ctree.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821
  1. #include <linux/module.h>
  2. #include "ctree.h"
  3. #include "disk-io.h"
  4. #include "transaction.h"
  5. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  6. *root, struct btrfs_path *path, int level);
  7. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  8. *root, struct btrfs_key *ins_key,
  9. struct btrfs_path *path, int data_size);
  10. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  11. *root, struct buffer_head *dst, struct buffer_head
  12. *src);
  13. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  14. btrfs_root *root, struct buffer_head *dst_buf,
  15. struct buffer_head *src_buf);
  16. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  17. struct btrfs_path *path, int level, int slot);
  18. inline void btrfs_init_path(struct btrfs_path *p)
  19. {
  20. memset(p, 0, sizeof(*p));
  21. }
  22. struct btrfs_path *btrfs_alloc_path(void)
  23. {
  24. struct btrfs_path *path;
  25. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  26. if (path)
  27. btrfs_init_path(path);
  28. return path;
  29. }
  30. void btrfs_free_path(struct btrfs_path *p)
  31. {
  32. btrfs_release_path(NULL, p);
  33. kmem_cache_free(btrfs_path_cachep, p);
  34. }
  35. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  36. {
  37. int i;
  38. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  39. if (!p->nodes[i])
  40. break;
  41. btrfs_block_release(root, p->nodes[i]);
  42. }
  43. memset(p, 0, sizeof(*p));
  44. }
  45. static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  46. *root, struct buffer_head *buf, struct buffer_head
  47. *parent, int parent_slot, struct buffer_head
  48. **cow_ret)
  49. {
  50. struct buffer_head *cow;
  51. struct btrfs_node *cow_node;
  52. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  53. trans->transid) {
  54. *cow_ret = buf;
  55. return 0;
  56. }
  57. cow = btrfs_alloc_free_block(trans, root);
  58. cow_node = btrfs_buffer_node(cow);
  59. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  60. WARN_ON(1);
  61. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  62. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  63. btrfs_set_header_generation(&cow_node->header, trans->transid);
  64. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  65. btrfs_inc_ref(trans, root, buf);
  66. if (buf == root->node) {
  67. root->node = cow;
  68. get_bh(cow);
  69. if (buf != root->commit_root) {
  70. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  71. }
  72. btrfs_block_release(root, buf);
  73. } else {
  74. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  75. bh_blocknr(cow));
  76. btrfs_mark_buffer_dirty(parent);
  77. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  78. }
  79. btrfs_block_release(root, buf);
  80. mark_buffer_dirty(cow);
  81. *cow_ret = cow;
  82. return 0;
  83. }
  84. /*
  85. * The leaf data grows from end-to-front in the node.
  86. * this returns the address of the start of the last item,
  87. * which is the stop of the leaf data stack
  88. */
  89. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  90. struct btrfs_leaf *leaf)
  91. {
  92. u32 nr = btrfs_header_nritems(&leaf->header);
  93. if (nr == 0)
  94. return BTRFS_LEAF_DATA_SIZE(root);
  95. return btrfs_item_offset(leaf->items + nr - 1);
  96. }
  97. /*
  98. * compare two keys in a memcmp fashion
  99. */
  100. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  101. {
  102. struct btrfs_key k1;
  103. btrfs_disk_key_to_cpu(&k1, disk);
  104. if (k1.objectid > k2->objectid)
  105. return 1;
  106. if (k1.objectid < k2->objectid)
  107. return -1;
  108. if (k1.flags > k2->flags)
  109. return 1;
  110. if (k1.flags < k2->flags)
  111. return -1;
  112. if (k1.offset > k2->offset)
  113. return 1;
  114. if (k1.offset < k2->offset)
  115. return -1;
  116. return 0;
  117. }
  118. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  119. int level)
  120. {
  121. int i;
  122. struct btrfs_node *parent = NULL;
  123. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  124. int parent_slot;
  125. u32 nritems = btrfs_header_nritems(&node->header);
  126. if (path->nodes[level + 1])
  127. parent = btrfs_buffer_node(path->nodes[level + 1]);
  128. parent_slot = path->slots[level + 1];
  129. BUG_ON(nritems == 0);
  130. if (parent) {
  131. struct btrfs_disk_key *parent_key;
  132. parent_key = &parent->ptrs[parent_slot].key;
  133. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  134. sizeof(struct btrfs_disk_key)));
  135. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  136. btrfs_header_blocknr(&node->header));
  137. }
  138. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  139. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  140. struct btrfs_key cpukey;
  141. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
  142. BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
  143. }
  144. return 0;
  145. }
  146. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  147. int level)
  148. {
  149. int i;
  150. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  151. struct btrfs_node *parent = NULL;
  152. int parent_slot;
  153. u32 nritems = btrfs_header_nritems(&leaf->header);
  154. if (path->nodes[level + 1])
  155. parent = btrfs_buffer_node(path->nodes[level + 1]);
  156. parent_slot = path->slots[level + 1];
  157. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  158. if (nritems == 0)
  159. return 0;
  160. if (parent) {
  161. struct btrfs_disk_key *parent_key;
  162. parent_key = &parent->ptrs[parent_slot].key;
  163. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  164. sizeof(struct btrfs_disk_key)));
  165. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  166. btrfs_header_blocknr(&leaf->header));
  167. }
  168. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  169. struct btrfs_key cpukey;
  170. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
  171. BUG_ON(comp_keys(&leaf->items[i].key,
  172. &cpukey) >= 0);
  173. BUG_ON(btrfs_item_offset(leaf->items + i) !=
  174. btrfs_item_end(leaf->items + i + 1));
  175. if (i == 0) {
  176. BUG_ON(btrfs_item_offset(leaf->items + i) +
  177. btrfs_item_size(leaf->items + i) !=
  178. BTRFS_LEAF_DATA_SIZE(root));
  179. }
  180. }
  181. return 0;
  182. }
  183. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  184. int level)
  185. {
  186. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  187. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  188. sizeof(node->header.fsid)))
  189. BUG();
  190. if (level == 0)
  191. return check_leaf(root, path, level);
  192. return check_node(root, path, level);
  193. }
  194. /*
  195. * search for key in the array p. items p are item_size apart
  196. * and there are 'max' items in p
  197. * the slot in the array is returned via slot, and it points to
  198. * the place where you would insert key if it is not found in
  199. * the array.
