ste_dma40.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <plat/ste_dma40.h>
  21. #include "ste_dma40_ll.h"
  22. #define D40_NAME "dma40"
  23. #define D40_PHY_CHAN -1
  24. /* For masking out/in 2 bit channel positions */
  25. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  26. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  27. /* Maximum iterations taken before giving up suspending a channel */
  28. #define D40_SUSPEND_MAX_IT 500
  29. /* Milliseconds */
  30. #define DMA40_AUTOSUSPEND_DELAY 100
  31. /* Hardware requirement on LCLA alignment */
  32. #define LCLA_ALIGNMENT 0x40000
  33. /* Max number of links per event group */
  34. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  35. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  36. /* Attempts before giving up to trying to get pages that are aligned */
  37. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  38. /* Bit markings for allocation map */
  39. #define D40_ALLOC_FREE (1 << 31)
  40. #define D40_ALLOC_PHY (1 << 30)
  41. #define D40_ALLOC_LOG_FREE 0
  42. /**
  43. * enum 40_command - The different commands and/or statuses.
  44. *
  45. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  46. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  47. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  48. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  49. */
  50. enum d40_command {
  51. D40_DMA_STOP = 0,
  52. D40_DMA_RUN = 1,
  53. D40_DMA_SUSPEND_REQ = 2,
  54. D40_DMA_SUSPENDED = 3
  55. };
  56. /*
  57. * These are the registers that has to be saved and later restored
  58. * when the DMA hw is powered off.
  59. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  60. */
  61. static u32 d40_backup_regs[] = {
  62. D40_DREG_LCPA,
  63. D40_DREG_LCLA,
  64. D40_DREG_PRMSE,
  65. D40_DREG_PRMSO,
  66. D40_DREG_PRMOE,
  67. D40_DREG_PRMOO,
  68. };
  69. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  70. /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
  71. static u32 d40_backup_regs_v3[] = {
  72. D40_DREG_PSEG1,
  73. D40_DREG_PSEG2,
  74. D40_DREG_PSEG3,
  75. D40_DREG_PSEG4,
  76. D40_DREG_PCEG1,
  77. D40_DREG_PCEG2,
  78. D40_DREG_PCEG3,
  79. D40_DREG_PCEG4,
  80. D40_DREG_RSEG1,
  81. D40_DREG_RSEG2,
  82. D40_DREG_RSEG3,
  83. D40_DREG_RSEG4,
  84. D40_DREG_RCEG1,
  85. D40_DREG_RCEG2,
  86. D40_DREG_RCEG3,
  87. D40_DREG_RCEG4,
  88. };
  89. #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
  90. static u32 d40_backup_regs_chan[] = {
  91. D40_CHAN_REG_SSCFG,
  92. D40_CHAN_REG_SSELT,
  93. D40_CHAN_REG_SSPTR,
  94. D40_CHAN_REG_SSLNK,
  95. D40_CHAN_REG_SDCFG,
  96. D40_CHAN_REG_SDELT,
  97. D40_CHAN_REG_SDPTR,
  98. D40_CHAN_REG_SDLNK,
  99. };
  100. /**
  101. * struct d40_lli_pool - Structure for keeping LLIs in memory
  102. *
  103. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  104. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  105. * pre_alloc_lli is used.
  106. * @dma_addr: DMA address, if mapped
  107. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  108. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  109. * one buffer to one buffer.
  110. */
  111. struct d40_lli_pool {
  112. void *base;
  113. int size;
  114. dma_addr_t dma_addr;
  115. /* Space for dst and src, plus an extra for padding */
  116. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  117. };
  118. /**
  119. * struct d40_desc - A descriptor is one DMA job.
  120. *
  121. * @lli_phy: LLI settings for physical channel. Both src and dst=
  122. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  123. * lli_len equals one.
  124. * @lli_log: Same as above but for logical channels.
  125. * @lli_pool: The pool with two entries pre-allocated.
  126. * @lli_len: Number of llis of current descriptor.
  127. * @lli_current: Number of transferred llis.
  128. * @lcla_alloc: Number of LCLA entries allocated.
  129. * @txd: DMA engine struct. Used for among other things for communication
  130. * during a transfer.
  131. * @node: List entry.
  132. * @is_in_client_list: true if the client owns this descriptor.
  133. * @cyclic: true if this is a cyclic job
  134. *
  135. * This descriptor is used for both logical and physical transfers.
  136. */
  137. struct d40_desc {
  138. /* LLI physical */
  139. struct d40_phy_lli_bidir lli_phy;
  140. /* LLI logical */
  141. struct d40_log_lli_bidir lli_log;
  142. struct d40_lli_pool lli_pool;
  143. int lli_len;
  144. int lli_current;
  145. int lcla_alloc;
  146. struct dma_async_tx_descriptor txd;
  147. struct list_head node;
  148. bool is_in_client_list;
  149. bool cyclic;
  150. };
  151. /**
  152. * struct d40_lcla_pool - LCLA pool settings and data.
  153. *
  154. * @base: The virtual address of LCLA. 18 bit aligned.
  155. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  156. * This pointer is only there for clean-up on error.
  157. * @pages: The number of pages needed for all physical channels.
  158. * Only used later for clean-up on error
  159. * @lock: Lock to protect the content in this struct.
  160. * @alloc_map: big map over which LCLA entry is own by which job.
  161. */
  162. struct d40_lcla_pool {
  163. void *base;
  164. dma_addr_t dma_addr;
  165. void *base_unaligned;
  166. int pages;
  167. spinlock_t lock;
  168. struct d40_desc **alloc_map;
  169. };
  170. /**
  171. * struct d40_phy_res - struct for handling eventlines mapped to physical
  172. * channels.
  173. *
  174. * @lock: A lock protection this entity.
  175. * @reserved: True if used by secure world or otherwise.
  176. * @num: The physical channel number of this entity.
  177. * @allocated_src: Bit mapped to show which src event line's are mapped to
  178. * this physical channel. Can also be free or physically allocated.
  179. * @allocated_dst: Same as for src but is dst.
  180. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  181. * event line number.
  182. */
  183. struct d40_phy_res {
  184. spinlock_t lock;
  185. bool reserved;
  186. int num;
  187. u32 allocated_src;
  188. u32 allocated_dst;
  189. };
  190. struct d40_base;
  191. /**
  192. * struct d40_chan - Struct that describes a channel.
  193. *
  194. * @lock: A spinlock to protect this struct.
  195. * @log_num: The logical number, if any of this channel.
  196. * @pending_tx: The number of pending transfers. Used between interrupt handler
  197. * and tasklet.
  198. * @busy: Set to true when transfer is ongoing on this channel.
  199. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  200. * point is NULL, then the channel is not allocated.
  201. * @chan: DMA engine handle.
  202. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  203. * transfer and call client callback.
  204. * @client: Cliented owned descriptor list.
  205. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  206. * @active: Active descriptor.
  207. * @queue: Queued jobs.
  208. * @prepare_queue: Prepared jobs.
  209. * @dma_cfg: The client configuration of this dma channel.
  210. * @configured: whether the dma_cfg configuration is valid
  211. * @base: Pointer to the device instance struct.
  212. * @src_def_cfg: Default cfg register setting for src.
  213. * @dst_def_cfg: Default cfg register setting for dst.
  214. * @log_def: Default logical channel settings.
  215. * @lcpa: Pointer to dst and src lcpa settings.
  216. * @runtime_addr: runtime configured address.
  217. * @runtime_direction: runtime configured direction.
  218. *
  219. * This struct can either "be" a logical or a physical channel.
  220. */
  221. struct d40_chan {
  222. spinlock_t lock;
  223. int log_num;
  224. int pending_tx;
  225. bool busy;
  226. struct d40_phy_res *phy_chan;
  227. struct dma_chan chan;
  228. struct tasklet_struct tasklet;
  229. struct list_head client;
  230. struct list_head pending_queue;
  231. struct list_head active;
  232. struct list_head queue;
  233. struct list_head prepare_queue;
  234. struct stedma40_chan_cfg dma_cfg;
  235. bool configured;
  236. struct d40_base *base;
  237. /* Default register configurations */
  238. u32 src_def_cfg;
  239. u32 dst_def_cfg;
  240. struct d40_def_lcsp log_def;
  241. struct d40_log_lli_full *lcpa;
  242. /* Runtime reconfiguration */
  243. dma_addr_t runtime_addr;
  244. enum dma_transfer_direction runtime_direction;
  245. };
  246. /**
  247. * struct d40_base - The big global struct, one for each probe'd instance.
  248. *
  249. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  250. * @execmd_lock: Lock for execute command usage since several channels share
  251. * the same physical register.
  252. * @dev: The device structure.
  253. * @virtbase: The virtual base address of the DMA's register.
  254. * @rev: silicon revision detected.
  255. * @clk: Pointer to the DMA clock structure.
  256. * @phy_start: Physical memory start of the DMA registers.
  257. * @phy_size: Size of the DMA register map.
  258. * @irq: The IRQ number.
  259. * @num_phy_chans: The number of physical channels. Read from HW. This
  260. * is the number of available channels for this driver, not counting "Secure
  261. * mode" allocated physical channels.
  262. * @num_log_chans: The number of logical channels. Calculated from
  263. * num_phy_chans.
  264. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  265. * @dma_slave: dma_device channels that can do only do slave transfers.
  266. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  267. * @phy_chans: Room for all possible physical channels in system.
  268. * @log_chans: Room for all possible logical channels in system.
  269. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  270. * to log_chans entries.
  271. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  272. * to phy_chans entries.
  273. * @plat_data: Pointer to provided platform_data which is the driver
  274. * configuration.
  275. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  276. * @phy_res: Vector containing all physical channels.
  277. * @lcla_pool: lcla pool settings and data.
  278. * @lcpa_base: The virtual mapped address of LCPA.
  279. * @phy_lcpa: The physical address of the LCPA.
  280. * @lcpa_size: The size of the LCPA area.
  281. * @desc_slab: cache for descriptors.
  282. * @reg_val_backup: Here the values of some hardware registers are stored
  283. * before the DMA is powered off. They are restored when the power is back on.
  284. * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
  285. * later.
  286. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  287. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  288. * @initialized: true if the dma has been initialized
  289. */
  290. struct d40_base {
  291. spinlock_t interrupt_lock;
  292. spinlock_t execmd_lock;
  293. struct device *dev;
  294. void __iomem *virtbase;
  295. u8 rev:4;
  296. struct clk *clk;
  297. phys_addr_t phy_start;
  298. resource_size_t phy_size;
  299. int irq;
  300. int num_phy_chans;
  301. int num_log_chans;
  302. struct dma_device dma_both;
  303. struct dma_device dma_slave;
  304. struct dma_device dma_memcpy;
  305. struct d40_chan *phy_chans;
  306. struct d40_chan *log_chans;
  307. struct d40_chan **lookup_log_chans;
  308. struct d40_chan **lookup_phy_chans;
  309. struct stedma40_platform_data *plat_data;
  310. struct regulator *lcpa_regulator;
  311. /* Physical half channels */
  312. struct d40_phy_res *phy_res;
  313. struct d40_lcla_pool lcla_pool;
  314. void *lcpa_base;
  315. dma_addr_t phy_lcpa;
  316. resource_size_t lcpa_size;
  317. struct kmem_cache *desc_slab;
  318. u32 reg_val_backup[BACKUP_REGS_SZ];
  319. u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
  320. u32 *reg_val_backup_chan;
  321. u16 gcc_pwr_off_mask;
  322. bool initialized;
  323. };
  324. /**
  325. * struct d40_interrupt_lookup - lookup table for interrupt handler
  326. *
  327. * @src: Interrupt mask register.
  328. * @clr: Interrupt clear register.
  329. * @is_error: true if this is an error interrupt.
