dma-mapping.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/dma-contiguous.h>
  21. #include <linux/highmem.h>
  22. #include <linux/memblock.h>
  23. #include <linux/slab.h>
  24. #include <linux/iommu.h>
  25. #include <linux/io.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/sizes.h>
  28. #include <asm/memory.h>
  29. #include <asm/highmem.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mach/arch.h>
  33. #include <asm/dma-iommu.h>
  34. #include <asm/mach/map.h>
  35. #include <asm/system_info.h>
  36. #include <asm/dma-contiguous.h>
  37. #include "mm.h"
  38. /*
  39. * The DMA API is built upon the notion of "buffer ownership". A buffer
  40. * is either exclusively owned by the CPU (and therefore may be accessed
  41. * by it) or exclusively owned by the DMA device. These helper functions
  42. * represent the transitions between these two ownership states.
  43. *
  44. * Note, however, that on later ARMs, this notion does not work due to
  45. * speculative prefetches. We model our approach on the assumption that
  46. * the CPU does do speculative prefetches, which means we clean caches
  47. * before transfers and delay cache invalidation until transfer completion.
  48. *
  49. */
  50. static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  51. size_t, enum dma_data_direction);
  52. static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  53. size_t, enum dma_data_direction);
  54. /**
  55. * arm_dma_map_page - map a portion of a page for streaming DMA
  56. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  57. * @page: page that buffer resides in
  58. * @offset: offset into page for start of buffer
  59. * @size: size of buffer to map
  60. * @dir: DMA transfer direction
  61. *
  62. * Ensure that any data held in the cache is appropriately discarded
  63. * or written back.
  64. *
  65. * The device owns this memory once this call has completed. The CPU
  66. * can regain ownership by calling dma_unmap_page().
  67. */
  68. static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  69. unsigned long offset, size_t size, enum dma_data_direction dir,
  70. struct dma_attrs *attrs)
  71. {
  72. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  73. __dma_page_cpu_to_dev(page, offset, size, dir);
  74. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  75. }
  76. static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  77. unsigned long offset, size_t size, enum dma_data_direction dir,
  78. struct dma_attrs *attrs)
  79. {
  80. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  81. }
  82. /**
  83. * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  84. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  85. * @handle: DMA address of buffer
  86. * @size: size of buffer (same as passed to dma_map_page)
  87. * @dir: DMA transfer direction (same as passed to dma_map_page)
  88. *
  89. * Unmap a page streaming mode DMA translation. The handle and size
  90. * must match what was provided in the previous dma_map_page() call.
  91. * All other usages are undefined.
  92. *
  93. * After this call, reads by the CPU to the buffer are guaranteed to see
  94. * whatever the device wrote there.
  95. */
  96. static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  97. size_t size, enum dma_data_direction dir,
  98. struct dma_attrs *attrs)
  99. {
  100. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  101. __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
  102. handle & ~PAGE_MASK, size, dir);
  103. }
  104. static void arm_dma_sync_single_for_cpu(struct device *dev,
  105. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  106. {
  107. unsigned int offset = handle & (PAGE_SIZE - 1);
  108. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  109. __dma_page_dev_to_cpu(page, offset, size, dir);
  110. }
  111. static void arm_dma_sync_single_for_device(struct device *dev,
  112. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  113. {
  114. unsigned int offset = handle & (PAGE_SIZE - 1);
  115. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  116. __dma_page_cpu_to_dev(page, offset, size, dir);
  117. }
  118. struct dma_map_ops arm_dma_ops = {
  119. .alloc = arm_dma_alloc,
  120. .free = arm_dma_free,
  121. .mmap = arm_dma_mmap,
  122. .get_sgtable = arm_dma_get_sgtable,
  123. .map_page = arm_dma_map_page,
  124. .unmap_page = arm_dma_unmap_page,
  125. .map_sg = arm_dma_map_sg,
  126. .unmap_sg = arm_dma_unmap_sg,
  127. .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
  128. .sync_single_for_device = arm_dma_sync_single_for_device,
  129. .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
  130. .sync_sg_for_device = arm_dma_sync_sg_for_device,
  131. .set_dma_mask = arm_dma_set_mask,
  132. };
  133. EXPORT_SYMBOL(arm_dma_ops);
  134. static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
  135. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
  136. static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
  137. dma_addr_t handle, struct dma_attrs *attrs);
  138. struct dma_map_ops arm_coherent_dma_ops = {
  139. .alloc = arm_coherent_dma_alloc,
  140. .free = arm_coherent_dma_free,
  141. .mmap = arm_dma_mmap,
  142. .get_sgtable = arm_dma_get_sgtable,
  143. .map_page = arm_coherent_dma_map_page,
  144. .map_sg = arm_dma_map_sg,
  145. .set_dma_mask = arm_dma_set_mask,
  146. };
  147. EXPORT_SYMBOL(arm_coherent_dma_ops);
  148. static u64 get_coherent_dma_mask(struct device *dev)
  149. {
  150. u64 mask = (u64)DMA_BIT_MASK(32);
  151. if (dev) {
  152. mask = dev->coherent_dma_mask;
  153. /*
  154. * Sanity check the DMA mask - it must be non-zero, and
  155. * must be able to be satisfied by a DMA allocation.
  156. */
  157. if (mask == 0) {
  158. dev_warn(dev, "coherent DMA mask is unset\n");
  159. return 0;
  160. }
  161. /*
  162. * If the mask allows for more memory than we can address,
  163. * and we actually have that much memory, then fail the
  164. * allocation.
  165. */
  166. if (sizeof(mask) != sizeof(dma_addr_t) &&
  167. mask > (dma_addr_t)~0 &&
  168. dma_to_pfn(dev, ~0) > arm_dma_pfn_limit) {
  169. dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
  170. mask);
  171. dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
  172. return 0;
  173. }
  174. /*
  175. * Now check that the mask, when translated to a PFN,
  176. * fits within the allowable addresses which we can
  177. * allocate.
  178. */
  179. if (dma_to_pfn(dev, mask) < arm_dma_pfn_limit) {
  180. dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
  181. mask,
  182. dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
  183. arm_dma_pfn_limit + 1);
  184. return 0;
  185. }
  186. }
  187. return mask;
  188. }
  189. static void __dma_clear_buffer(struct page *page, size_t size)
  190. {
  191. /*
  192. * Ensure that the allocated pages are zeroed, and that any data
  193. * lurking in the kernel direct-mapped region is invalidated.
  194. */
  195. if (PageHighMem(page)) {
  196. phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
  197. phys_addr_t end = base + size;
  198. while (size > 0) {
  199. void *ptr = kmap_atomic(page);
  200. memset(ptr, 0, PAGE_SIZE);
  201. dmac_flush_range(ptr, ptr + PAGE_SIZE);
  202. kunmap_atomic(ptr);
  203. page++;
  204. size -= PAGE_SIZE;
  205. }
  206. outer_flush_range(base, end);
  207. } else {
  208. void *ptr = page_address(page);
  209. memset(ptr, 0, size);
  210. dmac_flush_range(ptr, ptr + size);
  211. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  212. }
  213. }
  214. /*
  215. * Allocate a DMA buffer for 'dev' of size 'size' using the
  216. * specified gfp mask. Note that 'size' must be page aligned.