  200. *
  201. * slot may point to max if the key is bigger than all of the keys
  202. */
  203. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  204. int max, int *slot)
  205. {
  206. int low = 0;
  207. int high = max;
  208. int mid;
  209. int ret;
  210. struct btrfs_disk_key *tmp;
  211. while(low < high) {
  212. mid = (low + high) / 2;
  213. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  214. ret = comp_keys(tmp, key);
  215. if (ret < 0)
  216. low = mid + 1;
  217. else if (ret > 0)
  218. high = mid;
  219. else {
  220. *slot = mid;
  221. return 0;
  222. }
  223. }
  224. *slot = low;
  225. return 1;
  226. }
  227. /*
  228. * simple bin_search frontend that does the right thing for
  229. * leaves vs nodes
  230. */
  231. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  232. {
  233. if (btrfs_is_leaf(c)) {
  234. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  235. return generic_bin_search((void *)l->items,
  236. sizeof(struct btrfs_item),
  237. key, btrfs_header_nritems(&c->header),
  238. slot);
  239. } else {
  240. return generic_bin_search((void *)c->ptrs,
  241. sizeof(struct btrfs_key_ptr),
  242. key, btrfs_header_nritems(&c->header),
  243. slot);
  244. }
  245. return -1;
  246. }
  247. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  248. struct buffer_head *parent_buf,
  249. int slot)
  250. {
  251. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  252. if (slot < 0)
  253. return NULL;
  254. if (slot >= btrfs_header_nritems(&node->header))
  255. return NULL;
  256. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  257. }
  258. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  259. *root, struct btrfs_path *path, int level)
  260. {
  261. struct buffer_head *right_buf;
  262. struct buffer_head *mid_buf;
  263. struct buffer_head *left_buf;
  264. struct buffer_head *parent_buf = NULL;
  265. struct btrfs_node *right = NULL;
  266. struct btrfs_node *mid;
  267. struct btrfs_node *left = NULL;
  268. struct btrfs_node *parent = NULL;
  269. int ret = 0;
  270. int wret;
  271. int pslot;
  272. int orig_slot = path->slots[level];
  273. u64 orig_ptr;
  274. if (level == 0)
  275. return 0;
  276. mid_buf = path->nodes[level];
  277. mid = btrfs_buffer_node(mid_buf);
  278. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  279. if (level < BTRFS_MAX_LEVEL - 1)
  280. parent_buf = path->nodes[level + 1];
  281. pslot = path->slots[level + 1];
  282. /*
  283. * deal with the case where there is only one pointer in the root
  284. * by promoting the node below to a root
  285. */
  286. if (!parent_buf) {
  287. struct buffer_head *child;
  288. u64 blocknr = bh_blocknr(mid_buf);
  289. if (btrfs_header_nritems(&mid->header) != 1)
  290. return 0;
  291. /* promote the child to a root */
  292. child = read_node_slot(root, mid_buf, 0);
  293. BUG_ON(!child);
  294. root->node = child;
  295. path->nodes[level] = NULL;
  296. clean_tree_block(trans, root, mid_buf);
  297. wait_on_buffer(mid_buf);
  298. /* once for the path */
  299. btrfs_block_release(root, mid_buf);
  300. /* once for the root ptr */
  301. btrfs_block_release(root, mid_buf);
  302. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  303. }
  304. parent = btrfs_buffer_node(parent_buf);
  305. if (btrfs_header_nritems(&mid->header) >
  306. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  307. return 0;
  308. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  309. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  310. /* first, try to make some room in the middle buffer */
  311. if (left_buf) {
  312. btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
  313. &left_buf);
  314. left = btrfs_buffer_node(left_buf);
  315. orig_slot += btrfs_header_nritems(&left->header);
  316. wret = push_node_left(trans, root, left_buf, mid_buf);
  317. if (wret < 0)
  318. ret = wret;
  319. }
  320. /*
  321. * then try to empty the right most buffer into the middle
  322. */
  323. if (right_buf) {
  324. btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
  325. &right_buf);
  326. right = btrfs_buffer_node(right_buf);
  327. wret = push_node_left(trans, root, mid_buf, right_buf);
  328. if (wret < 0)
  329. ret = wret;
  330. if (btrfs_header_nritems(&right->header) == 0) {
  331. u64 blocknr = bh_blocknr(right_buf);
  332. clean_tree_block(trans, root, right_buf);
  333. wait_on_buffer(right_buf);
  334. btrfs_block_release(root, right_buf);
  335. right_buf = NULL;
  336. right = NULL;
  337. wret = del_ptr(trans, root, path, level + 1, pslot +
  338. 1);
  339. if (wret)
  340. ret = wret;
  341. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  342. if (wret)
  343. ret = wret;
  344. } else {
  345. btrfs_memcpy(root, parent,
  346. &parent->ptrs[pslot + 1].key,
  347. &right->ptrs[0].key,
  348. sizeof(struct btrfs_disk_key));
  349. btrfs_mark_buffer_dirty(parent_buf);
  350. }
  351. }
  352. if (btrfs_header_nritems(&mid->header) == 1) {
  353. /*
  354. * we're not allowed to leave a node with one item in the
  355. * tree during a delete. A deletion from lower in the tree
  356. * could try to delete the only pointer in this node.
  357. * So, pull some keys from the left.
  358. * There has to be a left pointer at this point because
  359. * otherwise we would have pulled some pointers from the
  360. * right
  361. */
  362. BUG_ON(!left_buf);
  363. wret = balance_node_right(trans, root, mid_buf, left_buf);
  364. if (wret < 0)
  365. ret = wret;
  366. BUG_ON(wret == 1);
  367. }
  368. if (btrfs_header_nritems(&mid->header) == 0) {
  369. /* we've managed to empty the middle node, drop it */
  370. u64 blocknr = bh_blocknr(mid_buf);
  371. clean_tree_block(trans, root, mid_buf);
  372. wait_on_buffer(mid_buf);
  373. btrfs_block_release(root, mid_buf);
  374. mid_buf = NULL;
  375. mid = NULL;
  376. wret = del_ptr(trans, root, path, level + 1, pslot);
  377. if (wret)
  378. ret = wret;
  379. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  380. if (wret)
  381. ret = wret;
  382. } else {
  383. /* update the parent key to reflect our changes */
  384. btrfs_memcpy(root, parent,
  385. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  386. sizeof(struct btrfs_disk_key));
  387. btrfs_mark_buffer_dirty(parent_buf);
  388. }
  389. /* update the path */
  390. if (left_buf) {
  391. if (btrfs_header_nritems(&left->header) > orig_slot) {
  392. get_bh(left_buf);
  393. path->nodes[level] = left_buf;
  394. path->slots[level + 1] -= 1;
  395. path->slots[level] = orig_slot;
  396. if (mid_buf)
  397. btrfs_block_release(root, mid_buf);
  398. } else {
  399. orig_slot -= btrfs_header_nritems(&left->header);
  400. path->slots[level] = orig_slot;
  401. }
  402. }
  403. /* double check we haven't messed things up */
  404. check_block(root, path, level);
  405. if (orig_ptr !=
  406. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  407. path->slots[level]))
  408. BUG();
  409. if (right_buf)
  410. btrfs_block_release(root, right_buf);
  411. if (left_buf)
  412. btrfs_block_release(root, left_buf);
  413. return ret;
  414. }
  415. /* returns zero if the push worked, non-zero otherwise */
  416. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  417. struct btrfs_root *root,
  418. struct btrfs_path *path, int level)
  419. {
  420. struct buffer_head *right_buf;
  421. struct buffer_head *mid_buf;
  422. struct buffer_head *left_buf;
  423. struct buffer_head *parent_buf = NULL;
  424. struct btrfs_node *right = NULL;
  425. struct btrfs_node *mid;
  426. struct btrfs_node *left = NULL;
  427. struct btrfs_node *parent = NULL;
  428. int ret = 0;
  429. int wret;
  430. int pslot;
  431. int orig_slot = path->slots[level];
  432. u64 orig_ptr;
  433. if (level == 0)
  434. return 1;
  435. mid_buf = path->nodes[level];
  436. mid = btrfs_buffer_node(mid_buf);
  437. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  438. if (level < BTRFS_MAX_LEVEL - 1)
  439. parent_buf = path->nodes[level + 1];
  440. pslot = path->slots[level + 1];
  441. if (!parent_buf)
  442. return 1;
  443. parent = btrfs_buffer_node(parent_buf);
