spi_bfin5xx.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2010 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. struct bfin_spi_master_data;
  40. struct bfin_spi_transfer_ops {
  41. void (*write) (struct bfin_spi_master_data *);
  42. void (*read) (struct bfin_spi_master_data *);
  43. void (*duplex) (struct bfin_spi_master_data *);
  44. };
  45. struct bfin_spi_master_data {
  46. /* Driver model hookup */
  47. struct platform_device *pdev;
  48. /* SPI framework hookup */
  49. struct spi_master *master;
  50. /* Regs base of SPI controller */
  51. void __iomem *regs_base;
  52. /* Pin request list */
  53. u16 *pin_req;
  54. /* BFIN hookup */
  55. struct bfin5xx_spi_master *master_info;
  56. /* Driver message queue */
  57. struct workqueue_struct *workqueue;
  58. struct work_struct pump_messages;
  59. spinlock_t lock;
  60. struct list_head queue;
  61. int busy;
  62. bool running;
  63. /* Message Transfer pump */
  64. struct tasklet_struct pump_transfers;
  65. /* Current message transfer state info */
  66. struct spi_message *cur_msg;
  67. struct spi_transfer *cur_transfer;
  68. struct bfin_spi_slave_data *cur_chip;
  69. size_t len_in_bytes;
  70. size_t len;
  71. void *tx;
  72. void *tx_end;
  73. void *rx;
  74. void *rx_end;
  75. /* DMA stuffs */
  76. int dma_channel;
  77. int dma_mapped;
  78. int dma_requested;
  79. dma_addr_t rx_dma;
  80. dma_addr_t tx_dma;
  81. int irq_requested;
  82. int spi_irq;
  83. size_t rx_map_len;
  84. size_t tx_map_len;
  85. u8 n_bytes;
  86. u16 ctrl_reg;
  87. u16 flag_reg;
  88. int cs_change;
  89. const struct bfin_spi_transfer_ops *ops;
  90. };
  91. struct bfin_spi_slave_data {
  92. u16 ctl_reg;
  93. u16 baud;
  94. u16 flag;
  95. u8 chip_select_num;
  96. u8 enable_dma;
  97. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  98. u32 cs_gpio;
  99. u16 idle_tx_val;
  100. u8 pio_interrupt; /* use spi data irq */
  101. const struct bfin_spi_transfer_ops *ops;
  102. };
  103. #define DEFINE_SPI_REG(reg, off) \
  104. static inline u16 read_##reg(struct bfin_spi_master_data *drv_data) \
  105. { return bfin_read16(drv_data->regs_base + off); } \
  106. static inline void write_##reg(struct bfin_spi_master_data *drv_data, u16 v) \
  107. { bfin_write16(drv_data->regs_base + off, v); }
  108. DEFINE_SPI_REG(CTRL, 0x00)
  109. DEFINE_SPI_REG(FLAG, 0x04)
  110. DEFINE_SPI_REG(STAT, 0x08)
  111. DEFINE_SPI_REG(TDBR, 0x0C)
  112. DEFINE_SPI_REG(RDBR, 0x10)
  113. DEFINE_SPI_REG(BAUD, 0x14)
  114. DEFINE_SPI_REG(SHAW, 0x18)
  115. static void bfin_spi_enable(struct bfin_spi_master_data *drv_data)
  116. {
  117. u16 cr;
  118. cr = read_CTRL(drv_data);
  119. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  120. }
  121. static void bfin_spi_disable(struct bfin_spi_master_data *drv_data)
  122. {
  123. u16 cr;
  124. cr = read_CTRL(drv_data);
  125. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  126. }
  127. /* Caculate the SPI_BAUD register value based on input HZ */
  128. static u16 hz_to_spi_baud(u32 speed_hz)
  129. {
  130. u_long sclk = get_sclk();
  131. u16 spi_baud = (sclk / (2 * speed_hz));
  132. if ((sclk % (2 * speed_hz)) > 0)
  133. spi_baud++;
  134. if (spi_baud < MIN_SPI_BAUD_VAL)
  135. spi_baud = MIN_SPI_BAUD_VAL;
  136. return spi_baud;
  137. }
  138. static int bfin_spi_flush(struct bfin_spi_master_data *drv_data)
  139. {
  140. unsigned long limit = loops_per_jiffy << 1;
  141. /* wait for stop and clear stat */
  142. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  143. cpu_relax();
  144. write_STAT(drv_data, BIT_STAT_CLR);
  145. return limit;
  146. }
  147. /* Chip select operation functions for cs_change flag */
  148. static void bfin_spi_cs_active(struct bfin_spi_master_data *drv_data, struct bfin_spi_slave_data *chip)
  149. {
  150. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  151. u16 flag = read_FLAG(drv_data);
  152. flag &= ~chip->flag;
  153. write_FLAG(drv_data, flag);
  154. } else {
  155. gpio_set_value(chip->cs_gpio, 0);
  156. }
  157. }
  158. static void bfin_spi_cs_deactive(struct bfin_spi_master_data *drv_data,
  159. struct bfin_spi_slave_data *chip)
  160. {
  161. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  162. u16 flag = read_FLAG(drv_data);
  163. flag |= chip->flag;
  164. write_FLAG(drv_data, flag);
  165. } else {
  166. gpio_set_value(chip->cs_gpio, 1);
  167. }
  168. /* Move delay here for consistency */
  169. if (chip->cs_chg_udelay)
  170. udelay(chip->cs_chg_udelay);
  171. }
  172. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  173. static inline void bfin_spi_cs_enable(struct bfin_spi_master_data *drv_data,
  174. struct bfin_spi_slave_data *chip)
  175. {
  176. if (chip->chip_select_num < MAX_CTRL_CS) {
  177. u16 flag = read_FLAG(drv_data);
  178. flag |= (chip->flag >> 8);
  179. write_FLAG(drv_data, flag);
  180. }
  181. }
  182. static inline void bfin_spi_cs_disable(struct bfin_spi_master_data *drv_data,
  183. struct bfin_spi_slave_data *chip)
  184. {
  185. if (chip->chip_select_num < MAX_CTRL_CS) {
  186. u16 flag = read_FLAG(drv_data);
  187. flag &= ~(chip->flag >> 8);
  188. write_FLAG(drv_data, flag);
  189. }
  190. }
  191. /* stop controller and re-config current chip*/
  192. static void bfin_spi_restore_state(struct bfin_spi_master_data *drv_data)
  193. {
  194. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  195. /* Clear status and disable clock */
  196. write_STAT(drv_data, BIT_STAT_CLR);
  197. bfin_spi_disable(drv_data);
  198. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  199. SSYNC();
  200. /* Load the registers */
  201. write_CTRL(drv_data, chip->ctl_reg);
  202. write_BAUD(drv_data, chip->baud);
  203. bfin_spi_enable(drv_data);
  204. bfin_spi_cs_active(drv_data, chip);
  205. }
  206. /* used to kick off transfer in rx mode and read unwanted RX data */
  207. static inline void bfin_spi_dummy_read(struct bfin_spi_master_data *drv_data)
  208. {
  209. (void) read_RDBR(drv_data);
  210. }
  211. static void bfin_spi_u8_writer(struct bfin_spi_master_data *drv_data)
  212. {
  213. /* clear RXS (we check for RXS inside the loop) */
  214. bfin_spi_dummy_read(drv_data);
  215. while (drv_data->tx < drv_data->tx_end) {
  216. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  217. /* wait until transfer finished.
