ip_sockglue.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The IP to API glue.
  7. *
  8. * Authors: see ip.c
  9. *
  10. * Fixes:
  11. * Many : Split from ip.c , see ip.c for history.
  12. * Martin Mares : TOS setting fixed.
  13. * Alan Cox : Fixed a couple of oopses in Martin's
  14. * TOS tweaks.
  15. * Mike McLagan : Routing by source
  16. */
  17. #include <linux/module.h>
  18. #include <linux/types.h>
  19. #include <linux/mm.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/ip.h>
  22. #include <linux/icmp.h>
  23. #include <linux/inetdevice.h>
  24. #include <linux/netdevice.h>
  25. #include <net/sock.h>
  26. #include <net/ip.h>
  27. #include <net/icmp.h>
  28. #include <net/tcp_states.h>
  29. #include <linux/udp.h>
  30. #include <linux/igmp.h>
  31. #include <linux/netfilter.h>
  32. #include <linux/route.h>
  33. #include <linux/mroute.h>
  34. #include <net/route.h>
  35. #include <net/xfrm.h>
  36. #include <net/compat.h>
  37. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  38. #include <net/transp_v6.h>
  39. #endif
  40. #include <linux/errqueue.h>
  41. #include <asm/uaccess.h>
  42. #define IP_CMSG_PKTINFO 1
  43. #define IP_CMSG_TTL 2
  44. #define IP_CMSG_TOS 4
  45. #define IP_CMSG_RECVOPTS 8
  46. #define IP_CMSG_RETOPTS 16
  47. #define IP_CMSG_PASSSEC 32
  48. #define IP_CMSG_ORIGDSTADDR 64
  49. /*
  50. * SOL_IP control messages.
  51. */
  52. static void ip_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  53. {
  54. struct in_pktinfo info;
  55. struct rtable *rt = skb->rtable;
  56. info.ipi_addr.s_addr = ip_hdr(skb)->daddr;
  57. if (rt) {
  58. info.ipi_ifindex = rt->rt_iif;
  59. info.ipi_spec_dst.s_addr = rt->rt_spec_dst;
  60. } else {
  61. info.ipi_ifindex = 0;
  62. info.ipi_spec_dst.s_addr = 0;
  63. }
  64. put_cmsg(msg, SOL_IP, IP_PKTINFO, sizeof(info), &info);
  65. }
  66. static void ip_cmsg_recv_ttl(struct msghdr *msg, struct sk_buff *skb)
  67. {
  68. int ttl = ip_hdr(skb)->ttl;
  69. put_cmsg(msg, SOL_IP, IP_TTL, sizeof(int), &ttl);
  70. }
  71. static void ip_cmsg_recv_tos(struct msghdr *msg, struct sk_buff *skb)
  72. {
  73. put_cmsg(msg, SOL_IP, IP_TOS, 1, &ip_hdr(skb)->tos);
  74. }
  75. static void ip_cmsg_recv_opts(struct msghdr *msg, struct sk_buff *skb)
  76. {
  77. if (IPCB(skb)->opt.optlen == 0)
  78. return;
  79. put_cmsg(msg, SOL_IP, IP_RECVOPTS, IPCB(skb)->opt.optlen,
  80. ip_hdr(skb) + 1);
  81. }
  82. static void ip_cmsg_recv_retopts(struct msghdr *msg, struct sk_buff *skb)
  83. {
  84. unsigned char optbuf[sizeof(struct ip_options) + 40];
  85. struct ip_options * opt = (struct ip_options *)optbuf;
  86. if (IPCB(skb)->opt.optlen == 0)
  87. return;
  88. if (ip_options_echo(opt, skb)) {
  89. msg->msg_flags |= MSG_CTRUNC;
  90. return;
  91. }
  92. ip_options_undo(opt);
  93. put_cmsg(msg, SOL_IP, IP_RETOPTS, opt->optlen, opt->__data);
  94. }
  95. static void ip_cmsg_recv_security(struct msghdr *msg, struct sk_buff *skb)
  96. {
  97. char *secdata;
  98. u32 seclen, secid;
  99. int err;
  100. err = security_socket_getpeersec_dgram(NULL, skb, &secid);
  101. if (err)
  102. return;
  103. err = security_secid_to_secctx(secid, &secdata, &seclen);
  104. if (err)
  105. return;
  106. put_cmsg(msg, SOL_IP, SCM_SECURITY, seclen, secdata);
  107. security_release_secctx(secdata, seclen);
  108. }
  109. static void ip_cmsg_recv_dstaddr(struct msghdr *msg, struct sk_buff *skb)
  110. {
  111. struct sockaddr_in sin;
  112. struct iphdr *iph = ip_hdr(skb);
  113. __be16 *ports = (__be16 *)skb_transport_header(skb);
  114. if (skb_transport_offset(skb) + 4 > skb->len)
  115. return;
  116. /* All current transport protocols have the port numbers in the
  117. * first four bytes of the transport header and this function is
  118. * written with this assumption in mind.