  444. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  445. /* first, try to make some room in the middle buffer */
  446. if (left_buf) {
  447. u32 left_nr;
  448. left = btrfs_buffer_node(left_buf);
  449. left_nr = btrfs_header_nritems(&left->header);
  450. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  451. wret = 1;
  452. } else {
  453. btrfs_cow_block(trans, root, left_buf, parent_buf,
  454. pslot - 1, &left_buf);
  455. left = btrfs_buffer_node(left_buf);
  456. wret = push_node_left(trans, root, left_buf, mid_buf);
  457. }
  458. if (wret < 0)
  459. ret = wret;
  460. if (wret == 0) {
  461. orig_slot += left_nr;
  462. btrfs_memcpy(root, parent,
  463. &parent->ptrs[pslot].key,
  464. &mid->ptrs[0].key,
  465. sizeof(struct btrfs_disk_key));
  466. btrfs_mark_buffer_dirty(parent_buf);
  467. if (btrfs_header_nritems(&left->header) > orig_slot) {
  468. path->nodes[level] = left_buf;
  469. path->slots[level + 1] -= 1;
  470. path->slots[level] = orig_slot;
  471. btrfs_block_release(root, mid_buf);
  472. } else {
  473. orig_slot -=
  474. btrfs_header_nritems(&left->header);
  475. path->slots[level] = orig_slot;
  476. btrfs_block_release(root, left_buf);
  477. }
  478. check_node(root, path, level);
  479. return 0;
  480. }
  481. btrfs_block_release(root, left_buf);
  482. }
  483. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  484. /*
  485. * then try to empty the right most buffer into the middle
  486. */
  487. if (right_buf) {
  488. u32 right_nr;
  489. right = btrfs_buffer_node(right_buf);
  490. right_nr = btrfs_header_nritems(&right->header);
  491. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  492. wret = 1;
  493. } else {
  494. btrfs_cow_block(trans, root, right_buf,
  495. parent_buf, pslot + 1, &right_buf);
  496. right = btrfs_buffer_node(right_buf);
  497. wret = balance_node_right(trans, root,
  498. right_buf, mid_buf);
  499. }
  500. if (wret < 0)
  501. ret = wret;
  502. if (wret == 0) {
  503. btrfs_memcpy(root, parent,
  504. &parent->ptrs[pslot + 1].key,
  505. &right->ptrs[0].key,
  506. sizeof(struct btrfs_disk_key));
  507. btrfs_mark_buffer_dirty(parent_buf);
  508. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  509. path->nodes[level] = right_buf;
  510. path->slots[level + 1] += 1;
  511. path->slots[level] = orig_slot -
  512. btrfs_header_nritems(&mid->header);
  513. btrfs_block_release(root, mid_buf);
  514. } else {
  515. btrfs_block_release(root, right_buf);
  516. }
  517. check_node(root, path, level);
  518. return 0;
  519. }
  520. btrfs_block_release(root, right_buf);
  521. }
  522. check_node(root, path, level);
  523. return 1;
  524. }
  525. /*
  526. * look for key in the tree. path is filled in with nodes along the way
  527. * if key is found, we return zero and you can find the item in the leaf
  528. * level of the path (level 0)
  529. *
  530. * If the key isn't found, the path points to the slot where it should
  531. * be inserted, and 1 is returned. If there are other errors during the
  532. * search a negative error number is returned.
  533. *
  534. * if ins_len > 0, nodes and leaves will be split as we walk down the
  535. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  536. * possible)
  537. */
  538. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  539. *root, struct btrfs_key *key, struct btrfs_path *p, int
  540. ins_len, int cow)
  541. {
  542. struct buffer_head *b;
  543. struct buffer_head *cow_buf;
  544. struct btrfs_node *c;
  545. int slot;
  546. int ret;
  547. int level;
  548. WARN_ON(p->nodes[0] != NULL);
  549. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  550. again:
  551. b = root->node;
  552. get_bh(b);
  553. while (b) {
  554. c = btrfs_buffer_node(b);
  555. level = btrfs_header_level(&c->header);
  556. if (cow) {
  557. int wret;
  558. wret = btrfs_cow_block(trans, root, b,
  559. p->nodes[level + 1],
  560. p->slots[level + 1],
  561. &cow_buf);
  562. b = cow_buf;
  563. c = btrfs_buffer_node(b);
  564. }
  565. BUG_ON(!cow && ins_len);
  566. if (level != btrfs_header_level(&c->header))
  567. WARN_ON(1);
  568. level = btrfs_header_level(&c->header);
  569. p->nodes[level] = b;
  570. ret = check_block(root, p, level);
  571. if (ret)
  572. return -1;
  573. ret = bin_search(c, key, &slot);
  574. if (!btrfs_is_leaf(c)) {
  575. if (ret && slot > 0)
  576. slot -= 1;
  577. p->slots[level] = slot;
  578. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  579. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  580. int sret = split_node(trans, root, p, level);
  581. BUG_ON(sret > 0);
  582. if (sret)
  583. return sret;
  584. b = p->nodes[level];
  585. c = btrfs_buffer_node(b);
  586. slot = p->slots[level];
  587. } else if (ins_len < 0) {
  588. int sret = balance_level(trans, root, p,
  589. level);
  590. if (sret)
  591. return sret;
  592. b = p->nodes[level];
  593. if (!b)
  594. goto again;
  595. c = btrfs_buffer_node(b);
  596. slot = p->slots[level];
  597. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  598. }
  599. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  600. } else {
  601. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  602. p->slots[level] = slot;
  603. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  604. sizeof(struct btrfs_item) + ins_len) {
  605. int sret = split_leaf(trans, root, key,
  606. p, ins_len);
  607. BUG_ON(sret > 0);
  608. if (sret)
  609. return sret;
  610. }
  611. return ret;
  612. }
  613. }
  614. return 1;
  615. }
  616. /*
  617. * adjust the pointers going up the tree, starting at level
  618. * making sure the right key of each node is points to 'key'.
  619. * This is used after shifting pointers to the left, so it stops
  620. * fixing up pointers when a given leaf/node is not in slot 0 of the
  621. * higher levels
  622. *
  623. * If this fails to write a tree block, it returns -1, but continues
  624. * fixing up the blocks in ram so the tree is consistent.
  625. */
  626. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  627. *root, struct btrfs_path *path, struct btrfs_disk_key
  628. *key, int level)
  629. {
  630. int i;
  631. int ret = 0;
  632. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  633. struct btrfs_node *t;
  634. int tslot = path->slots[i];
  635. if (!path->nodes[i])
  636. break;
  637. t = btrfs_buffer_node(path->nodes[i]);
  638. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  639. btrfs_mark_buffer_dirty(path->nodes[i]);
  640. if (tslot != 0)
  641. break;
  642. }
  643. return ret;
  644. }
  645. /*
  646. * try to push data from one node into the next node left in the
  647. * tree.
  648. *
  649. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  650. * error, and > 0 if there was no room in the left hand block.
  651. */
  652. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  653. *root, struct buffer_head *dst_buf, struct
  654. buffer_head *src_buf)
  655. {
  656. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  657. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  658. int push_items = 0;
  659. int src_nritems;
  660. int dst_nritems;
  661. int ret = 0;
  662. src_nritems = btrfs_header_nritems(&src->header);
  663. dst_nritems = btrfs_header_nritems(&dst->header);
  664. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  665. if (push_items <= 0) {
  666. return 1;
  667. }
  668. if (src_nritems < push_items)
  669. push_items = src_nritems;
  670. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  671. push_items * sizeof(struct btrfs_key_ptr));
  672. if (push_items < src_nritems) {
  673. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  674. (src_nritems - push_items) *
  675. sizeof(struct btrfs_key_ptr));
  676. }
  677. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  678. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  679. btrfs_mark_buffer_dirty(src_buf);
  680. btrfs_mark_buffer_dirty(dst_buf);
  681. return ret;
  682. }
  683. /*
  684. * try to push data from one node into the next node right in the
  685. * tree.