  218. checking SPIF or TXS may not guarantee transfer completion */
  219. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  220. cpu_relax();
  221. /* discard RX data and clear RXS */
  222. bfin_spi_dummy_read(drv_data);
  223. }
  224. }
  225. static void bfin_spi_u8_reader(struct bfin_spi_master_data *drv_data)
  226. {
  227. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  228. /* discard old RX data and clear RXS */
  229. bfin_spi_dummy_read(drv_data);
  230. while (drv_data->rx < drv_data->rx_end) {
  231. write_TDBR(drv_data, tx_val);
  232. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  233. cpu_relax();
  234. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  235. }
  236. }
  237. static void bfin_spi_u8_duplex(struct bfin_spi_master_data *drv_data)
  238. {
  239. /* discard old RX data and clear RXS */
  240. bfin_spi_dummy_read(drv_data);
  241. while (drv_data->rx < drv_data->rx_end) {
  242. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  243. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  244. cpu_relax();
  245. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  246. }
  247. }
  248. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
  249. .write = bfin_spi_u8_writer,
  250. .read = bfin_spi_u8_reader,
  251. .duplex = bfin_spi_u8_duplex,
  252. };
  253. static void bfin_spi_u16_writer(struct bfin_spi_master_data *drv_data)
  254. {
  255. /* clear RXS (we check for RXS inside the loop) */
  256. bfin_spi_dummy_read(drv_data);
  257. while (drv_data->tx < drv_data->tx_end) {
  258. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  259. drv_data->tx += 2;
  260. /* wait until transfer finished.
  261. checking SPIF or TXS may not guarantee transfer completion */
  262. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  263. cpu_relax();
  264. /* discard RX data and clear RXS */
  265. bfin_spi_dummy_read(drv_data);
  266. }
  267. }
  268. static void bfin_spi_u16_reader(struct bfin_spi_master_data *drv_data)
  269. {
  270. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  271. /* discard old RX data and clear RXS */
  272. bfin_spi_dummy_read(drv_data);
  273. while (drv_data->rx < drv_data->rx_end) {
  274. write_TDBR(drv_data, tx_val);
  275. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  276. cpu_relax();
  277. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  278. drv_data->rx += 2;
  279. }
  280. }
  281. static void bfin_spi_u16_duplex(struct bfin_spi_master_data *drv_data)
  282. {
  283. /* discard old RX data and clear RXS */
  284. bfin_spi_dummy_read(drv_data);
  285. while (drv_data->rx < drv_data->rx_end) {
  286. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  287. drv_data->tx += 2;
  288. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  289. cpu_relax();
  290. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  291. drv_data->rx += 2;
  292. }
  293. }
  294. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
  295. .write = bfin_spi_u16_writer,
  296. .read = bfin_spi_u16_reader,
  297. .duplex = bfin_spi_u16_duplex,
  298. };
  299. /* test if there is more transfer to be done */
  300. static void *bfin_spi_next_transfer(struct bfin_spi_master_data *drv_data)
  301. {
  302. struct spi_message *msg = drv_data->cur_msg;
  303. struct spi_transfer *trans = drv_data->cur_transfer;
  304. /* Move to next transfer */
  305. if (trans->transfer_list.next != &msg->transfers) {
  306. drv_data->cur_transfer =
  307. list_entry(trans->transfer_list.next,
  308. struct spi_transfer, transfer_list);
  309. return RUNNING_STATE;
  310. } else
  311. return DONE_STATE;
  312. }
  313. /*
  314. * caller already set message->status;
  315. * dma and pio irqs are blocked give finished message back
  316. */
  317. static void bfin_spi_giveback(struct bfin_spi_master_data *drv_data)
  318. {
  319. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  320. struct spi_transfer *last_transfer;
  321. unsigned long flags;
  322. struct spi_message *msg;
  323. spin_lock_irqsave(&drv_data->lock, flags);
  324. msg = drv_data->cur_msg;
  325. drv_data->cur_msg = NULL;
  326. drv_data->cur_transfer = NULL;
  327. drv_data->cur_chip = NULL;
  328. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  329. spin_unlock_irqrestore(&drv_data->lock, flags);
  330. last_transfer = list_entry(msg->transfers.prev,
  331. struct spi_transfer, transfer_list);
  332. msg->state = NULL;
  333. if (!drv_data->cs_change)
  334. bfin_spi_cs_deactive(drv_data, chip);
  335. /* Not stop spi in autobuffer mode */
  336. if (drv_data->tx_dma != 0xFFFF)
  337. bfin_spi_disable(drv_data);
  338. if (msg->complete)
  339. msg->complete(msg->context);
  340. }
  341. /* spi data irq handler */
  342. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  343. {
  344. struct bfin_spi_master_data *drv_data = dev_id;
  345. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  346. struct spi_message *msg = drv_data->cur_msg;
  347. int n_bytes = drv_data->n_bytes;
  348. int loop = 0;
  349. /* wait until transfer finished. */
  350. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  351. cpu_relax();
  352. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  353. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  354. /* last read */
  355. if (drv_data->rx) {
  356. dev_dbg(&drv_data->pdev->dev, "last read\n");
  357. if (n_bytes % 2) {
  358. u16 *buf = (u16 *)drv_data->rx;
  359. for (loop = 0; loop < n_bytes / 2; loop++)
  360. *buf++ = read_RDBR(drv_data);
  361. } else {
  362. u8 *buf = (u8 *)drv_data->rx;
  363. for (loop = 0; loop < n_bytes; loop++)
  364. *buf++ = read_RDBR(drv_data);
  365. }
  366. drv_data->rx += n_bytes;
  367. }
  368. msg->actual_length += drv_data->len_in_bytes;
  369. if (drv_data->cs_change)
  370. bfin_spi_cs_deactive(drv_data, chip);
  371. /* Move to next transfer */
  372. msg->state = bfin_spi_next_transfer(drv_data);
  373. disable_irq_nosync(drv_data->spi_irq);
  374. /* Schedule transfer tasklet */