  330. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  331. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  332. */
  333. struct d40_interrupt_lookup {
  334. u32 src;
  335. u32 clr;
  336. bool is_error;
  337. int offset;
  338. };
  339. /**
  340. * struct d40_reg_val - simple lookup struct
  341. *
  342. * @reg: The register.
  343. * @val: The value that belongs to the register in reg.
  344. */
  345. struct d40_reg_val {
  346. unsigned int reg;
  347. unsigned int val;
  348. };
  349. static struct device *chan2dev(struct d40_chan *d40c)
  350. {
  351. return &d40c->chan.dev->device;
  352. }
  353. static bool chan_is_physical(struct d40_chan *chan)
  354. {
  355. return chan->log_num == D40_PHY_CHAN;
  356. }
  357. static bool chan_is_logical(struct d40_chan *chan)
  358. {
  359. return !chan_is_physical(chan);
  360. }
  361. static void __iomem *chan_base(struct d40_chan *chan)
  362. {
  363. return chan->base->virtbase + D40_DREG_PCBASE +
  364. chan->phy_chan->num * D40_DREG_PCDELTA;
  365. }
  366. #define d40_err(dev, format, arg...) \
  367. dev_err(dev, "[%s] " format, __func__, ## arg)
  368. #define chan_err(d40c, format, arg...) \
  369. d40_err(chan2dev(d40c), format, ## arg)
  370. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  371. int lli_len)
  372. {
  373. bool is_log = chan_is_logical(d40c);
  374. u32 align;
  375. void *base;
  376. if (is_log)
  377. align = sizeof(struct d40_log_lli);
  378. else
  379. align = sizeof(struct d40_phy_lli);
  380. if (lli_len == 1) {
  381. base = d40d->lli_pool.pre_alloc_lli;
  382. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  383. d40d->lli_pool.base = NULL;
  384. } else {
  385. d40d->lli_pool.size = lli_len * 2 * align;
  386. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  387. d40d->lli_pool.base = base;
  388. if (d40d->lli_pool.base == NULL)
  389. return -ENOMEM;
  390. }
  391. if (is_log) {
  392. d40d->lli_log.src = PTR_ALIGN(base, align);
  393. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  394. d40d->lli_pool.dma_addr = 0;
  395. } else {
  396. d40d->lli_phy.src = PTR_ALIGN(base, align);
  397. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  398. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  399. d40d->lli_phy.src,
  400. d40d->lli_pool.size,
  401. DMA_TO_DEVICE);
  402. if (dma_mapping_error(d40c->base->dev,
  403. d40d->lli_pool.dma_addr)) {
  404. kfree(d40d->lli_pool.base);
  405. d40d->lli_pool.base = NULL;
  406. d40d->lli_pool.dma_addr = 0;
  407. return -ENOMEM;
  408. }
  409. }
  410. return 0;
  411. }
  412. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  413. {
  414. if (d40d->lli_pool.dma_addr)
  415. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  416. d40d->lli_pool.size, DMA_TO_DEVICE);
  417. kfree(d40d->lli_pool.base);
  418. d40d->lli_pool.base = NULL;
  419. d40d->lli_pool.size = 0;
  420. d40d->lli_log.src = NULL;
  421. d40d->lli_log.dst = NULL;
  422. d40d->lli_phy.src = NULL;
  423. d40d->lli_phy.dst = NULL;
  424. }
  425. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  426. struct d40_desc *d40d)
  427. {
  428. unsigned long flags;
  429. int i;
  430. int ret = -EINVAL;
  431. int p;
  432. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  433. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  434. /*
  435. * Allocate both src and dst at the same time, therefore the half
  436. * start on 1 since 0 can't be used since zero is used as end marker.
  437. */
  438. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  439. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  440. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  441. d40d->lcla_alloc++;
  442. ret = i;
  443. break;
  444. }
  445. }
  446. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  447. return ret;
  448. }
  449. static int d40_lcla_free_all(struct d40_chan *d40c,
  450. struct d40_desc *d40d)
  451. {
  452. unsigned long flags;
  453. int i;
  454. int ret = -EINVAL;
  455. if (chan_is_physical(d40c))
  456. return 0;
  457. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  458. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  459. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  460. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  461. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  462. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  463. d40d->lcla_alloc--;
  464. if (d40d->lcla_alloc == 0) {
  465. ret = 0;
  466. break;
  467. }
  468. }
  469. }
  470. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  471. return ret;
  472. }
  473. static void d40_desc_remove(struct d40_desc *d40d)
  474. {
  475. list_del(&d40d->node);
  476. }
  477. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  478. {
  479. struct d40_desc *desc = NULL;
  480. if (!list_empty(&d40c->client)) {
  481. struct d40_desc *d;
  482. struct d40_desc *_d;
  483. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  484. if (async_tx_test_ack(&d->txd)) {
  485. d40_desc_remove(d);
  486. desc = d;
  487. memset(desc, 0, sizeof(*desc));
  488. break;
  489. }
  490. }
  491. }
  492. if (!desc)
  493. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  494. if (desc)
  495. INIT_LIST_HEAD(&desc->node);
  496. return desc;
  497. }
  498. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  499. {
  500. d40_pool_lli_free(d40c, d40d);
  501. d40_lcla_free_all(d40c, d40d);
  502. kmem_cache_free(d40c->base->desc_slab, d40d);
  503. }
  504. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  505. {
  506. list_add_tail(&desc->node, &d40c->active);
  507. }
  508. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  509. {
  510. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  511. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  512. void __iomem *base = chan_base(chan);
  513. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  514. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  515. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  516. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  517. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  518. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  519. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  520. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  521. }
  522. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  523. {
  524. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  525. struct d40_log_lli_bidir *lli = &desc->lli_log;
  526. int lli_current = desc->lli_current;
  527. int lli_len = desc->lli_len;
  528. bool cyclic = desc->cyclic;
  529. int curr_lcla = -EINVAL;
  530. int first_lcla = 0;
  531. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  532. bool linkback;
  533. /*
  534. * We may have partially running cyclic transfers, in case we did't get
  535. * enough LCLA entries.
  536. */
  537. linkback = cyclic && lli_current == 0;
  538. /*
  539. * For linkback, we need one LCLA even with only one link, because we
  540. * can't link back to the one in LCPA space
  541. */
  542. if (linkback || (lli_len - lli_current > 1)) {
  543. curr_lcla = d40_lcla_alloc_one(chan, desc);
  544. first_lcla = curr_lcla;
  545. }
  546. /*
  547. * For linkback, we normally load the LCPA in the loop since we need to
  548. * link it to the second LCLA and not the first. However, if we
  549. * couldn't even get a first LCLA, then we have to run in LCPA and
  550. * reload manually.
  551. */
  552. if (!linkback || curr_lcla == -EINVAL) {
  553. unsigned int flags = 0;
  554. if (curr_lcla == -EINVAL)
  555. flags |= LLI_TERM_INT;
  556. d40_log_lli_lcpa_write(chan->lcpa,
  557. &lli->dst[lli_current],
  558. &lli->src[lli_current],
  559. curr_lcla,
  560. flags);
  561. lli_current++;
  562. }
  563. if (curr_lcla < 0)
  564. goto out;
  565. for (; lli_current < lli_len; lli_current++) {
  566. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  567. 8 * curr_lcla * 2;
  568. struct d40_log_lli *lcla = pool->base + lcla_offset;
  569. unsigned int flags = 0;
  570. int next_lcla;
  571. if (lli_current + 1 < lli_len)
  572. next_lcla = d40_lcla_alloc_one(chan, desc);
  573. else
  574. next_lcla = linkback ? first_lcla : -EINVAL;
  575. if (cyclic || next_lcla == -EINVAL)
  576. flags |= LLI_TERM_INT;
  577. if (linkback && curr_lcla == first_lcla) {
  578. /* First link goes in both LCPA and LCLA */
  579. d40_log_lli_lcpa_write(chan->lcpa,
  580. &lli->dst[lli_current],
  581. &lli->src[lli_current],
  582. next_lcla, flags);
  583. }
  584. /*
  585. * One unused LCLA in the cyclic case if the very first
  586. * next_lcla fails...
  587. */
  588. d40_log_lli_lcla_write(lcla,
  589. &lli->dst[lli_current],
  590. &lli->src[lli_current],
  591. next_lcla, flags);
  592. /*
  593. * Cache maintenance is not needed if lcla is
  594. * mapped in esram
  595. */
  596. if (!use_esram_lcla) {
  597. dma_sync_single_range_for_device(chan->base->dev,
  598. pool->dma_addr, lcla_offset,
  599. 2 * sizeof(struct d40_log_lli),
  600. DMA_TO_DEVICE);
  601. }
  602. curr_lcla = next_lcla;
  603. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  604. lli_current++;
  605. break;
  606. }
  607. }
  608. out:
  609. desc->lli_current = lli_current;
  610. }
  611. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  612. {
  613. if (chan_is_physical(d40c)) {
  614. d40_phy_lli_load(d40c, d40d);
  615. d40d->lli_current = d40d->lli_len;
  616. } else
  617. d40_log_lli_to_lcxa(d40c, d40d);
  618. }
  619. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  620. {
  621. struct d40_desc *d;
  622. if (list_empty(&d40c->active))
  623. return NULL;
  624. d = list_first_entry(&d40c->active,
  625. struct d40_desc,
  626. node);
  627. return d;
  628. }
  629. /* remove desc from current queue and add it to the pending_queue */
  630. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  631. {
  632. d40_desc_remove(desc);
  633. desc->is_in_client_list = false;
  634. list_add_tail(&desc->node, &d40c->pending_queue);
  635. }
  636. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  637. {
  638. struct d40_desc *d;
  639. if (list_empty(&d40c->pending_queue))
  640. return NULL;
  641. d = list_first_entry(&d40c->pending_queue,
  642. struct d40_desc,
  643. node);
  644. return d;
  645. }
  646. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  647. {
  648. struct d40_desc *d;
  649. if (list_empty(&d40c->queue))
  650. return NULL;
  651. d = list_first_entry(&d40c->queue,
  652. struct d40_desc,
  653. node);
  654. return d;
  655. }
  656. static int d40_psize_2_burst_size(bool is_log, int psize)
  657. {
  658. if (is_log) {
  659. if (psize == STEDMA40_PSIZE_LOG_1)
  660. return 1;
  661. } else {
  662. if (psize == STEDMA40_PSIZE_PHY_1)
  663. return 1;
  664. }
  665. return 2 << psize;
  666. }
  667. /*
  668. * The dma only supports transmitting packages up to
  669. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  670. * dma elements required to send the entire sg list
  671. */
  672. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  673. {
  674. int dmalen;
  675. u32 max_w = max(data_width1, data_width2);
  676. u32 min_w = min(data_width1, data_width2);
  677. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  678. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  679. seg_max -= (1 << max_w);
  680. if (!IS_ALIGNED(size, 1 << max_w))
  681. return -EINVAL;
  682. if (size <= seg_max)
  683. dmalen = 1;
  684. else {
  685. dmalen = size / seg_max;
  686. if (dmalen * seg_max < size)
  687. dmalen++;
  688. }
  689. return dmalen;
  690. }
  691. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  692. u32 data_width1, u32 data_width2)
  693. {
  694. struct scatterlist *sg;
  695. int i;
  696. int len = 0;
  697. int ret;
  698. for_each_sg(sgl, sg, sg_len, i) {
  699. ret = d40_size_2_dmalen(sg_dma_len(sg),
  700. data_width1, data_width2);
  701. if (ret < 0)
  702. return ret;
  703. len += ret;
  704. }
  705. return len;
  706. }
  707. #ifdef CONFIG_PM
  708. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  709. u32 *regaddr, int num, bool save)
  710. {
  711. int i;
  712. for (i = 0; i < num; i++) {
  713. void __iomem *addr = baseaddr + regaddr[i];
  714. if (save)
  715. backup[i] = readl_relaxed(addr);
  716. else
  717. writel_relaxed(backup[i], addr);
  718. }
  719. }
  720. static void d40_save_restore_registers(struct d40_base *base, bool save)
  721. {
  722. int i;
  723. /* Save/Restore channel specific registers */
  724. for (i = 0; i < base->num_phy_chans; i++) {
  725. void __iomem *addr;
  726. int idx;
  727. if (base->phy_res[i].reserved)
  728. continue;
  729. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  730. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  731. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  732. d40_backup_regs_chan,
  733. ARRAY_SIZE(d40_backup_regs_chan),
  734. save);
  735. }
  736. /* Save/Restore global registers */
  737. dma40_backup(base->virtbase, base->reg_val_backup,
  738. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  739. save);
  740. /* Save/Restore registers only existing on dma40 v3 and later */
  741. if (base->rev >= 3)
  742. dma40_backup(base->virtbase, base->reg_val_backup_v3,
  743. d40_backup_regs_v3,
  744. ARRAY_SIZE(d40_backup_regs_v3),
  745. save);
  746. }
  747. #else
  748. static void d40_save_restore_registers(struct d40_base *base, bool save)
  749. {
  750. }
  751. #endif
  752. static int d40_channel_execute_command(struct d40_chan *d40c,
  753. enum d40_command command)
  754. {
  755. u32 status;
  756. int i;
  757. void __iomem *active_reg;
  758. int ret = 0;
  759. unsigned long flags;
  760. u32 wmask;
  761. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  762. if (d40c->phy_chan->num % 2 == 0)
  763. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  764. else
  765. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  766. if (command == D40_DMA_SUSPEND_REQ) {
  767. status = (readl(active_reg) &
  768. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  769. D40_CHAN_POS(d40c->phy_chan->num);
  770. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  771. goto done;
  772. }
  773. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  774. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  775. active_reg);
  776. if (command == D40_DMA_SUSPEND_REQ) {
  777. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  778. status = (readl(active_reg) &
  779. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  780. D40_CHAN_POS(d40c->phy_chan->num);
  781. cpu_relax();
  782. /*
  783. * Reduce the number of bus accesses while
  784. * waiting for the DMA to suspend.
