sched.c 221 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. #endif /* CONFIG_GROUP_SCHED */
  312. /* CFS-related fields in a runqueue */
  313. struct cfs_rq {
  314. struct load_weight load;
  315. unsigned long nr_running;
  316. u64 exec_clock;
  317. u64 min_vruntime;
  318. u64 pair_start;
  319. struct rb_root tasks_timeline;
  320. struct rb_node *rb_leftmost;
  321. struct list_head tasks;
  322. struct list_head *balance_iterator;
  323. /*
  324. * 'curr' points to currently running entity on this cfs_rq.
  325. * It is set to NULL otherwise (i.e when none are currently running).
  326. */
  327. struct sched_entity *curr, *next;
  328. unsigned long nr_spread_over;
  329. #ifdef CONFIG_FAIR_GROUP_SCHED
  330. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  331. /*
  332. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  333. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  334. * (like users, containers etc.)
  335. *
  336. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  337. * list is used during load balance.
  338. */
  339. struct list_head leaf_cfs_rq_list;
  340. struct task_group *tg; /* group that "owns" this runqueue */
  341. #ifdef CONFIG_SMP
  342. unsigned long task_weight;
  343. unsigned long shares;
  344. /*
  345. * We need space to build a sched_domain wide view of the full task
  346. * group tree, in order to avoid depending on dynamic memory allocation
  347. * during the load balancing we place this in the per cpu task group
  348. * hierarchy. This limits the load balancing to one instance per cpu,
  349. * but more should not be needed anyway.
  350. */
  351. struct aggregate_struct {
  352. /*
  353. * load = weight(cpus) * f(tg)
  354. *
  355. * Where f(tg) is the recursive weight fraction assigned to
  356. * this group.
  357. */
  358. unsigned long load;
  359. /*
  360. * part of the group weight distributed to this span.
  361. */
  362. unsigned long shares;
  363. /*
  364. * The sum of all runqueue weights within this span.
  365. */
  366. unsigned long rq_weight;
  367. /*
  368. * Weight contributed by tasks; this is the part we can
  369. * influence by moving tasks around.
  370. */
  371. unsigned long task_weight;
  372. } aggregate;
  373. #endif
  374. #endif
  375. };
  376. /* Real-Time classes' related field in a runqueue: */
  377. struct rt_rq {
  378. struct rt_prio_array active;
  379. unsigned long rt_nr_running;
  380. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  381. int highest_prio; /* highest queued rt task prio */
  382. #endif
  383. #ifdef CONFIG_SMP
  384. unsigned long rt_nr_migratory;
  385. int overloaded;
  386. #endif
  387. int rt_throttled;
  388. u64 rt_time;
  389. u64 rt_runtime;
  390. /* Nests inside the rq lock: */
  391. spinlock_t rt_runtime_lock;
  392. #ifdef CONFIG_RT_GROUP_SCHED
  393. unsigned long rt_nr_boosted;
  394. struct rq *rq;
  395. struct list_head leaf_rt_rq_list;
  396. struct task_group *tg;
  397. struct sched_rt_entity *rt_se;
  398. #endif
  399. };
  400. #ifdef CONFIG_SMP
  401. /*
  402. * We add the notion of a root-domain which will be used to define per-domain
  403. * variables. Each exclusive cpuset essentially defines an island domain by
  404. * fully partitioning the member cpus from any other cpuset. Whenever a new
  405. * exclusive cpuset is created, we also create and attach a new root-domain
  406. * object.
  407. *
  408. */
  409. struct root_domain {
  410. atomic_t refcount;
  411. cpumask_t span;
  412. cpumask_t online;
  413. /*
  414. * The "RT overload" flag: it gets set if a CPU has more than
  415. * one runnable RT task.
  416. */
  417. cpumask_t rto_mask;
  418. atomic_t rto_count;
  419. #ifdef CONFIG_SMP
  420. struct cpupri cpupri;
  421. #endif
  422. };
  423. /*
  424. * By default the system creates a single root-domain with all cpus as
  425. * members (mimicking the global state we have today).
  426. */
  427. static struct root_domain def_root_domain;
  428. #endif
  429. /*
  430. * This is the main, per-CPU runqueue data structure.
  431. *
  432. * Locking rule: those places that want to lock multiple runqueues
  433. * (such as the load balancing or the thread migration code), lock
  434. * acquire operations must be ordered by ascending &runqueue.
  435. */
  436. struct rq {
  437. /* runqueue lock: */
  438. spinlock_t lock;
  439. /*
  440. * nr_running and cpu_load should be in the same cacheline because
  441. * remote CPUs use both these fields when doing load calculation.
  442. */
  443. unsigned long nr_running;
  444. #define CPU_LOAD_IDX_MAX 5
  445. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  446. unsigned char idle_at_tick;
  447. #ifdef CONFIG_NO_HZ
  448. unsigned long last_tick_seen;
  449. unsigned char in_nohz_recently;
  450. #endif
  451. /* capture load from *all* tasks on this cpu: */
  452. struct load_weight load;
  453. unsigned long nr_load_updates;
  454. u64 nr_switches;
  455. struct cfs_rq cfs;
  456. struct rt_rq rt;
  457. #ifdef CONFIG_FAIR_GROUP_SCHED
  458. /* list of leaf cfs_rq on this cpu: */
  459. struct list_head leaf_cfs_rq_list;
  460. #endif
  461. #ifdef CONFIG_RT_GROUP_SCHED
  462. struct list_head leaf_rt_rq_list;
  463. #endif
  464. /*
  465. * This is part of a global counter where only the total sum
  466. * over all CPUs matters. A task can increase this counter on
  467. * one CPU and if it got migrated afterwards it may decrease
  468. * it on another CPU. Always updated under the runqueue lock:
  469. */
  470. unsigned long nr_uninterruptible;
  471. struct task_struct *curr, *idle;
  472. unsigned long next_balance;
  473. struct mm_struct *prev_mm;
  474. u64 clock;
  475. atomic_t nr_iowait;
  476. #ifdef CONFIG_SMP
  477. struct root_domain *rd;
  478. struct sched_domain *sd;
  479. /* For active balancing */
  480. int active_balance;
  481. int push_cpu;
  482. /* cpu of this runqueue: */
  483. int cpu;
  484. int online;
  485. struct task_struct *migration_thread;
  486. struct list_head migration_queue;
  487. #endif
  488. #ifdef CONFIG_SCHED_HRTICK
  489. unsigned long hrtick_flags;
  490. ktime_t hrtick_expire;
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. struct lock_class_key rq_lock_key;
  512. };
  513. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  514. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  515. {
  516. rq->curr->sched_class->check_preempt_curr(rq, p);
  517. }
  518. static inline int cpu_of(struct rq *rq)
  519. {
  520. #ifdef CONFIG_SMP
  521. return rq->cpu;
  522. #else
  523. return 0;
  524. #endif
  525. }
  526. /*
  527. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  528. * See detach_destroy_domains: synchronize_sched for details.
  529. *
  530. * The domain tree of any CPU may only be accessed from within
  531. * preempt-disabled sections.
  532. */
  533. #define for_each_domain(cpu, __sd) \
  534. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  535. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  536. #define this_rq() (&__get_cpu_var(runqueues))
  537. #define task_rq(p) cpu_rq(task_cpu(p))
  538. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  539. static inline void update_rq_clock(struct rq *rq)
  540. {
  541. rq->clock = sched_clock_cpu(cpu_of(rq));
  542. }
  543. /*
  544. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  545. */
  546. #ifdef CONFIG_SCHED_DEBUG
  547. # define const_debug __read_mostly
  548. #else
  549. # define const_debug static const
  550. #endif
  551. /*
  552. * Debugging: various feature bits
  553. */
  554. #define SCHED_FEAT(name, enabled) \
  555. __SCHED_FEAT_##name ,
  556. enum {
  557. #include "sched_features.h"
  558. };
  559. #undef SCHED_FEAT
  560. #define SCHED_FEAT(name, enabled) \
  561. (1UL << __SCHED_FEAT_##name) * enabled |
  562. const_debug unsigned int sysctl_sched_features =
  563. #include "sched_features.h"
  564. 0;
  565. #undef SCHED_FEAT
  566. #ifdef CONFIG_SCHED_DEBUG
  567. #define SCHED_FEAT(name, enabled) \
  568. #name ,
  569. static __read_mostly char *sched_feat_names[] = {
  570. #include "sched_features.h"
  571. NULL
  572. };
  573. #undef SCHED_FEAT
  574. static int sched_feat_open(struct inode *inode, struct file *filp)
  575. {
  576. filp->private_data = inode->i_private;
  577. return 0;
  578. }
  579. static ssize_t
  580. sched_feat_read(struct file *filp, char __user *ubuf,
  581. size_t cnt, loff_t *ppos)
  582. {
  583. char *buf;
  584. int r = 0;
  585. int len = 0;
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. len += strlen(sched_feat_names[i]);
  589. len += 4;
  590. }
  591. buf = kmalloc(len + 2, GFP_KERNEL);
  592. if (!buf)
  593. return -ENOMEM;
  594. for (i = 0; sched_feat_names[i]; i++) {
  595. if (sysctl_sched_features & (1UL << i))
  596. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  597. else
  598. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  599. }
  600. r += sprintf(buf + r, "\n");
  601. WARN_ON(r >= len + 2);
  602. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  603. kfree(buf);
  604. return r;
  605. }
  606. static ssize_t
  607. sched_feat_write(struct file *filp, const char __user *ubuf,
  608. size_t cnt, loff_t *ppos)
  609. {
  610. char buf[64];
  611. char *cmp = buf;
  612. int neg = 0;
  613. int i;
  614. if (cnt > 63)
  615. cnt = 63;
  616. if (copy_from_user(&buf, ubuf, cnt))
  617. return -EFAULT;
  618. buf[cnt] = 0;
  619. if (strncmp(buf, "NO_", 3) == 0) {
  620. neg = 1;
  621. cmp += 3;
  622. }
  623. for (i = 0; sched_feat_names[i]; i++) {
  624. int len = strlen(sched_feat_names[i]);
  625. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  626. if (neg)
  627. sysctl_sched_features &= ~(1UL << i);
  628. else
  629. sysctl_sched_features |= (1UL << i);
  630. break;
  631. }
  632. }
  633. if (!sched_feat_names[i])
  634. return -EINVAL;
  635. filp->f_pos += cnt;
  636. return cnt;
  637. }
  638. static struct file_operations sched_feat_fops = {
  639. .open = sched_feat_open,
  640. .read = sched_feat_read,
  641. .write = sched_feat_write,
  642. };
  643. static __init int sched_init_debug(void)
  644. {
  645. debugfs_create_file("sched_features", 0644, NULL, NULL,
  646. &sched_feat_fops);
  647. return 0;
  648. }
  649. late_initcall(sched_init_debug);
  650. #endif
  651. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  652. /*
  653. * Number of tasks to iterate in a single balance run.
  654. * Limited because this is done with IRQs disabled.
  655. */
  656. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  657. /*
  658. * period over which we measure -rt task cpu usage in us.
  659. * default: 1s
  660. */
  661. unsigned int sysctl_sched_rt_period = 1000000;
  662. static __read_mostly int scheduler_running;
  663. /*
  664. * part of the period that we allow rt tasks to run in us.
  665. * default: 0.95s
  666. */
  667. int sysctl_sched_rt_runtime = 950000;
  668. static inline u64 global_rt_period(void)
  669. {
  670. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  671. }
  672. static inline u64 global_rt_runtime(void)
  673. {
  674. if (sysctl_sched_rt_period < 0)
  675. return RUNTIME_INF;
  676. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  677. }
  678. #ifndef prepare_arch_switch
  679. # define prepare_arch_switch(next) do { } while (0)
  680. #endif
  681. #ifndef finish_arch_switch
  682. # define finish_arch_switch(prev) do { } while (0)
  683. #endif
  684. static inline int task_current(struct rq *rq, struct task_struct *p)
  685. {
  686. return rq->curr == p;
  687. }
  688. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. return task_current(rq, p);
  692. }
  693. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  694. {
  695. }
  696. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  697. {
  698. #ifdef CONFIG_DEBUG_SPINLOCK
  699. /* this is a valid case when another task releases the spinlock */
  700. rq->lock.owner = current;
  701. #endif
  702. /*
  703. * If we are tracking spinlock dependencies then we have to
  704. * fix up the runqueue lock - which gets 'carried over' from
  705. * prev into current:
  706. */
  707. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  708. spin_unlock_irq(&rq->lock);
  709. }
  710. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  711. static inline int task_running(struct rq *rq, struct task_struct *p)
  712. {
  713. #ifdef CONFIG_SMP
  714. return p->oncpu;
  715. #else
  716. return task_current(rq, p);
  717. #endif
  718. }
  719. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  720. {
  721. #ifdef CONFIG_SMP
  722. /*
  723. * We can optimise this out completely for !SMP, because the
  724. * SMP rebalancing from interrupt is the only thing that cares
  725. * here.
  726. */
  727. next->oncpu = 1;
  728. #endif
  729. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  730. spin_unlock_irq(&rq->lock);
  731. #else
  732. spin_unlock(&rq->lock);
  733. #endif
  734. }
  735. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * After ->oncpu is cleared, the task can be moved to a different CPU.
  740. * We must ensure this doesn't happen until the switch is completely
  741. * finished.
  742. */
  743. smp_wmb();
  744. prev->oncpu = 0;
  745. #endif
  746. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  747. local_irq_enable();
  748. #endif
  749. }
  750. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  751. /*
  752. * __task_rq_lock - lock the runqueue a given task resides on.
  753. * Must be called interrupts disabled.
  754. */
  755. static inline struct rq *__task_rq_lock(struct task_struct *p)
  756. __acquires(rq->lock)
  757. {
  758. for (;;) {
  759. struct rq *rq = task_rq(p);
  760. spin_lock(&rq->lock);
  761. if (likely(rq == task_rq(p)))
  762. return rq;
  763. spin_unlock(&rq->lock);
  764. }
  765. }
  766. /*
  767. * task_rq_lock - lock the runqueue a given task resides on and disable
  768. * interrupts. Note the ordering: we can safely lookup the task_rq without
  769. * explicitly disabling preemption.
  770. */
  771. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  772. __acquires(rq->lock)
  773. {
  774. struct rq *rq;
  775. for (;;) {
  776. local_irq_save(*flags);
  777. rq = task_rq(p);
  778. spin_lock(&rq->lock);
  779. if (likely(rq == task_rq(p)))
  780. return rq;
  781. spin_unlock_irqrestore(&rq->lock, *flags);
  782. }
  783. }
  784. static void __task_rq_unlock(struct rq *rq)
  785. __releases(rq->lock)
  786. {
  787. spin_unlock(&rq->lock);
  788. }
  789. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  790. __releases(rq->lock)
  791. {
  792. spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. /*
  795. * this_rq_lock - lock this runqueue and disable interrupts.
  796. */
  797. static struct rq *this_rq_lock(void)
  798. __acquires(rq->lock)
  799. {
  800. struct rq *rq;
  801. local_irq_disable();
  802. rq = this_rq();
  803. spin_lock(&rq->lock);
  804. return rq;
  805. }
  806. static void __resched_task(struct task_struct *p, int tif_bit);
  807. static inline void resched_task(struct task_struct *p)
  808. {
  809. __resched_task(p, TIF_NEED_RESCHED);
  810. }
  811. #ifdef CONFIG_SCHED_HRTICK
  812. /*
  813. * Use HR-timers to deliver accurate preemption points.
  814. *
  815. * Its all a bit involved since we cannot program an hrt while holding the
  816. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  817. * reschedule event.
  818. *
  819. * When we get rescheduled we reprogram the hrtick_timer outside of the
  820. * rq->lock.
  821. */
  822. static inline void resched_hrt(struct task_struct *p)
  823. {
  824. __resched_task(p, TIF_HRTICK_RESCHED);
  825. }
  826. static inline void resched_rq(struct rq *rq)
  827. {
  828. unsigned long flags;
  829. spin_lock_irqsave(&rq->lock, flags);
  830. resched_task(rq->curr);
  831. spin_unlock_irqrestore(&rq->lock, flags);
  832. }
  833. enum {
  834. HRTICK_SET, /* re-programm hrtick_timer */
  835. HRTICK_RESET, /* not a new slice */
  836. HRTICK_BLOCK, /* stop hrtick operations */
  837. };
  838. /*
  839. * Use hrtick when:
  840. * - enabled by features
  841. * - hrtimer is actually high res
  842. */
  843. static inline int hrtick_enabled(struct rq *rq)
  844. {
  845. if (!sched_feat(HRTICK))
  846. return 0;
  847. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  848. return 0;
  849. return hrtimer_is_hres_active(&rq->hrtick_timer);
  850. }
  851. /*
  852. * Called to set the hrtick timer state.
  853. *
  854. * called with rq->lock held and irqs disabled
  855. */
  856. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  857. {
  858. assert_spin_locked(&rq->lock);
  859. /*
  860. * preempt at: now + delay
  861. */
  862. rq->hrtick_expire =
  863. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  864. /*
  865. * indicate we need to program the timer
  866. */
  867. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  868. if (reset)
  869. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  870. /*
  871. * New slices are called from the schedule path and don't need a
  872. * forced reschedule.
  873. */
  874. if (reset)
  875. resched_hrt(rq->curr);
  876. }
  877. static void hrtick_clear(struct rq *rq)
  878. {
  879. if (hrtimer_active(&rq->hrtick_timer))
  880. hrtimer_cancel(&rq->hrtick_timer);
  881. }
  882. /*
  883. * Update the timer from the possible pending state.
  884. */
  885. static void hrtick_set(struct rq *rq)
  886. {
  887. ktime_t time;
  888. int set, reset;
  889. unsigned long flags;
  890. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  891. spin_lock_irqsave(&rq->lock, flags);
  892. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  893. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  894. time = rq->hrtick_expire;
  895. clear_thread_flag(TIF_HRTICK_RESCHED);
  896. spin_unlock_irqrestore(&rq->lock, flags);
  897. if (set) {
  898. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  899. if (reset && !hrtimer_active(&rq->hrtick_timer))
  900. resched_rq(rq);
  901. } else
  902. hrtick_clear(rq);
  903. }
  904. /*
  905. * High-resolution timer tick.
  906. * Runs from hardirq context with interrupts disabled.
  907. */
  908. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  909. {
  910. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  911. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  912. spin_lock(&rq->lock);
  913. update_rq_clock(rq);
  914. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  915. spin_unlock(&rq->lock);
  916. return HRTIMER_NORESTART;
  917. }
  918. #ifdef CONFIG_SMP
  919. static void hotplug_hrtick_disable(int cpu)
  920. {
  921. struct rq *rq = cpu_rq(cpu);
  922. unsigned long flags;
  923. spin_lock_irqsave(&rq->lock, flags);
  924. rq->hrtick_flags = 0;
  925. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  926. spin_unlock_irqrestore(&rq->lock, flags);
  927. hrtick_clear(rq);
  928. }
  929. static void hotplug_hrtick_enable(int cpu)
  930. {
  931. struct rq *rq = cpu_rq(cpu);
  932. unsigned long flags;
  933. spin_lock_irqsave(&rq->lock, flags);
  934. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  935. spin_unlock_irqrestore(&rq->lock, flags);
  936. }
  937. static int
  938. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  939. {
  940. int cpu = (int)(long)hcpu;
  941. switch (action) {
  942. case CPU_UP_CANCELED:
  943. case CPU_UP_CANCELED_FROZEN:
  944. case CPU_DOWN_PREPARE:
  945. case CPU_DOWN_PREPARE_FROZEN:
  946. case CPU_DEAD:
  947. case CPU_DEAD_FROZEN:
  948. hotplug_hrtick_disable(cpu);
  949. return NOTIFY_OK;
  950. case CPU_UP_PREPARE:
  951. case CPU_UP_PREPARE_FROZEN:
  952. case CPU_DOWN_FAILED:
  953. case CPU_DOWN_FAILED_FROZEN:
  954. case CPU_ONLINE:
  955. case CPU_ONLINE_FROZEN:
  956. hotplug_hrtick_enable(cpu);
  957. return NOTIFY_OK;
  958. }
  959. return NOTIFY_DONE;
  960. }
  961. static void init_hrtick(void)
  962. {
  963. hotcpu_notifier(hotplug_hrtick, 0);
  964. }
  965. #endif /* CONFIG_SMP */
  966. static void init_rq_hrtick(struct rq *rq)
  967. {
  968. rq->hrtick_flags = 0;
  969. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  970. rq->hrtick_timer.function = hrtick;
  971. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  972. }
  973. void hrtick_resched(void)
  974. {
  975. struct rq *rq;
  976. unsigned long flags;
  977. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  978. return;
  979. local_irq_save(flags);
  980. rq = cpu_rq(smp_processor_id());
  981. hrtick_set(rq);
  982. local_irq_restore(flags);
  983. }
  984. #else
  985. static inline void hrtick_clear(struct rq *rq)
  986. {
  987. }
  988. static inline void hrtick_set(struct rq *rq)
  989. {
  990. }
  991. static inline void init_rq_hrtick(struct rq *rq)
  992. {
  993. }
  994. void hrtick_resched(void)
  995. {
  996. }
  997. static inline void init_hrtick(void)
  998. {
  999. }
  1000. #endif
  1001. /*
  1002. * resched_task - mark a task 'to be rescheduled now'.
  1003. *
  1004. * On UP this means the setting of the need_resched flag, on SMP it
  1005. * might also involve a cross-CPU call to trigger the scheduler on
  1006. * the target CPU.
  1007. */
  1008. #ifdef CONFIG_SMP
  1009. #ifndef tsk_is_polling
  1010. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1011. #endif
  1012. static void __resched_task(struct task_struct *p, int tif_bit)
  1013. {
  1014. int cpu;
  1015. assert_spin_locked(&task_rq(p)->lock);
  1016. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1017. return;
  1018. set_tsk_thread_flag(p, tif_bit);
  1019. cpu = task_cpu(p);
  1020. if (cpu == smp_processor_id())
  1021. return;
  1022. /* NEED_RESCHED must be visible before we test polling */
  1023. smp_mb();
  1024. if (!tsk_is_polling(p))
  1025. smp_send_reschedule(cpu);
  1026. }
  1027. static void resched_cpu(int cpu)
  1028. {
  1029. struct rq *rq = cpu_rq(cpu);
  1030. unsigned long flags;
  1031. if (!spin_trylock_irqsave(&rq->lock, flags))
  1032. return;
  1033. resched_task(cpu_curr(cpu));
  1034. spin_unlock_irqrestore(&rq->lock, flags);
  1035. }
  1036. #ifdef CONFIG_NO_HZ
  1037. /*
  1038. * When add_timer_on() enqueues a timer into the timer wheel of an
  1039. * idle CPU then this timer might expire before the next timer event
  1040. * which is scheduled to wake up that CPU. In case of a completely
  1041. * idle system the next event might even be infinite time into the
  1042. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1043. * leaves the inner idle loop so the newly added timer is taken into
  1044. * account when the CPU goes back to idle and evaluates the timer
  1045. * wheel for the next timer event.
  1046. */
  1047. void wake_up_idle_cpu(int cpu)
  1048. {
  1049. struct rq *rq = cpu_rq(cpu);
  1050. if (cpu == smp_processor_id())
  1051. return;
  1052. /*
  1053. * This is safe, as this function is called with the timer
  1054. * wheel base lock of (cpu) held. When the CPU is on the way
  1055. * to idle and has not yet set rq->curr to idle then it will
  1056. * be serialized on the timer wheel base lock and take the new
  1057. * timer into account automatically.
  1058. */
  1059. if (rq->curr != rq->idle)
  1060. return;
  1061. /*
  1062. * We can set TIF_RESCHED on the idle task of the other CPU
  1063. * lockless. The worst case is that the other CPU runs the
  1064. * idle task through an additional NOOP schedule()
  1065. */
  1066. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1067. /* NEED_RESCHED must be visible before we test polling */
  1068. smp_mb();
  1069. if (!tsk_is_polling(rq->idle))
  1070. smp_send_reschedule(cpu);
  1071. }
  1072. #endif /* CONFIG_NO_HZ */
  1073. #else /* !CONFIG_SMP */
  1074. static void __resched_task(struct task_struct *p, int tif_bit)
  1075. {
  1076. assert_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_thread_flag(p, tif_bit);
  1078. }
  1079. #endif /* CONFIG_SMP */
  1080. #if BITS_PER_LONG == 32
  1081. # define WMULT_CONST (~0UL)
  1082. #else
  1083. # define WMULT_CONST (1UL << 32)
  1084. #endif
  1085. #define WMULT_SHIFT 32
  1086. /*
  1087. * Shift right and round:
  1088. */
  1089. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1090. /*
  1091. * delta *= weight / lw
  1092. */
  1093. static unsigned long
  1094. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1095. struct load_weight *lw)
  1096. {
  1097. u64 tmp;
  1098. if (!lw->inv_weight) {
  1099. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1100. lw->inv_weight = 1;
  1101. else
  1102. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1103. / (lw->weight+1);
  1104. }
  1105. tmp = (u64)delta_exec * weight;
  1106. /*
  1107. * Check whether we'd overflow the 64-bit multiplication:
  1108. */
  1109. if (unlikely(tmp > WMULT_CONST))
  1110. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1111. WMULT_SHIFT/2);
  1112. else
  1113. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1114. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1115. }
  1116. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1117. {
  1118. lw->weight += inc;
  1119. lw->inv_weight = 0;
  1120. }
  1121. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1122. {
  1123. lw->weight -= dec;
  1124. lw->inv_weight = 0;
  1125. }
  1126. /*
  1127. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1128. * of tasks with abnormal "nice" values across CPUs the contribution that
  1129. * each task makes to its run queue's load is weighted according to its
  1130. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1131. * scaled version of the new time slice allocation that they receive on time
  1132. * slice expiry etc.
  1133. */
  1134. #define WEIGHT_IDLEPRIO 2
  1135. #define WMULT_IDLEPRIO (1 << 31)
  1136. /*
  1137. * Nice levels are multiplicative, with a gentle 10% change for every
  1138. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1139. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1140. * that remained on nice 0.
  1141. *
  1142. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1143. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1144. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1145. * If a task goes up by ~10% and another task goes down by ~10% then
  1146. * the relative distance between them is ~25%.)
  1147. */
  1148. static const int prio_to_weight[40] = {
  1149. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1150. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1151. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1152. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1153. /* 0 */ 1024, 820, 655, 526, 423,
  1154. /* 5 */ 335, 272, 215, 172, 137,
  1155. /* 10 */ 110, 87, 70, 56, 45,
  1156. /* 15 */ 36, 29, 23, 18, 15,
  1157. };
  1158. /*
  1159. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1160. *
  1161. * In cases where the weight does not change often, we can use the
  1162. * precalculated inverse to speed up arithmetics by turning divisions
  1163. * into multiplications:
  1164. */
  1165. static const u32 prio_to_wmult[40] = {
  1166. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1167. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1168. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1169. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1170. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1171. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1172. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1173. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1174. };
  1175. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1176. /*
  1177. * runqueue iterator, to support SMP load-balancing between different
  1178. * scheduling classes, without having to expose their internal data
  1179. * structures to the load-balancing proper:
  1180. */
  1181. struct rq_iterator {
  1182. void *arg;
  1183. struct task_struct *(*start)(void *);
  1184. struct task_struct *(*next)(void *);
  1185. };
  1186. #ifdef CONFIG_SMP
  1187. static unsigned long
  1188. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1189. unsigned long max_load_move, struct sched_domain *sd,
  1190. enum cpu_idle_type idle, int *all_pinned,
  1191. int *this_best_prio, struct rq_iterator *iterator);
  1192. static int
  1193. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1194. struct sched_domain *sd, enum cpu_idle_type idle,
  1195. struct rq_iterator *iterator);
  1196. #endif
  1197. #ifdef CONFIG_CGROUP_CPUACCT
  1198. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. #endif
  1202. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1203. {
  1204. update_load_add(&rq->load, load);
  1205. }
  1206. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1207. {
  1208. update_load_sub(&rq->load, load);
  1209. }
  1210. #ifdef CONFIG_SMP
  1211. static unsigned long source_load(int cpu, int type);
  1212. static unsigned long target_load(int cpu, int type);
  1213. static unsigned long cpu_avg_load_per_task(int cpu);
  1214. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1215. #ifdef CONFIG_FAIR_GROUP_SCHED
  1216. /*
  1217. * Group load balancing.
  1218. *
  1219. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1220. * Given the pictures below, and assuming each item has equal weight:
  1221. *
  1222. * root 1 - thread
  1223. * / | \ A - group
  1224. * A 1 B
  1225. * /|\ / \
  1226. * C 2 D 3 4
  1227. * | |
  1228. * 5 6
  1229. *
  1230. * load:
  1231. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1232. * which equals 1/9-th of the total load.
  1233. *
  1234. * shares:
  1235. * The weight of this group on the selected cpus.
  1236. *
  1237. * rq_weight:
  1238. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1239. * B would get 2.
  1240. *
  1241. * task_weight:
  1242. * Part of the rq_weight contributed by tasks; all groups except B would
  1243. * get 1, B gets 2.
  1244. */
  1245. static inline struct aggregate_struct *
  1246. aggregate(struct task_group *tg, int cpu)
  1247. {
  1248. return &tg->cfs_rq[cpu]->aggregate;
  1249. }
  1250. typedef void (*aggregate_func)(struct task_group *, int, struct sched_domain *);
  1251. /*
  1252. * Iterate the full tree, calling @down when first entering a node and @up when
  1253. * leaving it for the final time.
  1254. */
  1255. static
  1256. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1257. int cpu, struct sched_domain *sd)
  1258. {
  1259. struct task_group *parent, *child;
  1260. rcu_read_lock();
  1261. parent = &root_task_group;
  1262. down:
  1263. (*down)(parent, cpu, sd);
  1264. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1265. parent = child;
  1266. goto down;
  1267. up:
  1268. continue;
  1269. }
  1270. (*up)(parent, cpu, sd);
  1271. child = parent;
  1272. parent = parent->parent;
  1273. if (parent)
  1274. goto up;
  1275. rcu_read_unlock();
  1276. }
  1277. /*
  1278. * Calculate the aggregate runqueue weight.
  1279. */
  1280. static void
  1281. aggregate_group_weight(struct task_group *tg, int cpu, struct sched_domain *sd)
  1282. {
  1283. unsigned long rq_weight = 0;
  1284. unsigned long task_weight = 0;
  1285. int i;
  1286. for_each_cpu_mask(i, sd->span) {
  1287. rq_weight += tg->cfs_rq[i]->load.weight;
  1288. task_weight += tg->cfs_rq[i]->task_weight;
  1289. }
  1290. aggregate(tg, cpu)->rq_weight = rq_weight;
  1291. aggregate(tg, cpu)->task_weight = task_weight;
  1292. }
  1293. /*
  1294. * Compute the weight of this group on the given cpus.
  1295. */
  1296. static void
  1297. aggregate_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd)
  1298. {
  1299. unsigned long shares = 0;
  1300. int i;
  1301. for_each_cpu_mask(i, sd->span)
  1302. shares += tg->cfs_rq[i]->shares;
  1303. if ((!shares && aggregate(tg, cpu)->rq_weight) || shares > tg->shares)
  1304. shares = tg->shares;
  1305. aggregate(tg, cpu)->shares = shares;
  1306. }
  1307. /*
  1308. * Compute the load fraction assigned to this group, relies on the aggregate
  1309. * weight and this group's parent's load, i.e. top-down.
  1310. */
  1311. static void
  1312. aggregate_group_load(struct task_group *tg, int cpu, struct sched_domain *sd)
  1313. {
  1314. unsigned long load;
  1315. if (!tg->parent) {
  1316. int i;
  1317. load = 0;
  1318. for_each_cpu_mask(i, sd->span)
  1319. load += cpu_rq(i)->load.weight;
  1320. } else {
  1321. load = aggregate(tg->parent, cpu)->load;
  1322. /*
  1323. * shares is our weight in the parent's rq so
  1324. * shares/parent->rq_weight gives our fraction of the load
  1325. */
  1326. load *= aggregate(tg, cpu)->shares;
  1327. load /= aggregate(tg->parent, cpu)->rq_weight + 1;
  1328. }
  1329. aggregate(tg, cpu)->load = load;
  1330. }
  1331. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1332. /*
  1333. * Calculate and set the cpu's group shares.
  1334. */
  1335. static void
  1336. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1337. struct sched_domain *sd, int tcpu)
  1338. {
  1339. int boost = 0;
  1340. unsigned long shares;
  1341. unsigned long rq_weight;
  1342. if (!tg->se[tcpu])
  1343. return;
  1344. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1345. /*
  1346. * If there are currently no tasks on the cpu pretend there is one of
  1347. * average load so that when a new task gets to run here it will not
  1348. * get delayed by group starvation.
