x86.c 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include "cpuid.h"
  29. #include <linux/clocksource.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kvm.h>
  32. #include <linux/fs.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/module.h>
  35. #include <linux/mman.h>
  36. #include <linux/highmem.h>
  37. #include <linux/iommu.h>
  38. #include <linux/intel-iommu.h>
  39. #include <linux/cpufreq.h>
  40. #include <linux/user-return-notifier.h>
  41. #include <linux/srcu.h>
  42. #include <linux/slab.h>
  43. #include <linux/perf_event.h>
  44. #include <linux/uaccess.h>
  45. #include <linux/hash.h>
  46. #include <linux/pci.h>
  47. #include <trace/events/kvm.h>
  48. #define CREATE_TRACE_POINTS
  49. #include "trace.h"
  50. #include <asm/debugreg.h>
  51. #include <asm/msr.h>
  52. #include <asm/desc.h>
  53. #include <asm/mtrr.h>
  54. #include <asm/mce.h>
  55. #include <asm/i387.h>
  56. #include <asm/fpu-internal.h> /* Ugh! */
  57. #include <asm/xcr.h>
  58. #include <asm/pvclock.h>
  59. #include <asm/div64.h>
  60. #define MAX_IO_MSRS 256
  61. #define KVM_MAX_MCE_BANKS 32
  62. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  63. #define emul_to_vcpu(ctxt) \
  64. container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  65. /* EFER defaults:
  66. * - enable syscall per default because its emulated by KVM
  67. * - enable LME and LMA per default on 64 bit KVM
  68. */
  69. #ifdef CONFIG_X86_64
  70. static
  71. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  72. #else
  73. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  74. #endif
  75. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  76. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  77. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  78. static void process_nmi(struct kvm_vcpu *vcpu);
  79. struct kvm_x86_ops *kvm_x86_ops;
  80. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  81. static bool ignore_msrs = 0;
  82. module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  83. bool kvm_has_tsc_control;
  84. EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  85. u32 kvm_max_guest_tsc_khz;
  86. EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  87. /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
  88. static u32 tsc_tolerance_ppm = 250;
  89. module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
  90. #define KVM_NR_SHARED_MSRS 16
  91. struct kvm_shared_msrs_global {
  92. int nr;
  93. u32 msrs[KVM_NR_SHARED_MSRS];
  94. };
  95. struct kvm_shared_msrs {
  96. struct user_return_notifier urn;
  97. bool registered;
  98. struct kvm_shared_msr_values {
  99. u64 host;
  100. u64 curr;
  101. } values[KVM_NR_SHARED_MSRS];
  102. };
  103. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  104. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  105. struct kvm_stats_debugfs_item debugfs_entries[] = {
  106. { "pf_fixed", VCPU_STAT(pf_fixed) },
  107. { "pf_guest", VCPU_STAT(pf_guest) },
  108. { "tlb_flush", VCPU_STAT(tlb_flush) },
  109. { "invlpg", VCPU_STAT(invlpg) },
  110. { "exits", VCPU_STAT(exits) },
  111. { "io_exits", VCPU_STAT(io_exits) },
  112. { "mmio_exits", VCPU_STAT(mmio_exits) },
  113. { "signal_exits", VCPU_STAT(signal_exits) },
  114. { "irq_window", VCPU_STAT(irq_window_exits) },
  115. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  116. { "halt_exits", VCPU_STAT(halt_exits) },
  117. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  118. { "hypercalls", VCPU_STAT(hypercalls) },
  119. { "request_irq", VCPU_STAT(request_irq_exits) },
  120. { "irq_exits", VCPU_STAT(irq_exits) },
  121. { "host_state_reload", VCPU_STAT(host_state_reload) },
  122. { "efer_reload", VCPU_STAT(efer_reload) },
  123. { "fpu_reload", VCPU_STAT(fpu_reload) },
  124. { "insn_emulation", VCPU_STAT(insn_emulation) },
  125. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  126. { "irq_injections", VCPU_STAT(irq_injections) },
  127. { "nmi_injections", VCPU_STAT(nmi_injections) },
  128. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  129. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  130. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  131. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  132. { "mmu_flooded", VM_STAT(mmu_flooded) },
  133. { "mmu_recycled", VM_STAT(mmu_recycled) },
  134. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  135. { "mmu_unsync", VM_STAT(mmu_unsync) },
  136. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  137. { "largepages", VM_STAT(lpages) },
  138. { NULL }
  139. };
  140. u64 __read_mostly host_xcr0;
  141. int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
  142. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  143. {
  144. int i;
  145. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  146. vcpu->arch.apf.gfns[i] = ~0;
  147. }
  148. static void kvm_on_user_return(struct user_return_notifier *urn)
  149. {
  150. unsigned slot;
  151. struct kvm_shared_msrs *locals
  152. = container_of(urn, struct kvm_shared_msrs, urn);
  153. struct kvm_shared_msr_values *values;
  154. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  155. values = &locals->values[slot];
  156. if (values->host != values->curr) {
  157. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  158. values->curr = values->host;
  159. }
  160. }
  161. locals->registered = false;
  162. user_return_notifier_unregister(urn);
  163. }
  164. static void shared_msr_update(unsigned slot, u32 msr)
  165. {
  166. struct kvm_shared_msrs *smsr;
  167. u64 value;
  168. smsr = &__get_cpu_var(shared_msrs);
  169. /* only read, and nobody should modify it at this time,
  170. * so don't need lock */
  171. if (slot >= shared_msrs_global.nr) {
  172. printk(KERN_ERR "kvm: invalid MSR slot!");
  173. return;
  174. }
  175. rdmsrl_safe(msr, &value);
  176. smsr->values[slot].host = value;
  177. smsr->values[slot].curr = value;
  178. }
  179. void kvm_define_shared_msr(unsigned slot, u32 msr)
  180. {
  181. if (slot >= shared_msrs_global.nr)
  182. shared_msrs_global.nr = slot + 1;
  183. shared_msrs_global.msrs[slot] = msr;
  184. /* we need ensured the shared_msr_global have been updated */
  185. smp_wmb();
  186. }
  187. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  188. static void kvm_shared_msr_cpu_online(void)
  189. {
  190. unsigned i;
  191. for (i = 0; i < shared_msrs_global.nr; ++i)
  192. shared_msr_update(i, shared_msrs_global.msrs[i]);
  193. }
  194. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  195. {
  196. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  197. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  198. return;
  199. smsr->values[slot].curr = value;
  200. wrmsrl(shared_msrs_global.msrs[slot], value);
  201. if (!smsr->registered) {
  202. smsr->urn.on_user_return = kvm_on_user_return;
  203. user_return_notifier_register(&smsr->urn);
  204. smsr->registered = true;
  205. }
  206. }
  207. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  208. static void drop_user_return_notifiers(void *ignore)
  209. {
  210. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  211. if (smsr->registered)
  212. kvm_on_user_return(&smsr->urn);
  213. }
  214. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  215. {
  216. return vcpu->arch.apic_base;
  217. }
  218. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  219. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  220. {
  221. /* TODO: reserve bits check */
  222. kvm_lapic_set_base(vcpu, data);
  223. }
  224. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  225. #define EXCPT_BENIGN 0
  226. #define EXCPT_CONTRIBUTORY 1
  227. #define EXCPT_PF 2
  228. static int exception_class(int vector)
  229. {
  230. switch (vector) {
  231. case PF_VECTOR:
  232. return EXCPT_PF;
  233. case DE_VECTOR:
  234. case TS_VECTOR:
  235. case NP_VECTOR:
  236. case SS_VECTOR:
  237. case GP_VECTOR:
  238. return EXCPT_CONTRIBUTORY;
  239. default:
  240. break;
  241. }
  242. return EXCPT_BENIGN;
  243. }
  244. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  245. unsigned nr, bool has_error, u32 error_code,
  246. bool reinject)
  247. {
  248. u32 prev_nr;
  249. int class1, class2;
  250. kvm_make_request(KVM_REQ_EVENT, vcpu);
  251. if (!vcpu->arch.exception.pending) {
  252. queue:
  253. vcpu->arch.exception.pending = true;
  254. vcpu->arch.exception.has_error_code = has_error;
  255. vcpu->arch.exception.nr = nr;
  256. vcpu->arch.exception.error_code = error_code;
  257. vcpu->arch.exception.reinject = reinject;
  258. return;
  259. }
  260. /* to check exception */
  261. prev_nr = vcpu->arch.exception.nr;
  262. if (prev_nr == DF_VECTOR) {
  263. /* triple fault -> shutdown */
  264. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  265. return;
  266. }
  267. class1 = exception_class(prev_nr);
  268. class2 = exception_class(nr);
  269. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  270. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  271. /* generate double fault per SDM Table 5-5 */
  272. vcpu->arch.exception.pending = true;
  273. vcpu->arch.exception.has_error_code = true;
  274. vcpu->arch.exception.nr = DF_VECTOR;
  275. vcpu->arch.exception.error_code = 0;
  276. } else
  277. /* replace previous exception with a new one in a hope
  278. that instruction re-execution will regenerate lost
  279. exception */
  280. goto queue;
  281. }
  282. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  283. {
  284. kvm_multiple_exception(vcpu, nr, false, 0, false);
  285. }
  286. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  287. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  288. {
  289. kvm_multiple_exception(vcpu, nr, false, 0, true);
  290. }
  291. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  292. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  293. {
  294. if (err)
  295. kvm_inject_gp(vcpu, 0);
  296. else
  297. kvm_x86_ops->skip_emulated_instruction(vcpu);
  298. }
  299. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  300. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  301. {
  302. ++vcpu->stat.pf_guest;
  303. vcpu->arch.cr2 = fault->address;
  304. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
  307. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  308. {
  309. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  310. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  311. else
  312. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  313. }
  314. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  315. {
  316. atomic_inc(&vcpu->arch.nmi_queued);
  317. kvm_make_request(KVM_REQ_NMI, vcpu);
  318. }
  319. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  320. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  321. {
  322. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  325. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  326. {
  327. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  328. }
  329. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  330. /*
  331. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  332. * a #GP and return false.
  333. */
  334. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  335. {
  336. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  337. return true;
  338. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  339. return false;
  340. }
  341. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  342. /*
  343. * This function will be used to read from the physical memory of the currently
  344. * running guest. The difference to kvm_read_guest_page is that this function
  345. * can read from guest physical or from the guest's guest physical memory.
  346. */
  347. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  348. gfn_t ngfn, void *data, int offset, int len,
  349. u32 access)
  350. {
  351. gfn_t real_gfn;
  352. gpa_t ngpa;
  353. ngpa = gfn_to_gpa(ngfn);
  354. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  355. if (real_gfn == UNMAPPED_GVA)
  356. return -EFAULT;
  357. real_gfn = gpa_to_gfn(real_gfn);
  358. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  359. }
  360. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  361. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  362. void *data, int offset, int len, u32 access)
  363. {
  364. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  365. data, offset, len, access);
  366. }
  367. /*
  368. * Load the pae pdptrs. Return true is they are all valid.
  369. */
  370. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  371. {
  372. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  373. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  374. int i;
  375. int ret;
  376. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  377. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  378. offset * sizeof(u64), sizeof(pdpte),
  379. PFERR_USER_MASK|PFERR_WRITE_MASK);
  380. if (ret < 0) {
  381. ret = 0;
  382. goto out;
  383. }
  384. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  385. if (is_present_gpte(pdpte[i]) &&
  386. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  387. ret = 0;
  388. goto out;
  389. }
  390. }
  391. ret = 1;
  392. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  393. __set_bit(VCPU_EXREG_PDPTR,
  394. (unsigned long *)&vcpu->arch.regs_avail);
  395. __set_bit(VCPU_EXREG_PDPTR,
  396. (unsigned long *)&vcpu->arch.regs_dirty);
  397. out:
  398. return ret;
  399. }
  400. EXPORT_SYMBOL_GPL(load_pdptrs);
  401. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  402. {
  403. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  404. bool changed = true;
  405. int offset;
  406. gfn_t gfn;
  407. int r;
  408. if (is_long_mode(vcpu) || !is_pae(vcpu))
  409. return false;
  410. if (!test_bit(VCPU_EXREG_PDPTR,
  411. (unsigned long *)&vcpu->arch.regs_avail))
  412. return true;
  413. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  414. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  415. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  416. PFERR_USER_MASK | PFERR_WRITE_MASK);
  417. if (r < 0)
  418. goto out;
  419. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  420. out:
  421. return changed;
  422. }
  423. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  424. {
  425. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  426. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  427. X86_CR0_CD | X86_CR0_NW;
  428. cr0 |= X86_CR0_ET;
  429. #ifdef CONFIG_X86_64
  430. if (cr0 & 0xffffffff00000000UL)
  431. return 1;
  432. #endif
  433. cr0 &= ~CR0_RESERVED_BITS;
  434. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  435. return 1;
  436. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  437. return 1;
  438. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  439. #ifdef CONFIG_X86_64
  440. if ((vcpu->arch.efer & EFER_LME)) {
  441. int cs_db, cs_l;
  442. if (!is_pae(vcpu))
  443. return 1;
  444. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  445. if (cs_l)
  446. return 1;
  447. } else
  448. #endif
  449. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  450. kvm_read_cr3(vcpu)))
  451. return 1;
  452. }
  453. if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
  454. return 1;
  455. kvm_x86_ops->set_cr0(vcpu, cr0);
  456. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  457. kvm_clear_async_pf_completion_queue(vcpu);
  458. kvm_async_pf_hash_reset(vcpu);
  459. }
  460. if ((cr0 ^ old_cr0) & update_bits)
  461. kvm_mmu_reset_context(vcpu);
  462. return 0;
  463. }
  464. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  465. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  466. {
  467. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_lmsw);
  470. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  471. {
  472. u64 xcr0;
  473. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  474. if (index != XCR_XFEATURE_ENABLED_MASK)
  475. return 1;
  476. xcr0 = xcr;
  477. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  478. return 1;
  479. if (!(xcr0 & XSTATE_FP))
  480. return 1;
  481. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  482. return 1;
  483. if (xcr0 & ~host_xcr0)
  484. return 1;
  485. vcpu->arch.xcr0 = xcr0;
  486. vcpu->guest_xcr0_loaded = 0;
  487. return 0;
  488. }
  489. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  490. {
  491. if (__kvm_set_xcr(vcpu, index, xcr)) {
  492. kvm_inject_gp(vcpu, 0);
  493. return 1;
  494. }
  495. return 0;
  496. }
  497. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  498. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  499. {
  500. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  501. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
  502. X86_CR4_PAE | X86_CR4_SMEP;
  503. if (cr4 & CR4_RESERVED_BITS)
  504. return 1;
  505. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  506. return 1;
  507. if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
  508. return 1;
  509. if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
  510. return 1;
  511. if (is_long_mode(vcpu)) {
  512. if (!(cr4 & X86_CR4_PAE))
  513. return 1;
  514. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  515. && ((cr4 ^ old_cr4) & pdptr_bits)
  516. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  517. kvm_read_cr3(vcpu)))
  518. return 1;
  519. if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
  520. if (!guest_cpuid_has_pcid(vcpu))
  521. return 1;
  522. /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
  523. if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
  524. return 1;
  525. }
  526. if (kvm_x86_ops->set_cr4(vcpu, cr4))
  527. return 1;
  528. if (((cr4 ^ old_cr4) & pdptr_bits) ||
  529. (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
  530. kvm_mmu_reset_context(vcpu);
  531. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  532. kvm_update_cpuid(vcpu);
  533. return 0;
  534. }
  535. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  536. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  537. {
  538. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  539. kvm_mmu_sync_roots(vcpu);
  540. kvm_mmu_flush_tlb(vcpu);
  541. return 0;
  542. }
  543. if (is_long_mode(vcpu)) {
  544. if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
  545. if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
  546. return 1;
  547. } else
  548. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  549. return 1;
  550. } else {
  551. if (is_pae(vcpu)) {
  552. if (cr3 & CR3_PAE_RESERVED_BITS)
  553. return 1;
  554. if (is_paging(vcpu) &&
  555. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  556. return 1;
  557. }
  558. /*
  559. * We don't check reserved bits in nonpae mode, because
  560. * this isn't enforced, and VMware depends on this.
  561. */
  562. }
  563. /*
  564. * Does the new cr3 value map to physical memory? (Note, we
  565. * catch an invalid cr3 even in real-mode, because it would
  566. * cause trouble later on when we turn on paging anyway.)
  567. *
  568. * A real CPU would silently accept an invalid cr3 and would
  569. * attempt to use it - with largely undefined (and often hard
  570. * to debug) behavior on the guest side.
  571. */
  572. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  573. return 1;
  574. vcpu->arch.cr3 = cr3;
  575. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  576. vcpu->arch.mmu.new_cr3(vcpu);
  577. return 0;
  578. }
  579. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  580. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  581. {
  582. if (cr8 & CR8_RESERVED_BITS)
  583. return 1;
  584. if (irqchip_in_kernel(vcpu->kvm))
  585. kvm_lapic_set_tpr(vcpu, cr8);
  586. else
  587. vcpu->arch.cr8 = cr8;
  588. return 0;
  589. }
  590. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  591. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  592. {
  593. if (irqchip_in_kernel(vcpu->kvm))
  594. return kvm_lapic_get_cr8(vcpu);
  595. else
  596. return vcpu->arch.cr8;
  597. }
  598. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  599. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  600. {
  601. switch (dr) {
  602. case 0 ... 3:
  603. vcpu->arch.db[dr] = val;
  604. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  605. vcpu->arch.eff_db[dr] = val;
  606. break;
  607. case 4:
  608. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  609. return 1; /* #UD */
  610. /* fall through */
  611. case 6:
  612. if (val & 0xffffffff00000000ULL)
  613. return -1; /* #GP */
  614. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  615. break;
  616. case 5:
  617. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  618. return 1; /* #UD */
  619. /* fall through */
  620. default: /* 7 */
  621. if (val & 0xffffffff00000000ULL)
  622. return -1; /* #GP */
  623. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  624. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  625. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  626. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  627. }
  628. break;
  629. }
  630. return 0;
  631. }
  632. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  633. {
  634. int res;
  635. res = __kvm_set_dr(vcpu, dr, val);
  636. if (res > 0)
  637. kvm_queue_exception(vcpu, UD_VECTOR);
  638. else if (res < 0)
  639. kvm_inject_gp(vcpu, 0);
  640. return res;
  641. }
  642. EXPORT_SYMBOL_GPL(kvm_set_dr);
  643. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  644. {
  645. switch (dr) {
  646. case 0 ... 3:
  647. *val = vcpu->arch.db[dr];
  648. break;
  649. case 4:
  650. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  651. return 1;
  652. /* fall through */
  653. case 6:
  654. *val = vcpu->arch.dr6;
  655. break;
  656. case 5:
  657. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  658. return 1;
  659. /* fall through */
  660. default: /* 7 */
  661. *val = vcpu->arch.dr7;
  662. break;
  663. }
  664. return 0;
  665. }
  666. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  667. {
  668. if (_kvm_get_dr(vcpu, dr, val)) {
  669. kvm_queue_exception(vcpu, UD_VECTOR);
  670. return 1;
  671. }
  672. return 0;
  673. }
  674. EXPORT_SYMBOL_GPL(kvm_get_dr);
  675. bool kvm_rdpmc(struct kvm_vcpu *vcpu)
  676. {
  677. u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  678. u64 data;
  679. int err;
  680. err = kvm_pmu_read_pmc(vcpu, ecx, &data);
  681. if (err)
  682. return err;
  683. kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
  684. kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
  685. return err;
  686. }
  687. EXPORT_SYMBOL_GPL(kvm_rdpmc);
  688. /*
  689. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  690. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  691. *
  692. * This list is modified at module load time to reflect the
  693. * capabilities of the host cpu. This capabilities test skips MSRs that are
  694. * kvm-specific. Those are put in the beginning of the list.
  695. */
  696. #define KVM_SAVE_MSRS_BEGIN 10
  697. static u32 msrs_to_save[] = {
  698. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  699. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  700. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  701. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
  702. MSR_KVM_PV_EOI_EN,
  703. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  704. MSR_STAR,
  705. #ifdef CONFIG_X86_64
  706. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  707. #endif
  708. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  709. };
  710. static unsigned num_msrs_to_save;
  711. static u32 emulated_msrs[] = {
  712. MSR_IA32_TSCDEADLINE,
  713. MSR_IA32_MISC_ENABLE,
  714. MSR_IA32_MCG_STATUS,
  715. MSR_IA32_MCG_CTL,
  716. };
  717. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  718. {
  719. u64 old_efer = vcpu->arch.efer;
  720. if (efer & efer_reserved_bits)
  721. return 1;
  722. if (is_paging(vcpu)
  723. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  724. return 1;
  725. if (efer & EFER_FFXSR) {
  726. struct kvm_cpuid_entry2 *feat;
  727. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  728. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  729. return 1;
  730. }
  731. if (efer & EFER_SVME) {
  732. struct kvm_cpuid_entry2 *feat;
  733. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  734. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  735. return 1;
  736. }
  737. efer &= ~EFER_LMA;
  738. efer |= vcpu->arch.efer & EFER_LMA;
  739. kvm_x86_ops->set_efer(vcpu, efer);
  740. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  741. /* Update reserved bits */
  742. if ((efer ^ old_efer) & EFER_NX)
  743. kvm_mmu_reset_context(vcpu);
  744. return 0;
  745. }
  746. void kvm_enable_efer_bits(u64 mask)
  747. {
  748. efer_reserved_bits &= ~mask;
  749. }
  750. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  751. /*
  752. * Writes msr value into into the appropriate "register".
  753. * Returns 0 on success, non-0 otherwise.
  754. * Assumes vcpu_load() was already called.
  755. */
  756. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  757. {
  758. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  759. }
  760. /*
  761. * Adapt set_msr() to msr_io()'s calling convention
  762. */
  763. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  764. {
  765. return kvm_set_msr(vcpu, index, *data);
  766. }
  767. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  768. {
  769. int version;
  770. int r;
  771. struct pvclock_wall_clock wc;
  772. struct timespec boot;
  773. if (!wall_clock)
  774. return;
  775. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  776. if (r)
  777. return;
  778. if (version & 1)
  779. ++version; /* first time write, random junk */
  780. ++version;
  781. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  782. /*
  783. * The guest calculates current wall clock time by adding
  784. * system time (updated by kvm_guest_time_update below) to the
  785. * wall clock specified here. guest system time equals host
  786. * system time for us, thus we must fill in host boot time here.