  785. */
  786. udelay(3);
  787. if (status == D40_DMA_STOP ||
  788. status == D40_DMA_SUSPENDED)
  789. break;
  790. }
  791. if (i == D40_SUSPEND_MAX_IT) {
  792. chan_err(d40c,
  793. "unable to suspend the chl %d (log: %d) status %x\n",
  794. d40c->phy_chan->num, d40c->log_num,
  795. status);
  796. dump_stack();
  797. ret = -EBUSY;
  798. }
  799. }
  800. done:
  801. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  802. return ret;
  803. }
  804. static void d40_term_all(struct d40_chan *d40c)
  805. {
  806. struct d40_desc *d40d;
  807. struct d40_desc *_d;
  808. /* Release active descriptors */
  809. while ((d40d = d40_first_active_get(d40c))) {
  810. d40_desc_remove(d40d);
  811. d40_desc_free(d40c, d40d);
  812. }
  813. /* Release queued descriptors waiting for transfer */
  814. while ((d40d = d40_first_queued(d40c))) {
  815. d40_desc_remove(d40d);
  816. d40_desc_free(d40c, d40d);
  817. }
  818. /* Release pending descriptors */
  819. while ((d40d = d40_first_pending(d40c))) {
  820. d40_desc_remove(d40d);
  821. d40_desc_free(d40c, d40d);
  822. }
  823. /* Release client owned descriptors */
  824. if (!list_empty(&d40c->client))
  825. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  826. d40_desc_remove(d40d);
  827. d40_desc_free(d40c, d40d);
  828. }
  829. /* Release descriptors in prepare queue */
  830. if (!list_empty(&d40c->prepare_queue))
  831. list_for_each_entry_safe(d40d, _d,
  832. &d40c->prepare_queue, node) {
  833. d40_desc_remove(d40d);
  834. d40_desc_free(d40c, d40d);
  835. }
  836. d40c->pending_tx = 0;
  837. d40c->busy = false;
  838. }
  839. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  840. u32 event, int reg)
  841. {
  842. void __iomem *addr = chan_base(d40c) + reg;
  843. int tries;
  844. if (!enable) {
  845. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  846. | ~D40_EVENTLINE_MASK(event), addr);
  847. return;
  848. }
  849. /*
  850. * The hardware sometimes doesn't register the enable when src and dst
  851. * event lines are active on the same logical channel. Retry to ensure
  852. * it does. Usually only one retry is sufficient.
  853. */
  854. tries = 100;
  855. while (--tries) {
  856. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  857. | ~D40_EVENTLINE_MASK(event), addr);
  858. if (readl(addr) & D40_EVENTLINE_MASK(event))
  859. break;
  860. }
  861. if (tries != 99)
  862. dev_dbg(chan2dev(d40c),
  863. "[%s] workaround enable S%cLNK (%d tries)\n",
  864. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  865. 100 - tries);
  866. WARN_ON(!tries);
  867. }
  868. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  869. {
  870. unsigned long flags;
  871. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  872. /* Enable event line connected to device (or memcpy) */
  873. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  874. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  875. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  876. __d40_config_set_event(d40c, do_enable, event,
  877. D40_CHAN_REG_SSLNK);
  878. }
  879. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  880. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  881. __d40_config_set_event(d40c, do_enable, event,
  882. D40_CHAN_REG_SDLNK);
  883. }
  884. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  885. }
  886. static u32 d40_chan_has_events(struct d40_chan *d40c)
  887. {
  888. void __iomem *chanbase = chan_base(d40c);
  889. u32 val;
  890. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  891. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  892. return val;
  893. }
  894. static u32 d40_get_prmo(struct d40_chan *d40c)
  895. {
  896. static const unsigned int phy_map[] = {
  897. [STEDMA40_PCHAN_BASIC_MODE]
  898. = D40_DREG_PRMO_PCHAN_BASIC,
  899. [STEDMA40_PCHAN_MODULO_MODE]
  900. = D40_DREG_PRMO_PCHAN_MODULO,
  901. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  902. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  903. };
  904. static const unsigned int log_map[] = {
  905. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  906. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  907. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  908. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  909. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  910. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  911. };
  912. if (chan_is_physical(d40c))
  913. return phy_map[d40c->dma_cfg.mode_opt];
  914. else
  915. return log_map[d40c->dma_cfg.mode_opt];
  916. }
  917. static void d40_config_write(struct d40_chan *d40c)
  918. {
  919. u32 addr_base;
  920. u32 var;
  921. /* Odd addresses are even addresses + 4 */
  922. addr_base = (d40c->phy_chan->num % 2) * 4;
  923. /* Setup channel mode to logical or physical */
  924. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  925. D40_CHAN_POS(d40c->phy_chan->num);
  926. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  927. /* Setup operational mode option register */
  928. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  929. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  930. if (chan_is_logical(d40c)) {
  931. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  932. & D40_SREG_ELEM_LOG_LIDX_MASK;
  933. void __iomem *chanbase = chan_base(d40c);
  934. /* Set default config for CFG reg */
  935. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  936. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  937. /* Set LIDX for lcla */
  938. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  939. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  940. /* Clear LNK which will be used by d40_chan_has_events() */
  941. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  942. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  943. }
  944. }
  945. static u32 d40_residue(struct d40_chan *d40c)
  946. {
  947. u32 num_elt;
  948. if (chan_is_logical(d40c))
  949. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  950. >> D40_MEM_LCSP2_ECNT_POS;
  951. else {
  952. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  953. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  954. >> D40_SREG_ELEM_PHY_ECNT_POS;
  955. }
  956. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  957. }
  958. static bool d40_tx_is_linked(struct d40_chan *d40c)
  959. {
  960. bool is_link;
  961. if (chan_is_logical(d40c))
  962. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  963. else
  964. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  965. & D40_SREG_LNK_PHYS_LNK_MASK;
  966. return is_link;
  967. }
  968. static int d40_pause(struct d40_chan *d40c)
  969. {
  970. int res = 0;
  971. unsigned long flags;
  972. if (!d40c->busy)
  973. return 0;
  974. pm_runtime_get_sync(d40c->base->dev);
  975. spin_lock_irqsave(&d40c->lock, flags);
  976. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  977. if (res == 0) {
  978. if (chan_is_logical(d40c)) {
  979. d40_config_set_event(d40c, false);
  980. /* Resume the other logical channels if any */
  981. if (d40_chan_has_events(d40c))
  982. res = d40_channel_execute_command(d40c,
  983. D40_DMA_RUN);
  984. }
  985. }
  986. pm_runtime_mark_last_busy(d40c->base->dev);
  987. pm_runtime_put_autosuspend(d40c->base->dev);
  988. spin_unlock_irqrestore(&d40c->lock, flags);
  989. return res;
  990. }
  991. static int d40_resume(struct d40_chan *d40c)
  992. {
  993. int res = 0;
  994. unsigned long flags;
  995. if (!d40c->busy)
  996. return 0;
  997. spin_lock_irqsave(&d40c->lock, flags);
  998. pm_runtime_get_sync(d40c->base->dev);
  999. if (d40c->base->rev == 0)
  1000. if (chan_is_logical(d40c)) {
  1001. res = d40_channel_execute_command(d40c,
  1002. D40_DMA_SUSPEND_REQ);
  1003. goto no_suspend;
  1004. }
  1005. /* If bytes left to transfer or linked tx resume job */
  1006. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  1007. if (chan_is_logical(d40c))
  1008. d40_config_set_event(d40c, true);
  1009. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1010. }
  1011. no_suspend:
  1012. pm_runtime_mark_last_busy(d40c->base->dev);
  1013. pm_runtime_put_autosuspend(d40c->base->dev);
  1014. spin_unlock_irqrestore(&d40c->lock, flags);
  1015. return res;
  1016. }
  1017. static int d40_terminate_all(struct d40_chan *chan)
  1018. {
  1019. unsigned long flags;
  1020. int ret = 0;
  1021. ret = d40_pause(chan);
  1022. if (!ret && chan_is_physical(chan))
  1023. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  1024. spin_lock_irqsave(&chan->lock, flags);
  1025. d40_term_all(chan);
  1026. spin_unlock_irqrestore(&chan->lock, flags);
  1027. return ret;
  1028. }
  1029. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1030. {
  1031. struct d40_chan *d40c = container_of(tx->chan,
  1032. struct d40_chan,
  1033. chan);
  1034. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1035. unsigned long flags;
  1036. spin_lock_irqsave(&d40c->lock, flags);
  1037. d40c->chan.cookie++;
  1038. if (d40c->chan.cookie < 0)
  1039. d40c->chan.cookie = 1;
  1040. d40d->txd.cookie = d40c->chan.cookie;
  1041. d40_desc_queue(d40c, d40d);
  1042. spin_unlock_irqrestore(&d40c->lock, flags);
  1043. return tx->cookie;
  1044. }
  1045. static int d40_start(struct d40_chan *d40c)
  1046. {
  1047. if (d40c->base->rev == 0) {
  1048. int err;
  1049. if (chan_is_logical(d40c)) {
  1050. err = d40_channel_execute_command(d40c,
  1051. D40_DMA_SUSPEND_REQ);
  1052. if (err)
  1053. return err;
  1054. }
  1055. }
  1056. if (chan_is_logical(d40c))
  1057. d40_config_set_event(d40c, true);
  1058. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1059. }
  1060. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1061. {
  1062. struct d40_desc *d40d;
  1063. int err;
  1064. /* Start queued jobs, if any */
  1065. d40d = d40_first_queued(d40c);
  1066. if (d40d != NULL) {
  1067. if (!d40c->busy)
  1068. d40c->busy = true;
  1069. pm_runtime_get_sync(d40c->base->dev);
  1070. /* Remove from queue */
  1071. d40_desc_remove(d40d);
  1072. /* Add to active queue */
  1073. d40_desc_submit(d40c, d40d);
  1074. /* Initiate DMA job */
  1075. d40_desc_load(d40c, d40d);
  1076. /* Start dma job */
  1077. err = d40_start(d40c);
  1078. if (err)
  1079. return NULL;
  1080. }
  1081. return d40d;
  1082. }
  1083. /* called from interrupt context */
  1084. static void dma_tc_handle(struct d40_chan *d40c)
  1085. {
  1086. struct d40_desc *d40d;
  1087. /* Get first active entry from list */
  1088. d40d = d40_first_active_get(d40c);
  1089. if (d40d == NULL)
  1090. return;
  1091. if (d40d->cyclic) {
  1092. /*
  1093. * If this was a paritially loaded list, we need to reloaded
  1094. * it, and only when the list is completed. We need to check
  1095. * for done because the interrupt will hit for every link, and
  1096. * not just the last one.