  1349. */
  1350. if (!rq_weight) {
  1351. boost = 1;
  1352. rq_weight = NICE_0_LOAD;
  1353. }
  1354. /*
  1355. * \Sum shares * rq_weight
  1356. * shares = -----------------------
  1357. * \Sum rq_weight
  1358. *
  1359. */
  1360. shares = aggregate(tg, cpu)->shares * rq_weight;
  1361. shares /= aggregate(tg, cpu)->rq_weight + 1;
  1362. /*
  1363. * record the actual number of shares, not the boosted amount.
  1364. */
  1365. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1366. if (shares < MIN_SHARES)
  1367. shares = MIN_SHARES;
  1368. else if (shares > MAX_SHARES)
  1369. shares = MAX_SHARES;
  1370. __set_se_shares(tg->se[tcpu], shares);
  1371. }
  1372. /*
  1373. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1374. * task went to.
  1375. */
  1376. static void
  1377. __move_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd,
  1378. int scpu, int dcpu)
  1379. {
  1380. unsigned long shares;
  1381. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1382. __update_group_shares_cpu(tg, cpu, sd, scpu);
  1383. __update_group_shares_cpu(tg, cpu, sd, dcpu);
  1384. /*
  1385. * ensure we never loose shares due to rounding errors in the
  1386. * above redistribution.
  1387. */
  1388. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1389. if (shares)
  1390. tg->cfs_rq[dcpu]->shares += shares;
  1391. }
  1392. /*
  1393. * Because changing a group's shares changes the weight of the super-group
  1394. * we need to walk up the tree and change all shares until we hit the root.
  1395. */
  1396. static void
  1397. move_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd,
  1398. int scpu, int dcpu)
  1399. {
  1400. while (tg) {
  1401. __move_group_shares(tg, cpu, sd, scpu, dcpu);
  1402. tg = tg->parent;
  1403. }
  1404. }
  1405. static void
  1406. aggregate_group_set_shares(struct task_group *tg, int cpu, struct sched_domain *sd)
  1407. {
  1408. unsigned long shares = aggregate(tg, cpu)->shares;
  1409. int i;
  1410. for_each_cpu_mask(i, sd->span) {
  1411. struct rq *rq = cpu_rq(i);
  1412. unsigned long flags;
  1413. spin_lock_irqsave(&rq->lock, flags);
  1414. __update_group_shares_cpu(tg, cpu, sd, i);
  1415. spin_unlock_irqrestore(&rq->lock, flags);
  1416. }
  1417. aggregate_group_shares(tg, cpu, sd);
  1418. /*
  1419. * ensure we never loose shares due to rounding errors in the
  1420. * above redistribution.
  1421. */
  1422. shares -= aggregate(tg, cpu)->shares;
  1423. if (shares) {
  1424. tg->cfs_rq[cpu]->shares += shares;
  1425. aggregate(tg, cpu)->shares += shares;
  1426. }
  1427. }
  1428. /*
  1429. * Calculate the accumulative weight and recursive load of each task group
  1430. * while walking down the tree.
  1431. */
  1432. static void
  1433. aggregate_get_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1434. {
  1435. aggregate_group_weight(tg, cpu, sd);
  1436. aggregate_group_shares(tg, cpu, sd);
  1437. aggregate_group_load(tg, cpu, sd);
  1438. }
  1439. /*
  1440. * Rebalance the cpu shares while walking back up the tree.
  1441. */
  1442. static void
  1443. aggregate_get_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1444. {
  1445. aggregate_group_set_shares(tg, cpu, sd);
  1446. }
  1447. static void
  1448. aggregate_get_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1449. {
  1450. }
  1451. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1452. static void __init init_aggregate(void)
  1453. {
  1454. int i;
  1455. for_each_possible_cpu(i)
  1456. spin_lock_init(&per_cpu(aggregate_lock, i));
  1457. }
  1458. static int get_aggregate(int cpu, struct sched_domain *sd)
  1459. {
  1460. if (!spin_trylock(&per_cpu(aggregate_lock, cpu)))
  1461. return 0;
  1462. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, cpu, sd);
  1463. return 1;
  1464. }
  1465. static void update_aggregate(int cpu, struct sched_domain *sd)
  1466. {
  1467. aggregate_walk_tree(aggregate_get_down, aggregate_get_nop, cpu, sd);
  1468. }
  1469. static void put_aggregate(int cpu, struct sched_domain *sd)
  1470. {
  1471. spin_unlock(&per_cpu(aggregate_lock, cpu));
  1472. }
  1473. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1474. {
  1475. cfs_rq->shares = shares;
  1476. }
  1477. #else
  1478. static inline void init_aggregate(void)
  1479. {
  1480. }
  1481. static inline int get_aggregate(int cpu, struct sched_domain *sd)
  1482. {
  1483. return 0;
  1484. }
  1485. static inline void update_aggregate(int cpu, struct sched_domain *sd)
  1486. {
  1487. }
  1488. static inline void put_aggregate(int cpu, struct sched_domain *sd)
  1489. {
  1490. }
  1491. #endif
  1492. #endif
  1493. #include "sched_stats.h"
  1494. #include "sched_idletask.c"
  1495. #include "sched_fair.c"
  1496. #include "sched_rt.c"
  1497. #ifdef CONFIG_SCHED_DEBUG
  1498. # include "sched_debug.c"
  1499. #endif
  1500. #define sched_class_highest (&rt_sched_class)
  1501. #define for_each_class(class) \
  1502. for (class = sched_class_highest; class; class = class->next)
  1503. static void inc_nr_running(struct rq *rq)
  1504. {
  1505. rq->nr_running++;
  1506. }
  1507. static void dec_nr_running(struct rq *rq)
  1508. {
  1509. rq->nr_running--;
  1510. }
  1511. static void set_load_weight(struct task_struct *p)
  1512. {
  1513. if (task_has_rt_policy(p)) {
  1514. p->se.load.weight = prio_to_weight[0] * 2;
  1515. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1516. return;
  1517. }
  1518. /*
  1519. * SCHED_IDLE tasks get minimal weight:
  1520. */
  1521. if (p->policy == SCHED_IDLE) {
  1522. p->se.load.weight = WEIGHT_IDLEPRIO;
  1523. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1524. return;
  1525. }
  1526. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1527. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1528. }
  1529. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1530. {
  1531. sched_info_queued(p);
  1532. p->sched_class->enqueue_task(rq, p, wakeup);
  1533. p->se.on_rq = 1;
  1534. }
  1535. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1536. {
  1537. p->sched_class->dequeue_task(rq, p, sleep);
  1538. p->se.on_rq = 0;
  1539. }
  1540. /*
  1541. * __normal_prio - return the priority that is based on the static prio
  1542. */
  1543. static inline int __normal_prio(struct task_struct *p)
  1544. {
  1545. return p->static_prio;
  1546. }
  1547. /*
  1548. * Calculate the expected normal priority: i.e. priority
  1549. * without taking RT-inheritance into account. Might be
  1550. * boosted by interactivity modifiers. Changes upon fork,
  1551. * setprio syscalls, and whenever the interactivity
  1552. * estimator recalculates.
  1553. */
  1554. static inline int normal_prio(struct task_struct *p)
  1555. {
  1556. int prio;
  1557. if (task_has_rt_policy(p))
  1558. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1559. else
  1560. prio = __normal_prio(p);
  1561. return prio;
  1562. }
  1563. /*
  1564. * Calculate the current priority, i.e. the priority
  1565. * taken into account by the scheduler. This value might
  1566. * be boosted by RT tasks, or might be boosted by
  1567. * interactivity modifiers. Will be RT if the task got
  1568. * RT-boosted. If not then it returns p->normal_prio.
  1569. */
  1570. static int effective_prio(struct task_struct *p)
  1571. {
  1572. p->normal_prio = normal_prio(p);
  1573. /*
  1574. * If we are RT tasks or we were boosted to RT priority,
  1575. * keep the priority unchanged. Otherwise, update priority
  1576. * to the normal priority:
  1577. */
  1578. if (!rt_prio(p->prio))
  1579. return p->normal_prio;
  1580. return p->prio;
  1581. }
  1582. /*
  1583. * activate_task - move a task to the runqueue.
  1584. */
  1585. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1586. {
  1587. if (task_contributes_to_load(p))
  1588. rq->nr_uninterruptible--;
  1589. enqueue_task(rq, p, wakeup);
  1590. inc_nr_running(rq);
  1591. }
  1592. /*
  1593. * deactivate_task - remove a task from the runqueue.
  1594. */
  1595. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1596. {
  1597. if (task_contributes_to_load(p))
  1598. rq->nr_uninterruptible++;
  1599. dequeue_task(rq, p, sleep);
  1600. dec_nr_running(rq);
  1601. }
  1602. /**
  1603. * task_curr - is this task currently executing on a CPU?
  1604. * @p: the task in question.
  1605. */
  1606. inline int task_curr(const struct task_struct *p)
  1607. {
  1608. return cpu_curr(task_cpu(p)) == p;
  1609. }
  1610. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1611. {
  1612. set_task_rq(p, cpu);
  1613. #ifdef CONFIG_SMP
  1614. /*
  1615. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1616. * successfuly executed on another CPU. We must ensure that updates of
  1617. * per-task data have been completed by this moment.
  1618. */
  1619. smp_wmb();
  1620. task_thread_info(p)->cpu = cpu;
  1621. #endif
  1622. }
  1623. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1624. const struct sched_class *prev_class,
  1625. int oldprio, int running)
  1626. {
  1627. if (prev_class != p->sched_class) {
  1628. if (prev_class->switched_from)
  1629. prev_class->switched_from(rq, p, running);
  1630. p->sched_class->switched_to(rq, p, running);
  1631. } else
  1632. p->sched_class->prio_changed(rq, p, oldprio, running);
  1633. }
  1634. #ifdef CONFIG_SMP
  1635. /* Used instead of source_load when we know the type == 0 */
  1636. static unsigned long weighted_cpuload(const int cpu)
  1637. {
  1638. return cpu_rq(cpu)->load.weight;
  1639. }
  1640. /*
  1641. * Is this task likely cache-hot:
  1642. */
  1643. static int
  1644. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1645. {
  1646. s64 delta;
  1647. /*
  1648. * Buddy candidates are cache hot:
  1649. */
  1650. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1651. return 1;
  1652. if (p->sched_class != &fair_sched_class)
  1653. return 0;
  1654. if (sysctl_sched_migration_cost == -1)
  1655. return 1;
  1656. if (sysctl_sched_migration_cost == 0)
  1657. return 0;
  1658. delta = now - p->se.exec_start;
  1659. return delta < (s64)sysctl_sched_migration_cost;
  1660. }
  1661. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1662. {
  1663. int old_cpu = task_cpu(p);
  1664. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1665. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1666. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1667. u64 clock_offset;
  1668. clock_offset = old_rq->clock - new_rq->clock;
  1669. #ifdef CONFIG_SCHEDSTATS
  1670. if (p->se.wait_start)
  1671. p->se.wait_start -= clock_offset;
  1672. if (p->se.sleep_start)
  1673. p->se.sleep_start -= clock_offset;
  1674. if (p->se.block_start)
  1675. p->se.block_start -= clock_offset;
  1676. if (old_cpu != new_cpu) {
  1677. schedstat_inc(p, se.nr_migrations);
  1678. if (task_hot(p, old_rq->clock, NULL))
  1679. schedstat_inc(p, se.nr_forced2_migrations);
  1680. }
  1681. #endif
  1682. p->se.vruntime -= old_cfsrq->min_vruntime -
  1683. new_cfsrq->min_vruntime;
  1684. __set_task_cpu(p, new_cpu);
  1685. }
  1686. struct migration_req {
  1687. struct list_head list;
  1688. struct task_struct *task;
  1689. int dest_cpu;
  1690. struct completion done;
  1691. };
  1692. /*
  1693. * The task's runqueue lock must be held.
  1694. * Returns true if you have to wait for migration thread.
  1695. */
  1696. static int
  1697. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1698. {
  1699. struct rq *rq = task_rq(p);
  1700. /*
  1701. * If the task is not on a runqueue (and not running), then
  1702. * it is sufficient to simply update the task's cpu field.
  1703. */
  1704. if (!p->se.on_rq && !task_running(rq, p)) {
  1705. set_task_cpu(p, dest_cpu);
  1706. return 0;
  1707. }
  1708. init_completion(&req->done);
  1709. req->task = p;
  1710. req->dest_cpu = dest_cpu;
  1711. list_add(&req->list, &rq->migration_queue);
  1712. return 1;
  1713. }
  1714. /*
  1715. * wait_task_inactive - wait for a thread to unschedule.
  1716. *
  1717. * The caller must ensure that the task *will* unschedule sometime soon,
  1718. * else this function might spin for a *long* time. This function can't
  1719. * be called with interrupts off, or it may introduce deadlock with
  1720. * smp_call_function() if an IPI is sent by the same process we are
  1721. * waiting to become inactive.
  1722. */
  1723. void wait_task_inactive(struct task_struct *p)
  1724. {
  1725. unsigned long flags;
  1726. int running, on_rq;
  1727. struct rq *rq;
  1728. for (;;) {
  1729. /*
  1730. * We do the initial early heuristics without holding
  1731. * any task-queue locks at all. We'll only try to get
  1732. * the runqueue lock when things look like they will
  1733. * work out!
  1734. */
  1735. rq = task_rq(p);
  1736. /*
  1737. * If the task is actively running on another CPU
  1738. * still, just relax and busy-wait without holding
  1739. * any locks.
  1740. *
  1741. * NOTE! Since we don't hold any locks, it's not
  1742. * even sure that "rq" stays as the right runqueue!
  1743. * But we don't care, since "task_running()" will
  1744. * return false if the runqueue has changed and p
  1745. * is actually now running somewhere else!
  1746. */
  1747. while (task_running(rq, p))
  1748. cpu_relax();
  1749. /*
  1750. * Ok, time to look more closely! We need the rq
  1751. * lock now, to be *sure*. If we're wrong, we'll
  1752. * just go back and repeat.
  1753. */
  1754. rq = task_rq_lock(p, &flags);
  1755. running = task_running(rq, p);
  1756. on_rq = p->se.on_rq;
  1757. task_rq_unlock(rq, &flags);
  1758. /*
  1759. * Was it really running after all now that we
  1760. * checked with the proper locks actually held?
  1761. *
  1762. * Oops. Go back and try again..
  1763. */
  1764. if (unlikely(running)) {
  1765. cpu_relax();
  1766. continue;
  1767. }
  1768. /*
  1769. * It's not enough that it's not actively running,
  1770. * it must be off the runqueue _entirely_, and not
  1771. * preempted!
  1772. *
  1773. * So if it wa still runnable (but just not actively
  1774. * running right now), it's preempted, and we should
  1775. * yield - it could be a while.
  1776. */
  1777. if (unlikely(on_rq)) {
  1778. schedule_timeout_uninterruptible(1);
  1779. continue;
  1780. }
  1781. /*
  1782. * Ahh, all good. It wasn't running, and it wasn't
  1783. * runnable, which means that it will never become
  1784. * running in the future either. We're all done!
  1785. */
  1786. break;
  1787. }
  1788. }
  1789. /***
  1790. * kick_process - kick a running thread to enter/exit the kernel
  1791. * @p: the to-be-kicked thread
  1792. *
  1793. * Cause a process which is running on another CPU to enter
  1794. * kernel-mode, without any delay. (to get signals handled.)
  1795. *
  1796. * NOTE: this function doesnt have to take the runqueue lock,
  1797. * because all it wants to ensure is that the remote task enters
  1798. * the kernel. If the IPI races and the task has been migrated
  1799. * to another CPU then no harm is done and the purpose has been
  1800. * achieved as well.
  1801. */
  1802. void kick_process(struct task_struct *p)
  1803. {
  1804. int cpu;
  1805. preempt_disable();
  1806. cpu = task_cpu(p);
  1807. if ((cpu != smp_processor_id()) && task_curr(p))
  1808. smp_send_reschedule(cpu);
  1809. preempt_enable();
  1810. }
  1811. /*
  1812. * Return a low guess at the load of a migration-source cpu weighted
  1813. * according to the scheduling class and "nice" value.
  1814. *
  1815. * We want to under-estimate the load of migration sources, to
  1816. * balance conservatively.
  1817. */
  1818. static unsigned long source_load(int cpu, int type)
  1819. {
  1820. struct rq *rq = cpu_rq(cpu);
  1821. unsigned long total = weighted_cpuload(cpu);
  1822. if (type == 0)
  1823. return total;
  1824. return min(rq->cpu_load[type-1], total);
  1825. }
  1826. /*
  1827. * Return a high guess at the load of a migration-target cpu weighted
  1828. * according to the scheduling class and "nice" value.
  1829. */
  1830. static unsigned long target_load(int cpu, int type)
  1831. {
  1832. struct rq *rq = cpu_rq(cpu);
  1833. unsigned long total = weighted_cpuload(cpu);
  1834. if (type == 0)
  1835. return total;
  1836. return max(rq->cpu_load[type-1], total);
  1837. }
  1838. /*
  1839. * Return the average load per task on the cpu's run queue
  1840. */
  1841. static unsigned long cpu_avg_load_per_task(int cpu)
  1842. {
  1843. struct rq *rq = cpu_rq(cpu);
  1844. unsigned long total = weighted_cpuload(cpu);
  1845. unsigned long n = rq->nr_running;
  1846. return n ? total / n : SCHED_LOAD_SCALE;
  1847. }
  1848. /*
  1849. * find_idlest_group finds and returns the least busy CPU group within the
  1850. * domain.
  1851. */
  1852. static struct sched_group *
  1853. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1854. {
  1855. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1856. unsigned long min_load = ULONG_MAX, this_load = 0;
  1857. int load_idx = sd->forkexec_idx;
  1858. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1859. /*
  1860. * now that we have both rqs locked the rq weight won't change
  1861. * anymore - so update the stats.
  1862. */
  1863. update_aggregate(this_cpu, sd);
  1864. do {
  1865. unsigned long load, avg_load;
  1866. int local_group;
  1867. int i;
  1868. /* Skip over this group if it has no CPUs allowed */
  1869. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1870. continue;
  1871. local_group = cpu_isset(this_cpu, group->cpumask);
  1872. /* Tally up the load of all CPUs in the group */
  1873. avg_load = 0;
  1874. for_each_cpu_mask(i, group->cpumask) {
  1875. /* Bias balancing toward cpus of our domain */
  1876. if (local_group)
  1877. load = source_load(i, load_idx);
  1878. else
  1879. load = target_load(i, load_idx);
  1880. avg_load += load;
  1881. }
  1882. /* Adjust by relative CPU power of the group */
  1883. avg_load = sg_div_cpu_power(group,
  1884. avg_load * SCHED_LOAD_SCALE);
  1885. if (local_group) {
  1886. this_load = avg_load;
  1887. this = group;
  1888. } else if (avg_load < min_load) {
  1889. min_load = avg_load;
  1890. idlest = group;
  1891. }
  1892. } while (group = group->next, group != sd->groups);
  1893. if (!idlest || 100*this_load < imbalance*min_load)
  1894. return NULL;
  1895. return idlest;
  1896. }
  1897. /*
  1898. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1899. */
  1900. static int
  1901. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1902. cpumask_t *tmp)
  1903. {
  1904. unsigned long load, min_load = ULONG_MAX;
  1905. int idlest = -1;
  1906. int i;
  1907. /* Traverse only the allowed CPUs */
  1908. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1909. for_each_cpu_mask(i, *tmp) {
  1910. load = weighted_cpuload(i);
  1911. if (load < min_load || (load == min_load && i == this_cpu)) {
  1912. min_load = load;
  1913. idlest = i;
  1914. }
  1915. }
  1916. return idlest;
  1917. }
  1918. /*
  1919. * sched_balance_self: balance the current task (running on cpu) in domains
  1920. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1921. * SD_BALANCE_EXEC.
  1922. *
  1923. * Balance, ie. select the least loaded group.
  1924. *
  1925. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1926. *
  1927. * preempt must be disabled.
  1928. */
  1929. static int sched_balance_self(int cpu, int flag)
  1930. {
  1931. struct task_struct *t = current;
  1932. struct sched_domain *tmp, *sd = NULL;
  1933. for_each_domain(cpu, tmp) {
  1934. /*
  1935. * If power savings logic is enabled for a domain, stop there.
  1936. */
  1937. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1938. break;
  1939. if (tmp->flags & flag)
  1940. sd = tmp;
  1941. }
  1942. while (sd) {
  1943. cpumask_t span, tmpmask;
  1944. struct sched_group *group;
  1945. int new_cpu, weight;
  1946. if (!(sd->flags & flag)) {
  1947. sd = sd->child;
  1948. continue;
  1949. }
  1950. span = sd->span;
  1951. group = find_idlest_group(sd, t, cpu);
  1952. if (!group) {
  1953. sd = sd->child;
  1954. continue;
  1955. }
  1956. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1957. if (new_cpu == -1 || new_cpu == cpu) {
  1958. /* Now try balancing at a lower domain level of cpu */
  1959. sd = sd->child;
  1960. continue;
  1961. }
  1962. /* Now try balancing at a lower domain level of new_cpu */
  1963. cpu = new_cpu;
  1964. sd = NULL;
  1965. weight = cpus_weight(span);
  1966. for_each_domain(cpu, tmp) {
  1967. if (weight <= cpus_weight(tmp->span))
  1968. break;
  1969. if (tmp->flags & flag)
  1970. sd = tmp;
  1971. }
  1972. /* while loop will break here if sd == NULL */
  1973. }
  1974. return cpu;
  1975. }
  1976. #endif /* CONFIG_SMP */
  1977. /***
  1978. * try_to_wake_up - wake up a thread
  1979. * @p: the to-be-woken-up thread
  1980. * @state: the mask of task states that can be woken
  1981. * @sync: do a synchronous wakeup?
  1982. *
  1983. * Put it on the run-queue if it's not already there. The "current"
  1984. * thread is always on the run-queue (except when the actual
  1985. * re-schedule is in progress), and as such you're allowed to do
  1986. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1987. * runnable without the overhead of this.
  1988. *
  1989. * returns failure only if the task is already active.
  1990. */
  1991. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1992. {
  1993. int cpu, orig_cpu, this_cpu, success = 0;
  1994. unsigned long flags;
  1995. long old_state;
  1996. struct rq *rq;
  1997. if (!sched_feat(SYNC_WAKEUPS))
  1998. sync = 0;
  1999. smp_wmb();
  2000. rq = task_rq_lock(p, &flags);
  2001. old_state = p->state;
  2002. if (!(old_state & state))
  2003. goto out;
  2004. if (p->se.on_rq)
  2005. goto out_running;
  2006. cpu = task_cpu(p);
  2007. orig_cpu = cpu;
  2008. this_cpu = smp_processor_id();
  2009. #ifdef CONFIG_SMP
  2010. if (unlikely(task_running(rq, p)))
  2011. goto out_activate;
  2012. cpu = p->sched_class->select_task_rq(p, sync);
  2013. if (cpu != orig_cpu) {
  2014. set_task_cpu(p, cpu);
  2015. task_rq_unlock(rq, &flags);
  2016. /* might preempt at this point */
  2017. rq = task_rq_lock(p, &flags);
  2018. old_state = p->state;
  2019. if (!(old_state & state))
  2020. goto out;
  2021. if (p->se.on_rq)
  2022. goto out_running;
  2023. this_cpu = smp_processor_id();
  2024. cpu = task_cpu(p);
  2025. }
  2026. #ifdef CONFIG_SCHEDSTATS
  2027. schedstat_inc(rq, ttwu_count);
  2028. if (cpu == this_cpu)
  2029. schedstat_inc(rq, ttwu_local);
  2030. else {
  2031. struct sched_domain *sd;
  2032. for_each_domain(this_cpu, sd) {
  2033. if (cpu_isset(cpu, sd->span)) {
  2034. schedstat_inc(sd, ttwu_wake_remote);
  2035. break;
  2036. }
  2037. }
  2038. }
  2039. #endif /* CONFIG_SCHEDSTATS */
  2040. out_activate:
  2041. #endif /* CONFIG_SMP */
  2042. schedstat_inc(p, se.nr_wakeups);
  2043. if (sync)
  2044. schedstat_inc(p, se.nr_wakeups_sync);
  2045. if (orig_cpu != cpu)
  2046. schedstat_inc(p, se.nr_wakeups_migrate);
  2047. if (cpu == this_cpu)
  2048. schedstat_inc(p, se.nr_wakeups_local);
  2049. else
  2050. schedstat_inc(p, se.nr_wakeups_remote);
  2051. update_rq_clock(rq);
  2052. activate_task(rq, p, 1);
  2053. success = 1;
  2054. out_running:
  2055. check_preempt_curr(rq, p);
  2056. p->state = TASK_RUNNING;
  2057. #ifdef CONFIG_SMP
  2058. if (p->sched_class->task_wake_up)
  2059. p->sched_class->task_wake_up(rq, p);
  2060. #endif
  2061. out:
  2062. task_rq_unlock(rq, &flags);
  2063. return success;
  2064. }
  2065. int wake_up_process(struct task_struct *p)
  2066. {
  2067. return try_to_wake_up(p, TASK_ALL, 0);
  2068. }
  2069. EXPORT_SYMBOL(wake_up_process);
  2070. int wake_up_state(struct task_struct *p, unsigned int state)
  2071. {
  2072. return try_to_wake_up(p, state, 0);
  2073. }
  2074. /*
  2075. * Perform scheduler related setup for a newly forked process p.
  2076. * p is forked by current.
  2077. *
  2078. * __sched_fork() is basic setup used by init_idle() too:
  2079. */
  2080. static void __sched_fork(struct task_struct *p)
  2081. {
  2082. p->se.exec_start = 0;
  2083. p->se.sum_exec_runtime = 0;
  2084. p->se.prev_sum_exec_runtime = 0;
  2085. p->se.last_wakeup = 0;
  2086. p->se.avg_overlap = 0;
  2087. #ifdef CONFIG_SCHEDSTATS
  2088. p->se.wait_start = 0;
  2089. p->se.sum_sleep_runtime = 0;
  2090. p->se.sleep_start = 0;
  2091. p->se.block_start = 0;
  2092. p->se.sleep_max = 0;
  2093. p->se.block_max = 0;
  2094. p->se.exec_max = 0;
  2095. p->se.slice_max = 0;
  2096. p->se.wait_max = 0;
  2097. #endif
  2098. INIT_LIST_HEAD(&p->rt.run_list);
  2099. p->se.on_rq = 0;
  2100. INIT_LIST_HEAD(&p->se.group_node);
  2101. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2102. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2103. #endif
  2104. /*
  2105. * We mark the process as running here, but have not actually
  2106. * inserted it onto the runqueue yet. This guarantees that
  2107. * nobody will actually run it, and a signal or other external
  2108. * event cannot wake it up and insert it on the runqueue either.
  2109. */
  2110. p->state = TASK_RUNNING;
  2111. }
  2112. /*
  2113. * fork()/clone()-time setup:
  2114. */
  2115. void sched_fork(struct task_struct *p, int clone_flags)
  2116. {
  2117. int cpu = get_cpu();
  2118. __sched_fork(p);
  2119. #ifdef CONFIG_SMP
  2120. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2121. #endif
  2122. set_task_cpu(p, cpu);
  2123. /*
  2124. * Make sure we do not leak PI boosting priority to the child:
  2125. */
  2126. p->prio = current->normal_prio;
  2127. if (!rt_prio(p->prio))
  2128. p->sched_class = &fair_sched_class;
  2129. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2130. if (likely(sched_info_on()))
  2131. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2132. #endif
  2133. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2134. p->oncpu = 0;
  2135. #endif
  2136. #ifdef CONFIG_PREEMPT
  2137. /* Want to start with kernel preemption disabled. */
  2138. task_thread_info(p)->preempt_count = 1;
  2139. #endif
  2140. put_cpu();
  2141. }
  2142. /*
  2143. * wake_up_new_task - wake up a newly created task for the first time.
  2144. *
  2145. * This function will do some initial scheduler statistics housekeeping
  2146. * that must be done for every newly created context, then puts the task
  2147. * on the runqueue and wakes it.
  2148. */
  2149. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2150. {
  2151. unsigned long flags;
  2152. struct rq *rq;
  2153. rq = task_rq_lock(p, &flags);
  2154. BUG_ON(p->state != TASK_RUNNING);
  2155. update_rq_clock(rq);
  2156. p->prio = effective_prio(p);
  2157. if (!p->sched_class->task_new || !current->se.on_rq) {
  2158. activate_task(rq, p, 0);
  2159. } else {
  2160. /*
  2161. * Let the scheduling class do new task startup
  2162. * management (if any):
  2163. */
  2164. p->sched_class->task_new(rq, p);
  2165. inc_nr_running(rq);
  2166. }
  2167. check_preempt_curr(rq, p);
  2168. #ifdef CONFIG_SMP
  2169. if (p->sched_class->task_wake_up)
  2170. p->sched_class->task_wake_up(rq, p);
  2171. #endif
  2172. task_rq_unlock(rq, &flags);
  2173. }
  2174. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2175. /**
  2176. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2177. * @notifier: notifier struct to register
  2178. */
  2179. void preempt_notifier_register(struct preempt_notifier *notifier)
  2180. {
  2181. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2182. }
  2183. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2184. /**
  2185. * preempt_notifier_unregister - no longer interested in preemption notifications
  2186. * @notifier: notifier struct to unregister
  2187. *
  2188. * This is safe to call from within a preemption notifier.
  2189. */
  2190. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2191. {
  2192. hlist_del(&notifier->link);
  2193. }
  2194. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2195. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2196. {
  2197. struct preempt_notifier *notifier;
  2198. struct hlist_node *node;
  2199. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2200. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2201. }
  2202. static void
  2203. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2204. struct task_struct *next)
  2205. {
  2206. struct preempt_notifier *notifier;
  2207. struct hlist_node *node;
  2208. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2209. notifier->ops->sched_out(notifier, next);
  2210. }
  2211. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2212. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2213. {
  2214. }
  2215. static void
  2216. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2217. struct task_struct *next)
  2218. {
  2219. }
  2220. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2221. /**
  2222. * prepare_task_switch - prepare to switch tasks
  2223. * @rq: the runqueue preparing to switch
  2224. * @prev: the current task that is being switched out
  2225. * @next: the task we are going to switch to.
  2226. *
  2227. * This is called with the rq lock held and interrupts off. It must
  2228. * be paired with a subsequent finish_task_switch after the context
  2229. * switch.
  2230. *
  2231. * prepare_task_switch sets up locking and calls architecture specific
  2232. * hooks.
  2233. */
  2234. static inline void
  2235. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2236. struct task_struct *next)
  2237. {
  2238. fire_sched_out_preempt_notifiers(prev, next);
  2239. prepare_lock_switch(rq, next);
  2240. prepare_arch_switch(next);
  2241. }
  2242. /**
  2243. * finish_task_switch - clean up after a task-switch
  2244. * @rq: runqueue associated with task-switch
  2245. * @prev: the thread we just switched away from.
  2246. *
  2247. * finish_task_switch must be called after the context switch, paired
  2248. * with a prepare_task_switch call before the context switch.
  2249. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2250. * and do any other architecture-specific cleanup actions.
  2251. *
  2252. * Note that we may have delayed dropping an mm in context_switch(). If
  2253. * so, we finish that here outside of the runqueue lock. (Doing it
  2254. * with the lock held can cause deadlocks; see schedule() for
  2255. * details.)
  2256. */
  2257. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2258. __releases(rq->lock)
  2259. {
  2260. struct mm_struct *mm = rq->prev_mm;
  2261. long prev_state;
  2262. rq->prev_mm = NULL;
  2263. /*
  2264. * A task struct has one reference for the use as "current".
  2265. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2266. * schedule one last time. The schedule call will never return, and
  2267. * the scheduled task must drop that reference.
  2268. * The test for TASK_DEAD must occur while the runqueue locks are
  2269. * still held, otherwise prev could be scheduled on another cpu, die
  2270. * there before we look at prev->state, and then the reference would
  2271. * be dropped twice.
  2272. * Manfred Spraul <manfred@colorfullife.com>
  2273. */
  2274. prev_state = prev->state;
  2275. finish_arch_switch(prev);
  2276. finish_lock_switch(rq, prev);
  2277. #ifdef CONFIG_SMP
  2278. if (current->sched_class->post_schedule)
  2279. current->sched_class->post_schedule(rq);
  2280. #endif
  2281. fire_sched_in_preempt_notifiers(current);
  2282. if (mm)
  2283. mmdrop(mm);
  2284. if (unlikely(prev_state == TASK_DEAD)) {
  2285. /*
  2286. * Remove function-return probe instances associated with this
  2287. * task and put them back on the free list.