  787. */
  788. getboottime(&boot);
  789. if (kvm->arch.kvmclock_offset) {
  790. struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
  791. boot = timespec_sub(boot, ts);
  792. }
  793. wc.sec = boot.tv_sec;
  794. wc.nsec = boot.tv_nsec;
  795. wc.version = version;
  796. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  797. version++;
  798. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  799. }
  800. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  801. {
  802. uint32_t quotient, remainder;
  803. /* Don't try to replace with do_div(), this one calculates
  804. * "(dividend << 32) / divisor" */
  805. __asm__ ( "divl %4"
  806. : "=a" (quotient), "=d" (remainder)
  807. : "0" (0), "1" (dividend), "r" (divisor) );
  808. return quotient;
  809. }
  810. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  811. s8 *pshift, u32 *pmultiplier)
  812. {
  813. uint64_t scaled64;
  814. int32_t shift = 0;
  815. uint64_t tps64;
  816. uint32_t tps32;
  817. tps64 = base_khz * 1000LL;
  818. scaled64 = scaled_khz * 1000LL;
  819. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  820. tps64 >>= 1;
  821. shift--;
  822. }
  823. tps32 = (uint32_t)tps64;
  824. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  825. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  826. scaled64 >>= 1;
  827. else
  828. tps32 <<= 1;
  829. shift++;
  830. }
  831. *pshift = shift;
  832. *pmultiplier = div_frac(scaled64, tps32);
  833. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  834. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  835. }
  836. static inline u64 get_kernel_ns(void)
  837. {
  838. struct timespec ts;
  839. WARN_ON(preemptible());
  840. ktime_get_ts(&ts);
  841. monotonic_to_bootbased(&ts);
  842. return timespec_to_ns(&ts);
  843. }
  844. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  845. unsigned long max_tsc_khz;
  846. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  847. {
  848. return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
  849. vcpu->arch.virtual_tsc_shift);
  850. }
  851. static u32 adjust_tsc_khz(u32 khz, s32 ppm)
  852. {
  853. u64 v = (u64)khz * (1000000 + ppm);
  854. do_div(v, 1000000);
  855. return v;
  856. }
  857. static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
  858. {
  859. u32 thresh_lo, thresh_hi;
  860. int use_scaling = 0;
  861. /* Compute a scale to convert nanoseconds in TSC cycles */
  862. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  863. &vcpu->arch.virtual_tsc_shift,
  864. &vcpu->arch.virtual_tsc_mult);
  865. vcpu->arch.virtual_tsc_khz = this_tsc_khz;
  866. /*
  867. * Compute the variation in TSC rate which is acceptable
  868. * within the range of tolerance and decide if the
  869. * rate being applied is within that bounds of the hardware
  870. * rate. If so, no scaling or compensation need be done.
  871. */
  872. thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
  873. thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
  874. if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
  875. pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
  876. use_scaling = 1;
  877. }
  878. kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
  879. }
  880. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  881. {
  882. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
  883. vcpu->arch.virtual_tsc_mult,
  884. vcpu->arch.virtual_tsc_shift);
  885. tsc += vcpu->arch.this_tsc_write;
  886. return tsc;
  887. }
  888. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  889. {
  890. struct kvm *kvm = vcpu->kvm;
  891. u64 offset, ns, elapsed;
  892. unsigned long flags;
  893. s64 usdiff;
  894. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  895. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  896. ns = get_kernel_ns();
  897. elapsed = ns - kvm->arch.last_tsc_nsec;
  898. /* n.b - signed multiplication and division required */
  899. usdiff = data - kvm->arch.last_tsc_write;
  900. #ifdef CONFIG_X86_64
  901. usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
  902. #else
  903. /* do_div() only does unsigned */
  904. asm("idivl %2; xor %%edx, %%edx"
  905. : "=A"(usdiff)
  906. : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
  907. #endif
  908. do_div(elapsed, 1000);
  909. usdiff -= elapsed;
  910. if (usdiff < 0)
  911. usdiff = -usdiff;
  912. /*
  913. * Special case: TSC write with a small delta (1 second) of virtual
  914. * cycle time against real time is interpreted as an attempt to
  915. * synchronize the CPU.
  916. *
  917. * For a reliable TSC, we can match TSC offsets, and for an unstable
  918. * TSC, we add elapsed time in this computation. We could let the
  919. * compensation code attempt to catch up if we fall behind, but
  920. * it's better to try to match offsets from the beginning.
  921. */
  922. if (usdiff < USEC_PER_SEC &&
  923. vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
  924. if (!check_tsc_unstable()) {
  925. offset = kvm->arch.cur_tsc_offset;
  926. pr_debug("kvm: matched tsc offset for %llu\n", data);
  927. } else {
  928. u64 delta = nsec_to_cycles(vcpu, elapsed);
  929. data += delta;
  930. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  931. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  932. }
  933. } else {
  934. /*
  935. * We split periods of matched TSC writes into generations.
  936. * For each generation, we track the original measured
  937. * nanosecond time, offset, and write, so if TSCs are in
  938. * sync, we can match exact offset, and if not, we can match
  939. * exact software computation in compute_guest_tsc()
  940. *
  941. * These values are tracked in kvm->arch.cur_xxx variables.
  942. */
  943. kvm->arch.cur_tsc_generation++;
  944. kvm->arch.cur_tsc_nsec = ns;
  945. kvm->arch.cur_tsc_write = data;
  946. kvm->arch.cur_tsc_offset = offset;
  947. pr_debug("kvm: new tsc generation %u, clock %llu\n",
  948. kvm->arch.cur_tsc_generation, data);
  949. }
  950. /*
  951. * We also track th most recent recorded KHZ, write and time to
  952. * allow the matching interval to be extended at each write.
  953. */
  954. kvm->arch.last_tsc_nsec = ns;
  955. kvm->arch.last_tsc_write = data;
  956. kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
  957. /* Reset of TSC must disable overshoot protection below */
  958. vcpu->arch.hv_clock.tsc_timestamp = 0;
  959. vcpu->arch.last_guest_tsc = data;
  960. /* Keep track of which generation this VCPU has synchronized to */
  961. vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
  962. vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
  963. vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
  964. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  965. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  966. }
  967. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  968. static int kvm_guest_time_update(struct kvm_vcpu *v)
  969. {
  970. unsigned long flags;
  971. struct kvm_vcpu_arch *vcpu = &v->arch;
  972. void *shared_kaddr;
  973. unsigned long this_tsc_khz;
  974. s64 kernel_ns, max_kernel_ns;
  975. u64 tsc_timestamp;
  976. u8 pvclock_flags;
  977. /* Keep irq disabled to prevent changes to the clock */
  978. local_irq_save(flags);
  979. tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
  980. kernel_ns = get_kernel_ns();
  981. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  982. if (unlikely(this_tsc_khz == 0)) {
  983. local_irq_restore(flags);
  984. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  985. return 1;
  986. }
  987. /*
  988. * We may have to catch up the TSC to match elapsed wall clock
  989. * time for two reasons, even if kvmclock is used.
  990. * 1) CPU could have been running below the maximum TSC rate
  991. * 2) Broken TSC compensation resets the base at each VCPU
  992. * entry to avoid unknown leaps of TSC even when running
  993. * again on the same CPU. This may cause apparent elapsed
  994. * time to disappear, and the guest to stand still or run
  995. * very slowly.
  996. */
  997. if (vcpu->tsc_catchup) {
  998. u64 tsc = compute_guest_tsc(v, kernel_ns);
  999. if (tsc > tsc_timestamp) {
  1000. adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
  1001. tsc_timestamp = tsc;
  1002. }
  1003. }
  1004. local_irq_restore(flags);
  1005. if (!vcpu->time_page)
  1006. return 0;
  1007. /*
  1008. * Time as measured by the TSC may go backwards when resetting the base
  1009. * tsc_timestamp. The reason for this is that the TSC resolution is
  1010. * higher than the resolution of the other clock scales. Thus, many
  1011. * possible measurments of the TSC correspond to one measurement of any
  1012. * other clock, and so a spread of values is possible. This is not a
  1013. * problem for the computation of the nanosecond clock; with TSC rates
  1014. * around 1GHZ, there can only be a few cycles which correspond to one
  1015. * nanosecond value, and any path through this code will inevitably
  1016. * take longer than that. However, with the kernel_ns value itself,
  1017. * the precision may be much lower, down to HZ granularity. If the
  1018. * first sampling of TSC against kernel_ns ends in the low part of the
  1019. * range, and the second in the high end of the range, we can get:
  1020. *
  1021. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  1022. *
  1023. * As the sampling errors potentially range in the thousands of cycles,
  1024. * it is possible such a time value has already been observed by the
  1025. * guest. To protect against this, we must compute the system time as
  1026. * observed by the guest and ensure the new system time is greater.
  1027. */
  1028. max_kernel_ns = 0;
  1029. if (vcpu->hv_clock.tsc_timestamp) {
  1030. max_kernel_ns = vcpu->last_guest_tsc -
  1031. vcpu->hv_clock.tsc_timestamp;
  1032. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  1033. vcpu->hv_clock.tsc_to_system_mul,
  1034. vcpu->hv_clock.tsc_shift);
  1035. max_kernel_ns += vcpu->last_kernel_ns;
  1036. }
  1037. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  1038. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  1039. &vcpu->hv_clock.tsc_shift,
  1040. &vcpu->hv_clock.tsc_to_system_mul);
  1041. vcpu->hw_tsc_khz = this_tsc_khz;
  1042. }
  1043. if (max_kernel_ns > kernel_ns)
  1044. kernel_ns = max_kernel_ns;
  1045. /* With all the info we got, fill in the values */
  1046. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  1047. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  1048. vcpu->last_kernel_ns = kernel_ns;
  1049. vcpu->last_guest_tsc = tsc_timestamp;
  1050. pvclock_flags = 0;
  1051. if (vcpu->pvclock_set_guest_stopped_request) {
  1052. pvclock_flags |= PVCLOCK_GUEST_STOPPED;
  1053. vcpu->pvclock_set_guest_stopped_request = false;
  1054. }
  1055. vcpu->hv_clock.flags = pvclock_flags;
  1056. /*
  1057. * The interface expects us to write an even number signaling that the
  1058. * update is finished. Since the guest won't see the intermediate
  1059. * state, we just increase by 2 at the end.
  1060. */
  1061. vcpu->hv_clock.version += 2;
  1062. shared_kaddr = kmap_atomic(vcpu->time_page);
  1063. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  1064. sizeof(vcpu->hv_clock));
  1065. kunmap_atomic(shared_kaddr);
  1066. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1067. return 0;
  1068. }
  1069. static bool msr_mtrr_valid(unsigned msr)
  1070. {
  1071. switch (msr) {
  1072. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1073. case MSR_MTRRfix64K_00000:
  1074. case MSR_MTRRfix16K_80000:
  1075. case MSR_MTRRfix16K_A0000:
  1076. case MSR_MTRRfix4K_C0000:
  1077. case MSR_MTRRfix4K_C8000:
  1078. case MSR_MTRRfix4K_D0000:
  1079. case MSR_MTRRfix4K_D8000:
  1080. case MSR_MTRRfix4K_E0000:
  1081. case MSR_MTRRfix4K_E8000:
  1082. case MSR_MTRRfix4K_F0000:
  1083. case MSR_MTRRfix4K_F8000:
  1084. case MSR_MTRRdefType:
  1085. case MSR_IA32_CR_PAT:
  1086. return true;
  1087. case 0x2f8:
  1088. return true;
  1089. }
  1090. return false;
  1091. }
  1092. static bool valid_pat_type(unsigned t)
  1093. {
  1094. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1095. }
  1096. static bool valid_mtrr_type(unsigned t)
  1097. {
  1098. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1099. }
  1100. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1101. {
  1102. int i;
  1103. if (!msr_mtrr_valid(msr))
  1104. return false;
  1105. if (msr == MSR_IA32_CR_PAT) {
  1106. for (i = 0; i < 8; i++)
  1107. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1108. return false;
  1109. return true;
  1110. } else if (msr == MSR_MTRRdefType) {
  1111. if (data & ~0xcff)
  1112. return false;
  1113. return valid_mtrr_type(data & 0xff);
  1114. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1115. for (i = 0; i < 8 ; i++)
  1116. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1117. return false;
  1118. return true;
  1119. }
  1120. /* variable MTRRs */
  1121. return valid_mtrr_type(data & 0xff);
  1122. }
  1123. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1124. {
  1125. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1126. if (!mtrr_valid(vcpu, msr, data))
  1127. return 1;
  1128. if (msr == MSR_MTRRdefType) {
  1129. vcpu->arch.mtrr_state.def_type = data;
  1130. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1131. } else if (msr == MSR_MTRRfix64K_00000)
  1132. p[0] = data;
  1133. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1134. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1135. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1136. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1137. else if (msr == MSR_IA32_CR_PAT)
  1138. vcpu->arch.pat = data;
  1139. else { /* Variable MTRRs */
  1140. int idx, is_mtrr_mask;
  1141. u64 *pt;
  1142. idx = (msr - 0x200) / 2;
  1143. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1144. if (!is_mtrr_mask)
  1145. pt =
  1146. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1147. else
  1148. pt =
  1149. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1150. *pt = data;
  1151. }
  1152. kvm_mmu_reset_context(vcpu);
  1153. return 0;
  1154. }
  1155. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1156. {
  1157. u64 mcg_cap = vcpu->arch.mcg_cap;
  1158. unsigned bank_num = mcg_cap & 0xff;
  1159. switch (msr) {
  1160. case MSR_IA32_MCG_STATUS:
  1161. vcpu->arch.mcg_status = data;
  1162. break;
  1163. case MSR_IA32_MCG_CTL:
  1164. if (!(mcg_cap & MCG_CTL_P))
  1165. return 1;
  1166. if (data != 0 && data != ~(u64)0)
  1167. return -1;
  1168. vcpu->arch.mcg_ctl = data;
  1169. break;
  1170. default:
  1171. if (msr >= MSR_IA32_MC0_CTL &&
  1172. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1173. u32 offset = msr - MSR_IA32_MC0_CTL;
  1174. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1175. * some Linux kernels though clear bit 10 in bank 4 to
  1176. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1177. * this to avoid an uncatched #GP in the guest
  1178. */
  1179. if ((offset & 0x3) == 0 &&
  1180. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1181. return -1;
  1182. vcpu->arch.mce_banks[offset] = data;
  1183. break;
  1184. }
  1185. return 1;
  1186. }
  1187. return 0;
  1188. }
  1189. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1190. {
  1191. struct kvm *kvm = vcpu->kvm;
  1192. int lm = is_long_mode(vcpu);
  1193. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1194. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1195. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1196. : kvm->arch.xen_hvm_config.blob_size_32;
  1197. u32 page_num = data & ~PAGE_MASK;
  1198. u64 page_addr = data & PAGE_MASK;
  1199. u8 *page;
  1200. int r;
  1201. r = -E2BIG;
  1202. if (page_num >= blob_size)
  1203. goto out;
  1204. r = -ENOMEM;
  1205. page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
  1206. if (IS_ERR(page)) {
  1207. r = PTR_ERR(page);
  1208. goto out;
  1209. }
  1210. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1211. goto out_free;
  1212. r = 0;
  1213. out_free:
  1214. kfree(page);
  1215. out:
  1216. return r;
  1217. }
  1218. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1219. {
  1220. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1221. }
  1222. static bool kvm_hv_msr_partition_wide(u32 msr)
  1223. {
  1224. bool r = false;
  1225. switch (msr) {
  1226. case HV_X64_MSR_GUEST_OS_ID:
  1227. case HV_X64_MSR_HYPERCALL:
  1228. r = true;
  1229. break;
  1230. }
  1231. return r;
  1232. }
  1233. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1234. {
  1235. struct kvm *kvm = vcpu->kvm;
  1236. switch (msr) {
  1237. case HV_X64_MSR_GUEST_OS_ID:
  1238. kvm->arch.hv_guest_os_id = data;
  1239. /* setting guest os id to zero disables hypercall page */
  1240. if (!kvm->arch.hv_guest_os_id)
  1241. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1242. break;
  1243. case HV_X64_MSR_HYPERCALL: {
  1244. u64 gfn;
  1245. unsigned long addr;
  1246. u8 instructions[4];
  1247. /* if guest os id is not set hypercall should remain disabled */
  1248. if (!kvm->arch.hv_guest_os_id)
  1249. break;
  1250. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1251. kvm->arch.hv_hypercall = data;
  1252. break;
  1253. }
  1254. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1255. addr = gfn_to_hva(kvm, gfn);
  1256. if (kvm_is_error_hva(addr))
  1257. return 1;
  1258. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1259. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1260. if (__copy_to_user((void __user *)addr, instructions, 4))
  1261. return 1;
  1262. kvm->arch.hv_hypercall = data;
  1263. break;
  1264. }
  1265. default:
  1266. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1267. "data 0x%llx\n", msr, data);
  1268. return 1;
  1269. }
  1270. return 0;
  1271. }
  1272. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1273. {
  1274. switch (msr) {
  1275. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1276. unsigned long addr;
  1277. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1278. vcpu->arch.hv_vapic = data;
  1279. break;
  1280. }
  1281. addr = gfn_to_hva(vcpu->kvm, data >>
  1282. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1283. if (kvm_is_error_hva(addr))
  1284. return 1;
  1285. if (__clear_user((void __user *)addr, PAGE_SIZE))
  1286. return 1;
  1287. vcpu->arch.hv_vapic = data;
  1288. break;
  1289. }
  1290. case HV_X64_MSR_EOI:
  1291. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1292. case HV_X64_MSR_ICR:
  1293. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1294. case HV_X64_MSR_TPR:
  1295. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1296. default:
  1297. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1298. "data 0x%llx\n", msr, data);
  1299. return 1;
  1300. }
  1301. return 0;
  1302. }
  1303. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1304. {
  1305. gpa_t gpa = data & ~0x3f;
  1306. /* Bits 2:5 are reserved, Should be zero */
  1307. if (data & 0x3c)
  1308. return 1;
  1309. vcpu->arch.apf.msr_val = data;
  1310. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1311. kvm_clear_async_pf_completion_queue(vcpu);
  1312. kvm_async_pf_hash_reset(vcpu);
  1313. return 0;
  1314. }
  1315. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1316. return 1;
  1317. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1318. kvm_async_pf_wakeup_all(vcpu);
  1319. return 0;
  1320. }
  1321. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1322. {
  1323. if (vcpu->arch.time_page) {
  1324. kvm_release_page_dirty(vcpu->arch.time_page);
  1325. vcpu->arch.time_page = NULL;
  1326. }
  1327. }
  1328. static void accumulate_steal_time(struct kvm_vcpu *vcpu)
  1329. {
  1330. u64 delta;
  1331. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1332. return;
  1333. delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
  1334. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1335. vcpu->arch.st.accum_steal = delta;
  1336. }
  1337. static void record_steal_time(struct kvm_vcpu *vcpu)
  1338. {
  1339. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1340. return;
  1341. if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1342. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
  1343. return;
  1344. vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
  1345. vcpu->arch.st.steal.version += 2;
  1346. vcpu->arch.st.accum_steal = 0;
  1347. kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1348. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
  1349. }
  1350. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1351. {
  1352. bool pr = false;
  1353. switch (msr) {
  1354. case MSR_EFER:
  1355. return set_efer(vcpu, data);
  1356. case MSR_K7_HWCR:
  1357. data &= ~(u64)0x40; /* ignore flush filter disable */
  1358. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1359. data &= ~(u64)0x8; /* ignore TLB cache disable */
  1360. if (data != 0) {
  1361. vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1362. data);
  1363. return 1;
  1364. }
  1365. break;
  1366. case MSR_FAM10H_MMIO_CONF_BASE:
  1367. if (data != 0) {
  1368. vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1369. "0x%llx\n", data);
  1370. return 1;
  1371. }
  1372. break;
  1373. case MSR_AMD64_NB_CFG:
  1374. break;
  1375. case MSR_IA32_DEBUGCTLMSR:
  1376. if (!data) {
  1377. /* We support the non-activated case already */
  1378. break;
  1379. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1380. /* Values other than LBR and BTF are vendor-specific,
  1381. thus reserved and should throw a #GP */
  1382. return 1;
  1383. }
  1384. vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1385. __func__, data);
  1386. break;
  1387. case MSR_IA32_UCODE_REV:
  1388. case MSR_IA32_UCODE_WRITE:
  1389. case MSR_VM_HSAVE_PA:
  1390. case MSR_AMD64_PATCH_LOADER:
  1391. break;
  1392. case 0x200 ... 0x2ff:
  1393. return set_msr_mtrr(vcpu, msr, data);
  1394. case MSR_IA32_APICBASE:
  1395. kvm_set_apic_base(vcpu, data);
  1396. break;
  1397. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1398. return kvm_x2apic_msr_write(vcpu, msr, data);
  1399. case MSR_IA32_TSCDEADLINE:
  1400. kvm_set_lapic_tscdeadline_msr(vcpu, data);
  1401. break;
  1402. case MSR_IA32_MISC_ENABLE:
  1403. vcpu->arch.ia32_misc_enable_msr = data;
  1404. break;
  1405. case MSR_KVM_WALL_CLOCK_NEW:
  1406. case MSR_KVM_WALL_CLOCK:
  1407. vcpu->kvm->arch.wall_clock = data;
  1408. kvm_write_wall_clock(vcpu->kvm, data);
  1409. break;
  1410. case MSR_KVM_SYSTEM_TIME_NEW:
  1411. case MSR_KVM_SYSTEM_TIME: {
  1412. kvmclock_reset(vcpu);
  1413. vcpu->arch.time = data;
  1414. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1415. /* we verify if the enable bit is set... */
  1416. if (!(data & 1))
  1417. break;
  1418. /* ...but clean it before doing the actual write */
  1419. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1420. vcpu->arch.time_page =
  1421. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1422. if (is_error_page(vcpu->arch.time_page))
  1423. vcpu->arch.time_page = NULL;
  1424. break;
  1425. }
  1426. case MSR_KVM_ASYNC_PF_EN:
  1427. if (kvm_pv_enable_async_pf(vcpu, data))
  1428. return 1;
  1429. break;
  1430. case MSR_KVM_STEAL_TIME:
  1431. if (unlikely(!sched_info_on()))
  1432. return 1;
  1433. if (data & KVM_STEAL_RESERVED_MASK)
  1434. return 1;
  1435. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
  1436. data & KVM_STEAL_VALID_BITS))
  1437. return 1;
  1438. vcpu->arch.st.msr_val = data;
  1439. if (!(data & KVM_MSR_ENABLED))
  1440. break;
  1441. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1442. preempt_disable();
  1443. accumulate_steal_time(vcpu);
  1444. preempt_enable();
  1445. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  1446. break;
  1447. case MSR_KVM_PV_EOI_EN:
  1448. if (kvm_lapic_enable_pv_eoi(vcpu, data))
  1449. return 1;
  1450. break;
  1451. case MSR_IA32_MCG_CTL:
  1452. case MSR_IA32_MCG_STATUS:
  1453. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1454. return set_msr_mce(vcpu, msr, data);
  1455. /* Performance counters are not protected by a CPUID bit,
  1456. * so we should check all of them in the generic path for the sake of
  1457. * cross vendor migration.
  1458. * Writing a zero into the event select MSRs disables them,
  1459. * which we perfectly emulate ;-). Any other value should be at least
  1460. * reported, some guests depend on them.
  1461. */
  1462. case MSR_K7_EVNTSEL0:
  1463. case MSR_K7_EVNTSEL1:
  1464. case MSR_K7_EVNTSEL2:
  1465. case MSR_K7_EVNTSEL3:
  1466. if (data != 0)
  1467. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1468. "0x%x data 0x%llx\n", msr, data);
  1469. break;
  1470. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1471. * so we ignore writes to make it happy.