  217. */
  218. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  219. {
  220. unsigned long order = get_order(size);
  221. struct page *page, *p, *e;
  222. page = alloc_pages(gfp, order);
  223. if (!page)
  224. return NULL;
  225. /*
  226. * Now split the huge page and free the excess pages
  227. */
  228. split_page(page, order);
  229. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  230. __free_page(p);
  231. __dma_clear_buffer(page, size);
  232. return page;
  233. }
  234. /*
  235. * Free a DMA buffer. 'size' must be page aligned.
  236. */
  237. static void __dma_free_buffer(struct page *page, size_t size)
  238. {
  239. struct page *e = page + (size >> PAGE_SHIFT);
  240. while (page < e) {
  241. __free_page(page);
  242. page++;
  243. }
  244. }
  245. #ifdef CONFIG_MMU
  246. #ifdef CONFIG_HUGETLB_PAGE
  247. #warning ARM Coherent DMA allocator does not (yet) support huge TLB
  248. #endif
  249. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  250. pgprot_t prot, struct page **ret_page,
  251. const void *caller);
  252. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  253. pgprot_t prot, struct page **ret_page,
  254. const void *caller);
  255. static void *
  256. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
  257. const void *caller)
  258. {
  259. struct vm_struct *area;
  260. unsigned long addr;
  261. /*
  262. * DMA allocation can be mapped to user space, so lets
  263. * set VM_USERMAP flags too.
  264. */
  265. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  266. caller);
  267. if (!area)
  268. return NULL;
  269. addr = (unsigned long)area->addr;
  270. area->phys_addr = __pfn_to_phys(page_to_pfn(page));
  271. if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
  272. vunmap((void *)addr);
  273. return NULL;
  274. }
  275. return (void *)addr;
  276. }
  277. static void __dma_free_remap(void *cpu_addr, size_t size)
  278. {
  279. unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
  280. struct vm_struct *area = find_vm_area(cpu_addr);
  281. if (!area || (area->flags & flags) != flags) {
  282. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  283. return;
  284. }
  285. unmap_kernel_range((unsigned long)cpu_addr, size);
  286. vunmap(cpu_addr);
  287. }
  288. #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
  289. struct dma_pool {
  290. size_t size;
  291. spinlock_t lock;
  292. unsigned long *bitmap;
  293. unsigned long nr_pages;
  294. void *vaddr;
  295. struct page **pages;
  296. };
  297. static struct dma_pool atomic_pool = {
  298. .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
  299. };
  300. static int __init early_coherent_pool(char *p)
  301. {
  302. atomic_pool.size = memparse(p, &p);
  303. return 0;
  304. }
  305. early_param("coherent_pool", early_coherent_pool);
  306. void __init init_dma_coherent_pool_size(unsigned long size)
  307. {
  308. /*
  309. * Catch any attempt to set the pool size too late.
  310. */
  311. BUG_ON(atomic_pool.vaddr);
  312. /*
  313. * Set architecture specific coherent pool size only if
  314. * it has not been changed by kernel command line parameter.
  315. */
  316. if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
  317. atomic_pool.size = size;
  318. }
  319. /*
  320. * Initialise the coherent pool for atomic allocations.
  321. */
  322. static int __init atomic_pool_init(void)
  323. {
  324. struct dma_pool *pool = &atomic_pool;
  325. pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
  326. gfp_t gfp = GFP_KERNEL | GFP_DMA;
  327. unsigned long nr_pages = pool->size >> PAGE_SHIFT;
  328. unsigned long *bitmap;
  329. struct page *page;
  330. struct page **pages;
  331. void *ptr;
  332. int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
  333. bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  334. if (!bitmap)
  335. goto no_bitmap;
  336. pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  337. if (!pages)
  338. goto no_pages;
  339. if (IS_ENABLED(CONFIG_DMA_CMA))
  340. ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
  341. atomic_pool_init);
  342. else
  343. ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
  344. atomic_pool_init);
  345. if (ptr) {
  346. int i;
  347. for (i = 0; i < nr_pages; i++)
  348. pages[i] = page + i;
  349. spin_lock_init(&pool->lock);
  350. pool->vaddr = ptr;
  351. pool->pages = pages;
  352. pool->bitmap = bitmap;
  353. pool->nr_pages = nr_pages;
  354. pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
  355. (unsigned)pool->size / 1024);
  356. return 0;
  357. }
  358. kfree(pages);
  359. no_pages:
  360. kfree(bitmap);
  361. no_bitmap:
  362. pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
  363. (unsigned)pool->size / 1024);
  364. return -ENOMEM;
  365. }
  366. /*
  367. * CMA is activated by core_initcall, so we must be called after it.
  368. */
  369. postcore_initcall(atomic_pool_init);
  370. struct dma_contig_early_reserve {
  371. phys_addr_t base;
  372. unsigned long size;
  373. };
  374. static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
  375. static int dma_mmu_remap_num __initdata;
  376. void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
  377. {
  378. dma_mmu_remap[dma_mmu_remap_num].base = base;
  379. dma_mmu_remap[dma_mmu_remap_num].size = size;
  380. dma_mmu_remap_num++;
  381. }
  382. void __init dma_contiguous_remap(void)
  383. {
  384. int i;
  385. for (i = 0; i < dma_mmu_remap_num; i++) {
  386. phys_addr_t start = dma_mmu_remap[i].base;
  387. phys_addr_t end = start + dma_mmu_remap[i].size;
  388. struct map_desc map;
  389. unsigned long addr;
  390. if (end > arm_lowmem_limit)
  391. end = arm_lowmem_limit;
  392. if (start >= end)
  393. continue;
  394. map.pfn = __phys_to_pfn(start);
  395. map.virtual = __phys_to_virt(start);
  396. map.length = end - start;
  397. map.type = MT_MEMORY_DMA_READY;
  398. /*
  399. * Clear previous low-memory mapping
  400. */
  401. for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
  402. addr += PMD_SIZE)
  403. pmd_clear(pmd_off_k(addr));
  404. iotable_init(&map, 1);
  405. }
  406. }
  407. static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
  408. void *data)
  409. {
  410. struct page *page = virt_to_page(addr);
  411. pgprot_t prot = *(pgprot_t *)data;
  412. set_pte_ext(pte, mk_pte(page, prot), 0);
  413. return 0;
  414. }
  415. static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
  416. {
  417. unsigned long start = (unsigned long) page_address(page);
  418. unsigned end = start + size;
  419. apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
  420. flush_tlb_kernel_range(start, end);
  421. }
  422. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  423. pgprot_t prot, struct page **ret_page,
  424. const void *caller)
  425. {
  426. struct page *page;
  427. void *ptr;
  428. page = __dma_alloc_buffer(dev, size, gfp);
  429. if (!page)
  430. return NULL;
  431. ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
  432. if (!ptr) {
  433. __dma_free_buffer(page, size);
  434. return NULL;
  435. }
  436. *ret_page = page;
  437. return ptr;
  438. }
  439. static void *__alloc_from_pool(size_t size, struct page **ret_page)
  440. {
  441. struct dma_pool *pool = &atomic_pool;
  442. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  443. unsigned int pageno;
  444. unsigned long flags;
  445. void *ptr = NULL;
  446. unsigned long align_mask;
  447. if (!pool->vaddr) {
  448. WARN(1, "coherent pool not initialised!\n");
  449. return NULL;
  450. }
  451. /*
  452. * Align the region allocation - allocations from pool are rather
  453. * small, so align them to their order in pages, minimum is a page
  454. * size. This helps reduce fragmentation of the DMA space.