  2288. */
  2289. kprobe_flush_task(prev);
  2290. put_task_struct(prev);
  2291. }
  2292. }
  2293. /**
  2294. * schedule_tail - first thing a freshly forked thread must call.
  2295. * @prev: the thread we just switched away from.
  2296. */
  2297. asmlinkage void schedule_tail(struct task_struct *prev)
  2298. __releases(rq->lock)
  2299. {
  2300. struct rq *rq = this_rq();
  2301. finish_task_switch(rq, prev);
  2302. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2303. /* In this case, finish_task_switch does not reenable preemption */
  2304. preempt_enable();
  2305. #endif
  2306. if (current->set_child_tid)
  2307. put_user(task_pid_vnr(current), current->set_child_tid);
  2308. }
  2309. /*
  2310. * context_switch - switch to the new MM and the new
  2311. * thread's register state.
  2312. */
  2313. static inline void
  2314. context_switch(struct rq *rq, struct task_struct *prev,
  2315. struct task_struct *next)
  2316. {
  2317. struct mm_struct *mm, *oldmm;
  2318. prepare_task_switch(rq, prev, next);
  2319. mm = next->mm;
  2320. oldmm = prev->active_mm;
  2321. /*
  2322. * For paravirt, this is coupled with an exit in switch_to to
  2323. * combine the page table reload and the switch backend into
  2324. * one hypercall.
  2325. */
  2326. arch_enter_lazy_cpu_mode();
  2327. if (unlikely(!mm)) {
  2328. next->active_mm = oldmm;
  2329. atomic_inc(&oldmm->mm_count);
  2330. enter_lazy_tlb(oldmm, next);
  2331. } else
  2332. switch_mm(oldmm, mm, next);
  2333. if (unlikely(!prev->mm)) {
  2334. prev->active_mm = NULL;
  2335. rq->prev_mm = oldmm;
  2336. }
  2337. /*
  2338. * Since the runqueue lock will be released by the next
  2339. * task (which is an invalid locking op but in the case
  2340. * of the scheduler it's an obvious special-case), so we
  2341. * do an early lockdep release here:
  2342. */
  2343. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2344. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2345. #endif
  2346. /* Here we just switch the register state and the stack. */
  2347. switch_to(prev, next, prev);
  2348. barrier();
  2349. /*
  2350. * this_rq must be evaluated again because prev may have moved
  2351. * CPUs since it called schedule(), thus the 'rq' on its stack
  2352. * frame will be invalid.
  2353. */
  2354. finish_task_switch(this_rq(), prev);
  2355. }
  2356. /*
  2357. * nr_running, nr_uninterruptible and nr_context_switches:
  2358. *
  2359. * externally visible scheduler statistics: current number of runnable
  2360. * threads, current number of uninterruptible-sleeping threads, total
  2361. * number of context switches performed since bootup.
  2362. */
  2363. unsigned long nr_running(void)
  2364. {
  2365. unsigned long i, sum = 0;
  2366. for_each_online_cpu(i)
  2367. sum += cpu_rq(i)->nr_running;
  2368. return sum;
  2369. }
  2370. unsigned long nr_uninterruptible(void)
  2371. {
  2372. unsigned long i, sum = 0;
  2373. for_each_possible_cpu(i)
  2374. sum += cpu_rq(i)->nr_uninterruptible;
  2375. /*
  2376. * Since we read the counters lockless, it might be slightly
  2377. * inaccurate. Do not allow it to go below zero though:
  2378. */
  2379. if (unlikely((long)sum < 0))
  2380. sum = 0;
  2381. return sum;
  2382. }
  2383. unsigned long long nr_context_switches(void)
  2384. {
  2385. int i;
  2386. unsigned long long sum = 0;
  2387. for_each_possible_cpu(i)
  2388. sum += cpu_rq(i)->nr_switches;
  2389. return sum;
  2390. }
  2391. unsigned long nr_iowait(void)
  2392. {
  2393. unsigned long i, sum = 0;
  2394. for_each_possible_cpu(i)
  2395. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2396. return sum;
  2397. }
  2398. unsigned long nr_active(void)
  2399. {
  2400. unsigned long i, running = 0, uninterruptible = 0;
  2401. for_each_online_cpu(i) {
  2402. running += cpu_rq(i)->nr_running;
  2403. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2404. }
  2405. if (unlikely((long)uninterruptible < 0))
  2406. uninterruptible = 0;
  2407. return running + uninterruptible;
  2408. }
  2409. /*
  2410. * Update rq->cpu_load[] statistics. This function is usually called every
  2411. * scheduler tick (TICK_NSEC).
  2412. */
  2413. static void update_cpu_load(struct rq *this_rq)
  2414. {
  2415. unsigned long this_load = this_rq->load.weight;
  2416. int i, scale;
  2417. this_rq->nr_load_updates++;
  2418. /* Update our load: */
  2419. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2420. unsigned long old_load, new_load;
  2421. /* scale is effectively 1 << i now, and >> i divides by scale */
  2422. old_load = this_rq->cpu_load[i];
  2423. new_load = this_load;
  2424. /*
  2425. * Round up the averaging division if load is increasing. This
  2426. * prevents us from getting stuck on 9 if the load is 10, for
  2427. * example.
  2428. */
  2429. if (new_load > old_load)
  2430. new_load += scale-1;
  2431. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2432. }
  2433. }
  2434. #ifdef CONFIG_SMP
  2435. /*
  2436. * double_rq_lock - safely lock two runqueues
  2437. *
  2438. * Note this does not disable interrupts like task_rq_lock,
  2439. * you need to do so manually before calling.
  2440. */
  2441. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2442. __acquires(rq1->lock)
  2443. __acquires(rq2->lock)
  2444. {
  2445. BUG_ON(!irqs_disabled());
  2446. if (rq1 == rq2) {
  2447. spin_lock(&rq1->lock);
  2448. __acquire(rq2->lock); /* Fake it out ;) */
  2449. } else {
  2450. if (rq1 < rq2) {
  2451. spin_lock(&rq1->lock);
  2452. spin_lock(&rq2->lock);
  2453. } else {
  2454. spin_lock(&rq2->lock);
  2455. spin_lock(&rq1->lock);
  2456. }
  2457. }
  2458. update_rq_clock(rq1);
  2459. update_rq_clock(rq2);
  2460. }
  2461. /*
  2462. * double_rq_unlock - safely unlock two runqueues
  2463. *
  2464. * Note this does not restore interrupts like task_rq_unlock,
  2465. * you need to do so manually after calling.
  2466. */
  2467. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2468. __releases(rq1->lock)
  2469. __releases(rq2->lock)
  2470. {
  2471. spin_unlock(&rq1->lock);
  2472. if (rq1 != rq2)
  2473. spin_unlock(&rq2->lock);
  2474. else
  2475. __release(rq2->lock);
  2476. }
  2477. /*
  2478. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2479. */
  2480. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2481. __releases(this_rq->lock)
  2482. __acquires(busiest->lock)
  2483. __acquires(this_rq->lock)
  2484. {
  2485. int ret = 0;
  2486. if (unlikely(!irqs_disabled())) {
  2487. /* printk() doesn't work good under rq->lock */
  2488. spin_unlock(&this_rq->lock);
  2489. BUG_ON(1);
  2490. }
  2491. if (unlikely(!spin_trylock(&busiest->lock))) {
  2492. if (busiest < this_rq) {
  2493. spin_unlock(&this_rq->lock);
  2494. spin_lock(&busiest->lock);
  2495. spin_lock(&this_rq->lock);
  2496. ret = 1;
  2497. } else
  2498. spin_lock(&busiest->lock);
  2499. }
  2500. return ret;
  2501. }
  2502. /*
  2503. * If dest_cpu is allowed for this process, migrate the task to it.
  2504. * This is accomplished by forcing the cpu_allowed mask to only
  2505. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2506. * the cpu_allowed mask is restored.
  2507. */
  2508. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2509. {
  2510. struct migration_req req;
  2511. unsigned long flags;
  2512. struct rq *rq;
  2513. rq = task_rq_lock(p, &flags);
  2514. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2515. || unlikely(cpu_is_offline(dest_cpu)))
  2516. goto out;
  2517. /* force the process onto the specified CPU */
  2518. if (migrate_task(p, dest_cpu, &req)) {
  2519. /* Need to wait for migration thread (might exit: take ref). */
  2520. struct task_struct *mt = rq->migration_thread;
  2521. get_task_struct(mt);
  2522. task_rq_unlock(rq, &flags);
  2523. wake_up_process(mt);
  2524. put_task_struct(mt);
  2525. wait_for_completion(&req.done);
  2526. return;
  2527. }
  2528. out:
  2529. task_rq_unlock(rq, &flags);
  2530. }
  2531. /*
  2532. * sched_exec - execve() is a valuable balancing opportunity, because at
  2533. * this point the task has the smallest effective memory and cache footprint.
  2534. */
  2535. void sched_exec(void)
  2536. {
  2537. int new_cpu, this_cpu = get_cpu();
  2538. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2539. put_cpu();
  2540. if (new_cpu != this_cpu)
  2541. sched_migrate_task(current, new_cpu);
  2542. }
  2543. /*
  2544. * pull_task - move a task from a remote runqueue to the local runqueue.
  2545. * Both runqueues must be locked.
  2546. */
  2547. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2548. struct rq *this_rq, int this_cpu)
  2549. {
  2550. deactivate_task(src_rq, p, 0);
  2551. set_task_cpu(p, this_cpu);
  2552. activate_task(this_rq, p, 0);
  2553. /*
  2554. * Note that idle threads have a prio of MAX_PRIO, for this test
  2555. * to be always true for them.
  2556. */
  2557. check_preempt_curr(this_rq, p);
  2558. }
  2559. /*
  2560. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2561. */
  2562. static
  2563. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2564. struct sched_domain *sd, enum cpu_idle_type idle,
  2565. int *all_pinned)
  2566. {
  2567. /*
  2568. * We do not migrate tasks that are:
  2569. * 1) running (obviously), or
  2570. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2571. * 3) are cache-hot on their current CPU.
  2572. */
  2573. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2574. schedstat_inc(p, se.nr_failed_migrations_affine);
  2575. return 0;
  2576. }
  2577. *all_pinned = 0;
  2578. if (task_running(rq, p)) {
  2579. schedstat_inc(p, se.nr_failed_migrations_running);
  2580. return 0;
  2581. }
  2582. /*
  2583. * Aggressive migration if:
  2584. * 1) task is cache cold, or
  2585. * 2) too many balance attempts have failed.
  2586. */
  2587. if (!task_hot(p, rq->clock, sd) ||
  2588. sd->nr_balance_failed > sd->cache_nice_tries) {
  2589. #ifdef CONFIG_SCHEDSTATS
  2590. if (task_hot(p, rq->clock, sd)) {
  2591. schedstat_inc(sd, lb_hot_gained[idle]);
  2592. schedstat_inc(p, se.nr_forced_migrations);
  2593. }
  2594. #endif
  2595. return 1;
  2596. }
  2597. if (task_hot(p, rq->clock, sd)) {
  2598. schedstat_inc(p, se.nr_failed_migrations_hot);
  2599. return 0;
  2600. }
  2601. return 1;
  2602. }
  2603. static unsigned long
  2604. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2605. unsigned long max_load_move, struct sched_domain *sd,
  2606. enum cpu_idle_type idle, int *all_pinned,
  2607. int *this_best_prio, struct rq_iterator *iterator)
  2608. {
  2609. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2610. struct task_struct *p;
  2611. long rem_load_move = max_load_move;
  2612. if (max_load_move == 0)
  2613. goto out;
  2614. pinned = 1;
  2615. /*
  2616. * Start the load-balancing iterator:
  2617. */
  2618. p = iterator->start(iterator->arg);
  2619. next:
  2620. if (!p || loops++ > sysctl_sched_nr_migrate)
  2621. goto out;
  2622. /*
  2623. * To help distribute high priority tasks across CPUs we don't
  2624. * skip a task if it will be the highest priority task (i.e. smallest
  2625. * prio value) on its new queue regardless of its load weight
  2626. */
  2627. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2628. SCHED_LOAD_SCALE_FUZZ;
  2629. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2630. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2631. p = iterator->next(iterator->arg);
  2632. goto next;
  2633. }
  2634. pull_task(busiest, p, this_rq, this_cpu);
  2635. pulled++;
  2636. rem_load_move -= p->se.load.weight;
  2637. /*
  2638. * We only want to steal up to the prescribed amount of weighted load.
  2639. */
  2640. if (rem_load_move > 0) {
  2641. if (p->prio < *this_best_prio)
  2642. *this_best_prio = p->prio;
  2643. p = iterator->next(iterator->arg);
  2644. goto next;
  2645. }
  2646. out:
  2647. /*
  2648. * Right now, this is one of only two places pull_task() is called,
  2649. * so we can safely collect pull_task() stats here rather than
  2650. * inside pull_task().
  2651. */
  2652. schedstat_add(sd, lb_gained[idle], pulled);
  2653. if (all_pinned)
  2654. *all_pinned = pinned;
  2655. return max_load_move - rem_load_move;
  2656. }
  2657. /*
  2658. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2659. * this_rq, as part of a balancing operation within domain "sd".
  2660. * Returns 1 if successful and 0 otherwise.
  2661. *
  2662. * Called with both runqueues locked.
  2663. */
  2664. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2665. unsigned long max_load_move,
  2666. struct sched_domain *sd, enum cpu_idle_type idle,
  2667. int *all_pinned)
  2668. {
  2669. const struct sched_class *class = sched_class_highest;
  2670. unsigned long total_load_moved = 0;
  2671. int this_best_prio = this_rq->curr->prio;
  2672. do {
  2673. total_load_moved +=
  2674. class->load_balance(this_rq, this_cpu, busiest,
  2675. max_load_move - total_load_moved,
  2676. sd, idle, all_pinned, &this_best_prio);
  2677. class = class->next;
  2678. } while (class && max_load_move > total_load_moved);
  2679. return total_load_moved > 0;
  2680. }
  2681. static int
  2682. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2683. struct sched_domain *sd, enum cpu_idle_type idle,
  2684. struct rq_iterator *iterator)
  2685. {
  2686. struct task_struct *p = iterator->start(iterator->arg);
  2687. int pinned = 0;
  2688. while (p) {
  2689. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2690. pull_task(busiest, p, this_rq, this_cpu);
  2691. /*
  2692. * Right now, this is only the second place pull_task()
  2693. * is called, so we can safely collect pull_task()
  2694. * stats here rather than inside pull_task().
  2695. */
  2696. schedstat_inc(sd, lb_gained[idle]);
  2697. return 1;
  2698. }
  2699. p = iterator->next(iterator->arg);
  2700. }
  2701. return 0;
  2702. }
  2703. /*
  2704. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2705. * part of active balancing operations within "domain".
  2706. * Returns 1 if successful and 0 otherwise.
  2707. *
  2708. * Called with both runqueues locked.
  2709. */
  2710. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2711. struct sched_domain *sd, enum cpu_idle_type idle)
  2712. {
  2713. const struct sched_class *class;
  2714. for (class = sched_class_highest; class; class = class->next)
  2715. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2716. return 1;
  2717. return 0;
  2718. }
  2719. /*
  2720. * find_busiest_group finds and returns the busiest CPU group within the
  2721. * domain. It calculates and returns the amount of weighted load which
  2722. * should be moved to restore balance via the imbalance parameter.
  2723. */
  2724. static struct sched_group *
  2725. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2726. unsigned long *imbalance, enum cpu_idle_type idle,
  2727. int *sd_idle, const cpumask_t *cpus, int *balance)
  2728. {
  2729. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2730. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2731. unsigned long max_pull;
  2732. unsigned long busiest_load_per_task, busiest_nr_running;
  2733. unsigned long this_load_per_task, this_nr_running;
  2734. int load_idx, group_imb = 0;
  2735. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2736. int power_savings_balance = 1;
  2737. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2738. unsigned long min_nr_running = ULONG_MAX;
  2739. struct sched_group *group_min = NULL, *group_leader = NULL;
  2740. #endif
  2741. max_load = this_load = total_load = total_pwr = 0;
  2742. busiest_load_per_task = busiest_nr_running = 0;
  2743. this_load_per_task = this_nr_running = 0;
  2744. if (idle == CPU_NOT_IDLE)
  2745. load_idx = sd->busy_idx;
  2746. else if (idle == CPU_NEWLY_IDLE)
  2747. load_idx = sd->newidle_idx;
  2748. else
  2749. load_idx = sd->idle_idx;
  2750. do {
  2751. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2752. int local_group;
  2753. int i;
  2754. int __group_imb = 0;
  2755. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2756. unsigned long sum_nr_running, sum_weighted_load;
  2757. local_group = cpu_isset(this_cpu, group->cpumask);
  2758. if (local_group)
  2759. balance_cpu = first_cpu(group->cpumask);
  2760. /* Tally up the load of all CPUs in the group */
  2761. sum_weighted_load = sum_nr_running = avg_load = 0;
  2762. max_cpu_load = 0;
  2763. min_cpu_load = ~0UL;
  2764. for_each_cpu_mask(i, group->cpumask) {
  2765. struct rq *rq;
  2766. if (!cpu_isset(i, *cpus))
  2767. continue;
  2768. rq = cpu_rq(i);
  2769. if (*sd_idle && rq->nr_running)
  2770. *sd_idle = 0;
  2771. /* Bias balancing toward cpus of our domain */
  2772. if (local_group) {
  2773. if (idle_cpu(i) && !first_idle_cpu) {
  2774. first_idle_cpu = 1;
  2775. balance_cpu = i;
  2776. }
  2777. load = target_load(i, load_idx);
  2778. } else {
  2779. load = source_load(i, load_idx);
  2780. if (load > max_cpu_load)
  2781. max_cpu_load = load;
  2782. if (min_cpu_load > load)
  2783. min_cpu_load = load;
  2784. }
  2785. avg_load += load;
  2786. sum_nr_running += rq->nr_running;
  2787. sum_weighted_load += weighted_cpuload(i);
  2788. }
  2789. /*
  2790. * First idle cpu or the first cpu(busiest) in this sched group
  2791. * is eligible for doing load balancing at this and above
  2792. * domains. In the newly idle case, we will allow all the cpu's
  2793. * to do the newly idle load balance.
  2794. */
  2795. if (idle != CPU_NEWLY_IDLE && local_group &&
  2796. balance_cpu != this_cpu && balance) {
  2797. *balance = 0;
  2798. goto ret;
  2799. }
  2800. total_load += avg_load;
  2801. total_pwr += group->__cpu_power;
  2802. /* Adjust by relative CPU power of the group */
  2803. avg_load = sg_div_cpu_power(group,
  2804. avg_load * SCHED_LOAD_SCALE);
  2805. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2806. __group_imb = 1;
  2807. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2808. if (local_group) {
  2809. this_load = avg_load;
  2810. this = group;
  2811. this_nr_running = sum_nr_running;
  2812. this_load_per_task = sum_weighted_load;
  2813. } else if (avg_load > max_load &&
  2814. (sum_nr_running > group_capacity || __group_imb)) {
  2815. max_load = avg_load;
  2816. busiest = group;
  2817. busiest_nr_running = sum_nr_running;
  2818. busiest_load_per_task = sum_weighted_load;
  2819. group_imb = __group_imb;
  2820. }
  2821. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2822. /*
  2823. * Busy processors will not participate in power savings
  2824. * balance.
  2825. */
  2826. if (idle == CPU_NOT_IDLE ||
  2827. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2828. goto group_next;
  2829. /*
  2830. * If the local group is idle or completely loaded
  2831. * no need to do power savings balance at this domain
  2832. */
  2833. if (local_group && (this_nr_running >= group_capacity ||
  2834. !this_nr_running))
  2835. power_savings_balance = 0;
  2836. /*
  2837. * If a group is already running at full capacity or idle,
  2838. * don't include that group in power savings calculations
  2839. */
  2840. if (!power_savings_balance || sum_nr_running >= group_capacity
  2841. || !sum_nr_running)
  2842. goto group_next;
  2843. /*
  2844. * Calculate the group which has the least non-idle load.
  2845. * This is the group from where we need to pick up the load
  2846. * for saving power
  2847. */
  2848. if ((sum_nr_running < min_nr_running) ||
  2849. (sum_nr_running == min_nr_running &&
  2850. first_cpu(group->cpumask) <
  2851. first_cpu(group_min->cpumask))) {
  2852. group_min = group;
  2853. min_nr_running = sum_nr_running;
  2854. min_load_per_task = sum_weighted_load /
  2855. sum_nr_running;
  2856. }
  2857. /*
  2858. * Calculate the group which is almost near its
  2859. * capacity but still has some space to pick up some load
  2860. * from other group and save more power
  2861. */
  2862. if (sum_nr_running <= group_capacity - 1) {
  2863. if (sum_nr_running > leader_nr_running ||
  2864. (sum_nr_running == leader_nr_running &&
  2865. first_cpu(group->cpumask) >
  2866. first_cpu(group_leader->cpumask))) {
  2867. group_leader = group;
  2868. leader_nr_running = sum_nr_running;
  2869. }
  2870. }
  2871. group_next:
  2872. #endif
  2873. group = group->next;
  2874. } while (group != sd->groups);
  2875. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2876. goto out_balanced;
  2877. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2878. if (this_load >= avg_load ||
  2879. 100*max_load <= sd->imbalance_pct*this_load)
  2880. goto out_balanced;
  2881. busiest_load_per_task /= busiest_nr_running;
  2882. if (group_imb)
  2883. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2884. /*
  2885. * We're trying to get all the cpus to the average_load, so we don't
  2886. * want to push ourselves above the average load, nor do we wish to
  2887. * reduce the max loaded cpu below the average load, as either of these
  2888. * actions would just result in more rebalancing later, and ping-pong
  2889. * tasks around. Thus we look for the minimum possible imbalance.
  2890. * Negative imbalances (*we* are more loaded than anyone else) will
  2891. * be counted as no imbalance for these purposes -- we can't fix that
  2892. * by pulling tasks to us. Be careful of negative numbers as they'll
  2893. * appear as very large values with unsigned longs.
  2894. */
  2895. if (max_load <= busiest_load_per_task)
  2896. goto out_balanced;
  2897. /*
  2898. * In the presence of smp nice balancing, certain scenarios can have
  2899. * max load less than avg load(as we skip the groups at or below
  2900. * its cpu_power, while calculating max_load..)
  2901. */
  2902. if (max_load < avg_load) {
  2903. *imbalance = 0;
  2904. goto small_imbalance;
  2905. }
  2906. /* Don't want to pull so many tasks that a group would go idle */
  2907. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2908. /* How much load to actually move to equalise the imbalance */
  2909. *imbalance = min(max_pull * busiest->__cpu_power,
  2910. (avg_load - this_load) * this->__cpu_power)
  2911. / SCHED_LOAD_SCALE;
  2912. /*
  2913. * if *imbalance is less than the average load per runnable task
  2914. * there is no gaurantee that any tasks will be moved so we'll have
  2915. * a think about bumping its value to force at least one task to be
  2916. * moved
  2917. */
  2918. if (*imbalance < busiest_load_per_task) {
  2919. unsigned long tmp, pwr_now, pwr_move;
  2920. unsigned int imbn;
  2921. small_imbalance:
  2922. pwr_move = pwr_now = 0;
  2923. imbn = 2;
  2924. if (this_nr_running) {
  2925. this_load_per_task /= this_nr_running;
  2926. if (busiest_load_per_task > this_load_per_task)
  2927. imbn = 1;
  2928. } else
  2929. this_load_per_task = SCHED_LOAD_SCALE;
  2930. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2931. busiest_load_per_task * imbn) {
  2932. *imbalance = busiest_load_per_task;
  2933. return busiest;
  2934. }
  2935. /*
  2936. * OK, we don't have enough imbalance to justify moving tasks,
  2937. * however we may be able to increase total CPU power used by
  2938. * moving them.
  2939. */
  2940. pwr_now += busiest->__cpu_power *
  2941. min(busiest_load_per_task, max_load);
  2942. pwr_now += this->__cpu_power *
  2943. min(this_load_per_task, this_load);
  2944. pwr_now /= SCHED_LOAD_SCALE;
  2945. /* Amount of load we'd subtract */
  2946. tmp = sg_div_cpu_power(busiest,
  2947. busiest_load_per_task * SCHED_LOAD_SCALE);
  2948. if (max_load > tmp)
  2949. pwr_move += busiest->__cpu_power *
  2950. min(busiest_load_per_task, max_load - tmp);
  2951. /* Amount of load we'd add */
  2952. if (max_load * busiest->__cpu_power <
  2953. busiest_load_per_task * SCHED_LOAD_SCALE)
  2954. tmp = sg_div_cpu_power(this,
  2955. max_load * busiest->__cpu_power);
  2956. else
  2957. tmp = sg_div_cpu_power(this,
  2958. busiest_load_per_task * SCHED_LOAD_SCALE);
  2959. pwr_move += this->__cpu_power *
  2960. min(this_load_per_task, this_load + tmp);
  2961. pwr_move /= SCHED_LOAD_SCALE;
  2962. /* Move if we gain throughput */
  2963. if (pwr_move > pwr_now)
  2964. *imbalance = busiest_load_per_task;
  2965. }
  2966. return busiest;
  2967. out_balanced:
  2968. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2969. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2970. goto ret;
  2971. if (this == group_leader && group_leader != group_min) {
  2972. *imbalance = min_load_per_task;
  2973. return group_min;
  2974. }
  2975. #endif
  2976. ret:
  2977. *imbalance = 0;
  2978. return NULL;
  2979. }
  2980. /*
  2981. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2982. */
  2983. static struct rq *
  2984. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2985. unsigned long imbalance, const cpumask_t *cpus)
  2986. {
  2987. struct rq *busiest = NULL, *rq;
  2988. unsigned long max_load = 0;
  2989. int i;
  2990. for_each_cpu_mask(i, group->cpumask) {
  2991. unsigned long wl;
  2992. if (!cpu_isset(i, *cpus))
  2993. continue;
  2994. rq = cpu_rq(i);
  2995. wl = weighted_cpuload(i);
  2996. if (rq->nr_running == 1 && wl > imbalance)
  2997. continue;
  2998. if (wl > max_load) {
  2999. max_load = wl;
  3000. busiest = rq;
  3001. }
  3002. }
  3003. return busiest;
  3004. }
  3005. /*
  3006. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3007. * so long as it is large enough.
  3008. */
  3009. #define MAX_PINNED_INTERVAL 512
  3010. /*
  3011. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3012. * tasks if there is an imbalance.
  3013. */
  3014. static int load_balance(int this_cpu, struct rq *this_rq,
  3015. struct sched_domain *sd, enum cpu_idle_type idle,
  3016. int *balance, cpumask_t *cpus)
  3017. {
  3018. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3019. struct sched_group *group;
  3020. unsigned long imbalance;
  3021. struct rq *busiest;
  3022. unsigned long flags;
  3023. int unlock_aggregate;
  3024. cpus_setall(*cpus);
  3025. unlock_aggregate = get_aggregate(this_cpu, sd);
  3026. /*
  3027. * When power savings policy is enabled for the parent domain, idle
  3028. * sibling can pick up load irrespective of busy siblings. In this case,
  3029. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3030. * portraying it as CPU_NOT_IDLE.
  3031. */
  3032. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3033. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3034. sd_idle = 1;
  3035. schedstat_inc(sd, lb_count[idle]);
  3036. redo:
  3037. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3038. cpus, balance);
  3039. if (*balance == 0)
  3040. goto out_balanced;
  3041. if (!group) {
  3042. schedstat_inc(sd, lb_nobusyg[idle]);
  3043. goto out_balanced;
  3044. }
  3045. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3046. if (!busiest) {
  3047. schedstat_inc(sd, lb_nobusyq[idle]);
  3048. goto out_balanced;
  3049. }
  3050. BUG_ON(busiest == this_rq);
  3051. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3052. ld_moved = 0;
  3053. if (busiest->nr_running > 1) {
  3054. /*
  3055. * Attempt to move tasks. If find_busiest_group has found
  3056. * an imbalance but busiest->nr_running <= 1, the group is
  3057. * still unbalanced. ld_moved simply stays zero, so it is
  3058. * correctly treated as an imbalance.
  3059. */
  3060. local_irq_save(flags);
  3061. double_rq_lock(this_rq, busiest);
  3062. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3063. imbalance, sd, idle, &all_pinned);
  3064. double_rq_unlock(this_rq, busiest);
  3065. local_irq_restore(flags);
  3066. /*
  3067. * some other cpu did the load balance for us.
  3068. */
  3069. if (ld_moved && this_cpu != smp_processor_id())
  3070. resched_cpu(this_cpu);
  3071. /* All tasks on this runqueue were pinned by CPU affinity */
  3072. if (unlikely(all_pinned)) {
  3073. cpu_clear(cpu_of(busiest), *cpus);
  3074. if (!cpus_empty(*cpus))
  3075. goto redo;
  3076. goto out_balanced;
  3077. }
  3078. }
  3079. if (!ld_moved) {
  3080. schedstat_inc(sd, lb_failed[idle]);
  3081. sd->nr_balance_failed++;
  3082. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3083. spin_lock_irqsave(&busiest->lock, flags);
  3084. /* don't kick the migration_thread, if the curr
  3085. * task on busiest cpu can't be moved to this_cpu
  3086. */
  3087. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3088. spin_unlock_irqrestore(&busiest->lock, flags);
  3089. all_pinned = 1;
  3090. goto out_one_pinned;
  3091. }
  3092. if (!busiest->active_balance) {
  3093. busiest->active_balance = 1;
  3094. busiest->push_cpu = this_cpu;
  3095. active_balance = 1;
  3096. }
  3097. spin_unlock_irqrestore(&busiest->lock, flags);
  3098. if (active_balance)
  3099. wake_up_process(busiest->migration_thread);
  3100. /*
  3101. * We've kicked active balancing, reset the failure
  3102. * counter.
  3103. */
  3104. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3105. }
  3106. } else
  3107. sd->nr_balance_failed = 0;
  3108. if (likely(!active_balance)) {
  3109. /* We were unbalanced, so reset the balancing interval */
  3110. sd->balance_interval = sd->min_interval;
  3111. } else {
  3112. /*
  3113. * If we've begun active balancing, start to back off. This
  3114. * case may not be covered by the all_pinned logic if there
  3115. * is only 1 task on the busy runqueue (because we don't call
  3116. * move_tasks).
  3117. */
  3118. if (sd->balance_interval < sd->max_interval)
  3119. sd->balance_interval *= 2;
  3120. }
  3121. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3122. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3123. ld_moved = -1;
  3124. goto out;
  3125. out_balanced:
  3126. schedstat_inc(sd, lb_balanced[idle]);
  3127. sd->nr_balance_failed = 0;
  3128. out_one_pinned:
  3129. /* tune up the balancing interval */
  3130. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3131. (sd->balance_interval < sd->max_interval))
  3132. sd->balance_interval *= 2;
  3133. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3134. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3135. ld_moved = -1;
  3136. else
  3137. ld_moved = 0;
  3138. out:
  3139. if (unlock_aggregate)
  3140. put_aggregate(this_cpu, sd);
  3141. return ld_moved;
  3142. }
  3143. /*
  3144. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3145. * tasks if there is an imbalance.
  3146. *
  3147. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3148. * this_rq is locked.
  3149. */
  3150. static int
  3151. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3152. cpumask_t *cpus)
  3153. {
  3154. struct sched_group *group;
  3155. struct rq *busiest = NULL;
  3156. unsigned long imbalance;
  3157. int ld_moved = 0;
  3158. int sd_idle = 0;
  3159. int all_pinned = 0;
  3160. cpus_setall(*cpus);
  3161. /*
  3162. * When power savings policy is enabled for the parent domain, idle
  3163. * sibling can pick up load irrespective of busy siblings. In this case,
  3164. * let the state of idle sibling percolate up as IDLE, instead of
  3165. * portraying it as CPU_NOT_IDLE.