  1472. */
  1473. case MSR_K7_PERFCTR0:
  1474. case MSR_K7_PERFCTR1:
  1475. case MSR_K7_PERFCTR2:
  1476. case MSR_K7_PERFCTR3:
  1477. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1478. "0x%x data 0x%llx\n", msr, data);
  1479. break;
  1480. case MSR_P6_PERFCTR0:
  1481. case MSR_P6_PERFCTR1:
  1482. pr = true;
  1483. case MSR_P6_EVNTSEL0:
  1484. case MSR_P6_EVNTSEL1:
  1485. if (kvm_pmu_msr(vcpu, msr))
  1486. return kvm_pmu_set_msr(vcpu, msr, data);
  1487. if (pr || data != 0)
  1488. vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
  1489. "0x%x data 0x%llx\n", msr, data);
  1490. break;
  1491. case MSR_K7_CLK_CTL:
  1492. /*
  1493. * Ignore all writes to this no longer documented MSR.
  1494. * Writes are only relevant for old K7 processors,
  1495. * all pre-dating SVM, but a recommended workaround from
  1496. * AMD for these chips. It is possible to specify the
  1497. * affected processor models on the command line, hence
  1498. * the need to ignore the workaround.
  1499. */
  1500. break;
  1501. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1502. if (kvm_hv_msr_partition_wide(msr)) {
  1503. int r;
  1504. mutex_lock(&vcpu->kvm->lock);
  1505. r = set_msr_hyperv_pw(vcpu, msr, data);
  1506. mutex_unlock(&vcpu->kvm->lock);
  1507. return r;
  1508. } else
  1509. return set_msr_hyperv(vcpu, msr, data);
  1510. break;
  1511. case MSR_IA32_BBL_CR_CTL3:
  1512. /* Drop writes to this legacy MSR -- see rdmsr
  1513. * counterpart for further detail.
  1514. */
  1515. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1516. break;
  1517. case MSR_AMD64_OSVW_ID_LENGTH:
  1518. if (!guest_cpuid_has_osvw(vcpu))
  1519. return 1;
  1520. vcpu->arch.osvw.length = data;
  1521. break;
  1522. case MSR_AMD64_OSVW_STATUS:
  1523. if (!guest_cpuid_has_osvw(vcpu))
  1524. return 1;
  1525. vcpu->arch.osvw.status = data;
  1526. break;
  1527. default:
  1528. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1529. return xen_hvm_config(vcpu, data);
  1530. if (kvm_pmu_msr(vcpu, msr))
  1531. return kvm_pmu_set_msr(vcpu, msr, data);
  1532. if (!ignore_msrs) {
  1533. vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1534. msr, data);
  1535. return 1;
  1536. } else {
  1537. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1538. msr, data);
  1539. break;
  1540. }
  1541. }
  1542. return 0;
  1543. }
  1544. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1545. /*
  1546. * Reads an msr value (of 'msr_index') into 'pdata'.
  1547. * Returns 0 on success, non-0 otherwise.
  1548. * Assumes vcpu_load() was already called.
  1549. */
  1550. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1551. {
  1552. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1553. }
  1554. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1555. {
  1556. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1557. if (!msr_mtrr_valid(msr))
  1558. return 1;
  1559. if (msr == MSR_MTRRdefType)
  1560. *pdata = vcpu->arch.mtrr_state.def_type +
  1561. (vcpu->arch.mtrr_state.enabled << 10);
  1562. else if (msr == MSR_MTRRfix64K_00000)
  1563. *pdata = p[0];
  1564. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1565. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1566. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1567. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1568. else if (msr == MSR_IA32_CR_PAT)
  1569. *pdata = vcpu->arch.pat;
  1570. else { /* Variable MTRRs */
  1571. int idx, is_mtrr_mask;
  1572. u64 *pt;
  1573. idx = (msr - 0x200) / 2;
  1574. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1575. if (!is_mtrr_mask)
  1576. pt =
  1577. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1578. else
  1579. pt =
  1580. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1581. *pdata = *pt;
  1582. }
  1583. return 0;
  1584. }
  1585. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1586. {
  1587. u64 data;
  1588. u64 mcg_cap = vcpu->arch.mcg_cap;
  1589. unsigned bank_num = mcg_cap & 0xff;
  1590. switch (msr) {
  1591. case MSR_IA32_P5_MC_ADDR:
  1592. case MSR_IA32_P5_MC_TYPE:
  1593. data = 0;
  1594. break;
  1595. case MSR_IA32_MCG_CAP:
  1596. data = vcpu->arch.mcg_cap;
  1597. break;
  1598. case MSR_IA32_MCG_CTL:
  1599. if (!(mcg_cap & MCG_CTL_P))
  1600. return 1;
  1601. data = vcpu->arch.mcg_ctl;
  1602. break;
  1603. case MSR_IA32_MCG_STATUS:
  1604. data = vcpu->arch.mcg_status;
  1605. break;
  1606. default:
  1607. if (msr >= MSR_IA32_MC0_CTL &&
  1608. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1609. u32 offset = msr - MSR_IA32_MC0_CTL;
  1610. data = vcpu->arch.mce_banks[offset];
  1611. break;
  1612. }
  1613. return 1;
  1614. }
  1615. *pdata = data;
  1616. return 0;
  1617. }
  1618. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1619. {
  1620. u64 data = 0;
  1621. struct kvm *kvm = vcpu->kvm;
  1622. switch (msr) {
  1623. case HV_X64_MSR_GUEST_OS_ID:
  1624. data = kvm->arch.hv_guest_os_id;
  1625. break;
  1626. case HV_X64_MSR_HYPERCALL:
  1627. data = kvm->arch.hv_hypercall;
  1628. break;
  1629. default:
  1630. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1631. return 1;
  1632. }
  1633. *pdata = data;
  1634. return 0;
  1635. }
  1636. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1637. {
  1638. u64 data = 0;
  1639. switch (msr) {
  1640. case HV_X64_MSR_VP_INDEX: {
  1641. int r;
  1642. struct kvm_vcpu *v;
  1643. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1644. if (v == vcpu)
  1645. data = r;
  1646. break;
  1647. }
  1648. case HV_X64_MSR_EOI:
  1649. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1650. case HV_X64_MSR_ICR:
  1651. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1652. case HV_X64_MSR_TPR:
  1653. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1654. case HV_X64_MSR_APIC_ASSIST_PAGE:
  1655. data = vcpu->arch.hv_vapic;
  1656. break;
  1657. default:
  1658. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1659. return 1;
  1660. }
  1661. *pdata = data;
  1662. return 0;
  1663. }
  1664. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1665. {
  1666. u64 data;
  1667. switch (msr) {
  1668. case MSR_IA32_PLATFORM_ID:
  1669. case MSR_IA32_EBL_CR_POWERON:
  1670. case MSR_IA32_DEBUGCTLMSR:
  1671. case MSR_IA32_LASTBRANCHFROMIP:
  1672. case MSR_IA32_LASTBRANCHTOIP:
  1673. case MSR_IA32_LASTINTFROMIP:
  1674. case MSR_IA32_LASTINTTOIP:
  1675. case MSR_K8_SYSCFG:
  1676. case MSR_K7_HWCR:
  1677. case MSR_VM_HSAVE_PA:
  1678. case MSR_K7_EVNTSEL0:
  1679. case MSR_K7_PERFCTR0:
  1680. case MSR_K8_INT_PENDING_MSG:
  1681. case MSR_AMD64_NB_CFG:
  1682. case MSR_FAM10H_MMIO_CONF_BASE:
  1683. data = 0;
  1684. break;
  1685. case MSR_P6_PERFCTR0:
  1686. case MSR_P6_PERFCTR1:
  1687. case MSR_P6_EVNTSEL0:
  1688. case MSR_P6_EVNTSEL1:
  1689. if (kvm_pmu_msr(vcpu, msr))
  1690. return kvm_pmu_get_msr(vcpu, msr, pdata);
  1691. data = 0;
  1692. break;
  1693. case MSR_IA32_UCODE_REV:
  1694. data = 0x100000000ULL;
  1695. break;
  1696. case MSR_MTRRcap:
  1697. data = 0x500 | KVM_NR_VAR_MTRR;
  1698. break;
  1699. case 0x200 ... 0x2ff:
  1700. return get_msr_mtrr(vcpu, msr, pdata);
  1701. case 0xcd: /* fsb frequency */
  1702. data = 3;
  1703. break;
  1704. /*
  1705. * MSR_EBC_FREQUENCY_ID
  1706. * Conservative value valid for even the basic CPU models.
  1707. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1708. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1709. * and 266MHz for model 3, or 4. Set Core Clock
  1710. * Frequency to System Bus Frequency Ratio to 1 (bits
  1711. * 31:24) even though these are only valid for CPU
  1712. * models > 2, however guests may end up dividing or
  1713. * multiplying by zero otherwise.
  1714. */
  1715. case MSR_EBC_FREQUENCY_ID:
  1716. data = 1 << 24;
  1717. break;
  1718. case MSR_IA32_APICBASE:
  1719. data = kvm_get_apic_base(vcpu);
  1720. break;
  1721. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1722. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1723. break;
  1724. case MSR_IA32_TSCDEADLINE:
  1725. data = kvm_get_lapic_tscdeadline_msr(vcpu);
  1726. break;
  1727. case MSR_IA32_MISC_ENABLE:
  1728. data = vcpu->arch.ia32_misc_enable_msr;
  1729. break;
  1730. case MSR_IA32_PERF_STATUS:
  1731. /* TSC increment by tick */
  1732. data = 1000ULL;
  1733. /* CPU multiplier */
  1734. data |= (((uint64_t)4ULL) << 40);
  1735. break;
  1736. case MSR_EFER:
  1737. data = vcpu->arch.efer;
  1738. break;
  1739. case MSR_KVM_WALL_CLOCK:
  1740. case MSR_KVM_WALL_CLOCK_NEW:
  1741. data = vcpu->kvm->arch.wall_clock;
  1742. break;
  1743. case MSR_KVM_SYSTEM_TIME:
  1744. case MSR_KVM_SYSTEM_TIME_NEW:
  1745. data = vcpu->arch.time;
  1746. break;
  1747. case MSR_KVM_ASYNC_PF_EN:
  1748. data = vcpu->arch.apf.msr_val;
  1749. break;
  1750. case MSR_KVM_STEAL_TIME:
  1751. data = vcpu->arch.st.msr_val;
  1752. break;
  1753. case MSR_IA32_P5_MC_ADDR:
  1754. case MSR_IA32_P5_MC_TYPE:
  1755. case MSR_IA32_MCG_CAP:
  1756. case MSR_IA32_MCG_CTL:
  1757. case MSR_IA32_MCG_STATUS:
  1758. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1759. return get_msr_mce(vcpu, msr, pdata);
  1760. case MSR_K7_CLK_CTL:
  1761. /*
  1762. * Provide expected ramp-up count for K7. All other
  1763. * are set to zero, indicating minimum divisors for
  1764. * every field.
  1765. *
  1766. * This prevents guest kernels on AMD host with CPU
  1767. * type 6, model 8 and higher from exploding due to
  1768. * the rdmsr failing.
  1769. */
  1770. data = 0x20000000;
  1771. break;
  1772. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1773. if (kvm_hv_msr_partition_wide(msr)) {
  1774. int r;
  1775. mutex_lock(&vcpu->kvm->lock);
  1776. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1777. mutex_unlock(&vcpu->kvm->lock);
  1778. return r;
  1779. } else
  1780. return get_msr_hyperv(vcpu, msr, pdata);
  1781. break;
  1782. case MSR_IA32_BBL_CR_CTL3:
  1783. /* This legacy MSR exists but isn't fully documented in current
  1784. * silicon. It is however accessed by winxp in very narrow
  1785. * scenarios where it sets bit #19, itself documented as
  1786. * a "reserved" bit. Best effort attempt to source coherent
  1787. * read data here should the balance of the register be
  1788. * interpreted by the guest:
  1789. *
  1790. * L2 cache control register 3: 64GB range, 256KB size,
  1791. * enabled, latency 0x1, configured
  1792. */
  1793. data = 0xbe702111;
  1794. break;
  1795. case MSR_AMD64_OSVW_ID_LENGTH:
  1796. if (!guest_cpuid_has_osvw(vcpu))
  1797. return 1;
  1798. data = vcpu->arch.osvw.length;
  1799. break;
  1800. case MSR_AMD64_OSVW_STATUS:
  1801. if (!guest_cpuid_has_osvw(vcpu))
  1802. return 1;
  1803. data = vcpu->arch.osvw.status;
  1804. break;
  1805. default:
  1806. if (kvm_pmu_msr(vcpu, msr))
  1807. return kvm_pmu_get_msr(vcpu, msr, pdata);
  1808. if (!ignore_msrs) {
  1809. vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1810. return 1;
  1811. } else {
  1812. vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1813. data = 0;
  1814. }
  1815. break;
  1816. }
  1817. *pdata = data;
  1818. return 0;
  1819. }
  1820. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1821. /*
  1822. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1823. *
  1824. * @return number of msrs set successfully.
  1825. */
  1826. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1827. struct kvm_msr_entry *entries,
  1828. int (*do_msr)(struct kvm_vcpu *vcpu,
  1829. unsigned index, u64 *data))
  1830. {
  1831. int i, idx;
  1832. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1833. for (i = 0; i < msrs->nmsrs; ++i)
  1834. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1835. break;
  1836. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1837. return i;
  1838. }
  1839. /*
  1840. * Read or write a bunch of msrs. Parameters are user addresses.
  1841. *
  1842. * @return number of msrs set successfully.
  1843. */
  1844. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1845. int (*do_msr)(struct kvm_vcpu *vcpu,
  1846. unsigned index, u64 *data),
  1847. int writeback)
  1848. {
  1849. struct kvm_msrs msrs;
  1850. struct kvm_msr_entry *entries;
  1851. int r, n;
  1852. unsigned size;
  1853. r = -EFAULT;
  1854. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1855. goto out;
  1856. r = -E2BIG;
  1857. if (msrs.nmsrs >= MAX_IO_MSRS)
  1858. goto out;
  1859. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1860. entries = memdup_user(user_msrs->entries, size);
  1861. if (IS_ERR(entries)) {
  1862. r = PTR_ERR(entries);
  1863. goto out;
  1864. }
  1865. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1866. if (r < 0)
  1867. goto out_free;
  1868. r = -EFAULT;
  1869. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1870. goto out_free;
  1871. r = n;
  1872. out_free:
  1873. kfree(entries);
  1874. out:
  1875. return r;
  1876. }
  1877. int kvm_dev_ioctl_check_extension(long ext)
  1878. {
  1879. int r;
  1880. switch (ext) {
  1881. case KVM_CAP_IRQCHIP:
  1882. case KVM_CAP_HLT:
  1883. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1884. case KVM_CAP_SET_TSS_ADDR:
  1885. case KVM_CAP_EXT_CPUID:
  1886. case KVM_CAP_CLOCKSOURCE:
  1887. case KVM_CAP_PIT:
  1888. case KVM_CAP_NOP_IO_DELAY:
  1889. case KVM_CAP_MP_STATE:
  1890. case KVM_CAP_SYNC_MMU:
  1891. case KVM_CAP_USER_NMI:
  1892. case KVM_CAP_REINJECT_CONTROL:
  1893. case KVM_CAP_IRQ_INJECT_STATUS:
  1894. case KVM_CAP_ASSIGN_DEV_IRQ:
  1895. case KVM_CAP_IRQFD:
  1896. case KVM_CAP_IOEVENTFD:
  1897. case KVM_CAP_PIT2:
  1898. case KVM_CAP_PIT_STATE2:
  1899. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1900. case KVM_CAP_XEN_HVM:
  1901. case KVM_CAP_ADJUST_CLOCK:
  1902. case KVM_CAP_VCPU_EVENTS:
  1903. case KVM_CAP_HYPERV:
  1904. case KVM_CAP_HYPERV_VAPIC:
  1905. case KVM_CAP_HYPERV_SPIN:
  1906. case KVM_CAP_PCI_SEGMENT:
  1907. case KVM_CAP_DEBUGREGS:
  1908. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1909. case KVM_CAP_XSAVE:
  1910. case KVM_CAP_ASYNC_PF:
  1911. case KVM_CAP_GET_TSC_KHZ:
  1912. case KVM_CAP_PCI_2_3:
  1913. case KVM_CAP_KVMCLOCK_CTRL:
  1914. case KVM_CAP_READONLY_MEM:
  1915. r = 1;
  1916. break;
  1917. case KVM_CAP_COALESCED_MMIO:
  1918. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1919. break;
  1920. case KVM_CAP_VAPIC:
  1921. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1922. break;
  1923. case KVM_CAP_NR_VCPUS:
  1924. r = KVM_SOFT_MAX_VCPUS;
  1925. break;
  1926. case KVM_CAP_MAX_VCPUS:
  1927. r = KVM_MAX_VCPUS;
  1928. break;
  1929. case KVM_CAP_NR_MEMSLOTS:
  1930. r = KVM_MEMORY_SLOTS;
  1931. break;
  1932. case KVM_CAP_PV_MMU: /* obsolete */
  1933. r = 0;
  1934. break;
  1935. case KVM_CAP_IOMMU:
  1936. r = iommu_present(&pci_bus_type);
  1937. break;
  1938. case KVM_CAP_MCE:
  1939. r = KVM_MAX_MCE_BANKS;
  1940. break;
  1941. case KVM_CAP_XCRS:
  1942. r = cpu_has_xsave;
  1943. break;
  1944. case KVM_CAP_TSC_CONTROL:
  1945. r = kvm_has_tsc_control;
  1946. break;
  1947. case KVM_CAP_TSC_DEADLINE_TIMER:
  1948. r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
  1949. break;
  1950. default:
  1951. r = 0;
  1952. break;
  1953. }
  1954. return r;
  1955. }
  1956. long kvm_arch_dev_ioctl(struct file *filp,
  1957. unsigned int ioctl, unsigned long arg)
  1958. {
  1959. void __user *argp = (void __user *)arg;
  1960. long r;
  1961. switch (ioctl) {
  1962. case KVM_GET_MSR_INDEX_LIST: {
  1963. struct kvm_msr_list __user *user_msr_list = argp;
  1964. struct kvm_msr_list msr_list;
  1965. unsigned n;
  1966. r = -EFAULT;
  1967. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1968. goto out;
  1969. n = msr_list.nmsrs;
  1970. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1971. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1972. goto out;
  1973. r = -E2BIG;
  1974. if (n < msr_list.nmsrs)
  1975. goto out;
  1976. r = -EFAULT;
  1977. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1978. num_msrs_to_save * sizeof(u32)))
  1979. goto out;
  1980. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1981. &emulated_msrs,
  1982. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1983. goto out;
  1984. r = 0;
  1985. break;
  1986. }
  1987. case KVM_GET_SUPPORTED_CPUID: {
  1988. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1989. struct kvm_cpuid2 cpuid;
  1990. r = -EFAULT;
  1991. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1992. goto out;
  1993. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1994. cpuid_arg->entries);
  1995. if (r)
  1996. goto out;
  1997. r = -EFAULT;
  1998. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1999. goto out;
  2000. r = 0;
  2001. break;
  2002. }
  2003. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  2004. u64 mce_cap;
  2005. mce_cap = KVM_MCE_CAP_SUPPORTED;
  2006. r = -EFAULT;
  2007. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  2008. goto out;
  2009. r = 0;
  2010. break;
  2011. }
  2012. default:
  2013. r = -EINVAL;
  2014. }
  2015. out:
  2016. return r;
  2017. }
  2018. static void wbinvd_ipi(void *garbage)
  2019. {
  2020. wbinvd();
  2021. }
  2022. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  2023. {
  2024. return vcpu->kvm->arch.iommu_domain &&
  2025. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  2026. }
  2027. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  2028. {
  2029. /* Address WBINVD may be executed by guest */
  2030. if (need_emulate_wbinvd(vcpu)) {
  2031. if (kvm_x86_ops->has_wbinvd_exit())
  2032. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  2033. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  2034. smp_call_function_single(vcpu->cpu,
  2035. wbinvd_ipi, NULL, 1);
  2036. }
  2037. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2038. /* Apply any externally detected TSC adjustments (due to suspend) */
  2039. if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
  2040. adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
  2041. vcpu->arch.tsc_offset_adjustment = 0;
  2042. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  2043. }
  2044. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  2045. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  2046. native_read_tsc() - vcpu->arch.last_host_tsc;
  2047. if (tsc_delta < 0)
  2048. mark_tsc_unstable("KVM discovered backwards TSC");
  2049. if (check_tsc_unstable()) {
  2050. u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
  2051. vcpu->arch.last_guest_tsc);
  2052. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  2053. vcpu->arch.tsc_catchup = 1;
  2054. }
  2055. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  2056. if (vcpu->cpu != cpu)
  2057. kvm_migrate_timers(vcpu);
  2058. vcpu->cpu = cpu;
  2059. }
  2060. accumulate_steal_time(vcpu);
  2061. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  2062. }
  2063. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  2064. {
  2065. kvm_x86_ops->vcpu_put(vcpu);
  2066. kvm_put_guest_fpu(vcpu);
  2067. vcpu->arch.last_host_tsc = native_read_tsc();
  2068. }
  2069. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2070. struct kvm_lapic_state *s)
  2071. {
  2072. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2073. return 0;
  2074. }
  2075. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2076. struct kvm_lapic_state *s)
  2077. {
  2078. kvm_apic_post_state_restore(vcpu, s);
  2079. update_cr8_intercept(vcpu);
  2080. return 0;
  2081. }
  2082. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2083. struct kvm_interrupt *irq)
  2084. {
  2085. if (irq->irq < 0 || irq->irq >= 256)
  2086. return -EINVAL;
  2087. if (irqchip_in_kernel(vcpu->kvm))
  2088. return -ENXIO;
  2089. kvm_queue_interrupt(vcpu, irq->irq, false);
  2090. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2091. return 0;
  2092. }
  2093. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2094. {
  2095. kvm_inject_nmi(vcpu);
  2096. return 0;
  2097. }
  2098. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2099. struct kvm_tpr_access_ctl *tac)
  2100. {
  2101. if (tac->flags)
  2102. return -EINVAL;
  2103. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2104. return 0;
  2105. }
  2106. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2107. u64 mcg_cap)
  2108. {
  2109. int r;
  2110. unsigned bank_num = mcg_cap & 0xff, bank;
  2111. r = -EINVAL;
  2112. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2113. goto out;
  2114. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2115. goto out;
  2116. r = 0;
  2117. vcpu->arch.mcg_cap = mcg_cap;
  2118. /* Init IA32_MCG_CTL to all 1s */
  2119. if (mcg_cap & MCG_CTL_P)
  2120. vcpu->arch.mcg_ctl = ~(u64)0;
  2121. /* Init IA32_MCi_CTL to all 1s */
  2122. for (bank = 0; bank < bank_num; bank++)
  2123. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2124. out:
  2125. return r;
  2126. }
  2127. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2128. struct kvm_x86_mce *mce)
  2129. {
  2130. u64 mcg_cap = vcpu->arch.mcg_cap;
  2131. unsigned bank_num = mcg_cap & 0xff;
  2132. u64 *banks = vcpu->arch.mce_banks;
  2133. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2134. return -EINVAL;
  2135. /*
  2136. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2137. * reporting is disabled
  2138. */
  2139. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2140. vcpu->arch.mcg_ctl != ~(u64)0)
  2141. return 0;
  2142. banks += 4 * mce->bank;
  2143. /*
  2144. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2145. * reporting is disabled for the bank
  2146. */
  2147. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2148. return 0;
  2149. if (mce->status & MCI_STATUS_UC) {
  2150. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2151. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2152. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2153. return 0;
  2154. }
  2155. if (banks[1] & MCI_STATUS_VAL)
  2156. mce->status |= MCI_STATUS_OVER;
  2157. banks[2] = mce->addr;
  2158. banks[3] = mce->misc;
  2159. vcpu->arch.mcg_status = mce->mcg_status;
  2160. banks[1] = mce->status;
  2161. kvm_queue_exception(vcpu, MC_VECTOR);
  2162. } else if (!(banks[1] & MCI_STATUS_VAL)
  2163. || !(banks[1] & MCI_STATUS_UC)) {
  2164. if (banks[1] & MCI_STATUS_VAL)
  2165. mce->status |= MCI_STATUS_OVER;
  2166. banks[2] = mce->addr;
  2167. banks[3] = mce->misc;
  2168. banks[1] = mce->status;
  2169. } else
  2170. banks[1] |= MCI_STATUS_OVER;
  2171. return 0;
  2172. }
  2173. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2174. struct kvm_vcpu_events *events)
  2175. {
  2176. process_nmi(vcpu);
  2177. events->exception.injected =
  2178. vcpu->arch.exception.pending &&
  2179. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2180. events->exception.nr = vcpu->arch.exception.nr;
  2181. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2182. events->exception.pad = 0;
  2183. events->exception.error_code = vcpu->arch.exception.error_code;
  2184. events->interrupt.injected =
  2185. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2186. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2187. events->interrupt.soft = 0;
  2188. events->interrupt.shadow =
  2189. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2190. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2191. events->nmi.injected = vcpu->arch.nmi_injected;
  2192. events->nmi.pending = vcpu->arch.nmi_pending != 0;
  2193. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2194. events->nmi.pad = 0;
  2195. events->sipi_vector = vcpu->arch.sipi_vector;
  2196. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2197. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2198. | KVM_VCPUEVENT_VALID_SHADOW);
  2199. memset(&events->reserved, 0, sizeof(events->reserved));
  2200. }
  2201. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2202. struct kvm_vcpu_events *events)
  2203. {
  2204. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2205. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2206. | KVM_VCPUEVENT_VALID_SHADOW))
  2207. return -EINVAL;
  2208. process_nmi(vcpu);
  2209. vcpu->arch.exception.pending = events->exception.injected;
  2210. vcpu->arch.exception.nr = events->exception.nr;
  2211. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2212. vcpu->arch.exception.error_code = events->exception.error_code;
  2213. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2214. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2215. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2216. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2217. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2218. events->interrupt.shadow);
  2219. vcpu->arch.nmi_injected = events->nmi.injected;
  2220. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2221. vcpu->arch.nmi_pending = events->nmi.pending;
  2222. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2223. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2224. vcpu->arch.sipi_vector = events->sipi_vector;
  2225. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2226. return 0;
  2227. }
  2228. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2229. struct kvm_debugregs *dbgregs)
  2230. {
  2231. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2232. dbgregs->dr6 = vcpu->arch.dr6;
  2233. dbgregs->dr7 = vcpu->arch.dr7;
  2234. dbgregs->flags = 0;
  2235. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2236. }
  2237. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2238. struct kvm_debugregs *dbgregs)
  2239. {
  2240. if (dbgregs->flags)
  2241. return -EINVAL;
  2242. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2243. vcpu->arch.dr6 = dbgregs->dr6;
  2244. vcpu->arch.dr7 = dbgregs->dr7;
  2245. return 0;
  2246. }
  2247. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2248. struct kvm_xsave *guest_xsave)
  2249. {
  2250. if (cpu_has_xsave)
  2251. memcpy(guest_xsave->region,
  2252. &vcpu->arch.guest_fpu.state->xsave,
  2253. xstate_size);
  2254. else {
  2255. memcpy(guest_xsave->region,
  2256. &vcpu->arch.guest_fpu.state->fxsave,
  2257. sizeof(struct i387_fxsave_struct));
  2258. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2259. XSTATE_FPSSE;
  2260. }
  2261. }
  2262. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2263. struct kvm_xsave *guest_xsave)
  2264. {
  2265. u64 xstate_bv =
  2266. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2267. if (cpu_has_xsave)
  2268. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2269. guest_xsave->region, xstate_size);
  2270. else {
  2271. if (xstate_bv & ~XSTATE_FPSSE)
  2272. return -EINVAL;
  2273. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2274. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2275. }
  2276. return 0;
  2277. }
  2278. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2279. struct kvm_xcrs *guest_xcrs)
  2280. {
  2281. if (!cpu_has_xsave) {
  2282. guest_xcrs->nr_xcrs = 0;
  2283. return;
  2284. }
  2285. guest_xcrs->nr_xcrs = 1;
  2286. guest_xcrs->flags = 0;
  2287. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2288. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2289. }
  2290. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2291. struct kvm_xcrs *guest_xcrs)
  2292. {
  2293. int i, r = 0;
  2294. if (!cpu_has_xsave)
  2295. return -EINVAL;
  2296. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2297. return -EINVAL;
  2298. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2299. /* Only support XCR0 currently */
  2300. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2301. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2302. guest_xcrs->xcrs[0].value);
  2303. break;
  2304. }
  2305. if (r)
  2306. r = -EINVAL;
  2307. return r;
  2308. }
  2309. /*
  2310. * kvm_set_guest_paused() indicates to the guest kernel that it has been
  2311. * stopped by the hypervisor. This function will be called from the host only.
