum_root);
  2087. return 0;
  2088. }
  2089. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2090. {
  2091. int ret;
  2092. struct inode *btree_inode = buf->first_page->mapping->host;
  2093. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  2094. if (!ret)
  2095. return ret;
  2096. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2097. parent_transid);
  2098. return !ret;
  2099. }
  2100. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2101. {
  2102. struct inode *btree_inode = buf->first_page->mapping->host;
  2103. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2104. buf);
  2105. }
  2106. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2107. {
  2108. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2109. u64 transid = btrfs_header_generation(buf);
  2110. struct inode *btree_inode = root->fs_info->btree_inode;
  2111. int was_dirty;
  2112. btrfs_assert_tree_locked(buf);
  2113. if (transid != root->fs_info->generation) {
  2114. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2115. "found %llu running %llu\n",
  2116. (unsigned long long)buf->start,
  2117. (unsigned long long)transid,
  2118. (unsigned long long)root->fs_info->generation);
  2119. WARN_ON(1);
  2120. }
  2121. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2122. buf);
  2123. if (!was_dirty) {
  2124. spin_lock(&root->fs_info->delalloc_lock);
  2125. root->fs_info->dirty_metadata_bytes += buf->len;
  2126. spin_unlock(&root->fs_info->delalloc_lock);
  2127. }
  2128. }
  2129. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2130. {
  2131. /*
  2132. * looks as though older kernels can get into trouble with
  2133. * this code, they end up stuck in balance_dirty_pages forever
  2134. */
  2135. u64 num_dirty;
  2136. unsigned long thresh = 32 * 1024 * 1024;
  2137. if (current->flags & PF_MEMALLOC)
  2138. return;
  2139. num_dirty = root->fs_info->dirty_metadata_bytes;
  2140. if (num_dirty > thresh) {
  2141. balance_dirty_pages_ratelimited_nr(
  2142. root->fs_info->btree_inode->i_mapping, 1);
  2143. }
  2144. return;
  2145. }
  2146. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2147. {
  2148. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2149. int ret;
  2150. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2151. if (ret == 0)
  2152. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2153. return ret;
  2154. }
  2155. int btree_lock_page_hook(struct page *page)
  2156. {
  2157. struct inode *inode = page->mapping->host;
  2158. struct btrfs_root *root = BTRFS_I(inode)->root;
  2159. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2160. struct extent_buffer *eb;
  2161. unsigned long len;
  2162. u64 bytenr = page_offset(page);
  2163. if (page->private == EXTENT_PAGE_PRIVATE)
  2164. goto out;
  2165. len = page->private >> 2;
  2166. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2167. if (!eb)
  2168. goto out;
  2169. btrfs_tree_lock(eb);
  2170. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2171. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2172. spin_lock(&root->fs_info->delalloc_lock);
  2173. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2174. root->fs_info->dirty_metadata_bytes -= eb->len;
  2175. else
  2176. WARN_ON(1);
  2177. spin_unlock(&root->fs_info->delalloc_lock);
  2178. }
  2179. btrfs_tree_unlock(eb);
  2180. free_extent_buffer(eb);
  2181. out:
  2182. lock_page(page);
  2183. return 0;
  2184. }
  2185. static struct extent_io_ops btree_extent_io_ops = {
  2186. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2187. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2188. .submit_bio_hook = btree_submit_bio_hook,
  2189. /* note we're sharing with inode.c for the merge bio hook */
  2190. .merge_bio_hook = btrfs_merge_bio_hook,
  2191. };