  3166. */
  3167. if (sd->flags & SD_SHARE_CPUPOWER &&
  3168. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3169. sd_idle = 1;
  3170. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3171. redo:
  3172. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3173. &sd_idle, cpus, NULL);
  3174. if (!group) {
  3175. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3176. goto out_balanced;
  3177. }
  3178. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3179. if (!busiest) {
  3180. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3181. goto out_balanced;
  3182. }
  3183. BUG_ON(busiest == this_rq);
  3184. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3185. ld_moved = 0;
  3186. if (busiest->nr_running > 1) {
  3187. /* Attempt to move tasks */
  3188. double_lock_balance(this_rq, busiest);
  3189. /* this_rq->clock is already updated */
  3190. update_rq_clock(busiest);
  3191. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3192. imbalance, sd, CPU_NEWLY_IDLE,
  3193. &all_pinned);
  3194. spin_unlock(&busiest->lock);
  3195. if (unlikely(all_pinned)) {
  3196. cpu_clear(cpu_of(busiest), *cpus);
  3197. if (!cpus_empty(*cpus))
  3198. goto redo;
  3199. }
  3200. }
  3201. if (!ld_moved) {
  3202. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3203. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3204. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3205. return -1;
  3206. } else
  3207. sd->nr_balance_failed = 0;
  3208. return ld_moved;
  3209. out_balanced:
  3210. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3211. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3212. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3213. return -1;
  3214. sd->nr_balance_failed = 0;
  3215. return 0;
  3216. }
  3217. /*
  3218. * idle_balance is called by schedule() if this_cpu is about to become
  3219. * idle. Attempts to pull tasks from other CPUs.
  3220. */
  3221. static void idle_balance(int this_cpu, struct rq *this_rq)
  3222. {
  3223. struct sched_domain *sd;
  3224. int pulled_task = -1;
  3225. unsigned long next_balance = jiffies + HZ;
  3226. cpumask_t tmpmask;
  3227. for_each_domain(this_cpu, sd) {
  3228. unsigned long interval;
  3229. if (!(sd->flags & SD_LOAD_BALANCE))
  3230. continue;
  3231. if (sd->flags & SD_BALANCE_NEWIDLE)
  3232. /* If we've pulled tasks over stop searching: */
  3233. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3234. sd, &tmpmask);
  3235. interval = msecs_to_jiffies(sd->balance_interval);
  3236. if (time_after(next_balance, sd->last_balance + interval))
  3237. next_balance = sd->last_balance + interval;
  3238. if (pulled_task)
  3239. break;
  3240. }
  3241. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3242. /*
  3243. * We are going idle. next_balance may be set based on
  3244. * a busy processor. So reset next_balance.
  3245. */
  3246. this_rq->next_balance = next_balance;
  3247. }
  3248. }
  3249. /*
  3250. * active_load_balance is run by migration threads. It pushes running tasks
  3251. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3252. * running on each physical CPU where possible, and avoids physical /
  3253. * logical imbalances.
  3254. *
  3255. * Called with busiest_rq locked.
  3256. */
  3257. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3258. {
  3259. int target_cpu = busiest_rq->push_cpu;
  3260. struct sched_domain *sd;
  3261. struct rq *target_rq;
  3262. /* Is there any task to move? */
  3263. if (busiest_rq->nr_running <= 1)
  3264. return;
  3265. target_rq = cpu_rq(target_cpu);
  3266. /*
  3267. * This condition is "impossible", if it occurs
  3268. * we need to fix it. Originally reported by
  3269. * Bjorn Helgaas on a 128-cpu setup.
  3270. */
  3271. BUG_ON(busiest_rq == target_rq);
  3272. /* move a task from busiest_rq to target_rq */
  3273. double_lock_balance(busiest_rq, target_rq);
  3274. update_rq_clock(busiest_rq);
  3275. update_rq_clock(target_rq);
  3276. /* Search for an sd spanning us and the target CPU. */
  3277. for_each_domain(target_cpu, sd) {
  3278. if ((sd->flags & SD_LOAD_BALANCE) &&
  3279. cpu_isset(busiest_cpu, sd->span))
  3280. break;
  3281. }
  3282. if (likely(sd)) {
  3283. schedstat_inc(sd, alb_count);
  3284. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3285. sd, CPU_IDLE))
  3286. schedstat_inc(sd, alb_pushed);
  3287. else
  3288. schedstat_inc(sd, alb_failed);
  3289. }
  3290. spin_unlock(&target_rq->lock);
  3291. }
  3292. #ifdef CONFIG_NO_HZ
  3293. static struct {
  3294. atomic_t load_balancer;
  3295. cpumask_t cpu_mask;
  3296. } nohz ____cacheline_aligned = {
  3297. .load_balancer = ATOMIC_INIT(-1),
  3298. .cpu_mask = CPU_MASK_NONE,
  3299. };
  3300. /*
  3301. * This routine will try to nominate the ilb (idle load balancing)
  3302. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3303. * load balancing on behalf of all those cpus. If all the cpus in the system
  3304. * go into this tickless mode, then there will be no ilb owner (as there is
  3305. * no need for one) and all the cpus will sleep till the next wakeup event
  3306. * arrives...
  3307. *
  3308. * For the ilb owner, tick is not stopped. And this tick will be used
  3309. * for idle load balancing. ilb owner will still be part of
  3310. * nohz.cpu_mask..
  3311. *
  3312. * While stopping the tick, this cpu will become the ilb owner if there
  3313. * is no other owner. And will be the owner till that cpu becomes busy
  3314. * or if all cpus in the system stop their ticks at which point
  3315. * there is no need for ilb owner.
  3316. *
  3317. * When the ilb owner becomes busy, it nominates another owner, during the
  3318. * next busy scheduler_tick()
  3319. */
  3320. int select_nohz_load_balancer(int stop_tick)
  3321. {
  3322. int cpu = smp_processor_id();
  3323. if (stop_tick) {
  3324. cpu_set(cpu, nohz.cpu_mask);
  3325. cpu_rq(cpu)->in_nohz_recently = 1;
  3326. /*
  3327. * If we are going offline and still the leader, give up!
  3328. */
  3329. if (cpu_is_offline(cpu) &&
  3330. atomic_read(&nohz.load_balancer) == cpu) {
  3331. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3332. BUG();
  3333. return 0;
  3334. }
  3335. /* time for ilb owner also to sleep */
  3336. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3337. if (atomic_read(&nohz.load_balancer) == cpu)
  3338. atomic_set(&nohz.load_balancer, -1);
  3339. return 0;
  3340. }
  3341. if (atomic_read(&nohz.load_balancer) == -1) {
  3342. /* make me the ilb owner */
  3343. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3344. return 1;
  3345. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3346. return 1;
  3347. } else {
  3348. if (!cpu_isset(cpu, nohz.cpu_mask))
  3349. return 0;
  3350. cpu_clear(cpu, nohz.cpu_mask);
  3351. if (atomic_read(&nohz.load_balancer) == cpu)
  3352. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3353. BUG();
  3354. }
  3355. return 0;
  3356. }
  3357. #endif
  3358. static DEFINE_SPINLOCK(balancing);
  3359. /*
  3360. * It checks each scheduling domain to see if it is due to be balanced,
  3361. * and initiates a balancing operation if so.
  3362. *
  3363. * Balancing parameters are set up in arch_init_sched_domains.
  3364. */
  3365. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3366. {
  3367. int balance = 1;
  3368. struct rq *rq = cpu_rq(cpu);
  3369. unsigned long interval;
  3370. struct sched_domain *sd;
  3371. /* Earliest time when we have to do rebalance again */
  3372. unsigned long next_balance = jiffies + 60*HZ;
  3373. int update_next_balance = 0;
  3374. int need_serialize;
  3375. cpumask_t tmp;
  3376. for_each_domain(cpu, sd) {
  3377. if (!(sd->flags & SD_LOAD_BALANCE))
  3378. continue;
  3379. interval = sd->balance_interval;
  3380. if (idle != CPU_IDLE)
  3381. interval *= sd->busy_factor;
  3382. /* scale ms to jiffies */
  3383. interval = msecs_to_jiffies(interval);
  3384. if (unlikely(!interval))
  3385. interval = 1;
  3386. if (interval > HZ*NR_CPUS/10)
  3387. interval = HZ*NR_CPUS/10;
  3388. need_serialize = sd->flags & SD_SERIALIZE;
  3389. if (need_serialize) {
  3390. if (!spin_trylock(&balancing))
  3391. goto out;
  3392. }
  3393. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3394. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3395. /*
  3396. * We've pulled tasks over so either we're no
  3397. * longer idle, or one of our SMT siblings is
  3398. * not idle.
  3399. */
  3400. idle = CPU_NOT_IDLE;
  3401. }
  3402. sd->last_balance = jiffies;
  3403. }
  3404. if (need_serialize)
  3405. spin_unlock(&balancing);
  3406. out:
  3407. if (time_after(next_balance, sd->last_balance + interval)) {
  3408. next_balance = sd->last_balance + interval;
  3409. update_next_balance = 1;
  3410. }
  3411. /*
  3412. * Stop the load balance at this level. There is another
  3413. * CPU in our sched group which is doing load balancing more
  3414. * actively.
  3415. */
  3416. if (!balance)
  3417. break;
  3418. }
  3419. /*
  3420. * next_balance will be updated only when there is a need.
  3421. * When the cpu is attached to null domain for ex, it will not be
  3422. * updated.
  3423. */
  3424. if (likely(update_next_balance))
  3425. rq->next_balance = next_balance;
  3426. }
  3427. /*
  3428. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3429. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3430. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3431. */
  3432. static void run_rebalance_domains(struct softirq_action *h)
  3433. {
  3434. int this_cpu = smp_processor_id();
  3435. struct rq *this_rq = cpu_rq(this_cpu);
  3436. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3437. CPU_IDLE : CPU_NOT_IDLE;
  3438. rebalance_domains(this_cpu, idle);
  3439. #ifdef CONFIG_NO_HZ
  3440. /*
  3441. * If this cpu is the owner for idle load balancing, then do the
  3442. * balancing on behalf of the other idle cpus whose ticks are
  3443. * stopped.
  3444. */
  3445. if (this_rq->idle_at_tick &&
  3446. atomic_read(&nohz.load_balancer) == this_cpu) {
  3447. cpumask_t cpus = nohz.cpu_mask;
  3448. struct rq *rq;
  3449. int balance_cpu;
  3450. cpu_clear(this_cpu, cpus);
  3451. for_each_cpu_mask(balance_cpu, cpus) {
  3452. /*
  3453. * If this cpu gets work to do, stop the load balancing
  3454. * work being done for other cpus. Next load
  3455. * balancing owner will pick it up.
  3456. */
  3457. if (need_resched())
  3458. break;
  3459. rebalance_domains(balance_cpu, CPU_IDLE);
  3460. rq = cpu_rq(balance_cpu);
  3461. if (time_after(this_rq->next_balance, rq->next_balance))
  3462. this_rq->next_balance = rq->next_balance;
  3463. }
  3464. }
  3465. #endif
  3466. }
  3467. /*
  3468. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3469. *
  3470. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3471. * idle load balancing owner or decide to stop the periodic load balancing,
  3472. * if the whole system is idle.
  3473. */
  3474. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3475. {
  3476. #ifdef CONFIG_NO_HZ
  3477. /*
  3478. * If we were in the nohz mode recently and busy at the current
  3479. * scheduler tick, then check if we need to nominate new idle
  3480. * load balancer.
  3481. */
  3482. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3483. rq->in_nohz_recently = 0;
  3484. if (atomic_read(&nohz.load_balancer) == cpu) {
  3485. cpu_clear(cpu, nohz.cpu_mask);
  3486. atomic_set(&nohz.load_balancer, -1);
  3487. }
  3488. if (atomic_read(&nohz.load_balancer) == -1) {
  3489. /*
  3490. * simple selection for now: Nominate the
  3491. * first cpu in the nohz list to be the next
  3492. * ilb owner.
  3493. *
  3494. * TBD: Traverse the sched domains and nominate
  3495. * the nearest cpu in the nohz.cpu_mask.
  3496. */
  3497. int ilb = first_cpu(nohz.cpu_mask);
  3498. if (ilb < nr_cpu_ids)
  3499. resched_cpu(ilb);
  3500. }
  3501. }
  3502. /*
  3503. * If this cpu is idle and doing idle load balancing for all the
  3504. * cpus with ticks stopped, is it time for that to stop?
  3505. */
  3506. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3507. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3508. resched_cpu(cpu);
  3509. return;
  3510. }
  3511. /*
  3512. * If this cpu is idle and the idle load balancing is done by
  3513. * someone else, then no need raise the SCHED_SOFTIRQ
  3514. */
  3515. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3516. cpu_isset(cpu, nohz.cpu_mask))
  3517. return;
  3518. #endif
  3519. if (time_after_eq(jiffies, rq->next_balance))
  3520. raise_softirq(SCHED_SOFTIRQ);
  3521. }
  3522. #else /* CONFIG_SMP */
  3523. /*
  3524. * on UP we do not need to balance between CPUs:
  3525. */
  3526. static inline void idle_balance(int cpu, struct rq *rq)
  3527. {
  3528. }
  3529. #endif
  3530. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3531. EXPORT_PER_CPU_SYMBOL(kstat);
  3532. /*
  3533. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3534. * that have not yet been banked in case the task is currently running.
  3535. */
  3536. unsigned long long task_sched_runtime(struct task_struct *p)
  3537. {
  3538. unsigned long flags;
  3539. u64 ns, delta_exec;
  3540. struct rq *rq;
  3541. rq = task_rq_lock(p, &flags);
  3542. ns = p->se.sum_exec_runtime;
  3543. if (task_current(rq, p)) {
  3544. update_rq_clock(rq);
  3545. delta_exec = rq->clock - p->se.exec_start;
  3546. if ((s64)delta_exec > 0)
  3547. ns += delta_exec;
  3548. }
  3549. task_rq_unlock(rq, &flags);
  3550. return ns;
  3551. }
  3552. /*
  3553. * Account user cpu time to a process.
  3554. * @p: the process that the cpu time gets accounted to
  3555. * @cputime: the cpu time spent in user space since the last update
  3556. */
  3557. void account_user_time(struct task_struct *p, cputime_t cputime)
  3558. {
  3559. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3560. cputime64_t tmp;
  3561. p->utime = cputime_add(p->utime, cputime);
  3562. /* Add user time to cpustat. */
  3563. tmp = cputime_to_cputime64(cputime);
  3564. if (TASK_NICE(p) > 0)
  3565. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3566. else
  3567. cpustat->user = cputime64_add(cpustat->user, tmp);
  3568. }
  3569. /*
  3570. * Account guest cpu time to a process.
  3571. * @p: the process that the cpu time gets accounted to
  3572. * @cputime: the cpu time spent in virtual machine since the last update
  3573. */
  3574. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3575. {
  3576. cputime64_t tmp;
  3577. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3578. tmp = cputime_to_cputime64(cputime);
  3579. p->utime = cputime_add(p->utime, cputime);
  3580. p->gtime = cputime_add(p->gtime, cputime);
  3581. cpustat->user = cputime64_add(cpustat->user, tmp);
  3582. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3583. }
  3584. /*
  3585. * Account scaled user cpu time to a process.
  3586. * @p: the process that the cpu time gets accounted to
  3587. * @cputime: the cpu time spent in user space since the last update
  3588. */
  3589. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3590. {
  3591. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3592. }
  3593. /*
  3594. * Account system cpu time to a process.
  3595. * @p: the process that the cpu time gets accounted to
  3596. * @hardirq_offset: the offset to subtract from hardirq_count()
  3597. * @cputime: the cpu time spent in kernel space since the last update
  3598. */
  3599. void account_system_time(struct task_struct *p, int hardirq_offset,
  3600. cputime_t cputime)
  3601. {
  3602. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3603. struct rq *rq = this_rq();
  3604. cputime64_t tmp;
  3605. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3606. account_guest_time(p, cputime);
  3607. return;
  3608. }
  3609. p->stime = cputime_add(p->stime, cputime);
  3610. /* Add system time to cpustat. */
  3611. tmp = cputime_to_cputime64(cputime);
  3612. if (hardirq_count() - hardirq_offset)
  3613. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3614. else if (softirq_count())
  3615. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3616. else if (p != rq->idle)
  3617. cpustat->system = cputime64_add(cpustat->system, tmp);
  3618. else if (atomic_read(&rq->nr_iowait) > 0)
  3619. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3620. else
  3621. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3622. /* Account for system time used */
  3623. acct_update_integrals(p);
  3624. }
  3625. /*
  3626. * Account scaled system cpu time to a process.
  3627. * @p: the process that the cpu time gets accounted to
  3628. * @hardirq_offset: the offset to subtract from hardirq_count()
  3629. * @cputime: the cpu time spent in kernel space since the last update
  3630. */
  3631. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3632. {
  3633. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3634. }
  3635. /*
  3636. * Account for involuntary wait time.
  3637. * @p: the process from which the cpu time has been stolen
  3638. * @steal: the cpu time spent in involuntary wait
  3639. */
  3640. void account_steal_time(struct task_struct *p, cputime_t steal)
  3641. {
  3642. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3643. cputime64_t tmp = cputime_to_cputime64(steal);
  3644. struct rq *rq = this_rq();
  3645. if (p == rq->idle) {
  3646. p->stime = cputime_add(p->stime, steal);
  3647. if (atomic_read(&rq->nr_iowait) > 0)
  3648. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3649. else
  3650. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3651. } else
  3652. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3653. }
  3654. /*
  3655. * This function gets called by the timer code, with HZ frequency.
  3656. * We call it with interrupts disabled.
  3657. *
  3658. * It also gets called by the fork code, when changing the parent's
  3659. * timeslices.
  3660. */
  3661. void scheduler_tick(void)
  3662. {
  3663. int cpu = smp_processor_id();
  3664. struct rq *rq = cpu_rq(cpu);
  3665. struct task_struct *curr = rq->curr;
  3666. sched_clock_tick();
  3667. spin_lock(&rq->lock);
  3668. update_rq_clock(rq);
  3669. update_cpu_load(rq);
  3670. curr->sched_class->task_tick(rq, curr, 0);
  3671. spin_unlock(&rq->lock);
  3672. #ifdef CONFIG_SMP
  3673. rq->idle_at_tick = idle_cpu(cpu);
  3674. trigger_load_balance(rq, cpu);
  3675. #endif
  3676. }
  3677. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3678. void __kprobes add_preempt_count(int val)
  3679. {
  3680. /*
  3681. * Underflow?
  3682. */
  3683. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3684. return;
  3685. preempt_count() += val;
  3686. /*
  3687. * Spinlock count overflowing soon?
  3688. */
  3689. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3690. PREEMPT_MASK - 10);
  3691. }
  3692. EXPORT_SYMBOL(add_preempt_count);
  3693. void __kprobes sub_preempt_count(int val)
  3694. {
  3695. /*
  3696. * Underflow?
  3697. */
  3698. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3699. return;
  3700. /*
  3701. * Is the spinlock portion underflowing?
  3702. */
  3703. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3704. !(preempt_count() & PREEMPT_MASK)))
  3705. return;
  3706. preempt_count() -= val;
  3707. }
  3708. EXPORT_SYMBOL(sub_preempt_count);
  3709. #endif
  3710. /*
  3711. * Print scheduling while atomic bug:
  3712. */
  3713. static noinline void __schedule_bug(struct task_struct *prev)
  3714. {
  3715. struct pt_regs *regs = get_irq_regs();
  3716. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3717. prev->comm, prev->pid, preempt_count());
  3718. debug_show_held_locks(prev);
  3719. print_modules();
  3720. if (irqs_disabled())
  3721. print_irqtrace_events(prev);
  3722. if (regs)
  3723. show_regs(regs);
  3724. else
  3725. dump_stack();
  3726. }
  3727. /*
  3728. * Various schedule()-time debugging checks and statistics:
  3729. */
  3730. static inline void schedule_debug(struct task_struct *prev)
  3731. {
  3732. /*
  3733. * Test if we are atomic. Since do_exit() needs to call into
  3734. * schedule() atomically, we ignore that path for now.
  3735. * Otherwise, whine if we are scheduling when we should not be.
  3736. */
  3737. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3738. __schedule_bug(prev);
  3739. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3740. schedstat_inc(this_rq(), sched_count);
  3741. #ifdef CONFIG_SCHEDSTATS
  3742. if (unlikely(prev->lock_depth >= 0)) {
  3743. schedstat_inc(this_rq(), bkl_count);
  3744. schedstat_inc(prev, sched_info.bkl_count);
  3745. }
  3746. #endif
  3747. }
  3748. /*
  3749. * Pick up the highest-prio task:
  3750. */
  3751. static inline struct task_struct *
  3752. pick_next_task(struct rq *rq, struct task_struct *prev)
  3753. {
  3754. const struct sched_class *class;
  3755. struct task_struct *p;
  3756. /*
  3757. * Optimization: we know that if all tasks are in
  3758. * the fair class we can call that function directly:
  3759. */
  3760. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3761. p = fair_sched_class.pick_next_task(rq);
  3762. if (likely(p))
  3763. return p;
  3764. }
  3765. class = sched_class_highest;
  3766. for ( ; ; ) {
  3767. p = class->pick_next_task(rq);
  3768. if (p)
  3769. return p;
  3770. /*
  3771. * Will never be NULL as the idle class always
  3772. * returns a non-NULL p:
  3773. */
  3774. class = class->next;
  3775. }
  3776. }
  3777. /*
  3778. * schedule() is the main scheduler function.
  3779. */
  3780. asmlinkage void __sched schedule(void)
  3781. {
  3782. struct task_struct *prev, *next;
  3783. unsigned long *switch_count;
  3784. struct rq *rq;
  3785. int cpu, hrtick = sched_feat(HRTICK);
  3786. need_resched:
  3787. preempt_disable();
  3788. cpu = smp_processor_id();
  3789. rq = cpu_rq(cpu);
  3790. rcu_qsctr_inc(cpu);
  3791. prev = rq->curr;
  3792. switch_count = &prev->nivcsw;
  3793. release_kernel_lock(prev);
  3794. need_resched_nonpreemptible:
  3795. schedule_debug(prev);
  3796. if (hrtick)
  3797. hrtick_clear(rq);
  3798. /*
  3799. * Do the rq-clock update outside the rq lock:
  3800. */
  3801. local_irq_disable();
  3802. update_rq_clock(rq);
  3803. spin_lock(&rq->lock);
  3804. clear_tsk_need_resched(prev);
  3805. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3806. if (unlikely(signal_pending_state(prev->state, prev)))
  3807. prev->state = TASK_RUNNING;
  3808. else
  3809. deactivate_task(rq, prev, 1);
  3810. switch_count = &prev->nvcsw;
  3811. }
  3812. #ifdef CONFIG_SMP
  3813. if (prev->sched_class->pre_schedule)
  3814. prev->sched_class->pre_schedule(rq, prev);
  3815. #endif
  3816. if (unlikely(!rq->nr_running))
  3817. idle_balance(cpu, rq);
  3818. prev->sched_class->put_prev_task(rq, prev);
  3819. next = pick_next_task(rq, prev);
  3820. if (likely(prev != next)) {
  3821. sched_info_switch(prev, next);
  3822. rq->nr_switches++;
  3823. rq->curr = next;
  3824. ++*switch_count;
  3825. context_switch(rq, prev, next); /* unlocks the rq */
  3826. /*
  3827. * the context switch might have flipped the stack from under
  3828. * us, hence refresh the local variables.
  3829. */
  3830. cpu = smp_processor_id();
  3831. rq = cpu_rq(cpu);
  3832. } else
  3833. spin_unlock_irq(&rq->lock);
  3834. if (hrtick)
  3835. hrtick_set(rq);
  3836. if (unlikely(reacquire_kernel_lock(current) < 0))
  3837. goto need_resched_nonpreemptible;
  3838. preempt_enable_no_resched();
  3839. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3840. goto need_resched;
  3841. }
  3842. EXPORT_SYMBOL(schedule);
  3843. #ifdef CONFIG_PREEMPT
  3844. /*
  3845. * this is the entry point to schedule() from in-kernel preemption
  3846. * off of preempt_enable. Kernel preemptions off return from interrupt
  3847. * occur there and call schedule directly.
  3848. */
  3849. asmlinkage void __sched preempt_schedule(void)
  3850. {
  3851. struct thread_info *ti = current_thread_info();
  3852. /*
  3853. * If there is a non-zero preempt_count or interrupts are disabled,
  3854. * we do not want to preempt the current task. Just return..
  3855. */
  3856. if (likely(ti->preempt_count || irqs_disabled()))
  3857. return;
  3858. do {
  3859. add_preempt_count(PREEMPT_ACTIVE);
  3860. schedule();
  3861. sub_preempt_count(PREEMPT_ACTIVE);
  3862. /*
  3863. * Check again in case we missed a preemption opportunity
  3864. * between schedule and now.
  3865. */
  3866. barrier();
  3867. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3868. }
  3869. EXPORT_SYMBOL(preempt_schedule);
  3870. /*
  3871. * this is the entry point to schedule() from kernel preemption
  3872. * off of irq context.
  3873. * Note, that this is called and return with irqs disabled. This will
  3874. * protect us against recursive calling from irq.
  3875. */
  3876. asmlinkage void __sched preempt_schedule_irq(void)
  3877. {
  3878. struct thread_info *ti = current_thread_info();
  3879. /* Catch callers which need to be fixed */
  3880. BUG_ON(ti->preempt_count || !irqs_disabled());
  3881. do {
  3882. add_preempt_count(PREEMPT_ACTIVE);
  3883. local_irq_enable();
  3884. schedule();
  3885. local_irq_disable();
  3886. sub_preempt_count(PREEMPT_ACTIVE);
  3887. /*
  3888. * Check again in case we missed a preemption opportunity
  3889. * between schedule and now.
  3890. */
  3891. barrier();
  3892. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3893. }
  3894. #endif /* CONFIG_PREEMPT */
  3895. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3896. void *key)
  3897. {
  3898. return try_to_wake_up(curr->private, mode, sync);
  3899. }
  3900. EXPORT_SYMBOL(default_wake_function);
  3901. /*
  3902. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3903. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3904. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3905. *
  3906. * There are circumstances in which we can try to wake a task which has already
  3907. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3908. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3909. */
  3910. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3911. int nr_exclusive, int sync, void *key)
  3912. {
  3913. wait_queue_t *curr, *next;
  3914. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3915. unsigned flags = curr->flags;
  3916. if (curr->func(curr, mode, sync, key) &&
  3917. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3918. break;
  3919. }
  3920. }
  3921. /**
  3922. * __wake_up - wake up threads blocked on a waitqueue.
  3923. * @q: the waitqueue
  3924. * @mode: which threads
  3925. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3926. * @key: is directly passed to the wakeup function
  3927. */
  3928. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3929. int nr_exclusive, void *key)
  3930. {
  3931. unsigned long flags;
  3932. spin_lock_irqsave(&q->lock, flags);
  3933. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3934. spin_unlock_irqrestore(&q->lock, flags);
  3935. }
  3936. EXPORT_SYMBOL(__wake_up);
  3937. /*
  3938. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3939. */
  3940. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3941. {
  3942. __wake_up_common(q, mode, 1, 0, NULL);
  3943. }
  3944. /**
  3945. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3946. * @q: the waitqueue
  3947. * @mode: which threads
  3948. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3949. *
  3950. * The sync wakeup differs that the waker knows that it will schedule
  3951. * away soon, so while the target thread will be woken up, it will not
  3952. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3953. * with each other. This can prevent needless bouncing between CPUs.
  3954. *
  3955. * On UP it can prevent extra preemption.
  3956. */
  3957. void
  3958. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3959. {
  3960. unsigned long flags;
  3961. int sync = 1;
  3962. if (unlikely(!q))
  3963. return;
  3964. if (unlikely(!nr_exclusive))
  3965. sync = 0;
  3966. spin_lock_irqsave(&q->lock, flags);
  3967. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3968. spin_unlock_irqrestore(&q->lock, flags);
  3969. }
  3970. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3971. void complete(struct completion *x)
  3972. {
  3973. unsigned long flags;
  3974. spin_lock_irqsave(&x->wait.lock, flags);
  3975. x->done++;
  3976. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3977. spin_unlock_irqrestore(&x->wait.lock, flags);
  3978. }
  3979. EXPORT_SYMBOL(complete);
  3980. void complete_all(struct completion *x)
  3981. {
  3982. unsigned long flags;
  3983. spin_lock_irqsave(&x->wait.lock, flags);
  3984. x->done += UINT_MAX/2;
  3985. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3986. spin_unlock_irqrestore(&x->wait.lock, flags);
  3987. }
  3988. EXPORT_SYMBOL(complete_all);
  3989. static inline long __sched
  3990. do_wait_for_common(struct completion *x, long timeout, int state)
  3991. {
  3992. if (!x->done) {
  3993. DECLARE_WAITQUEUE(wait, current);
  3994. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3995. __add_wait_queue_tail(&x->wait, &wait);
  3996. do {
  3997. if ((state == TASK_INTERRUPTIBLE &&
  3998. signal_pending(current)) ||
  3999. (state == TASK_KILLABLE &&
  4000. fatal_signal_pending(current))) {
  4001. timeout = -ERESTARTSYS;
  4002. break;
  4003. }
  4004. __set_current_state(state);
  4005. spin_unlock_irq(&x->wait.lock);
  4006. timeout = schedule_timeout(timeout);
  4007. spin_lock_irq(&x->wait.lock);
  4008. } while (!x->done && timeout);
  4009. __remove_wait_queue(&x->wait, &wait);
  4010. if (!x->done)
  4011. return timeout;
  4012. }
  4013. x->done--;
  4014. return timeout ?: 1;
  4015. }
  4016. static long __sched
  4017. wait_for_common(struct completion *x, long timeout, int state)
  4018. {
  4019. might_sleep();
  4020. spin_lock_irq(&x->wait.lock);
  4021. timeout = do_wait_for_common(x, timeout, state);
  4022. spin_unlock_irq(&x->wait.lock);
  4023. return timeout;
  4024. }
  4025. void __sched wait_for_completion(struct completion *x)
  4026. {
  4027. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4028. }
  4029. EXPORT_SYMBOL(wait_for_completion);
  4030. unsigned long __sched
  4031. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4032. {
  4033. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4034. }
  4035. EXPORT_SYMBOL(wait_for_completion_timeout);
  4036. int __sched wait_for_completion_interruptible(struct completion *x)
  4037. {
  4038. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4039. if (t == -ERESTARTSYS)
  4040. return t;
  4041. return 0;
  4042. }
  4043. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4044. unsigned long __sched
  4045. wait_for_completion_interruptible_timeout(struct completion *x,
  4046. unsigned long timeout)
  4047. {
  4048. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4049. }
  4050. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4051. int __sched wait_for_completion_killable(struct completion *x)
  4052. {
  4053. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4054. if (t == -ERESTARTSYS)
  4055. return t;
  4056. return 0;
  4057. }
  4058. EXPORT_SYMBOL(wait_for_completion_killable);
  4059. static long __sched
  4060. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4061. {
  4062. unsigned long flags;
  4063. wait_queue_t wait;
  4064. init_waitqueue_entry(&wait, current);
  4065. __set_current_state(state);
  4066. spin_lock_irqsave(&q->lock, flags);
  4067. __add_wait_queue(q, &wait);
  4068. spin_unlock(&q->lock);
  4069. timeout = schedule_timeout(timeout);
  4070. spin_lock_irq(&q->lock);
  4071. __remove_wait_queue(q, &wait);
  4072. spin_unlock_irqrestore(&q->lock, flags);
  4073. return timeout;
  4074. }
  4075. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4076. {
  4077. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4078. }
  4079. EXPORT_SYMBOL(interruptible_sleep_on);
  4080. long __sched
  4081. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4082. {
  4083. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4084. }
  4085. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4086. void __sched sleep_on(wait_queue_head_t *q)
  4087. {
  4088. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4089. }
  4090. EXPORT_SYMBOL(sleep_on);
  4091. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4092. {
  4093. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4094. }
  4095. EXPORT_SYMBOL(sleep_on_timeout);
  4096. #ifdef CONFIG_RT_MUTEXES
  4097. /*
  4098. * rt_mutex_setprio - set the current priority of a task
  4099. * @p: task
  4100. * @prio: prio value (kernel-internal form)
  4101. *
  4102. * This function changes the 'effective' priority of a task. It does
  4103. * not touch ->normal_prio like __setscheduler().
  4104. *
  4105. * Used by the rt_mutex code to implement priority inheritance logic.
  4106. */
  4107. void rt_mutex_setprio(struct task_struct *p, int prio)
  4108. {
  4109. unsigned long flags;
  4110. int oldprio, on_rq, running;
  4111. struct rq *rq;
  4112. const struct sched_class *prev_class = p->sched_class;
  4113. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4114. rq = task_rq_lock(p, &flags);
  4115. update_rq_clock(rq);
  4116. oldprio = p->prio;
  4117. on_rq = p->se.on_rq;
  4118. running = task_current(rq, p);
  4119. if (on_rq)
  4120. dequeue_task(rq, p, 0);
  4121. if (running)
  4122. p->sched_class->put_prev_task(rq, p);
  4123. if (rt_prio(prio))
  4124. p->sched_class = &rt_sched_class;
  4125. else
  4126. p->sched_class = &fair_sched_class;
  4127. p->prio = prio;
  4128. if (running)
  4129. p->sched_class->set_curr_task(rq);
  4130. if (on_rq) {
  4131. enqueue_task(rq, p, 0);
  4132. check_class_changed(rq, p, prev_class, oldprio, running);
  4133. }
  4134. task_rq_unlock(rq, &flags);
  4135. }
  4136. #endif
  4137. void set_user_nice(struct task_struct *p, long nice)
  4138. {
  4139. int old_prio, delta, on_rq;
  4140. unsigned long flags;
  4141. struct rq *rq;
  4142. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4143. return;
  4144. /*
  4145. * We have to be careful, if called from sys_setpriority(),
  4146. * the task might be in the middle of scheduling on another CPU.