  375. tasklet_schedule(&drv_data->pump_transfers);
  376. return IRQ_HANDLED;
  377. }
  378. if (drv_data->rx && drv_data->tx) {
  379. /* duplex */
  380. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  381. if (n_bytes % 2) {
  382. u16 *buf = (u16 *)drv_data->rx;
  383. u16 *buf2 = (u16 *)drv_data->tx;
  384. for (loop = 0; loop < n_bytes / 2; loop++) {
  385. *buf++ = read_RDBR(drv_data);
  386. write_TDBR(drv_data, *buf2++);
  387. }
  388. } else {
  389. u8 *buf = (u8 *)drv_data->rx;
  390. u8 *buf2 = (u8 *)drv_data->tx;
  391. for (loop = 0; loop < n_bytes; loop++) {
  392. *buf++ = read_RDBR(drv_data);
  393. write_TDBR(drv_data, *buf2++);
  394. }
  395. }
  396. } else if (drv_data->rx) {
  397. /* read */
  398. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  399. if (n_bytes % 2) {
  400. u16 *buf = (u16 *)drv_data->rx;
  401. for (loop = 0; loop < n_bytes / 2; loop++) {
  402. *buf++ = read_RDBR(drv_data);
  403. write_TDBR(drv_data, chip->idle_tx_val);
  404. }
  405. } else {
  406. u8 *buf = (u8 *)drv_data->rx;
  407. for (loop = 0; loop < n_bytes; loop++) {
  408. *buf++ = read_RDBR(drv_data);
  409. write_TDBR(drv_data, chip->idle_tx_val);
  410. }
  411. }
  412. } else if (drv_data->tx) {
  413. /* write */
  414. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  415. if (n_bytes % 2) {
  416. u16 *buf = (u16 *)drv_data->tx;
  417. for (loop = 0; loop < n_bytes / 2; loop++) {
  418. read_RDBR(drv_data);
  419. write_TDBR(drv_data, *buf++);
  420. }
  421. } else {
  422. u8 *buf = (u8 *)drv_data->tx;
  423. for (loop = 0; loop < n_bytes; loop++) {
  424. read_RDBR(drv_data);
  425. write_TDBR(drv_data, *buf++);
  426. }
  427. }
  428. }
  429. if (drv_data->tx)
  430. drv_data->tx += n_bytes;
  431. if (drv_data->rx)
  432. drv_data->rx += n_bytes;
  433. return IRQ_HANDLED;
  434. }
  435. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  436. {
  437. struct bfin_spi_master_data *drv_data = dev_id;
  438. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  439. struct spi_message *msg = drv_data->cur_msg;
  440. unsigned long timeout;
  441. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  442. u16 spistat = read_STAT(drv_data);
  443. dev_dbg(&drv_data->pdev->dev,
  444. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  445. dmastat, spistat);
  446. if (drv_data->rx != NULL) {
  447. u16 cr = read_CTRL(drv_data);
  448. /* discard old RX data and clear RXS */
  449. bfin_spi_dummy_read(drv_data);
  450. write_CTRL(drv_data, cr & ~BIT_CTL_ENABLE); /* Disable SPI */
  451. write_CTRL(drv_data, cr & ~BIT_CTL_TIMOD); /* Restore State */
  452. write_STAT(drv_data, BIT_STAT_CLR); /* Clear Status */
  453. }
  454. clear_dma_irqstat(drv_data->dma_channel);
  455. /*
  456. * wait for the last transaction shifted out. HRM states:
  457. * at this point there may still be data in the SPI DMA FIFO waiting
  458. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  459. * register until it goes low for 2 successive reads
  460. */
  461. if (drv_data->tx != NULL) {
  462. while ((read_STAT(drv_data) & BIT_STAT_TXS) ||
  463. (read_STAT(drv_data) & BIT_STAT_TXS))
  464. cpu_relax();
  465. }
  466. dev_dbg(&drv_data->pdev->dev,
  467. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  468. dmastat, read_STAT(drv_data));
  469. timeout = jiffies + HZ;
  470. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  471. if (!time_before(jiffies, timeout)) {
  472. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  473. break;
  474. } else
  475. cpu_relax();
  476. if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
  477. msg->state = ERROR_STATE;
  478. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  479. } else {
  480. msg->actual_length += drv_data->len_in_bytes;
  481. if (drv_data->cs_change)
  482. bfin_spi_cs_deactive(drv_data, chip);
  483. /* Move to next transfer */
  484. msg->state = bfin_spi_next_transfer(drv_data);
  485. }
  486. /* Schedule transfer tasklet */
  487. tasklet_schedule(&drv_data->pump_transfers);
  488. /* free the irq handler before next transfer */
  489. dev_dbg(&drv_data->pdev->dev,
  490. "disable dma channel irq%d\n",
  491. drv_data->dma_channel);
  492. dma_disable_irq_nosync(drv_data->dma_channel);
  493. return IRQ_HANDLED;
  494. }
  495. static void bfin_spi_pump_transfers(unsigned long data)
  496. {
  497. struct bfin_spi_master_data *drv_data = (struct bfin_spi_master_data *)data;
  498. struct spi_message *message = NULL;
  499. struct spi_transfer *transfer = NULL;
  500. struct spi_transfer *previous = NULL;
  501. struct bfin_spi_slave_data *chip = NULL;
  502. unsigned int bits_per_word;
  503. u16 cr, cr_width, dma_width, dma_config;
  504. u32 tranf_success = 1;
  505. u8 full_duplex = 0;
  506. /* Get current state information */
  507. message = drv_data->cur_msg;
  508. transfer = drv_data->cur_transfer;
  509. chip = drv_data->cur_chip;
  510. /*
  511. * if msg is error or done, report it back using complete() callback
  512. */
  513. /* Handle for abort */
  514. if (message->state == ERROR_STATE) {
  515. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  516. message->status = -EIO;
  517. bfin_spi_giveback(drv_data);
  518. return;
  519. }
  520. /* Handle end of message */
  521. if (message->state == DONE_STATE) {
  522. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  523. message->status = 0;
  524. bfin_spi_giveback(drv_data);
  525. return;
  526. }
  527. /* Delay if requested at end of transfer */
  528. if (message->state == RUNNING_STATE) {
  529. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  530. previous = list_entry(transfer->transfer_list.prev,
  531. struct spi_transfer, transfer_list);
  532. if (previous->delay_usecs)
  533. udelay(previous->delay_usecs);
  534. }
  535. /* Flush any existing transfers that may be sitting in the hardware */
  536. if (bfin_spi_flush(drv_data) == 0) {
  537. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  538. message->status = -EIO;