  1097. */
  1098. if (d40d->lli_current < d40d->lli_len
  1099. && !d40_tx_is_linked(d40c)
  1100. && !d40_residue(d40c)) {
  1101. d40_lcla_free_all(d40c, d40d);
  1102. d40_desc_load(d40c, d40d);
  1103. (void) d40_start(d40c);
  1104. if (d40d->lli_current == d40d->lli_len)
  1105. d40d->lli_current = 0;
  1106. }
  1107. } else {
  1108. d40_lcla_free_all(d40c, d40d);
  1109. if (d40d->lli_current < d40d->lli_len) {
  1110. d40_desc_load(d40c, d40d);
  1111. /* Start dma job */
  1112. (void) d40_start(d40c);
  1113. return;
  1114. }
  1115. if (d40_queue_start(d40c) == NULL)
  1116. d40c->busy = false;
  1117. pm_runtime_mark_last_busy(d40c->base->dev);
  1118. pm_runtime_put_autosuspend(d40c->base->dev);
  1119. }
  1120. d40c->pending_tx++;
  1121. tasklet_schedule(&d40c->tasklet);
  1122. }
  1123. static void dma_tasklet(unsigned long data)
  1124. {
  1125. struct d40_chan *d40c = (struct d40_chan *) data;
  1126. struct d40_desc *d40d;
  1127. unsigned long flags;
  1128. dma_async_tx_callback callback;
  1129. void *callback_param;
  1130. spin_lock_irqsave(&d40c->lock, flags);
  1131. /* Get first active entry from list */
  1132. d40d = d40_first_active_get(d40c);
  1133. if (d40d == NULL)
  1134. goto err;
  1135. if (!d40d->cyclic)
  1136. d40c->chan.completed_cookie = d40d->txd.cookie;
  1137. /*
  1138. * If terminating a channel pending_tx is set to zero.
  1139. * This prevents any finished active jobs to return to the client.
  1140. */
  1141. if (d40c->pending_tx == 0) {
  1142. spin_unlock_irqrestore(&d40c->lock, flags);
  1143. return;
  1144. }
  1145. /* Callback to client */
  1146. callback = d40d->txd.callback;
  1147. callback_param = d40d->txd.callback_param;
  1148. if (!d40d->cyclic) {
  1149. if (async_tx_test_ack(&d40d->txd)) {
  1150. d40_desc_remove(d40d);
  1151. d40_desc_free(d40c, d40d);
  1152. } else {
  1153. if (!d40d->is_in_client_list) {
  1154. d40_desc_remove(d40d);
  1155. d40_lcla_free_all(d40c, d40d);
  1156. list_add_tail(&d40d->node, &d40c->client);
  1157. d40d->is_in_client_list = true;
  1158. }
  1159. }
  1160. }
  1161. d40c->pending_tx--;
  1162. if (d40c->pending_tx)
  1163. tasklet_schedule(&d40c->tasklet);
  1164. spin_unlock_irqrestore(&d40c->lock, flags);
  1165. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1166. callback(callback_param);
  1167. return;
  1168. err:
  1169. /* Rescue manoeuvre if receiving double interrupts */
  1170. if (d40c->pending_tx > 0)
  1171. d40c->pending_tx--;
  1172. spin_unlock_irqrestore(&d40c->lock, flags);
  1173. }
  1174. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1175. {
  1176. static const struct d40_interrupt_lookup il[] = {
  1177. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1178. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1179. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1180. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1181. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1182. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1183. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1184. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1185. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1186. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1187. };
  1188. int i;
  1189. u32 regs[ARRAY_SIZE(il)];
  1190. u32 idx;
  1191. u32 row;
  1192. long chan = -1;
  1193. struct d40_chan *d40c;
  1194. unsigned long flags;
  1195. struct d40_base *base = data;
  1196. spin_lock_irqsave(&base->interrupt_lock, flags);
  1197. /* Read interrupt status of both logical and physical channels */
  1198. for (i = 0; i < ARRAY_SIZE(il); i++)
  1199. regs[i] = readl(base->virtbase + il[i].src);
  1200. for (;;) {
  1201. chan = find_next_bit((unsigned long *)regs,
  1202. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1203. /* No more set bits found? */
  1204. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1205. break;
  1206. row = chan / BITS_PER_LONG;
  1207. idx = chan & (BITS_PER_LONG - 1);
  1208. /* ACK interrupt */
  1209. writel(1 << idx, base->virtbase + il[row].clr);
  1210. if (il[row].offset == D40_PHY_CHAN)
  1211. d40c = base->lookup_phy_chans[idx];
  1212. else
  1213. d40c = base->lookup_log_chans[il[row].offset + idx];
  1214. spin_lock(&d40c->lock);
  1215. if (!il[row].is_error)
  1216. dma_tc_handle(d40c);
  1217. else
  1218. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1219. chan, il[row].offset, idx);
  1220. spin_unlock(&d40c->lock);
  1221. }
  1222. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1223. return IRQ_HANDLED;
  1224. }
  1225. static int d40_validate_conf(struct d40_chan *d40c,
  1226. struct stedma40_chan_cfg *conf)
  1227. {
  1228. int res = 0;
  1229. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1230. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1231. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1232. if (!conf->dir) {
  1233. chan_err(d40c, "Invalid direction.\n");
  1234. res = -EINVAL;
  1235. }
  1236. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1237. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1238. d40c->runtime_addr == 0) {
  1239. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1240. conf->dst_dev_type);
  1241. res = -EINVAL;
  1242. }
  1243. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1244. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1245. d40c->runtime_addr == 0) {
  1246. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1247. conf->src_dev_type);
  1248. res = -EINVAL;
  1249. }
  1250. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1251. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1252. chan_err(d40c, "Invalid dst\n");
  1253. res = -EINVAL;
  1254. }
  1255. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1256. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1257. chan_err(d40c, "Invalid src\n");
  1258. res = -EINVAL;
  1259. }
  1260. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1261. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1262. chan_err(d40c, "No event line\n");
  1263. res = -EINVAL;
  1264. }
  1265. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1266. (src_event_group != dst_event_group)) {
  1267. chan_err(d40c, "Invalid event group\n");
  1268. res = -EINVAL;
  1269. }
  1270. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1271. /*
  1272. * DMAC HW supports it. Will be added to this driver,
  1273. * in case any dma client requires it.
  1274. */
  1275. chan_err(d40c, "periph to periph not supported\n");
  1276. res = -EINVAL;
  1277. }
  1278. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1279. (1 << conf->src_info.data_width) !=
  1280. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1281. (1 << conf->dst_info.data_width)) {
  1282. /*
  1283. * The DMAC hardware only supports
  1284. * src (burst x width) == dst (burst x width)
  1285. */
  1286. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1287. res = -EINVAL;
  1288. }
  1289. return res;
  1290. }
  1291. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1292. bool is_src, int log_event_line, bool is_log,
  1293. bool *first_user)
  1294. {
  1295. unsigned long flags;
  1296. spin_lock_irqsave(&phy->lock, flags);
  1297. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1298. == D40_ALLOC_FREE);
  1299. if (!is_log) {
  1300. /* Physical interrupts are masked per physical full channel */
  1301. if (phy->allocated_src == D40_ALLOC_FREE &&
  1302. phy->allocated_dst == D40_ALLOC_FREE) {
  1303. phy->allocated_dst = D40_ALLOC_PHY;
  1304. phy->allocated_src = D40_ALLOC_PHY;
  1305. goto found;
  1306. } else
  1307. goto not_found;
  1308. }
  1309. /* Logical channel */
  1310. if (is_src) {
  1311. if (phy->allocated_src == D40_ALLOC_PHY)
  1312. goto not_found;
  1313. if (phy->allocated_src == D40_ALLOC_FREE)
  1314. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1315. if (!(phy->allocated_src & (1 << log_event_line))) {
  1316. phy->allocated_src |= 1 << log_event_line;
  1317. goto found;
  1318. } else
  1319. goto not_found;
  1320. } else {
  1321. if (phy->allocated_dst == D40_ALLOC_PHY)
  1322. goto not_found;
  1323. if (phy->allocated_dst == D40_ALLOC_FREE)
  1324. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1325. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1326. phy->allocated_dst |= 1 << log_event_line;
  1327. goto found;
  1328. } else
  1329. goto not_found;
  1330. }
  1331. not_found:
  1332. spin_unlock_irqrestore(&phy->lock, flags);
  1333. return false;
  1334. found:
  1335. spin_unlock_irqrestore(&phy->lock, flags);
  1336. return true;
  1337. }
  1338. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1339. int log_event_line)
  1340. {
  1341. unsigned long flags;
  1342. bool is_free = false;
  1343. spin_lock_irqsave(&phy->lock, flags);
  1344. if (!log_event_line) {
  1345. phy->allocated_dst = D40_ALLOC_FREE;
  1346. phy->allocated_src = D40_ALLOC_FREE;
  1347. is_free = true;
  1348. goto out;
  1349. }
  1350. /* Logical channel */
  1351. if (is_src) {
  1352. phy->allocated_src &= ~(1 << log_event_line);
  1353. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1354. phy->allocated_src = D40_ALLOC_FREE;
  1355. } else {
  1356. phy->allocated_dst &= ~(1 << log_event_line);
  1357. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1358. phy->allocated_dst = D40_ALLOC_FREE;
  1359. }
  1360. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1361. D40_ALLOC_FREE);
  1362. out:
  1363. spin_unlock_irqrestore(&phy->lock, flags);
  1364. return is_free;
  1365. }
  1366. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1367. {
  1368. int dev_type;
  1369. int event_group;
  1370. int event_line;
  1371. struct d40_phy_res *phys;
  1372. int i;
  1373. int j;
  1374. int log_num;
  1375. bool is_src;
  1376. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1377. phys = d40c->base->phy_res;
  1378. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1379. dev_type = d40c->dma_cfg.src_dev_type;
  1380. log_num = 2 * dev_type;
  1381. is_src = true;
  1382. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1383. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1384. /* dst event lines are used for logical memcpy */
  1385. dev_type = d40c->dma_cfg.dst_dev_type;
  1386. log_num = 2 * dev_type + 1;
  1387. is_src = false;
  1388. } else
  1389. return -EINVAL;
  1390. event_group = D40_TYPE_TO_GROUP(dev_type);
  1391. event_line = D40_TYPE_TO_EVENT(dev_type);
  1392. if (!is_log) {
  1393. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1394. /* Find physical half channel */
  1395. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1396. if (d40_alloc_mask_set(&phys[i], is_src,
  1397. 0, is_log,
  1398. first_phy_user))
  1399. goto found_phy;
  1400. }
  1401. } else
  1402. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1403. int phy_num = j + event_group * 2;
  1404. for (i = phy_num; i < phy_num + 2; i++) {
  1405. if (d40_alloc_mask_set(&phys[i],
  1406. is_src,
  1407. 0,
  1408. is_log,
  1409. first_phy_user))
  1410. goto found_phy;
  1411. }
  1412. }
  1413. return -EINVAL;
  1414. found_phy:
  1415. d40c->phy_chan = &phys[i];
  1416. d40c->log_num = D40_PHY_CHAN;
  1417. goto out;
  1418. }
  1419. if (dev_type == -1)
  1420. return -EINVAL;
  1421. /* Find logical channel */
  1422. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1423. int phy_num = j + event_group * 2;
  1424. if (d40c->dma_cfg.use_fixed_channel) {
  1425. i = d40c->dma_cfg.phy_channel;
  1426. if ((i != phy_num) && (i != phy_num + 1)) {
  1427. dev_err(chan2dev(d40c),
  1428. "invalid fixed phy channel %d\n", i);
  1429. return -EINVAL;
  1430. }
  1431. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1432. is_log, first_phy_user))
  1433. goto found_log;
  1434. dev_err(chan2dev(d40c),
  1435. "could not allocate fixed phy channel %d\n", i);
  1436. return -EINVAL;
  1437. }
  1438. /*
  1439. * Spread logical channels across all available physical rather
  1440. * than pack every logical channel at the first available phy
  1441. * channels.