  4147. */
  4148. rq = task_rq_lock(p, &flags);
  4149. update_rq_clock(rq);
  4150. /*
  4151. * The RT priorities are set via sched_setscheduler(), but we still
  4152. * allow the 'normal' nice value to be set - but as expected
  4153. * it wont have any effect on scheduling until the task is
  4154. * SCHED_FIFO/SCHED_RR:
  4155. */
  4156. if (task_has_rt_policy(p)) {
  4157. p->static_prio = NICE_TO_PRIO(nice);
  4158. goto out_unlock;
  4159. }
  4160. on_rq = p->se.on_rq;
  4161. if (on_rq)
  4162. dequeue_task(rq, p, 0);
  4163. p->static_prio = NICE_TO_PRIO(nice);
  4164. set_load_weight(p);
  4165. old_prio = p->prio;
  4166. p->prio = effective_prio(p);
  4167. delta = p->prio - old_prio;
  4168. if (on_rq) {
  4169. enqueue_task(rq, p, 0);
  4170. /*
  4171. * If the task increased its priority or is running and
  4172. * lowered its priority, then reschedule its CPU:
  4173. */
  4174. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4175. resched_task(rq->curr);
  4176. }
  4177. out_unlock:
  4178. task_rq_unlock(rq, &flags);
  4179. }
  4180. EXPORT_SYMBOL(set_user_nice);
  4181. /*
  4182. * can_nice - check if a task can reduce its nice value
  4183. * @p: task
  4184. * @nice: nice value
  4185. */
  4186. int can_nice(const struct task_struct *p, const int nice)
  4187. {
  4188. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4189. int nice_rlim = 20 - nice;
  4190. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4191. capable(CAP_SYS_NICE));
  4192. }
  4193. #ifdef __ARCH_WANT_SYS_NICE
  4194. /*
  4195. * sys_nice - change the priority of the current process.
  4196. * @increment: priority increment
  4197. *
  4198. * sys_setpriority is a more generic, but much slower function that
  4199. * does similar things.
  4200. */
  4201. asmlinkage long sys_nice(int increment)
  4202. {
  4203. long nice, retval;
  4204. /*
  4205. * Setpriority might change our priority at the same moment.
  4206. * We don't have to worry. Conceptually one call occurs first
  4207. * and we have a single winner.
  4208. */
  4209. if (increment < -40)
  4210. increment = -40;
  4211. if (increment > 40)
  4212. increment = 40;
  4213. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4214. if (nice < -20)
  4215. nice = -20;
  4216. if (nice > 19)
  4217. nice = 19;
  4218. if (increment < 0 && !can_nice(current, nice))
  4219. return -EPERM;
  4220. retval = security_task_setnice(current, nice);
  4221. if (retval)
  4222. return retval;
  4223. set_user_nice(current, nice);
  4224. return 0;
  4225. }
  4226. #endif
  4227. /**
  4228. * task_prio - return the priority value of a given task.
  4229. * @p: the task in question.
  4230. *
  4231. * This is the priority value as seen by users in /proc.
  4232. * RT tasks are offset by -200. Normal tasks are centered
  4233. * around 0, value goes from -16 to +15.
  4234. */
  4235. int task_prio(const struct task_struct *p)
  4236. {
  4237. return p->prio - MAX_RT_PRIO;
  4238. }
  4239. /**
  4240. * task_nice - return the nice value of a given task.
  4241. * @p: the task in question.
  4242. */
  4243. int task_nice(const struct task_struct *p)
  4244. {
  4245. return TASK_NICE(p);
  4246. }
  4247. EXPORT_SYMBOL(task_nice);
  4248. /**
  4249. * idle_cpu - is a given cpu idle currently?
  4250. * @cpu: the processor in question.
  4251. */
  4252. int idle_cpu(int cpu)
  4253. {
  4254. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4255. }
  4256. /**
  4257. * idle_task - return the idle task for a given cpu.
  4258. * @cpu: the processor in question.
  4259. */
  4260. struct task_struct *idle_task(int cpu)
  4261. {
  4262. return cpu_rq(cpu)->idle;
  4263. }
  4264. /**
  4265. * find_process_by_pid - find a process with a matching PID value.
  4266. * @pid: the pid in question.
  4267. */
  4268. static struct task_struct *find_process_by_pid(pid_t pid)
  4269. {
  4270. return pid ? find_task_by_vpid(pid) : current;
  4271. }
  4272. /* Actually do priority change: must hold rq lock. */
  4273. static void
  4274. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4275. {
  4276. BUG_ON(p->se.on_rq);
  4277. p->policy = policy;
  4278. switch (p->policy) {
  4279. case SCHED_NORMAL:
  4280. case SCHED_BATCH:
  4281. case SCHED_IDLE:
  4282. p->sched_class = &fair_sched_class;
  4283. break;
  4284. case SCHED_FIFO:
  4285. case SCHED_RR:
  4286. p->sched_class = &rt_sched_class;
  4287. break;
  4288. }
  4289. p->rt_priority = prio;
  4290. p->normal_prio = normal_prio(p);
  4291. /* we are holding p->pi_lock already */
  4292. p->prio = rt_mutex_getprio(p);
  4293. set_load_weight(p);
  4294. }
  4295. /**
  4296. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4297. * @p: the task in question.
  4298. * @policy: new policy.
  4299. * @param: structure containing the new RT priority.
  4300. *
  4301. * NOTE that the task may be already dead.
  4302. */
  4303. int sched_setscheduler(struct task_struct *p, int policy,
  4304. struct sched_param *param)
  4305. {
  4306. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4307. unsigned long flags;
  4308. const struct sched_class *prev_class = p->sched_class;
  4309. struct rq *rq;
  4310. /* may grab non-irq protected spin_locks */
  4311. BUG_ON(in_interrupt());
  4312. recheck:
  4313. /* double check policy once rq lock held */
  4314. if (policy < 0)
  4315. policy = oldpolicy = p->policy;
  4316. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4317. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4318. policy != SCHED_IDLE)
  4319. return -EINVAL;
  4320. /*
  4321. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4322. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4323. * SCHED_BATCH and SCHED_IDLE is 0.
  4324. */
  4325. if (param->sched_priority < 0 ||
  4326. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4327. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4328. return -EINVAL;
  4329. if (rt_policy(policy) != (param->sched_priority != 0))
  4330. return -EINVAL;
  4331. /*
  4332. * Allow unprivileged RT tasks to decrease priority:
  4333. */
  4334. if (!capable(CAP_SYS_NICE)) {
  4335. if (rt_policy(policy)) {
  4336. unsigned long rlim_rtprio;
  4337. if (!lock_task_sighand(p, &flags))
  4338. return -ESRCH;
  4339. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4340. unlock_task_sighand(p, &flags);
  4341. /* can't set/change the rt policy */
  4342. if (policy != p->policy && !rlim_rtprio)
  4343. return -EPERM;
  4344. /* can't increase priority */
  4345. if (param->sched_priority > p->rt_priority &&
  4346. param->sched_priority > rlim_rtprio)
  4347. return -EPERM;
  4348. }
  4349. /*
  4350. * Like positive nice levels, dont allow tasks to
  4351. * move out of SCHED_IDLE either:
  4352. */
  4353. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4354. return -EPERM;
  4355. /* can't change other user's priorities */
  4356. if ((current->euid != p->euid) &&
  4357. (current->euid != p->uid))
  4358. return -EPERM;
  4359. }
  4360. #ifdef CONFIG_RT_GROUP_SCHED
  4361. /*
  4362. * Do not allow realtime tasks into groups that have no runtime
  4363. * assigned.
  4364. */
  4365. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4366. return -EPERM;
  4367. #endif
  4368. retval = security_task_setscheduler(p, policy, param);
  4369. if (retval)
  4370. return retval;
  4371. /*
  4372. * make sure no PI-waiters arrive (or leave) while we are
  4373. * changing the priority of the task:
  4374. */
  4375. spin_lock_irqsave(&p->pi_lock, flags);
  4376. /*
  4377. * To be able to change p->policy safely, the apropriate
  4378. * runqueue lock must be held.
  4379. */
  4380. rq = __task_rq_lock(p);
  4381. /* recheck policy now with rq lock held */
  4382. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4383. policy = oldpolicy = -1;
  4384. __task_rq_unlock(rq);
  4385. spin_unlock_irqrestore(&p->pi_lock, flags);
  4386. goto recheck;
  4387. }
  4388. update_rq_clock(rq);
  4389. on_rq = p->se.on_rq;
  4390. running = task_current(rq, p);
  4391. if (on_rq)
  4392. deactivate_task(rq, p, 0);
  4393. if (running)
  4394. p->sched_class->put_prev_task(rq, p);
  4395. oldprio = p->prio;
  4396. __setscheduler(rq, p, policy, param->sched_priority);
  4397. if (running)
  4398. p->sched_class->set_curr_task(rq);
  4399. if (on_rq) {
  4400. activate_task(rq, p, 0);
  4401. check_class_changed(rq, p, prev_class, oldprio, running);
  4402. }
  4403. __task_rq_unlock(rq);
  4404. spin_unlock_irqrestore(&p->pi_lock, flags);
  4405. rt_mutex_adjust_pi(p);
  4406. return 0;
  4407. }
  4408. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4409. static int
  4410. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4411. {
  4412. struct sched_param lparam;
  4413. struct task_struct *p;
  4414. int retval;
  4415. if (!param || pid < 0)
  4416. return -EINVAL;
  4417. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4418. return -EFAULT;
  4419. rcu_read_lock();
  4420. retval = -ESRCH;
  4421. p = find_process_by_pid(pid);
  4422. if (p != NULL)
  4423. retval = sched_setscheduler(p, policy, &lparam);
  4424. rcu_read_unlock();
  4425. return retval;
  4426. }
  4427. /**
  4428. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4429. * @pid: the pid in question.
  4430. * @policy: new policy.
  4431. * @param: structure containing the new RT priority.
  4432. */
  4433. asmlinkage long
  4434. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4435. {
  4436. /* negative values for policy are not valid */
  4437. if (policy < 0)
  4438. return -EINVAL;
  4439. return do_sched_setscheduler(pid, policy, param);
  4440. }
  4441. /**
  4442. * sys_sched_setparam - set/change the RT priority of a thread
  4443. * @pid: the pid in question.
  4444. * @param: structure containing the new RT priority.
  4445. */
  4446. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4447. {
  4448. return do_sched_setscheduler(pid, -1, param);
  4449. }
  4450. /**
  4451. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4452. * @pid: the pid in question.
  4453. */
  4454. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4455. {
  4456. struct task_struct *p;
  4457. int retval;
  4458. if (pid < 0)
  4459. return -EINVAL;
  4460. retval = -ESRCH;
  4461. read_lock(&tasklist_lock);
  4462. p = find_process_by_pid(pid);
  4463. if (p) {
  4464. retval = security_task_getscheduler(p);
  4465. if (!retval)
  4466. retval = p->policy;
  4467. }
  4468. read_unlock(&tasklist_lock);
  4469. return retval;
  4470. }
  4471. /**
  4472. * sys_sched_getscheduler - get the RT priority of a thread
  4473. * @pid: the pid in question.
  4474. * @param: structure containing the RT priority.
  4475. */
  4476. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4477. {
  4478. struct sched_param lp;
  4479. struct task_struct *p;
  4480. int retval;
  4481. if (!param || pid < 0)
  4482. return -EINVAL;
  4483. read_lock(&tasklist_lock);
  4484. p = find_process_by_pid(pid);
  4485. retval = -ESRCH;
  4486. if (!p)
  4487. goto out_unlock;
  4488. retval = security_task_getscheduler(p);
  4489. if (retval)
  4490. goto out_unlock;
  4491. lp.sched_priority = p->rt_priority;
  4492. read_unlock(&tasklist_lock);
  4493. /*
  4494. * This one might sleep, we cannot do it with a spinlock held ...
  4495. */
  4496. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4497. return retval;
  4498. out_unlock:
  4499. read_unlock(&tasklist_lock);
  4500. return retval;
  4501. }
  4502. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4503. {
  4504. cpumask_t cpus_allowed;
  4505. cpumask_t new_mask = *in_mask;
  4506. struct task_struct *p;
  4507. int retval;
  4508. get_online_cpus();
  4509. read_lock(&tasklist_lock);
  4510. p = find_process_by_pid(pid);
  4511. if (!p) {
  4512. read_unlock(&tasklist_lock);
  4513. put_online_cpus();
  4514. return -ESRCH;
  4515. }
  4516. /*
  4517. * It is not safe to call set_cpus_allowed with the
  4518. * tasklist_lock held. We will bump the task_struct's
  4519. * usage count and then drop tasklist_lock.
  4520. */
  4521. get_task_struct(p);
  4522. read_unlock(&tasklist_lock);
  4523. retval = -EPERM;
  4524. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4525. !capable(CAP_SYS_NICE))
  4526. goto out_unlock;
  4527. retval = security_task_setscheduler(p, 0, NULL);
  4528. if (retval)
  4529. goto out_unlock;
  4530. cpuset_cpus_allowed(p, &cpus_allowed);
  4531. cpus_and(new_mask, new_mask, cpus_allowed);
  4532. again:
  4533. retval = set_cpus_allowed_ptr(p, &new_mask);
  4534. if (!retval) {
  4535. cpuset_cpus_allowed(p, &cpus_allowed);
  4536. if (!cpus_subset(new_mask, cpus_allowed)) {
  4537. /*
  4538. * We must have raced with a concurrent cpuset
  4539. * update. Just reset the cpus_allowed to the
  4540. * cpuset's cpus_allowed
  4541. */
  4542. new_mask = cpus_allowed;
  4543. goto again;
  4544. }
  4545. }
  4546. out_unlock:
  4547. put_task_struct(p);
  4548. put_online_cpus();
  4549. return retval;
  4550. }
  4551. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4552. cpumask_t *new_mask)
  4553. {
  4554. if (len < sizeof(cpumask_t)) {
  4555. memset(new_mask, 0, sizeof(cpumask_t));
  4556. } else if (len > sizeof(cpumask_t)) {
  4557. len = sizeof(cpumask_t);
  4558. }
  4559. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4560. }
  4561. /**
  4562. * sys_sched_setaffinity - set the cpu affinity of a process
  4563. * @pid: pid of the process
  4564. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4565. * @user_mask_ptr: user-space pointer to the new cpu mask
  4566. */
  4567. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4568. unsigned long __user *user_mask_ptr)
  4569. {
  4570. cpumask_t new_mask;
  4571. int retval;
  4572. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4573. if (retval)
  4574. return retval;
  4575. return sched_setaffinity(pid, &new_mask);
  4576. }
  4577. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4578. {
  4579. struct task_struct *p;
  4580. int retval;
  4581. get_online_cpus();
  4582. read_lock(&tasklist_lock);
  4583. retval = -ESRCH;
  4584. p = find_process_by_pid(pid);
  4585. if (!p)
  4586. goto out_unlock;
  4587. retval = security_task_getscheduler(p);
  4588. if (retval)
  4589. goto out_unlock;
  4590. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4591. out_unlock:
  4592. read_unlock(&tasklist_lock);
  4593. put_online_cpus();
  4594. return retval;
  4595. }
  4596. /**
  4597. * sys_sched_getaffinity - get the cpu affinity of a process
  4598. * @pid: pid of the process
  4599. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4600. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4601. */
  4602. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4603. unsigned long __user *user_mask_ptr)
  4604. {
  4605. int ret;
  4606. cpumask_t mask;
  4607. if (len < sizeof(cpumask_t))
  4608. return -EINVAL;
  4609. ret = sched_getaffinity(pid, &mask);
  4610. if (ret < 0)
  4611. return ret;
  4612. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4613. return -EFAULT;
  4614. return sizeof(cpumask_t);
  4615. }
  4616. /**
  4617. * sys_sched_yield - yield the current processor to other threads.
  4618. *
  4619. * This function yields the current CPU to other tasks. If there are no
  4620. * other threads running on this CPU then this function will return.
  4621. */
  4622. asmlinkage long sys_sched_yield(void)
  4623. {
  4624. struct rq *rq = this_rq_lock();
  4625. schedstat_inc(rq, yld_count);
  4626. current->sched_class->yield_task(rq);
  4627. /*
  4628. * Since we are going to call schedule() anyway, there's
  4629. * no need to preempt or enable interrupts:
  4630. */
  4631. __release(rq->lock);
  4632. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4633. _raw_spin_unlock(&rq->lock);
  4634. preempt_enable_no_resched();
  4635. schedule();
  4636. return 0;
  4637. }
  4638. static void __cond_resched(void)
  4639. {
  4640. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4641. __might_sleep(__FILE__, __LINE__);
  4642. #endif
  4643. /*
  4644. * The BKS might be reacquired before we have dropped
  4645. * PREEMPT_ACTIVE, which could trigger a second
  4646. * cond_resched() call.
  4647. */
  4648. do {
  4649. add_preempt_count(PREEMPT_ACTIVE);
  4650. schedule();
  4651. sub_preempt_count(PREEMPT_ACTIVE);
  4652. } while (need_resched());
  4653. }
  4654. int __sched _cond_resched(void)
  4655. {
  4656. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4657. system_state == SYSTEM_RUNNING) {
  4658. __cond_resched();
  4659. return 1;
  4660. }
  4661. return 0;
  4662. }
  4663. EXPORT_SYMBOL(_cond_resched);
  4664. /*
  4665. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4666. * call schedule, and on return reacquire the lock.
  4667. *
  4668. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4669. * operations here to prevent schedule() from being called twice (once via
  4670. * spin_unlock(), once by hand).
  4671. */
  4672. int cond_resched_lock(spinlock_t *lock)
  4673. {
  4674. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4675. int ret = 0;
  4676. if (spin_needbreak(lock) || resched) {
  4677. spin_unlock(lock);
  4678. if (resched && need_resched())
  4679. __cond_resched();
  4680. else
  4681. cpu_relax();
  4682. ret = 1;
  4683. spin_lock(lock);
  4684. }
  4685. return ret;
  4686. }
  4687. EXPORT_SYMBOL(cond_resched_lock);
  4688. int __sched cond_resched_softirq(void)
  4689. {
  4690. BUG_ON(!in_softirq());
  4691. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4692. local_bh_enable();
  4693. __cond_resched();
  4694. local_bh_disable();
  4695. return 1;
  4696. }
  4697. return 0;
  4698. }
  4699. EXPORT_SYMBOL(cond_resched_softirq);
  4700. /**
  4701. * yield - yield the current processor to other threads.
  4702. *
  4703. * This is a shortcut for kernel-space yielding - it marks the
  4704. * thread runnable and calls sys_sched_yield().
  4705. */
  4706. void __sched yield(void)
  4707. {
  4708. set_current_state(TASK_RUNNING);
  4709. sys_sched_yield();
  4710. }
  4711. EXPORT_SYMBOL(yield);
  4712. /*
  4713. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4714. * that process accounting knows that this is a task in IO wait state.
  4715. *
  4716. * But don't do that if it is a deliberate, throttling IO wait (this task
  4717. * has set its backing_dev_info: the queue against which it should throttle)
  4718. */
  4719. void __sched io_schedule(void)
  4720. {
  4721. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4722. delayacct_blkio_start();
  4723. atomic_inc(&rq->nr_iowait);
  4724. schedule();
  4725. atomic_dec(&rq->nr_iowait);
  4726. delayacct_blkio_end();
  4727. }
  4728. EXPORT_SYMBOL(io_schedule);
  4729. long __sched io_schedule_timeout(long timeout)
  4730. {
  4731. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4732. long ret;
  4733. delayacct_blkio_start();
  4734. atomic_inc(&rq->nr_iowait);
  4735. ret = schedule_timeout(timeout);
  4736. atomic_dec(&rq->nr_iowait);
  4737. delayacct_blkio_end();
  4738. return ret;
  4739. }
  4740. /**
  4741. * sys_sched_get_priority_max - return maximum RT priority.
  4742. * @policy: scheduling class.
  4743. *
  4744. * this syscall returns the maximum rt_priority that can be used
  4745. * by a given scheduling class.
  4746. */
  4747. asmlinkage long sys_sched_get_priority_max(int policy)
  4748. {
  4749. int ret = -EINVAL;
  4750. switch (policy) {
  4751. case SCHED_FIFO:
  4752. case SCHED_RR:
  4753. ret = MAX_USER_RT_PRIO-1;
  4754. break;
  4755. case SCHED_NORMAL:
  4756. case SCHED_BATCH:
  4757. case SCHED_IDLE:
  4758. ret = 0;
  4759. break;
  4760. }
  4761. return ret;
  4762. }
  4763. /**
  4764. * sys_sched_get_priority_min - return minimum RT priority.
  4765. * @policy: scheduling class.
  4766. *
  4767. * this syscall returns the minimum rt_priority that can be used
  4768. * by a given scheduling class.
  4769. */
  4770. asmlinkage long sys_sched_get_priority_min(int policy)
  4771. {
  4772. int ret = -EINVAL;
  4773. switch (policy) {
  4774. case SCHED_FIFO:
  4775. case SCHED_RR:
  4776. ret = 1;
  4777. break;
  4778. case SCHED_NORMAL:
  4779. case SCHED_BATCH:
  4780. case SCHED_IDLE:
  4781. ret = 0;
  4782. }
  4783. return ret;
  4784. }
  4785. /**
  4786. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4787. * @pid: pid of the process.
  4788. * @interval: userspace pointer to the timeslice value.
  4789. *
  4790. * this syscall writes the default timeslice value of a given process
  4791. * into the user-space timespec buffer. A value of '0' means infinity.
  4792. */
  4793. asmlinkage
  4794. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4795. {
  4796. struct task_struct *p;
  4797. unsigned int time_slice;
  4798. int retval;
  4799. struct timespec t;
  4800. if (pid < 0)
  4801. return -EINVAL;
  4802. retval = -ESRCH;
  4803. read_lock(&tasklist_lock);
  4804. p = find_process_by_pid(pid);
  4805. if (!p)
  4806. goto out_unlock;
  4807. retval = security_task_getscheduler(p);
  4808. if (retval)
  4809. goto out_unlock;
  4810. /*
  4811. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4812. * tasks that are on an otherwise idle runqueue:
  4813. */
  4814. time_slice = 0;
  4815. if (p->policy == SCHED_RR) {
  4816. time_slice = DEF_TIMESLICE;
  4817. } else if (p->policy != SCHED_FIFO) {
  4818. struct sched_entity *se = &p->se;
  4819. unsigned long flags;
  4820. struct rq *rq;
  4821. rq = task_rq_lock(p, &flags);
  4822. if (rq->cfs.load.weight)
  4823. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4824. task_rq_unlock(rq, &flags);
  4825. }
  4826. read_unlock(&tasklist_lock);
  4827. jiffies_to_timespec(time_slice, &t);
  4828. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4829. return retval;
  4830. out_unlock:
  4831. read_unlock(&tasklist_lock);
  4832. return retval;
  4833. }
  4834. static const char stat_nam[] = "RSDTtZX";
  4835. void sched_show_task(struct task_struct *p)
  4836. {
  4837. unsigned long free = 0;
  4838. unsigned state;
  4839. state = p->state ? __ffs(p->state) + 1 : 0;
  4840. printk(KERN_INFO "%-13.13s %c", p->comm,
  4841. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4842. #if BITS_PER_LONG == 32
  4843. if (state == TASK_RUNNING)
  4844. printk(KERN_CONT " running ");
  4845. else
  4846. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4847. #else
  4848. if (state == TASK_RUNNING)
  4849. printk(KERN_CONT " running task ");
  4850. else
  4851. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4852. #endif
  4853. #ifdef CONFIG_DEBUG_STACK_USAGE
  4854. {
  4855. unsigned long *n = end_of_stack(p);
  4856. while (!*n)
  4857. n++;
  4858. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4859. }
  4860. #endif
  4861. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4862. task_pid_nr(p), task_pid_nr(p->real_parent));
  4863. show_stack(p, NULL);
  4864. }
  4865. void show_state_filter(unsigned long state_filter)
  4866. {
  4867. struct task_struct *g, *p;
  4868. #if BITS_PER_LONG == 32
  4869. printk(KERN_INFO
  4870. " task PC stack pid father\n");
  4871. #else
  4872. printk(KERN_INFO
  4873. " task PC stack pid father\n");
  4874. #endif
  4875. read_lock(&tasklist_lock);
  4876. do_each_thread(g, p) {
  4877. /*
  4878. * reset the NMI-timeout, listing all files on a slow
  4879. * console might take alot of time:
  4880. */
  4881. touch_nmi_watchdog();
  4882. if (!state_filter || (p->state & state_filter))
  4883. sched_show_task(p);
  4884. } while_each_thread(g, p);
  4885. touch_all_softlockup_watchdogs();
  4886. #ifdef CONFIG_SCHED_DEBUG
  4887. sysrq_sched_debug_show();
  4888. #endif
  4889. read_unlock(&tasklist_lock);
  4890. /*
  4891. * Only show locks if all tasks are dumped:
  4892. */
  4893. if (state_filter == -1)
  4894. debug_show_all_locks();
  4895. }
  4896. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4897. {
  4898. idle->sched_class = &idle_sched_class;
  4899. }
  4900. /**
  4901. * init_idle - set up an idle thread for a given CPU
  4902. * @idle: task in question
  4903. * @cpu: cpu the idle task belongs to
  4904. *
  4905. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4906. * flag, to make booting more robust.
  4907. */
  4908. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4909. {
  4910. struct rq *rq = cpu_rq(cpu);
  4911. unsigned long flags;
  4912. __sched_fork(idle);
  4913. idle->se.exec_start = sched_clock();
  4914. idle->prio = idle->normal_prio = MAX_PRIO;
  4915. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4916. __set_task_cpu(idle, cpu);
  4917. spin_lock_irqsave(&rq->lock, flags);
  4918. rq->curr = rq->idle = idle;
  4919. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4920. idle->oncpu = 1;
  4921. #endif
  4922. spin_unlock_irqrestore(&rq->lock, flags);
  4923. /* Set the preempt count _outside_ the spinlocks! */
  4924. #if defined(CONFIG_PREEMPT)
  4925. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4926. #else
  4927. task_thread_info(idle)->preempt_count = 0;
  4928. #endif
  4929. /*
  4930. * The idle tasks have their own, simple scheduling class:
  4931. */
  4932. idle->sched_class = &idle_sched_class;
  4933. }
  4934. /*
  4935. * In a system that switches off the HZ timer nohz_cpu_mask
  4936. * indicates which cpus entered this state. This is used
  4937. * in the rcu update to wait only for active cpus. For system
  4938. * which do not switch off the HZ timer nohz_cpu_mask should
  4939. * always be CPU_MASK_NONE.
  4940. */
  4941. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4942. /*
  4943. * Increase the granularity value when there are more CPUs,
  4944. * because with more CPUs the 'effective latency' as visible
  4945. * to users decreases. But the relationship is not linear,
  4946. * so pick a second-best guess by going with the log2 of the
  4947. * number of CPUs.
  4948. *
  4949. * This idea comes from the SD scheduler of Con Kolivas:
  4950. */
  4951. static inline void sched_init_granularity(void)
  4952. {
  4953. unsigned int factor = 1 + ilog2(num_online_cpus());
  4954. const unsigned long limit = 200000000;
  4955. sysctl_sched_min_granularity *= factor;
  4956. if (sysctl_sched_min_granularity > limit)
  4957. sysctl_sched_min_granularity = limit;
  4958. sysctl_sched_latency *= factor;
  4959. if (sysctl_sched_latency > limit)
  4960. sysctl_sched_latency = limit;
  4961. sysctl_sched_wakeup_granularity *= factor;
  4962. }
  4963. #ifdef CONFIG_SMP
  4964. /*
  4965. * This is how migration works:
  4966. *
  4967. * 1) we queue a struct migration_req structure in the source CPU's
  4968. * runqueue and wake up that CPU's migration thread.
  4969. * 2) we down() the locked semaphore => thread blocks.
  4970. * 3) migration thread wakes up (implicitly it forces the migrated
  4971. * thread off the CPU)
  4972. * 4) it gets the migration request and checks whether the migrated
  4973. * task is still in the wrong runqueue.
  4974. * 5) if it's in the wrong runqueue then the migration thread removes
  4975. * it and puts it into the right queue.
  4976. * 6) migration thread up()s the semaphore.
  4977. * 7) we wake up and the migration is done.
  4978. */
  4979. /*
  4980. * Change a given task's CPU affinity. Migrate the thread to a
  4981. * proper CPU and schedule it away if the CPU it's executing on
  4982. * is removed from the allowed bitmask.
  4983. *
  4984. * NOTE: the caller must have a valid reference to the task, the
  4985. * task must not exit() & deallocate itself prematurely. The
  4986. * call is not atomic; no spinlocks may be held.
  4987. */
  4988. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4989. {
  4990. struct migration_req req;
  4991. unsigned long flags;
  4992. struct rq *rq;
  4993. int ret = 0;
  4994. rq = task_rq_lock(p, &flags);
  4995. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4996. ret = -EINVAL;
  4997. goto out;
  4998. }
  4999. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5000. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5001. ret = -EINVAL;
  5002. goto out;
  5003. }
  5004. if (p->sched_class->set_cpus_allowed)
  5005. p->sched_class->set_cpus_allowed(p, new_mask);
  5006. else {
  5007. p->cpus_allowed = *new_mask;
  5008. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5009. }
  5010. /* Can the task run on the task's current CPU? If so, we're done */
  5011. if (cpu_isset(task_cpu(p), *new_mask))
  5012. goto out;
  5013. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5014. /* Need help from migration thread: drop lock and wait. */
  5015. task_rq_unlock(rq, &flags);
  5016. wake_up_process(rq->migration_thread);
  5017. wait_for_completion(&req.done);
  5018. tlb_migrate_finish(p->mm);
  5019. return 0;
  5020. }
  5021. out:
  5022. task_rq_unlock(rq, &flags);
  5023. return ret;
  5024. }
  5025. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5026. /*
  5027. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5028. * this because either it can't run here any more (set_cpus_allowed()
  5029. * away from this CPU, or CPU going down), or because we're
  5030. * attempting to rebalance this task on exec (sched_exec).
  5031. *
  5032. * So we race with normal scheduler movements, but that's OK, as long
  5033. * as the task is no longer on this CPU.
  5034. *
  5035. * Returns non-zero if task was successfully migrated.
  5036. */
  5037. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5038. {
  5039. struct rq *rq_dest, *rq_src;
  5040. int ret = 0, on_rq;
  5041. if (unlikely(cpu_is_offline(dest_cpu)))
  5042. return ret;
  5043. rq_src = cpu_rq(src_cpu);
  5044. rq_dest = cpu_rq(dest_cpu);
  5045. double_rq_lock(rq_src, rq_dest);
  5046. /* Already moved. */
  5047. if (task_cpu(p) != src_cpu)
  5048. goto out;
  5049. /* Affinity changed (again). */
  5050. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5051. goto out;
  5052. on_rq = p->se.on_rq;
  5053. if (on_rq)
  5054. deactivate_task(rq_src, p, 0);
  5055. set_task_cpu(p, dest_cpu);
  5056. if (on_rq) {
  5057. activate_task(rq_dest, p, 0);
  5058. check_preempt_curr(rq_dest, p);
  5059. }
  5060. ret = 1;
  5061. out:
  5062. double_rq_unlock(rq_src, rq_dest);
  5063. return ret;
  5064. }
  5065. /*
  5066. * migration_thread - this is a highprio system thread that performs
  5067. * thread migration by bumping thread off CPU then 'pushing' onto
  5068. * another runqueue.