  686. *
  687. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  688. * error, and > 0 if there was no room in the right hand block.
  689. *
  690. * this will only push up to 1/2 the contents of the left node over
  691. */
  692. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  693. btrfs_root *root, struct buffer_head *dst_buf,
  694. struct buffer_head *src_buf)
  695. {
  696. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  697. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  698. int push_items = 0;
  699. int max_push;
  700. int src_nritems;
  701. int dst_nritems;
  702. int ret = 0;
  703. src_nritems = btrfs_header_nritems(&src->header);
  704. dst_nritems = btrfs_header_nritems(&dst->header);
  705. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  706. if (push_items <= 0) {
  707. return 1;
  708. }
  709. max_push = src_nritems / 2 + 1;
  710. /* don't try to empty the node */
  711. if (max_push > src_nritems)
  712. return 1;
  713. if (max_push < push_items)
  714. push_items = max_push;
  715. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  716. dst_nritems * sizeof(struct btrfs_key_ptr));
  717. btrfs_memcpy(root, dst, dst->ptrs,
  718. src->ptrs + src_nritems - push_items,
  719. push_items * sizeof(struct btrfs_key_ptr));
  720. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  721. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  722. btrfs_mark_buffer_dirty(src_buf);
  723. btrfs_mark_buffer_dirty(dst_buf);
  724. return ret;
  725. }
  726. /*
  727. * helper function to insert a new root level in the tree.
  728. * A new node is allocated, and a single item is inserted to
  729. * point to the existing root
  730. *
  731. * returns zero on success or < 0 on failure.
  732. */
  733. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  734. *root, struct btrfs_path *path, int level)
  735. {
  736. struct buffer_head *t;
  737. struct btrfs_node *lower;
  738. struct btrfs_node *c;
  739. struct btrfs_disk_key *lower_key;
  740. BUG_ON(path->nodes[level]);
  741. BUG_ON(path->nodes[level-1] != root->node);
  742. t = btrfs_alloc_free_block(trans, root);
  743. c = btrfs_buffer_node(t);
  744. memset(c, 0, root->blocksize);
  745. btrfs_set_header_nritems(&c->header, 1);
  746. btrfs_set_header_level(&c->header, level);
  747. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  748. btrfs_set_header_generation(&c->header, trans->transid);
  749. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  750. lower = btrfs_buffer_node(path->nodes[level-1]);
  751. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  752. sizeof(c->header.fsid));
  753. if (btrfs_is_leaf(lower))
  754. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  755. else
  756. lower_key = &lower->ptrs[0].key;
  757. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  758. sizeof(struct btrfs_disk_key));
  759. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  760. btrfs_mark_buffer_dirty(t);
  761. /* the super has an extra ref to root->node */
  762. btrfs_block_release(root, root->node);
  763. root->node = t;
  764. get_bh(t);
  765. path->nodes[level] = t;
  766. path->slots[level] = 0;
  767. return 0;
  768. }
  769. /*
  770. * worker function to insert a single pointer in a node.
  771. * the node should have enough room for the pointer already
  772. *
  773. * slot and level indicate where you want the key to go, and
  774. * blocknr is the block the key points to.
  775. *
  776. * returns zero on success and < 0 on any error
  777. */
  778. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  779. *root, struct btrfs_path *path, struct btrfs_disk_key
  780. *key, u64 blocknr, int slot, int level)
  781. {
  782. struct btrfs_node *lower;
  783. int nritems;
  784. BUG_ON(!path->nodes[level]);
  785. lower = btrfs_buffer_node(path->nodes[level]);
  786. nritems = btrfs_header_nritems(&lower->header);
  787. if (slot > nritems)
  788. BUG();
  789. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  790. BUG();
  791. if (slot != nritems) {
  792. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  793. lower->ptrs + slot,
  794. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  795. }
  796. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  797. key, sizeof(struct btrfs_disk_key));
  798. btrfs_set_node_blockptr(lower, slot, blocknr);
  799. btrfs_set_header_nritems(&lower->header, nritems + 1);
  800. btrfs_mark_buffer_dirty(path->nodes[level]);
  801. return 0;
  802. }
  803. /*
  804. * split the node at the specified level in path in two.
  805. * The path is corrected to point to the appropriate node after the split
  806. *
  807. * Before splitting this tries to make some room in the node by pushing
  808. * left and right, if either one works, it returns right away.
  809. *
  810. * returns 0 on success and < 0 on failure
  811. */
  812. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  813. *root, struct btrfs_path *path, int level)
  814. {
  815. struct buffer_head *t;
  816. struct btrfs_node *c;
  817. struct buffer_head *split_buffer;
  818. struct btrfs_node *split;
  819. int mid;
  820. int ret;
  821. int wret;
  822. u32 c_nritems;
  823. t = path->nodes[level];
  824. c = btrfs_buffer_node(t);
  825. if (t == root->node) {
  826. /* trying to split the root, lets make a new one */
  827. ret = insert_new_root(trans, root, path, level + 1);
  828. if (ret)
  829. return ret;
  830. } else {
  831. ret = push_nodes_for_insert(trans, root, path, level);
  832. t = path->nodes[level];
  833. c = btrfs_buffer_node(t);
  834. if (!ret &&
  835. btrfs_header_nritems(&c->header) <
  836. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  837. return 0;
  838. }
  839. c_nritems = btrfs_header_nritems(&c->header);
  840. split_buffer = btrfs_alloc_free_block(trans, root);
  841. split = btrfs_buffer_node(split_buffer);
  842. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  843. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  844. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  845. btrfs_set_header_generation(&split->header, trans->transid);
  846. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  847. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  848. sizeof(split->header.fsid));
  849. mid = (c_nritems + 1) / 2;
  850. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  851. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  852. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  853. btrfs_set_header_nritems(&c->header, mid);
  854. ret = 0;
  855. btrfs_mark_buffer_dirty(t);
  856. btrfs_mark_buffer_dirty(split_buffer);
  857. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  858. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  859. level + 1);
  860. if (wret)
  861. ret = wret;
  862. if (path->slots[level] >= mid) {
  863. path->slots[level] -= mid;
  864. btrfs_block_release(root, t);
  865. path->nodes[level] = split_buffer;
  866. path->slots[level + 1] += 1;
  867. } else {
  868. btrfs_block_release(root, split_buffer);
  869. }
  870. return ret;
  871. }
  872. /*
  873. * how many bytes are required to store the items in a leaf. start
  874. * and nr indicate which items in the leaf to check. This totals up the
  875. * space used both by the item structs and the item data
  876. */
  877. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  878. {
  879. int data_len;
  880. int nritems = btrfs_header_nritems(&l->header);
  881. int end = min(nritems, start + nr) - 1;
  882. if (!nr)
  883. return 0;
  884. data_len = btrfs_item_end(l->items + start);
  885. data_len = data_len - btrfs_item_offset(l->items + end);
  886. data_len += sizeof(struct btrfs_item) * nr;
  887. WARN_ON(data_len < 0);
  888. return data_len;
  889. }
  890. /*
  891. * The space between the end of the leaf items and
  892. * the start of the leaf data. IOW, how much room
  893. * the leaf has left for both items and data
  894. */
  895. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  896. {
  897. int nritems = btrfs_header_nritems(&leaf->header);
  898. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  899. }
  900. /*
  901. * push some data in the path leaf to the right, trying to free up at
  902. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  903. *
  904. * returns 1 if the push failed because the other node didn't have enough
  905. * room, 0 if everything worked out and < 0 if there were major errors.