  539. bfin_spi_giveback(drv_data);
  540. return;
  541. }
  542. if (transfer->len == 0) {
  543. /* Move to next transfer of this msg */
  544. message->state = bfin_spi_next_transfer(drv_data);
  545. /* Schedule next transfer tasklet */
  546. tasklet_schedule(&drv_data->pump_transfers);
  547. }
  548. if (transfer->tx_buf != NULL) {
  549. drv_data->tx = (void *)transfer->tx_buf;
  550. drv_data->tx_end = drv_data->tx + transfer->len;
  551. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  552. transfer->tx_buf, drv_data->tx_end);
  553. } else {
  554. drv_data->tx = NULL;
  555. }
  556. if (transfer->rx_buf != NULL) {
  557. full_duplex = transfer->tx_buf != NULL;
  558. drv_data->rx = transfer->rx_buf;
  559. drv_data->rx_end = drv_data->rx + transfer->len;
  560. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  561. transfer->rx_buf, drv_data->rx_end);
  562. } else {
  563. drv_data->rx = NULL;
  564. }
  565. drv_data->rx_dma = transfer->rx_dma;
  566. drv_data->tx_dma = transfer->tx_dma;
  567. drv_data->len_in_bytes = transfer->len;
  568. drv_data->cs_change = transfer->cs_change;
  569. /* Bits per word setup */
  570. bits_per_word = transfer->bits_per_word ? : message->spi->bits_per_word;
  571. if ((bits_per_word > 0) && (bits_per_word % 16 == 0)) {
  572. drv_data->n_bytes = bits_per_word/8;
  573. drv_data->len = (transfer->len) >> 1;
  574. cr_width = BIT_CTL_WORDSIZE;
  575. drv_data->ops = &bfin_bfin_spi_transfer_ops_u16;
  576. } else if ((bits_per_word > 0) && (bits_per_word % 8 == 0)) {
  577. drv_data->n_bytes = bits_per_word/8;
  578. drv_data->len = transfer->len;
  579. cr_width = 0;
  580. drv_data->ops = &bfin_bfin_spi_transfer_ops_u8;
  581. } else {
  582. dev_err(&drv_data->pdev->dev, "transfer: unsupported bits_per_word\n");
  583. message->status = -EINVAL;
  584. bfin_spi_giveback(drv_data);
  585. return;
  586. }
  587. cr = read_CTRL(drv_data) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
  588. cr |= cr_width;
  589. write_CTRL(drv_data, cr);
  590. dev_dbg(&drv_data->pdev->dev,
  591. "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
  592. drv_data->ops, chip->ops, &bfin_bfin_spi_transfer_ops_u8);
  593. message->state = RUNNING_STATE;
  594. dma_config = 0;
  595. /* Speed setup (surely valid because already checked) */
  596. if (transfer->speed_hz)
  597. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  598. else
  599. write_BAUD(drv_data, chip->baud);
  600. write_STAT(drv_data, BIT_STAT_CLR);
  601. bfin_spi_cs_active(drv_data, chip);
  602. dev_dbg(&drv_data->pdev->dev,
  603. "now pumping a transfer: width is %d, len is %d\n",
  604. cr_width, transfer->len);
  605. /*
  606. * Try to map dma buffer and do a dma transfer. If successful use,
  607. * different way to r/w according to the enable_dma settings and if
  608. * we are not doing a full duplex transfer (since the hardware does
  609. * not support full duplex DMA transfers).
  610. */
  611. if (!full_duplex && drv_data->cur_chip->enable_dma
  612. && drv_data->len > 6) {
  613. unsigned long dma_start_addr, flags;
  614. disable_dma(drv_data->dma_channel);
  615. clear_dma_irqstat(drv_data->dma_channel);
  616. /* config dma channel */
  617. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  618. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  619. if (cr_width == BIT_CTL_WORDSIZE) {
  620. set_dma_x_modify(drv_data->dma_channel, 2);
  621. dma_width = WDSIZE_16;
  622. } else {
  623. set_dma_x_modify(drv_data->dma_channel, 1);
  624. dma_width = WDSIZE_8;
  625. }
  626. /* poll for SPI completion before start */
  627. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  628. cpu_relax();
  629. /* dirty hack for autobuffer DMA mode */
  630. if (drv_data->tx_dma == 0xFFFF) {
  631. dev_dbg(&drv_data->pdev->dev,
  632. "doing autobuffer DMA out.\n");
  633. /* no irq in autobuffer mode */
  634. dma_config =
  635. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  636. set_dma_config(drv_data->dma_channel, dma_config);
  637. set_dma_start_addr(drv_data->dma_channel,
  638. (unsigned long)drv_data->tx);
  639. enable_dma(drv_data->dma_channel);
  640. /* start SPI transfer */
  641. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  642. /* just return here, there can only be one transfer
  643. * in this mode
  644. */
  645. message->status = 0;
  646. bfin_spi_giveback(drv_data);
  647. return;
  648. }
  649. /* In dma mode, rx or tx must be NULL in one transfer */
  650. dma_config = (RESTART | dma_width | DI_EN);
  651. if (drv_data->rx != NULL) {
  652. /* set transfer mode, and enable SPI */
  653. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  654. drv_data->rx, drv_data->len_in_bytes);
  655. /* invalidate caches, if needed */
  656. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  657. invalidate_dcache_range((unsigned long) drv_data->rx,
  658. (unsigned long) (drv_data->rx +
  659. drv_data->len_in_bytes));
  660. dma_config |= WNR;
  661. dma_start_addr = (unsigned long)drv_data->rx;
  662. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  663. } else if (drv_data->tx != NULL) {
  664. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  665. /* flush caches, if needed */
  666. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  667. flush_dcache_range((unsigned long) drv_data->tx,
  668. (unsigned long) (drv_data->tx +
  669. drv_data->len_in_bytes));
  670. dma_start_addr = (unsigned long)drv_data->tx;
  671. cr |= BIT_CTL_TIMOD_DMA_TX;
  672. } else
  673. BUG();
  674. /* oh man, here there be monsters ... and i dont mean the
  675. * fluffy cute ones from pixar, i mean the kind that'll eat
  676. * your data, kick your dog, and love it all. do *not* try
  677. * and change these lines unless you (1) heavily test DMA
  678. * with SPI flashes on a loaded system (e.g. ping floods),
  679. * (2) know just how broken the DMA engine interaction with
  680. * the SPI peripheral is, and (3) have someone else to blame
  681. * when you screw it all up anyways.