  2312. * EINVAL is returned when the host attempts to set the flag for a guest that
  2313. * does not support pv clocks.
  2314. */
  2315. static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
  2316. {
  2317. if (!vcpu->arch.time_page)
  2318. return -EINVAL;
  2319. vcpu->arch.pvclock_set_guest_stopped_request = true;
  2320. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  2321. return 0;
  2322. }
  2323. long kvm_arch_vcpu_ioctl(struct file *filp,
  2324. unsigned int ioctl, unsigned long arg)
  2325. {
  2326. struct kvm_vcpu *vcpu = filp->private_data;
  2327. void __user *argp = (void __user *)arg;
  2328. int r;
  2329. union {
  2330. struct kvm_lapic_state *lapic;
  2331. struct kvm_xsave *xsave;
  2332. struct kvm_xcrs *xcrs;
  2333. void *buffer;
  2334. } u;
  2335. u.buffer = NULL;
  2336. switch (ioctl) {
  2337. case KVM_GET_LAPIC: {
  2338. r = -EINVAL;
  2339. if (!vcpu->arch.apic)
  2340. goto out;
  2341. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2342. r = -ENOMEM;
  2343. if (!u.lapic)
  2344. goto out;
  2345. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2346. if (r)
  2347. goto out;
  2348. r = -EFAULT;
  2349. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2350. goto out;
  2351. r = 0;
  2352. break;
  2353. }
  2354. case KVM_SET_LAPIC: {
  2355. r = -EINVAL;
  2356. if (!vcpu->arch.apic)
  2357. goto out;
  2358. u.lapic = memdup_user(argp, sizeof(*u.lapic));
  2359. if (IS_ERR(u.lapic)) {
  2360. r = PTR_ERR(u.lapic);
  2361. goto out;
  2362. }
  2363. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2364. if (r)
  2365. goto out;
  2366. r = 0;
  2367. break;
  2368. }
  2369. case KVM_INTERRUPT: {
  2370. struct kvm_interrupt irq;
  2371. r = -EFAULT;
  2372. if (copy_from_user(&irq, argp, sizeof irq))
  2373. goto out;
  2374. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2375. if (r)
  2376. goto out;
  2377. r = 0;
  2378. break;
  2379. }
  2380. case KVM_NMI: {
  2381. r = kvm_vcpu_ioctl_nmi(vcpu);
  2382. if (r)
  2383. goto out;
  2384. r = 0;
  2385. break;
  2386. }
  2387. case KVM_SET_CPUID: {
  2388. struct kvm_cpuid __user *cpuid_arg = argp;
  2389. struct kvm_cpuid cpuid;
  2390. r = -EFAULT;
  2391. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2392. goto out;
  2393. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2394. if (r)
  2395. goto out;
  2396. break;
  2397. }
  2398. case KVM_SET_CPUID2: {
  2399. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2400. struct kvm_cpuid2 cpuid;
  2401. r = -EFAULT;
  2402. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2403. goto out;
  2404. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2405. cpuid_arg->entries);
  2406. if (r)
  2407. goto out;
  2408. break;
  2409. }
  2410. case KVM_GET_CPUID2: {
  2411. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2412. struct kvm_cpuid2 cpuid;
  2413. r = -EFAULT;
  2414. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2415. goto out;
  2416. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2417. cpuid_arg->entries);
  2418. if (r)
  2419. goto out;
  2420. r = -EFAULT;
  2421. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2422. goto out;
  2423. r = 0;
  2424. break;
  2425. }
  2426. case KVM_GET_MSRS:
  2427. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2428. break;
  2429. case KVM_SET_MSRS:
  2430. r = msr_io(vcpu, argp, do_set_msr, 0);
  2431. break;
  2432. case KVM_TPR_ACCESS_REPORTING: {
  2433. struct kvm_tpr_access_ctl tac;
  2434. r = -EFAULT;
  2435. if (copy_from_user(&tac, argp, sizeof tac))
  2436. goto out;
  2437. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2438. if (r)
  2439. goto out;
  2440. r = -EFAULT;
  2441. if (copy_to_user(argp, &tac, sizeof tac))
  2442. goto out;
  2443. r = 0;
  2444. break;
  2445. };
  2446. case KVM_SET_VAPIC_ADDR: {
  2447. struct kvm_vapic_addr va;
  2448. r = -EINVAL;
  2449. if (!irqchip_in_kernel(vcpu->kvm))
  2450. goto out;
  2451. r = -EFAULT;
  2452. if (copy_from_user(&va, argp, sizeof va))
  2453. goto out;
  2454. r = 0;
  2455. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2456. break;
  2457. }
  2458. case KVM_X86_SETUP_MCE: {
  2459. u64 mcg_cap;
  2460. r = -EFAULT;
  2461. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2462. goto out;
  2463. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2464. break;
  2465. }
  2466. case KVM_X86_SET_MCE: {
  2467. struct kvm_x86_mce mce;
  2468. r = -EFAULT;
  2469. if (copy_from_user(&mce, argp, sizeof mce))
  2470. goto out;
  2471. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2472. break;
  2473. }
  2474. case KVM_GET_VCPU_EVENTS: {
  2475. struct kvm_vcpu_events events;
  2476. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2477. r = -EFAULT;
  2478. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2479. break;
  2480. r = 0;
  2481. break;
  2482. }
  2483. case KVM_SET_VCPU_EVENTS: {
  2484. struct kvm_vcpu_events events;
  2485. r = -EFAULT;
  2486. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2487. break;
  2488. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2489. break;
  2490. }
  2491. case KVM_GET_DEBUGREGS: {
  2492. struct kvm_debugregs dbgregs;
  2493. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2494. r = -EFAULT;
  2495. if (copy_to_user(argp, &dbgregs,
  2496. sizeof(struct kvm_debugregs)))
  2497. break;
  2498. r = 0;
  2499. break;
  2500. }
  2501. case KVM_SET_DEBUGREGS: {
  2502. struct kvm_debugregs dbgregs;
  2503. r = -EFAULT;
  2504. if (copy_from_user(&dbgregs, argp,
  2505. sizeof(struct kvm_debugregs)))
  2506. break;
  2507. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2508. break;
  2509. }
  2510. case KVM_GET_XSAVE: {
  2511. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2512. r = -ENOMEM;
  2513. if (!u.xsave)
  2514. break;
  2515. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2516. r = -EFAULT;
  2517. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2518. break;
  2519. r = 0;
  2520. break;
  2521. }
  2522. case KVM_SET_XSAVE: {
  2523. u.xsave = memdup_user(argp, sizeof(*u.xsave));
  2524. if (IS_ERR(u.xsave)) {
  2525. r = PTR_ERR(u.xsave);
  2526. goto out;
  2527. }
  2528. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2529. break;
  2530. }
  2531. case KVM_GET_XCRS: {
  2532. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2533. r = -ENOMEM;
  2534. if (!u.xcrs)
  2535. break;
  2536. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2537. r = -EFAULT;
  2538. if (copy_to_user(argp, u.xcrs,
  2539. sizeof(struct kvm_xcrs)))
  2540. break;
  2541. r = 0;
  2542. break;
  2543. }
  2544. case KVM_SET_XCRS: {
  2545. u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
  2546. if (IS_ERR(u.xcrs)) {
  2547. r = PTR_ERR(u.xcrs);
  2548. goto out;
  2549. }
  2550. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2551. break;
  2552. }
  2553. case KVM_SET_TSC_KHZ: {
  2554. u32 user_tsc_khz;
  2555. r = -EINVAL;
  2556. user_tsc_khz = (u32)arg;
  2557. if (user_tsc_khz >= kvm_max_guest_tsc_khz)
  2558. goto out;
  2559. if (user_tsc_khz == 0)
  2560. user_tsc_khz = tsc_khz;
  2561. kvm_set_tsc_khz(vcpu, user_tsc_khz);
  2562. r = 0;
  2563. goto out;
  2564. }
  2565. case KVM_GET_TSC_KHZ: {
  2566. r = vcpu->arch.virtual_tsc_khz;
  2567. goto out;
  2568. }
  2569. case KVM_KVMCLOCK_CTRL: {
  2570. r = kvm_set_guest_paused(vcpu);
  2571. goto out;
  2572. }
  2573. default:
  2574. r = -EINVAL;
  2575. }
  2576. out:
  2577. kfree(u.buffer);
  2578. return r;
  2579. }
  2580. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  2581. {
  2582. return VM_FAULT_SIGBUS;
  2583. }
  2584. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2585. {
  2586. int ret;
  2587. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2588. return -1;
  2589. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2590. return ret;
  2591. }
  2592. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2593. u64 ident_addr)
  2594. {
  2595. kvm->arch.ept_identity_map_addr = ident_addr;
  2596. return 0;
  2597. }
  2598. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2599. u32 kvm_nr_mmu_pages)
  2600. {
  2601. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2602. return -EINVAL;
  2603. mutex_lock(&kvm->slots_lock);
  2604. spin_lock(&kvm->mmu_lock);
  2605. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2606. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2607. spin_unlock(&kvm->mmu_lock);
  2608. mutex_unlock(&kvm->slots_lock);
  2609. return 0;
  2610. }
  2611. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2612. {
  2613. return kvm->arch.n_max_mmu_pages;
  2614. }
  2615. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2616. {
  2617. int r;
  2618. r = 0;
  2619. switch (chip->chip_id) {
  2620. case KVM_IRQCHIP_PIC_MASTER:
  2621. memcpy(&chip->chip.pic,
  2622. &pic_irqchip(kvm)->pics[0],
  2623. sizeof(struct kvm_pic_state));
  2624. break;
  2625. case KVM_IRQCHIP_PIC_SLAVE:
  2626. memcpy(&chip->chip.pic,
  2627. &pic_irqchip(kvm)->pics[1],
  2628. sizeof(struct kvm_pic_state));
  2629. break;
  2630. case KVM_IRQCHIP_IOAPIC:
  2631. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2632. break;
  2633. default:
  2634. r = -EINVAL;
  2635. break;
  2636. }
  2637. return r;
  2638. }
  2639. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2640. {
  2641. int r;
  2642. r = 0;
  2643. switch (chip->chip_id) {
  2644. case KVM_IRQCHIP_PIC_MASTER:
  2645. spin_lock(&pic_irqchip(kvm)->lock);
  2646. memcpy(&pic_irqchip(kvm)->pics[0],
  2647. &chip->chip.pic,
  2648. sizeof(struct kvm_pic_state));
  2649. spin_unlock(&pic_irqchip(kvm)->lock);
  2650. break;
  2651. case KVM_IRQCHIP_PIC_SLAVE:
  2652. spin_lock(&pic_irqchip(kvm)->lock);
  2653. memcpy(&pic_irqchip(kvm)->pics[1],
  2654. &chip->chip.pic,
  2655. sizeof(struct kvm_pic_state));
  2656. spin_unlock(&pic_irqchip(kvm)->lock);
  2657. break;
  2658. case KVM_IRQCHIP_IOAPIC:
  2659. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2660. break;
  2661. default:
  2662. r = -EINVAL;
  2663. break;
  2664. }
  2665. kvm_pic_update_irq(pic_irqchip(kvm));
  2666. return r;
  2667. }
  2668. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2669. {
  2670. int r = 0;
  2671. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2672. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2673. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2674. return r;
  2675. }
  2676. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2677. {
  2678. int r = 0;
  2679. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2680. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2681. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2682. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2683. return r;
  2684. }
  2685. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2686. {
  2687. int r = 0;
  2688. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2689. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2690. sizeof(ps->channels));
  2691. ps->flags = kvm->arch.vpit->pit_state.flags;
  2692. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2693. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2694. return r;
  2695. }
  2696. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2697. {
  2698. int r = 0, start = 0;
  2699. u32 prev_legacy, cur_legacy;
  2700. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2701. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2702. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2703. if (!prev_legacy && cur_legacy)
  2704. start = 1;
  2705. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2706. sizeof(kvm->arch.vpit->pit_state.channels));
  2707. kvm->arch.vpit->pit_state.flags = ps->flags;
  2708. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2709. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2710. return r;
  2711. }
  2712. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2713. struct kvm_reinject_control *control)
  2714. {
  2715. if (!kvm->arch.vpit)
  2716. return -ENXIO;
  2717. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2718. kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
  2719. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2720. return 0;
  2721. }
  2722. /**
  2723. * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
  2724. * @kvm: kvm instance
  2725. * @log: slot id and address to which we copy the log
  2726. *
  2727. * We need to keep it in mind that VCPU threads can write to the bitmap
  2728. * concurrently. So, to avoid losing data, we keep the following order for
  2729. * each bit:
  2730. *
  2731. * 1. Take a snapshot of the bit and clear it if needed.
  2732. * 2. Write protect the corresponding page.
  2733. * 3. Flush TLB's if needed.
  2734. * 4. Copy the snapshot to the userspace.
  2735. *
  2736. * Between 2 and 3, the guest may write to the page using the remaining TLB
  2737. * entry. This is not a problem because the page will be reported dirty at
  2738. * step 4 using the snapshot taken before and step 3 ensures that successive
  2739. * writes will be logged for the next call.
  2740. */
  2741. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  2742. {
  2743. int r;
  2744. struct kvm_memory_slot *memslot;
  2745. unsigned long n, i;
  2746. unsigned long *dirty_bitmap;
  2747. unsigned long *dirty_bitmap_buffer;
  2748. bool is_dirty = false;
  2749. mutex_lock(&kvm->slots_lock);
  2750. r = -EINVAL;
  2751. if (log->slot >= KVM_MEMORY_SLOTS)
  2752. goto out;
  2753. memslot = id_to_memslot(kvm->memslots, log->slot);
  2754. dirty_bitmap = memslot->dirty_bitmap;
  2755. r = -ENOENT;
  2756. if (!dirty_bitmap)
  2757. goto out;
  2758. n = kvm_dirty_bitmap_bytes(memslot);
  2759. dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
  2760. memset(dirty_bitmap_buffer, 0, n);
  2761. spin_lock(&kvm->mmu_lock);
  2762. for (i = 0; i < n / sizeof(long); i++) {
  2763. unsigned long mask;
  2764. gfn_t offset;
  2765. if (!dirty_bitmap[i])
  2766. continue;
  2767. is_dirty = true;
  2768. mask = xchg(&dirty_bitmap[i], 0);
  2769. dirty_bitmap_buffer[i] = mask;
  2770. offset = i * BITS_PER_LONG;
  2771. kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
  2772. }
  2773. if (is_dirty)
  2774. kvm_flush_remote_tlbs(kvm);
  2775. spin_unlock(&kvm->mmu_lock);
  2776. r = -EFAULT;
  2777. if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
  2778. goto out;
  2779. r = 0;
  2780. out:
  2781. mutex_unlock(&kvm->slots_lock);
  2782. return r;
  2783. }
  2784. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
  2785. {
  2786. if (!irqchip_in_kernel(kvm))
  2787. return -ENXIO;
  2788. irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2789. irq_event->irq, irq_event->level);
  2790. return 0;
  2791. }
  2792. long kvm_arch_vm_ioctl(struct file *filp,
  2793. unsigned int ioctl, unsigned long arg)
  2794. {
  2795. struct kvm *kvm = filp->private_data;
  2796. void __user *argp = (void __user *)arg;
  2797. int r = -ENOTTY;
  2798. /*
  2799. * This union makes it completely explicit to gcc-3.x
  2800. * that these two variables' stack usage should be
  2801. * combined, not added together.