  906. */
  907. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  908. *root, struct btrfs_path *path, int data_size)
  909. {
  910. struct buffer_head *left_buf = path->nodes[0];
  911. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  912. struct btrfs_leaf *right;
  913. struct buffer_head *right_buf;
  914. struct buffer_head *upper;
  915. struct btrfs_node *upper_node;
  916. int slot;
  917. int i;
  918. int free_space;
  919. int push_space = 0;
  920. int push_items = 0;
  921. struct btrfs_item *item;
  922. u32 left_nritems;
  923. u32 right_nritems;
  924. slot = path->slots[1];
  925. if (!path->nodes[1]) {
  926. return 1;
  927. }
  928. upper = path->nodes[1];
  929. upper_node = btrfs_buffer_node(upper);
  930. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  931. return 1;
  932. }
  933. right_buf = read_tree_block(root,
  934. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  935. right = btrfs_buffer_leaf(right_buf);
  936. free_space = btrfs_leaf_free_space(root, right);
  937. if (free_space < data_size + sizeof(struct btrfs_item)) {
  938. btrfs_block_release(root, right_buf);
  939. return 1;
  940. }
  941. /* cow and double check */
  942. btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
  943. right = btrfs_buffer_leaf(right_buf);
  944. free_space = btrfs_leaf_free_space(root, right);
  945. if (free_space < data_size + sizeof(struct btrfs_item)) {
  946. btrfs_block_release(root, right_buf);
  947. return 1;
  948. }
  949. left_nritems = btrfs_header_nritems(&left->header);
  950. if (left_nritems == 0) {
  951. btrfs_block_release(root, right_buf);
  952. return 1;
  953. }
  954. for (i = left_nritems - 1; i >= 1; i--) {
  955. item = left->items + i;
  956. if (path->slots[0] == i)
  957. push_space += data_size + sizeof(*item);
  958. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  959. free_space)
  960. break;
  961. push_items++;
  962. push_space += btrfs_item_size(item) + sizeof(*item);
  963. }
  964. if (push_items == 0) {
  965. btrfs_block_release(root, right_buf);
  966. return 1;
  967. }
  968. if (push_items == left_nritems)
  969. WARN_ON(1);
  970. right_nritems = btrfs_header_nritems(&right->header);
  971. /* push left to right */
  972. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  973. push_space -= leaf_data_end(root, left);
  974. /* make room in the right data area */
  975. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  976. leaf_data_end(root, right) - push_space,
  977. btrfs_leaf_data(right) +
  978. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  979. leaf_data_end(root, right));
  980. /* copy from the left data area */
  981. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  982. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  983. btrfs_leaf_data(left) + leaf_data_end(root, left),
  984. push_space);
  985. btrfs_memmove(root, right, right->items + push_items, right->items,
  986. right_nritems * sizeof(struct btrfs_item));
  987. /* copy the items from left to right */
  988. btrfs_memcpy(root, right, right->items, left->items +
  989. left_nritems - push_items,
  990. push_items * sizeof(struct btrfs_item));
  991. /* update the item pointers */
  992. right_nritems += push_items;
  993. btrfs_set_header_nritems(&right->header, right_nritems);
  994. push_space = BTRFS_LEAF_DATA_SIZE(root);
  995. for (i = 0; i < right_nritems; i++) {
  996. btrfs_set_item_offset(right->items + i, push_space -
  997. btrfs_item_size(right->items + i));
  998. push_space = btrfs_item_offset(right->items + i);
  999. }
  1000. left_nritems -= push_items;
  1001. btrfs_set_header_nritems(&left->header, left_nritems);
  1002. btrfs_mark_buffer_dirty(left_buf);
  1003. btrfs_mark_buffer_dirty(right_buf);
  1004. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1005. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1006. btrfs_mark_buffer_dirty(upper);
  1007. /* then fixup the leaf pointer in the path */
  1008. if (path->slots[0] >= left_nritems) {
  1009. path->slots[0] -= left_nritems;
  1010. btrfs_block_release(root, path->nodes[0]);
  1011. path->nodes[0] = right_buf;
  1012. path->slots[1] += 1;
  1013. } else {
  1014. btrfs_block_release(root, right_buf);
  1015. }
  1016. return 0;
  1017. }
  1018. /*
  1019. * push some data in the path leaf to the left, trying to free up at
  1020. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1021. */
  1022. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1023. *root, struct btrfs_path *path, int data_size)
  1024. {
  1025. struct buffer_head *right_buf = path->nodes[0];
  1026. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1027. struct buffer_head *t;
  1028. struct btrfs_leaf *left;
  1029. int slot;
  1030. int i;
  1031. int free_space;
  1032. int push_space = 0;
  1033. int push_items = 0;
  1034. struct btrfs_item *item;
  1035. u32 old_left_nritems;
  1036. int ret = 0;
  1037. int wret;
  1038. slot = path->slots[1];
  1039. if (slot == 0) {
  1040. return 1;
  1041. }
  1042. if (!path->nodes[1]) {
  1043. return 1;
  1044. }
  1045. t = read_tree_block(root,
  1046. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1047. left = btrfs_buffer_leaf(t);
  1048. free_space = btrfs_leaf_free_space(root, left);
  1049. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1050. btrfs_block_release(root, t);
  1051. return 1;
  1052. }
  1053. /* cow and double check */
  1054. btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1055. left = btrfs_buffer_leaf(t);
  1056. free_space = btrfs_leaf_free_space(root, left);
  1057. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1058. btrfs_block_release(root, t);
  1059. return 1;
  1060. }
  1061. if (btrfs_header_nritems(&right->header) == 0) {
  1062. btrfs_block_release(root, t);
  1063. return 1;
  1064. }
  1065. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1066. item = right->items + i;
  1067. if (path->slots[0] == i)
  1068. push_space += data_size + sizeof(*item);
  1069. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1070. free_space)
  1071. break;
  1072. push_items++;
  1073. push_space += btrfs_item_size(item) + sizeof(*item);
  1074. }
  1075. if (push_items == 0) {
  1076. btrfs_block_release(root, t);
  1077. return 1;
  1078. }
  1079. if (push_items == btrfs_header_nritems(&right->header))
  1080. WARN_ON(1);
  1081. /* push data from right to left */
  1082. btrfs_memcpy(root, left, left->items +
  1083. btrfs_header_nritems(&left->header),
  1084. right->items, push_items * sizeof(struct btrfs_item));
  1085. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1086. btrfs_item_offset(right->items + push_items -1);
  1087. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1088. leaf_data_end(root, left) - push_space,
  1089. btrfs_leaf_data(right) +
  1090. btrfs_item_offset(right->items + push_items - 1),
  1091. push_space);
  1092. old_left_nritems = btrfs_header_nritems(&left->header);
  1093. BUG_ON(old_left_nritems < 0);
  1094. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1095. u32 ioff = btrfs_item_offset(left->items + i);
  1096. btrfs_set_item_offset(left->items + i, ioff -
  1097. (BTRFS_LEAF_DATA_SIZE(root) -
  1098. btrfs_item_offset(left->items +
  1099. old_left_nritems - 1)));
  1100. }
  1101. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1102. /* fixup right node */
  1103. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1104. leaf_data_end(root, right);
  1105. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1106. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1107. btrfs_leaf_data(right) +
  1108. leaf_data_end(root, right), push_space);
  1109. btrfs_memmove(root, right, right->items, right->items + push_items,
  1110. (btrfs_header_nritems(&right->header) - push_items) *
  1111. sizeof(struct btrfs_item));
  1112. btrfs_set_header_nritems(&right->header,
  1113. btrfs_header_nritems(&right->header) -
  1114. push_items);
  1115. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1116. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1117. btrfs_set_item_offset(right->items + i, push_space -
  1118. btrfs_item_size(right->items + i));
  1119. push_space = btrfs_item_offset(right->items + i);
  1120. }
  1121. btrfs_mark_buffer_dirty(t);
  1122. btrfs_mark_buffer_dirty(right_buf);
  1123. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1124. if (wret)
  1125. ret = wret;
  1126. /* then fixup the leaf pointer in the path */
  1127. if (path->slots[0] < push_items) {
  1128. path->slots[0] += old_left_nritems;
  1129. btrfs_block_release(root, path->nodes[0]);
  1130. path->nodes[0] = t;
  1131. path->slots[1] -= 1;
  1132. } else {
  1133. btrfs_block_release(root, t);
  1134. path->slots[0] -= push_items;
  1135. }
  1136. BUG_ON(path->slots[0] < 0);
  1137. return ret;
  1138. }
  1139. /*
  1140. * split the path's leaf in two, making sure there is at least data_size
  1141. * available for the resulting leaf level of the path.