  119. */
  120. sin.sin_family = AF_INET;
  121. sin.sin_addr.s_addr = iph->daddr;
  122. sin.sin_port = ports[1];
  123. memset(sin.sin_zero, 0, sizeof(sin.sin_zero));
  124. put_cmsg(msg, SOL_IP, IP_ORIGDSTADDR, sizeof(sin), &sin);
  125. }
  126. void ip_cmsg_recv(struct msghdr *msg, struct sk_buff *skb)
  127. {
  128. struct inet_sock *inet = inet_sk(skb->sk);
  129. unsigned flags = inet->cmsg_flags;
  130. /* Ordered by supposed usage frequency */
  131. if (flags & 1)
  132. ip_cmsg_recv_pktinfo(msg, skb);
  133. if ((flags >>= 1) == 0)
  134. return;
  135. if (flags & 1)
  136. ip_cmsg_recv_ttl(msg, skb);
  137. if ((flags >>= 1) == 0)
  138. return;
  139. if (flags & 1)
  140. ip_cmsg_recv_tos(msg, skb);
  141. if ((flags >>= 1) == 0)
  142. return;
  143. if (flags & 1)
  144. ip_cmsg_recv_opts(msg, skb);
  145. if ((flags >>= 1) == 0)
  146. return;
  147. if (flags & 1)
  148. ip_cmsg_recv_retopts(msg, skb);
  149. if ((flags >>= 1) == 0)
  150. return;
  151. if (flags & 1)
  152. ip_cmsg_recv_security(msg, skb);
  153. if ((flags >>= 1) == 0)
  154. return;
  155. if (flags & 1)
  156. ip_cmsg_recv_dstaddr(msg, skb);
  157. }
  158. EXPORT_SYMBOL(ip_cmsg_recv);
  159. int ip_cmsg_send(struct net *net, struct msghdr *msg, struct ipcm_cookie *ipc)
  160. {
  161. int err;
  162. struct cmsghdr *cmsg;
  163. for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
  164. if (!CMSG_OK(msg, cmsg))
  165. return -EINVAL;
  166. if (cmsg->cmsg_level != SOL_IP)
  167. continue;
  168. switch (cmsg->cmsg_type) {
  169. case IP_RETOPTS:
  170. err = cmsg->cmsg_len - CMSG_ALIGN(sizeof(struct cmsghdr));
  171. err = ip_options_get(net, &ipc->opt, CMSG_DATA(cmsg),
  172. err < 40 ? err : 40);
  173. if (err)
  174. return err;
  175. break;
  176. case IP_PKTINFO:
  177. {
  178. struct in_pktinfo *info;
  179. if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo)))
  180. return -EINVAL;
  181. info = (struct in_pktinfo *)CMSG_DATA(cmsg);
  182. ipc->oif = info->ipi_ifindex;
  183. ipc->addr = info->ipi_spec_dst.s_addr;
  184. break;
  185. }
  186. default:
  187. return -EINVAL;
  188. }
  189. }
  190. return 0;
  191. }
  192. /* Special input handler for packets caught by router alert option.
  193. They are selected only by protocol field, and then processed likely
  194. local ones; but only if someone wants them! Otherwise, router
  195. not running rsvpd will kill RSVP.
  196. It is user level problem, what it will make with them.
  197. I have no idea, how it will masquearde or NAT them (it is joke, joke :-)),
  198. but receiver should be enough clever f.e. to forward mtrace requests,
  199. sent to multicast group to reach destination designated router.
  200. */
  201. struct ip_ra_chain *ip_ra_chain;
  202. DEFINE_RWLOCK(ip_ra_lock);
  203. int ip_ra_control(struct sock *sk, unsigned char on,
  204. void (*destructor)(struct sock *))
  205. {
  206. struct ip_ra_chain *ra, *new_ra, **rap;
  207. if (sk->sk_type != SOCK_RAW || inet_sk(sk)->num == IPPROTO_RAW)
  208. return -EINVAL;
  209. new_ra = on ? kmalloc(sizeof(*new_ra), GFP_KERNEL) : NULL;
  210. write_lock_bh(&ip_ra_lock);
  211. for (rap = &ip_ra_chain; (ra = *rap) != NULL; rap = &ra->next) {
  212. if (ra->sk == sk) {
  213. if (on) {
  214. write_unlock_bh(&ip_ra_lock);
  215. kfree(new_ra);
  216. return -EADDRINUSE;
  217. }
  218. *rap = ra->next;
  219. write_unlock_bh(&ip_ra_lock);
  220. if (ra->destructor)
  221. ra->destructor(sk);
  222. sock_put(sk);
  223. kfree(ra);
  224. return 0;
  225. }
  226. }
  227. if (new_ra == NULL) {
  228. write_unlock_bh(&ip_ra_lock);
  229. return -ENOBUFS;
  230. }
  231. new_ra->sk = sk;
  232. new_ra->destructor = destructor;
  233. new_ra->next = ra;
  234. *rap = new_ra;
  235. sock_hold(sk);
  236. write_unlock_bh(&ip_ra_lock);
  237. return 0;
  238. }
  239. void ip_icmp_error(struct sock *sk, struct sk_buff *skb, int err,
  240. __be16 port, u32 info, u8 *payload)
  241. {
  242. struct inet_sock *inet = inet_sk(sk);
  243. struct sock_exterr_skb *serr;
  244. if (!inet->recverr)
  245. return;
  246. skb = skb_clone(skb, GFP_ATOMIC);
  247. if (!skb)
  248. return;
  249. serr = SKB_EXT_ERR(skb);
  250. serr->ee.ee_errno = err;