  682. */
  683. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  684. set_dma_config(drv_data->dma_channel, dma_config);
  685. local_irq_save(flags);
  686. SSYNC();
  687. write_CTRL(drv_data, cr);
  688. enable_dma(drv_data->dma_channel);
  689. dma_enable_irq(drv_data->dma_channel);
  690. local_irq_restore(flags);
  691. return;
  692. }
  693. /*
  694. * We always use SPI_WRITE mode (transfer starts with TDBR write).
  695. * SPI_READ mode (transfer starts with RDBR read) seems to have
  696. * problems with setting up the output value in TDBR prior to the
  697. * start of the transfer.
  698. */
  699. write_CTRL(drv_data, cr | BIT_CTL_TXMOD);
  700. if (chip->pio_interrupt) {
  701. /* SPI irq should have been disabled by now */
  702. /* discard old RX data and clear RXS */
  703. bfin_spi_dummy_read(drv_data);
  704. /* start transfer */
  705. if (drv_data->tx == NULL)
  706. write_TDBR(drv_data, chip->idle_tx_val);
  707. else {
  708. int loop;
  709. if (bits_per_word % 16 == 0) {
  710. u16 *buf = (u16 *)drv_data->tx;
  711. for (loop = 0; loop < bits_per_word / 16;
  712. loop++) {
  713. write_TDBR(drv_data, *buf++);
  714. }
  715. } else if (bits_per_word % 8 == 0) {
  716. u8 *buf = (u8 *)drv_data->tx;
  717. for (loop = 0; loop < bits_per_word / 8; loop++)
  718. write_TDBR(drv_data, *buf++);
  719. }
  720. drv_data->tx += drv_data->n_bytes;
  721. }
  722. /* once TDBR is empty, interrupt is triggered */
  723. enable_irq(drv_data->spi_irq);
  724. return;
  725. }
  726. /* IO mode */
  727. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  728. if (full_duplex) {
  729. /* full duplex mode */
  730. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  731. (drv_data->rx_end - drv_data->rx));
  732. dev_dbg(&drv_data->pdev->dev,
  733. "IO duplex: cr is 0x%x\n", cr);
  734. drv_data->ops->duplex(drv_data);
  735. if (drv_data->tx != drv_data->tx_end)
  736. tranf_success = 0;
  737. } else if (drv_data->tx != NULL) {
  738. /* write only half duplex */
  739. dev_dbg(&drv_data->pdev->dev,
  740. "IO write: cr is 0x%x\n", cr);
  741. drv_data->ops->write(drv_data);
  742. if (drv_data->tx != drv_data->tx_end)
  743. tranf_success = 0;
  744. } else if (drv_data->rx != NULL) {
  745. /* read only half duplex */
  746. dev_dbg(&drv_data->pdev->dev,
  747. "IO read: cr is 0x%x\n", cr);
  748. drv_data->ops->read(drv_data);
  749. if (drv_data->rx != drv_data->rx_end)
  750. tranf_success = 0;
  751. }
  752. if (!tranf_success) {
  753. dev_dbg(&drv_data->pdev->dev,
  754. "IO write error!\n");
  755. message->state = ERROR_STATE;
  756. } else {
  757. /* Update total byte transfered */
  758. message->actual_length += drv_data->len_in_bytes;
  759. /* Move to next transfer of this msg */
  760. message->state = bfin_spi_next_transfer(drv_data);
  761. if (drv_data->cs_change)
  762. bfin_spi_cs_deactive(drv_data, chip);
  763. }
  764. /* Schedule next transfer tasklet */
  765. tasklet_schedule(&drv_data->pump_transfers);
  766. }
  767. /* pop a msg from queue and kick off real transfer */
  768. static void bfin_spi_pump_messages(struct work_struct *work)
  769. {
  770. struct bfin_spi_master_data *drv_data;
  771. unsigned long flags;
  772. drv_data = container_of(work, struct bfin_spi_master_data, pump_messages);
  773. /* Lock queue and check for queue work */
  774. spin_lock_irqsave(&drv_data->lock, flags);
  775. if (list_empty(&drv_data->queue) || !drv_data->running) {
  776. /* pumper kicked off but no work to do */
  777. drv_data->busy = 0;
  778. spin_unlock_irqrestore(&drv_data->lock, flags);
  779. return;
  780. }
  781. /* Make sure we are not already running a message */
  782. if (drv_data->cur_msg) {
  783. spin_unlock_irqrestore(&drv_data->lock, flags);
  784. return;
  785. }
  786. /* Extract head of queue */
  787. drv_data->cur_msg = list_entry(drv_data->queue.next,
  788. struct spi_message, queue);
  789. /* Setup the SSP using the per chip configuration */
  790. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  791. bfin_spi_restore_state(drv_data);
  792. list_del_init(&drv_data->cur_msg->queue);
  793. /* Initial message state */
  794. drv_data->cur_msg->state = START_STATE;
  795. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  796. struct spi_transfer, transfer_list);
  797. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  798. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  799. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  800. drv_data->cur_chip->ctl_reg);
  801. dev_dbg(&drv_data->pdev->dev,
  802. "the first transfer len is %d\n",
  803. drv_data->cur_transfer->len);
  804. /* Mark as busy and launch transfers */
  805. tasklet_schedule(&drv_data->pump_transfers);
  806. drv_data->busy = 1;
  807. spin_unlock_irqrestore(&drv_data->lock, flags);
  808. }
  809. /*
  810. * got a msg to transfer, queue it in drv_data->queue.