  455. */
  456. align_mask = (1 << get_order(size)) - 1;
  457. spin_lock_irqsave(&pool->lock, flags);
  458. pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
  459. 0, count, align_mask);
  460. if (pageno < pool->nr_pages) {
  461. bitmap_set(pool->bitmap, pageno, count);
  462. ptr = pool->vaddr + PAGE_SIZE * pageno;
  463. *ret_page = pool->pages[pageno];
  464. } else {
  465. pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
  466. "Please increase it with coherent_pool= kernel parameter!\n",
  467. (unsigned)pool->size / 1024);
  468. }
  469. spin_unlock_irqrestore(&pool->lock, flags);
  470. return ptr;
  471. }
  472. static bool __in_atomic_pool(void *start, size_t size)
  473. {
  474. struct dma_pool *pool = &atomic_pool;
  475. void *end = start + size;
  476. void *pool_start = pool->vaddr;
  477. void *pool_end = pool->vaddr + pool->size;
  478. if (start < pool_start || start >= pool_end)
  479. return false;
  480. if (end <= pool_end)
  481. return true;
  482. WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
  483. start, end - 1, pool_start, pool_end - 1);
  484. return false;
  485. }
  486. static int __free_from_pool(void *start, size_t size)
  487. {
  488. struct dma_pool *pool = &atomic_pool;
  489. unsigned long pageno, count;
  490. unsigned long flags;
  491. if (!__in_atomic_pool(start, size))
  492. return 0;
  493. pageno = (start - pool->vaddr) >> PAGE_SHIFT;
  494. count = size >> PAGE_SHIFT;
  495. spin_lock_irqsave(&pool->lock, flags);
  496. bitmap_clear(pool->bitmap, pageno, count);
  497. spin_unlock_irqrestore(&pool->lock, flags);
  498. return 1;
  499. }
  500. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  501. pgprot_t prot, struct page **ret_page,
  502. const void *caller)
  503. {
  504. unsigned long order = get_order(size);
  505. size_t count = size >> PAGE_SHIFT;
  506. struct page *page;
  507. void *ptr;
  508. page = dma_alloc_from_contiguous(dev, count, order);
  509. if (!page)
  510. return NULL;
  511. __dma_clear_buffer(page, size);
  512. if (PageHighMem(page)) {
  513. ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
  514. if (!ptr) {
  515. dma_release_from_contiguous(dev, page, count);
  516. return NULL;
  517. }
  518. } else {
  519. __dma_remap(page, size, prot);
  520. ptr = page_address(page);
  521. }
  522. *ret_page = page;
  523. return ptr;
  524. }
  525. static void __free_from_contiguous(struct device *dev, struct page *page,
  526. void *cpu_addr, size_t size)
  527. {
  528. if (PageHighMem(page))
  529. __dma_free_remap(cpu_addr, size);
  530. else
  531. __dma_remap(page, size, pgprot_kernel);
  532. dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
  533. }
  534. static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
  535. {
  536. prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
  537. pgprot_writecombine(prot) :
  538. pgprot_dmacoherent(prot);
  539. return prot;
  540. }
  541. #define nommu() 0
  542. #else /* !CONFIG_MMU */
  543. #define nommu() 1
  544. #define __get_dma_pgprot(attrs, prot) __pgprot(0)
  545. #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
  546. #define __alloc_from_pool(size, ret_page) NULL
  547. #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
  548. #define __free_from_pool(cpu_addr, size) 0
  549. #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
  550. #define __dma_free_remap(cpu_addr, size) do { } while (0)
  551. #endif /* CONFIG_MMU */
  552. static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
  553. struct page **ret_page)
  554. {
  555. struct page *page;
  556. page = __dma_alloc_buffer(dev, size, gfp);
  557. if (!page)
  558. return NULL;
  559. *ret_page = page;
  560. return page_address(page);
  561. }
  562. static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  563. gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
  564. {
  565. u64 mask = get_coherent_dma_mask(dev);
  566. struct page *page = NULL;
  567. void *addr;
  568. #ifdef CONFIG_DMA_API_DEBUG
  569. u64 limit = (mask + 1) & ~mask;
  570. if (limit && size >= limit) {
  571. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  572. size, mask);
  573. return NULL;
  574. }
  575. #endif
  576. if (!mask)
  577. return NULL;
  578. if (mask < 0xffffffffULL)
  579. gfp |= GFP_DMA;
  580. /*
  581. * Following is a work-around (a.k.a. hack) to prevent pages
  582. * with __GFP_COMP being passed to split_page() which cannot
  583. * handle them. The real problem is that this flag probably
  584. * should be 0 on ARM as it is not supported on this
  585. * platform; see CONFIG_HUGETLBFS.
  586. */
  587. gfp &= ~(__GFP_COMP);
  588. *handle = DMA_ERROR_CODE;
  589. size = PAGE_ALIGN(size);
  590. if (is_coherent || nommu())
  591. addr = __alloc_simple_buffer(dev, size, gfp, &page);
  592. else if (!(gfp & __GFP_WAIT))
  593. addr = __alloc_from_pool(size, &page);
  594. else if (!IS_ENABLED(CONFIG_DMA_CMA))
  595. addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
  596. else
  597. addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
  598. if (addr)
  599. *handle = pfn_to_dma(dev, page_to_pfn(page));
  600. return addr;
  601. }
  602. /*
  603. * Allocate DMA-coherent memory space and return both the kernel remapped
  604. * virtual and bus address for that space.
  605. */
  606. void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  607. gfp_t gfp, struct dma_attrs *attrs)
  608. {
  609. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  610. void *memory;
  611. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  612. return memory;
  613. return __dma_alloc(dev, size, handle, gfp, prot, false,
  614. __builtin_return_address(0));
  615. }
  616. static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
  617. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  618. {
  619. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  620. void *memory;
  621. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  622. return memory;
  623. return __dma_alloc(dev, size, handle, gfp, prot, true,
  624. __builtin_return_address(0));
  625. }
  626. /*
  627. * Create userspace mapping for the DMA-coherent memory.
  628. */
  629. int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
  630. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  631. struct dma_attrs *attrs)
  632. {
  633. int ret = -ENXIO;
  634. #ifdef CONFIG_MMU
  635. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  636. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  637. unsigned long pfn = dma_to_pfn(dev, dma_addr);
  638. unsigned long off = vma->vm_pgoff;
  639. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  640. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  641. return ret;
  642. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  643. ret = remap_pfn_range(vma, vma->vm_start,
  644. pfn + off,
  645. vma->vm_end - vma->vm_start,
  646. vma->vm_page_prot);
  647. }
  648. #endif /* CONFIG_MMU */
  649. return ret;
  650. }
  651. /*
  652. * Free a buffer as defined by the above mapping.