  5069. */
  5070. static int migration_thread(void *data)
  5071. {
  5072. int cpu = (long)data;
  5073. struct rq *rq;
  5074. rq = cpu_rq(cpu);
  5075. BUG_ON(rq->migration_thread != current);
  5076. set_current_state(TASK_INTERRUPTIBLE);
  5077. while (!kthread_should_stop()) {
  5078. struct migration_req *req;
  5079. struct list_head *head;
  5080. spin_lock_irq(&rq->lock);
  5081. if (cpu_is_offline(cpu)) {
  5082. spin_unlock_irq(&rq->lock);
  5083. goto wait_to_die;
  5084. }
  5085. if (rq->active_balance) {
  5086. active_load_balance(rq, cpu);
  5087. rq->active_balance = 0;
  5088. }
  5089. head = &rq->migration_queue;
  5090. if (list_empty(head)) {
  5091. spin_unlock_irq(&rq->lock);
  5092. schedule();
  5093. set_current_state(TASK_INTERRUPTIBLE);
  5094. continue;
  5095. }
  5096. req = list_entry(head->next, struct migration_req, list);
  5097. list_del_init(head->next);
  5098. spin_unlock(&rq->lock);
  5099. __migrate_task(req->task, cpu, req->dest_cpu);
  5100. local_irq_enable();
  5101. complete(&req->done);
  5102. }
  5103. __set_current_state(TASK_RUNNING);
  5104. return 0;
  5105. wait_to_die:
  5106. /* Wait for kthread_stop */
  5107. set_current_state(TASK_INTERRUPTIBLE);
  5108. while (!kthread_should_stop()) {
  5109. schedule();
  5110. set_current_state(TASK_INTERRUPTIBLE);
  5111. }
  5112. __set_current_state(TASK_RUNNING);
  5113. return 0;
  5114. }
  5115. #ifdef CONFIG_HOTPLUG_CPU
  5116. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5117. {
  5118. int ret;
  5119. local_irq_disable();
  5120. ret = __migrate_task(p, src_cpu, dest_cpu);
  5121. local_irq_enable();
  5122. return ret;
  5123. }
  5124. /*
  5125. * Figure out where task on dead CPU should go, use force if necessary.
  5126. * NOTE: interrupts should be disabled by the caller
  5127. */
  5128. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5129. {
  5130. unsigned long flags;
  5131. cpumask_t mask;
  5132. struct rq *rq;
  5133. int dest_cpu;
  5134. do {
  5135. /* On same node? */
  5136. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5137. cpus_and(mask, mask, p->cpus_allowed);
  5138. dest_cpu = any_online_cpu(mask);
  5139. /* On any allowed CPU? */
  5140. if (dest_cpu >= nr_cpu_ids)
  5141. dest_cpu = any_online_cpu(p->cpus_allowed);
  5142. /* No more Mr. Nice Guy. */
  5143. if (dest_cpu >= nr_cpu_ids) {
  5144. cpumask_t cpus_allowed;
  5145. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5146. /*
  5147. * Try to stay on the same cpuset, where the
  5148. * current cpuset may be a subset of all cpus.
  5149. * The cpuset_cpus_allowed_locked() variant of
  5150. * cpuset_cpus_allowed() will not block. It must be
  5151. * called within calls to cpuset_lock/cpuset_unlock.
  5152. */
  5153. rq = task_rq_lock(p, &flags);
  5154. p->cpus_allowed = cpus_allowed;
  5155. dest_cpu = any_online_cpu(p->cpus_allowed);
  5156. task_rq_unlock(rq, &flags);
  5157. /*
  5158. * Don't tell them about moving exiting tasks or
  5159. * kernel threads (both mm NULL), since they never
  5160. * leave kernel.
  5161. */
  5162. if (p->mm && printk_ratelimit()) {
  5163. printk(KERN_INFO "process %d (%s) no "
  5164. "longer affine to cpu%d\n",
  5165. task_pid_nr(p), p->comm, dead_cpu);
  5166. }
  5167. }
  5168. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5169. }
  5170. /*
  5171. * While a dead CPU has no uninterruptible tasks queued at this point,
  5172. * it might still have a nonzero ->nr_uninterruptible counter, because
  5173. * for performance reasons the counter is not stricly tracking tasks to
  5174. * their home CPUs. So we just add the counter to another CPU's counter,
  5175. * to keep the global sum constant after CPU-down:
  5176. */
  5177. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5178. {
  5179. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5180. unsigned long flags;
  5181. local_irq_save(flags);
  5182. double_rq_lock(rq_src, rq_dest);
  5183. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5184. rq_src->nr_uninterruptible = 0;
  5185. double_rq_unlock(rq_src, rq_dest);
  5186. local_irq_restore(flags);
  5187. }
  5188. /* Run through task list and migrate tasks from the dead cpu. */
  5189. static void migrate_live_tasks(int src_cpu)
  5190. {
  5191. struct task_struct *p, *t;
  5192. read_lock(&tasklist_lock);
  5193. do_each_thread(t, p) {
  5194. if (p == current)
  5195. continue;
  5196. if (task_cpu(p) == src_cpu)
  5197. move_task_off_dead_cpu(src_cpu, p);
  5198. } while_each_thread(t, p);
  5199. read_unlock(&tasklist_lock);
  5200. }
  5201. /*
  5202. * Schedules idle task to be the next runnable task on current CPU.
  5203. * It does so by boosting its priority to highest possible.
  5204. * Used by CPU offline code.
  5205. */
  5206. void sched_idle_next(void)
  5207. {
  5208. int this_cpu = smp_processor_id();
  5209. struct rq *rq = cpu_rq(this_cpu);
  5210. struct task_struct *p = rq->idle;
  5211. unsigned long flags;
  5212. /* cpu has to be offline */
  5213. BUG_ON(cpu_online(this_cpu));
  5214. /*
  5215. * Strictly not necessary since rest of the CPUs are stopped by now
  5216. * and interrupts disabled on the current cpu.
  5217. */
  5218. spin_lock_irqsave(&rq->lock, flags);
  5219. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5220. update_rq_clock(rq);
  5221. activate_task(rq, p, 0);
  5222. spin_unlock_irqrestore(&rq->lock, flags);
  5223. }
  5224. /*
  5225. * Ensures that the idle task is using init_mm right before its cpu goes
  5226. * offline.
  5227. */
  5228. void idle_task_exit(void)
  5229. {
  5230. struct mm_struct *mm = current->active_mm;
  5231. BUG_ON(cpu_online(smp_processor_id()));
  5232. if (mm != &init_mm)
  5233. switch_mm(mm, &init_mm, current);
  5234. mmdrop(mm);
  5235. }
  5236. /* called under rq->lock with disabled interrupts */
  5237. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5238. {
  5239. struct rq *rq = cpu_rq(dead_cpu);
  5240. /* Must be exiting, otherwise would be on tasklist. */
  5241. BUG_ON(!p->exit_state);
  5242. /* Cannot have done final schedule yet: would have vanished. */
  5243. BUG_ON(p->state == TASK_DEAD);
  5244. get_task_struct(p);
  5245. /*
  5246. * Drop lock around migration; if someone else moves it,
  5247. * that's OK. No task can be added to this CPU, so iteration is
  5248. * fine.
  5249. */
  5250. spin_unlock_irq(&rq->lock);
  5251. move_task_off_dead_cpu(dead_cpu, p);
  5252. spin_lock_irq(&rq->lock);
  5253. put_task_struct(p);
  5254. }
  5255. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5256. static void migrate_dead_tasks(unsigned int dead_cpu)
  5257. {
  5258. struct rq *rq = cpu_rq(dead_cpu);
  5259. struct task_struct *next;
  5260. for ( ; ; ) {
  5261. if (!rq->nr_running)
  5262. break;
  5263. update_rq_clock(rq);
  5264. next = pick_next_task(rq, rq->curr);
  5265. if (!next)
  5266. break;
  5267. migrate_dead(dead_cpu, next);
  5268. }
  5269. }
  5270. #endif /* CONFIG_HOTPLUG_CPU */
  5271. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5272. static struct ctl_table sd_ctl_dir[] = {
  5273. {
  5274. .procname = "sched_domain",
  5275. .mode = 0555,
  5276. },
  5277. {0, },
  5278. };
  5279. static struct ctl_table sd_ctl_root[] = {
  5280. {
  5281. .ctl_name = CTL_KERN,
  5282. .procname = "kernel",
  5283. .mode = 0555,
  5284. .child = sd_ctl_dir,
  5285. },
  5286. {0, },
  5287. };
  5288. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5289. {
  5290. struct ctl_table *entry =
  5291. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5292. return entry;
  5293. }
  5294. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5295. {
  5296. struct ctl_table *entry;
  5297. /*
  5298. * In the intermediate directories, both the child directory and
  5299. * procname are dynamically allocated and could fail but the mode
  5300. * will always be set. In the lowest directory the names are
  5301. * static strings and all have proc handlers.
  5302. */
  5303. for (entry = *tablep; entry->mode; entry++) {
  5304. if (entry->child)
  5305. sd_free_ctl_entry(&entry->child);
  5306. if (entry->proc_handler == NULL)
  5307. kfree(entry->procname);
  5308. }
  5309. kfree(*tablep);
  5310. *tablep = NULL;
  5311. }
  5312. static void
  5313. set_table_entry(struct ctl_table *entry,
  5314. const char *procname, void *data, int maxlen,
  5315. mode_t mode, proc_handler *proc_handler)
  5316. {
  5317. entry->procname = procname;
  5318. entry->data = data;
  5319. entry->maxlen = maxlen;
  5320. entry->mode = mode;
  5321. entry->proc_handler = proc_handler;
  5322. }
  5323. static struct ctl_table *
  5324. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5325. {
  5326. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5327. if (table == NULL)
  5328. return NULL;
  5329. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5330. sizeof(long), 0644, proc_doulongvec_minmax);
  5331. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5332. sizeof(long), 0644, proc_doulongvec_minmax);
  5333. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5334. sizeof(int), 0644, proc_dointvec_minmax);
  5335. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5336. sizeof(int), 0644, proc_dointvec_minmax);
  5337. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5338. sizeof(int), 0644, proc_dointvec_minmax);
  5339. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5340. sizeof(int), 0644, proc_dointvec_minmax);
  5341. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5342. sizeof(int), 0644, proc_dointvec_minmax);
  5343. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5344. sizeof(int), 0644, proc_dointvec_minmax);
  5345. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5346. sizeof(int), 0644, proc_dointvec_minmax);
  5347. set_table_entry(&table[9], "cache_nice_tries",
  5348. &sd->cache_nice_tries,
  5349. sizeof(int), 0644, proc_dointvec_minmax);
  5350. set_table_entry(&table[10], "flags", &sd->flags,
  5351. sizeof(int), 0644, proc_dointvec_minmax);
  5352. /* &table[11] is terminator */
  5353. return table;
  5354. }
  5355. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5356. {
  5357. struct ctl_table *entry, *table;
  5358. struct sched_domain *sd;
  5359. int domain_num = 0, i;
  5360. char buf[32];
  5361. for_each_domain(cpu, sd)
  5362. domain_num++;
  5363. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5364. if (table == NULL)
  5365. return NULL;
  5366. i = 0;
  5367. for_each_domain(cpu, sd) {
  5368. snprintf(buf, 32, "domain%d", i);
  5369. entry->procname = kstrdup(buf, GFP_KERNEL);
  5370. entry->mode = 0555;
  5371. entry->child = sd_alloc_ctl_domain_table(sd);
  5372. entry++;
  5373. i++;
  5374. }
  5375. return table;
  5376. }
  5377. static struct ctl_table_header *sd_sysctl_header;
  5378. static void register_sched_domain_sysctl(void)
  5379. {
  5380. int i, cpu_num = num_online_cpus();
  5381. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5382. char buf[32];
  5383. WARN_ON(sd_ctl_dir[0].child);
  5384. sd_ctl_dir[0].child = entry;
  5385. if (entry == NULL)
  5386. return;
  5387. for_each_online_cpu(i) {
  5388. snprintf(buf, 32, "cpu%d", i);
  5389. entry->procname = kstrdup(buf, GFP_KERNEL);
  5390. entry->mode = 0555;
  5391. entry->child = sd_alloc_ctl_cpu_table(i);
  5392. entry++;
  5393. }
  5394. WARN_ON(sd_sysctl_header);
  5395. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5396. }
  5397. /* may be called multiple times per register */
  5398. static void unregister_sched_domain_sysctl(void)
  5399. {
  5400. if (sd_sysctl_header)
  5401. unregister_sysctl_table(sd_sysctl_header);
  5402. sd_sysctl_header = NULL;
  5403. if (sd_ctl_dir[0].child)
  5404. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5405. }
  5406. #else
  5407. static void register_sched_domain_sysctl(void)
  5408. {
  5409. }
  5410. static void unregister_sched_domain_sysctl(void)
  5411. {
  5412. }
  5413. #endif
  5414. static void set_rq_online(struct rq *rq)
  5415. {
  5416. if (!rq->online) {
  5417. const struct sched_class *class;
  5418. cpu_set(rq->cpu, rq->rd->online);
  5419. rq->online = 1;
  5420. for_each_class(class) {
  5421. if (class->rq_online)
  5422. class->rq_online(rq);
  5423. }
  5424. }
  5425. }
  5426. static void set_rq_offline(struct rq *rq)
  5427. {
  5428. if (rq->online) {
  5429. const struct sched_class *class;
  5430. for_each_class(class) {
  5431. if (class->rq_offline)
  5432. class->rq_offline(rq);
  5433. }
  5434. cpu_clear(rq->cpu, rq->rd->online);
  5435. rq->online = 0;
  5436. }
  5437. }
  5438. /*
  5439. * migration_call - callback that gets triggered when a CPU is added.
  5440. * Here we can start up the necessary migration thread for the new CPU.
  5441. */
  5442. static int __cpuinit
  5443. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5444. {
  5445. struct task_struct *p;
  5446. int cpu = (long)hcpu;
  5447. unsigned long flags;
  5448. struct rq *rq;
  5449. switch (action) {
  5450. case CPU_UP_PREPARE:
  5451. case CPU_UP_PREPARE_FROZEN:
  5452. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5453. if (IS_ERR(p))
  5454. return NOTIFY_BAD;
  5455. kthread_bind(p, cpu);
  5456. /* Must be high prio: stop_machine expects to yield to it. */
  5457. rq = task_rq_lock(p, &flags);
  5458. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5459. task_rq_unlock(rq, &flags);
  5460. cpu_rq(cpu)->migration_thread = p;
  5461. break;
  5462. case CPU_ONLINE:
  5463. case CPU_ONLINE_FROZEN:
  5464. /* Strictly unnecessary, as first user will wake it. */
  5465. wake_up_process(cpu_rq(cpu)->migration_thread);
  5466. /* Update our root-domain */
  5467. rq = cpu_rq(cpu);
  5468. spin_lock_irqsave(&rq->lock, flags);
  5469. if (rq->rd) {
  5470. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5471. set_rq_online(rq);
  5472. }
  5473. spin_unlock_irqrestore(&rq->lock, flags);
  5474. break;
  5475. #ifdef CONFIG_HOTPLUG_CPU
  5476. case CPU_UP_CANCELED:
  5477. case CPU_UP_CANCELED_FROZEN:
  5478. if (!cpu_rq(cpu)->migration_thread)
  5479. break;
  5480. /* Unbind it from offline cpu so it can run. Fall thru. */
  5481. kthread_bind(cpu_rq(cpu)->migration_thread,
  5482. any_online_cpu(cpu_online_map));
  5483. kthread_stop(cpu_rq(cpu)->migration_thread);
  5484. cpu_rq(cpu)->migration_thread = NULL;
  5485. break;
  5486. case CPU_DEAD:
  5487. case CPU_DEAD_FROZEN:
  5488. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5489. migrate_live_tasks(cpu);
  5490. rq = cpu_rq(cpu);
  5491. kthread_stop(rq->migration_thread);
  5492. rq->migration_thread = NULL;
  5493. /* Idle task back to normal (off runqueue, low prio) */
  5494. spin_lock_irq(&rq->lock);
  5495. update_rq_clock(rq);
  5496. deactivate_task(rq, rq->idle, 0);
  5497. rq->idle->static_prio = MAX_PRIO;
  5498. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5499. rq->idle->sched_class = &idle_sched_class;
  5500. migrate_dead_tasks(cpu);
  5501. spin_unlock_irq(&rq->lock);
  5502. cpuset_unlock();
  5503. migrate_nr_uninterruptible(rq);
  5504. BUG_ON(rq->nr_running != 0);
  5505. /*
  5506. * No need to migrate the tasks: it was best-effort if
  5507. * they didn't take sched_hotcpu_mutex. Just wake up
  5508. * the requestors.
  5509. */
  5510. spin_lock_irq(&rq->lock);
  5511. while (!list_empty(&rq->migration_queue)) {
  5512. struct migration_req *req;
  5513. req = list_entry(rq->migration_queue.next,
  5514. struct migration_req, list);
  5515. list_del_init(&req->list);
  5516. complete(&req->done);
  5517. }
  5518. spin_unlock_irq(&rq->lock);
  5519. break;
  5520. case CPU_DYING:
  5521. case CPU_DYING_FROZEN:
  5522. /* Update our root-domain */
  5523. rq = cpu_rq(cpu);
  5524. spin_lock_irqsave(&rq->lock, flags);
  5525. if (rq->rd) {
  5526. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5527. set_rq_offline(rq);
  5528. }
  5529. spin_unlock_irqrestore(&rq->lock, flags);
  5530. break;
  5531. #endif
  5532. }
  5533. return NOTIFY_OK;
  5534. }
  5535. /* Register at highest priority so that task migration (migrate_all_tasks)
  5536. * happens before everything else.
  5537. */
  5538. static struct notifier_block __cpuinitdata migration_notifier = {
  5539. .notifier_call = migration_call,
  5540. .priority = 10
  5541. };
  5542. void __init migration_init(void)
  5543. {
  5544. void *cpu = (void *)(long)smp_processor_id();
  5545. int err;
  5546. /* Start one for the boot CPU: */
  5547. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5548. BUG_ON(err == NOTIFY_BAD);
  5549. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5550. register_cpu_notifier(&migration_notifier);
  5551. }
  5552. #endif
  5553. #ifdef CONFIG_SMP
  5554. #ifdef CONFIG_SCHED_DEBUG
  5555. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5556. {
  5557. switch (lvl) {
  5558. case SD_LV_NONE:
  5559. return "NONE";
  5560. case SD_LV_SIBLING:
  5561. return "SIBLING";
  5562. case SD_LV_MC:
  5563. return "MC";
  5564. case SD_LV_CPU:
  5565. return "CPU";
  5566. case SD_LV_NODE:
  5567. return "NODE";
  5568. case SD_LV_ALLNODES:
  5569. return "ALLNODES";
  5570. case SD_LV_MAX:
  5571. return "MAX";
  5572. }
  5573. return "MAX";
  5574. }
  5575. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5576. cpumask_t *groupmask)
  5577. {
  5578. struct sched_group *group = sd->groups;
  5579. char str[256];
  5580. cpulist_scnprintf(str, sizeof(str), sd->span);
  5581. cpus_clear(*groupmask);
  5582. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5583. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5584. printk("does not load-balance\n");
  5585. if (sd->parent)
  5586. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5587. " has parent");
  5588. return -1;
  5589. }
  5590. printk(KERN_CONT "span %s level %s\n",
  5591. str, sd_level_to_string(sd->level));
  5592. if (!cpu_isset(cpu, sd->span)) {
  5593. printk(KERN_ERR "ERROR: domain->span does not contain "
  5594. "CPU%d\n", cpu);
  5595. }
  5596. if (!cpu_isset(cpu, group->cpumask)) {
  5597. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5598. " CPU%d\n", cpu);
  5599. }
  5600. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5601. do {
  5602. if (!group) {
  5603. printk("\n");
  5604. printk(KERN_ERR "ERROR: group is NULL\n");
  5605. break;
  5606. }
  5607. if (!group->__cpu_power) {
  5608. printk(KERN_CONT "\n");
  5609. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5610. "set\n");
  5611. break;
  5612. }
  5613. if (!cpus_weight(group->cpumask)) {
  5614. printk(KERN_CONT "\n");
  5615. printk(KERN_ERR "ERROR: empty group\n");
  5616. break;
  5617. }
  5618. if (cpus_intersects(*groupmask, group->cpumask)) {
  5619. printk(KERN_CONT "\n");
  5620. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5621. break;
  5622. }
  5623. cpus_or(*groupmask, *groupmask, group->cpumask);
  5624. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5625. printk(KERN_CONT " %s", str);
  5626. group = group->next;
  5627. } while (group != sd->groups);
  5628. printk(KERN_CONT "\n");
  5629. if (!cpus_equal(sd->span, *groupmask))
  5630. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5631. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5632. printk(KERN_ERR "ERROR: parent span is not a superset "
  5633. "of domain->span\n");
  5634. return 0;
  5635. }
  5636. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5637. {
  5638. cpumask_t *groupmask;
  5639. int level = 0;
  5640. if (!sd) {
  5641. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5642. return;
  5643. }
  5644. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5645. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5646. if (!groupmask) {
  5647. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5648. return;
  5649. }
  5650. for (;;) {
  5651. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5652. break;
  5653. level++;
  5654. sd = sd->parent;
  5655. if (!sd)
  5656. break;
  5657. }
  5658. kfree(groupmask);
  5659. }
  5660. #else /* !CONFIG_SCHED_DEBUG */
  5661. # define sched_domain_debug(sd, cpu) do { } while (0)
  5662. #endif /* CONFIG_SCHED_DEBUG */
  5663. static int sd_degenerate(struct sched_domain *sd)
  5664. {
  5665. if (cpus_weight(sd->span) == 1)
  5666. return 1;
  5667. /* Following flags need at least 2 groups */
  5668. if (sd->flags & (SD_LOAD_BALANCE |
  5669. SD_BALANCE_NEWIDLE |
  5670. SD_BALANCE_FORK |
  5671. SD_BALANCE_EXEC |
  5672. SD_SHARE_CPUPOWER |
  5673. SD_SHARE_PKG_RESOURCES)) {
  5674. if (sd->groups != sd->groups->next)
  5675. return 0;
  5676. }
  5677. /* Following flags don't use groups */
  5678. if (sd->flags & (SD_WAKE_IDLE |
  5679. SD_WAKE_AFFINE |
  5680. SD_WAKE_BALANCE))
  5681. return 0;
  5682. return 1;
  5683. }
  5684. static int
  5685. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5686. {
  5687. unsigned long cflags = sd->flags, pflags = parent->flags;
  5688. if (sd_degenerate(parent))
  5689. return 1;
  5690. if (!cpus_equal(sd->span, parent->span))
  5691. return 0;
  5692. /* Does parent contain flags not in child? */
  5693. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5694. if (cflags & SD_WAKE_AFFINE)
  5695. pflags &= ~SD_WAKE_BALANCE;
  5696. /* Flags needing groups don't count if only 1 group in parent */
  5697. if (parent->groups == parent->groups->next) {
  5698. pflags &= ~(SD_LOAD_BALANCE |
  5699. SD_BALANCE_NEWIDLE |
  5700. SD_BALANCE_FORK |
  5701. SD_BALANCE_EXEC |
  5702. SD_SHARE_CPUPOWER |
  5703. SD_SHARE_PKG_RESOURCES);
  5704. }
  5705. if (~cflags & pflags)
  5706. return 0;
  5707. return 1;
  5708. }
  5709. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5710. {
  5711. unsigned long flags;
  5712. spin_lock_irqsave(&rq->lock, flags);
  5713. if (rq->rd) {
  5714. struct root_domain *old_rd = rq->rd;
  5715. if (cpu_isset(rq->cpu, old_rd->online))
  5716. set_rq_offline(rq);
  5717. cpu_clear(rq->cpu, old_rd->span);
  5718. if (atomic_dec_and_test(&old_rd->refcount))
  5719. kfree(old_rd);
  5720. }
  5721. atomic_inc(&rd->refcount);
  5722. rq->rd = rd;
  5723. cpu_set(rq->cpu, rd->span);
  5724. if (cpu_isset(rq->cpu, cpu_online_map))
  5725. set_rq_online(rq);
  5726. spin_unlock_irqrestore(&rq->lock, flags);
  5727. }
  5728. static void init_rootdomain(struct root_domain *rd)
  5729. {
  5730. memset(rd, 0, sizeof(*rd));
  5731. cpus_clear(rd->span);
  5732. cpus_clear(rd->online);
  5733. cpupri_init(&rd->cpupri);
  5734. }
  5735. static void init_defrootdomain(void)
  5736. {
  5737. init_rootdomain(&def_root_domain);
  5738. atomic_set(&def_root_domain.refcount, 1);
  5739. }
  5740. static struct root_domain *alloc_rootdomain(void)
  5741. {
  5742. struct root_domain *rd;
  5743. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5744. if (!rd)
  5745. return NULL;
  5746. init_rootdomain(rd);
  5747. return rd;
  5748. }
  5749. /*
  5750. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5751. * hold the hotplug lock.
  5752. */
  5753. static void
  5754. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5755. {
  5756. struct rq *rq = cpu_rq(cpu);
  5757. struct sched_domain *tmp;
  5758. /* Remove the sched domains which do not contribute to scheduling. */
  5759. for (tmp = sd; tmp; tmp = tmp->parent) {
  5760. struct sched_domain *parent = tmp->parent;
  5761. if (!parent)
  5762. break;
  5763. if (sd_parent_degenerate(tmp, parent)) {
  5764. tmp->parent = parent->parent;
  5765. if (parent->parent)
  5766. parent->parent->child = tmp;
  5767. }
  5768. }
  5769. if (sd && sd_degenerate(sd)) {
  5770. sd = sd->parent;
  5771. if (sd)
  5772. sd->child = NULL;
  5773. }
  5774. sched_domain_debug(sd, cpu);
  5775. rq_attach_root(rq, rd);
  5776. rcu_assign_pointer(rq->sd, sd);
  5777. }
  5778. /* cpus with isolated domains */
  5779. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5780. /* Setup the mask of cpus configured for isolated domains */
  5781. static int __init isolated_cpu_setup(char *str)
  5782. {
  5783. int ints[NR_CPUS], i;
  5784. str = get_options(str, ARRAY_SIZE(ints), ints);
  5785. cpus_clear(cpu_isolated_map);
  5786. for (i = 1; i <= ints[0]; i++)
  5787. if (ints[i] < NR_CPUS)
  5788. cpu_set(ints[i], cpu_isolated_map);
  5789. return 1;
  5790. }
  5791. __setup("isolcpus=", isolated_cpu_setup);
  5792. /*
  5793. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5794. * to a function which identifies what group(along with sched group) a CPU
  5795. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5796. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5797. *
  5798. * init_sched_build_groups will build a circular linked list of the groups
  5799. * covered by the given span, and will set each group's ->cpumask correctly,
  5800. * and ->cpu_power to 0.
  5801. */
  5802. static void
  5803. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5804. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5805. struct sched_group **sg,
  5806. cpumask_t *tmpmask),
  5807. cpumask_t *covered, cpumask_t *tmpmask)
  5808. {
  5809. struct sched_group *first = NULL, *last = NULL;
  5810. int i;
  5811. cpus_clear(*covered);
  5812. for_each_cpu_mask(i, *span) {
  5813. struct sched_group *sg;
  5814. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5815. int j;
  5816. if (cpu_isset(i, *covered))
  5817. continue;
  5818. cpus_clear(sg->cpumask);
  5819. sg->__cpu_power = 0;
  5820. for_each_cpu_mask(j, *span) {
  5821. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5822. continue;
  5823. cpu_set(j, *covered);
  5824. cpu_set(j, sg->cpumask);
  5825. }
  5826. if (!first)
  5827. first = sg;
  5828. if (last)
  5829. last->next = sg;
  5830. last = sg;
  5831. }
  5832. last->next = first;
  5833. }
  5834. #define SD_NODES_PER_DOMAIN 16
  5835. #ifdef CONFIG_NUMA
  5836. /**
  5837. * find_next_best_node - find the next node to include in a sched_domain
  5838. * @node: node whose sched_domain we're building
  5839. * @used_nodes: nodes already in the sched_domain
  5840. *
  5841. * Find the next node to include in a given scheduling domain. Simply
  5842. * finds the closest node not already in the @used_nodes map.
  5843. *
  5844. * Should use nodemask_t.
  5845. */
  5846. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5847. {
  5848. int i, n, val, min_val, best_node = 0;
  5849. min_val = INT_MAX;
  5850. for (i = 0; i < MAX_NUMNODES; i++) {
  5851. /* Start at @node */
  5852. n = (node + i) % MAX_NUMNODES;
  5853. if (!nr_cpus_node(n))
  5854. continue;
  5855. /* Skip already used nodes */
  5856. if (node_isset(n, *used_nodes))
  5857. continue;
  5858. /* Simple min distance search */
  5859. val = node_distance(node, n);
  5860. if (val < min_val) {
  5861. min_val = val;
  5862. best_node = n;
  5863. }
  5864. }
  5865. node_set(best_node, *used_nodes);
  5866. return best_node;
  5867. }
  5868. /**
  5869. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5870. * @node: node whose cpumask we're constructing
  5871. * @span: resulting cpumask
  5872. *
  5873. * Given a node, construct a good cpumask for its sched_domain to span. It
  5874. * should be one that prevents unnecessary balancing, but also spreads tasks
  5875. * out optimally.
  5876. */
  5877. static void sched_domain_node_span(int node, cpumask_t *span)
  5878. {
  5879. nodemask_t used_nodes;
  5880. node_to_cpumask_ptr(nodemask, node);
  5881. int i;
  5882. cpus_clear(*span);
  5883. nodes_clear(used_nodes);
  5884. cpus_or(*span, *span, *nodemask);
  5885. node_set(node, used_nodes);
  5886. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5887. int next_node = find_next_best_node(node, &used_nodes);
  5888. node_to_cpumask_ptr_next(nodemask, next_node);
  5889. cpus_or(*span, *span, *nodemask);
  5890. }
  5891. }
  5892. #endif /* CONFIG_NUMA */
  5893. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5894. /*
  5895. * SMT sched-domains:
  5896. */
  5897. #ifdef CONFIG_SCHED_SMT
  5898. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5899. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5900. static int
  5901. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5902. cpumask_t *unused)
  5903. {
  5904. if (sg)
  5905. *sg = &per_cpu(sched_group_cpus, cpu);
  5906. return cpu;
  5907. }
  5908. #endif /* CONFIG_SCHED_SMT */
  5909. /*
  5910. * multi-core sched-domains:
  5911. */
  5912. #ifdef CONFIG_SCHED_MC
  5913. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5914. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5915. #endif /* CONFIG_SCHED_MC */
  5916. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5917. static int
  5918. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5919. cpumask_t *mask)
  5920. {
  5921. int group;
  5922. *mask = per_cpu(cpu_sibling_map, cpu);
  5923. cpus_and(*mask, *mask, *cpu_map);
  5924. group = first_cpu(*mask);
  5925. if (sg)
  5926. *sg = &per_cpu(sched_group_core, group);
  5927. return group;
  5928. }
  5929. #elif defined(CONFIG_SCHED_MC)
  5930. static int
  5931. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5932. cpumask_t *unused)
  5933. {
  5934. if (sg)
  5935. *sg = &per_cpu(sched_group_core, cpu);
  5936. return cpu;
  5937. }
  5938. #endif
  5939. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5940. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5941. static int
  5942. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5943. cpumask_t *mask)
  5944. {
  5945. int group;
  5946. #ifdef CONFIG_SCHED_MC
  5947. *mask = cpu_coregroup_map(cpu);
  5948. cpus_and(*mask, *mask, *cpu_map);
  5949. group = first_cpu(*mask);
  5950. #elif defined(CONFIG_SCHED_SMT)
  5951. *mask = per_cpu(cpu_sibling_map, cpu);
  5952. cpus_and(*mask, *mask, *cpu_map);
  5953. group = first_cpu(*mask);
  5954. #else
  5955. group = cpu;
  5956. #endif
  5957. if (sg)
  5958. *sg = &per_cpu(sched_group_phys, group);
  5959. return group;
  5960. }
  5961. #ifdef CONFIG_NUMA
  5962. /*
  5963. * The init_sched_build_groups can't handle what we want to do with node
  5964. * groups, so roll our own. Now each node has its own list of groups which
  5965. * gets dynamically allocated.
  5966. */
  5967. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5968. static struct sched_group ***sched_group_nodes_bycpu;
  5969. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5970. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5971. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5972. struct sched_group **sg, cpumask_t *nodemask)
  5973. {
  5974. int group;
  5975. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5976. cpus_and(*nodemask, *nodemask, *cpu_map);
  5977. group = first_cpu(*nodemask);
  5978. if (sg)
  5979. *sg = &per_cpu(sched_group_allnodes, group);
  5980. return group;
  5981. }
  5982. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5983. {
  5984. struct sched_group *sg = group_head;
  5985. int j;
  5986. if (!sg)
  5987. return;
  5988. do {
  5989. for_each_cpu_mask(j, sg->cpumask) {
  5990. struct sched_domain *sd;
  5991. sd = &per_cpu(phys_domains, j);
  5992. if (j != first_cpu(sd->groups->cpumask)) {
  5993. /*
  5994. * Only add "power" once for each
  5995. * physical package.