  1442. */
  1443. if (is_src) {
  1444. for (i = phy_num; i < phy_num + 2; i++) {
  1445. if (d40_alloc_mask_set(&phys[i], is_src,
  1446. event_line, is_log,
  1447. first_phy_user))
  1448. goto found_log;
  1449. }
  1450. } else {
  1451. for (i = phy_num + 1; i >= phy_num; i--) {
  1452. if (d40_alloc_mask_set(&phys[i], is_src,
  1453. event_line, is_log,
  1454. first_phy_user))
  1455. goto found_log;
  1456. }
  1457. }
  1458. }
  1459. return -EINVAL;
  1460. found_log:
  1461. d40c->phy_chan = &phys[i];
  1462. d40c->log_num = log_num;
  1463. out:
  1464. if (is_log)
  1465. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1466. else
  1467. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1468. return 0;
  1469. }
  1470. static int d40_config_memcpy(struct d40_chan *d40c)
  1471. {
  1472. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1473. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1474. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1475. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1476. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1477. memcpy[d40c->chan.chan_id];
  1478. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1479. dma_has_cap(DMA_SLAVE, cap)) {
  1480. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1481. } else {
  1482. chan_err(d40c, "No memcpy\n");
  1483. return -EINVAL;
  1484. }
  1485. return 0;
  1486. }
  1487. static int d40_free_dma(struct d40_chan *d40c)
  1488. {
  1489. int res = 0;
  1490. u32 event;
  1491. struct d40_phy_res *phy = d40c->phy_chan;
  1492. bool is_src;
  1493. /* Terminate all queued and active transfers */
  1494. d40_term_all(d40c);
  1495. if (phy == NULL) {
  1496. chan_err(d40c, "phy == null\n");
  1497. return -EINVAL;
  1498. }
  1499. if (phy->allocated_src == D40_ALLOC_FREE &&
  1500. phy->allocated_dst == D40_ALLOC_FREE) {
  1501. chan_err(d40c, "channel already free\n");
  1502. return -EINVAL;
  1503. }
  1504. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1505. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1506. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1507. is_src = false;
  1508. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1509. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1510. is_src = true;
  1511. } else {
  1512. chan_err(d40c, "Unknown direction\n");
  1513. return -EINVAL;
  1514. }
  1515. pm_runtime_get_sync(d40c->base->dev);
  1516. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1517. if (res) {
  1518. chan_err(d40c, "suspend failed\n");
  1519. goto out;
  1520. }
  1521. if (chan_is_logical(d40c)) {
  1522. /* Release logical channel, deactivate the event line */
  1523. d40_config_set_event(d40c, false);
  1524. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1525. /*
  1526. * Check if there are more logical allocation
  1527. * on this phy channel.
  1528. */
  1529. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1530. /* Resume the other logical channels if any */
  1531. if (d40_chan_has_events(d40c)) {
  1532. res = d40_channel_execute_command(d40c,
  1533. D40_DMA_RUN);
  1534. if (res)
  1535. chan_err(d40c,
  1536. "Executing RUN command\n");
  1537. }
  1538. goto out;
  1539. }
  1540. } else {
  1541. (void) d40_alloc_mask_free(phy, is_src, 0);
  1542. }
  1543. /* Release physical channel */
  1544. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1545. if (res) {
  1546. chan_err(d40c, "Failed to stop channel\n");
  1547. goto out;
  1548. }
  1549. if (d40c->busy) {
  1550. pm_runtime_mark_last_busy(d40c->base->dev);
  1551. pm_runtime_put_autosuspend(d40c->base->dev);
  1552. }
  1553. d40c->busy = false;
  1554. d40c->phy_chan = NULL;
  1555. d40c->configured = false;
  1556. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1557. out:
  1558. pm_runtime_mark_last_busy(d40c->base->dev);
  1559. pm_runtime_put_autosuspend(d40c->base->dev);
  1560. return res;
  1561. }
  1562. static bool d40_is_paused(struct d40_chan *d40c)
  1563. {
  1564. void __iomem *chanbase = chan_base(d40c);
  1565. bool is_paused = false;
  1566. unsigned long flags;
  1567. void __iomem *active_reg;
  1568. u32 status;
  1569. u32 event;
  1570. spin_lock_irqsave(&d40c->lock, flags);
  1571. if (chan_is_physical(d40c)) {
  1572. if (d40c->phy_chan->num % 2 == 0)
  1573. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1574. else
  1575. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1576. status = (readl(active_reg) &
  1577. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1578. D40_CHAN_POS(d40c->phy_chan->num);
  1579. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1580. is_paused = true;
  1581. goto _exit;
  1582. }
  1583. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1584. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1585. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1586. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1587. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1588. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1589. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1590. } else {
  1591. chan_err(d40c, "Unknown direction\n");
  1592. goto _exit;
  1593. }
  1594. status = (status & D40_EVENTLINE_MASK(event)) >>
  1595. D40_EVENTLINE_POS(event);
  1596. if (status != D40_DMA_RUN)
  1597. is_paused = true;
  1598. _exit:
  1599. spin_unlock_irqrestore(&d40c->lock, flags);
  1600. return is_paused;
  1601. }
  1602. static u32 stedma40_residue(struct dma_chan *chan)
  1603. {
  1604. struct d40_chan *d40c =
  1605. container_of(chan, struct d40_chan, chan);
  1606. u32 bytes_left;
  1607. unsigned long flags;
  1608. spin_lock_irqsave(&d40c->lock, flags);
  1609. bytes_left = d40_residue(d40c);
  1610. spin_unlock_irqrestore(&d40c->lock, flags);
  1611. return bytes_left;
  1612. }
  1613. static int
  1614. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1615. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1616. unsigned int sg_len, dma_addr_t src_dev_addr,
  1617. dma_addr_t dst_dev_addr)
  1618. {
  1619. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1620. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1621. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1622. int ret;
  1623. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1624. src_dev_addr,
  1625. desc->lli_log.src,
  1626. chan->log_def.lcsp1,
  1627. src_info->data_width,
  1628. dst_info->data_width);
  1629. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1630. dst_dev_addr,
  1631. desc->lli_log.dst,
  1632. chan->log_def.lcsp3,
  1633. dst_info->data_width,
  1634. src_info->data_width);
  1635. return ret < 0 ? ret : 0;
  1636. }
  1637. static int
  1638. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1639. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1640. unsigned int sg_len, dma_addr_t src_dev_addr,
  1641. dma_addr_t dst_dev_addr)
  1642. {
  1643. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1644. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1645. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1646. unsigned long flags = 0;
  1647. int ret;
  1648. if (desc->cyclic)
  1649. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1650. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1651. desc->lli_phy.src,
  1652. virt_to_phys(desc->lli_phy.src),
  1653. chan->src_def_cfg,
  1654. src_info, dst_info, flags);
  1655. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1656. desc->lli_phy.dst,
  1657. virt_to_phys(desc->lli_phy.dst),
  1658. chan->dst_def_cfg,
  1659. dst_info, src_info, flags);
  1660. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1661. desc->lli_pool.size, DMA_TO_DEVICE);
  1662. return ret < 0 ? ret : 0;
  1663. }
  1664. static struct d40_desc *
  1665. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1666. unsigned int sg_len, unsigned long dma_flags)
  1667. {
  1668. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1669. struct d40_desc *desc;
  1670. int ret;
  1671. desc = d40_desc_get(chan);
  1672. if (!desc)
  1673. return NULL;
  1674. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1675. cfg->dst_info.data_width);
  1676. if (desc->lli_len < 0) {
  1677. chan_err(chan, "Unaligned size\n");
  1678. goto err;
  1679. }
  1680. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1681. if (ret < 0) {
  1682. chan_err(chan, "Could not allocate lli\n");
  1683. goto err;
  1684. }
  1685. desc->lli_current = 0;
  1686. desc->txd.flags = dma_flags;
  1687. desc->txd.tx_submit = d40_tx_submit;
  1688. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1689. return desc;
  1690. err:
  1691. d40_desc_free(chan, desc);
  1692. return NULL;
  1693. }
  1694. static dma_addr_t
  1695. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1696. {
  1697. struct stedma40_platform_data *plat = chan->base->plat_data;
  1698. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1699. dma_addr_t addr = 0;
  1700. if (chan->runtime_addr)
  1701. return chan->runtime_addr;
  1702. if (direction == DMA_DEV_TO_MEM)
  1703. addr = plat->dev_rx[cfg->src_dev_type];
  1704. else if (direction == DMA_MEM_TO_DEV)
  1705. addr = plat->dev_tx[cfg->dst_dev_type];
  1706. return addr;
  1707. }
  1708. static struct dma_async_tx_descriptor *
  1709. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1710. struct scatterlist *sg_dst, unsigned int sg_len,
  1711. enum dma_transfer_direction direction, unsigned long dma_flags)
  1712. {
  1713. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1714. dma_addr_t src_dev_addr = 0;
  1715. dma_addr_t dst_dev_addr = 0;
  1716. struct d40_desc *desc;
  1717. unsigned long flags;
  1718. int ret;
  1719. if (!chan->phy_chan) {
  1720. chan_err(chan, "Cannot prepare unallocated channel\n");
  1721. return NULL;
  1722. }
  1723. spin_lock_irqsave(&chan->lock, flags);
  1724. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1725. if (desc == NULL)
  1726. goto err;
  1727. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1728. desc->cyclic = true;
  1729. if (direction != DMA_NONE) {
  1730. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1731. if (direction == DMA_DEV_TO_MEM)
  1732. src_dev_addr = dev_addr;
  1733. else if (direction == DMA_MEM_TO_DEV)
  1734. dst_dev_addr = dev_addr;
  1735. }
  1736. if (chan_is_logical(chan))
  1737. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1738. sg_len, src_dev_addr, dst_dev_addr);
  1739. else
  1740. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1741. sg_len, src_dev_addr, dst_dev_addr);
  1742. if (ret) {
  1743. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1744. chan_is_logical(chan) ? "log" : "phy", ret);
  1745. goto err;
  1746. }
  1747. /*
  1748. * add descriptor to the prepare queue in order to be able
  1749. * to free them later in terminate_all
  1750. */
  1751. list_add_tail(&desc->node, &chan->prepare_queue);
  1752. spin_unlock_irqrestore(&chan->lock, flags);
  1753. return &desc->txd;
  1754. err:
  1755. if (desc)
  1756. d40_desc_free(chan, desc);
  1757. spin_unlock_irqrestore(&chan->lock, flags);
  1758. return NULL;
  1759. }
  1760. bool stedma40_filter(struct dma_chan *chan, void *data)
  1761. {
  1762. struct stedma40_chan_cfg *info = data;
  1763. struct d40_chan *d40c =
  1764. container_of(chan, struct d40_chan, chan);
  1765. int err;
  1766. if (data) {
  1767. err = d40_validate_conf(d40c, info);
  1768. if (!err)
  1769. d40c->dma_cfg = *info;
  1770. } else
  1771. err = d40_config_memcpy(d40c);
  1772. if (!err)
  1773. d40c->configured = true;
  1774. return err == 0;
  1775. }
  1776. EXPORT_SYMBOL(stedma40_filter);
  1777. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1778. {
  1779. bool realtime = d40c->dma_cfg.realtime;
  1780. bool highprio = d40c->dma_cfg.high_priority;
  1781. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1782. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1783. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1784. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1785. u32 bit = 1 << event;
  1786. /* Destination event lines are stored in the upper halfword */
  1787. if (!src)
  1788. bit <<= 16;
  1789. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1790. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1791. }
  1792. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1793. {
  1794. if (d40c->base->rev < 3)
  1795. return;
  1796. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1797. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1798. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1799. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1800. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1801. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1802. }
  1803. /* DMA ENGINE functions */
  1804. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1805. {
  1806. int err;
  1807. unsigned long flags;
  1808. struct d40_chan *d40c =
  1809. container_of(chan, struct d40_chan, chan);
  1810. bool is_free_phy;
  1811. spin_lock_irqsave(&d40c->lock, flags);
  1812. chan->completed_cookie = chan->cookie = 1;
  1813. /* If no dma configuration is set use default configuration (memcpy) */
  1814. if (!d40c->configured) {
  1815. err = d40_config_memcpy(d40c);
  1816. if (err) {
  1817. chan_err(d40c, "Failed to configure memcpy channel\n");
  1818. goto fail;
  1819. }
  1820. }
  1821. err = d40_allocate_channel(d40c, &is_free_phy);
  1822. if (err) {
  1823. chan_err(d40c, "Failed to allocate channel\n");
  1824. d40c->configured = false;
  1825. goto fail;
  1826. }
  1827. pm_runtime_get_sync(d40c->base->dev);
  1828. /* Fill in basic CFG register values */
  1829. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1830. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1831. d40_set_prio_realtime(d40c);
  1832. if (chan_is_logical(d40c)) {
  1833. d40_log_cfg(&d40c->dma_cfg,
  1834. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1835. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1836. d40c->lcpa = d40c->base->lcpa_base +
  1837. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1838. else
  1839. d40c->lcpa = d40c->base->lcpa_base +
  1840. d40c->dma_cfg.dst_dev_type *
  1841. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1842. }
  1843. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  1844. chan_is_logical(d40c) ? "logical" : "physical",
  1845. d40c->phy_chan->num,
  1846. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  1847. /*
  1848. * Only write channel configuration to the DMA if the physical
  1849. * resource is free. In case of multiple logical channels
  1850. * on the same physical resource, only the first write is necessary.