  1142. *
  1143. * returns 0 if all went well and < 0 on failure.
  1144. */
  1145. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1146. *root, struct btrfs_key *ins_key,
  1147. struct btrfs_path *path, int data_size)
  1148. {
  1149. struct buffer_head *l_buf;
  1150. struct btrfs_leaf *l;
  1151. u32 nritems;
  1152. int mid;
  1153. int slot;
  1154. struct btrfs_leaf *right;
  1155. struct buffer_head *right_buffer;
  1156. int space_needed = data_size + sizeof(struct btrfs_item);
  1157. int data_copy_size;
  1158. int rt_data_off;
  1159. int i;
  1160. int ret = 0;
  1161. int wret;
  1162. int double_split = 0;
  1163. struct btrfs_disk_key disk_key;
  1164. /* first try to make some room by pushing left and right */
  1165. wret = push_leaf_left(trans, root, path, data_size);
  1166. if (wret < 0)
  1167. return wret;
  1168. if (wret) {
  1169. wret = push_leaf_right(trans, root, path, data_size);
  1170. if (wret < 0)
  1171. return wret;
  1172. }
  1173. l_buf = path->nodes[0];
  1174. l = btrfs_buffer_leaf(l_buf);
  1175. /* did the pushes work? */
  1176. if (btrfs_leaf_free_space(root, l) >=
  1177. sizeof(struct btrfs_item) + data_size)
  1178. return 0;
  1179. if (!path->nodes[1]) {
  1180. ret = insert_new_root(trans, root, path, 1);
  1181. if (ret)
  1182. return ret;
  1183. }
  1184. slot = path->slots[0];
  1185. nritems = btrfs_header_nritems(&l->header);
  1186. mid = (nritems + 1)/ 2;
  1187. right_buffer = btrfs_alloc_free_block(trans, root);
  1188. BUG_ON(!right_buffer);
  1189. right = btrfs_buffer_leaf(right_buffer);
  1190. memset(&right->header, 0, sizeof(right->header));
  1191. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1192. btrfs_set_header_generation(&right->header, trans->transid);
  1193. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1194. btrfs_set_header_level(&right->header, 0);
  1195. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1196. sizeof(right->header.fsid));
  1197. if (mid <= slot) {
  1198. if (nritems == 1 ||
  1199. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1200. BTRFS_LEAF_DATA_SIZE(root)) {
  1201. if (slot >= nritems) {
  1202. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1203. btrfs_set_header_nritems(&right->header, 0);
  1204. wret = insert_ptr(trans, root, path,
  1205. &disk_key,
  1206. bh_blocknr(right_buffer),
  1207. path->slots[1] + 1, 1);
  1208. if (wret)
  1209. ret = wret;
  1210. btrfs_block_release(root, path->nodes[0]);
  1211. path->nodes[0] = right_buffer;
  1212. path->slots[0] = 0;
  1213. path->slots[1] += 1;
  1214. return ret;
  1215. }
  1216. mid = slot;
  1217. double_split = 1;
  1218. }
  1219. } else {
  1220. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1221. BTRFS_LEAF_DATA_SIZE(root)) {
  1222. if (slot == 0) {
  1223. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1224. btrfs_set_header_nritems(&right->header, 0);
  1225. wret = insert_ptr(trans, root, path,
  1226. &disk_key,
  1227. bh_blocknr(right_buffer),
  1228. path->slots[1] - 1, 1);
  1229. if (wret)
  1230. ret = wret;
  1231. btrfs_block_release(root, path->nodes[0]);
  1232. path->nodes[0] = right_buffer;
  1233. path->slots[0] = 0;
  1234. path->slots[1] -= 1;
  1235. if (path->slots[1] == 0) {
  1236. wret = fixup_low_keys(trans, root,
  1237. path, &disk_key, 1);
  1238. if (wret)
  1239. ret = wret;
  1240. }
  1241. return ret;
  1242. }
  1243. mid = slot;
  1244. double_split = 1;
  1245. }
  1246. }
  1247. btrfs_set_header_nritems(&right->header, nritems - mid);
  1248. data_copy_size = btrfs_item_end(l->items + mid) -
  1249. leaf_data_end(root, l);
  1250. btrfs_memcpy(root, right, right->items, l->items + mid,
  1251. (nritems - mid) * sizeof(struct btrfs_item));
  1252. btrfs_memcpy(root, right,
  1253. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1254. data_copy_size, btrfs_leaf_data(l) +
  1255. leaf_data_end(root, l), data_copy_size);
  1256. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1257. btrfs_item_end(l->items + mid);
  1258. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1259. u32 ioff = btrfs_item_offset(right->items + i);
  1260. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1261. }
  1262. btrfs_set_header_nritems(&l->header, mid);
  1263. ret = 0;
  1264. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1265. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1266. if (wret)
  1267. ret = wret;
  1268. btrfs_mark_buffer_dirty(right_buffer);
  1269. btrfs_mark_buffer_dirty(l_buf);
  1270. BUG_ON(path->slots[0] != slot);
  1271. if (mid <= slot) {
  1272. btrfs_block_release(root, path->nodes[0]);
  1273. path->nodes[0] = right_buffer;
  1274. path->slots[0] -= mid;
  1275. path->slots[1] += 1;
  1276. } else
  1277. btrfs_block_release(root, right_buffer);
  1278. BUG_ON(path->slots[0] < 0);
  1279. if (!double_split)
  1280. return ret;
  1281. right_buffer = btrfs_alloc_free_block(trans, root);
  1282. BUG_ON(!right_buffer);
  1283. right = btrfs_buffer_leaf(right_buffer);
  1284. memset(&right->header, 0, sizeof(right->header));
  1285. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1286. btrfs_set_header_generation(&right->header, trans->transid);
  1287. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1288. btrfs_set_header_level(&right->header, 0);
  1289. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1290. sizeof(right->header.fsid));
  1291. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1292. btrfs_set_header_nritems(&right->header, 0);
  1293. wret = insert_ptr(trans, root, path,
  1294. &disk_key,
  1295. bh_blocknr(right_buffer),
  1296. path->slots[1], 1);
  1297. if (wret)
  1298. ret = wret;
  1299. if (path->slots[1] == 0) {
  1300. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1301. if (wret)
  1302. ret = wret;
  1303. }
  1304. btrfs_block_release(root, path->nodes[0]);
  1305. path->nodes[0] = right_buffer;
  1306. path->slots[0] = 0;
  1307. check_node(root, path, 1);
  1308. check_leaf(root, path, 0);
  1309. return ret;
  1310. }
  1311. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1312. struct btrfs_root *root,