  251. serr->ee.ee_origin = SO_EE_ORIGIN_ICMP;
  252. serr->ee.ee_type = icmp_hdr(skb)->type;
  253. serr->ee.ee_code = icmp_hdr(skb)->code;
  254. serr->ee.ee_pad = 0;
  255. serr->ee.ee_info = info;
  256. serr->ee.ee_data = 0;
  257. serr->addr_offset = (u8 *)&(((struct iphdr *)(icmp_hdr(skb) + 1))->daddr) -
  258. skb_network_header(skb);
  259. serr->port = port;
  260. if (skb_pull(skb, payload - skb->data) != NULL) {
  261. skb_reset_transport_header(skb);
  262. if (sock_queue_err_skb(sk, skb) == 0)
  263. return;
  264. }
  265. kfree_skb(skb);
  266. }
  267. void ip_local_error(struct sock *sk, int err, __be32 daddr, __be16 port, u32 info)
  268. {
  269. struct inet_sock *inet = inet_sk(sk);
  270. struct sock_exterr_skb *serr;
  271. struct iphdr *iph;
  272. struct sk_buff *skb;
  273. if (!inet->recverr)
  274. return;
  275. skb = alloc_skb(sizeof(struct iphdr), GFP_ATOMIC);
  276. if (!skb)
  277. return;
  278. skb_put(skb, sizeof(struct iphdr));
  279. skb_reset_network_header(skb);
  280. iph = ip_hdr(skb);
  281. iph->daddr = daddr;
  282. serr = SKB_EXT_ERR(skb);
  283. serr->ee.ee_errno = err;
  284. serr->ee.ee_origin = SO_EE_ORIGIN_LOCAL;
  285. serr->ee.ee_type = 0;
  286. serr->ee.ee_code = 0;
  287. serr->ee.ee_pad = 0;
  288. serr->ee.ee_info = info;
  289. serr->ee.ee_data = 0;
  290. serr->addr_offset = (u8 *)&iph->daddr - skb_network_header(skb);
  291. serr->port = port;
  292. __skb_pull(skb, skb_tail_pointer(skb) - skb->data);
  293. skb_reset_transport_header(skb);
  294. if (sock_queue_err_skb(sk, skb))
  295. kfree_skb(skb);
  296. }
  297. /*
  298. * Handle MSG_ERRQUEUE
  299. */
  300. int ip_recv_error(struct sock *sk, struct msghdr *msg, int len)
  301. {
  302. struct sock_exterr_skb *serr;
  303. struct sk_buff *skb, *skb2;
  304. struct sockaddr_in *sin;
  305. struct {
  306. struct sock_extended_err ee;
  307. struct sockaddr_in offender;
  308. } errhdr;
  309. int err;
  310. int copied;
  311. err = -EAGAIN;
  312. skb = skb_dequeue(&sk->sk_error_queue);
  313. if (skb == NULL)
  314. goto out;
  315. copied = skb->len;
  316. if (copied > len) {
  317. msg->msg_flags |= MSG_TRUNC;
  318. copied = len;
  319. }
  320. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  321. if (err)
  322. goto out_free_skb;
  323. sock_recv_timestamp(msg, sk, skb);
  324. serr = SKB_EXT_ERR(skb);
  325. sin = (struct sockaddr_in *)msg->msg_name;
  326. if (sin) {
  327. sin->sin_family = AF_INET;
  328. sin->sin_addr.s_addr = *(__be32 *)(skb_network_header(skb) +
  329. serr->addr_offset);
  330. sin->sin_port = serr->port;
  331. memset(&sin->sin_zero, 0, sizeof(sin->sin_zero));
  332. }
  333. memcpy(&errhdr.ee, &serr->ee, sizeof(struct sock_extended_err));
  334. sin = &errhdr.offender;
  335. sin->sin_family = AF_UNSPEC;
  336. if (serr->ee.ee_origin == SO_EE_ORIGIN_ICMP) {
  337. struct inet_sock *inet = inet_sk(sk);
  338. sin->sin_family = AF_INET;
  339. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  340. sin->sin_port = 0;
  341. memset(&sin->sin_zero, 0, sizeof(sin->sin_zero));
  342. if (inet->cmsg_flags)
  343. ip_cmsg_recv(msg, skb);
  344. }
  345. put_cmsg(msg, SOL_IP, IP_RECVERR, sizeof(errhdr), &errhdr);
  346. /* Now we could try to dump offended packet options */
  347. msg->msg_flags |= MSG_ERRQUEUE;
  348. err = copied;
  349. /* Reset and regenerate socket error */
  350. spin_lock_bh(&sk->sk_error_queue.lock);
  351. sk->sk_err = 0;
  352. skb2 = skb_peek(&sk->sk_error_queue);
  353. if (skb2 != NULL) {
  354. sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
  355. spin_unlock_bh(&sk->sk_error_queue.lock);
  356. sk->sk_error_report(sk);
  357. } else
  358. spin_unlock_bh(&sk->sk_error_queue.lock);
  359. out_free_skb:
  360. kfree_skb(skb);
  361. out:
  362. return err;
  363. }
  364. /*
  365. * Socket option code for IP. This is the end of the line after any
  366. * TCP,UDP etc options on an IP socket.
  367. */
  368. static int do_ip_setsockopt(struct sock *sk, int level,
  369. int optname, char __user *optval, int optlen)
  370. {
  371. struct inet_sock *inet = inet_sk(sk);
  372. int val = 0, err;
  373. if (((1<<optname) & ((1<<IP_PKTINFO) | (1<<IP_RECVTTL) |