  653. */
  654. static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  655. dma_addr_t handle, struct dma_attrs *attrs,
  656. bool is_coherent)
  657. {
  658. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  659. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  660. return;
  661. size = PAGE_ALIGN(size);
  662. if (is_coherent || nommu()) {
  663. __dma_free_buffer(page, size);
  664. } else if (__free_from_pool(cpu_addr, size)) {
  665. return;
  666. } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
  667. __dma_free_remap(cpu_addr, size);
  668. __dma_free_buffer(page, size);
  669. } else {
  670. /*
  671. * Non-atomic allocations cannot be freed with IRQs disabled
  672. */
  673. WARN_ON(irqs_disabled());
  674. __free_from_contiguous(dev, page, cpu_addr, size);
  675. }
  676. }
  677. void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  678. dma_addr_t handle, struct dma_attrs *attrs)
  679. {
  680. __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
  681. }
  682. static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
  683. dma_addr_t handle, struct dma_attrs *attrs)
  684. {
  685. __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
  686. }
  687. int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
  688. void *cpu_addr, dma_addr_t handle, size_t size,
  689. struct dma_attrs *attrs)
  690. {
  691. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  692. int ret;
  693. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  694. if (unlikely(ret))
  695. return ret;
  696. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  697. return 0;
  698. }
  699. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  700. size_t size, enum dma_data_direction dir,
  701. void (*op)(const void *, size_t, int))
  702. {
  703. unsigned long pfn;
  704. size_t left = size;
  705. pfn = page_to_pfn(page) + offset / PAGE_SIZE;
  706. offset %= PAGE_SIZE;
  707. /*
  708. * A single sg entry may refer to multiple physically contiguous
  709. * pages. But we still need to process highmem pages individually.
  710. * If highmem is not configured then the bulk of this loop gets
  711. * optimized out.
  712. */
  713. do {
  714. size_t len = left;
  715. void *vaddr;
  716. page = pfn_to_page(pfn);
  717. if (PageHighMem(page)) {
  718. if (len + offset > PAGE_SIZE)
  719. len = PAGE_SIZE - offset;
  720. if (cache_is_vipt_nonaliasing()) {
  721. vaddr = kmap_atomic(page);
  722. op(vaddr + offset, len, dir);
  723. kunmap_atomic(vaddr);
  724. } else {
  725. vaddr = kmap_high_get(page);
  726. if (vaddr) {
  727. op(vaddr + offset, len, dir);
  728. kunmap_high(page);
  729. }
  730. }
  731. } else {
  732. vaddr = page_address(page) + offset;
  733. op(vaddr, len, dir);
  734. }
  735. offset = 0;
  736. pfn++;
  737. left -= len;
  738. } while (left);
  739. }
  740. /*
  741. * Make an area consistent for devices.
  742. * Note: Drivers should NOT use this function directly, as it will break
  743. * platforms with CONFIG_DMABOUNCE.
  744. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  745. */
  746. static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  747. size_t size, enum dma_data_direction dir)
  748. {
  749. unsigned long paddr;
  750. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  751. paddr = page_to_phys(page) + off;
  752. if (dir == DMA_FROM_DEVICE) {
  753. outer_inv_range(paddr, paddr + size);
  754. } else {
  755. outer_clean_range(paddr, paddr + size);
  756. }
  757. /* FIXME: non-speculating: flush on bidirectional mappings? */
  758. }
  759. static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  760. size_t size, enum dma_data_direction dir)
  761. {
  762. unsigned long paddr = page_to_phys(page) + off;
  763. /* FIXME: non-speculating: not required */
  764. /* don't bother invalidating if DMA to device */
  765. if (dir != DMA_TO_DEVICE)
  766. outer_inv_range(paddr, paddr + size);
  767. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  768. /*
  769. * Mark the D-cache clean for these pages to avoid extra flushing.
  770. */
  771. if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
  772. unsigned long pfn;
  773. size_t left = size;
  774. pfn = page_to_pfn(page) + off / PAGE_SIZE;
  775. off %= PAGE_SIZE;
  776. if (off) {
  777. pfn++;
  778. left -= PAGE_SIZE - off;
  779. }
  780. while (left >= PAGE_SIZE) {
  781. page = pfn_to_page(pfn++);
  782. set_bit(PG_dcache_clean, &page->flags);
  783. left -= PAGE_SIZE;
  784. }
  785. }
  786. }
  787. /**
  788. * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
  789. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  790. * @sg: list of buffers
  791. * @nents: number of buffers to map
  792. * @dir: DMA transfer direction
  793. *
  794. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  795. * This is the scatter-gather version of the dma_map_single interface.
  796. * Here the scatter gather list elements are each tagged with the
  797. * appropriate dma address and length. They are obtained via
  798. * sg_dma_{address,length}.
  799. *
  800. * Device ownership issues as mentioned for dma_map_single are the same
  801. * here.
  802. */
  803. int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  804. enum dma_data_direction dir, struct dma_attrs *attrs)
  805. {
  806. struct dma_map_ops *ops = get_dma_ops(dev);
  807. struct scatterlist *s;
  808. int i, j;
  809. for_each_sg(sg, s, nents, i) {
  810. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  811. s->dma_length = s->length;
  812. #endif
  813. s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
  814. s->length, dir, attrs);
  815. if (dma_mapping_error(dev, s->dma_address))
  816. goto bad_mapping;
  817. }
  818. return nents;
  819. bad_mapping:
  820. for_each_sg(sg, s, i, j)
  821. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  822. return 0;
  823. }
  824. /**
  825. * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  826. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  827. * @sg: list of buffers
  828. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  829. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  830. *
  831. * Unmap a set of streaming mode DMA translations. Again, CPU access
  832. * rules concerning calls here are the same as for dma_unmap_single().
  833. */
  834. void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  835. enum dma_data_direction dir, struct dma_attrs *attrs)
  836. {
  837. struct dma_map_ops *ops = get_dma_ops(dev);
  838. struct scatterlist *s;
  839. int i;
  840. for_each_sg(sg, s, nents, i)
  841. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  842. }
  843. /**
  844. * arm_dma_sync_sg_for_cpu
  845. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  846. * @sg: list of buffers
  847. * @nents: number of buffers to map (returned from dma_map_sg)
  848. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  849. */
  850. void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  851. int nents, enum dma_data_direction dir)
  852. {
  853. struct dma_map_ops *ops = get_dma_ops(dev);
  854. struct scatterlist *s;
  855. int i;
  856. for_each_sg(sg, s, nents, i)
  857. ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
  858. dir);
  859. }
  860. /**
  861. * arm_dma_sync_sg_for_device
  862. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  863. * @sg: list of buffers
  864. * @nents: number of buffers to map (returned from dma_map_sg)
  865. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  866. */
  867. void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  868. int nents, enum dma_data_direction dir)
  869. {
  870. struct dma_map_ops *ops = get_dma_ops(dev);
  871. struct scatterlist *s;
  872. int i;
  873. for_each_sg(sg, s, nents, i)
  874. ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
  875. dir);
  876. }
  877. /*
  878. * Return whether the given device DMA address mask can be supported
  879. * properly. For example, if your device can only drive the low 24-bits
  880. * during bus mastering, then you would pass 0x00ffffff as the mask
  881. * to this function.