  1313. struct btrfs_path *path,
  1314. u32 new_size)
  1315. {
  1316. int ret = 0;
  1317. int slot;
  1318. int slot_orig;
  1319. struct btrfs_leaf *leaf;
  1320. struct buffer_head *leaf_buf;
  1321. u32 nritems;
  1322. unsigned int data_end;
  1323. unsigned int old_data_start;
  1324. unsigned int old_size;
  1325. unsigned int size_diff;
  1326. int i;
  1327. slot_orig = path->slots[0];
  1328. leaf_buf = path->nodes[0];
  1329. leaf = btrfs_buffer_leaf(leaf_buf);
  1330. nritems = btrfs_header_nritems(&leaf->header);
  1331. data_end = leaf_data_end(root, leaf);
  1332. slot = path->slots[0];
  1333. old_data_start = btrfs_item_offset(leaf->items + slot);
  1334. old_size = btrfs_item_size(leaf->items + slot);
  1335. BUG_ON(old_size <= new_size);
  1336. size_diff = old_size - new_size;
  1337. BUG_ON(slot < 0);
  1338. BUG_ON(slot >= nritems);
  1339. /*
  1340. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1341. */
  1342. /* first correct the data pointers */
  1343. for (i = slot; i < nritems; i++) {
  1344. u32 ioff = btrfs_item_offset(leaf->items + i);
  1345. btrfs_set_item_offset(leaf->items + i,
  1346. ioff + size_diff);
  1347. }
  1348. /* shift the data */
  1349. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1350. data_end + size_diff, btrfs_leaf_data(leaf) +
  1351. data_end, old_data_start + new_size - data_end);
  1352. btrfs_set_item_size(leaf->items + slot, new_size);
  1353. btrfs_mark_buffer_dirty(leaf_buf);
  1354. ret = 0;
  1355. if (btrfs_leaf_free_space(root, leaf) < 0)
  1356. BUG();
  1357. check_leaf(root, path, 0);
  1358. return ret;
  1359. }
  1360. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1361. *root, struct btrfs_path *path, u32 data_size)
  1362. {
  1363. int ret = 0;
  1364. int slot;
  1365. int slot_orig;
  1366. struct btrfs_leaf *leaf;
  1367. struct buffer_head *leaf_buf;
  1368. u32 nritems;
  1369. unsigned int data_end;
  1370. unsigned int old_data;
  1371. unsigned int old_size;
  1372. int i;
  1373. slot_orig = path->slots[0];
  1374. leaf_buf = path->nodes[0];
  1375. leaf = btrfs_buffer_leaf(leaf_buf);
  1376. nritems = btrfs_header_nritems(&leaf->header);
  1377. data_end = leaf_data_end(root, leaf);
  1378. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1379. BUG();
  1380. slot = path->slots[0];
  1381. old_data = btrfs_item_end(leaf->items + slot);
  1382. BUG_ON(slot < 0);
  1383. BUG_ON(slot >= nritems);
  1384. /*
  1385. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1386. */
  1387. /* first correct the data pointers */
  1388. for (i = slot; i < nritems; i++) {
  1389. u32 ioff = btrfs_item_offset(leaf->items + i);
  1390. btrfs_set_item_offset(leaf->items + i,
  1391. ioff - data_size);
  1392. }
  1393. /* shift the data */
  1394. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1395. data_end - data_size, btrfs_leaf_data(leaf) +
  1396. data_end, old_data - data_end);
  1397. data_end = old_data;
  1398. old_size = btrfs_item_size(leaf->items + slot);
  1399. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1400. btrfs_mark_buffer_dirty(leaf_buf);
  1401. ret = 0;
  1402. if (btrfs_leaf_free_space(root, leaf) < 0)
  1403. BUG();
  1404. check_leaf(root, path, 0);
  1405. return ret;
  1406. }
  1407. /*
  1408. * Given a key and some data, insert an item into the tree.
  1409. * This does all the path init required, making room in the tree if needed.
  1410. */
  1411. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1412. *root, struct btrfs_path *path, struct btrfs_key
  1413. *cpu_key, u32 data_size)
  1414. {
  1415. int ret = 0;
  1416. int slot;
  1417. int slot_orig;
  1418. struct btrfs_leaf *leaf;
  1419. struct buffer_head *leaf_buf;
  1420. u32 nritems;
  1421. unsigned int data_end;
  1422. struct btrfs_disk_key disk_key;
  1423. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1424. /* create a root if there isn't one */
  1425. if (!root->node)
  1426. BUG();
  1427. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1428. if (ret == 0) {
  1429. return -EEXIST;
  1430. }
  1431. if (ret < 0)
  1432. goto out;
  1433. slot_orig = path->slots[0];
  1434. leaf_buf = path->nodes[0];
  1435. leaf = btrfs_buffer_leaf(leaf_buf);
  1436. nritems = btrfs_header_nritems(&leaf->header);
  1437. data_end = leaf_data_end(root, leaf);
  1438. if (btrfs_leaf_free_space(root, leaf) <
  1439. sizeof(struct btrfs_item) + data_size) {
  1440. BUG();
  1441. }
  1442. slot = path->slots[0];
  1443. BUG_ON(slot < 0);
  1444. if (slot != nritems) {
  1445. int i;
  1446. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1447. /*
  1448. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1449. */
  1450. /* first correct the data pointers */
  1451. for (i = slot; i < nritems; i++) {
  1452. u32 ioff = btrfs_item_offset(leaf->items + i);
  1453. btrfs_set_item_offset(leaf->items + i,
  1454. ioff - data_size);
  1455. }
  1456. /* shift the items */
  1457. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1458. leaf->items + slot,
  1459. (nritems - slot) * sizeof(struct btrfs_item));
  1460. /* shift the data */
  1461. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1462. data_end - data_size, btrfs_leaf_data(leaf) +
  1463. data_end, old_data - data_end);
  1464. data_end = old_data;
  1465. }
  1466. /* setup the item for the new data */
  1467. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1468. sizeof(struct btrfs_disk_key));
  1469. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1470. btrfs_set_item_size(leaf->items + slot, data_size);
  1471. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1472. btrfs_mark_buffer_dirty(leaf_buf);
  1473. ret = 0;
  1474. if (slot == 0)
  1475. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1476. if (btrfs_leaf_free_space(root, leaf) < 0)
  1477. BUG();
  1478. check_leaf(root, path, 0);
  1479. out:
  1480. return ret;
  1481. }
  1482. /*
  1483. * Given a key and some data, insert an item into the tree.
  1484. * This does all the path init required, making room in the tree if needed.