  374. (1<<IP_RECVOPTS) | (1<<IP_RECVTOS) |
  375. (1<<IP_RETOPTS) | (1<<IP_TOS) |
  376. (1<<IP_TTL) | (1<<IP_HDRINCL) |
  377. (1<<IP_MTU_DISCOVER) | (1<<IP_RECVERR) |
  378. (1<<IP_ROUTER_ALERT) | (1<<IP_FREEBIND) |
  379. (1<<IP_PASSSEC) | (1<<IP_TRANSPARENT))) ||
  380. optname == IP_MULTICAST_TTL ||
  381. optname == IP_MULTICAST_LOOP ||
  382. optname == IP_RECVORIGDSTADDR) {
  383. if (optlen >= sizeof(int)) {
  384. if (get_user(val, (int __user *) optval))
  385. return -EFAULT;
  386. } else if (optlen >= sizeof(char)) {
  387. unsigned char ucval;
  388. if (get_user(ucval, (unsigned char __user *) optval))
  389. return -EFAULT;
  390. val = (int) ucval;
  391. }
  392. }
  393. /* If optlen==0, it is equivalent to val == 0 */
  394. if (ip_mroute_opt(optname))
  395. return ip_mroute_setsockopt(sk, optname, optval, optlen);
  396. err = 0;
  397. lock_sock(sk);
  398. switch (optname) {
  399. case IP_OPTIONS:
  400. {
  401. struct ip_options *opt = NULL;
  402. if (optlen > 40 || optlen < 0)
  403. goto e_inval;
  404. err = ip_options_get_from_user(sock_net(sk), &opt,
  405. optval, optlen);
  406. if (err)
  407. break;
  408. if (inet->is_icsk) {
  409. struct inet_connection_sock *icsk = inet_csk(sk);
  410. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  411. if (sk->sk_family == PF_INET ||
  412. (!((1 << sk->sk_state) &
  413. (TCPF_LISTEN | TCPF_CLOSE)) &&
  414. inet->daddr != LOOPBACK4_IPV6)) {
  415. #endif
  416. if (inet->opt)
  417. icsk->icsk_ext_hdr_len -= inet->opt->optlen;
  418. if (opt)
  419. icsk->icsk_ext_hdr_len += opt->optlen;
  420. icsk->icsk_sync_mss(sk, icsk->icsk_pmtu_cookie);
  421. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  422. }
  423. #endif
  424. }
  425. opt = xchg(&inet->opt, opt);
  426. kfree(opt);
  427. break;
  428. }
  429. case IP_PKTINFO:
  430. if (val)
  431. inet->cmsg_flags |= IP_CMSG_PKTINFO;
  432. else
  433. inet->cmsg_flags &= ~IP_CMSG_PKTINFO;
  434. break;
  435. case IP_RECVTTL:
  436. if (val)
  437. inet->cmsg_flags |= IP_CMSG_TTL;
  438. else
  439. inet->cmsg_flags &= ~IP_CMSG_TTL;
  440. break;
  441. case IP_RECVTOS:
  442. if (val)
  443. inet->cmsg_flags |= IP_CMSG_TOS;
  444. else
  445. inet->cmsg_flags &= ~IP_CMSG_TOS;
  446. break;
  447. case IP_RECVOPTS:
  448. if (val)
  449. inet->cmsg_flags |= IP_CMSG_RECVOPTS;
  450. else
  451. inet->cmsg_flags &= ~IP_CMSG_RECVOPTS;
  452. break;
  453. case IP_RETOPTS:
  454. if (val)
  455. inet->cmsg_flags |= IP_CMSG_RETOPTS;
  456. else
  457. inet->cmsg_flags &= ~IP_CMSG_RETOPTS;
  458. break;
  459. case IP_PASSSEC:
  460. if (val)
  461. inet->cmsg_flags |= IP_CMSG_PASSSEC;
  462. else
  463. inet->cmsg_flags &= ~IP_CMSG_PASSSEC;
  464. break;
  465. case IP_RECVORIGDSTADDR:
  466. if (val)
  467. inet->cmsg_flags |= IP_CMSG_ORIGDSTADDR;
  468. else
  469. inet->cmsg_flags &= ~IP_CMSG_ORIGDSTADDR;
  470. break;
  471. case IP_TOS: /* This sets both TOS and Precedence */
  472. if (sk->sk_type == SOCK_STREAM) {
  473. val &= ~3;
  474. val |= inet->tos & 3;
  475. }
  476. if (inet->tos != val) {
  477. inet->tos = val;
  478. sk->sk_priority = rt_tos2priority(val);
  479. sk_dst_reset(sk);
  480. }
  481. break;
  482. case IP_TTL:
  483. if (optlen < 1)
  484. goto e_inval;
  485. if (val != -1 && (val < 0 || val > 255))
  486. goto e_inval;
  487. inet->uc_ttl = val;
  488. break;
  489. case IP_HDRINCL:
  490. if (sk->sk_type != SOCK_RAW) {
  491. err = -ENOPROTOOPT;
  492. break;
  493. }
  494. inet->hdrincl = val ? 1 : 0;
  495. break;
  496. case IP_MTU_DISCOVER:
  497. if (val < 0 || val > 3)
  498. goto e_inval;
  499. inet->pmtudisc = val;
  500. break;
  501. case IP_RECVERR:
  502. inet->recverr = !!val;
  503. if (!val)
  504. skb_queue_purge(&sk->sk_error_queue);
  505. break;
  506. case IP_MULTICAST_TTL:
  507. if (sk->sk_type == SOCK_STREAM)
  508. goto e_inval;
  509. if (optlen < 1)
  510. goto e_inval;
  511. if (val == -1)
  512. val = 1;
  513. if (val < 0 || val > 255)
  514. goto e_inval;
  515. inet->mc_ttl = val;
  516. break;
  517. case IP_MULTICAST_LOOP:
  518. if (optlen < 1)
  519. goto e_inval;
  520. inet->mc_loop = !!val;
  521. break;
  522. case IP_MULTICAST_IF:
  523. {