  882. */
  883. int dma_supported(struct device *dev, u64 mask)
  884. {
  885. unsigned long limit;
  886. /*
  887. * If the mask allows for more memory than we can address,
  888. * and we actually have that much memory, then we must
  889. * indicate that DMA to this device is not supported.
  890. */
  891. if (sizeof(mask) != sizeof(dma_addr_t) &&
  892. mask > (dma_addr_t)~0 &&
  893. dma_to_pfn(dev, ~0) > arm_dma_pfn_limit)
  894. return 0;
  895. /*
  896. * Translate the device's DMA mask to a PFN limit. This
  897. * PFN number includes the page which we can DMA to.
  898. */
  899. limit = dma_to_pfn(dev, mask);
  900. if (limit < arm_dma_pfn_limit)
  901. return 0;
  902. return 1;
  903. }
  904. EXPORT_SYMBOL(dma_supported);
  905. int arm_dma_set_mask(struct device *dev, u64 dma_mask)
  906. {
  907. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  908. return -EIO;
  909. *dev->dma_mask = dma_mask;
  910. return 0;
  911. }
  912. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  913. static int __init dma_debug_do_init(void)
  914. {
  915. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  916. return 0;
  917. }
  918. fs_initcall(dma_debug_do_init);
  919. #ifdef CONFIG_ARM_DMA_USE_IOMMU
  920. /* IOMMU */
  921. static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
  922. size_t size)
  923. {
  924. unsigned int order = get_order(size);
  925. unsigned int align = 0;
  926. unsigned int count, start;
  927. unsigned long flags;
  928. if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
  929. order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
  930. count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
  931. (1 << mapping->order) - 1) >> mapping->order;
  932. if (order > mapping->order)
  933. align = (1 << (order - mapping->order)) - 1;
  934. spin_lock_irqsave(&mapping->lock, flags);
  935. start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
  936. count, align);
  937. if (start > mapping->bits) {
  938. spin_unlock_irqrestore(&mapping->lock, flags);
  939. return DMA_ERROR_CODE;
  940. }
  941. bitmap_set(mapping->bitmap, start, count);
  942. spin_unlock_irqrestore(&mapping->lock, flags);
  943. return mapping->base + (start << (mapping->order + PAGE_SHIFT));
  944. }
  945. static inline void __free_iova(struct dma_iommu_mapping *mapping,
  946. dma_addr_t addr, size_t size)
  947. {
  948. unsigned int start = (addr - mapping->base) >>
  949. (mapping->order + PAGE_SHIFT);
  950. unsigned int count = ((size >> PAGE_SHIFT) +
  951. (1 << mapping->order) - 1) >> mapping->order;
  952. unsigned long flags;
  953. spin_lock_irqsave(&mapping->lock, flags);
  954. bitmap_clear(mapping->bitmap, start, count);
  955. spin_unlock_irqrestore(&mapping->lock, flags);
  956. }
  957. static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
  958. gfp_t gfp, struct dma_attrs *attrs)
  959. {
  960. struct page **pages;
  961. int count = size >> PAGE_SHIFT;
  962. int array_size = count * sizeof(struct page *);
  963. int i = 0;
  964. if (array_size <= PAGE_SIZE)
  965. pages = kzalloc(array_size, gfp);
  966. else
  967. pages = vzalloc(array_size);
  968. if (!pages)
  969. return NULL;
  970. if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
  971. {
  972. unsigned long order = get_order(size);
  973. struct page *page;
  974. page = dma_alloc_from_contiguous(dev, count, order);
  975. if (!page)
  976. goto error;
  977. __dma_clear_buffer(page, size);
  978. for (i = 0; i < count; i++)
  979. pages[i] = page + i;
  980. return pages;
  981. }
  982. /*
  983. * IOMMU can map any pages, so himem can also be used here
  984. */
  985. gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
  986. while (count) {
  987. int j, order = __fls(count);
  988. pages[i] = alloc_pages(gfp, order);
  989. while (!pages[i] && order)
  990. pages[i] = alloc_pages(gfp, --order);
  991. if (!pages[i])
  992. goto error;
  993. if (order) {
  994. split_page(pages[i], order);
  995. j = 1 << order;
  996. while (--j)
  997. pages[i + j] = pages[i] + j;
  998. }
  999. __dma_clear_buffer(pages[i], PAGE_SIZE << order);
  1000. i += 1 << order;
  1001. count -= 1 << order;
  1002. }
  1003. return pages;
  1004. error:
  1005. while (i--)
  1006. if (pages[i])
  1007. __free_pages(pages[i], 0);
  1008. if (array_size <= PAGE_SIZE)
  1009. kfree(pages);
  1010. else
  1011. vfree(pages);
  1012. return NULL;
  1013. }
  1014. static int __iommu_free_buffer(struct device *dev, struct page **pages,
  1015. size_t size, struct dma_attrs *attrs)
  1016. {
  1017. int count = size >> PAGE_SHIFT;
  1018. int array_size = count * sizeof(struct page *);
  1019. int i;
  1020. if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
  1021. dma_release_from_contiguous(dev, pages[0], count);
  1022. } else {
  1023. for (i = 0; i < count; i++)
  1024. if (pages[i])
  1025. __free_pages(pages[i], 0);
  1026. }
  1027. if (array_size <= PAGE_SIZE)
  1028. kfree(pages);
  1029. else
  1030. vfree(pages);
  1031. return 0;
  1032. }
  1033. /*
  1034. * Create a CPU mapping for a specified pages
  1035. */
  1036. static void *
  1037. __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
  1038. const void *caller)
  1039. {
  1040. unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1041. struct vm_struct *area;
  1042. unsigned long p;
  1043. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  1044. caller);
  1045. if (!area)
  1046. return NULL;
  1047. area->pages = pages;
  1048. area->nr_pages = nr_pages;
  1049. p = (unsigned long)area->addr;
  1050. for (i = 0; i < nr_pages; i++) {
  1051. phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
  1052. if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
  1053. goto err;
  1054. p += PAGE_SIZE;
  1055. }
  1056. return area->addr;
  1057. err:
  1058. unmap_kernel_range((unsigned long)area->addr, size);
  1059. vunmap(area->addr);
  1060. return NULL;
  1061. }
  1062. /*
  1063. * Create a mapping in device IO address space for specified pages
  1064. */
  1065. static dma_addr_t
  1066. __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
  1067. {
  1068. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1069. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1070. dma_addr_t dma_addr, iova;
  1071. int i, ret = DMA_ERROR_CODE;
  1072. dma_addr = __alloc_iova(mapping, size);
  1073. if (dma_addr == DMA_ERROR_CODE)
  1074. return dma_addr;
  1075. iova = dma_addr;
  1076. for (i = 0; i < count; ) {
  1077. unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
  1078. phys_addr_t phys = page_to_phys(pages[i]);
  1079. unsigned int len, j;
  1080. for (j = i + 1; j < count; j++, next_pfn++)
  1081. if (page_to_pfn(pages[j]) != next_pfn)
  1082. break;
  1083. len = (j - i) << PAGE_SHIFT;
  1084. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  1085. if (ret < 0)
  1086. goto fail;
  1087. iova += len;
  1088. i = j;
  1089. }
  1090. return dma_addr;
  1091. fail:
  1092. iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
  1093. __free_iova(mapping, dma_addr, size);
  1094. return DMA_ERROR_CODE;
  1095. }
  1096. static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
  1097. {
  1098. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1099. /*
  1100. * add optional in-page offset from iova to size and align
  1101. * result to page size
  1102. */
  1103. size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
  1104. iova &= PAGE_MASK;
  1105. iommu_unmap(mapping->domain, iova, size);
  1106. __free_iova(mapping, iova, size);
  1107. return 0;
  1108. }
  1109. static struct page **__atomic_get_pages(void *addr)
  1110. {
  1111. struct dma_pool *pool = &atomic_pool;
  1112. struct page **pages = pool->pages;
  1113. int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