  2802. */
  2803. union {
  2804. struct kvm_pit_state ps;
  2805. struct kvm_pit_state2 ps2;
  2806. struct kvm_pit_config pit_config;
  2807. } u;
  2808. switch (ioctl) {
  2809. case KVM_SET_TSS_ADDR:
  2810. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2811. if (r < 0)
  2812. goto out;
  2813. break;
  2814. case KVM_SET_IDENTITY_MAP_ADDR: {
  2815. u64 ident_addr;
  2816. r = -EFAULT;
  2817. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2818. goto out;
  2819. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2820. if (r < 0)
  2821. goto out;
  2822. break;
  2823. }
  2824. case KVM_SET_NR_MMU_PAGES:
  2825. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2826. if (r)
  2827. goto out;
  2828. break;
  2829. case KVM_GET_NR_MMU_PAGES:
  2830. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2831. break;
  2832. case KVM_CREATE_IRQCHIP: {
  2833. struct kvm_pic *vpic;
  2834. mutex_lock(&kvm->lock);
  2835. r = -EEXIST;
  2836. if (kvm->arch.vpic)
  2837. goto create_irqchip_unlock;
  2838. r = -EINVAL;
  2839. if (atomic_read(&kvm->online_vcpus))
  2840. goto create_irqchip_unlock;
  2841. r = -ENOMEM;
  2842. vpic = kvm_create_pic(kvm);
  2843. if (vpic) {
  2844. r = kvm_ioapic_init(kvm);
  2845. if (r) {
  2846. mutex_lock(&kvm->slots_lock);
  2847. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2848. &vpic->dev_master);
  2849. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2850. &vpic->dev_slave);
  2851. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2852. &vpic->dev_eclr);
  2853. mutex_unlock(&kvm->slots_lock);
  2854. kfree(vpic);
  2855. goto create_irqchip_unlock;
  2856. }
  2857. } else
  2858. goto create_irqchip_unlock;
  2859. smp_wmb();
  2860. kvm->arch.vpic = vpic;
  2861. smp_wmb();
  2862. r = kvm_setup_default_irq_routing(kvm);
  2863. if (r) {
  2864. mutex_lock(&kvm->slots_lock);
  2865. mutex_lock(&kvm->irq_lock);
  2866. kvm_ioapic_destroy(kvm);
  2867. kvm_destroy_pic(kvm);
  2868. mutex_unlock(&kvm->irq_lock);
  2869. mutex_unlock(&kvm->slots_lock);
  2870. }
  2871. create_irqchip_unlock:
  2872. mutex_unlock(&kvm->lock);
  2873. break;
  2874. }
  2875. case KVM_CREATE_PIT:
  2876. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2877. goto create_pit;
  2878. case KVM_CREATE_PIT2:
  2879. r = -EFAULT;
  2880. if (copy_from_user(&u.pit_config, argp,
  2881. sizeof(struct kvm_pit_config)))
  2882. goto out;
  2883. create_pit:
  2884. mutex_lock(&kvm->slots_lock);
  2885. r = -EEXIST;
  2886. if (kvm->arch.vpit)
  2887. goto create_pit_unlock;
  2888. r = -ENOMEM;
  2889. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2890. if (kvm->arch.vpit)
  2891. r = 0;
  2892. create_pit_unlock:
  2893. mutex_unlock(&kvm->slots_lock);
  2894. break;
  2895. case KVM_GET_IRQCHIP: {
  2896. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2897. struct kvm_irqchip *chip;
  2898. chip = memdup_user(argp, sizeof(*chip));
  2899. if (IS_ERR(chip)) {
  2900. r = PTR_ERR(chip);
  2901. goto out;
  2902. }
  2903. r = -ENXIO;
  2904. if (!irqchip_in_kernel(kvm))
  2905. goto get_irqchip_out;
  2906. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2907. if (r)
  2908. goto get_irqchip_out;
  2909. r = -EFAULT;
  2910. if (copy_to_user(argp, chip, sizeof *chip))
  2911. goto get_irqchip_out;
  2912. r = 0;
  2913. get_irqchip_out:
  2914. kfree(chip);
  2915. if (r)
  2916. goto out;
  2917. break;
  2918. }
  2919. case KVM_SET_IRQCHIP: {
  2920. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2921. struct kvm_irqchip *chip;
  2922. chip = memdup_user(argp, sizeof(*chip));
  2923. if (IS_ERR(chip)) {
  2924. r = PTR_ERR(chip);
  2925. goto out;
  2926. }
  2927. r = -ENXIO;
  2928. if (!irqchip_in_kernel(kvm))
  2929. goto set_irqchip_out;
  2930. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2931. if (r)
  2932. goto set_irqchip_out;
  2933. r = 0;
  2934. set_irqchip_out:
  2935. kfree(chip);
  2936. if (r)
  2937. goto out;
  2938. break;
  2939. }
  2940. case KVM_GET_PIT: {
  2941. r = -EFAULT;
  2942. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2943. goto out;
  2944. r = -ENXIO;
  2945. if (!kvm->arch.vpit)
  2946. goto out;
  2947. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2948. if (r)
  2949. goto out;
  2950. r = -EFAULT;
  2951. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2952. goto out;
  2953. r = 0;
  2954. break;
  2955. }
  2956. case KVM_SET_PIT: {
  2957. r = -EFAULT;
  2958. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2959. goto out;
  2960. r = -ENXIO;
  2961. if (!kvm->arch.vpit)
  2962. goto out;
  2963. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2964. if (r)
  2965. goto out;
  2966. r = 0;
  2967. break;
  2968. }
  2969. case KVM_GET_PIT2: {
  2970. r = -ENXIO;
  2971. if (!kvm->arch.vpit)
  2972. goto out;
  2973. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2974. if (r)
  2975. goto out;
  2976. r = -EFAULT;
  2977. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2978. goto out;
  2979. r = 0;
  2980. break;
  2981. }
  2982. case KVM_SET_PIT2: {
  2983. r = -EFAULT;
  2984. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2985. goto out;
  2986. r = -ENXIO;
  2987. if (!kvm->arch.vpit)
  2988. goto out;
  2989. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2990. if (r)
  2991. goto out;
  2992. r = 0;
  2993. break;
  2994. }
  2995. case KVM_REINJECT_CONTROL: {
  2996. struct kvm_reinject_control control;
  2997. r = -EFAULT;
  2998. if (copy_from_user(&control, argp, sizeof(control)))
  2999. goto out;
  3000. r = kvm_vm_ioctl_reinject(kvm, &control);
  3001. if (r)
  3002. goto out;
  3003. r = 0;
  3004. break;
  3005. }
  3006. case KVM_XEN_HVM_CONFIG: {
  3007. r = -EFAULT;
  3008. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3009. sizeof(struct kvm_xen_hvm_config)))
  3010. goto out;
  3011. r = -EINVAL;
  3012. if (kvm->arch.xen_hvm_config.flags)
  3013. goto out;
  3014. r = 0;
  3015. break;
  3016. }
  3017. case KVM_SET_CLOCK: {
  3018. struct kvm_clock_data user_ns;
  3019. u64 now_ns;
  3020. s64 delta;
  3021. r = -EFAULT;
  3022. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3023. goto out;
  3024. r = -EINVAL;
  3025. if (user_ns.flags)
  3026. goto out;
  3027. r = 0;
  3028. local_irq_disable();
  3029. now_ns = get_kernel_ns();
  3030. delta = user_ns.clock - now_ns;
  3031. local_irq_enable();
  3032. kvm->arch.kvmclock_offset = delta;
  3033. break;
  3034. }
  3035. case KVM_GET_CLOCK: {
  3036. struct kvm_clock_data user_ns;
  3037. u64 now_ns;
  3038. local_irq_disable();
  3039. now_ns = get_kernel_ns();
  3040. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3041. local_irq_enable();
  3042. user_ns.flags = 0;
  3043. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3044. r = -EFAULT;
  3045. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3046. goto out;
  3047. r = 0;
  3048. break;
  3049. }
  3050. default:
  3051. ;
  3052. }
  3053. out:
  3054. return r;
  3055. }
  3056. static void kvm_init_msr_list(void)
  3057. {
  3058. u32 dummy[2];
  3059. unsigned i, j;
  3060. /* skip the first msrs in the list. KVM-specific */
  3061. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3062. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3063. continue;
  3064. if (j < i)
  3065. msrs_to_save[j] = msrs_to_save[i];
  3066. j++;
  3067. }
  3068. num_msrs_to_save = j;
  3069. }
  3070. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3071. const void *v)
  3072. {
  3073. int handled = 0;
  3074. int n;
  3075. do {
  3076. n = min(len, 8);
  3077. if (!(vcpu->arch.apic &&
  3078. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3079. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3080. break;
  3081. handled += n;
  3082. addr += n;
  3083. len -= n;
  3084. v += n;
  3085. } while (len);
  3086. return handled;
  3087. }
  3088. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3089. {
  3090. int handled = 0;
  3091. int n;
  3092. do {
  3093. n = min(len, 8);
  3094. if (!(vcpu->arch.apic &&
  3095. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3096. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3097. break;
  3098. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3099. handled += n;
  3100. addr += n;
  3101. len -= n;
  3102. v += n;
  3103. } while (len);
  3104. return handled;
  3105. }
  3106. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3107. struct kvm_segment *var, int seg)
  3108. {
  3109. kvm_x86_ops->set_segment(vcpu, var, seg);
  3110. }
  3111. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3112. struct kvm_segment *var, int seg)
  3113. {
  3114. kvm_x86_ops->get_segment(vcpu, var, seg);
  3115. }
  3116. gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3117. {
  3118. gpa_t t_gpa;
  3119. struct x86_exception exception;
  3120. BUG_ON(!mmu_is_nested(vcpu));
  3121. /* NPT walks are always user-walks */
  3122. access |= PFERR_USER_MASK;
  3123. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3124. return t_gpa;
  3125. }
  3126. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3127. struct x86_exception *exception)
  3128. {
  3129. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3130. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3131. }
  3132. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3133. struct x86_exception *exception)
  3134. {
  3135. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3136. access |= PFERR_FETCH_MASK;
  3137. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3138. }
  3139. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3140. struct x86_exception *exception)
  3141. {
  3142. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3143. access |= PFERR_WRITE_MASK;
  3144. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3145. }
  3146. /* uses this to access any guest's mapped memory without checking CPL */
  3147. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3148. struct x86_exception *exception)
  3149. {
  3150. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3151. }
  3152. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3153. struct kvm_vcpu *vcpu, u32 access,
  3154. struct x86_exception *exception)
  3155. {
  3156. void *data = val;
  3157. int r = X86EMUL_CONTINUE;
  3158. while (bytes) {
  3159. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3160. exception);
  3161. unsigned offset = addr & (PAGE_SIZE-1);
  3162. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3163. int ret;
  3164. if (gpa == UNMAPPED_GVA)
  3165. return X86EMUL_PROPAGATE_FAULT;
  3166. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3167. if (ret < 0) {
  3168. r = X86EMUL_IO_NEEDED;
  3169. goto out;
  3170. }
  3171. bytes -= toread;
  3172. data += toread;
  3173. addr += toread;
  3174. }
  3175. out:
  3176. return r;
  3177. }
  3178. /* used for instruction fetching */
  3179. static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
  3180. gva_t addr, void *val, unsigned int bytes,
  3181. struct x86_exception *exception)
  3182. {
  3183. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3184. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3185. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3186. access | PFERR_FETCH_MASK,
  3187. exception);
  3188. }
  3189. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  3190. gva_t addr, void *val, unsigned int bytes,
  3191. struct x86_exception *exception)
  3192. {
  3193. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3194. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3195. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3196. exception);
  3197. }
  3198. EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
  3199. static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3200. gva_t addr, void *val, unsigned int bytes,
  3201. struct x86_exception *exception)
  3202. {
  3203. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3204. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3205. }
  3206. int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3207. gva_t addr, void *val,
  3208. unsigned int bytes,
  3209. struct x86_exception *exception)
  3210. {
  3211. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3212. void *data = val;
  3213. int r = X86EMUL_CONTINUE;
  3214. while (bytes) {
  3215. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3216. PFERR_WRITE_MASK,
  3217. exception);
  3218. unsigned offset = addr & (PAGE_SIZE-1);
  3219. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3220. int ret;
  3221. if (gpa == UNMAPPED_GVA)
  3222. return X86EMUL_PROPAGATE_FAULT;
  3223. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3224. if (ret < 0) {
  3225. r = X86EMUL_IO_NEEDED;
  3226. goto out;
  3227. }
  3228. bytes -= towrite;
  3229. data += towrite;
  3230. addr += towrite;
  3231. }
  3232. out:
  3233. return r;
  3234. }
  3235. EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
  3236. static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
  3237. gpa_t *gpa, struct x86_exception *exception,
  3238. bool write)
  3239. {
  3240. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3241. if (vcpu_match_mmio_gva(vcpu, gva) &&
  3242. check_write_user_access(vcpu, write, access,
  3243. vcpu->arch.access)) {
  3244. *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
  3245. (gva & (PAGE_SIZE - 1));
  3246. trace_vcpu_match_mmio(gva, *gpa, write, false);
  3247. return 1;
  3248. }
  3249. if (write)
  3250. access |= PFERR_WRITE_MASK;
  3251. *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3252. if (*gpa == UNMAPPED_GVA)
  3253. return -1;
  3254. /* For APIC access vmexit */
  3255. if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3256. return 1;
  3257. if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
  3258. trace_vcpu_match_mmio(gva, *gpa, write, true);
  3259. return 1;
  3260. }
  3261. return 0;
  3262. }
  3263. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3264. const void *val, int bytes)
  3265. {
  3266. int ret;
  3267. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3268. if (ret < 0)
  3269. return 0;
  3270. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  3271. return 1;
  3272. }
  3273. struct read_write_emulator_ops {
  3274. int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
  3275. int bytes);
  3276. int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3277. void *val, int bytes);
  3278. int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3279. int bytes, void *val);
  3280. int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3281. void *val, int bytes);
  3282. bool write;
  3283. };
  3284. static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
  3285. {
  3286. if (vcpu->mmio_read_completed) {
  3287. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3288. vcpu->mmio_fragments[0].gpa, *(u64 *)val);
  3289. vcpu->mmio_read_completed = 0;
  3290. return 1;
  3291. }
  3292. return 0;
  3293. }
  3294. static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3295. void *val, int bytes)
  3296. {
  3297. return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
  3298. }
  3299. static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3300. void *val, int bytes)
  3301. {
  3302. return emulator_write_phys(vcpu, gpa, val, bytes);
  3303. }
  3304. static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
  3305. {
  3306. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3307. return vcpu_mmio_write(vcpu, gpa, bytes, val);
  3308. }
  3309. static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3310. void *val, int bytes)
  3311. {
  3312. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3313. return X86EMUL_IO_NEEDED;
  3314. }
  3315. static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3316. void *val, int bytes)
  3317. {
  3318. struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
  3319. memcpy(vcpu->run->mmio.data, frag->data, frag->len);
  3320. return X86EMUL_CONTINUE;
  3321. }
  3322. static struct read_write_emulator_ops read_emultor = {
  3323. .read_write_prepare = read_prepare,
  3324. .read_write_emulate = read_emulate,
  3325. .read_write_mmio = vcpu_mmio_read,
  3326. .read_write_exit_mmio = read_exit_mmio,
  3327. };
  3328. static struct read_write_emulator_ops write_emultor = {
  3329. .read_write_emulate = write_emulate,
  3330. .read_write_mmio = write_mmio,
  3331. .read_write_exit_mmio = write_exit_mmio,
  3332. .write = true,
  3333. };
  3334. static int emulator_read_write_onepage(unsigned long addr, void *val,
  3335. unsigned int bytes,
  3336. struct x86_exception *exception,
  3337. struct kvm_vcpu *vcpu,
  3338. struct read_write_emulator_ops *ops)
  3339. {
  3340. gpa_t gpa;
  3341. int handled, ret;
  3342. bool write = ops->write;
  3343. struct kvm_mmio_fragment *frag;
  3344. ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
  3345. if (ret < 0)
  3346. return X86EMUL_PROPAGATE_FAULT;
  3347. /* For APIC access vmexit */
  3348. if (ret)
  3349. goto mmio;
  3350. if (ops->read_write_emulate(vcpu, gpa, val, bytes))
  3351. return X86EMUL_CONTINUE;
  3352. mmio:
  3353. /*
  3354. * Is this MMIO handled locally?
  3355. */
  3356. handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
  3357. if (handled == bytes)
  3358. return X86EMUL_CONTINUE;
  3359. gpa += handled;
  3360. bytes -= handled;
  3361. val += handled;
  3362. while (bytes) {
  3363. unsigned now = min(bytes, 8U);
  3364. frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
  3365. frag->gpa = gpa;
  3366. frag->data = val;
  3367. frag->len = now;
  3368. gpa += now;
  3369. val += now;
  3370. bytes -= now;
  3371. }
  3372. return X86EMUL_CONTINUE;
  3373. }
  3374. int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
  3375. void *val, unsigned int bytes,
  3376. struct x86_exception *exception,
  3377. struct read_write_emulator_ops *ops)
  3378. {
  3379. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3380. gpa_t gpa;
  3381. int rc;
  3382. if (ops->read_write_prepare &&
  3383. ops->read_write_prepare(vcpu, val, bytes))
  3384. return X86EMUL_CONTINUE;
  3385. vcpu->mmio_nr_fragments = 0;
  3386. /* Crossing a page boundary? */
  3387. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3388. int now;
  3389. now = -addr & ~PAGE_MASK;
  3390. rc = emulator_read_write_onepage(addr, val, now, exception,
  3391. vcpu, ops);
  3392. if (rc != X86EMUL_CONTINUE)
  3393. return rc;
  3394. addr += now;
  3395. val += now;
  3396. bytes -= now;
  3397. }
  3398. rc = emulator_read_write_onepage(addr, val, bytes, exception,
  3399. vcpu, ops);
  3400. if (rc != X86EMUL_CONTINUE)
  3401. return rc;
  3402. if (!vcpu->mmio_nr_fragments)
  3403. return rc;
  3404. gpa = vcpu->mmio_fragments[0].gpa;
  3405. vcpu->mmio_needed = 1;
  3406. vcpu->mmio_cur_fragment = 0;
  3407. vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
  3408. vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
  3409. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3410. vcpu->run->mmio.phys_addr = gpa;
  3411. return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
  3412. }
  3413. static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
  3414. unsigned long addr,
  3415. void *val,
  3416. unsigned int bytes,
  3417. struct x86_exception *exception)
  3418. {
  3419. return emulator_read_write(ctxt, addr, val, bytes,
  3420. exception, &read_emultor);
  3421. }
  3422. int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
  3423. unsigned long addr,
  3424. const void *val,
  3425. unsigned int bytes,
  3426. struct x86_exception *exception)
  3427. {
  3428. return emulator_read_write(ctxt, addr, (void *)val, bytes,
  3429. exception, &write_emultor);
  3430. }
  3431. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3432. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3433. #ifdef CONFIG_X86_64
  3434. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3435. #else
  3436. # define CMPXCHG64(ptr, old, new) \
  3437. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3438. #endif
  3439. static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
  3440. unsigned long addr,
  3441. const void *old,
  3442. const void *new,
  3443. unsigned int bytes,
  3444. struct x86_exception *exception)
  3445. {
  3446. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3447. gpa_t gpa;
  3448. struct page *page;
  3449. char *kaddr;
  3450. bool exchanged;
  3451. /* guests cmpxchg8b have to be emulated atomically */
  3452. if (bytes > 8 || (bytes & (bytes - 1)))
  3453. goto emul_write;
  3454. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3455. if (gpa == UNMAPPED_GVA ||
  3456. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3457. goto emul_write;
  3458. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3459. goto emul_write;
  3460. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3461. if (is_error_page(page))
  3462. goto emul_write;
  3463. kaddr = kmap_atomic(page);
  3464. kaddr += offset_in_page(gpa);
  3465. switch (bytes) {
  3466. case 1:
  3467. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3468. break;
  3469. case 2:
  3470. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3471. break;
  3472. case 4:
  3473. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3474. break;
  3475. case 8:
  3476. exchanged = CMPXCHG64(kaddr, old, new);
  3477. break;
  3478. default:
  3479. BUG();
  3480. }
  3481. kunmap_atomic(kaddr);
  3482. kvm_release_page_dirty(page);
  3483. if (!exchanged)
  3484. return X86EMUL_CMPXCHG_FAILED;
  3485. kvm_mmu_pte_write(vcpu, gpa, new, bytes);
  3486. return X86EMUL_CONTINUE;
  3487. emul_write:
  3488. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3489. return emulator_write_emulated(ctxt, addr, new, bytes, exception);
  3490. }
  3491. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3492. {
  3493. /* TODO: String I/O for in kernel device */
  3494. int r;
  3495. if (vcpu->arch.pio.in)
  3496. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3497. vcpu->arch.pio.size, pd);
  3498. else
  3499. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3500. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3501. pd);
  3502. return r;
  3503. }
  3504. static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
  3505. unsigned short port, void *val,
  3506. unsigned int count, bool in)
  3507. {
  3508. trace_kvm_pio(!in, port, size, count);
  3509. vcpu->arch.pio.port = port;
  3510. vcpu->arch.pio.in = in;
  3511. vcpu->arch.pio.count = count;
  3512. vcpu->arch.pio.size = size;
  3513. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3514. vcpu->arch.pio.count = 0;
  3515. return 1;
  3516. }
  3517. vcpu->run->exit_reason = KVM_EXIT_IO;
  3518. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3519. vcpu->run->io.size = size;
  3520. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3521. vcpu->run->io.count = count;
  3522. vcpu->run->io.port = port;
  3523. return 0;
  3524. }
  3525. static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  3526. int size, unsigned short port, void *val,
  3527. unsigned int count)
  3528. {
  3529. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3530. int ret;
  3531. if (vcpu->arch.pio.count)
  3532. goto data_avail;
  3533. ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
  3534. if (ret) {
  3535. data_avail:
  3536. memcpy(val, vcpu->arch.pio_data, size * count);
  3537. vcpu->arch.pio.count = 0;
  3538. return 1;
  3539. }
  3540. return 0;
  3541. }
  3542. static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
  3543. int size, unsigned short port,
  3544. const void *val, unsigned int count)
  3545. {
  3546. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3547. memcpy(vcpu->arch.pio_data, val, size * count);
  3548. return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
  3549. }
  3550. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3551. {
  3552. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3553. }
  3554. static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
  3555. {
  3556. kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
  3557. }
  3558. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3559. {
  3560. if (!need_emulate_wbinvd(vcpu))
  3561. return X86EMUL_CONTINUE;
  3562. if (kvm_x86_ops->has_wbinvd_exit()) {
  3563. int cpu = get_cpu();
  3564. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3565. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3566. wbinvd_ipi, NULL, 1);
  3567. put_cpu();
  3568. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3569. } else
  3570. wbinvd();
  3571. return X86EMUL_CONTINUE;
  3572. }
  3573. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3574. static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
  3575. {
  3576. kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
  3577. }
  3578. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3579. {
  3580. return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
  3581. }
  3582. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3583. {
  3584. return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
  3585. }
  3586. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3587. {
  3588. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3589. }
  3590. static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
  3591. {
  3592. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3593. unsigned long value;
  3594. switch (cr) {
  3595. case 0:
  3596. value = kvm_read_cr0(vcpu);
  3597. break;
  3598. case 2:
  3599. value = vcpu->arch.cr2;
  3600. break;
  3601. case 3:
  3602. value = kvm_read_cr3(vcpu);
  3603. break;
  3604. case 4:
  3605. value = kvm_read_cr4(vcpu);
  3606. break;
  3607. case 8:
  3608. value = kvm_get_cr8(vcpu);
  3609. break;
  3610. default:
  3611. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  3612. return 0;
  3613. }
  3614. return value;
  3615. }
  3616. static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
  3617. {
  3618. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3619. int res = 0;
  3620. switch (cr) {
  3621. case 0:
  3622. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3623. break;
  3624. case 2:
  3625. vcpu->arch.cr2 = val;
  3626. break;
  3627. case 3:
  3628. res = kvm_set_cr3(vcpu, val);
  3629. break;
  3630. case 4:
  3631. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3632. break;
  3633. case 8:
  3634. res = kvm_set_cr8(vcpu, val);
  3635. break;
  3636. default:
  3637. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  3638. res = -1;
  3639. }
  3640. return res;
  3641. }
  3642. static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
  3643. {
  3644. kvm_set_rflags(emul_to_vcpu(ctxt), val);
  3645. }
  3646. static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
  3647. {
  3648. return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
  3649. }
  3650. static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3651. {
  3652. kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
  3653. }
  3654. static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3655. {
  3656. kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
  3657. }
  3658. static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3659. {
  3660. kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
  3661. }
  3662. static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3663. {
  3664. kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
  3665. }
  3666. static unsigned long emulator_get_cached_segment_base(
  3667. struct x86_emulate_ctxt *ctxt, int seg)
  3668. {
  3669. return get_segment_base(emul_to_vcpu(ctxt), seg);
  3670. }
  3671. static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
  3672. struct desc_struct *desc, u32 *base3,
  3673. int seg)
  3674. {
  3675. struct kvm_segment var;
  3676. kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
  3677. *selector = var.selector;
  3678. if (var.unusable)
  3679. return false;
  3680. if (var.g)
  3681. var.limit >>= 12;
  3682. set_desc_limit(desc, var.limit);
  3683. set_desc_base(desc, (unsigned long)var.base);
  3684. #ifdef CONFIG_X86_64
  3685. if (base3)
  3686. *base3 = var.base >> 32;
  3687. #endif
  3688. desc->type = var.type;
  3689. desc->s = var.s;
  3690. desc->dpl = var.dpl;
  3691. desc->p = var.present;
  3692. desc->avl = var.avl;
  3693. desc->l = var.l;
  3694. desc->d = var.db;
  3695. desc->g = var.g;
  3696. return true;
  3697. }
  3698. static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
  3699. struct desc_struct *desc, u32 base3,
  3700. int seg)
  3701. {
  3702. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3703. struct kvm_segment var;
  3704. var.selector = selector;
  3705. var.base = get_desc_base(desc);
  3706. #ifdef CONFIG_X86_64
  3707. var.base |= ((u64)base3) << 32;
  3708. #endif
  3709. var.limit = get_desc_limit(desc);
  3710. if (desc->g)
  3711. var.limit = (var.limit << 12) | 0xfff;
  3712. var.type = desc->type;
  3713. var.present = desc->p;
  3714. var.dpl = desc->dpl;
  3715. var.db = desc->d;
  3716. var.s = desc->s;
  3717. var.l = desc->l;
  3718. var.g = desc->g;
  3719. var.avl = desc->avl;
  3720. var.present = desc->p;
  3721. var.unusable = !var.present;
  3722. var.padding = 0;
  3723. kvm_set_segment(vcpu, &var, seg);
  3724. return;
  3725. }
  3726. static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
  3727. u32 msr_index, u64 *pdata)
  3728. {
  3729. return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
  3730. }
  3731. static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
  3732. u32 msr_index, u64 data)
  3733. {
  3734. return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
  3735. }
  3736. static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
  3737. u32 pmc, u64 *pdata)
  3738. {
  3739. return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
  3740. }
  3741. static void emulator_halt(struct x86_emulate_ctxt *ctxt)
  3742. {
  3743. emul_to_vcpu(ctxt)->arch.halt_request = 1;
  3744. }
  3745. static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
  3746. {
  3747. preempt_disable();
  3748. kvm_load_guest_fpu(emul_to_vcpu(ctxt));
  3749. /*
  3750. * CR0.TS may reference the host fpu state, not the guest fpu state,
  3751. * so it may be clear at this point.