  1851. */
  1852. if (is_free_phy)
  1853. d40_config_write(d40c);
  1854. fail:
  1855. pm_runtime_mark_last_busy(d40c->base->dev);
  1856. pm_runtime_put_autosuspend(d40c->base->dev);
  1857. spin_unlock_irqrestore(&d40c->lock, flags);
  1858. return err;
  1859. }
  1860. static void d40_free_chan_resources(struct dma_chan *chan)
  1861. {
  1862. struct d40_chan *d40c =
  1863. container_of(chan, struct d40_chan, chan);
  1864. int err;
  1865. unsigned long flags;
  1866. if (d40c->phy_chan == NULL) {
  1867. chan_err(d40c, "Cannot free unallocated channel\n");
  1868. return;
  1869. }
  1870. spin_lock_irqsave(&d40c->lock, flags);
  1871. err = d40_free_dma(d40c);
  1872. if (err)
  1873. chan_err(d40c, "Failed to free channel\n");
  1874. spin_unlock_irqrestore(&d40c->lock, flags);
  1875. }
  1876. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1877. dma_addr_t dst,
  1878. dma_addr_t src,
  1879. size_t size,
  1880. unsigned long dma_flags)
  1881. {
  1882. struct scatterlist dst_sg;
  1883. struct scatterlist src_sg;
  1884. sg_init_table(&dst_sg, 1);
  1885. sg_init_table(&src_sg, 1);
  1886. sg_dma_address(&dst_sg) = dst;
  1887. sg_dma_address(&src_sg) = src;
  1888. sg_dma_len(&dst_sg) = size;
  1889. sg_dma_len(&src_sg) = size;
  1890. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1891. }
  1892. static struct dma_async_tx_descriptor *
  1893. d40_prep_memcpy_sg(struct dma_chan *chan,
  1894. struct scatterlist *dst_sg, unsigned int dst_nents,
  1895. struct scatterlist *src_sg, unsigned int src_nents,
  1896. unsigned long dma_flags)
  1897. {
  1898. if (dst_nents != src_nents)
  1899. return NULL;
  1900. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1901. }
  1902. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1903. struct scatterlist *sgl,
  1904. unsigned int sg_len,
  1905. enum dma_transfer_direction direction,
  1906. unsigned long dma_flags)
  1907. {
  1908. if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
  1909. return NULL;
  1910. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1911. }
  1912. static struct dma_async_tx_descriptor *
  1913. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1914. size_t buf_len, size_t period_len,
  1915. enum dma_transfer_direction direction)
  1916. {
  1917. unsigned int periods = buf_len / period_len;
  1918. struct dma_async_tx_descriptor *txd;
  1919. struct scatterlist *sg;
  1920. int i;
  1921. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1922. for (i = 0; i < periods; i++) {
  1923. sg_dma_address(&sg[i]) = dma_addr;
  1924. sg_dma_len(&sg[i]) = period_len;
  1925. dma_addr += period_len;
  1926. }
  1927. sg[periods].offset = 0;
  1928. sg[periods].length = 0;
  1929. sg[periods].page_link =
  1930. ((unsigned long)sg | 0x01) & ~0x02;
  1931. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1932. DMA_PREP_INTERRUPT);
  1933. kfree(sg);
  1934. return txd;
  1935. }
  1936. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1937. dma_cookie_t cookie,
  1938. struct dma_tx_state *txstate)
  1939. {
  1940. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1941. dma_cookie_t last_used;
  1942. dma_cookie_t last_complete;
  1943. int ret;
  1944. if (d40c->phy_chan == NULL) {
  1945. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1946. return -EINVAL;
  1947. }
  1948. last_complete = chan->completed_cookie;
  1949. last_used = chan->cookie;
  1950. if (d40_is_paused(d40c))
  1951. ret = DMA_PAUSED;
  1952. else
  1953. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1954. dma_set_tx_state(txstate, last_complete, last_used,
  1955. stedma40_residue(chan));
  1956. return ret;
  1957. }
  1958. static void d40_issue_pending(struct dma_chan *chan)
  1959. {
  1960. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1961. unsigned long flags;
  1962. if (d40c->phy_chan == NULL) {
  1963. chan_err(d40c, "Channel is not allocated!\n");
  1964. return;
  1965. }
  1966. spin_lock_irqsave(&d40c->lock, flags);
  1967. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1968. /* Busy means that queued jobs are already being processed */
  1969. if (!d40c->busy)
  1970. (void) d40_queue_start(d40c);
  1971. spin_unlock_irqrestore(&d40c->lock, flags);
  1972. }
  1973. static int
  1974. dma40_config_to_halfchannel(struct d40_chan *d40c,
  1975. struct stedma40_half_channel_info *info,
  1976. enum dma_slave_buswidth width,
  1977. u32 maxburst)
  1978. {
  1979. enum stedma40_periph_data_width addr_width;
  1980. int psize;
  1981. switch (width) {
  1982. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1983. addr_width = STEDMA40_BYTE_WIDTH;
  1984. break;
  1985. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1986. addr_width = STEDMA40_HALFWORD_WIDTH;
  1987. break;
  1988. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1989. addr_width = STEDMA40_WORD_WIDTH;
  1990. break;
  1991. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1992. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1993. break;
  1994. default:
  1995. dev_err(d40c->base->dev,
  1996. "illegal peripheral address width "
  1997. "requested (%d)\n",
  1998. width);
  1999. return -EINVAL;
  2000. }
  2001. if (chan_is_logical(d40c)) {
  2002. if (maxburst >= 16)
  2003. psize = STEDMA40_PSIZE_LOG_16;
  2004. else if (maxburst >= 8)
  2005. psize = STEDMA40_PSIZE_LOG_8;
  2006. else if (maxburst >= 4)
  2007. psize = STEDMA40_PSIZE_LOG_4;
  2008. else
  2009. psize = STEDMA40_PSIZE_LOG_1;
  2010. } else {
  2011. if (maxburst >= 16)
  2012. psize = STEDMA40_PSIZE_PHY_16;
  2013. else if (maxburst >= 8)
  2014. psize = STEDMA40_PSIZE_PHY_8;
  2015. else if (maxburst >= 4)
  2016. psize = STEDMA40_PSIZE_PHY_4;
  2017. else
  2018. psize = STEDMA40_PSIZE_PHY_1;
  2019. }
  2020. info->data_width = addr_width;
  2021. info->psize = psize;
  2022. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2023. return 0;
  2024. }
  2025. /* Runtime reconfiguration extension */
  2026. static int d40_set_runtime_config(struct dma_chan *chan,
  2027. struct dma_slave_config *config)
  2028. {
  2029. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2030. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2031. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2032. dma_addr_t config_addr;
  2033. u32 src_maxburst, dst_maxburst;
  2034. int ret;
  2035. src_addr_width = config->src_addr_width;
  2036. src_maxburst = config->src_maxburst;
  2037. dst_addr_width = config->dst_addr_width;
  2038. dst_maxburst = config->dst_maxburst;
  2039. if (config->direction == DMA_DEV_TO_MEM) {
  2040. dma_addr_t dev_addr_rx =
  2041. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2042. config_addr = config->src_addr;
  2043. if (dev_addr_rx)
  2044. dev_dbg(d40c->base->dev,
  2045. "channel has a pre-wired RX address %08x "
  2046. "overriding with %08x\n",
  2047. dev_addr_rx, config_addr);
  2048. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2049. dev_dbg(d40c->base->dev,
  2050. "channel was not configured for peripheral "
  2051. "to memory transfer (%d) overriding\n",
  2052. cfg->dir);
  2053. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2054. /* Configure the memory side */
  2055. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2056. dst_addr_width = src_addr_width;
  2057. if (dst_maxburst == 0)
  2058. dst_maxburst = src_maxburst;
  2059. } else if (config->direction == DMA_MEM_TO_DEV) {
  2060. dma_addr_t dev_addr_tx =
  2061. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2062. config_addr = config->dst_addr;
  2063. if (dev_addr_tx)
  2064. dev_dbg(d40c->base->dev,
  2065. "channel has a pre-wired TX address %08x "
  2066. "overriding with %08x\n",
  2067. dev_addr_tx, config_addr);
  2068. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2069. dev_dbg(d40c->base->dev,
  2070. "channel was not configured for memory "
  2071. "to peripheral transfer (%d) overriding\n",
  2072. cfg->dir);
  2073. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2074. /* Configure the memory side */
  2075. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2076. src_addr_width = dst_addr_width;
  2077. if (src_maxburst == 0)
  2078. src_maxburst = dst_maxburst;
  2079. } else {
  2080. dev_err(d40c->base->dev,
  2081. "unrecognized channel direction %d\n",
  2082. config->direction);
  2083. return -EINVAL;
  2084. }
  2085. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2086. dev_err(d40c->base->dev,
  2087. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2088. src_maxburst,
  2089. src_addr_width,
  2090. dst_maxburst,
  2091. dst_addr_width);
  2092. return -EINVAL;
  2093. }
  2094. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2095. src_addr_width,
  2096. src_maxburst);
  2097. if (ret)
  2098. return ret;
  2099. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2100. dst_addr_width,
  2101. dst_maxburst);
  2102. if (ret)
  2103. return ret;
  2104. /* Fill in register values */
  2105. if (chan_is_logical(d40c))
  2106. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2107. else
  2108. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2109. &d40c->dst_def_cfg, false);
  2110. /* These settings will take precedence later */
  2111. d40c->runtime_addr = config_addr;
  2112. d40c->runtime_direction = config->direction;
  2113. dev_dbg(d40c->base->dev,