  1114. return pages + offs;
  1115. }
  1116. static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
  1117. {
  1118. struct vm_struct *area;
  1119. if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
  1120. return __atomic_get_pages(cpu_addr);
  1121. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  1122. return cpu_addr;
  1123. area = find_vm_area(cpu_addr);
  1124. if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
  1125. return area->pages;
  1126. return NULL;
  1127. }
  1128. static void *__iommu_alloc_atomic(struct device *dev, size_t size,
  1129. dma_addr_t *handle)
  1130. {
  1131. struct page *page;
  1132. void *addr;
  1133. addr = __alloc_from_pool(size, &page);
  1134. if (!addr)
  1135. return NULL;
  1136. *handle = __iommu_create_mapping(dev, &page, size);
  1137. if (*handle == DMA_ERROR_CODE)
  1138. goto err_mapping;
  1139. return addr;
  1140. err_mapping:
  1141. __free_from_pool(addr, size);
  1142. return NULL;
  1143. }
  1144. static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
  1145. dma_addr_t handle, size_t size)
  1146. {
  1147. __iommu_remove_mapping(dev, handle, size);
  1148. __free_from_pool(cpu_addr, size);
  1149. }
  1150. static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
  1151. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  1152. {
  1153. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  1154. struct page **pages;
  1155. void *addr = NULL;
  1156. *handle = DMA_ERROR_CODE;
  1157. size = PAGE_ALIGN(size);
  1158. if (gfp & GFP_ATOMIC)
  1159. return __iommu_alloc_atomic(dev, size, handle);
  1160. /*
  1161. * Following is a work-around (a.k.a. hack) to prevent pages
  1162. * with __GFP_COMP being passed to split_page() which cannot
  1163. * handle them. The real problem is that this flag probably
  1164. * should be 0 on ARM as it is not supported on this
  1165. * platform; see CONFIG_HUGETLBFS.
  1166. */
  1167. gfp &= ~(__GFP_COMP);
  1168. pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
  1169. if (!pages)
  1170. return NULL;
  1171. *handle = __iommu_create_mapping(dev, pages, size);
  1172. if (*handle == DMA_ERROR_CODE)
  1173. goto err_buffer;
  1174. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  1175. return pages;
  1176. addr = __iommu_alloc_remap(pages, size, gfp, prot,
  1177. __builtin_return_address(0));
  1178. if (!addr)
  1179. goto err_mapping;
  1180. return addr;
  1181. err_mapping:
  1182. __iommu_remove_mapping(dev, *handle, size);
  1183. err_buffer:
  1184. __iommu_free_buffer(dev, pages, size, attrs);
  1185. return NULL;
  1186. }
  1187. static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
  1188. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  1189. struct dma_attrs *attrs)
  1190. {
  1191. unsigned long uaddr = vma->vm_start;
  1192. unsigned long usize = vma->vm_end - vma->vm_start;
  1193. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1194. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  1195. if (!pages)
  1196. return -ENXIO;
  1197. do {
  1198. int ret = vm_insert_page(vma, uaddr, *pages++);
  1199. if (ret) {
  1200. pr_err("Remapping memory failed: %d\n", ret);
  1201. return ret;
  1202. }
  1203. uaddr += PAGE_SIZE;
  1204. usize -= PAGE_SIZE;
  1205. } while (usize > 0);
  1206. return 0;
  1207. }
  1208. /*
  1209. * free a page as defined by the above mapping.
  1210. * Must not be called with IRQs disabled.
  1211. */
  1212. void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
  1213. dma_addr_t handle, struct dma_attrs *attrs)
  1214. {
  1215. struct page **pages;
  1216. size = PAGE_ALIGN(size);
  1217. if (__in_atomic_pool(cpu_addr, size)) {
  1218. __iommu_free_atomic(dev, cpu_addr, handle, size);
  1219. return;
  1220. }
  1221. pages = __iommu_get_pages(cpu_addr, attrs);
  1222. if (!pages) {
  1223. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  1224. return;
  1225. }
  1226. if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
  1227. unmap_kernel_range((unsigned long)cpu_addr, size);
  1228. vunmap(cpu_addr);
  1229. }
  1230. __iommu_remove_mapping(dev, handle, size);
  1231. __iommu_free_buffer(dev, pages, size, attrs);
  1232. }
  1233. static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
  1234. void *cpu_addr, dma_addr_t dma_addr,
  1235. size_t size, struct dma_attrs *attrs)
  1236. {
  1237. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1238. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1239. if (!pages)
  1240. return -ENXIO;
  1241. return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
  1242. GFP_KERNEL);
  1243. }
  1244. /*
  1245. * Map a part of the scatter-gather list into contiguous io address space
  1246. */
  1247. static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
  1248. size_t size, dma_addr_t *handle,
  1249. enum dma_data_direction dir, struct dma_attrs *attrs,
  1250. bool is_coherent)
  1251. {
  1252. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1253. dma_addr_t iova, iova_base;
  1254. int ret = 0;
  1255. unsigned int count;
  1256. struct scatterlist *s;
  1257. size = PAGE_ALIGN(size);
  1258. *handle = DMA_ERROR_CODE;
  1259. iova_base = iova = __alloc_iova(mapping, size);
  1260. if (iova == DMA_ERROR_CODE)
  1261. return -ENOMEM;
  1262. for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
  1263. phys_addr_t phys = page_to_phys(sg_page(s));
  1264. unsigned int len = PAGE_ALIGN(s->offset + s->length);
  1265. if (!is_coherent &&
  1266. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1267. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1268. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  1269. if (ret < 0)
  1270. goto fail;
  1271. count += len >> PAGE_SHIFT;
  1272. iova += len;
  1273. }
  1274. *handle = iova_base;
  1275. return 0;
  1276. fail:
  1277. iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
  1278. __free_iova(mapping, iova_base, size);
  1279. return ret;
  1280. }
  1281. static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  1282. enum dma_data_direction dir, struct dma_attrs *attrs,
  1283. bool is_coherent)
  1284. {
  1285. struct scatterlist *s = sg, *dma = sg, *start = sg;
  1286. int i, count = 0;
  1287. unsigned int offset = s->offset;
  1288. unsigned int size = s->offset + s->length;
  1289. unsigned int max = dma_get_max_seg_size(dev);
  1290. for (i = 1; i < nents; i++) {
  1291. s = sg_next(s);
  1292. s->dma_address = DMA_ERROR_CODE;
  1293. s->dma_length = 0;
  1294. if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
  1295. if (__map_sg_chunk(dev, start, size, &dma->dma_address,
  1296. dir, attrs, is_coherent) < 0)
  1297. goto bad_mapping;
  1298. dma->dma_address += offset;
  1299. dma->dma_length = size - offset;
  1300. size = offset = s->offset;
  1301. start = s;
  1302. dma = sg_next(dma);
  1303. count += 1;
  1304. }
  1305. size += s->length;
  1306. }
  1307. if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
  1308. is_coherent) < 0)
  1309. goto bad_mapping;
  1310. dma->dma_address += offset;
  1311. dma->dma_length = size - offset;
  1312. return count+1;
  1313. bad_mapping:
  1314. for_each_sg(sg, s, count, i)
  1315. __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
  1316. return 0;
  1317. }
  1318. /**
  1319. * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1320. * @dev: valid struct device pointer
  1321. * @sg: list of buffers
  1322. * @nents: number of buffers to map
  1323. * @dir: DMA transfer direction
  1324. *
  1325. * Map a set of i/o coherent buffers described by scatterlist in streaming
  1326. * mode for DMA. The scatter gather list elements are merged together (if
  1327. * possible) and tagged with the appropriate dma address and length. They are
  1328. * obtained via sg_dma_{address,length}.