  811. * And kick off message pumper
  812. */
  813. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  814. {
  815. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  816. unsigned long flags;
  817. spin_lock_irqsave(&drv_data->lock, flags);
  818. if (!drv_data->running) {
  819. spin_unlock_irqrestore(&drv_data->lock, flags);
  820. return -ESHUTDOWN;
  821. }
  822. msg->actual_length = 0;
  823. msg->status = -EINPROGRESS;
  824. msg->state = START_STATE;
  825. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  826. list_add_tail(&msg->queue, &drv_data->queue);
  827. if (drv_data->running && !drv_data->busy)
  828. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  829. spin_unlock_irqrestore(&drv_data->lock, flags);
  830. return 0;
  831. }
  832. #define MAX_SPI_SSEL 7
  833. static u16 ssel[][MAX_SPI_SSEL] = {
  834. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  835. P_SPI0_SSEL4, P_SPI0_SSEL5,
  836. P_SPI0_SSEL6, P_SPI0_SSEL7},
  837. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  838. P_SPI1_SSEL4, P_SPI1_SSEL5,
  839. P_SPI1_SSEL6, P_SPI1_SSEL7},
  840. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  841. P_SPI2_SSEL4, P_SPI2_SSEL5,
  842. P_SPI2_SSEL6, P_SPI2_SSEL7},
  843. };
  844. /* setup for devices (may be called multiple times -- not just first setup) */
  845. static int bfin_spi_setup(struct spi_device *spi)
  846. {
  847. struct bfin5xx_spi_chip *chip_info;
  848. struct bfin_spi_slave_data *chip = NULL;
  849. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  850. u16 bfin_ctl_reg;
  851. int ret = -EINVAL;
  852. /* Only alloc (or use chip_info) on first setup */
  853. chip_info = NULL;
  854. chip = spi_get_ctldata(spi);
  855. if (chip == NULL) {
  856. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  857. if (!chip) {
  858. dev_err(&spi->dev, "cannot allocate chip data\n");
  859. ret = -ENOMEM;
  860. goto error;
  861. }
  862. chip->enable_dma = 0;
  863. chip_info = spi->controller_data;
  864. }
  865. /* Let people set non-standard bits directly */
  866. bfin_ctl_reg = BIT_CTL_OPENDRAIN | BIT_CTL_EMISO |
  867. BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ;
  868. /* chip_info isn't always needed */
  869. if (chip_info) {
  870. /* Make sure people stop trying to set fields via ctl_reg
  871. * when they should actually be using common SPI framework.
  872. * Currently we let through: WOM EMISO PSSE GM SZ.
  873. * Not sure if a user actually needs/uses any of these,
  874. * but let's assume (for now) they do.
  875. */
  876. if (chip_info->ctl_reg & ~bfin_ctl_reg) {
  877. dev_err(&spi->dev, "do not set bits in ctl_reg "
  878. "that the SPI framework manages\n");
  879. goto error;
  880. }
  881. chip->enable_dma = chip_info->enable_dma != 0
  882. && drv_data->master_info->enable_dma;
  883. chip->ctl_reg = chip_info->ctl_reg;
  884. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  885. chip->idle_tx_val = chip_info->idle_tx_val;
  886. chip->pio_interrupt = chip_info->pio_interrupt;
  887. spi->bits_per_word = chip_info->bits_per_word;
  888. } else {
  889. /* force a default base state */
  890. chip->ctl_reg &= bfin_ctl_reg;
  891. }
  892. if (spi->bits_per_word % 8) {
  893. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  894. spi->bits_per_word);
  895. goto error;
  896. }
  897. /* translate common spi framework into our register */
  898. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  899. dev_err(&spi->dev, "unsupported spi modes detected\n");
  900. goto error;
  901. }
  902. if (spi->mode & SPI_CPOL)
  903. chip->ctl_reg |= BIT_CTL_CPOL;
  904. if (spi->mode & SPI_CPHA)
  905. chip->ctl_reg |= BIT_CTL_CPHA;
  906. if (spi->mode & SPI_LSB_FIRST)
  907. chip->ctl_reg |= BIT_CTL_LSBF;
  908. /* we dont support running in slave mode (yet?) */
  909. chip->ctl_reg |= BIT_CTL_MASTER;
  910. /*
  911. * Notice: for blackfin, the speed_hz is the value of register
  912. * SPI_BAUD, not the real baudrate
  913. */
  914. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  915. chip->chip_select_num = spi->chip_select;
  916. if (chip->chip_select_num < MAX_CTRL_CS) {
  917. if (!(spi->mode & SPI_CPHA))
  918. dev_warn(&spi->dev, "Warning: SPI CPHA not set:"
  919. " Slave Select not under software control!\n"
  920. " See Documentation/blackfin/bfin-spi-notes.txt");
  921. chip->flag = (1 << spi->chip_select) << 8;
  922. } else
  923. chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
  924. if (chip->enable_dma && chip->pio_interrupt) {
  925. dev_err(&spi->dev, "enable_dma is set, "
  926. "do not set pio_interrupt\n");
  927. goto error;
  928. }
  929. /*
  930. * if any one SPI chip is registered and wants DMA, request the
  931. * DMA channel for it
  932. */