  5996. */
  5997. continue;
  5998. }
  5999. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6000. }
  6001. sg = sg->next;
  6002. } while (sg != group_head);
  6003. }
  6004. #endif /* CONFIG_NUMA */
  6005. #ifdef CONFIG_NUMA
  6006. /* Free memory allocated for various sched_group structures */
  6007. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6008. {
  6009. int cpu, i;
  6010. for_each_cpu_mask(cpu, *cpu_map) {
  6011. struct sched_group **sched_group_nodes
  6012. = sched_group_nodes_bycpu[cpu];
  6013. if (!sched_group_nodes)
  6014. continue;
  6015. for (i = 0; i < MAX_NUMNODES; i++) {
  6016. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6017. *nodemask = node_to_cpumask(i);
  6018. cpus_and(*nodemask, *nodemask, *cpu_map);
  6019. if (cpus_empty(*nodemask))
  6020. continue;
  6021. if (sg == NULL)
  6022. continue;
  6023. sg = sg->next;
  6024. next_sg:
  6025. oldsg = sg;
  6026. sg = sg->next;
  6027. kfree(oldsg);
  6028. if (oldsg != sched_group_nodes[i])
  6029. goto next_sg;
  6030. }
  6031. kfree(sched_group_nodes);
  6032. sched_group_nodes_bycpu[cpu] = NULL;
  6033. }
  6034. }
  6035. #else /* !CONFIG_NUMA */
  6036. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6037. {
  6038. }
  6039. #endif /* CONFIG_NUMA */
  6040. /*
  6041. * Initialize sched groups cpu_power.
  6042. *
  6043. * cpu_power indicates the capacity of sched group, which is used while
  6044. * distributing the load between different sched groups in a sched domain.
  6045. * Typically cpu_power for all the groups in a sched domain will be same unless
  6046. * there are asymmetries in the topology. If there are asymmetries, group
  6047. * having more cpu_power will pickup more load compared to the group having
  6048. * less cpu_power.
  6049. *
  6050. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6051. * the maximum number of tasks a group can handle in the presence of other idle
  6052. * or lightly loaded groups in the same sched domain.
  6053. */
  6054. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6055. {
  6056. struct sched_domain *child;
  6057. struct sched_group *group;
  6058. WARN_ON(!sd || !sd->groups);
  6059. if (cpu != first_cpu(sd->groups->cpumask))
  6060. return;
  6061. child = sd->child;
  6062. sd->groups->__cpu_power = 0;
  6063. /*
  6064. * For perf policy, if the groups in child domain share resources
  6065. * (for example cores sharing some portions of the cache hierarchy
  6066. * or SMT), then set this domain groups cpu_power such that each group
  6067. * can handle only one task, when there are other idle groups in the
  6068. * same sched domain.
  6069. */
  6070. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6071. (child->flags &
  6072. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6073. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6074. return;
  6075. }
  6076. /*
  6077. * add cpu_power of each child group to this groups cpu_power
  6078. */
  6079. group = child->groups;
  6080. do {
  6081. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6082. group = group->next;
  6083. } while (group != child->groups);
  6084. }
  6085. /*
  6086. * Initializers for schedule domains
  6087. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6088. */
  6089. #define SD_INIT(sd, type) sd_init_##type(sd)
  6090. #define SD_INIT_FUNC(type) \
  6091. static noinline void sd_init_##type(struct sched_domain *sd) \
  6092. { \
  6093. memset(sd, 0, sizeof(*sd)); \
  6094. *sd = SD_##type##_INIT; \
  6095. sd->level = SD_LV_##type; \
  6096. }
  6097. SD_INIT_FUNC(CPU)
  6098. #ifdef CONFIG_NUMA
  6099. SD_INIT_FUNC(ALLNODES)
  6100. SD_INIT_FUNC(NODE)
  6101. #endif
  6102. #ifdef CONFIG_SCHED_SMT
  6103. SD_INIT_FUNC(SIBLING)
  6104. #endif
  6105. #ifdef CONFIG_SCHED_MC
  6106. SD_INIT_FUNC(MC)
  6107. #endif
  6108. /*
  6109. * To minimize stack usage kmalloc room for cpumasks and share the
  6110. * space as the usage in build_sched_domains() dictates. Used only
  6111. * if the amount of space is significant.
  6112. */
  6113. struct allmasks {
  6114. cpumask_t tmpmask; /* make this one first */
  6115. union {
  6116. cpumask_t nodemask;
  6117. cpumask_t this_sibling_map;
  6118. cpumask_t this_core_map;
  6119. };
  6120. cpumask_t send_covered;
  6121. #ifdef CONFIG_NUMA
  6122. cpumask_t domainspan;
  6123. cpumask_t covered;
  6124. cpumask_t notcovered;
  6125. #endif
  6126. };
  6127. #if NR_CPUS > 128
  6128. #define SCHED_CPUMASK_ALLOC 1
  6129. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6130. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6131. #else
  6132. #define SCHED_CPUMASK_ALLOC 0
  6133. #define SCHED_CPUMASK_FREE(v)
  6134. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6135. #endif
  6136. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6137. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6138. static int default_relax_domain_level = -1;
  6139. static int __init setup_relax_domain_level(char *str)
  6140. {
  6141. unsigned long val;
  6142. val = simple_strtoul(str, NULL, 0);
  6143. if (val < SD_LV_MAX)
  6144. default_relax_domain_level = val;
  6145. return 1;
  6146. }
  6147. __setup("relax_domain_level=", setup_relax_domain_level);
  6148. static void set_domain_attribute(struct sched_domain *sd,
  6149. struct sched_domain_attr *attr)
  6150. {
  6151. int request;
  6152. if (!attr || attr->relax_domain_level < 0) {
  6153. if (default_relax_domain_level < 0)
  6154. return;
  6155. else
  6156. request = default_relax_domain_level;
  6157. } else
  6158. request = attr->relax_domain_level;
  6159. if (request < sd->level) {
  6160. /* turn off idle balance on this domain */
  6161. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6162. } else {
  6163. /* turn on idle balance on this domain */
  6164. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6165. }
  6166. }
  6167. /*
  6168. * Build sched domains for a given set of cpus and attach the sched domains
  6169. * to the individual cpus
  6170. */
  6171. static int __build_sched_domains(const cpumask_t *cpu_map,
  6172. struct sched_domain_attr *attr)
  6173. {
  6174. int i;
  6175. struct root_domain *rd;
  6176. SCHED_CPUMASK_DECLARE(allmasks);
  6177. cpumask_t *tmpmask;
  6178. #ifdef CONFIG_NUMA
  6179. struct sched_group **sched_group_nodes = NULL;
  6180. int sd_allnodes = 0;
  6181. /*
  6182. * Allocate the per-node list of sched groups
  6183. */
  6184. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6185. GFP_KERNEL);
  6186. if (!sched_group_nodes) {
  6187. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6188. return -ENOMEM;
  6189. }
  6190. #endif
  6191. rd = alloc_rootdomain();
  6192. if (!rd) {
  6193. printk(KERN_WARNING "Cannot alloc root domain\n");
  6194. #ifdef CONFIG_NUMA
  6195. kfree(sched_group_nodes);
  6196. #endif
  6197. return -ENOMEM;
  6198. }
  6199. #if SCHED_CPUMASK_ALLOC
  6200. /* get space for all scratch cpumask variables */
  6201. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6202. if (!allmasks) {
  6203. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6204. kfree(rd);
  6205. #ifdef CONFIG_NUMA
  6206. kfree(sched_group_nodes);
  6207. #endif
  6208. return -ENOMEM;
  6209. }
  6210. #endif
  6211. tmpmask = (cpumask_t *)allmasks;
  6212. #ifdef CONFIG_NUMA
  6213. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6214. #endif
  6215. /*
  6216. * Set up domains for cpus specified by the cpu_map.
  6217. */
  6218. for_each_cpu_mask(i, *cpu_map) {
  6219. struct sched_domain *sd = NULL, *p;
  6220. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6221. *nodemask = node_to_cpumask(cpu_to_node(i));
  6222. cpus_and(*nodemask, *nodemask, *cpu_map);
  6223. #ifdef CONFIG_NUMA
  6224. if (cpus_weight(*cpu_map) >
  6225. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6226. sd = &per_cpu(allnodes_domains, i);
  6227. SD_INIT(sd, ALLNODES);
  6228. set_domain_attribute(sd, attr);
  6229. sd->span = *cpu_map;
  6230. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6231. p = sd;
  6232. sd_allnodes = 1;
  6233. } else
  6234. p = NULL;
  6235. sd = &per_cpu(node_domains, i);
  6236. SD_INIT(sd, NODE);
  6237. set_domain_attribute(sd, attr);
  6238. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6239. sd->parent = p;
  6240. if (p)
  6241. p->child = sd;
  6242. cpus_and(sd->span, sd->span, *cpu_map);
  6243. #endif
  6244. p = sd;
  6245. sd = &per_cpu(phys_domains, i);
  6246. SD_INIT(sd, CPU);
  6247. set_domain_attribute(sd, attr);
  6248. sd->span = *nodemask;
  6249. sd->parent = p;
  6250. if (p)
  6251. p->child = sd;
  6252. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6253. #ifdef CONFIG_SCHED_MC
  6254. p = sd;
  6255. sd = &per_cpu(core_domains, i);
  6256. SD_INIT(sd, MC);
  6257. set_domain_attribute(sd, attr);
  6258. sd->span = cpu_coregroup_map(i);
  6259. cpus_and(sd->span, sd->span, *cpu_map);
  6260. sd->parent = p;
  6261. p->child = sd;
  6262. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6263. #endif
  6264. #ifdef CONFIG_SCHED_SMT
  6265. p = sd;
  6266. sd = &per_cpu(cpu_domains, i);
  6267. SD_INIT(sd, SIBLING);
  6268. set_domain_attribute(sd, attr);
  6269. sd->span = per_cpu(cpu_sibling_map, i);
  6270. cpus_and(sd->span, sd->span, *cpu_map);
  6271. sd->parent = p;
  6272. p->child = sd;
  6273. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6274. #endif
  6275. }
  6276. #ifdef CONFIG_SCHED_SMT
  6277. /* Set up CPU (sibling) groups */
  6278. for_each_cpu_mask(i, *cpu_map) {
  6279. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6280. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6281. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6282. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6283. if (i != first_cpu(*this_sibling_map))
  6284. continue;
  6285. init_sched_build_groups(this_sibling_map, cpu_map,
  6286. &cpu_to_cpu_group,
  6287. send_covered, tmpmask);
  6288. }
  6289. #endif
  6290. #ifdef CONFIG_SCHED_MC
  6291. /* Set up multi-core groups */
  6292. for_each_cpu_mask(i, *cpu_map) {
  6293. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6294. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6295. *this_core_map = cpu_coregroup_map(i);
  6296. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6297. if (i != first_cpu(*this_core_map))
  6298. continue;
  6299. init_sched_build_groups(this_core_map, cpu_map,
  6300. &cpu_to_core_group,
  6301. send_covered, tmpmask);
  6302. }
  6303. #endif
  6304. /* Set up physical groups */
  6305. for (i = 0; i < MAX_NUMNODES; i++) {
  6306. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6307. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6308. *nodemask = node_to_cpumask(i);
  6309. cpus_and(*nodemask, *nodemask, *cpu_map);
  6310. if (cpus_empty(*nodemask))
  6311. continue;
  6312. init_sched_build_groups(nodemask, cpu_map,
  6313. &cpu_to_phys_group,
  6314. send_covered, tmpmask);
  6315. }
  6316. #ifdef CONFIG_NUMA
  6317. /* Set up node groups */
  6318. if (sd_allnodes) {
  6319. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6320. init_sched_build_groups(cpu_map, cpu_map,
  6321. &cpu_to_allnodes_group,
  6322. send_covered, tmpmask);
  6323. }
  6324. for (i = 0; i < MAX_NUMNODES; i++) {
  6325. /* Set up node groups */
  6326. struct sched_group *sg, *prev;
  6327. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6328. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6329. SCHED_CPUMASK_VAR(covered, allmasks);
  6330. int j;
  6331. *nodemask = node_to_cpumask(i);
  6332. cpus_clear(*covered);
  6333. cpus_and(*nodemask, *nodemask, *cpu_map);
  6334. if (cpus_empty(*nodemask)) {
  6335. sched_group_nodes[i] = NULL;
  6336. continue;
  6337. }
  6338. sched_domain_node_span(i, domainspan);
  6339. cpus_and(*domainspan, *domainspan, *cpu_map);
  6340. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6341. if (!sg) {
  6342. printk(KERN_WARNING "Can not alloc domain group for "
  6343. "node %d\n", i);
  6344. goto error;
  6345. }
  6346. sched_group_nodes[i] = sg;
  6347. for_each_cpu_mask(j, *nodemask) {
  6348. struct sched_domain *sd;
  6349. sd = &per_cpu(node_domains, j);
  6350. sd->groups = sg;
  6351. }
  6352. sg->__cpu_power = 0;
  6353. sg->cpumask = *nodemask;
  6354. sg->next = sg;
  6355. cpus_or(*covered, *covered, *nodemask);
  6356. prev = sg;
  6357. for (j = 0; j < MAX_NUMNODES; j++) {
  6358. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6359. int n = (i + j) % MAX_NUMNODES;
  6360. node_to_cpumask_ptr(pnodemask, n);
  6361. cpus_complement(*notcovered, *covered);
  6362. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6363. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6364. if (cpus_empty(*tmpmask))
  6365. break;
  6366. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6367. if (cpus_empty(*tmpmask))
  6368. continue;
  6369. sg = kmalloc_node(sizeof(struct sched_group),
  6370. GFP_KERNEL, i);
  6371. if (!sg) {
  6372. printk(KERN_WARNING
  6373. "Can not alloc domain group for node %d\n", j);
  6374. goto error;
  6375. }
  6376. sg->__cpu_power = 0;
  6377. sg->cpumask = *tmpmask;
  6378. sg->next = prev->next;
  6379. cpus_or(*covered, *covered, *tmpmask);
  6380. prev->next = sg;
  6381. prev = sg;
  6382. }
  6383. }
  6384. #endif
  6385. /* Calculate CPU power for physical packages and nodes */
  6386. #ifdef CONFIG_SCHED_SMT
  6387. for_each_cpu_mask(i, *cpu_map) {
  6388. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6389. init_sched_groups_power(i, sd);
  6390. }
  6391. #endif
  6392. #ifdef CONFIG_SCHED_MC
  6393. for_each_cpu_mask(i, *cpu_map) {
  6394. struct sched_domain *sd = &per_cpu(core_domains, i);
  6395. init_sched_groups_power(i, sd);
  6396. }
  6397. #endif
  6398. for_each_cpu_mask(i, *cpu_map) {
  6399. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6400. init_sched_groups_power(i, sd);
  6401. }
  6402. #ifdef CONFIG_NUMA
  6403. for (i = 0; i < MAX_NUMNODES; i++)
  6404. init_numa_sched_groups_power(sched_group_nodes[i]);
  6405. if (sd_allnodes) {
  6406. struct sched_group *sg;
  6407. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6408. tmpmask);
  6409. init_numa_sched_groups_power(sg);
  6410. }
  6411. #endif
  6412. /* Attach the domains */
  6413. for_each_cpu_mask(i, *cpu_map) {
  6414. struct sched_domain *sd;
  6415. #ifdef CONFIG_SCHED_SMT
  6416. sd = &per_cpu(cpu_domains, i);
  6417. #elif defined(CONFIG_SCHED_MC)
  6418. sd = &per_cpu(core_domains, i);
  6419. #else
  6420. sd = &per_cpu(phys_domains, i);
  6421. #endif
  6422. cpu_attach_domain(sd, rd, i);
  6423. }
  6424. SCHED_CPUMASK_FREE((void *)allmasks);
  6425. return 0;
  6426. #ifdef CONFIG_NUMA
  6427. error:
  6428. free_sched_groups(cpu_map, tmpmask);
  6429. SCHED_CPUMASK_FREE((void *)allmasks);
  6430. return -ENOMEM;
  6431. #endif
  6432. }
  6433. static int build_sched_domains(const cpumask_t *cpu_map)
  6434. {
  6435. return __build_sched_domains(cpu_map, NULL);
  6436. }
  6437. static cpumask_t *doms_cur; /* current sched domains */
  6438. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6439. static struct sched_domain_attr *dattr_cur;
  6440. /* attribues of custom domains in 'doms_cur' */
  6441. /*
  6442. * Special case: If a kmalloc of a doms_cur partition (array of
  6443. * cpumask_t) fails, then fallback to a single sched domain,
  6444. * as determined by the single cpumask_t fallback_doms.
  6445. */
  6446. static cpumask_t fallback_doms;
  6447. void __attribute__((weak)) arch_update_cpu_topology(void)
  6448. {
  6449. }
  6450. /*
  6451. * Free current domain masks.
  6452. * Called after all cpus are attached to NULL domain.
  6453. */
  6454. static void free_sched_domains(void)
  6455. {
  6456. ndoms_cur = 0;
  6457. if (doms_cur != &fallback_doms)
  6458. kfree(doms_cur);
  6459. doms_cur = &fallback_doms;
  6460. }
  6461. /*
  6462. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6463. * For now this just excludes isolated cpus, but could be used to
  6464. * exclude other special cases in the future.
  6465. */
  6466. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6467. {
  6468. int err;
  6469. arch_update_cpu_topology();
  6470. ndoms_cur = 1;
  6471. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6472. if (!doms_cur)
  6473. doms_cur = &fallback_doms;
  6474. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6475. dattr_cur = NULL;
  6476. err = build_sched_domains(doms_cur);
  6477. register_sched_domain_sysctl();
  6478. return err;
  6479. }
  6480. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6481. cpumask_t *tmpmask)
  6482. {
  6483. free_sched_groups(cpu_map, tmpmask);
  6484. }
  6485. /*
  6486. * Detach sched domains from a group of cpus specified in cpu_map
  6487. * These cpus will now be attached to the NULL domain
  6488. */
  6489. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6490. {
  6491. cpumask_t tmpmask;
  6492. int i;
  6493. unregister_sched_domain_sysctl();
  6494. for_each_cpu_mask(i, *cpu_map)
  6495. cpu_attach_domain(NULL, &def_root_domain, i);
  6496. synchronize_sched();
  6497. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6498. }
  6499. /* handle null as "default" */
  6500. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6501. struct sched_domain_attr *new, int idx_new)
  6502. {
  6503. struct sched_domain_attr tmp;
  6504. /* fast path */
  6505. if (!new && !cur)
  6506. return 1;
  6507. tmp = SD_ATTR_INIT;
  6508. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6509. new ? (new + idx_new) : &tmp,
  6510. sizeof(struct sched_domain_attr));
  6511. }
  6512. /*
  6513. * Partition sched domains as specified by the 'ndoms_new'
  6514. * cpumasks in the array doms_new[] of cpumasks. This compares
  6515. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6516. * It destroys each deleted domain and builds each new domain.
  6517. *
  6518. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6519. * The masks don't intersect (don't overlap.) We should setup one
  6520. * sched domain for each mask. CPUs not in any of the cpumasks will
  6521. * not be load balanced. If the same cpumask appears both in the
  6522. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6523. * it as it is.
  6524. *
  6525. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6526. * ownership of it and will kfree it when done with it. If the caller
  6527. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6528. * and partition_sched_domains() will fallback to the single partition
  6529. * 'fallback_doms'.
  6530. *
  6531. * Call with hotplug lock held
  6532. */
  6533. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6534. struct sched_domain_attr *dattr_new)
  6535. {
  6536. int i, j;
  6537. mutex_lock(&sched_domains_mutex);
  6538. /* always unregister in case we don't destroy any domains */
  6539. unregister_sched_domain_sysctl();
  6540. if (doms_new == NULL) {
  6541. ndoms_new = 1;
  6542. doms_new = &fallback_doms;
  6543. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6544. dattr_new = NULL;
  6545. }
  6546. /* Destroy deleted domains */
  6547. for (i = 0; i < ndoms_cur; i++) {
  6548. for (j = 0; j < ndoms_new; j++) {
  6549. if (cpus_equal(doms_cur[i], doms_new[j])
  6550. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6551. goto match1;
  6552. }
  6553. /* no match - a current sched domain not in new doms_new[] */
  6554. detach_destroy_domains(doms_cur + i);
  6555. match1:
  6556. ;
  6557. }
  6558. /* Build new domains */
  6559. for (i = 0; i < ndoms_new; i++) {
  6560. for (j = 0; j < ndoms_cur; j++) {
  6561. if (cpus_equal(doms_new[i], doms_cur[j])
  6562. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6563. goto match2;
  6564. }
  6565. /* no match - add a new doms_new */
  6566. __build_sched_domains(doms_new + i,
  6567. dattr_new ? dattr_new + i : NULL);
  6568. match2:
  6569. ;
  6570. }
  6571. /* Remember the new sched domains */
  6572. if (doms_cur != &fallback_doms)
  6573. kfree(doms_cur);
  6574. kfree(dattr_cur); /* kfree(NULL) is safe */
  6575. doms_cur = doms_new;
  6576. dattr_cur = dattr_new;
  6577. ndoms_cur = ndoms_new;
  6578. register_sched_domain_sysctl();
  6579. mutex_unlock(&sched_domains_mutex);
  6580. }
  6581. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6582. int arch_reinit_sched_domains(void)
  6583. {
  6584. int err;
  6585. get_online_cpus();
  6586. mutex_lock(&sched_domains_mutex);
  6587. detach_destroy_domains(&cpu_online_map);
  6588. free_sched_domains();
  6589. err = arch_init_sched_domains(&cpu_online_map);
  6590. mutex_unlock(&sched_domains_mutex);
  6591. put_online_cpus();
  6592. return err;
  6593. }
  6594. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6595. {
  6596. int ret;
  6597. if (buf[0] != '0' && buf[0] != '1')
  6598. return -EINVAL;
  6599. if (smt)
  6600. sched_smt_power_savings = (buf[0] == '1');
  6601. else
  6602. sched_mc_power_savings = (buf[0] == '1');
  6603. ret = arch_reinit_sched_domains();
  6604. return ret ? ret : count;
  6605. }
  6606. #ifdef CONFIG_SCHED_MC
  6607. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6608. {
  6609. return sprintf(page, "%u\n", sched_mc_power_savings);
  6610. }
  6611. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6612. const char *buf, size_t count)
  6613. {
  6614. return sched_power_savings_store(buf, count, 0);
  6615. }
  6616. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6617. sched_mc_power_savings_store);
  6618. #endif
  6619. #ifdef CONFIG_SCHED_SMT
  6620. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6621. {
  6622. return sprintf(page, "%u\n", sched_smt_power_savings);
  6623. }
  6624. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6625. const char *buf, size_t count)
  6626. {
  6627. return sched_power_savings_store(buf, count, 1);
  6628. }
  6629. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6630. sched_smt_power_savings_store);
  6631. #endif
  6632. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6633. {
  6634. int err = 0;
  6635. #ifdef CONFIG_SCHED_SMT
  6636. if (smt_capable())
  6637. err = sysfs_create_file(&cls->kset.kobj,
  6638. &attr_sched_smt_power_savings.attr);
  6639. #endif
  6640. #ifdef CONFIG_SCHED_MC
  6641. if (!err && mc_capable())
  6642. err = sysfs_create_file(&cls->kset.kobj,
  6643. &attr_sched_mc_power_savings.attr);
  6644. #endif
  6645. return err;
  6646. }
  6647. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6648. /*
  6649. * Force a reinitialization of the sched domains hierarchy. The domains
  6650. * and groups cannot be updated in place without racing with the balancing
  6651. * code, so we temporarily attach all running cpus to the NULL domain
  6652. * which will prevent rebalancing while the sched domains are recalculated.
  6653. */
  6654. static int update_sched_domains(struct notifier_block *nfb,
  6655. unsigned long action, void *hcpu)
  6656. {
  6657. int cpu = (int)(long)hcpu;
  6658. switch (action) {
  6659. case CPU_DOWN_PREPARE:
  6660. case CPU_DOWN_PREPARE_FROZEN:
  6661. disable_runtime(cpu_rq(cpu));
  6662. /* fall-through */
  6663. case CPU_UP_PREPARE:
  6664. case CPU_UP_PREPARE_FROZEN:
  6665. detach_destroy_domains(&cpu_online_map);
  6666. free_sched_domains();
  6667. return NOTIFY_OK;
  6668. case CPU_DOWN_FAILED:
  6669. case CPU_DOWN_FAILED_FROZEN:
  6670. case CPU_ONLINE:
  6671. case CPU_ONLINE_FROZEN:
  6672. enable_runtime(cpu_rq(cpu));
  6673. /* fall-through */
  6674. case CPU_UP_CANCELED:
  6675. case CPU_UP_CANCELED_FROZEN:
  6676. case CPU_DEAD:
  6677. case CPU_DEAD_FROZEN:
  6678. /*
  6679. * Fall through and re-initialise the domains.
  6680. */
  6681. break;
  6682. default:
  6683. return NOTIFY_DONE;
  6684. }
  6685. #ifndef CONFIG_CPUSETS
  6686. /*
  6687. * Create default domain partitioning if cpusets are disabled.
  6688. * Otherwise we let cpusets rebuild the domains based on the
  6689. * current setup.
  6690. */
  6691. /* The hotplug lock is already held by cpu_up/cpu_down */
  6692. arch_init_sched_domains(&cpu_online_map);
  6693. #endif
  6694. return NOTIFY_OK;
  6695. }
  6696. void __init sched_init_smp(void)
  6697. {
  6698. cpumask_t non_isolated_cpus;
  6699. #if defined(CONFIG_NUMA)
  6700. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6701. GFP_KERNEL);
  6702. BUG_ON(sched_group_nodes_bycpu == NULL);
  6703. #endif
  6704. get_online_cpus();
  6705. mutex_lock(&sched_domains_mutex);
  6706. arch_init_sched_domains(&cpu_online_map);
  6707. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6708. if (cpus_empty(non_isolated_cpus))
  6709. cpu_set(smp_processor_id(), non_isolated_cpus);
  6710. mutex_unlock(&sched_domains_mutex);
  6711. put_online_cpus();
  6712. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6713. hotcpu_notifier(update_sched_domains, 0);
  6714. init_hrtick();
  6715. /* Move init over to a non-isolated CPU */
  6716. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6717. BUG();
  6718. sched_init_granularity();
  6719. }
  6720. #else
  6721. void __init sched_init_smp(void)
  6722. {
  6723. sched_init_granularity();
  6724. }
  6725. #endif /* CONFIG_SMP */
  6726. int in_sched_functions(unsigned long addr)
  6727. {
  6728. return in_lock_functions(addr) ||
  6729. (addr >= (unsigned long)__sched_text_start
  6730. && addr < (unsigned long)__sched_text_end);
  6731. }
  6732. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6733. {
  6734. cfs_rq->tasks_timeline = RB_ROOT;
  6735. INIT_LIST_HEAD(&cfs_rq->tasks);
  6736. #ifdef CONFIG_FAIR_GROUP_SCHED
  6737. cfs_rq->rq = rq;
  6738. #endif
  6739. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6740. }
  6741. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6742. {
  6743. struct rt_prio_array *array;
  6744. int i;
  6745. array = &rt_rq->active;
  6746. for (i = 0; i < MAX_RT_PRIO; i++) {
  6747. INIT_LIST_HEAD(array->queue + i);
  6748. __clear_bit(i, array->bitmap);
  6749. }
  6750. /* delimiter for bitsearch: */
  6751. __set_bit(MAX_RT_PRIO, array->bitmap);
  6752. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6753. rt_rq->highest_prio = MAX_RT_PRIO;
  6754. #endif
  6755. #ifdef CONFIG_SMP
  6756. rt_rq->rt_nr_migratory = 0;
  6757. rt_rq->overloaded = 0;
  6758. #endif
  6759. rt_rq->rt_time = 0;
  6760. rt_rq->rt_throttled = 0;
  6761. rt_rq->rt_runtime = 0;
  6762. spin_lock_init(&rt_rq->rt_runtime_lock);
  6763. #ifdef CONFIG_RT_GROUP_SCHED
  6764. rt_rq->rt_nr_boosted = 0;
  6765. rt_rq->rq = rq;
  6766. #endif
  6767. }
  6768. #ifdef CONFIG_FAIR_GROUP_SCHED
  6769. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6770. struct sched_entity *se, int cpu, int add,
  6771. struct sched_entity *parent)
  6772. {
  6773. struct rq *rq = cpu_rq(cpu);
  6774. tg->cfs_rq[cpu] = cfs_rq;
  6775. init_cfs_rq(cfs_rq, rq);
  6776. cfs_rq->tg = tg;
  6777. if (add)
  6778. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6779. tg->se[cpu] = se;
  6780. /* se could be NULL for init_task_group */
  6781. if (!se)
  6782. return;
  6783. if (!parent)
  6784. se->cfs_rq = &rq->cfs;
  6785. else
  6786. se->cfs_rq = parent->my_q;
  6787. se->my_q = cfs_rq;
  6788. se->load.weight = tg->shares;
  6789. se->load.inv_weight = 0;
  6790. se->parent = parent;
  6791. }
  6792. #endif
  6793. #ifdef CONFIG_RT_GROUP_SCHED
  6794. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6795. struct sched_rt_entity *rt_se, int cpu, int add,
  6796. struct sched_rt_entity *parent)
  6797. {
  6798. struct rq *rq = cpu_rq(cpu);
  6799. tg->rt_rq[cpu] = rt_rq;
  6800. init_rt_rq(rt_rq, rq);
  6801. rt_rq->tg = tg;
  6802. rt_rq->rt_se = rt_se;
  6803. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6804. if (add)
  6805. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6806. tg->rt_se[cpu] = rt_se;
  6807. if (!rt_se)
  6808. return;
  6809. if (!parent)
  6810. rt_se->rt_rq = &rq->rt;
  6811. else
  6812. rt_se->rt_rq = parent->my_q;
  6813. rt_se->my_q = rt_rq;
  6814. rt_se->parent = parent;
  6815. INIT_LIST_HEAD(&rt_se->run_list);
  6816. }
  6817. #endif
  6818. void __init sched_init(void)
  6819. {
  6820. int i, j;
  6821. unsigned long alloc_size = 0, ptr;
  6822. #ifdef CONFIG_FAIR_GROUP_SCHED
  6823. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6824. #endif
  6825. #ifdef CONFIG_RT_GROUP_SCHED
  6826. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6827. #endif
  6828. #ifdef CONFIG_USER_SCHED
  6829. alloc_size *= 2;
  6830. #endif
  6831. /*
  6832. * As sched_init() is called before page_alloc is setup,
  6833. * we use alloc_bootmem().
  6834. */
  6835. if (alloc_size) {
  6836. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6837. #ifdef CONFIG_FAIR_GROUP_SCHED
  6838. init_task_group.se = (struct sched_entity **)ptr;
  6839. ptr += nr_cpu_ids * sizeof(void **);
  6840. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6841. ptr += nr_cpu_ids * sizeof(void **);
  6842. #ifdef CONFIG_USER_SCHED
  6843. root_task_group.se = (struct sched_entity **)ptr;
  6844. ptr += nr_cpu_ids * sizeof(void **);
  6845. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6846. ptr += nr_cpu_ids * sizeof(void **);
  6847. #endif /* CONFIG_USER_SCHED */
  6848. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6849. #ifdef CONFIG_RT_GROUP_SCHED
  6850. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6851. ptr += nr_cpu_ids * sizeof(void **);
  6852. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6853. ptr += nr_cpu_ids * sizeof(void **);
  6854. #ifdef CONFIG_USER_SCHED
  6855. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6856. ptr += nr_cpu_ids * sizeof(void **);
  6857. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6858. ptr += nr_cpu_ids * sizeof(void **);
  6859. #endif /* CONFIG_USER_SCHED */
  6860. #endif /* CONFIG_RT_GROUP_SCHED */
  6861. }
  6862. #ifdef CONFIG_SMP
  6863. init_aggregate();
  6864. init_defrootdomain();
  6865. #endif
  6866. init_rt_bandwidth(&def_rt_bandwidth,
  6867. global_rt_period(), global_rt_runtime());
  6868. #ifdef CONFIG_RT_GROUP_SCHED
  6869. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6870. global_rt_period(), global_rt_runtime());
  6871. #ifdef CONFIG_USER_SCHED
  6872. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6873. global_rt_period(), RUNTIME_INF);
  6874. #endif /* CONFIG_USER_SCHED */
  6875. #endif /* CONFIG_RT_GROUP_SCHED */
  6876. #ifdef CONFIG_GROUP_SCHED
  6877. list_add(&init_task_group.list, &task_groups);
  6878. INIT_LIST_HEAD(&init_task_group.children);
  6879. #ifdef CONFIG_USER_SCHED
  6880. INIT_LIST_HEAD(&root_task_group.children);
  6881. init_task_group.parent = &root_task_group;
  6882. list_add(&init_task_group.siblings, &root_task_group.children);
  6883. #endif /* CONFIG_USER_SCHED */
  6884. #endif /* CONFIG_GROUP_SCHED */
  6885. for_each_possible_cpu(i) {
  6886. struct rq *rq;
  6887. rq = cpu_rq(i);
  6888. spin_lock_init(&rq->lock);
  6889. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6890. rq->nr_running = 0;
  6891. init_cfs_rq(&rq->cfs, rq);
  6892. init_rt_rq(&rq->rt, rq);
  6893. #ifdef CONFIG_FAIR_GROUP_SCHED
  6894. init_task_group.shares = init_task_group_load;
  6895. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6896. #ifdef CONFIG_CGROUP_SCHED
  6897. /*
  6898. * How much cpu bandwidth does init_task_group get?