  1329. */
  1330. int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
  1331. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1332. {
  1333. return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
  1334. }
  1335. /**
  1336. * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1337. * @dev: valid struct device pointer
  1338. * @sg: list of buffers
  1339. * @nents: number of buffers to map
  1340. * @dir: DMA transfer direction
  1341. *
  1342. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  1343. * The scatter gather list elements are merged together (if possible) and
  1344. * tagged with the appropriate dma address and length. They are obtained via
  1345. * sg_dma_{address,length}.
  1346. */
  1347. int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
  1348. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1349. {
  1350. return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
  1351. }
  1352. static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
  1353. int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
  1354. bool is_coherent)
  1355. {
  1356. struct scatterlist *s;
  1357. int i;
  1358. for_each_sg(sg, s, nents, i) {
  1359. if (sg_dma_len(s))
  1360. __iommu_remove_mapping(dev, sg_dma_address(s),
  1361. sg_dma_len(s));
  1362. if (!is_coherent &&
  1363. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1364. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  1365. s->length, dir);
  1366. }
  1367. }
  1368. /**
  1369. * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1370. * @dev: valid struct device pointer
  1371. * @sg: list of buffers
  1372. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1373. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1374. *
  1375. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1376. * rules concerning calls here are the same as for dma_unmap_single().
  1377. */
  1378. void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
  1379. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1380. {
  1381. __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
  1382. }
  1383. /**
  1384. * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1385. * @dev: valid struct device pointer
  1386. * @sg: list of buffers
  1387. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1388. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1389. *
  1390. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1391. * rules concerning calls here are the same as for dma_unmap_single().
  1392. */
  1393. void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  1394. enum dma_data_direction dir, struct dma_attrs *attrs)
  1395. {
  1396. __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
  1397. }
  1398. /**
  1399. * arm_iommu_sync_sg_for_cpu
  1400. * @dev: valid struct device pointer
  1401. * @sg: list of buffers
  1402. * @nents: number of buffers to map (returned from dma_map_sg)
  1403. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1404. */
  1405. void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  1406. int nents, enum dma_data_direction dir)
  1407. {
  1408. struct scatterlist *s;
  1409. int i;
  1410. for_each_sg(sg, s, nents, i)
  1411. __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
  1412. }
  1413. /**
  1414. * arm_iommu_sync_sg_for_device
  1415. * @dev: valid struct device pointer
  1416. * @sg: list of buffers
  1417. * @nents: number of buffers to map (returned from dma_map_sg)
  1418. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1419. */
  1420. void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  1421. int nents, enum dma_data_direction dir)
  1422. {
  1423. struct scatterlist *s;
  1424. int i;
  1425. for_each_sg(sg, s, nents, i)
  1426. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1427. }
  1428. /**
  1429. * arm_coherent_iommu_map_page
  1430. * @dev: valid struct device pointer
  1431. * @page: page that buffer resides in
  1432. * @offset: offset into page for start of buffer
  1433. * @size: size of buffer to map
  1434. * @dir: DMA transfer direction
  1435. *
  1436. * Coherent IOMMU aware version of arm_dma_map_page()
  1437. */
  1438. static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
  1439. unsigned long offset, size_t size, enum dma_data_direction dir,
  1440. struct dma_attrs *attrs)
  1441. {
  1442. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1443. dma_addr_t dma_addr;
  1444. int ret, prot, len = PAGE_ALIGN(size + offset);
  1445. dma_addr = __alloc_iova(mapping, len);
  1446. if (dma_addr == DMA_ERROR_CODE)
  1447. return dma_addr;
  1448. switch (dir) {
  1449. case DMA_BIDIRECTIONAL:
  1450. prot = IOMMU_READ | IOMMU_WRITE;
  1451. break;
  1452. case DMA_TO_DEVICE:
  1453. prot = IOMMU_READ;
  1454. break;
  1455. case DMA_FROM_DEVICE:
  1456. prot = IOMMU_WRITE;
  1457. break;
  1458. default:
  1459. prot = 0;
  1460. }
  1461. ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
  1462. if (ret < 0)
  1463. goto fail;
  1464. return dma_addr + offset;
  1465. fail:
  1466. __free_iova(mapping, dma_addr, len);
  1467. return DMA_ERROR_CODE;
  1468. }
  1469. /**
  1470. * arm_iommu_map_page
  1471. * @dev: valid struct device pointer
  1472. * @page: page that buffer resides in
  1473. * @offset: offset into page for start of buffer
  1474. * @size: size of buffer to map
  1475. * @dir: DMA transfer direction
  1476. *
  1477. * IOMMU aware version of arm_dma_map_page()
  1478. */
  1479. static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
  1480. unsigned long offset, size_t size, enum dma_data_direction dir,
  1481. struct dma_attrs *attrs)
  1482. {
  1483. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1484. __dma_page_cpu_to_dev(page, offset, size, dir);
  1485. return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
  1486. }
  1487. /**
  1488. * arm_coherent_iommu_unmap_page
  1489. * @dev: valid struct device pointer
  1490. * @handle: DMA address of buffer
  1491. * @size: size of buffer (same as passed to dma_map_page)
  1492. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1493. *
  1494. * Coherent IOMMU aware version of arm_dma_unmap_page()
  1495. */
  1496. static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1497. size_t size, enum dma_data_direction dir,
  1498. struct dma_attrs *attrs)
  1499. {
  1500. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1501. dma_addr_t iova = handle & PAGE_MASK;
  1502. int offset = handle & ~PAGE_MASK;
  1503. int len = PAGE_ALIGN(size + offset);
  1504. if (!iova)
  1505. return;
  1506. iommu_unmap(mapping->domain, iova, len);
  1507. __free_iova(mapping, iova, len);
  1508. }
  1509. /**
  1510. * arm_iommu_unmap_page
  1511. * @dev: valid struct device pointer
  1512. * @handle: DMA address of buffer
  1513. * @size: size of buffer (same as passed to dma_map_page)