  933. if (chip->enable_dma && !drv_data->dma_requested) {
  934. /* register dma irq handler */
  935. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  936. if (ret) {
  937. dev_err(&spi->dev,
  938. "Unable to request BlackFin SPI DMA channel\n");
  939. goto error;
  940. }
  941. drv_data->dma_requested = 1;
  942. ret = set_dma_callback(drv_data->dma_channel,
  943. bfin_spi_dma_irq_handler, drv_data);
  944. if (ret) {
  945. dev_err(&spi->dev, "Unable to set dma callback\n");
  946. goto error;
  947. }
  948. dma_disable_irq(drv_data->dma_channel);
  949. }
  950. if (chip->pio_interrupt && !drv_data->irq_requested) {
  951. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  952. IRQF_DISABLED, "BFIN_SPI", drv_data);
  953. if (ret) {
  954. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  955. goto error;
  956. }
  957. drv_data->irq_requested = 1;
  958. /* we use write mode, spi irq has to be disabled here */
  959. disable_irq(drv_data->spi_irq);
  960. }
  961. if (chip->chip_select_num >= MAX_CTRL_CS) {
  962. /* Only request on first setup */
  963. if (spi_get_ctldata(spi) == NULL) {
  964. ret = gpio_request(chip->cs_gpio, spi->modalias);
  965. if (ret) {
  966. dev_err(&spi->dev, "gpio_request() error\n");
  967. goto pin_error;
  968. }
  969. gpio_direction_output(chip->cs_gpio, 1);
  970. }
  971. }
  972. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  973. spi->modalias, spi->bits_per_word, chip->enable_dma);
  974. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  975. chip->ctl_reg, chip->flag);
  976. spi_set_ctldata(spi, chip);
  977. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  978. if (chip->chip_select_num < MAX_CTRL_CS) {
  979. ret = peripheral_request(ssel[spi->master->bus_num]
  980. [chip->chip_select_num-1], spi->modalias);
  981. if (ret) {
  982. dev_err(&spi->dev, "peripheral_request() error\n");
  983. goto pin_error;
  984. }
  985. }
  986. bfin_spi_cs_enable(drv_data, chip);
  987. bfin_spi_cs_deactive(drv_data, chip);
  988. return 0;
  989. pin_error:
  990. if (chip->chip_select_num >= MAX_CTRL_CS)
  991. gpio_free(chip->cs_gpio);
  992. else
  993. peripheral_free(ssel[spi->master->bus_num]
  994. [chip->chip_select_num - 1]);
  995. error:
  996. if (chip) {
  997. if (drv_data->dma_requested)
  998. free_dma(drv_data->dma_channel);
  999. drv_data->dma_requested = 0;
  1000. kfree(chip);
  1001. /* prevent free 'chip' twice */
  1002. spi_set_ctldata(spi, NULL);
  1003. }
  1004. return ret;
  1005. }
  1006. /*
  1007. * callback for spi framework.
  1008. * clean driver specific data
  1009. */
  1010. static void bfin_spi_cleanup(struct spi_device *spi)
  1011. {
  1012. struct bfin_spi_slave_data *chip = spi_get_ctldata(spi);
  1013. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  1014. if (!chip)
  1015. return;
  1016. if (chip->chip_select_num < MAX_CTRL_CS) {
  1017. peripheral_free(ssel[spi->master->bus_num]
  1018. [chip->chip_select_num-1]);
  1019. bfin_spi_cs_disable(drv_data, chip);
  1020. } else
  1021. gpio_free(chip->cs_gpio);
  1022. kfree(chip);
  1023. /* prevent free 'chip' twice */
  1024. spi_set_ctldata(spi, NULL);
  1025. }
  1026. static inline int bfin_spi_init_queue(struct bfin_spi_master_data *drv_data)
  1027. {
  1028. INIT_LIST_HEAD(&drv_data->queue);
  1029. spin_lock_init(&drv_data->lock);
  1030. drv_data->running = false;
  1031. drv_data->busy = 0;
  1032. /* init transfer tasklet */
  1033. tasklet_init(&drv_data->pump_transfers,
  1034. bfin_spi_pump_transfers, (unsigned long)drv_data);
  1035. /* init messages workqueue */
  1036. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  1037. drv_data->workqueue = create_singlethread_workqueue(
  1038. dev_name(drv_data->master->dev.parent));
  1039. if (drv_data->workqueue == NULL)
  1040. return -EBUSY;
  1041. return 0;
  1042. }
  1043. static inline int bfin_spi_start_queue(struct bfin_spi_master_data *drv_data)
  1044. {
  1045. unsigned long flags;
  1046. spin_lock_irqsave(&drv_data->lock, flags);
  1047. if (drv_data->running || drv_data->busy) {
  1048. spin_unlock_irqrestore(&drv_data->lock, flags);
  1049. return -EBUSY;
  1050. }
  1051. drv_data->running = true;
  1052. drv_data->cur_msg = NULL;
  1053. drv_data->cur_transfer = NULL;
  1054. drv_data->cur_chip = NULL;
  1055. spin_unlock_irqrestore(&drv_data->lock, flags);
  1056. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1057. return 0;
  1058. }
  1059. static inline int bfin_spi_stop_queue(struct bfin_spi_master_data *drv_data)
  1060. {
  1061. unsigned long flags;
  1062. unsigned limit = 500;
  1063. int status = 0;
  1064. spin_lock_irqsave(&drv_data->lock, flags);
  1065. /*
  1066. * This is a bit lame, but is optimized for the common execution path.