  2114. "configured channel %s for %s, data width %d/%d, "
  2115. "maxburst %d/%d elements, LE, no flow control\n",
  2116. dma_chan_name(chan),
  2117. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2118. src_addr_width, dst_addr_width,
  2119. src_maxburst, dst_maxburst);
  2120. return 0;
  2121. }
  2122. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2123. unsigned long arg)
  2124. {
  2125. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2126. if (d40c->phy_chan == NULL) {
  2127. chan_err(d40c, "Channel is not allocated!\n");
  2128. return -EINVAL;
  2129. }
  2130. switch (cmd) {
  2131. case DMA_TERMINATE_ALL:
  2132. return d40_terminate_all(d40c);
  2133. case DMA_PAUSE:
  2134. return d40_pause(d40c);
  2135. case DMA_RESUME:
  2136. return d40_resume(d40c);
  2137. case DMA_SLAVE_CONFIG:
  2138. return d40_set_runtime_config(chan,
  2139. (struct dma_slave_config *) arg);
  2140. default:
  2141. break;
  2142. }
  2143. /* Other commands are unimplemented */
  2144. return -ENXIO;
  2145. }
  2146. /* Initialization functions */
  2147. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2148. struct d40_chan *chans, int offset,
  2149. int num_chans)
  2150. {
  2151. int i = 0;
  2152. struct d40_chan *d40c;
  2153. INIT_LIST_HEAD(&dma->channels);
  2154. for (i = offset; i < offset + num_chans; i++) {
  2155. d40c = &chans[i];
  2156. d40c->base = base;
  2157. d40c->chan.device = dma;
  2158. spin_lock_init(&d40c->lock);
  2159. d40c->log_num = D40_PHY_CHAN;
  2160. INIT_LIST_HEAD(&d40c->active);
  2161. INIT_LIST_HEAD(&d40c->queue);
  2162. INIT_LIST_HEAD(&d40c->pending_queue);
  2163. INIT_LIST_HEAD(&d40c->client);
  2164. INIT_LIST_HEAD(&d40c->prepare_queue);
  2165. tasklet_init(&d40c->tasklet, dma_tasklet,
  2166. (unsigned long) d40c);
  2167. list_add_tail(&d40c->chan.device_node,
  2168. &dma->channels);
  2169. }
  2170. }
  2171. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2172. {
  2173. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2174. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2175. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2176. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2177. /*
  2178. * This controller can only access address at even
  2179. * 32bit boundaries, i.e. 2^2
  2180. */
  2181. dev->copy_align = 2;
  2182. }
  2183. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2184. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2185. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2186. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2187. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2188. dev->device_free_chan_resources = d40_free_chan_resources;
  2189. dev->device_issue_pending = d40_issue_pending;
  2190. dev->device_tx_status = d40_tx_status;
  2191. dev->device_control = d40_control;
  2192. dev->dev = base->dev;
  2193. }
  2194. static int __init d40_dmaengine_init(struct d40_base *base,
  2195. int num_reserved_chans)
  2196. {
  2197. int err ;
  2198. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2199. 0, base->num_log_chans);
  2200. dma_cap_zero(base->dma_slave.cap_mask);
  2201. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2202. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2203. d40_ops_init(base, &base->dma_slave);
  2204. err = dma_async_device_register(&base->dma_slave);
  2205. if (err) {
  2206. d40_err(base->dev, "Failed to register slave channels\n");
  2207. goto failure1;
  2208. }
  2209. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2210. base->num_log_chans, base->plat_data->memcpy_len);
  2211. dma_cap_zero(base->dma_memcpy.cap_mask);
  2212. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2213. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2214. d40_ops_init(base, &base->dma_memcpy);
  2215. err = dma_async_device_register(&base->dma_memcpy);
  2216. if (err) {
  2217. d40_err(base->dev,
  2218. "Failed to regsiter memcpy only channels\n");
  2219. goto failure2;
  2220. }
  2221. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2222. 0, num_reserved_chans);
  2223. dma_cap_zero(base->dma_both.cap_mask);
  2224. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2225. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2226. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2227. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2228. d40_ops_init(base, &base->dma_both);
  2229. err = dma_async_device_register(&base->dma_both);
  2230. if (err) {
  2231. d40_err(base->dev,
  2232. "Failed to register logical and physical capable channels\n");
  2233. goto failure3;
  2234. }
  2235. return 0;
  2236. failure3:
  2237. dma_async_device_unregister(&base->dma_memcpy);
  2238. failure2:
  2239. dma_async_device_unregister(&base->dma_slave);
  2240. failure1:
  2241. return err;
  2242. }
  2243. /* Suspend resume functionality */
  2244. #ifdef CONFIG_PM
  2245. static int dma40_pm_suspend(struct device *dev)
  2246. {
  2247. struct platform_device *pdev = to_platform_device(dev);
  2248. struct d40_base *base = platform_get_drvdata(pdev);
  2249. int ret = 0;
  2250. if (!pm_runtime_suspended(dev))
  2251. return -EBUSY;
  2252. if (base->lcpa_regulator)
  2253. ret = regulator_disable(base->lcpa_regulator);
  2254. return ret;
  2255. }
  2256. static int dma40_runtime_suspend(struct device *dev)
  2257. {
  2258. struct platform_device *pdev = to_platform_device(dev);
  2259. struct d40_base *base = platform_get_drvdata(pdev);
  2260. d40_save_restore_registers(base, true);
  2261. /* Don't disable/enable clocks for v1 due to HW bugs */
  2262. if (base->rev != 1)
  2263. writel_relaxed(base->gcc_pwr_off_mask,
  2264. base->virtbase + D40_DREG_GCC);
  2265. return 0;
  2266. }
  2267. static int dma40_runtime_resume(struct device *dev)
  2268. {
  2269. struct platform_device *pdev = to_platform_device(dev);
  2270. struct d40_base *base = platform_get_drvdata(pdev);
  2271. if (base->initialized)
  2272. d40_save_restore_registers(base, false);
  2273. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2274. base->virtbase + D40_DREG_GCC);
  2275. return 0;
  2276. }
  2277. static int dma40_resume(struct device *dev)
  2278. {
  2279. struct platform_device *pdev = to_platform_device(dev);
  2280. struct d40_base *base = platform_get_drvdata(pdev);
  2281. int ret = 0;
  2282. if (base->lcpa_regulator)
  2283. ret = regulator_enable(base->lcpa_regulator);
  2284. return ret;
  2285. }
  2286. static const struct dev_pm_ops dma40_pm_ops = {
  2287. .suspend = dma40_pm_suspend,
  2288. .runtime_suspend = dma40_runtime_suspend,
  2289. .runtime_resume = dma40_runtime_resume,
  2290. .resume = dma40_resume,
  2291. };
  2292. #define DMA40_PM_OPS (&dma40_pm_ops)
  2293. #else
  2294. #define DMA40_PM_OPS NULL
  2295. #endif
  2296. /* Initialization functions. */
  2297. static int __init d40_phy_res_init(struct d40_base *base)
  2298. {
  2299. int i;
  2300. int num_phy_chans_avail = 0;
  2301. u32 val[2];
  2302. int odd_even_bit = -2;
  2303. int gcc = D40_DREG_GCC_ENA;
  2304. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2305. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2306. for (i = 0; i < base->num_phy_chans; i++) {
  2307. base->phy_res[i].num = i;
  2308. odd_even_bit += 2 * ((i % 2) == 0);
  2309. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2310. /* Mark security only channels as occupied */
  2311. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2312. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2313. base->phy_res[i].reserved = true;
  2314. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2315. D40_DREG_GCC_SRC);
  2316. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2317. D40_DREG_GCC_DST);
  2318. } else {
  2319. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2320. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2321. base->phy_res[i].reserved = false;
  2322. num_phy_chans_avail++;
  2323. }
  2324. spin_lock_init(&base->phy_res[i].lock);
  2325. }
  2326. /* Mark disabled channels as occupied */
  2327. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2328. int chan = base->plat_data->disabled_channels[i];
  2329. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2330. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2331. base->phy_res[chan].reserved = true;
  2332. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2333. D40_DREG_GCC_SRC);
  2334. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2335. D40_DREG_GCC_DST);
  2336. num_phy_chans_avail--;
  2337. }
  2338. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2339. num_phy_chans_avail, base->num_phy_chans);
  2340. /* Verify settings extended vs standard */
  2341. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2342. for (i = 0; i < base->num_phy_chans; i++) {
  2343. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2344. (val[0] & 0x3) != 1)
  2345. dev_info(base->dev,
  2346. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2347. __func__, i, val[0] & 0x3);
  2348. val[0] = val[0] >> 2;
  2349. }
  2350. /*
  2351. * To keep things simple, Enable all clocks initially.
  2352. * The clocks will get managed later post channel allocation.
  2353. * The clocks for the event lines on which reserved channels exists
  2354. * are not managed here.