  1485. */
  1486. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1487. *root, struct btrfs_key *cpu_key, void *data, u32
  1488. data_size)
  1489. {
  1490. int ret = 0;
  1491. struct btrfs_path *path;
  1492. u8 *ptr;
  1493. path = btrfs_alloc_path();
  1494. BUG_ON(!path);
  1495. btrfs_init_path(path);
  1496. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1497. if (!ret) {
  1498. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1499. path->slots[0], u8);
  1500. btrfs_memcpy(root, path->nodes[0]->b_data,
  1501. ptr, data, data_size);
  1502. btrfs_mark_buffer_dirty(path->nodes[0]);
  1503. }
  1504. btrfs_release_path(root, path);
  1505. btrfs_free_path(path);
  1506. return ret;
  1507. }
  1508. /*
  1509. * delete the pointer from a given node.
  1510. *
  1511. * If the delete empties a node, the node is removed from the tree,
  1512. * continuing all the way the root if required. The root is converted into
  1513. * a leaf if all the nodes are emptied.
  1514. */
  1515. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1516. struct btrfs_path *path, int level, int slot)
  1517. {
  1518. struct btrfs_node *node;
  1519. struct buffer_head *parent = path->nodes[level];
  1520. u32 nritems;
  1521. int ret = 0;
  1522. int wret;
  1523. node = btrfs_buffer_node(parent);
  1524. nritems = btrfs_header_nritems(&node->header);
  1525. if (slot != nritems -1) {
  1526. btrfs_memmove(root, node, node->ptrs + slot,
  1527. node->ptrs + slot + 1,
  1528. sizeof(struct btrfs_key_ptr) *
  1529. (nritems - slot - 1));
  1530. }
  1531. nritems--;
  1532. btrfs_set_header_nritems(&node->header, nritems);
  1533. if (nritems == 0 && parent == root->node) {
  1534. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1535. BUG_ON(btrfs_header_level(header) != 1);
  1536. /* just turn the root into a leaf and break */
  1537. btrfs_set_header_level(header, 0);
  1538. } else if (slot == 0) {
  1539. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1540. level + 1);
  1541. if (wret)
  1542. ret = wret;
  1543. }
  1544. btrfs_mark_buffer_dirty(parent);
  1545. return ret;
  1546. }
  1547. /*
  1548. * delete the item at the leaf level in path. If that empties
  1549. * the leaf, remove it from the tree
  1550. */
  1551. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1552. struct btrfs_path *path)
  1553. {
  1554. int slot;
  1555. struct btrfs_leaf *leaf;
  1556. struct buffer_head *leaf_buf;
  1557. int doff;
  1558. int dsize;
  1559. int ret = 0;
  1560. int wret;
  1561. u32 nritems;
  1562. leaf_buf = path->nodes[0];
  1563. leaf = btrfs_buffer_leaf(leaf_buf);
  1564. slot = path->slots[0];
  1565. doff = btrfs_item_offset(leaf->items + slot);
  1566. dsize = btrfs_item_size(leaf->items + slot);
  1567. nritems = btrfs_header_nritems(&leaf->header);
  1568. if (slot != nritems - 1) {
  1569. int i;
  1570. int data_end = leaf_data_end(root, leaf);
  1571. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1572. data_end + dsize,
  1573. btrfs_leaf_data(leaf) + data_end,
  1574. doff - data_end);
  1575. for (i = slot + 1; i < nritems; i++) {
  1576. u32 ioff = btrfs_item_offset(leaf->items + i);
  1577. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1578. }
  1579. btrfs_memmove(root, leaf, leaf->items + slot,
  1580. leaf->items + slot + 1,
  1581. sizeof(struct btrfs_item) *
  1582. (nritems - slot - 1));
  1583. }
  1584. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1585. nritems--;
  1586. /* delete the leaf if we've emptied it */
  1587. if (nritems == 0) {
  1588. if (leaf_buf == root->node) {
  1589. btrfs_set_header_level(&leaf->header, 0);
  1590. } else {
  1591. clean_tree_block(trans, root, leaf_buf);
  1592. wait_on_buffer(leaf_buf);
  1593. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1594. if (wret)
  1595. ret = wret;
  1596. wret = btrfs_free_extent(trans, root,
  1597. bh_blocknr(leaf_buf), 1, 1);
  1598. if (wret)
  1599. ret = wret;
  1600. }
  1601. } else {
  1602. int used = leaf_space_used(leaf, 0, nritems);
  1603. if (slot == 0) {
  1604. wret = fixup_low_keys(trans, root, path,
  1605. &leaf->items[0].key, 1);
  1606. if (wret)
  1607. ret = wret;
  1608. }
  1609. /* delete the leaf if it is mostly empty */
  1610. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1611. /* push_leaf_left fixes the path.
  1612. * make sure the path still points to our leaf
  1613. * for possible call to del_ptr below
  1614. */
  1615. slot = path->slots[1];
  1616. get_bh(leaf_buf);
  1617. wret = push_leaf_left(trans, root, path, 1);
  1618. if (wret < 0)
  1619. ret = wret;
  1620. if (path->nodes[0] == leaf_buf &&
  1621. btrfs_header_nritems(&leaf->header)) {
  1622. wret = push_leaf_right(trans, root, path, 1);
  1623. if (wret < 0)
  1624. ret = wret;
  1625. }
  1626. if (btrfs_header_nritems(&leaf->header) == 0) {
  1627. u64 blocknr = bh_blocknr(leaf_buf);
  1628. clean_tree_block(trans, root, leaf_buf);
  1629. wait_on_buffer(leaf_buf);
  1630. wret = del_ptr(trans, root, path, 1, slot);
  1631. if (wret)
  1632. ret = wret;
  1633. btrfs_block_release(root, leaf_buf);
  1634. wret = btrfs_free_extent(trans, root, blocknr,
  1635. 1, 1);
  1636. if (wret)
  1637. ret = wret;
  1638. } else {
  1639. btrfs_mark_buffer_dirty(leaf_buf);
  1640. btrfs_block_release(root, leaf_buf);
  1641. }
  1642. } else {
  1643. btrfs_mark_buffer_dirty(leaf_buf);
  1644. }
  1645. }
  1646. return ret;
  1647. }
  1648. /*
  1649. * walk up the tree as far as required to find the next leaf.
  1650. * returns 0 if it found something or 1 if there are no greater leaves.
  1651. * returns < 0 on io errors.
  1652. */
  1653. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1654. {
  1655. int slot;
  1656. int level = 1;
  1657. u64 blocknr;
  1658. struct buffer_head *c;
  1659. struct btrfs_node *c_node;
  1660. struct buffer_head *next = NULL;
  1661. while(level < BTRFS_MAX_LEVEL) {
  1662. if (!path->nodes[level])
  1663. return 1;
  1664. slot = path->slots[level] + 1;
  1665. c = path->nodes[level];
  1666. c_node = btrfs_buffer_node(c);
  1667. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1668. level++;
  1669. continue;
  1670. }
  1671. blocknr = btrfs_node_blockptr(c_node, slot);
  1672. if (next)
  1673. btrfs_block_release(root, next);
  1674. next = read_tree_block(root, blocknr);
  1675. break;
  1676. }
  1677. path->slots[level] = slot;
  1678. while(1) {
  1679. level--;
  1680. c = path->nodes[level];
  1681. btrfs_block_release(root, c);
  1682. path->nodes[level] = next;
  1683. path->slots[level] = 0;
  1684. if (!level)
  1685. break;
  1686. next = read_tree_block(root,
  1687. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1688. }
  1689. return 0;
  1690. }