  1067. * A wait_queue on the drv_data->busy could be used, but then the common
  1068. * execution path (pump_messages) would be required to call wake_up or
  1069. * friends on every SPI message. Do this instead
  1070. */
  1071. drv_data->running = false;
  1072. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1073. spin_unlock_irqrestore(&drv_data->lock, flags);
  1074. msleep(10);
  1075. spin_lock_irqsave(&drv_data->lock, flags);
  1076. }
  1077. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1078. status = -EBUSY;
  1079. spin_unlock_irqrestore(&drv_data->lock, flags);
  1080. return status;
  1081. }
  1082. static inline int bfin_spi_destroy_queue(struct bfin_spi_master_data *drv_data)
  1083. {
  1084. int status;
  1085. status = bfin_spi_stop_queue(drv_data);
  1086. if (status != 0)
  1087. return status;
  1088. destroy_workqueue(drv_data->workqueue);
  1089. return 0;
  1090. }
  1091. static int __init bfin_spi_probe(struct platform_device *pdev)
  1092. {
  1093. struct device *dev = &pdev->dev;
  1094. struct bfin5xx_spi_master *platform_info;
  1095. struct spi_master *master;
  1096. struct bfin_spi_master_data *drv_data;
  1097. struct resource *res;
  1098. int status = 0;
  1099. platform_info = dev->platform_data;
  1100. /* Allocate master with space for drv_data */
  1101. master = spi_alloc_master(dev, sizeof(*drv_data));
  1102. if (!master) {
  1103. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1104. return -ENOMEM;
  1105. }
  1106. drv_data = spi_master_get_devdata(master);
  1107. drv_data->master = master;
  1108. drv_data->master_info = platform_info;
  1109. drv_data->pdev = pdev;
  1110. drv_data->pin_req = platform_info->pin_req;
  1111. /* the spi->mode bits supported by this driver: */
  1112. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1113. master->bus_num = pdev->id;
  1114. master->num_chipselect = platform_info->num_chipselect;
  1115. master->cleanup = bfin_spi_cleanup;
  1116. master->setup = bfin_spi_setup;
  1117. master->transfer = bfin_spi_transfer;
  1118. /* Find and map our resources */
  1119. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1120. if (res == NULL) {
  1121. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1122. status = -ENOENT;
  1123. goto out_error_get_res;
  1124. }
  1125. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1126. if (drv_data->regs_base == NULL) {
  1127. dev_err(dev, "Cannot map IO\n");
  1128. status = -ENXIO;
  1129. goto out_error_ioremap;
  1130. }
  1131. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1132. if (res == NULL) {
  1133. dev_err(dev, "No DMA channel specified\n");
  1134. status = -ENOENT;
  1135. goto out_error_free_io;
  1136. }
  1137. drv_data->dma_channel = res->start;
  1138. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1139. if (drv_data->spi_irq < 0) {
  1140. dev_err(dev, "No spi pio irq specified\n");
  1141. status = -ENOENT;
  1142. goto out_error_free_io;
  1143. }
  1144. /* Initial and start queue */
  1145. status = bfin_spi_init_queue(drv_data);
  1146. if (status != 0) {
  1147. dev_err(dev, "problem initializing queue\n");
  1148. goto out_error_queue_alloc;
  1149. }
  1150. status = bfin_spi_start_queue(drv_data);
  1151. if (status != 0) {
  1152. dev_err(dev, "problem starting queue\n");
  1153. goto out_error_queue_alloc;
  1154. }
  1155. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1156. if (status != 0) {
  1157. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1158. goto out_error_queue_alloc;
  1159. }
  1160. /* Reset SPI registers. If these registers were used by the boot loader,
  1161. * the sky may fall on your head if you enable the dma controller.
  1162. */
  1163. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1164. write_FLAG(drv_data, 0xFF00);
  1165. /* Register with the SPI framework */
  1166. platform_set_drvdata(pdev, drv_data);
  1167. status = spi_register_master(master);
  1168. if (status != 0) {
  1169. dev_err(dev, "problem registering spi master\n");
  1170. goto out_error_queue_alloc;
  1171. }
  1172. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1173. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1174. drv_data->dma_channel);
  1175. return status;
  1176. out_error_queue_alloc:
  1177. bfin_spi_destroy_queue(drv_data);
  1178. out_error_free_io:
  1179. iounmap((void *) drv_data->regs_base);
  1180. out_error_ioremap:
  1181. out_error_get_res:
  1182. spi_master_put(master);
  1183. return status;
  1184. }
  1185. /* stop hardware and remove the driver */
  1186. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1187. {
  1188. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1189. int status = 0;
  1190. if (!drv_data)
  1191. return 0;
  1192. /* Remove the queue */
  1193. status = bfin_spi_destroy_queue(drv_data);
  1194. if (status != 0)
  1195. return status;
  1196. /* Disable the SSP at the peripheral and SOC level */
  1197. bfin_spi_disable(drv_data);
  1198. /* Release DMA */
  1199. if (drv_data->master_info->enable_dma) {
  1200. if (dma_channel_active(drv_data->dma_channel))
  1201. free_dma(drv_data->dma_channel);
  1202. }
  1203. if (drv_data->irq_requested) {
  1204. free_irq(drv_data->spi_irq, drv_data);
  1205. drv_data->irq_requested = 0;
  1206. }
  1207. /* Disconnect from the SPI framework */
  1208. spi_unregister_master(drv_data->master);
  1209. peripheral_free_list(drv_data->pin_req);
  1210. /* Prevent double remove */
  1211. platform_set_drvdata(pdev, NULL);
  1212. return 0;
  1213. }
  1214. #ifdef CONFIG_PM
  1215. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1216. {
  1217. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1218. int status = 0;
  1219. status = bfin_spi_stop_queue(drv_data);
  1220. if (status != 0)
  1221. return status;
  1222. drv_data->ctrl_reg = read_CTRL(drv_data);
  1223. drv_data->flag_reg = read_FLAG(drv_data);
  1224. /*
  1225. * reset SPI_CTL and SPI_FLG registers
  1226. */
  1227. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1228. write_FLAG(drv_data, 0xFF00);
  1229. return 0;
  1230. }
  1231. static int bfin_spi_resume(struct platform_device *pdev)
  1232. {
  1233. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1234. int status = 0;
  1235. write_CTRL(drv_data, drv_data->ctrl_reg);
  1236. write_FLAG(drv_data, drv_data->flag_reg);
  1237. /* Start the queue running */
  1238. status = bfin_spi_start_queue(drv_data);
  1239. if (status != 0) {
  1240. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1241. return status;
  1242. }
  1243. return 0;
  1244. }
  1245. #else
  1246. #define bfin_spi_suspend NULL
  1247. #define bfin_spi_resume NULL
  1248. #endif /* CONFIG_PM */
  1249. MODULE_ALIAS("platform:bfin-spi");
  1250. static struct platform_driver bfin_spi_driver = {
  1251. .driver = {
  1252. .name = DRV_NAME,
  1253. .owner = THIS_MODULE,
  1254. },
  1255. .suspend = bfin_spi_suspend,
  1256. .resume = bfin_spi_resume,
  1257. .remove = __devexit_p(bfin_spi_remove),
  1258. };
  1259. static int __init bfin_spi_init(void)
  1260. {
  1261. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1262. }
  1263. subsys_initcall(bfin_spi_init);
  1264. static void __exit bfin_spi_exit(void)
  1265. {
  1266. platform_driver_unregister(&bfin_spi_driver);
  1267. }
  1268. module_exit(bfin_spi_exit);