  2355. */
  2356. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2357. base->gcc_pwr_off_mask = gcc;
  2358. return num_phy_chans_avail;
  2359. }
  2360. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2361. {
  2362. struct stedma40_platform_data *plat_data;
  2363. struct clk *clk = NULL;
  2364. void __iomem *virtbase = NULL;
  2365. struct resource *res = NULL;
  2366. struct d40_base *base = NULL;
  2367. int num_log_chans = 0;
  2368. int num_phy_chans;
  2369. int i;
  2370. u32 pid;
  2371. u32 cid;
  2372. u8 rev;
  2373. clk = clk_get(&pdev->dev, NULL);
  2374. if (IS_ERR(clk)) {
  2375. d40_err(&pdev->dev, "No matching clock found\n");
  2376. goto failure;
  2377. }
  2378. clk_enable(clk);
  2379. /* Get IO for DMAC base address */
  2380. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2381. if (!res)
  2382. goto failure;
  2383. if (request_mem_region(res->start, resource_size(res),
  2384. D40_NAME " I/O base") == NULL)
  2385. goto failure;
  2386. virtbase = ioremap(res->start, resource_size(res));
  2387. if (!virtbase)
  2388. goto failure;
  2389. /* This is just a regular AMBA PrimeCell ID actually */
  2390. for (pid = 0, i = 0; i < 4; i++)
  2391. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2392. & 255) << (i * 8);
  2393. for (cid = 0, i = 0; i < 4; i++)
  2394. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2395. & 255) << (i * 8);
  2396. if (cid != AMBA_CID) {
  2397. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2398. goto failure;
  2399. }
  2400. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2401. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2402. AMBA_MANF_BITS(pid),
  2403. AMBA_VENDOR_ST);
  2404. goto failure;
  2405. }
  2406. /*
  2407. * HW revision:
  2408. * DB8500ed has revision 0
  2409. * ? has revision 1
  2410. * DB8500v1 has revision 2
  2411. * DB8500v2 has revision 3
  2412. */
  2413. rev = AMBA_REV_BITS(pid);
  2414. /* The number of physical channels on this HW */
  2415. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2416. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2417. rev, res->start);
  2418. plat_data = pdev->dev.platform_data;
  2419. /* Count the number of logical channels in use */
  2420. for (i = 0; i < plat_data->dev_len; i++)
  2421. if (plat_data->dev_rx[i] != 0)
  2422. num_log_chans++;
  2423. for (i = 0; i < plat_data->dev_len; i++)
  2424. if (plat_data->dev_tx[i] != 0)
  2425. num_log_chans++;
  2426. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2427. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2428. sizeof(struct d40_chan), GFP_KERNEL);
  2429. if (base == NULL) {
  2430. d40_err(&pdev->dev, "Out of memory\n");
  2431. goto failure;
  2432. }
  2433. base->rev = rev;
  2434. base->clk = clk;
  2435. base->num_phy_chans = num_phy_chans;
  2436. base->num_log_chans = num_log_chans;
  2437. base->phy_start = res->start;
  2438. base->phy_size = resource_size(res);
  2439. base->virtbase = virtbase;
  2440. base->plat_data = plat_data;
  2441. base->dev = &pdev->dev;
  2442. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2443. base->log_chans = &base->phy_chans[num_phy_chans];
  2444. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2445. GFP_KERNEL);
  2446. if (!base->phy_res)
  2447. goto failure;
  2448. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2449. sizeof(struct d40_chan *),
  2450. GFP_KERNEL);
  2451. if (!base->lookup_phy_chans)
  2452. goto failure;
  2453. if (num_log_chans + plat_data->memcpy_len) {
  2454. /*
  2455. * The max number of logical channels are event lines for all
  2456. * src devices and dst devices
  2457. */
  2458. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2459. sizeof(struct d40_chan *),
  2460. GFP_KERNEL);
  2461. if (!base->lookup_log_chans)
  2462. goto failure;
  2463. }
  2464. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2465. sizeof(d40_backup_regs_chan),
  2466. GFP_KERNEL);
  2467. if (!base->reg_val_backup_chan)
  2468. goto failure;
  2469. base->lcla_pool.alloc_map =
  2470. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2471. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2472. if (!base->lcla_pool.alloc_map)
  2473. goto failure;
  2474. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2475. 0, SLAB_HWCACHE_ALIGN,
  2476. NULL);
  2477. if (base->desc_slab == NULL)
  2478. goto failure;
  2479. return base;
  2480. failure:
  2481. if (!IS_ERR(clk)) {
  2482. clk_disable(clk);
  2483. clk_put(clk);
  2484. }
  2485. if (virtbase)
  2486. iounmap(virtbase);
  2487. if (res)
  2488. release_mem_region(res->start,
  2489. resource_size(res));
  2490. if (virtbase)
  2491. iounmap(virtbase);
  2492. if (base) {
  2493. kfree(base->lcla_pool.alloc_map);
  2494. kfree(base->lookup_log_chans);
  2495. kfree(base->lookup_phy_chans);
  2496. kfree(base->phy_res);
  2497. kfree(base);
  2498. }
  2499. return NULL;
  2500. }
  2501. static void __init d40_hw_init(struct d40_base *base)
  2502. {
  2503. static struct d40_reg_val dma_init_reg[] = {
  2504. /* Clock every part of the DMA block from start */
  2505. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  2506. /* Interrupts on all logical channels */
  2507. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2508. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2509. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2510. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2511. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2512. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2513. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2514. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2515. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2516. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2517. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2518. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2519. };
  2520. int i;
  2521. u32 prmseo[2] = {0, 0};
  2522. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2523. u32 pcmis = 0;
  2524. u32 pcicr = 0;
  2525. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2526. writel(dma_init_reg[i].val,
  2527. base->virtbase + dma_init_reg[i].reg);
  2528. /* Configure all our dma channels to default settings */
  2529. for (i = 0; i < base->num_phy_chans; i++) {
  2530. activeo[i % 2] = activeo[i % 2] << 2;
  2531. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2532. == D40_ALLOC_PHY) {
  2533. activeo[i % 2] |= 3;
  2534. continue;
  2535. }
  2536. /* Enable interrupt # */
  2537. pcmis = (pcmis << 1) | 1;
  2538. /* Clear interrupt # */
  2539. pcicr = (pcicr << 1) | 1;
  2540. /* Set channel to physical mode */
  2541. prmseo[i % 2] = prmseo[i % 2] << 2;
  2542. prmseo[i % 2] |= 1;
  2543. }
  2544. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2545. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2546. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2547. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2548. /* Write which interrupt to enable */
  2549. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2550. /* Write which interrupt to clear */
  2551. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2552. }
  2553. static int __init d40_lcla_allocate(struct d40_base *base)
  2554. {
  2555. struct d40_lcla_pool *pool = &base->lcla_pool;
  2556. unsigned long *page_list;
  2557. int i, j;
  2558. int ret = 0;
  2559. /*
  2560. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2561. * To full fill this hardware requirement without wasting 256 kb
  2562. * we allocate pages until we get an aligned one.
  2563. */
  2564. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2565. GFP_KERNEL);
  2566. if (!page_list) {
  2567. ret = -ENOMEM;
  2568. goto failure;
  2569. }
  2570. /* Calculating how many pages that are required */
  2571. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2572. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2573. page_list[i] = __get_free_pages(GFP_KERNEL,
  2574. base->lcla_pool.pages);
  2575. if (!page_list[i]) {
  2576. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2577. base->lcla_pool.pages);
  2578. for (j = 0; j < i; j++)
  2579. free_pages(page_list[j], base->lcla_pool.pages);
  2580. goto failure;
  2581. }
  2582. if ((virt_to_phys((void *)page_list[i]) &
  2583. (LCLA_ALIGNMENT - 1)) == 0)
  2584. break;
  2585. }
  2586. for (j = 0; j < i; j++)
  2587. free_pages(page_list[j], base->lcla_pool.pages);
  2588. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2589. base->lcla_pool.base = (void *)page_list[i];
  2590. } else {
  2591. /*
  2592. * After many attempts and no succees with finding the correct
  2593. * alignment, try with allocating a big buffer.
  2594. */
  2595. dev_warn(base->dev,
  2596. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2597. __func__, base->lcla_pool.pages);
  2598. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2599. base->num_phy_chans +
  2600. LCLA_ALIGNMENT,
  2601. GFP_KERNEL);
  2602. if (!base->lcla_pool.base_unaligned) {
  2603. ret = -ENOMEM;
  2604. goto failure;
  2605. }
  2606. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2607. LCLA_ALIGNMENT);
  2608. }
  2609. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2610. SZ_1K * base->num_phy_chans,
  2611. DMA_TO_DEVICE);
  2612. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2613. pool->dma_addr = 0;
  2614. ret = -ENOMEM;
  2615. goto failure;
  2616. }
  2617. writel(virt_to_phys(base->lcla_pool.base),
  2618. base->virtbase + D40_DREG_LCLA);
  2619. failure:
  2620. kfree(page_list);
  2621. return ret;
  2622. }
  2623. static int __init d40_probe(struct platform_device *pdev)
  2624. {
  2625. int err;
  2626. int ret = -ENOENT;
  2627. struct d40_base *base;
  2628. struct resource *res = NULL;
  2629. int num_reserved_chans;
  2630. u32 val;
  2631. base = d40_hw_detect_init(pdev);
  2632. if (!base)
  2633. goto failure;
  2634. num_reserved_chans = d40_phy_res_init(base);
  2635. platform_set_drvdata(pdev, base);
  2636. spin_lock_init(&base->interrupt_lock);
  2637. spin_lock_init(&base->execmd_lock);
  2638. /* Get IO for logical channel parameter address */
  2639. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2640. if (!res) {
  2641. ret = -ENOENT;
  2642. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2643. goto failure;
  2644. }
  2645. base->lcpa_size = resource_size(res);
  2646. base->phy_lcpa = res->start;
  2647. if (request_mem_region(res->start, resource_size(res),
  2648. D40_NAME " I/O lcpa") == NULL) {
  2649. ret = -EBUSY;
  2650. d40_err(&pdev->dev,
  2651. "Failed to request LCPA region 0x%x-0x%x\n",
  2652. res->start, res->end);
  2653. goto failure;
  2654. }
  2655. /* We make use of ESRAM memory for this. */
  2656. val = readl(base->virtbase + D40_DREG_LCPA);
  2657. if (res->start != val && val != 0) {
  2658. dev_warn(&pdev->dev,
  2659. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2660. __func__, val, res->start);
  2661. } else
  2662. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2663. base->lcpa_base = ioremap(res->start, resource_size(res));
  2664. if (!base->lcpa_base) {
  2665. ret = -ENOMEM;
  2666. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2667. goto failure;
  2668. }
  2669. /* If lcla has to be located in ESRAM we don't need to allocate */
  2670. if (base->plat_data->use_esram_lcla) {
  2671. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2672. "lcla_esram");
  2673. if (!res) {
  2674. ret = -ENOENT;
  2675. d40_err(&pdev->dev,
  2676. "No \"lcla_esram\" memory resource\n");
  2677. goto failure;
  2678. }
  2679. base->lcla_pool.base = ioremap(res->start,
  2680. resource_size(res));
  2681. if (!base->lcla_pool.base) {
  2682. ret = -ENOMEM;
  2683. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2684. goto failure;
  2685. }
  2686. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2687. } else {
  2688. ret = d40_lcla_allocate(base);
  2689. if (ret) {
  2690. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2691. goto failure;
  2692. }
  2693. }
  2694. spin_lock_init(&base->lcla_pool.lock);
  2695. base->irq = platform_get_irq(pdev, 0);
  2696. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2697. if (ret) {
  2698. d40_err(&pdev->dev, "No IRQ defined\n");
  2699. goto failure;
  2700. }
  2701. pm_runtime_irq_safe(base->dev);
  2702. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2703. pm_runtime_use_autosuspend(base->dev);
  2704. pm_runtime_enable(base->dev);
  2705. pm_runtime_resume(base->dev);
  2706. if (base->plat_data->use_esram_lcla) {
  2707. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2708. if (IS_ERR(base->lcpa_regulator)) {
  2709. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2710. base->lcpa_regulator = NULL;
  2711. goto failure;
  2712. }
  2713. ret = regulator_enable(base->lcpa_regulator);
  2714. if (ret) {
  2715. d40_err(&pdev->dev,
  2716. "Failed to enable lcpa_regulator\n");
  2717. regulator_put(base->lcpa_regulator);
  2718. base->lcpa_regulator = NULL;
  2719. goto failure;
  2720. }
  2721. }
  2722. base->initialized = true;
  2723. err = d40_dmaengine_init(base, num_reserved_chans);
  2724. if (err)
  2725. goto failure;
  2726. d40_hw_init(base);
  2727. dev_info(base->dev, "initialized\n");
  2728. return 0;
  2729. failure:
  2730. if (base) {
  2731. if (base->desc_slab)
  2732. kmem_cache_destroy(base->desc_slab);
  2733. if (base->virtbase)
  2734. iounmap(base->virtbase);
  2735. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  2736. iounmap(base->lcla_pool.base);
  2737. base->lcla_pool.base = NULL;
  2738. }
  2739. if (base->lcla_pool.dma_addr)
  2740. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2741. SZ_1K * base->num_phy_chans,
  2742. DMA_TO_DEVICE);
  2743. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2744. free_pages((unsigned long)base->lcla_pool.base,
  2745. base->lcla_pool.pages);
  2746. kfree(base->lcla_pool.base_unaligned);
  2747. if (base->phy_lcpa)
  2748. release_mem_region(base->phy_lcpa,
  2749. base->lcpa_size);
  2750. if (base->phy_start)
  2751. release_mem_region(base->phy_start,
  2752. base->phy_size);
  2753. if (base->clk) {
  2754. clk_disable(base->clk);
  2755. clk_put(base->clk);
  2756. }
  2757. if (base->lcpa_regulator) {
  2758. regulator_disable(base->lcpa_regulator);
  2759. regulator_put(base->lcpa_regulator);
  2760. }
  2761. kfree(base->lcla_pool.alloc_map);
  2762. kfree(base->lookup_log_chans);
  2763. kfree(base->lookup_phy_chans);
  2764. kfree(base->phy_res);
  2765. kfree(base);
  2766. }
  2767. d40_err(&pdev->dev, "probe failed\n");
  2768. return ret;
  2769. }
  2770. static struct platform_driver d40_driver = {
  2771. .driver = {
  2772. .owner = THIS_MODULE,
  2773. .name = D40_NAME,
  2774. .pm = DMA40_PM_OPS,
  2775. },
  2776. };
  2777. static int __init stedma40_init(void)
  2778. {
  2779. return platform_driver_probe(&d40_driver, d40_probe);
  2780. }
  2781. subsys_initcall(stedma40_init);