  524. struct ip_mreqn mreq;
  525. struct net_device *dev = NULL;
  526. if (sk->sk_type == SOCK_STREAM)
  527. goto e_inval;
  528. /*
  529. * Check the arguments are allowable
  530. */
  531. err = -EFAULT;
  532. if (optlen >= sizeof(struct ip_mreqn)) {
  533. if (copy_from_user(&mreq, optval, sizeof(mreq)))
  534. break;
  535. } else {
  536. memset(&mreq, 0, sizeof(mreq));
  537. if (optlen >= sizeof(struct in_addr) &&
  538. copy_from_user(&mreq.imr_address, optval,
  539. sizeof(struct in_addr)))
  540. break;
  541. }
  542. if (!mreq.imr_ifindex) {
  543. if (mreq.imr_address.s_addr == htonl(INADDR_ANY)) {
  544. inet->mc_index = 0;
  545. inet->mc_addr = 0;
  546. err = 0;
  547. break;
  548. }
  549. dev = ip_dev_find(sock_net(sk), mreq.imr_address.s_addr);
  550. if (dev) {
  551. mreq.imr_ifindex = dev->ifindex;
  552. dev_put(dev);
  553. }
  554. } else
  555. dev = __dev_get_by_index(sock_net(sk), mreq.imr_ifindex);
  556. err = -EADDRNOTAVAIL;
  557. if (!dev)
  558. break;
  559. err = -EINVAL;
  560. if (sk->sk_bound_dev_if &&
  561. mreq.imr_ifindex != sk->sk_bound_dev_if)
  562. break;
  563. inet->mc_index = mreq.imr_ifindex;
  564. inet->mc_addr = mreq.imr_address.s_addr;
  565. err = 0;
  566. break;
  567. }
  568. case IP_ADD_MEMBERSHIP:
  569. case IP_DROP_MEMBERSHIP:
  570. {
  571. struct ip_mreqn mreq;
  572. err = -EPROTO;
  573. if (inet_sk(sk)->is_icsk)
  574. break;
  575. if (optlen < sizeof(struct ip_mreq))
  576. goto e_inval;
  577. err = -EFAULT;
  578. if (optlen >= sizeof(struct ip_mreqn)) {
  579. if (copy_from_user(&mreq, optval, sizeof(mreq)))
  580. break;
  581. } else {
  582. memset(&mreq, 0, sizeof(mreq));
  583. if (copy_from_user(&mreq, optval, sizeof(struct ip_mreq)))
  584. break;
  585. }
  586. if (optname == IP_ADD_MEMBERSHIP)
  587. err = ip_mc_join_group(sk, &mreq);
  588. else
  589. err = ip_mc_leave_group(sk, &mreq);
  590. break;
  591. }
  592. case IP_MSFILTER:
  593. {
  594. struct ip_msfilter *msf;
  595. if (optlen < IP_MSFILTER_SIZE(0))
  596. goto e_inval;
  597. if (optlen > sysctl_optmem_max) {
  598. err = -ENOBUFS;
  599. break;
  600. }
  601. msf = kmalloc(optlen, GFP_KERNEL);
  602. if (!msf) {
  603. err = -ENOBUFS;
  604. break;
  605. }
  606. err = -EFAULT;
  607. if (copy_from_user(msf, optval, optlen)) {
  608. kfree(msf);
  609. break;
  610. }
  611. /* numsrc >= (1G-4) overflow in 32 bits */
  612. if (msf->imsf_numsrc >= 0x3ffffffcU ||
  613. msf->imsf_numsrc > sysctl_igmp_max_msf) {
  614. kfree(msf);
  615. err = -ENOBUFS;
  616. break;
  617. }
  618. if (IP_MSFILTER_SIZE(msf->imsf_numsrc) > optlen) {
  619. kfree(msf);
  620. err = -EINVAL;
  621. break;
  622. }
  623. err = ip_mc_msfilter(sk, msf, 0);
  624. kfree(msf);
  625. break;
  626. }
  627. case IP_BLOCK_SOURCE:
  628. case IP_UNBLOCK_SOURCE:
  629. case IP_ADD_SOURCE_MEMBERSHIP:
  630. case IP_DROP_SOURCE_MEMBERSHIP:
  631. {
  632. struct ip_mreq_source mreqs;
  633. int omode, add;
  634. if (optlen != sizeof(struct ip_mreq_source))
  635. goto e_inval;
  636. if (copy_from_user(&mreqs, optval, sizeof(mreqs))) {
  637. err = -EFAULT;
  638. break;
  639. }
  640. if (optname == IP_BLOCK_SOURCE) {
  641. omode = MCAST_EXCLUDE;
  642. add = 1;
  643. } else if (optname == IP_UNBLOCK_SOURCE) {
  644. omode = MCAST_EXCLUDE;
  645. add = 0;
  646. } else if (optname == IP_ADD_SOURCE_MEMBERSHIP) {
  647. struct ip_mreqn mreq;
  648. mreq.imr_multiaddr.s_addr = mreqs.imr_multiaddr;
  649. mreq.imr_address.s_addr = mreqs.imr_interface;
  650. mreq.imr_ifindex = 0;
  651. err = ip_mc_join_group(sk, &mreq);
  652. if (err && err != -EADDRINUSE)
  653. break;
  654. omode = MCAST_INCLUDE;
  655. add = 1;
  656. } else /* IP_DROP_SOURCE_MEMBERSHIP */ {
  657. omode = MCAST_INCLUDE;
  658. add = 0;
  659. }
  660. err = ip_mc_source(add, omode, sk, &mreqs, 0);
  661. break;
  662. }
  663. case MCAST_JOIN_GROUP:
  664. case MCAST_LEAVE_GROUP:
  665. {
  666. struct group_req greq;
  667. struct sockaddr_in *psin;
  668. struct ip_mreqn mreq;
  669. if (optlen < sizeof(struct group_req))
  670. goto e_inval;
  671. err = -EFAULT;
  672. if (copy_from_user(&greq, optval, sizeof(greq)))
  673. break;