  3752. */
  3753. clts();
  3754. }
  3755. static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
  3756. {
  3757. preempt_enable();
  3758. }
  3759. static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
  3760. struct x86_instruction_info *info,
  3761. enum x86_intercept_stage stage)
  3762. {
  3763. return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
  3764. }
  3765. static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
  3766. u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
  3767. {
  3768. kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
  3769. }
  3770. static struct x86_emulate_ops emulate_ops = {
  3771. .read_std = kvm_read_guest_virt_system,
  3772. .write_std = kvm_write_guest_virt_system,
  3773. .fetch = kvm_fetch_guest_virt,
  3774. .read_emulated = emulator_read_emulated,
  3775. .write_emulated = emulator_write_emulated,
  3776. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3777. .invlpg = emulator_invlpg,
  3778. .pio_in_emulated = emulator_pio_in_emulated,
  3779. .pio_out_emulated = emulator_pio_out_emulated,
  3780. .get_segment = emulator_get_segment,
  3781. .set_segment = emulator_set_segment,
  3782. .get_cached_segment_base = emulator_get_cached_segment_base,
  3783. .get_gdt = emulator_get_gdt,
  3784. .get_idt = emulator_get_idt,
  3785. .set_gdt = emulator_set_gdt,
  3786. .set_idt = emulator_set_idt,
  3787. .get_cr = emulator_get_cr,
  3788. .set_cr = emulator_set_cr,
  3789. .set_rflags = emulator_set_rflags,
  3790. .cpl = emulator_get_cpl,
  3791. .get_dr = emulator_get_dr,
  3792. .set_dr = emulator_set_dr,
  3793. .set_msr = emulator_set_msr,
  3794. .get_msr = emulator_get_msr,
  3795. .read_pmc = emulator_read_pmc,
  3796. .halt = emulator_halt,
  3797. .wbinvd = emulator_wbinvd,
  3798. .fix_hypercall = emulator_fix_hypercall,
  3799. .get_fpu = emulator_get_fpu,
  3800. .put_fpu = emulator_put_fpu,
  3801. .intercept = emulator_intercept,
  3802. .get_cpuid = emulator_get_cpuid,
  3803. };
  3804. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3805. {
  3806. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3807. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3808. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3809. vcpu->arch.regs_dirty = ~0;
  3810. }
  3811. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3812. {
  3813. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3814. /*
  3815. * an sti; sti; sequence only disable interrupts for the first
  3816. * instruction. So, if the last instruction, be it emulated or
  3817. * not, left the system with the INT_STI flag enabled, it
  3818. * means that the last instruction is an sti. We should not
  3819. * leave the flag on in this case. The same goes for mov ss
  3820. */
  3821. if (!(int_shadow & mask))
  3822. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3823. }
  3824. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3825. {
  3826. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3827. if (ctxt->exception.vector == PF_VECTOR)
  3828. kvm_propagate_fault(vcpu, &ctxt->exception);
  3829. else if (ctxt->exception.error_code_valid)
  3830. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  3831. ctxt->exception.error_code);
  3832. else
  3833. kvm_queue_exception(vcpu, ctxt->exception.vector);
  3834. }
  3835. static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
  3836. const unsigned long *regs)
  3837. {
  3838. memset(&ctxt->twobyte, 0,
  3839. (void *)&ctxt->regs - (void *)&ctxt->twobyte);
  3840. memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
  3841. ctxt->fetch.start = 0;
  3842. ctxt->fetch.end = 0;
  3843. ctxt->io_read.pos = 0;
  3844. ctxt->io_read.end = 0;
  3845. ctxt->mem_read.pos = 0;
  3846. ctxt->mem_read.end = 0;
  3847. }
  3848. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3849. {
  3850. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3851. int cs_db, cs_l;
  3852. /*
  3853. * TODO: fix emulate.c to use guest_read/write_register
  3854. * instead of direct ->regs accesses, can save hundred cycles
  3855. * on Intel for instructions that don't read/change RSP, for
  3856. * for example.
  3857. */
  3858. cache_all_regs(vcpu);
  3859. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3860. ctxt->eflags = kvm_get_rflags(vcpu);
  3861. ctxt->eip = kvm_rip_read(vcpu);
  3862. ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3863. (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
  3864. cs_l ? X86EMUL_MODE_PROT64 :
  3865. cs_db ? X86EMUL_MODE_PROT32 :
  3866. X86EMUL_MODE_PROT16;
  3867. ctxt->guest_mode = is_guest_mode(vcpu);
  3868. init_decode_cache(ctxt, vcpu->arch.regs);
  3869. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  3870. }
  3871. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
  3872. {
  3873. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3874. int ret;
  3875. init_emulate_ctxt(vcpu);
  3876. ctxt->op_bytes = 2;
  3877. ctxt->ad_bytes = 2;
  3878. ctxt->_eip = ctxt->eip + inc_eip;
  3879. ret = emulate_int_real(ctxt, irq);
  3880. if (ret != X86EMUL_CONTINUE)
  3881. return EMULATE_FAIL;
  3882. ctxt->eip = ctxt->_eip;
  3883. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  3884. kvm_rip_write(vcpu, ctxt->eip);
  3885. kvm_set_rflags(vcpu, ctxt->eflags);
  3886. if (irq == NMI_VECTOR)
  3887. vcpu->arch.nmi_pending = 0;
  3888. else
  3889. vcpu->arch.interrupt.pending = false;
  3890. return EMULATE_DONE;
  3891. }
  3892. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3893. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3894. {
  3895. int r = EMULATE_DONE;
  3896. ++vcpu->stat.insn_emulation_fail;
  3897. trace_kvm_emulate_insn_failed(vcpu);
  3898. if (!is_guest_mode(vcpu)) {
  3899. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3900. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3901. vcpu->run->internal.ndata = 0;
  3902. r = EMULATE_FAIL;
  3903. }
  3904. kvm_queue_exception(vcpu, UD_VECTOR);
  3905. return r;
  3906. }
  3907. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3908. {
  3909. gpa_t gpa;
  3910. pfn_t pfn;
  3911. if (tdp_enabled)
  3912. return false;
  3913. /*
  3914. * if emulation was due to access to shadowed page table
  3915. * and it failed try to unshadow page and re-enter the
  3916. * guest to let CPU execute the instruction.
  3917. */
  3918. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3919. return true;
  3920. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3921. if (gpa == UNMAPPED_GVA)
  3922. return true; /* let cpu generate fault */
  3923. /*
  3924. * Do not retry the unhandleable instruction if it faults on the
  3925. * readonly host memory, otherwise it will goto a infinite loop:
  3926. * retry instruction -> write #PF -> emulation fail -> retry
  3927. * instruction -> ...
  3928. */
  3929. pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
  3930. if (!is_error_pfn(pfn)) {
  3931. kvm_release_pfn_clean(pfn);
  3932. return true;
  3933. }
  3934. return false;
  3935. }
  3936. static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
  3937. unsigned long cr2, int emulation_type)
  3938. {
  3939. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3940. unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
  3941. last_retry_eip = vcpu->arch.last_retry_eip;
  3942. last_retry_addr = vcpu->arch.last_retry_addr;
  3943. /*
  3944. * If the emulation is caused by #PF and it is non-page_table
  3945. * writing instruction, it means the VM-EXIT is caused by shadow
  3946. * page protected, we can zap the shadow page and retry this
  3947. * instruction directly.
  3948. *
  3949. * Note: if the guest uses a non-page-table modifying instruction
  3950. * on the PDE that points to the instruction, then we will unmap
  3951. * the instruction and go to an infinite loop. So, we cache the
  3952. * last retried eip and the last fault address, if we meet the eip
  3953. * and the address again, we can break out of the potential infinite
  3954. * loop.
  3955. */
  3956. vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
  3957. if (!(emulation_type & EMULTYPE_RETRY))
  3958. return false;
  3959. if (x86_page_table_writing_insn(ctxt))
  3960. return false;
  3961. if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
  3962. return false;
  3963. vcpu->arch.last_retry_eip = ctxt->eip;
  3964. vcpu->arch.last_retry_addr = cr2;
  3965. if (!vcpu->arch.mmu.direct_map)
  3966. gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
  3967. kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3968. return true;
  3969. }
  3970. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  3971. unsigned long cr2,
  3972. int emulation_type,
  3973. void *insn,
  3974. int insn_len)
  3975. {
  3976. int r;
  3977. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3978. bool writeback = true;
  3979. kvm_clear_exception_queue(vcpu);
  3980. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3981. init_emulate_ctxt(vcpu);
  3982. ctxt->interruptibility = 0;
  3983. ctxt->have_exception = false;
  3984. ctxt->perm_ok = false;
  3985. ctxt->only_vendor_specific_insn
  3986. = emulation_type & EMULTYPE_TRAP_UD;
  3987. r = x86_decode_insn(ctxt, insn, insn_len);
  3988. trace_kvm_emulate_insn_start(vcpu);
  3989. ++vcpu->stat.insn_emulation;
  3990. if (r != EMULATION_OK) {
  3991. if (emulation_type & EMULTYPE_TRAP_UD)
  3992. return EMULATE_FAIL;
  3993. if (reexecute_instruction(vcpu, cr2))
  3994. return EMULATE_DONE;
  3995. if (emulation_type & EMULTYPE_SKIP)
  3996. return EMULATE_FAIL;
  3997. return handle_emulation_failure(vcpu);
  3998. }
  3999. }
  4000. if (emulation_type & EMULTYPE_SKIP) {
  4001. kvm_rip_write(vcpu, ctxt->_eip);
  4002. return EMULATE_DONE;
  4003. }
  4004. if (retry_instruction(ctxt, cr2, emulation_type))
  4005. return EMULATE_DONE;
  4006. /* this is needed for vmware backdoor interface to work since it
  4007. changes registers values during IO operation */
  4008. if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
  4009. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4010. memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
  4011. }
  4012. restart:
  4013. r = x86_emulate_insn(ctxt);
  4014. if (r == EMULATION_INTERCEPTED)
  4015. return EMULATE_DONE;
  4016. if (r == EMULATION_FAILED) {
  4017. if (reexecute_instruction(vcpu, cr2))
  4018. return EMULATE_DONE;
  4019. return handle_emulation_failure(vcpu);
  4020. }
  4021. if (ctxt->have_exception) {
  4022. inject_emulated_exception(vcpu);
  4023. r = EMULATE_DONE;
  4024. } else if (vcpu->arch.pio.count) {
  4025. if (!vcpu->arch.pio.in)
  4026. vcpu->arch.pio.count = 0;
  4027. else
  4028. writeback = false;
  4029. r = EMULATE_DO_MMIO;
  4030. } else if (vcpu->mmio_needed) {
  4031. if (!vcpu->mmio_is_write)
  4032. writeback = false;
  4033. r = EMULATE_DO_MMIO;
  4034. } else if (r == EMULATION_RESTART)
  4035. goto restart;
  4036. else
  4037. r = EMULATE_DONE;
  4038. if (writeback) {
  4039. toggle_interruptibility(vcpu, ctxt->interruptibility);
  4040. kvm_set_rflags(vcpu, ctxt->eflags);
  4041. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4042. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  4043. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4044. kvm_rip_write(vcpu, ctxt->eip);
  4045. } else
  4046. vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
  4047. return r;
  4048. }
  4049. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  4050. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  4051. {
  4052. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4053. int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
  4054. size, port, &val, 1);
  4055. /* do not return to emulator after return from userspace */
  4056. vcpu->arch.pio.count = 0;
  4057. return ret;
  4058. }
  4059. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  4060. static void tsc_bad(void *info)
  4061. {
  4062. __this_cpu_write(cpu_tsc_khz, 0);
  4063. }
  4064. static void tsc_khz_changed(void *data)
  4065. {
  4066. struct cpufreq_freqs *freq = data;
  4067. unsigned long khz = 0;
  4068. if (data)
  4069. khz = freq->new;
  4070. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4071. khz = cpufreq_quick_get(raw_smp_processor_id());
  4072. if (!khz)
  4073. khz = tsc_khz;
  4074. __this_cpu_write(cpu_tsc_khz, khz);
  4075. }
  4076. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  4077. void *data)
  4078. {
  4079. struct cpufreq_freqs *freq = data;
  4080. struct kvm *kvm;
  4081. struct kvm_vcpu *vcpu;
  4082. int i, send_ipi = 0;
  4083. /*
  4084. * We allow guests to temporarily run on slowing clocks,
  4085. * provided we notify them after, or to run on accelerating
  4086. * clocks, provided we notify them before. Thus time never
  4087. * goes backwards.
  4088. *
  4089. * However, we have a problem. We can't atomically update
  4090. * the frequency of a given CPU from this function; it is
  4091. * merely a notifier, which can be called from any CPU.
  4092. * Changing the TSC frequency at arbitrary points in time
  4093. * requires a recomputation of local variables related to
  4094. * the TSC for each VCPU. We must flag these local variables
  4095. * to be updated and be sure the update takes place with the
  4096. * new frequency before any guests proceed.
  4097. *
  4098. * Unfortunately, the combination of hotplug CPU and frequency
  4099. * change creates an intractable locking scenario; the order
  4100. * of when these callouts happen is undefined with respect to
  4101. * CPU hotplug, and they can race with each other. As such,
  4102. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4103. * undefined; you can actually have a CPU frequency change take
  4104. * place in between the computation of X and the setting of the
  4105. * variable. To protect against this problem, all updates of
  4106. * the per_cpu tsc_khz variable are done in an interrupt
  4107. * protected IPI, and all callers wishing to update the value
  4108. * must wait for a synchronous IPI to complete (which is trivial
  4109. * if the caller is on the CPU already). This establishes the
  4110. * necessary total order on variable updates.
  4111. *
  4112. * Note that because a guest time update may take place
  4113. * anytime after the setting of the VCPU's request bit, the
  4114. * correct TSC value must be set before the request. However,
  4115. * to ensure the update actually makes it to any guest which
  4116. * starts running in hardware virtualization between the set
  4117. * and the acquisition of the spinlock, we must also ping the
  4118. * CPU after setting the request bit.
  4119. *
  4120. */
  4121. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4122. return 0;
  4123. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4124. return 0;
  4125. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4126. raw_spin_lock(&kvm_lock);
  4127. list_for_each_entry(kvm, &vm_list, vm_list) {
  4128. kvm_for_each_vcpu(i, vcpu, kvm) {
  4129. if (vcpu->cpu != freq->cpu)
  4130. continue;
  4131. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4132. if (vcpu->cpu != smp_processor_id())
  4133. send_ipi = 1;
  4134. }
  4135. }
  4136. raw_spin_unlock(&kvm_lock);
  4137. if (freq->old < freq->new && send_ipi) {
  4138. /*
  4139. * We upscale the frequency. Must make the guest
  4140. * doesn't see old kvmclock values while running with
  4141. * the new frequency, otherwise we risk the guest sees
  4142. * time go backwards.
  4143. *
  4144. * In case we update the frequency for another cpu
  4145. * (which might be in guest context) send an interrupt
  4146. * to kick the cpu out of guest context. Next time
  4147. * guest context is entered kvmclock will be updated,
  4148. * so the guest will not see stale values.
  4149. */
  4150. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4151. }
  4152. return 0;
  4153. }
  4154. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4155. .notifier_call = kvmclock_cpufreq_notifier
  4156. };
  4157. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4158. unsigned long action, void *hcpu)
  4159. {
  4160. unsigned int cpu = (unsigned long)hcpu;
  4161. switch (action) {
  4162. case CPU_ONLINE:
  4163. case CPU_DOWN_FAILED:
  4164. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4165. break;
  4166. case CPU_DOWN_PREPARE:
  4167. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4168. break;
  4169. }
  4170. return NOTIFY_OK;
  4171. }
  4172. static struct notifier_block kvmclock_cpu_notifier_block = {
  4173. .notifier_call = kvmclock_cpu_notifier,
  4174. .priority = -INT_MAX
  4175. };
  4176. static void kvm_timer_init(void)
  4177. {
  4178. int cpu;
  4179. max_tsc_khz = tsc_khz;
  4180. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4181. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4182. #ifdef CONFIG_CPU_FREQ
  4183. struct cpufreq_policy policy;
  4184. memset(&policy, 0, sizeof(policy));
  4185. cpu = get_cpu();
  4186. cpufreq_get_policy(&policy, cpu);
  4187. if (policy.cpuinfo.max_freq)
  4188. max_tsc_khz = policy.cpuinfo.max_freq;
  4189. put_cpu();
  4190. #endif
  4191. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4192. CPUFREQ_TRANSITION_NOTIFIER);
  4193. }
  4194. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4195. for_each_online_cpu(cpu)
  4196. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4197. }
  4198. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4199. int kvm_is_in_guest(void)
  4200. {
  4201. return __this_cpu_read(current_vcpu) != NULL;
  4202. }
  4203. static int kvm_is_user_mode(void)
  4204. {
  4205. int user_mode = 3;
  4206. if (__this_cpu_read(current_vcpu))
  4207. user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
  4208. return user_mode != 0;
  4209. }
  4210. static unsigned long kvm_get_guest_ip(void)
  4211. {
  4212. unsigned long ip = 0;
  4213. if (__this_cpu_read(current_vcpu))
  4214. ip = kvm_rip_read(__this_cpu_read(current_vcpu));
  4215. return ip;
  4216. }
  4217. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4218. .is_in_guest = kvm_is_in_guest,
  4219. .is_user_mode = kvm_is_user_mode,
  4220. .get_guest_ip = kvm_get_guest_ip,
  4221. };
  4222. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4223. {
  4224. __this_cpu_write(current_vcpu, vcpu);
  4225. }
  4226. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4227. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4228. {
  4229. __this_cpu_write(current_vcpu, NULL);
  4230. }
  4231. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4232. static void kvm_set_mmio_spte_mask(void)
  4233. {
  4234. u64 mask;
  4235. int maxphyaddr = boot_cpu_data.x86_phys_bits;
  4236. /*
  4237. * Set the reserved bits and the present bit of an paging-structure
  4238. * entry to generate page fault with PFER.RSV = 1.
  4239. */
  4240. mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
  4241. mask |= 1ull;
  4242. #ifdef CONFIG_X86_64
  4243. /*
  4244. * If reserved bit is not supported, clear the present bit to disable
  4245. * mmio page fault.
  4246. */
  4247. if (maxphyaddr == 52)
  4248. mask &= ~1ull;
  4249. #endif
  4250. kvm_mmu_set_mmio_spte_mask(mask);
  4251. }
  4252. int kvm_arch_init(void *opaque)
  4253. {
  4254. int r;
  4255. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4256. if (kvm_x86_ops) {
  4257. printk(KERN_ERR "kvm: already loaded the other module\n");
  4258. r = -EEXIST;
  4259. goto out;
  4260. }
  4261. if (!ops->cpu_has_kvm_support()) {
  4262. printk(KERN_ERR "kvm: no hardware support\n");
  4263. r = -EOPNOTSUPP;
  4264. goto out;
  4265. }
  4266. if (ops->disabled_by_bios()) {
  4267. printk(KERN_ERR "kvm: disabled by bios\n");
  4268. r = -EOPNOTSUPP;
  4269. goto out;
  4270. }
  4271. r = kvm_mmu_module_init();
  4272. if (r)
  4273. goto out;
  4274. kvm_set_mmio_spte_mask();
  4275. kvm_init_msr_list();
  4276. kvm_x86_ops = ops;
  4277. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4278. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4279. kvm_timer_init();
  4280. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4281. if (cpu_has_xsave)
  4282. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4283. kvm_lapic_init();
  4284. return 0;
  4285. out:
  4286. return r;
  4287. }
  4288. void kvm_arch_exit(void)
  4289. {
  4290. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4291. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4292. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4293. CPUFREQ_TRANSITION_NOTIFIER);
  4294. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4295. kvm_x86_ops = NULL;
  4296. kvm_mmu_module_exit();
  4297. }
  4298. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4299. {
  4300. ++vcpu->stat.halt_exits;
  4301. if (irqchip_in_kernel(vcpu->kvm)) {
  4302. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4303. return 1;
  4304. } else {
  4305. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4306. return 0;
  4307. }
  4308. }
  4309. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4310. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4311. {
  4312. u64 param, ingpa, outgpa, ret;
  4313. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4314. bool fast, longmode;
  4315. int cs_db, cs_l;
  4316. /*
  4317. * hypercall generates UD from non zero cpl and real mode
  4318. * per HYPER-V spec
  4319. */
  4320. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4321. kvm_queue_exception(vcpu, UD_VECTOR);
  4322. return 0;
  4323. }
  4324. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4325. longmode = is_long_mode(vcpu) && cs_l == 1;
  4326. if (!longmode) {
  4327. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4328. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4329. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4330. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4331. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4332. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4333. }
  4334. #ifdef CONFIG_X86_64
  4335. else {
  4336. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4337. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4338. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4339. }
  4340. #endif
  4341. code = param & 0xffff;
  4342. fast = (param >> 16) & 0x1;
  4343. rep_cnt = (param >> 32) & 0xfff;
  4344. rep_idx = (param >> 48) & 0xfff;
  4345. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4346. switch (code) {
  4347. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4348. kvm_vcpu_on_spin(vcpu);
  4349. break;
  4350. default:
  4351. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4352. break;
  4353. }
  4354. ret = res | (((u64)rep_done & 0xfff) << 32);
  4355. if (longmode) {
  4356. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4357. } else {
  4358. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4359. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4360. }
  4361. return 1;
  4362. }
  4363. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4364. {
  4365. unsigned long nr, a0, a1, a2, a3, ret;
  4366. int r = 1;
  4367. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4368. return kvm_hv_hypercall(vcpu);
  4369. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4370. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4371. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4372. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4373. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4374. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4375. if (!is_long_mode(vcpu)) {
  4376. nr &= 0xFFFFFFFF;
  4377. a0 &= 0xFFFFFFFF;
  4378. a1 &= 0xFFFFFFFF;
  4379. a2 &= 0xFFFFFFFF;
  4380. a3 &= 0xFFFFFFFF;
  4381. }
  4382. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4383. ret = -KVM_EPERM;
  4384. goto out;
  4385. }
  4386. switch (nr) {
  4387. case KVM_HC_VAPIC_POLL_IRQ:
  4388. ret = 0;
  4389. break;
  4390. default:
  4391. ret = -KVM_ENOSYS;
  4392. break;
  4393. }
  4394. out:
  4395. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4396. ++vcpu->stat.hypercalls;
  4397. return r;
  4398. }
  4399. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4400. int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
  4401. {
  4402. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4403. char instruction[3];
  4404. unsigned long rip = kvm_rip_read(vcpu);
  4405. /*
  4406. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4407. * to ensure that the updated hypercall appears atomically across all
  4408. * VCPUs.