  1514. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1515. *
  1516. * IOMMU aware version of arm_dma_unmap_page()
  1517. */
  1518. static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1519. size_t size, enum dma_data_direction dir,
  1520. struct dma_attrs *attrs)
  1521. {
  1522. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1523. dma_addr_t iova = handle & PAGE_MASK;
  1524. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1525. int offset = handle & ~PAGE_MASK;
  1526. int len = PAGE_ALIGN(size + offset);
  1527. if (!iova)
  1528. return;
  1529. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1530. __dma_page_dev_to_cpu(page, offset, size, dir);
  1531. iommu_unmap(mapping->domain, iova, len);
  1532. __free_iova(mapping, iova, len);
  1533. }
  1534. static void arm_iommu_sync_single_for_cpu(struct device *dev,
  1535. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1536. {
  1537. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1538. dma_addr_t iova = handle & PAGE_MASK;
  1539. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1540. unsigned int offset = handle & ~PAGE_MASK;
  1541. if (!iova)
  1542. return;
  1543. __dma_page_dev_to_cpu(page, offset, size, dir);
  1544. }
  1545. static void arm_iommu_sync_single_for_device(struct device *dev,
  1546. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1547. {
  1548. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1549. dma_addr_t iova = handle & PAGE_MASK;
  1550. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1551. unsigned int offset = handle & ~PAGE_MASK;
  1552. if (!iova)
  1553. return;
  1554. __dma_page_cpu_to_dev(page, offset, size, dir);
  1555. }
  1556. struct dma_map_ops iommu_ops = {
  1557. .alloc = arm_iommu_alloc_attrs,
  1558. .free = arm_iommu_free_attrs,
  1559. .mmap = arm_iommu_mmap_attrs,
  1560. .get_sgtable = arm_iommu_get_sgtable,
  1561. .map_page = arm_iommu_map_page,
  1562. .unmap_page = arm_iommu_unmap_page,
  1563. .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
  1564. .sync_single_for_device = arm_iommu_sync_single_for_device,
  1565. .map_sg = arm_iommu_map_sg,
  1566. .unmap_sg = arm_iommu_unmap_sg,
  1567. .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
  1568. .sync_sg_for_device = arm_iommu_sync_sg_for_device,
  1569. .set_dma_mask = arm_dma_set_mask,
  1570. };
  1571. struct dma_map_ops iommu_coherent_ops = {
  1572. .alloc = arm_iommu_alloc_attrs,
  1573. .free = arm_iommu_free_attrs,
  1574. .mmap = arm_iommu_mmap_attrs,
  1575. .get_sgtable = arm_iommu_get_sgtable,
  1576. .map_page = arm_coherent_iommu_map_page,
  1577. .unmap_page = arm_coherent_iommu_unmap_page,
  1578. .map_sg = arm_coherent_iommu_map_sg,
  1579. .unmap_sg = arm_coherent_iommu_unmap_sg,
  1580. .set_dma_mask = arm_dma_set_mask,
  1581. };
  1582. /**
  1583. * arm_iommu_create_mapping
  1584. * @bus: pointer to the bus holding the client device (for IOMMU calls)
  1585. * @base: start address of the valid IO address space
  1586. * @size: size of the valid IO address space
  1587. * @order: accuracy of the IO addresses allocations
  1588. *
  1589. * Creates a mapping structure which holds information about used/unused
  1590. * IO address ranges, which is required to perform memory allocation and
  1591. * mapping with IOMMU aware functions.
  1592. *
  1593. * The client device need to be attached to the mapping with
  1594. * arm_iommu_attach_device function.
  1595. */
  1596. struct dma_iommu_mapping *
  1597. arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
  1598. int order)
  1599. {
  1600. unsigned int count = size >> (PAGE_SHIFT + order);
  1601. unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
  1602. struct dma_iommu_mapping *mapping;
  1603. int err = -ENOMEM;
  1604. if (!count)
  1605. return ERR_PTR(-EINVAL);
  1606. mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
  1607. if (!mapping)
  1608. goto err;
  1609. mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  1610. if (!mapping->bitmap)
  1611. goto err2;
  1612. mapping->base = base;
  1613. mapping->bits = BITS_PER_BYTE * bitmap_size;
  1614. mapping->order = order;
  1615. spin_lock_init(&mapping->lock);
  1616. mapping->domain = iommu_domain_alloc(bus);
  1617. if (!mapping->domain)
  1618. goto err3;
  1619. kref_init(&mapping->kref);
  1620. return mapping;
  1621. err3:
  1622. kfree(mapping->bitmap);
  1623. err2:
  1624. kfree(mapping);
  1625. err:
  1626. return ERR_PTR(err);
  1627. }
  1628. EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
  1629. static void release_iommu_mapping(struct kref *kref)
  1630. {
  1631. struct dma_iommu_mapping *mapping =
  1632. container_of(kref, struct dma_iommu_mapping, kref);
  1633. iommu_domain_free(mapping->domain);
  1634. kfree(mapping->bitmap);
  1635. kfree(mapping);
  1636. }
  1637. void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
  1638. {
  1639. if (mapping)
  1640. kref_put(&mapping->kref, release_iommu_mapping);
  1641. }
  1642. EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
  1643. /**
  1644. * arm_iommu_attach_device
  1645. * @dev: valid struct device pointer
  1646. * @mapping: io address space mapping structure (returned from
  1647. * arm_iommu_create_mapping)
  1648. *
  1649. * Attaches specified io address space mapping to the provided device,
  1650. * this replaces the dma operations (dma_map_ops pointer) with the
  1651. * IOMMU aware version. More than one client might be attached to
  1652. * the same io address space mapping.
  1653. */
  1654. int arm_iommu_attach_device(struct device *dev,
  1655. struct dma_iommu_mapping *mapping)
  1656. {
  1657. int err;
  1658. err = iommu_attach_device(mapping->domain, dev);
  1659. if (err)
  1660. return err;
  1661. kref_get(&mapping->kref);
  1662. dev->archdata.mapping = mapping;
  1663. set_dma_ops(dev, &iommu_ops);
  1664. pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
  1665. return 0;
  1666. }
  1667. EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
  1668. /**
  1669. * arm_iommu_detach_device
  1670. * @dev: valid struct device pointer
  1671. *
  1672. * Detaches the provided device from a previously attached map.
  1673. * This voids the dma operations (dma_map_ops pointer)
  1674. */
  1675. void arm_iommu_detach_device(struct device *dev)
  1676. {
  1677. struct dma_iommu_mapping *mapping;
  1678. mapping = to_dma_iommu_mapping(dev);
  1679. if (!mapping) {
  1680. dev_warn(dev, "Not attached\n");
  1681. return;
  1682. }
  1683. iommu_detach_device(mapping->domain, dev);
  1684. kref_put(&mapping->kref, release_iommu_mapping);
  1685. dev->archdata.mapping = NULL;
  1686. set_dma_ops(dev, NULL);
  1687. pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
  1688. }
  1689. EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
  1690. #endif