  674. psin = (struct sockaddr_in *)&greq.gr_group;
  675. if (psin->sin_family != AF_INET)
  676. goto e_inval;
  677. memset(&mreq, 0, sizeof(mreq));
  678. mreq.imr_multiaddr = psin->sin_addr;
  679. mreq.imr_ifindex = greq.gr_interface;
  680. if (optname == MCAST_JOIN_GROUP)
  681. err = ip_mc_join_group(sk, &mreq);
  682. else
  683. err = ip_mc_leave_group(sk, &mreq);
  684. break;
  685. }
  686. case MCAST_JOIN_SOURCE_GROUP:
  687. case MCAST_LEAVE_SOURCE_GROUP:
  688. case MCAST_BLOCK_SOURCE:
  689. case MCAST_UNBLOCK_SOURCE:
  690. {
  691. struct group_source_req greqs;
  692. struct ip_mreq_source mreqs;
  693. struct sockaddr_in *psin;
  694. int omode, add;
  695. if (optlen != sizeof(struct group_source_req))
  696. goto e_inval;
  697. if (copy_from_user(&greqs, optval, sizeof(greqs))) {
  698. err = -EFAULT;
  699. break;
  700. }
  701. if (greqs.gsr_group.ss_family != AF_INET ||
  702. greqs.gsr_source.ss_family != AF_INET) {
  703. err = -EADDRNOTAVAIL;
  704. break;
  705. }
  706. psin = (struct sockaddr_in *)&greqs.gsr_group;
  707. mreqs.imr_multiaddr = psin->sin_addr.s_addr;
  708. psin = (struct sockaddr_in *)&greqs.gsr_source;
  709. mreqs.imr_sourceaddr = psin->sin_addr.s_addr;
  710. mreqs.imr_interface = 0; /* use index for mc_source */
  711. if (optname == MCAST_BLOCK_SOURCE) {
  712. omode = MCAST_EXCLUDE;
  713. add = 1;
  714. } else if (optname == MCAST_UNBLOCK_SOURCE) {
  715. omode = MCAST_EXCLUDE;
  716. add = 0;
  717. } else if (optname == MCAST_JOIN_SOURCE_GROUP) {
  718. struct ip_mreqn mreq;
  719. psin = (struct sockaddr_in *)&greqs.gsr_group;
  720. mreq.imr_multiaddr = psin->sin_addr;
  721. mreq.imr_address.s_addr = 0;
  722. mreq.imr_ifindex = greqs.gsr_interface;
  723. err = ip_mc_join_group(sk, &mreq);
  724. if (err && err != -EADDRINUSE)
  725. break;
  726. greqs.gsr_interface = mreq.imr_ifindex;
  727. omode = MCAST_INCLUDE;
  728. add = 1;
  729. } else /* MCAST_LEAVE_SOURCE_GROUP */ {
  730. omode = MCAST_INCLUDE;
  731. add = 0;
  732. }
  733. err = ip_mc_source(add, omode, sk, &mreqs,
  734. greqs.gsr_interface);
  735. break;
  736. }
  737. case MCAST_MSFILTER:
  738. {
  739. struct sockaddr_in *psin;
  740. struct ip_msfilter *msf = NULL;
  741. struct group_filter *gsf = NULL;
  742. int msize, i, ifindex;
  743. if (optlen < GROUP_FILTER_SIZE(0))
  744. goto e_inval;
  745. if (optlen > sysctl_optmem_max) {
  746. err = -ENOBUFS;
  747. break;
  748. }
  749. gsf = kmalloc(optlen, GFP_KERNEL);
  750. if (!gsf) {
  751. err = -ENOBUFS;
  752. break;
  753. }
  754. err = -EFAULT;
  755. if (copy_from_user(gsf, optval, optlen))
  756. goto mc_msf_out;
  757. /* numsrc >= (4G-140)/128 overflow in 32 bits */
  758. if (gsf->gf_numsrc >= 0x1ffffff ||
  759. gsf->gf_numsrc > sysctl_igmp_max_msf) {
  760. err = -ENOBUFS;
  761. goto mc_msf_out;
  762. }
  763. if (GROUP_FILTER_SIZE(gsf->gf_numsrc) > optlen) {
  764. err = -EINVAL;
  765. goto mc_msf_out;
  766. }
  767. msize = IP_MSFILTER_SIZE(gsf->gf_numsrc);
  768. msf = kmalloc(msize, GFP_KERNEL);
  769. if (!msf) {
  770. err = -ENOBUFS;
  771. goto mc_msf_out;
  772. }
  773. ifindex = gsf->gf_interface;
  774. psin = (struct sockaddr_in *)&gsf->gf_group;
  775. if (psin->sin_family != AF_INET) {
  776. err = -EADDRNOTAVAIL;
  777. goto mc_msf_out;
  778. }
  779. msf->imsf_multiaddr = psin->sin_addr.s_addr;
  780. msf->imsf_interface = 0;
  781. msf->imsf_fmode = gsf->gf_fmode;
  782. msf->imsf_numsrc = gsf->gf_numsrc;
  783. err = -EADDRNOTAVAIL;
  784. for (i = 0; i < gsf->gf_numsrc; ++i) {
  785. psin = (struct sockaddr_in *)&gsf->gf_slist[i];
  786. if (psin->sin_family != AF_INET)
  787. goto mc_msf_out;
  788. msf->imsf_slist[i] = psin->sin_addr.s_addr;
  789. }
  790. kfree(gsf);
  791. gsf = NULL;
  792. err = ip_mc_msfilter(sk, msf, ifindex);
  793. mc_msf_out:
  794. kfree(msf);
  795. kfree(gsf);
  796. break;
  797. }
  798. case IP_ROUTER_ALERT:
  799. err = ip_ra_control(sk, val ? 1 : 0, NULL);
  800. break;
  801. case IP_FREEBIND:
  802. if (optlen < 1)
  803. goto e_inval;
  804. inet->freebind = !!val;
  805. break;
  806. case IP_IPSEC_POLICY:
  807. case IP_XFRM_POLICY:
  808. err = -EPERM;
  809. if (!capable(CAP_NET_ADMIN))