  4409. */
  4410. kvm_mmu_zap_all(vcpu->kvm);
  4411. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4412. return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
  4413. }
  4414. /*
  4415. * Check if userspace requested an interrupt window, and that the
  4416. * interrupt window is open.
  4417. *
  4418. * No need to exit to userspace if we already have an interrupt queued.
  4419. */
  4420. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4421. {
  4422. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4423. vcpu->run->request_interrupt_window &&
  4424. kvm_arch_interrupt_allowed(vcpu));
  4425. }
  4426. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4427. {
  4428. struct kvm_run *kvm_run = vcpu->run;
  4429. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4430. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4431. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4432. if (irqchip_in_kernel(vcpu->kvm))
  4433. kvm_run->ready_for_interrupt_injection = 1;
  4434. else
  4435. kvm_run->ready_for_interrupt_injection =
  4436. kvm_arch_interrupt_allowed(vcpu) &&
  4437. !kvm_cpu_has_interrupt(vcpu) &&
  4438. !kvm_event_needs_reinjection(vcpu);
  4439. }
  4440. static void vapic_enter(struct kvm_vcpu *vcpu)
  4441. {
  4442. struct kvm_lapic *apic = vcpu->arch.apic;
  4443. struct page *page;
  4444. if (!apic || !apic->vapic_addr)
  4445. return;
  4446. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4447. vcpu->arch.apic->vapic_page = page;
  4448. }
  4449. static void vapic_exit(struct kvm_vcpu *vcpu)
  4450. {
  4451. struct kvm_lapic *apic = vcpu->arch.apic;
  4452. int idx;
  4453. if (!apic || !apic->vapic_addr)
  4454. return;
  4455. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4456. kvm_release_page_dirty(apic->vapic_page);
  4457. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4458. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4459. }
  4460. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4461. {
  4462. int max_irr, tpr;
  4463. if (!kvm_x86_ops->update_cr8_intercept)
  4464. return;
  4465. if (!vcpu->arch.apic)
  4466. return;
  4467. if (!vcpu->arch.apic->vapic_addr)
  4468. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4469. else
  4470. max_irr = -1;
  4471. if (max_irr != -1)
  4472. max_irr >>= 4;
  4473. tpr = kvm_lapic_get_cr8(vcpu);
  4474. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4475. }
  4476. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4477. {
  4478. /* try to reinject previous events if any */
  4479. if (vcpu->arch.exception.pending) {
  4480. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4481. vcpu->arch.exception.has_error_code,
  4482. vcpu->arch.exception.error_code);
  4483. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4484. vcpu->arch.exception.has_error_code,
  4485. vcpu->arch.exception.error_code,
  4486. vcpu->arch.exception.reinject);
  4487. return;
  4488. }
  4489. if (vcpu->arch.nmi_injected) {
  4490. kvm_x86_ops->set_nmi(vcpu);
  4491. return;
  4492. }
  4493. if (vcpu->arch.interrupt.pending) {
  4494. kvm_x86_ops->set_irq(vcpu);
  4495. return;
  4496. }
  4497. /* try to inject new event if pending */
  4498. if (vcpu->arch.nmi_pending) {
  4499. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4500. --vcpu->arch.nmi_pending;
  4501. vcpu->arch.nmi_injected = true;
  4502. kvm_x86_ops->set_nmi(vcpu);
  4503. }
  4504. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4505. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4506. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4507. false);
  4508. kvm_x86_ops->set_irq(vcpu);
  4509. }
  4510. }
  4511. }
  4512. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4513. {
  4514. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4515. !vcpu->guest_xcr0_loaded) {
  4516. /* kvm_set_xcr() also depends on this */
  4517. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4518. vcpu->guest_xcr0_loaded = 1;
  4519. }
  4520. }
  4521. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4522. {
  4523. if (vcpu->guest_xcr0_loaded) {
  4524. if (vcpu->arch.xcr0 != host_xcr0)
  4525. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4526. vcpu->guest_xcr0_loaded = 0;
  4527. }
  4528. }
  4529. static void process_nmi(struct kvm_vcpu *vcpu)
  4530. {
  4531. unsigned limit = 2;
  4532. /*
  4533. * x86 is limited to one NMI running, and one NMI pending after it.
  4534. * If an NMI is already in progress, limit further NMIs to just one.
  4535. * Otherwise, allow two (and we'll inject the first one immediately).
  4536. */
  4537. if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
  4538. limit = 1;
  4539. vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
  4540. vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
  4541. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4542. }
  4543. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4544. {
  4545. int r;
  4546. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4547. vcpu->run->request_interrupt_window;
  4548. bool req_immediate_exit = 0;
  4549. if (vcpu->requests) {
  4550. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4551. kvm_mmu_unload(vcpu);
  4552. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4553. __kvm_migrate_timers(vcpu);
  4554. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4555. r = kvm_guest_time_update(vcpu);
  4556. if (unlikely(r))
  4557. goto out;
  4558. }
  4559. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4560. kvm_mmu_sync_roots(vcpu);
  4561. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4562. kvm_x86_ops->tlb_flush(vcpu);
  4563. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4564. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4565. r = 0;
  4566. goto out;
  4567. }
  4568. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4569. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4570. r = 0;
  4571. goto out;
  4572. }
  4573. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4574. vcpu->fpu_active = 0;
  4575. kvm_x86_ops->fpu_deactivate(vcpu);
  4576. }
  4577. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4578. /* Page is swapped out. Do synthetic halt */
  4579. vcpu->arch.apf.halted = true;
  4580. r = 1;
  4581. goto out;
  4582. }
  4583. if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
  4584. record_steal_time(vcpu);
  4585. if (kvm_check_request(KVM_REQ_NMI, vcpu))
  4586. process_nmi(vcpu);
  4587. req_immediate_exit =
  4588. kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  4589. if (kvm_check_request(KVM_REQ_PMU, vcpu))
  4590. kvm_handle_pmu_event(vcpu);
  4591. if (kvm_check_request(KVM_REQ_PMI, vcpu))
  4592. kvm_deliver_pmi(vcpu);
  4593. }
  4594. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4595. inject_pending_event(vcpu);
  4596. /* enable NMI/IRQ window open exits if needed */
  4597. if (vcpu->arch.nmi_pending)
  4598. kvm_x86_ops->enable_nmi_window(vcpu);
  4599. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4600. kvm_x86_ops->enable_irq_window(vcpu);
  4601. if (kvm_lapic_enabled(vcpu)) {
  4602. update_cr8_intercept(vcpu);
  4603. kvm_lapic_sync_to_vapic(vcpu);
  4604. }
  4605. }
  4606. r = kvm_mmu_reload(vcpu);
  4607. if (unlikely(r)) {
  4608. goto cancel_injection;
  4609. }
  4610. preempt_disable();
  4611. kvm_x86_ops->prepare_guest_switch(vcpu);
  4612. if (vcpu->fpu_active)
  4613. kvm_load_guest_fpu(vcpu);
  4614. kvm_load_guest_xcr0(vcpu);
  4615. vcpu->mode = IN_GUEST_MODE;
  4616. /* We should set ->mode before check ->requests,
  4617. * see the comment in make_all_cpus_request.
  4618. */
  4619. smp_mb();
  4620. local_irq_disable();
  4621. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4622. || need_resched() || signal_pending(current)) {
  4623. vcpu->mode = OUTSIDE_GUEST_MODE;
  4624. smp_wmb();
  4625. local_irq_enable();
  4626. preempt_enable();
  4627. r = 1;
  4628. goto cancel_injection;
  4629. }
  4630. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4631. if (req_immediate_exit)
  4632. smp_send_reschedule(vcpu->cpu);
  4633. kvm_guest_enter();
  4634. if (unlikely(vcpu->arch.switch_db_regs)) {
  4635. set_debugreg(0, 7);
  4636. set_debugreg(vcpu->arch.eff_db[0], 0);
  4637. set_debugreg(vcpu->arch.eff_db[1], 1);
  4638. set_debugreg(vcpu->arch.eff_db[2], 2);
  4639. set_debugreg(vcpu->arch.eff_db[3], 3);
  4640. }
  4641. trace_kvm_entry(vcpu->vcpu_id);
  4642. kvm_x86_ops->run(vcpu);
  4643. /*
  4644. * If the guest has used debug registers, at least dr7
  4645. * will be disabled while returning to the host.
  4646. * If we don't have active breakpoints in the host, we don't
  4647. * care about the messed up debug address registers. But if
  4648. * we have some of them active, restore the old state.
  4649. */
  4650. if (hw_breakpoint_active())
  4651. hw_breakpoint_restore();
  4652. vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
  4653. vcpu->mode = OUTSIDE_GUEST_MODE;
  4654. smp_wmb();
  4655. local_irq_enable();
  4656. ++vcpu->stat.exits;
  4657. /*
  4658. * We must have an instruction between local_irq_enable() and
  4659. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4660. * the interrupt shadow. The stat.exits increment will do nicely.
  4661. * But we need to prevent reordering, hence this barrier():
  4662. */
  4663. barrier();
  4664. kvm_guest_exit();
  4665. preempt_enable();
  4666. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4667. /*
  4668. * Profile KVM exit RIPs:
  4669. */
  4670. if (unlikely(prof_on == KVM_PROFILING)) {
  4671. unsigned long rip = kvm_rip_read(vcpu);
  4672. profile_hit(KVM_PROFILING, (void *)rip);
  4673. }
  4674. if (unlikely(vcpu->arch.tsc_always_catchup))
  4675. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4676. if (vcpu->arch.apic_attention)
  4677. kvm_lapic_sync_from_vapic(vcpu);
  4678. r = kvm_x86_ops->handle_exit(vcpu);
  4679. return r;
  4680. cancel_injection:
  4681. kvm_x86_ops->cancel_injection(vcpu);
  4682. if (unlikely(vcpu->arch.apic_attention))
  4683. kvm_lapic_sync_from_vapic(vcpu);
  4684. out:
  4685. return r;
  4686. }
  4687. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4688. {
  4689. int r;
  4690. struct kvm *kvm = vcpu->kvm;
  4691. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4692. pr_debug("vcpu %d received sipi with vector # %x\n",
  4693. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4694. kvm_lapic_reset(vcpu);
  4695. r = kvm_arch_vcpu_reset(vcpu);
  4696. if (r)
  4697. return r;
  4698. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4699. }
  4700. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4701. vapic_enter(vcpu);
  4702. r = 1;
  4703. while (r > 0) {
  4704. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4705. !vcpu->arch.apf.halted)
  4706. r = vcpu_enter_guest(vcpu);
  4707. else {
  4708. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4709. kvm_vcpu_block(vcpu);
  4710. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4711. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4712. {
  4713. switch(vcpu->arch.mp_state) {
  4714. case KVM_MP_STATE_HALTED:
  4715. vcpu->arch.mp_state =
  4716. KVM_MP_STATE_RUNNABLE;
  4717. case KVM_MP_STATE_RUNNABLE:
  4718. vcpu->arch.apf.halted = false;
  4719. break;
  4720. case KVM_MP_STATE_SIPI_RECEIVED:
  4721. default:
  4722. r = -EINTR;
  4723. break;
  4724. }
  4725. }
  4726. }
  4727. if (r <= 0)
  4728. break;
  4729. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4730. if (kvm_cpu_has_pending_timer(vcpu))
  4731. kvm_inject_pending_timer_irqs(vcpu);
  4732. if (dm_request_for_irq_injection(vcpu)) {
  4733. r = -EINTR;
  4734. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4735. ++vcpu->stat.request_irq_exits;
  4736. }
  4737. kvm_check_async_pf_completion(vcpu);
  4738. if (signal_pending(current)) {
  4739. r = -EINTR;
  4740. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4741. ++vcpu->stat.signal_exits;
  4742. }
  4743. if (need_resched()) {
  4744. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4745. kvm_resched(vcpu);
  4746. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4747. }
  4748. }
  4749. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4750. vapic_exit(vcpu);
  4751. return r;
  4752. }
  4753. /*
  4754. * Implements the following, as a state machine:
  4755. *
  4756. * read:
  4757. * for each fragment
  4758. * write gpa, len
  4759. * exit
  4760. * copy data
  4761. * execute insn
  4762. *
  4763. * write:
  4764. * for each fragment
  4765. * write gpa, len
  4766. * copy data
  4767. * exit
  4768. */
  4769. static int complete_mmio(struct kvm_vcpu *vcpu)
  4770. {
  4771. struct kvm_run *run = vcpu->run;
  4772. struct kvm_mmio_fragment *frag;
  4773. int r;
  4774. if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
  4775. return 1;
  4776. if (vcpu->mmio_needed) {
  4777. /* Complete previous fragment */
  4778. frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
  4779. if (!vcpu->mmio_is_write)
  4780. memcpy(frag->data, run->mmio.data, frag->len);
  4781. if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
  4782. vcpu->mmio_needed = 0;
  4783. if (vcpu->mmio_is_write)
  4784. return 1;
  4785. vcpu->mmio_read_completed = 1;
  4786. goto done;
  4787. }
  4788. /* Initiate next fragment */
  4789. ++frag;
  4790. run->exit_reason = KVM_EXIT_MMIO;
  4791. run->mmio.phys_addr = frag->gpa;
  4792. if (vcpu->mmio_is_write)
  4793. memcpy(run->mmio.data, frag->data, frag->len);
  4794. run->mmio.len = frag->len;
  4795. run->mmio.is_write = vcpu->mmio_is_write;
  4796. return 0;
  4797. }
  4798. done:
  4799. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4800. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  4801. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4802. if (r != EMULATE_DONE)
  4803. return 0;
  4804. return 1;
  4805. }
  4806. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4807. {
  4808. int r;
  4809. sigset_t sigsaved;
  4810. if (!tsk_used_math(current) && init_fpu(current))
  4811. return -ENOMEM;
  4812. if (vcpu->sigset_active)
  4813. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4814. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4815. kvm_vcpu_block(vcpu);
  4816. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4817. r = -EAGAIN;
  4818. goto out;
  4819. }
  4820. /* re-sync apic's tpr */
  4821. if (!irqchip_in_kernel(vcpu->kvm)) {
  4822. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  4823. r = -EINVAL;
  4824. goto out;
  4825. }
  4826. }
  4827. r = complete_mmio(vcpu);
  4828. if (r <= 0)
  4829. goto out;
  4830. r = __vcpu_run(vcpu);
  4831. out:
  4832. post_kvm_run_save(vcpu);
  4833. if (vcpu->sigset_active)
  4834. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4835. return r;
  4836. }
  4837. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4838. {
  4839. if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
  4840. /*
  4841. * We are here if userspace calls get_regs() in the middle of
  4842. * instruction emulation. Registers state needs to be copied
  4843. * back from emulation context to vcpu. Userspace shouldn't do
  4844. * that usually, but some bad designed PV devices (vmware
  4845. * backdoor interface) need this to work
  4846. */
  4847. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4848. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  4849. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4850. }
  4851. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4852. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4853. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4854. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4855. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4856. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4857. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4858. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4859. #ifdef CONFIG_X86_64
  4860. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4861. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4862. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4863. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4864. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4865. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4866. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4867. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4868. #endif
  4869. regs->rip = kvm_rip_read(vcpu);
  4870. regs->rflags = kvm_get_rflags(vcpu);
  4871. return 0;
  4872. }
  4873. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4874. {
  4875. vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
  4876. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4877. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4878. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4879. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4880. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4881. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4882. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4883. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4884. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4885. #ifdef CONFIG_X86_64
  4886. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4887. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4888. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4889. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4890. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4891. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4892. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4893. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4894. #endif
  4895. kvm_rip_write(vcpu, regs->rip);
  4896. kvm_set_rflags(vcpu, regs->rflags);
  4897. vcpu->arch.exception.pending = false;
  4898. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4899. return 0;
  4900. }
  4901. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4902. {
  4903. struct kvm_segment cs;
  4904. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4905. *db = cs.db;
  4906. *l = cs.l;
  4907. }
  4908. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4909. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4910. struct kvm_sregs *sregs)
  4911. {
  4912. struct desc_ptr dt;
  4913. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4914. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4915. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4916. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4917. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4918. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4919. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4920. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4921. kvm_x86_ops->get_idt(vcpu, &dt);
  4922. sregs->idt.limit = dt.size;
  4923. sregs->idt.base = dt.address;
  4924. kvm_x86_ops->get_gdt(vcpu, &dt);
  4925. sregs->gdt.limit = dt.size;
  4926. sregs->gdt.base = dt.address;
  4927. sregs->cr0 = kvm_read_cr0(vcpu);
  4928. sregs->cr2 = vcpu->arch.cr2;
  4929. sregs->cr3 = kvm_read_cr3(vcpu);
  4930. sregs->cr4 = kvm_read_cr4(vcpu);
  4931. sregs->cr8 = kvm_get_cr8(vcpu);
  4932. sregs->efer = vcpu->arch.efer;
  4933. sregs->apic_base = kvm_get_apic_base(vcpu);
  4934. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4935. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4936. set_bit(vcpu->arch.interrupt.nr,
  4937. (unsigned long *)sregs->interrupt_bitmap);
  4938. return 0;
  4939. }
  4940. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4941. struct kvm_mp_state *mp_state)
  4942. {
  4943. mp_state->mp_state = vcpu->arch.mp_state;
  4944. return 0;
  4945. }
  4946. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4947. struct kvm_mp_state *mp_state)
  4948. {
  4949. vcpu->arch.mp_state = mp_state->mp_state;
  4950. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4951. return 0;
  4952. }
  4953. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
  4954. int reason, bool has_error_code, u32 error_code)
  4955. {
  4956. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4957. int ret;
  4958. init_emulate_ctxt(vcpu);
  4959. ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
  4960. has_error_code, error_code);
  4961. if (ret)
  4962. return EMULATE_FAIL;
  4963. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  4964. kvm_rip_write(vcpu, ctxt->eip);
  4965. kvm_set_rflags(vcpu, ctxt->eflags);
  4966. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4967. return EMULATE_DONE;
  4968. }
  4969. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4970. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4971. struct kvm_sregs *sregs)
  4972. {
  4973. int mmu_reset_needed = 0;
  4974. int pending_vec, max_bits, idx;
  4975. struct desc_ptr dt;
  4976. dt.size = sregs->idt.limit;
  4977. dt.address = sregs->idt.base;
  4978. kvm_x86_ops->set_idt(vcpu, &dt);
  4979. dt.size = sregs->gdt.limit;
  4980. dt.address = sregs->gdt.base;
  4981. kvm_x86_ops->set_gdt(vcpu, &dt);
  4982. vcpu->arch.cr2 = sregs->cr2;
  4983. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  4984. vcpu->arch.cr3 = sregs->cr3;
  4985. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  4986. kvm_set_cr8(vcpu, sregs->cr8);
  4987. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4988. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4989. kvm_set_apic_base(vcpu, sregs->apic_base);
  4990. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4991. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4992. vcpu->arch.cr0 = sregs->cr0;
  4993. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4994. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4995. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4996. kvm_update_cpuid(vcpu);
  4997. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4998. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4999. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  5000. mmu_reset_needed = 1;
  5001. }
  5002. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5003. if (mmu_reset_needed)
  5004. kvm_mmu_reset_context(vcpu);
  5005. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  5006. pending_vec = find_first_bit(
  5007. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  5008. if (pending_vec < max_bits) {
  5009. kvm_queue_interrupt(vcpu, pending_vec, false);
  5010. pr_debug("Set back pending irq %d\n", pending_vec);
  5011. }
  5012. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5013. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5014. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5015. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5016. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5017. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5018. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5019. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5020. update_cr8_intercept(vcpu);
  5021. /* Older userspace won't unhalt the vcpu on reset. */
  5022. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  5023. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  5024. !is_protmode(vcpu))
  5025. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5026. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5027. return 0;
  5028. }
  5029. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  5030. struct kvm_guest_debug *dbg)
  5031. {
  5032. unsigned long rflags;
  5033. int i, r;
  5034. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  5035. r = -EBUSY;
  5036. if (vcpu->arch.exception.pending)
  5037. goto out;
  5038. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  5039. kvm_queue_exception(vcpu, DB_VECTOR);
  5040. else
  5041. kvm_queue_exception(vcpu, BP_VECTOR);
  5042. }
  5043. /*
  5044. * Read rflags as long as potentially injected trace flags are still
  5045. * filtered out.
  5046. */
  5047. rflags = kvm_get_rflags(vcpu);
  5048. vcpu->guest_debug = dbg->control;
  5049. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  5050. vcpu->guest_debug = 0;
  5051. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  5052. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  5053. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  5054. vcpu->arch.switch_db_regs =
  5055. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  5056. } else {
  5057. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5058. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5059. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  5060. }
  5061. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5062. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5063. get_segment_base(vcpu, VCPU_SREG_CS);
  5064. /*
  5065. * Trigger an rflags update that will inject or remove the trace
  5066. * flags.
  5067. */
  5068. kvm_set_rflags(vcpu, rflags);
  5069. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  5070. r = 0;
  5071. out:
  5072. return r;
  5073. }
  5074. /*
  5075. * Translate a guest virtual address to a guest physical address.