  6899. *
  6900. * In case of task-groups formed thr' the cgroup filesystem, it
  6901. * gets 100% of the cpu resources in the system. This overall
  6902. * system cpu resource is divided among the tasks of
  6903. * init_task_group and its child task-groups in a fair manner,
  6904. * based on each entity's (task or task-group's) weight
  6905. * (se->load.weight).
  6906. *
  6907. * In other words, if init_task_group has 10 tasks of weight
  6908. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6909. * then A0's share of the cpu resource is:
  6910. *
  6911. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6912. *
  6913. * We achieve this by letting init_task_group's tasks sit
  6914. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6915. */
  6916. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6917. #elif defined CONFIG_USER_SCHED
  6918. root_task_group.shares = NICE_0_LOAD;
  6919. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6920. /*
  6921. * In case of task-groups formed thr' the user id of tasks,
  6922. * init_task_group represents tasks belonging to root user.
  6923. * Hence it forms a sibling of all subsequent groups formed.
  6924. * In this case, init_task_group gets only a fraction of overall
  6925. * system cpu resource, based on the weight assigned to root
  6926. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6927. * by letting tasks of init_task_group sit in a separate cfs_rq
  6928. * (init_cfs_rq) and having one entity represent this group of
  6929. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6930. */
  6931. init_tg_cfs_entry(&init_task_group,
  6932. &per_cpu(init_cfs_rq, i),
  6933. &per_cpu(init_sched_entity, i), i, 1,
  6934. root_task_group.se[i]);
  6935. #endif
  6936. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6937. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6938. #ifdef CONFIG_RT_GROUP_SCHED
  6939. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6940. #ifdef CONFIG_CGROUP_SCHED
  6941. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6942. #elif defined CONFIG_USER_SCHED
  6943. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6944. init_tg_rt_entry(&init_task_group,
  6945. &per_cpu(init_rt_rq, i),
  6946. &per_cpu(init_sched_rt_entity, i), i, 1,
  6947. root_task_group.rt_se[i]);
  6948. #endif
  6949. #endif
  6950. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6951. rq->cpu_load[j] = 0;
  6952. #ifdef CONFIG_SMP
  6953. rq->sd = NULL;
  6954. rq->rd = NULL;
  6955. rq->active_balance = 0;
  6956. rq->next_balance = jiffies;
  6957. rq->push_cpu = 0;
  6958. rq->cpu = i;
  6959. rq->online = 0;
  6960. rq->migration_thread = NULL;
  6961. INIT_LIST_HEAD(&rq->migration_queue);
  6962. rq_attach_root(rq, &def_root_domain);
  6963. #endif
  6964. init_rq_hrtick(rq);
  6965. atomic_set(&rq->nr_iowait, 0);
  6966. }
  6967. set_load_weight(&init_task);
  6968. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6969. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6970. #endif
  6971. #ifdef CONFIG_SMP
  6972. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6973. #endif
  6974. #ifdef CONFIG_RT_MUTEXES
  6975. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6976. #endif
  6977. /*
  6978. * The boot idle thread does lazy MMU switching as well:
  6979. */
  6980. atomic_inc(&init_mm.mm_count);
  6981. enter_lazy_tlb(&init_mm, current);
  6982. /*
  6983. * Make us the idle thread. Technically, schedule() should not be
  6984. * called from this thread, however somewhere below it might be,
  6985. * but because we are the idle thread, we just pick up running again
  6986. * when this runqueue becomes "idle".
  6987. */
  6988. init_idle(current, smp_processor_id());
  6989. /*
  6990. * During early bootup we pretend to be a normal task:
  6991. */
  6992. current->sched_class = &fair_sched_class;
  6993. scheduler_running = 1;
  6994. }
  6995. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6996. void __might_sleep(char *file, int line)
  6997. {
  6998. #ifdef in_atomic
  6999. static unsigned long prev_jiffy; /* ratelimiting */
  7000. if ((in_atomic() || irqs_disabled()) &&
  7001. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  7002. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7003. return;
  7004. prev_jiffy = jiffies;
  7005. printk(KERN_ERR "BUG: sleeping function called from invalid"
  7006. " context at %s:%d\n", file, line);
  7007. printk("in_atomic():%d, irqs_disabled():%d\n",
  7008. in_atomic(), irqs_disabled());
  7009. debug_show_held_locks(current);
  7010. if (irqs_disabled())
  7011. print_irqtrace_events(current);
  7012. dump_stack();
  7013. }
  7014. #endif
  7015. }
  7016. EXPORT_SYMBOL(__might_sleep);
  7017. #endif
  7018. #ifdef CONFIG_MAGIC_SYSRQ
  7019. static void normalize_task(struct rq *rq, struct task_struct *p)
  7020. {
  7021. int on_rq;
  7022. update_rq_clock(rq);
  7023. on_rq = p->se.on_rq;
  7024. if (on_rq)
  7025. deactivate_task(rq, p, 0);
  7026. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7027. if (on_rq) {
  7028. activate_task(rq, p, 0);
  7029. resched_task(rq->curr);
  7030. }
  7031. }
  7032. void normalize_rt_tasks(void)
  7033. {
  7034. struct task_struct *g, *p;
  7035. unsigned long flags;
  7036. struct rq *rq;
  7037. read_lock_irqsave(&tasklist_lock, flags);
  7038. do_each_thread(g, p) {
  7039. /*
  7040. * Only normalize user tasks:
  7041. */
  7042. if (!p->mm)
  7043. continue;
  7044. p->se.exec_start = 0;
  7045. #ifdef CONFIG_SCHEDSTATS
  7046. p->se.wait_start = 0;
  7047. p->se.sleep_start = 0;
  7048. p->se.block_start = 0;
  7049. #endif
  7050. if (!rt_task(p)) {
  7051. /*
  7052. * Renice negative nice level userspace
  7053. * tasks back to 0:
  7054. */
  7055. if (TASK_NICE(p) < 0 && p->mm)
  7056. set_user_nice(p, 0);
  7057. continue;
  7058. }
  7059. spin_lock(&p->pi_lock);
  7060. rq = __task_rq_lock(p);
  7061. normalize_task(rq, p);
  7062. __task_rq_unlock(rq);
  7063. spin_unlock(&p->pi_lock);
  7064. } while_each_thread(g, p);
  7065. read_unlock_irqrestore(&tasklist_lock, flags);
  7066. }
  7067. #endif /* CONFIG_MAGIC_SYSRQ */
  7068. #ifdef CONFIG_IA64
  7069. /*
  7070. * These functions are only useful for the IA64 MCA handling.
  7071. *
  7072. * They can only be called when the whole system has been
  7073. * stopped - every CPU needs to be quiescent, and no scheduling
  7074. * activity can take place. Using them for anything else would
  7075. * be a serious bug, and as a result, they aren't even visible
  7076. * under any other configuration.
  7077. */
  7078. /**
  7079. * curr_task - return the current task for a given cpu.
  7080. * @cpu: the processor in question.
  7081. *
  7082. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7083. */
  7084. struct task_struct *curr_task(int cpu)
  7085. {
  7086. return cpu_curr(cpu);
  7087. }
  7088. /**
  7089. * set_curr_task - set the current task for a given cpu.
  7090. * @cpu: the processor in question.
  7091. * @p: the task pointer to set.
  7092. *
  7093. * Description: This function must only be used when non-maskable interrupts
  7094. * are serviced on a separate stack. It allows the architecture to switch the
  7095. * notion of the current task on a cpu in a non-blocking manner. This function
  7096. * must be called with all CPU's synchronized, and interrupts disabled, the
  7097. * and caller must save the original value of the current task (see
  7098. * curr_task() above) and restore that value before reenabling interrupts and
  7099. * re-starting the system.
  7100. *
  7101. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7102. */
  7103. void set_curr_task(int cpu, struct task_struct *p)
  7104. {
  7105. cpu_curr(cpu) = p;
  7106. }
  7107. #endif
  7108. #ifdef CONFIG_FAIR_GROUP_SCHED
  7109. static void free_fair_sched_group(struct task_group *tg)
  7110. {
  7111. int i;
  7112. for_each_possible_cpu(i) {
  7113. if (tg->cfs_rq)
  7114. kfree(tg->cfs_rq[i]);
  7115. if (tg->se)
  7116. kfree(tg->se[i]);
  7117. }
  7118. kfree(tg->cfs_rq);
  7119. kfree(tg->se);
  7120. }
  7121. static
  7122. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7123. {
  7124. struct cfs_rq *cfs_rq;
  7125. struct sched_entity *se, *parent_se;
  7126. struct rq *rq;
  7127. int i;
  7128. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7129. if (!tg->cfs_rq)
  7130. goto err;
  7131. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7132. if (!tg->se)
  7133. goto err;
  7134. tg->shares = NICE_0_LOAD;
  7135. for_each_possible_cpu(i) {
  7136. rq = cpu_rq(i);
  7137. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7138. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7139. if (!cfs_rq)
  7140. goto err;
  7141. se = kmalloc_node(sizeof(struct sched_entity),
  7142. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7143. if (!se)
  7144. goto err;
  7145. parent_se = parent ? parent->se[i] : NULL;
  7146. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7147. }
  7148. return 1;
  7149. err:
  7150. return 0;
  7151. }
  7152. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7153. {
  7154. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7155. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7156. }
  7157. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7158. {
  7159. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7160. }
  7161. #else /* !CONFG_FAIR_GROUP_SCHED */
  7162. static inline void free_fair_sched_group(struct task_group *tg)
  7163. {
  7164. }
  7165. static inline
  7166. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7167. {
  7168. return 1;
  7169. }
  7170. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7171. {
  7172. }
  7173. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7174. {
  7175. }
  7176. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7177. #ifdef CONFIG_RT_GROUP_SCHED
  7178. static void free_rt_sched_group(struct task_group *tg)
  7179. {
  7180. int i;
  7181. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7182. for_each_possible_cpu(i) {
  7183. if (tg->rt_rq)
  7184. kfree(tg->rt_rq[i]);
  7185. if (tg->rt_se)
  7186. kfree(tg->rt_se[i]);
  7187. }
  7188. kfree(tg->rt_rq);
  7189. kfree(tg->rt_se);
  7190. }
  7191. static
  7192. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7193. {
  7194. struct rt_rq *rt_rq;
  7195. struct sched_rt_entity *rt_se, *parent_se;
  7196. struct rq *rq;
  7197. int i;
  7198. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7199. if (!tg->rt_rq)
  7200. goto err;
  7201. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7202. if (!tg->rt_se)
  7203. goto err;
  7204. init_rt_bandwidth(&tg->rt_bandwidth,
  7205. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7206. for_each_possible_cpu(i) {
  7207. rq = cpu_rq(i);
  7208. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7209. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7210. if (!rt_rq)
  7211. goto err;
  7212. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7213. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7214. if (!rt_se)
  7215. goto err;
  7216. parent_se = parent ? parent->rt_se[i] : NULL;
  7217. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7218. }
  7219. return 1;
  7220. err:
  7221. return 0;
  7222. }
  7223. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7224. {
  7225. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7226. &cpu_rq(cpu)->leaf_rt_rq_list);
  7227. }
  7228. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7229. {
  7230. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7231. }
  7232. #else /* !CONFIG_RT_GROUP_SCHED */
  7233. static inline void free_rt_sched_group(struct task_group *tg)
  7234. {
  7235. }
  7236. static inline
  7237. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7238. {
  7239. return 1;
  7240. }
  7241. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7242. {
  7243. }
  7244. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7245. {
  7246. }
  7247. #endif /* CONFIG_RT_GROUP_SCHED */
  7248. #ifdef CONFIG_GROUP_SCHED
  7249. static void free_sched_group(struct task_group *tg)
  7250. {
  7251. free_fair_sched_group(tg);
  7252. free_rt_sched_group(tg);
  7253. kfree(tg);
  7254. }
  7255. /* allocate runqueue etc for a new task group */
  7256. struct task_group *sched_create_group(struct task_group *parent)
  7257. {
  7258. struct task_group *tg;
  7259. unsigned long flags;
  7260. int i;
  7261. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7262. if (!tg)
  7263. return ERR_PTR(-ENOMEM);
  7264. if (!alloc_fair_sched_group(tg, parent))
  7265. goto err;
  7266. if (!alloc_rt_sched_group(tg, parent))
  7267. goto err;
  7268. spin_lock_irqsave(&task_group_lock, flags);
  7269. for_each_possible_cpu(i) {
  7270. register_fair_sched_group(tg, i);
  7271. register_rt_sched_group(tg, i);
  7272. }
  7273. list_add_rcu(&tg->list, &task_groups);
  7274. WARN_ON(!parent); /* root should already exist */
  7275. tg->parent = parent;
  7276. list_add_rcu(&tg->siblings, &parent->children);
  7277. INIT_LIST_HEAD(&tg->children);
  7278. spin_unlock_irqrestore(&task_group_lock, flags);
  7279. return tg;
  7280. err:
  7281. free_sched_group(tg);
  7282. return ERR_PTR(-ENOMEM);
  7283. }
  7284. /* rcu callback to free various structures associated with a task group */
  7285. static void free_sched_group_rcu(struct rcu_head *rhp)
  7286. {
  7287. /* now it should be safe to free those cfs_rqs */
  7288. free_sched_group(container_of(rhp, struct task_group, rcu));
  7289. }
  7290. /* Destroy runqueue etc associated with a task group */
  7291. void sched_destroy_group(struct task_group *tg)
  7292. {
  7293. unsigned long flags;
  7294. int i;
  7295. spin_lock_irqsave(&task_group_lock, flags);
  7296. for_each_possible_cpu(i) {
  7297. unregister_fair_sched_group(tg, i);
  7298. unregister_rt_sched_group(tg, i);
  7299. }
  7300. list_del_rcu(&tg->list);
  7301. list_del_rcu(&tg->siblings);
  7302. spin_unlock_irqrestore(&task_group_lock, flags);
  7303. /* wait for possible concurrent references to cfs_rqs complete */
  7304. call_rcu(&tg->rcu, free_sched_group_rcu);
  7305. }
  7306. /* change task's runqueue when it moves between groups.
  7307. * The caller of this function should have put the task in its new group
  7308. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7309. * reflect its new group.
  7310. */
  7311. void sched_move_task(struct task_struct *tsk)
  7312. {
  7313. int on_rq, running;
  7314. unsigned long flags;
  7315. struct rq *rq;
  7316. rq = task_rq_lock(tsk, &flags);
  7317. update_rq_clock(rq);
  7318. running = task_current(rq, tsk);
  7319. on_rq = tsk->se.on_rq;
  7320. if (on_rq)
  7321. dequeue_task(rq, tsk, 0);
  7322. if (unlikely(running))
  7323. tsk->sched_class->put_prev_task(rq, tsk);
  7324. set_task_rq(tsk, task_cpu(tsk));
  7325. #ifdef CONFIG_FAIR_GROUP_SCHED
  7326. if (tsk->sched_class->moved_group)
  7327. tsk->sched_class->moved_group(tsk);
  7328. #endif
  7329. if (unlikely(running))
  7330. tsk->sched_class->set_curr_task(rq);
  7331. if (on_rq)
  7332. enqueue_task(rq, tsk, 0);
  7333. task_rq_unlock(rq, &flags);
  7334. }
  7335. #endif /* CONFIG_GROUP_SCHED */
  7336. #ifdef CONFIG_FAIR_GROUP_SCHED
  7337. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7338. {
  7339. struct cfs_rq *cfs_rq = se->cfs_rq;
  7340. int on_rq;
  7341. on_rq = se->on_rq;
  7342. if (on_rq)
  7343. dequeue_entity(cfs_rq, se, 0);
  7344. se->load.weight = shares;
  7345. se->load.inv_weight = 0;
  7346. if (on_rq)
  7347. enqueue_entity(cfs_rq, se, 0);
  7348. }
  7349. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7350. {
  7351. struct cfs_rq *cfs_rq = se->cfs_rq;
  7352. struct rq *rq = cfs_rq->rq;
  7353. unsigned long flags;
  7354. spin_lock_irqsave(&rq->lock, flags);
  7355. __set_se_shares(se, shares);
  7356. spin_unlock_irqrestore(&rq->lock, flags);
  7357. }
  7358. static DEFINE_MUTEX(shares_mutex);
  7359. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7360. {
  7361. int i;
  7362. unsigned long flags;
  7363. /*
  7364. * We can't change the weight of the root cgroup.
  7365. */
  7366. if (!tg->se[0])
  7367. return -EINVAL;
  7368. if (shares < MIN_SHARES)
  7369. shares = MIN_SHARES;
  7370. else if (shares > MAX_SHARES)
  7371. shares = MAX_SHARES;
  7372. mutex_lock(&shares_mutex);
  7373. if (tg->shares == shares)
  7374. goto done;
  7375. spin_lock_irqsave(&task_group_lock, flags);
  7376. for_each_possible_cpu(i)
  7377. unregister_fair_sched_group(tg, i);
  7378. list_del_rcu(&tg->siblings);
  7379. spin_unlock_irqrestore(&task_group_lock, flags);
  7380. /* wait for any ongoing reference to this group to finish */
  7381. synchronize_sched();
  7382. /*
  7383. * Now we are free to modify the group's share on each cpu
  7384. * w/o tripping rebalance_share or load_balance_fair.
  7385. */
  7386. tg->shares = shares;
  7387. for_each_possible_cpu(i) {
  7388. /*
  7389. * force a rebalance
  7390. */
  7391. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7392. set_se_shares(tg->se[i], shares);
  7393. }
  7394. /*
  7395. * Enable load balance activity on this group, by inserting it back on
  7396. * each cpu's rq->leaf_cfs_rq_list.
  7397. */
  7398. spin_lock_irqsave(&task_group_lock, flags);
  7399. for_each_possible_cpu(i)
  7400. register_fair_sched_group(tg, i);
  7401. list_add_rcu(&tg->siblings, &tg->parent->children);
  7402. spin_unlock_irqrestore(&task_group_lock, flags);
  7403. done:
  7404. mutex_unlock(&shares_mutex);
  7405. return 0;
  7406. }
  7407. unsigned long sched_group_shares(struct task_group *tg)
  7408. {
  7409. return tg->shares;
  7410. }
  7411. #endif
  7412. #ifdef CONFIG_RT_GROUP_SCHED
  7413. /*
  7414. * Ensure that the real time constraints are schedulable.
  7415. */
  7416. static DEFINE_MUTEX(rt_constraints_mutex);
  7417. static unsigned long to_ratio(u64 period, u64 runtime)
  7418. {
  7419. if (runtime == RUNTIME_INF)
  7420. return 1ULL << 16;
  7421. return div64_u64(runtime << 16, period);
  7422. }
  7423. #ifdef CONFIG_CGROUP_SCHED
  7424. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7425. {
  7426. struct task_group *tgi, *parent = tg->parent;
  7427. unsigned long total = 0;
  7428. if (!parent) {
  7429. if (global_rt_period() < period)
  7430. return 0;
  7431. return to_ratio(period, runtime) <
  7432. to_ratio(global_rt_period(), global_rt_runtime());
  7433. }
  7434. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7435. return 0;
  7436. rcu_read_lock();
  7437. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7438. if (tgi == tg)
  7439. continue;
  7440. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7441. tgi->rt_bandwidth.rt_runtime);
  7442. }
  7443. rcu_read_unlock();
  7444. return total + to_ratio(period, runtime) <=
  7445. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7446. parent->rt_bandwidth.rt_runtime);
  7447. }
  7448. #elif defined CONFIG_USER_SCHED
  7449. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7450. {
  7451. struct task_group *tgi;
  7452. unsigned long total = 0;
  7453. unsigned long global_ratio =
  7454. to_ratio(global_rt_period(), global_rt_runtime());
  7455. rcu_read_lock();
  7456. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7457. if (tgi == tg)
  7458. continue;
  7459. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7460. tgi->rt_bandwidth.rt_runtime);
  7461. }
  7462. rcu_read_unlock();
  7463. return total + to_ratio(period, runtime) < global_ratio;
  7464. }
  7465. #endif
  7466. /* Must be called with tasklist_lock held */
  7467. static inline int tg_has_rt_tasks(struct task_group *tg)
  7468. {
  7469. struct task_struct *g, *p;
  7470. do_each_thread(g, p) {
  7471. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7472. return 1;
  7473. } while_each_thread(g, p);
  7474. return 0;
  7475. }
  7476. static int tg_set_bandwidth(struct task_group *tg,
  7477. u64 rt_period, u64 rt_runtime)
  7478. {
  7479. int i, err = 0;
  7480. mutex_lock(&rt_constraints_mutex);
  7481. read_lock(&tasklist_lock);
  7482. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7483. err = -EBUSY;
  7484. goto unlock;
  7485. }
  7486. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7487. err = -EINVAL;
  7488. goto unlock;
  7489. }
  7490. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7491. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7492. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7493. for_each_possible_cpu(i) {
  7494. struct rt_rq *rt_rq = tg->rt_rq[i];
  7495. spin_lock(&rt_rq->rt_runtime_lock);
  7496. rt_rq->rt_runtime = rt_runtime;
  7497. spin_unlock(&rt_rq->rt_runtime_lock);
  7498. }
  7499. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7500. unlock:
  7501. read_unlock(&tasklist_lock);
  7502. mutex_unlock(&rt_constraints_mutex);
  7503. return err;
  7504. }
  7505. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7506. {
  7507. u64 rt_runtime, rt_period;
  7508. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7509. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7510. if (rt_runtime_us < 0)
  7511. rt_runtime = RUNTIME_INF;
  7512. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7513. }
  7514. long sched_group_rt_runtime(struct task_group *tg)
  7515. {
  7516. u64 rt_runtime_us;
  7517. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7518. return -1;
  7519. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7520. do_div(rt_runtime_us, NSEC_PER_USEC);
  7521. return rt_runtime_us;
  7522. }
  7523. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7524. {
  7525. u64 rt_runtime, rt_period;
  7526. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7527. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7528. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7529. }
  7530. long sched_group_rt_period(struct task_group *tg)
  7531. {
  7532. u64 rt_period_us;
  7533. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7534. do_div(rt_period_us, NSEC_PER_USEC);
  7535. return rt_period_us;
  7536. }
  7537. static int sched_rt_global_constraints(void)
  7538. {
  7539. struct task_group *tg = &root_task_group;
  7540. u64 rt_runtime, rt_period;
  7541. int ret = 0;
  7542. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7543. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7544. mutex_lock(&rt_constraints_mutex);
  7545. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7546. ret = -EINVAL;
  7547. mutex_unlock(&rt_constraints_mutex);
  7548. return ret;
  7549. }
  7550. #else /* !CONFIG_RT_GROUP_SCHED */
  7551. static int sched_rt_global_constraints(void)
  7552. {
  7553. unsigned long flags;
  7554. int i;
  7555. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7556. for_each_possible_cpu(i) {
  7557. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7558. spin_lock(&rt_rq->rt_runtime_lock);
  7559. rt_rq->rt_runtime = global_rt_runtime();
  7560. spin_unlock(&rt_rq->rt_runtime_lock);
  7561. }
  7562. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7563. return 0;
  7564. }
  7565. #endif /* CONFIG_RT_GROUP_SCHED */
  7566. int sched_rt_handler(struct ctl_table *table, int write,
  7567. struct file *filp, void __user *buffer, size_t *lenp,
  7568. loff_t *ppos)
  7569. {
  7570. int ret;
  7571. int old_period, old_runtime;
  7572. static DEFINE_MUTEX(mutex);
  7573. mutex_lock(&mutex);
  7574. old_period = sysctl_sched_rt_period;
  7575. old_runtime = sysctl_sched_rt_runtime;
  7576. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7577. if (!ret && write) {
  7578. ret = sched_rt_global_constraints();
  7579. if (ret) {
  7580. sysctl_sched_rt_period = old_period;
  7581. sysctl_sched_rt_runtime = old_runtime;
  7582. } else {
  7583. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7584. def_rt_bandwidth.rt_period =
  7585. ns_to_ktime(global_rt_period());
  7586. }
  7587. }
  7588. mutex_unlock(&mutex);
  7589. return ret;
  7590. }
  7591. #ifdef CONFIG_CGROUP_SCHED
  7592. /* return corresponding task_group object of a cgroup */
  7593. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7594. {
  7595. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7596. struct task_group, css);
  7597. }
  7598. static struct cgroup_subsys_state *
  7599. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7600. {
  7601. struct task_group *tg, *parent;
  7602. if (!cgrp->parent) {
  7603. /* This is early initialization for the top cgroup */
  7604. init_task_group.css.cgroup = cgrp;
  7605. return &init_task_group.css;
  7606. }
  7607. parent = cgroup_tg(cgrp->parent);
  7608. tg = sched_create_group(parent);
  7609. if (IS_ERR(tg))
  7610. return ERR_PTR(-ENOMEM);
  7611. /* Bind the cgroup to task_group object we just created */
  7612. tg->css.cgroup = cgrp;
  7613. return &tg->css;
  7614. }
  7615. static void
  7616. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7617. {
  7618. struct task_group *tg = cgroup_tg(cgrp);
  7619. sched_destroy_group(tg);
  7620. }
  7621. static int
  7622. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7623. struct task_struct *tsk)
  7624. {
  7625. #ifdef CONFIG_RT_GROUP_SCHED
  7626. /* Don't accept realtime tasks when there is no way for them to run */
  7627. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7628. return -EINVAL;
  7629. #else
  7630. /* We don't support RT-tasks being in separate groups */
  7631. if (tsk->sched_class != &fair_sched_class)
  7632. return -EINVAL;
  7633. #endif
  7634. return 0;
  7635. }
  7636. static void
  7637. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7638. struct cgroup *old_cont, struct task_struct *tsk)
  7639. {
  7640. sched_move_task(tsk);
  7641. }
  7642. #ifdef CONFIG_FAIR_GROUP_SCHED
  7643. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7644. u64 shareval)
  7645. {
  7646. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7647. }
  7648. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7649. {
  7650. struct task_group *tg = cgroup_tg(cgrp);
  7651. return (u64) tg->shares;
  7652. }
  7653. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7654. #ifdef CONFIG_RT_GROUP_SCHED
  7655. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7656. s64 val)
  7657. {
  7658. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7659. }
  7660. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7661. {
  7662. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7663. }
  7664. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7665. u64 rt_period_us)
  7666. {
  7667. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7668. }
  7669. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7670. {
  7671. return sched_group_rt_period(cgroup_tg(cgrp));
  7672. }
  7673. #endif /* CONFIG_RT_GROUP_SCHED */
  7674. static struct cftype cpu_files[] = {
  7675. #ifdef CONFIG_FAIR_GROUP_SCHED
  7676. {
  7677. .name = "shares",
  7678. .read_u64 = cpu_shares_read_u64,
  7679. .write_u64 = cpu_shares_write_u64,
  7680. },
  7681. #endif
  7682. #ifdef CONFIG_RT_GROUP_SCHED
  7683. {
  7684. .name = "rt_runtime_us",
  7685. .read_s64 = cpu_rt_runtime_read,
  7686. .write_s64 = cpu_rt_runtime_write,
  7687. },
  7688. {
  7689. .name = "rt_period_us",
  7690. .read_u64 = cpu_rt_period_read_uint,
  7691. .write_u64 = cpu_rt_period_write_uint,
  7692. },
  7693. #endif
  7694. };
  7695. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7696. {
  7697. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7698. }
  7699. struct cgroup_subsys cpu_cgroup_subsys = {
  7700. .name = "cpu",
  7701. .create = cpu_cgroup_create,
  7702. .destroy = cpu_cgroup_destroy,
  7703. .can_attach = cpu_cgroup_can_attach,
  7704. .attach = cpu_cgroup_attach,
  7705. .populate = cpu_cgroup_populate,
  7706. .subsys_id = cpu_cgroup_subsys_id,
  7707. .early_init = 1,
  7708. };
  7709. #endif /* CONFIG_CGROUP_SCHED */
  7710. #ifdef CONFIG_CGROUP_CPUACCT
  7711. /*
  7712. * CPU accounting code for task groups.
  7713. *
  7714. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7715. * (balbir@in.ibm.com).
  7716. */
  7717. /* track cpu usage of a group of tasks */
  7718. struct cpuacct {
  7719. struct cgroup_subsys_state css;
  7720. /* cpuusage holds pointer to a u64-type object on every cpu */
  7721. u64 *cpuusage;
  7722. };
  7723. struct cgroup_subsys cpuacct_subsys;
  7724. /* return cpu accounting group corresponding to this container */
  7725. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7726. {
  7727. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7728. struct cpuacct, css);
  7729. }
  7730. /* return cpu accounting group to which this task belongs */
  7731. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7732. {
  7733. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7734. struct cpuacct, css);
  7735. }
  7736. /* create a new cpu accounting group */
  7737. static struct cgroup_subsys_state *cpuacct_create(
  7738. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7739. {
  7740. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7741. if (!ca)
  7742. return ERR_PTR(-ENOMEM);
  7743. ca->cpuusage = alloc_percpu(u64);
  7744. if (!ca->cpuusage) {
  7745. kfree(ca);
  7746. return ERR_PTR(-ENOMEM);
  7747. }
  7748. return &ca->css;
  7749. }
  7750. /* destroy an existing cpu accounting group */
  7751. static void
  7752. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7753. {
  7754. struct cpuacct *ca = cgroup_ca(cgrp);
  7755. free_percpu(ca->cpuusage);
  7756. kfree(ca);
  7757. }
  7758. /* return total cpu usage (in nanoseconds) of a group */
  7759. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7760. {
  7761. struct cpuacct *ca = cgroup_ca(cgrp);
  7762. u64 totalcpuusage = 0;
  7763. int i;
  7764. for_each_possible_cpu(i) {
  7765. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7766. /*
  7767. * Take rq->lock to make 64-bit addition safe on 32-bit
  7768. * platforms.
  7769. */
  7770. spin_lock_irq(&cpu_rq(i)->lock);
  7771. totalcpuusage += *cpuusage;
  7772. spin_unlock_irq(&cpu_rq(i)->lock);
  7773. }
  7774. return totalcpuusage;
  7775. }
  7776. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7777. u64 reset)
  7778. {
  7779. struct cpuacct *ca = cgroup_ca(cgrp);
  7780. int err = 0;
  7781. int i;
  7782. if (reset) {
  7783. err = -EINVAL;
  7784. goto out;
  7785. }
  7786. for_each_possible_cpu(i) {
  7787. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7788. spin_lock_irq(&cpu_rq(i)->lock);
  7789. *cpuusage = 0;
  7790. spin_unlock_irq(&cpu_rq(i)->lock);
  7791. }
  7792. out:
  7793. return err;
  7794. }
  7795. static struct cftype files[] = {
  7796. {
  7797. .name = "usage",
  7798. .read_u64 = cpuusage_read,
  7799. .write_u64 = cpuusage_write,
  7800. },
  7801. };
  7802. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7803. {
  7804. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7805. }
  7806. /*
  7807. * charge this task's execution time to its accounting group.
  7808. *
  7809. * called with rq->lock held.
  7810. */
  7811. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7812. {
  7813. struct cpuacct *ca;
  7814. if (!cpuacct_subsys.active)
  7815. return;
  7816. ca = task_ca(tsk);
  7817. if (ca) {
  7818. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7819. *cpuusage += cputime;
  7820. }
  7821. }
  7822. struct cgroup_subsys cpuacct_subsys = {
  7823. .name = "cpuacct",
  7824. .create = cpuacct_create,
  7825. .destroy = cpuacct_destroy,
  7826. .populate = cpuacct_populate,
  7827. .subsys_id = cpuacct_subsys_id,
  7828. };
  7829. #endif /* CONFIG_CGROUP_CPUACCT */