  810. break;
  811. err = xfrm_user_policy(sk, optname, optval, optlen);
  812. break;
  813. case IP_TRANSPARENT:
  814. if (!capable(CAP_NET_ADMIN)) {
  815. err = -EPERM;
  816. break;
  817. }
  818. if (optlen < 1)
  819. goto e_inval;
  820. inet->transparent = !!val;
  821. break;
  822. default:
  823. err = -ENOPROTOOPT;
  824. break;
  825. }
  826. release_sock(sk);
  827. return err;
  828. e_inval:
  829. release_sock(sk);
  830. return -EINVAL;
  831. }
  832. int ip_setsockopt(struct sock *sk, int level,
  833. int optname, char __user *optval, int optlen)
  834. {
  835. int err;
  836. if (level != SOL_IP)
  837. return -ENOPROTOOPT;
  838. err = do_ip_setsockopt(sk, level, optname, optval, optlen);
  839. #ifdef CONFIG_NETFILTER
  840. /* we need to exclude all possible ENOPROTOOPTs except default case */
  841. if (err == -ENOPROTOOPT && optname != IP_HDRINCL &&
  842. optname != IP_IPSEC_POLICY &&
  843. optname != IP_XFRM_POLICY &&
  844. !ip_mroute_opt(optname)) {
  845. lock_sock(sk);
  846. err = nf_setsockopt(sk, PF_INET, optname, optval, optlen);
  847. release_sock(sk);
  848. }
  849. #endif
  850. return err;
  851. }
  852. EXPORT_SYMBOL(ip_setsockopt);
  853. #ifdef CONFIG_COMPAT
  854. int compat_ip_setsockopt(struct sock *sk, int level, int optname,
  855. char __user *optval, int optlen)
  856. {
  857. int err;
  858. if (level != SOL_IP)
  859. return -ENOPROTOOPT;
  860. if (optname >= MCAST_JOIN_GROUP && optname <= MCAST_MSFILTER)
  861. return compat_mc_setsockopt(sk, level, optname, optval, optlen,
  862. ip_setsockopt);
  863. err = do_ip_setsockopt(sk, level, optname, optval, optlen);
  864. #ifdef CONFIG_NETFILTER
  865. /* we need to exclude all possible ENOPROTOOPTs except default case */
  866. if (err == -ENOPROTOOPT && optname != IP_HDRINCL &&
  867. optname != IP_IPSEC_POLICY &&
  868. optname != IP_XFRM_POLICY &&
  869. !ip_mroute_opt(optname)) {
  870. lock_sock(sk);
  871. err = compat_nf_setsockopt(sk, PF_INET, optname,
  872. optval, optlen);
  873. release_sock(sk);
  874. }
  875. #endif
  876. return err;
  877. }
  878. EXPORT_SYMBOL(compat_ip_setsockopt);
  879. #endif
  880. /*
  881. * Get the options. Note for future reference. The GET of IP options gets
  882. * the _received_ ones. The set sets the _sent_ ones.
  883. */
  884. static int do_ip_getsockopt(struct sock *sk, int level, int optname,
  885. char __user *optval, int __user *optlen)
  886. {
  887. struct inet_sock *inet = inet_sk(sk);
  888. int val;
  889. int len;
  890. if (level != SOL_IP)
  891. return -EOPNOTSUPP;
  892. if (ip_mroute_opt(optname))
  893. return ip_mroute_getsockopt(sk, optname, optval, optlen);
  894. if (get_user(len, optlen))
  895. return -EFAULT;
  896. if (len < 0)
  897. return -EINVAL;
  898. lock_sock(sk);
  899. switch (optname) {
  900. case IP_OPTIONS:
  901. {
  902. unsigned char optbuf[sizeof(struct ip_options)+40];
  903. struct ip_options * opt = (struct ip_options *)optbuf;
  904. opt->optlen = 0;
  905. if (inet->opt)
  906. memcpy(optbuf, inet->opt,
  907. sizeof(struct ip_options)+
  908. inet->opt->optlen);
  909. release_sock(sk);
  910. if (opt->optlen == 0)
  911. return put_user(0, optlen);
  912. ip_options_undo(opt);
  913. len = min_t(unsigned int, len, opt->optlen);
  914. if (put_user(len, optlen))
  915. return -EFAULT;
  916. if (copy_to_user(optval, opt->__data, len))
  917. return -EFAULT;
  918. return 0;
  919. }
  920. case IP_PKTINFO:
  921. val = (inet->cmsg_flags & IP_CMSG_PKTINFO) != 0;
  922. break;
  923. case IP_RECVTTL:
  924. val = (inet->cmsg_flags & IP_CMSG_TTL) != 0;
  925. break;
  926. case IP_RECVTOS:
  927. val = (inet->cmsg_flags & IP_CMSG_TOS) != 0;
  928. break;
  929. case IP_RECVOPTS:
  930. val = (inet->cmsg_flags & IP_CMSG_RECVOPTS) != 0;
  931. break;
  932. case IP_RETOPTS:
  933. val = (inet->cmsg_flags & IP_CMSG_RETOPTS) != 0;
  934. break;
  935. case IP_PASSSEC:
  936. val = (inet->cmsg_flags & IP_CMSG_PASSSEC) != 0;
  937. break;
  938. case IP_RECVORIGDSTADDR:
  939. val = (inet->cmsg_flags & IP_CMSG_ORIGDSTADDR) != 0;
  940. break;
  941. case IP_TOS:
  942. val = inet->tos;
  943. break;
  944. case IP_TTL:
  945. val = (inet->uc_ttl == -1 ?