  5076. */
  5077. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5078. struct kvm_translation *tr)
  5079. {
  5080. unsigned long vaddr = tr->linear_address;
  5081. gpa_t gpa;
  5082. int idx;
  5083. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5084. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5085. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5086. tr->physical_address = gpa;
  5087. tr->valid = gpa != UNMAPPED_GVA;
  5088. tr->writeable = 1;
  5089. tr->usermode = 0;
  5090. return 0;
  5091. }
  5092. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5093. {
  5094. struct i387_fxsave_struct *fxsave =
  5095. &vcpu->arch.guest_fpu.state->fxsave;
  5096. memcpy(fpu->fpr, fxsave->st_space, 128);
  5097. fpu->fcw = fxsave->cwd;
  5098. fpu->fsw = fxsave->swd;
  5099. fpu->ftwx = fxsave->twd;
  5100. fpu->last_opcode = fxsave->fop;
  5101. fpu->last_ip = fxsave->rip;
  5102. fpu->last_dp = fxsave->rdp;
  5103. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5104. return 0;
  5105. }
  5106. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5107. {
  5108. struct i387_fxsave_struct *fxsave =
  5109. &vcpu->arch.guest_fpu.state->fxsave;
  5110. memcpy(fxsave->st_space, fpu->fpr, 128);
  5111. fxsave->cwd = fpu->fcw;
  5112. fxsave->swd = fpu->fsw;
  5113. fxsave->twd = fpu->ftwx;
  5114. fxsave->fop = fpu->last_opcode;
  5115. fxsave->rip = fpu->last_ip;
  5116. fxsave->rdp = fpu->last_dp;
  5117. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5118. return 0;
  5119. }
  5120. int fx_init(struct kvm_vcpu *vcpu)
  5121. {
  5122. int err;
  5123. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5124. if (err)
  5125. return err;
  5126. fpu_finit(&vcpu->arch.guest_fpu);
  5127. /*
  5128. * Ensure guest xcr0 is valid for loading
  5129. */
  5130. vcpu->arch.xcr0 = XSTATE_FP;
  5131. vcpu->arch.cr0 |= X86_CR0_ET;
  5132. return 0;
  5133. }
  5134. EXPORT_SYMBOL_GPL(fx_init);
  5135. static void fx_free(struct kvm_vcpu *vcpu)
  5136. {
  5137. fpu_free(&vcpu->arch.guest_fpu);
  5138. }
  5139. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5140. {
  5141. if (vcpu->guest_fpu_loaded)
  5142. return;
  5143. /*
  5144. * Restore all possible states in the guest,
  5145. * and assume host would use all available bits.
  5146. * Guest xcr0 would be loaded later.
  5147. */
  5148. kvm_put_guest_xcr0(vcpu);
  5149. vcpu->guest_fpu_loaded = 1;
  5150. unlazy_fpu(current);
  5151. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5152. trace_kvm_fpu(1);
  5153. }
  5154. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5155. {
  5156. kvm_put_guest_xcr0(vcpu);
  5157. if (!vcpu->guest_fpu_loaded)
  5158. return;
  5159. vcpu->guest_fpu_loaded = 0;
  5160. fpu_save_init(&vcpu->arch.guest_fpu);
  5161. ++vcpu->stat.fpu_reload;
  5162. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5163. trace_kvm_fpu(0);
  5164. }
  5165. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5166. {
  5167. kvmclock_reset(vcpu);
  5168. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5169. fx_free(vcpu);
  5170. kvm_x86_ops->vcpu_free(vcpu);
  5171. }
  5172. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5173. unsigned int id)
  5174. {
  5175. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5176. printk_once(KERN_WARNING
  5177. "kvm: SMP vm created on host with unstable TSC; "
  5178. "guest TSC will not be reliable\n");
  5179. return kvm_x86_ops->vcpu_create(kvm, id);
  5180. }
  5181. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5182. {
  5183. int r;
  5184. vcpu->arch.mtrr_state.have_fixed = 1;
  5185. vcpu_load(vcpu);
  5186. r = kvm_arch_vcpu_reset(vcpu);
  5187. if (r == 0)
  5188. r = kvm_mmu_setup(vcpu);
  5189. vcpu_put(vcpu);
  5190. return r;
  5191. }
  5192. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5193. {
  5194. vcpu->arch.apf.msr_val = 0;
  5195. vcpu_load(vcpu);
  5196. kvm_mmu_unload(vcpu);
  5197. vcpu_put(vcpu);
  5198. fx_free(vcpu);
  5199. kvm_x86_ops->vcpu_free(vcpu);
  5200. }
  5201. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5202. {
  5203. atomic_set(&vcpu->arch.nmi_queued, 0);
  5204. vcpu->arch.nmi_pending = 0;
  5205. vcpu->arch.nmi_injected = false;
  5206. vcpu->arch.switch_db_regs = 0;
  5207. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5208. vcpu->arch.dr6 = DR6_FIXED_1;
  5209. vcpu->arch.dr7 = DR7_FIXED_1;
  5210. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5211. vcpu->arch.apf.msr_val = 0;
  5212. vcpu->arch.st.msr_val = 0;
  5213. kvmclock_reset(vcpu);
  5214. kvm_clear_async_pf_completion_queue(vcpu);
  5215. kvm_async_pf_hash_reset(vcpu);
  5216. vcpu->arch.apf.halted = false;
  5217. kvm_pmu_reset(vcpu);
  5218. return kvm_x86_ops->vcpu_reset(vcpu);
  5219. }
  5220. int kvm_arch_hardware_enable(void *garbage)
  5221. {
  5222. struct kvm *kvm;
  5223. struct kvm_vcpu *vcpu;
  5224. int i;
  5225. int ret;
  5226. u64 local_tsc;
  5227. u64 max_tsc = 0;
  5228. bool stable, backwards_tsc = false;
  5229. kvm_shared_msr_cpu_online();
  5230. ret = kvm_x86_ops->hardware_enable(garbage);
  5231. if (ret != 0)
  5232. return ret;
  5233. local_tsc = native_read_tsc();
  5234. stable = !check_tsc_unstable();
  5235. list_for_each_entry(kvm, &vm_list, vm_list) {
  5236. kvm_for_each_vcpu(i, vcpu, kvm) {
  5237. if (!stable && vcpu->cpu == smp_processor_id())
  5238. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  5239. if (stable && vcpu->arch.last_host_tsc > local_tsc) {
  5240. backwards_tsc = true;
  5241. if (vcpu->arch.last_host_tsc > max_tsc)
  5242. max_tsc = vcpu->arch.last_host_tsc;
  5243. }
  5244. }
  5245. }
  5246. /*
  5247. * Sometimes, even reliable TSCs go backwards. This happens on
  5248. * platforms that reset TSC during suspend or hibernate actions, but
  5249. * maintain synchronization. We must compensate. Fortunately, we can
  5250. * detect that condition here, which happens early in CPU bringup,
  5251. * before any KVM threads can be running. Unfortunately, we can't
  5252. * bring the TSCs fully up to date with real time, as we aren't yet far
  5253. * enough into CPU bringup that we know how much real time has actually
  5254. * elapsed; our helper function, get_kernel_ns() will be using boot
  5255. * variables that haven't been updated yet.
  5256. *
  5257. * So we simply find the maximum observed TSC above, then record the
  5258. * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
  5259. * the adjustment will be applied. Note that we accumulate
  5260. * adjustments, in case multiple suspend cycles happen before some VCPU
  5261. * gets a chance to run again. In the event that no KVM threads get a
  5262. * chance to run, we will miss the entire elapsed period, as we'll have
  5263. * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
  5264. * loose cycle time. This isn't too big a deal, since the loss will be
  5265. * uniform across all VCPUs (not to mention the scenario is extremely
  5266. * unlikely). It is possible that a second hibernate recovery happens
  5267. * much faster than a first, causing the observed TSC here to be
  5268. * smaller; this would require additional padding adjustment, which is
  5269. * why we set last_host_tsc to the local tsc observed here.
  5270. *
  5271. * N.B. - this code below runs only on platforms with reliable TSC,
  5272. * as that is the only way backwards_tsc is set above. Also note
  5273. * that this runs for ALL vcpus, which is not a bug; all VCPUs should
  5274. * have the same delta_cyc adjustment applied if backwards_tsc
  5275. * is detected. Note further, this adjustment is only done once,
  5276. * as we reset last_host_tsc on all VCPUs to stop this from being
  5277. * called multiple times (one for each physical CPU bringup).
  5278. *
  5279. * Platforms with unreliable TSCs don't have to deal with this, they
  5280. * will be compensated by the logic in vcpu_load, which sets the TSC to
  5281. * catchup mode. This will catchup all VCPUs to real time, but cannot
  5282. * guarantee that they stay in perfect synchronization.
  5283. */
  5284. if (backwards_tsc) {
  5285. u64 delta_cyc = max_tsc - local_tsc;
  5286. list_for_each_entry(kvm, &vm_list, vm_list) {
  5287. kvm_for_each_vcpu(i, vcpu, kvm) {
  5288. vcpu->arch.tsc_offset_adjustment += delta_cyc;
  5289. vcpu->arch.last_host_tsc = local_tsc;
  5290. }
  5291. /*
  5292. * We have to disable TSC offset matching.. if you were
  5293. * booting a VM while issuing an S4 host suspend....
  5294. * you may have some problem. Solving this issue is
  5295. * left as an exercise to the reader.
  5296. */
  5297. kvm->arch.last_tsc_nsec = 0;
  5298. kvm->arch.last_tsc_write = 0;
  5299. }
  5300. }
  5301. return 0;
  5302. }
  5303. void kvm_arch_hardware_disable(void *garbage)
  5304. {
  5305. kvm_x86_ops->hardware_disable(garbage);
  5306. drop_user_return_notifiers(garbage);
  5307. }
  5308. int kvm_arch_hardware_setup(void)
  5309. {
  5310. return kvm_x86_ops->hardware_setup();
  5311. }
  5312. void kvm_arch_hardware_unsetup(void)
  5313. {
  5314. kvm_x86_ops->hardware_unsetup();
  5315. }
  5316. void kvm_arch_check_processor_compat(void *rtn)
  5317. {
  5318. kvm_x86_ops->check_processor_compatibility(rtn);
  5319. }
  5320. bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
  5321. {
  5322. return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
  5323. }
  5324. struct static_key kvm_no_apic_vcpu __read_mostly;
  5325. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5326. {
  5327. struct page *page;
  5328. struct kvm *kvm;
  5329. int r;
  5330. BUG_ON(vcpu->kvm == NULL);
  5331. kvm = vcpu->kvm;
  5332. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5333. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5334. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5335. else
  5336. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5337. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5338. if (!page) {
  5339. r = -ENOMEM;
  5340. goto fail;
  5341. }
  5342. vcpu->arch.pio_data = page_address(page);
  5343. kvm_set_tsc_khz(vcpu, max_tsc_khz);
  5344. r = kvm_mmu_create(vcpu);
  5345. if (r < 0)
  5346. goto fail_free_pio_data;
  5347. if (irqchip_in_kernel(kvm)) {
  5348. r = kvm_create_lapic(vcpu);
  5349. if (r < 0)
  5350. goto fail_mmu_destroy;
  5351. } else
  5352. static_key_slow_inc(&kvm_no_apic_vcpu);
  5353. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5354. GFP_KERNEL);
  5355. if (!vcpu->arch.mce_banks) {
  5356. r = -ENOMEM;
  5357. goto fail_free_lapic;
  5358. }
  5359. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5360. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5361. goto fail_free_mce_banks;
  5362. kvm_async_pf_hash_reset(vcpu);
  5363. kvm_pmu_init(vcpu);
  5364. return 0;
  5365. fail_free_mce_banks:
  5366. kfree(vcpu->arch.mce_banks);
  5367. fail_free_lapic:
  5368. kvm_free_lapic(vcpu);
  5369. fail_mmu_destroy:
  5370. kvm_mmu_destroy(vcpu);
  5371. fail_free_pio_data:
  5372. free_page((unsigned long)vcpu->arch.pio_data);
  5373. fail:
  5374. return r;
  5375. }
  5376. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5377. {
  5378. int idx;
  5379. kvm_pmu_destroy(vcpu);
  5380. kfree(vcpu->arch.mce_banks);
  5381. kvm_free_lapic(vcpu);
  5382. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5383. kvm_mmu_destroy(vcpu);
  5384. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5385. free_page((unsigned long)vcpu->arch.pio_data);
  5386. if (!irqchip_in_kernel(vcpu->kvm))
  5387. static_key_slow_dec(&kvm_no_apic_vcpu);
  5388. }
  5389. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  5390. {
  5391. if (type)
  5392. return -EINVAL;
  5393. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5394. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5395. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5396. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5397. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5398. return 0;
  5399. }
  5400. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5401. {
  5402. vcpu_load(vcpu);
  5403. kvm_mmu_unload(vcpu);
  5404. vcpu_put(vcpu);
  5405. }
  5406. static void kvm_free_vcpus(struct kvm *kvm)
  5407. {
  5408. unsigned int i;
  5409. struct kvm_vcpu *vcpu;
  5410. /*
  5411. * Unpin any mmu pages first.
  5412. */
  5413. kvm_for_each_vcpu(i, vcpu, kvm) {
  5414. kvm_clear_async_pf_completion_queue(vcpu);
  5415. kvm_unload_vcpu_mmu(vcpu);
  5416. }
  5417. kvm_for_each_vcpu(i, vcpu, kvm)
  5418. kvm_arch_vcpu_free(vcpu);
  5419. mutex_lock(&kvm->lock);
  5420. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5421. kvm->vcpus[i] = NULL;
  5422. atomic_set(&kvm->online_vcpus, 0);
  5423. mutex_unlock(&kvm->lock);
  5424. }
  5425. void kvm_arch_sync_events(struct kvm *kvm)
  5426. {
  5427. kvm_free_all_assigned_devices(kvm);
  5428. kvm_free_pit(kvm);
  5429. }
  5430. void kvm_arch_destroy_vm(struct kvm *kvm)
  5431. {
  5432. kvm_iommu_unmap_guest(kvm);
  5433. kfree(kvm->arch.vpic);
  5434. kfree(kvm->arch.vioapic);
  5435. kvm_free_vcpus(kvm);
  5436. if (kvm->arch.apic_access_page)
  5437. put_page(kvm->arch.apic_access_page);
  5438. if (kvm->arch.ept_identity_pagetable)
  5439. put_page(kvm->arch.ept_identity_pagetable);
  5440. }
  5441. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  5442. struct kvm_memory_slot *dont)
  5443. {
  5444. int i;
  5445. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5446. if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
  5447. kvm_kvfree(free->arch.rmap[i]);
  5448. free->arch.rmap[i] = NULL;
  5449. }
  5450. if (i == 0)
  5451. continue;
  5452. if (!dont || free->arch.lpage_info[i - 1] !=
  5453. dont->arch.lpage_info[i - 1]) {
  5454. kvm_kvfree(free->arch.lpage_info[i - 1]);
  5455. free->arch.lpage_info[i - 1] = NULL;
  5456. }
  5457. }
  5458. }
  5459. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  5460. {
  5461. int i;
  5462. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5463. unsigned long ugfn;
  5464. int lpages;
  5465. int level = i + 1;
  5466. lpages = gfn_to_index(slot->base_gfn + npages - 1,
  5467. slot->base_gfn, level) + 1;
  5468. slot->arch.rmap[i] =
  5469. kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
  5470. if (!slot->arch.rmap[i])
  5471. goto out_free;
  5472. if (i == 0)
  5473. continue;
  5474. slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
  5475. sizeof(*slot->arch.lpage_info[i - 1]));
  5476. if (!slot->arch.lpage_info[i - 1])
  5477. goto out_free;
  5478. if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  5479. slot->arch.lpage_info[i - 1][0].write_count = 1;
  5480. if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  5481. slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
  5482. ugfn = slot->userspace_addr >> PAGE_SHIFT;
  5483. /*
  5484. * If the gfn and userspace address are not aligned wrt each
  5485. * other, or if explicitly asked to, disable large page
  5486. * support for this slot
  5487. */
  5488. if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  5489. !kvm_largepages_enabled()) {
  5490. unsigned long j;
  5491. for (j = 0; j < lpages; ++j)
  5492. slot->arch.lpage_info[i - 1][j].write_count = 1;
  5493. }
  5494. }
  5495. return 0;
  5496. out_free:
  5497. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5498. kvm_kvfree(slot->arch.rmap[i]);
  5499. slot->arch.rmap[i] = NULL;
  5500. if (i == 0)
  5501. continue;
  5502. kvm_kvfree(slot->arch.lpage_info[i - 1]);
  5503. slot->arch.lpage_info[i - 1] = NULL;
  5504. }
  5505. return -ENOMEM;
  5506. }
  5507. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5508. struct kvm_memory_slot *memslot,
  5509. struct kvm_memory_slot old,
  5510. struct kvm_userspace_memory_region *mem,
  5511. int user_alloc)
  5512. {
  5513. int npages = memslot->npages;
  5514. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5515. /* Prevent internal slot pages from being moved by fork()/COW. */
  5516. if (memslot->id >= KVM_MEMORY_SLOTS)
  5517. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5518. /*To keep backward compatibility with older userspace,
  5519. *x86 needs to handle !user_alloc case.
  5520. */
  5521. if (!user_alloc) {
  5522. if (npages && !old.npages) {
  5523. unsigned long userspace_addr;
  5524. userspace_addr = vm_mmap(NULL, 0,
  5525. npages * PAGE_SIZE,
  5526. PROT_READ | PROT_WRITE,
  5527. map_flags,
  5528. 0);
  5529. if (IS_ERR((void *)userspace_addr))
  5530. return PTR_ERR((void *)userspace_addr);
  5531. memslot->userspace_addr = userspace_addr;
  5532. }
  5533. }
  5534. return 0;
  5535. }
  5536. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5537. struct kvm_userspace_memory_region *mem,
  5538. struct kvm_memory_slot old,
  5539. int user_alloc)
  5540. {
  5541. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5542. if (!user_alloc && !old.user_alloc && old.npages && !npages) {
  5543. int ret;
  5544. ret = vm_munmap(old.userspace_addr,
  5545. old.npages * PAGE_SIZE);
  5546. if (ret < 0)
  5547. printk(KERN_WARNING
  5548. "kvm_vm_ioctl_set_memory_region: "
  5549. "failed to munmap memory\n");
  5550. }
  5551. if (!kvm->arch.n_requested_mmu_pages)
  5552. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5553. spin_lock(&kvm->mmu_lock);
  5554. if (nr_mmu_pages)
  5555. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5556. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5557. spin_unlock(&kvm->mmu_lock);
  5558. }
  5559. void kvm_arch_flush_shadow(struct kvm *kvm)
  5560. {
  5561. kvm_mmu_zap_all(kvm);
  5562. kvm_reload_remote_mmus(kvm);
  5563. }
  5564. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5565. {
  5566. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5567. !vcpu->arch.apf.halted)
  5568. || !list_empty_careful(&vcpu->async_pf.done)
  5569. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5570. || atomic_read(&vcpu->arch.nmi_queued) ||
  5571. (kvm_arch_interrupt_allowed(vcpu) &&
  5572. kvm_cpu_has_interrupt(vcpu));
  5573. }
  5574. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  5575. {
  5576. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  5577. }
  5578. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5579. {
  5580. return kvm_x86_ops->interrupt_allowed(vcpu);
  5581. }
  5582. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5583. {
  5584. unsigned long current_rip = kvm_rip_read(vcpu) +
  5585. get_segment_base(vcpu, VCPU_SREG_CS);
  5586. return current_rip == linear_rip;
  5587. }
  5588. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5589. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5590. {
  5591. unsigned long rflags;
  5592. rflags = kvm_x86_ops->get_rflags(vcpu);
  5593. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5594. rflags &= ~X86_EFLAGS_TF;
  5595. return rflags;
  5596. }
  5597. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5598. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5599. {
  5600. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5601. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5602. rflags |= X86_EFLAGS_TF;
  5603. kvm_x86_ops->set_rflags(vcpu, rflags);
  5604. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5605. }
  5606. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5607. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5608. {
  5609. int r;
  5610. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5611. is_error_page(work->page))
  5612. return;
  5613. r = kvm_mmu_reload(vcpu);
  5614. if (unlikely(r))
  5615. return;
  5616. if (!vcpu->arch.mmu.direct_map &&
  5617. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5618. return;
  5619. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5620. }
  5621. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5622. {
  5623. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5624. }
  5625. static inline u32 kvm_async_pf_next_probe(u32 key)
  5626. {
  5627. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5628. }
  5629. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5630. {
  5631. u32 key = kvm_async_pf_hash_fn(gfn);
  5632. while (vcpu->arch.apf.gfns[key] != ~0)
  5633. key = kvm_async_pf_next_probe(key);
  5634. vcpu->arch.apf.gfns[key] = gfn;
  5635. }
  5636. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5637. {
  5638. int i;
  5639. u32 key = kvm_async_pf_hash_fn(gfn);
  5640. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5641. (vcpu->arch.apf.gfns[key] != gfn &&
  5642. vcpu->arch.apf.gfns[key] != ~0); i++)
  5643. key = kvm_async_pf_next_probe(key);
  5644. return key;
  5645. }
  5646. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5647. {
  5648. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5649. }
  5650. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5651. {
  5652. u32 i, j, k;
  5653. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5654. while (true) {
  5655. vcpu->arch.apf.gfns[i] = ~0;
  5656. do {
  5657. j = kvm_async_pf_next_probe(j);
  5658. if (vcpu->arch.apf.gfns[j] == ~0)
  5659. return;
  5660. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5661. /*
  5662. * k lies cyclically in ]i,j]
  5663. * | i.k.j |
  5664. * |....j i.k.| or |.k..j i...|
  5665. */
  5666. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5667. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5668. i = j;
  5669. }
  5670. }
  5671. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5672. {
  5673. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5674. sizeof(val));
  5675. }
  5676. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5677. struct kvm_async_pf *work)
  5678. {
  5679. struct x86_exception fault;
  5680. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5681. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5682. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5683. (vcpu->arch.apf.send_user_only &&
  5684. kvm_x86_ops->get_cpl(vcpu) == 0))
  5685. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5686. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5687. fault.vector = PF_VECTOR;
  5688. fault.error_code_valid = true;
  5689. fault.error_code = 0;
  5690. fault.nested_page_fault = false;
  5691. fault.address = work->arch.token;
  5692. kvm_inject_page_fault(vcpu, &fault);
  5693. }
  5694. }
  5695. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5696. struct kvm_async_pf *work)
  5697. {
  5698. struct x86_exception fault;
  5699. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5700. if (is_error_page(work->page))
  5701. work->arch.token = ~0; /* broadcast wakeup */
  5702. else
  5703. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5704. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5705. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5706. fault.vector = PF_VECTOR;
  5707. fault.error_code_valid = true;
  5708. fault.error_code = 0;
  5709. fault.nested_page_fault = false;
  5710. fault.address = work->arch.token;
  5711. kvm_inject_page_fault(vcpu, &fault);
  5712. }
  5713. vcpu->arch.apf.halted = false;
  5714. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5715. }
  5716. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5717. {
  5718. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5719. return true;
  5720. else
  5721. return !kvm_event_needs_reinjection(vcpu) &&
  5722. kvm_x86_ops->interrupt_allowed(vcpu);
  5723. }
  5724. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5725. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5726. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5727. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5728. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5729. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5730. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5731. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5732. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5733. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5734. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5735. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);