  946. sysctl_ip_default_ttl :
  947. inet->uc_ttl);
  948. break;
  949. case IP_HDRINCL:
  950. val = inet->hdrincl;
  951. break;
  952. case IP_MTU_DISCOVER:
  953. val = inet->pmtudisc;
  954. break;
  955. case IP_MTU:
  956. {
  957. struct dst_entry *dst;
  958. val = 0;
  959. dst = sk_dst_get(sk);
  960. if (dst) {
  961. val = dst_mtu(dst);
  962. dst_release(dst);
  963. }
  964. if (!val) {
  965. release_sock(sk);
  966. return -ENOTCONN;
  967. }
  968. break;
  969. }
  970. case IP_RECVERR:
  971. val = inet->recverr;
  972. break;
  973. case IP_MULTICAST_TTL:
  974. val = inet->mc_ttl;
  975. break;
  976. case IP_MULTICAST_LOOP:
  977. val = inet->mc_loop;
  978. break;
  979. case IP_MULTICAST_IF:
  980. {
  981. struct in_addr addr;
  982. len = min_t(unsigned int, len, sizeof(struct in_addr));
  983. addr.s_addr = inet->mc_addr;
  984. release_sock(sk);
  985. if (put_user(len, optlen))
  986. return -EFAULT;
  987. if (copy_to_user(optval, &addr, len))
  988. return -EFAULT;
  989. return 0;
  990. }
  991. case IP_MSFILTER:
  992. {
  993. struct ip_msfilter msf;
  994. int err;
  995. if (len < IP_MSFILTER_SIZE(0)) {
  996. release_sock(sk);
  997. return -EINVAL;
  998. }
  999. if (copy_from_user(&msf, optval, IP_MSFILTER_SIZE(0))) {
  1000. release_sock(sk);
  1001. return -EFAULT;
  1002. }
  1003. err = ip_mc_msfget(sk, &msf,
  1004. (struct ip_msfilter __user *)optval, optlen);
  1005. release_sock(sk);
  1006. return err;
  1007. }
  1008. case MCAST_MSFILTER:
  1009. {
  1010. struct group_filter gsf;
  1011. int err;
  1012. if (len < GROUP_FILTER_SIZE(0)) {
  1013. release_sock(sk);
  1014. return -EINVAL;
  1015. }
  1016. if (copy_from_user(&gsf, optval, GROUP_FILTER_SIZE(0))) {
  1017. release_sock(sk);
  1018. return -EFAULT;
  1019. }
  1020. err = ip_mc_gsfget(sk, &gsf,
  1021. (struct group_filter __user *)optval,
  1022. optlen);
  1023. release_sock(sk);
  1024. return err;
  1025. }
  1026. case IP_PKTOPTIONS:
  1027. {
  1028. struct msghdr msg;
  1029. release_sock(sk);
  1030. if (sk->sk_type != SOCK_STREAM)
  1031. return -ENOPROTOOPT;
  1032. msg.msg_control = optval;
  1033. msg.msg_controllen = len;
  1034. msg.msg_flags = 0;
  1035. if (inet->cmsg_flags & IP_CMSG_PKTINFO) {
  1036. struct in_pktinfo info;
  1037. info.ipi_addr.s_addr = inet->rcv_saddr;
  1038. info.ipi_spec_dst.s_addr = inet->rcv_saddr;
  1039. info.ipi_ifindex = inet->mc_index;
  1040. put_cmsg(&msg, SOL_IP, IP_PKTINFO, sizeof(info), &info);
  1041. }
  1042. if (inet->cmsg_flags & IP_CMSG_TTL) {
  1043. int hlim = inet->mc_ttl;
  1044. put_cmsg(&msg, SOL_IP, IP_TTL, sizeof(hlim), &hlim);
  1045. }
  1046. len -= msg.msg_controllen;
  1047. return put_user(len, optlen);
  1048. }
  1049. case IP_FREEBIND:
  1050. val = inet->freebind;
  1051. break;
  1052. case IP_TRANSPARENT:
  1053. val = inet->transparent;
  1054. break;
  1055. default:
  1056. release_sock(sk);
  1057. return -ENOPROTOOPT;
  1058. }
  1059. release_sock(sk);
  1060. if (len < sizeof(int) && len > 0 && val >= 0 && val <= 255) {
  1061. unsigned char ucval = (unsigned char)val;
  1062. len = 1;
  1063. if (put_user(len, optlen))
  1064. return -EFAULT;
  1065. if (copy_to_user(optval, &ucval, 1))
  1066. return -EFAULT;
  1067. } else {
  1068. len = min_t(unsigned int, sizeof(int), len);
  1069. if (put_user(len, optlen))
  1070. return -EFAULT;
  1071. if (copy_to_user(optval, &val, len))
  1072. return -EFAULT;
  1073. }
  1074. return 0;
  1075. }
  1076. int ip_getsockopt(struct sock *sk, int level,
  1077. int optname, char __user *optval, int __user *optlen)
  1078. {
  1079. int err;
  1080. err = do_ip_getsockopt(sk, level, optname, optval, optlen);
  1081. #ifdef CONFIG_NETFILTER
  1082. /* we need to exclude all possible ENOPROTOOPTs except default case */
  1083. if (err == -ENOPROTOOPT && optname != IP_PKTOPTIONS &&
  1084. !ip_mroute_opt(optname)) {
  1085. int len;
  1086. if (get_user(len, optlen))
  1087. return -EFAULT;
  1088. lock_sock(sk);
  1089. err = nf_getsockopt(sk, PF_INET, optname, optval,
  1090. &len);
  1091. release_sock(sk);
  1092. if (err >= 0)
  1093. err = put_user(len, optlen);
  1094. return err;
  1095. }
  1096. #endif
  1097. return err;
  1098. }
  1099. EXPORT_SYMBOL(ip_getsockopt);
  1100. #ifdef CONFIG_COMPAT
  1101. int compat_ip_getsockopt(struct sock *sk, int level, int optname,
  1102. char __user *optval, int __user *optlen)
  1103. {
  1104. int err;
  1105. if (optname == MCAST_MSFILTER)
  1106. return compat_mc_getsockopt(sk, level, optname, optval, optlen,
  1107. ip_getsockopt);
  1108. err = do_ip_getsockopt(sk, level, optname, optval, optlen);
  1109. #ifdef CONFIG_NETFILTER
  1110. /* we need to exclude all possible ENOPROTOOPTs except default case */
  1111. if (err == -ENOPROTOOPT && optname != IP_PKTOPTIONS &&
  1112. !ip_mroute_opt(optname)) {
  1113. int len;
  1114. if (get_user(len, optlen))
  1115. return -EFAULT;
  1116. lock_sock(sk);
  1117. err = compat_nf_getsockopt(sk, PF_INET, optname, optval, &len);
  1118. release_sock(sk);
  1119. if (err >= 0)
  1120. err = put_user(len, optlen);
  1121. return err;
  1122. }
  1123. #endif
  1124. return err;
  1125. }
  1126. EXPORT_SYMBOL(compat_ip_getsockopt);
  1127. #endif