cafe_nand.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /*
  2. * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3. *
  4. * The data sheet for this device can be found at:
  5. * http://wiki.laptop.org/go/Datasheets
  6. *
  7. * Copyright © 2006 Red Hat, Inc.
  8. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  9. */
  10. #define DEBUG
  11. #include <linux/device.h>
  12. #undef DEBUG
  13. #include <linux/mtd/mtd.h>
  14. #include <linux/mtd/nand.h>
  15. #include <linux/mtd/partitions.h>
  16. #include <linux/rslib.h>
  17. #include <linux/pci.h>
  18. #include <linux/delay.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/slab.h>
  22. #include <asm/io.h>
  23. #define CAFE_NAND_CTRL1 0x00
  24. #define CAFE_NAND_CTRL2 0x04
  25. #define CAFE_NAND_CTRL3 0x08
  26. #define CAFE_NAND_STATUS 0x0c
  27. #define CAFE_NAND_IRQ 0x10
  28. #define CAFE_NAND_IRQ_MASK 0x14
  29. #define CAFE_NAND_DATA_LEN 0x18
  30. #define CAFE_NAND_ADDR1 0x1c
  31. #define CAFE_NAND_ADDR2 0x20
  32. #define CAFE_NAND_TIMING1 0x24
  33. #define CAFE_NAND_TIMING2 0x28
  34. #define CAFE_NAND_TIMING3 0x2c
  35. #define CAFE_NAND_NONMEM 0x30
  36. #define CAFE_NAND_ECC_RESULT 0x3C
  37. #define CAFE_NAND_DMA_CTRL 0x40
  38. #define CAFE_NAND_DMA_ADDR0 0x44
  39. #define CAFE_NAND_DMA_ADDR1 0x48
  40. #define CAFE_NAND_ECC_SYN01 0x50
  41. #define CAFE_NAND_ECC_SYN23 0x54
  42. #define CAFE_NAND_ECC_SYN45 0x58
  43. #define CAFE_NAND_ECC_SYN67 0x5c
  44. #define CAFE_NAND_READ_DATA 0x1000
  45. #define CAFE_NAND_WRITE_DATA 0x2000
  46. #define CAFE_GLOBAL_CTRL 0x3004
  47. #define CAFE_GLOBAL_IRQ 0x3008
  48. #define CAFE_GLOBAL_IRQ_MASK 0x300c
  49. #define CAFE_NAND_RESET 0x3034
  50. /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  51. #define CTRL1_CHIPSELECT (1<<19)
  52. struct cafe_priv {
  53. struct nand_chip nand;
  54. struct pci_dev *pdev;
  55. void __iomem *mmio;
  56. struct rs_control *rs;
  57. uint32_t ctl1;
  58. uint32_t ctl2;
  59. int datalen;
  60. int nr_data;
  61. int data_pos;
  62. int page_addr;
  63. dma_addr_t dmaaddr;
  64. unsigned char *dmabuf;
  65. };
  66. static int usedma = 1;
  67. module_param(usedma, int, 0644);
  68. static int skipbbt = 0;
  69. module_param(skipbbt, int, 0644);
  70. static int debug = 0;
  71. module_param(debug, int, 0644);
  72. static int regdebug = 0;
  73. module_param(regdebug, int, 0644);
  74. static int checkecc = 1;
  75. module_param(checkecc, int, 0644);
  76. static unsigned int numtimings;
  77. static int timing[3];
  78. module_param_array(timing, int, &numtimings, 0644);
  79. static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  80. /* Hrm. Why isn't this already conditional on something in the struct device? */
  81. #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  82. /* Make it easier to switch to PIO if we need to */
  83. #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
  84. #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
  85. static int cafe_device_ready(struct mtd_info *mtd)
  86. {
  87. struct cafe_priv *cafe = mtd->priv;
  88. int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
  89. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  90. cafe_writel(cafe, irqs, NAND_IRQ);
  91. cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
  92. result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
  93. cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  94. return result;
  95. }
  96. static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  97. {
  98. struct cafe_priv *cafe = mtd->priv;
  99. if (usedma)
  100. memcpy(cafe->dmabuf + cafe->datalen, buf, len);
  101. else
  102. memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
  103. cafe->datalen += len;
  104. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
  105. len, cafe->datalen);
  106. }
  107. static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  108. {
  109. struct cafe_priv *cafe = mtd->priv;
  110. if (usedma)
  111. memcpy(buf, cafe->dmabuf + cafe->datalen, len);
  112. else
  113. memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
  114. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
  115. len, cafe->datalen);
  116. cafe->datalen += len;
  117. }
  118. static uint8_t cafe_read_byte(struct mtd_info *mtd)
  119. {
  120. struct cafe_priv *cafe = mtd->priv;
  121. uint8_t d;
  122. cafe_read_buf(mtd, &d, 1);
  123. cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
  124. return d;
  125. }
  126. static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
  127. int column, int page_addr)
  128. {
  129. struct cafe_priv *cafe = mtd->priv;
  130. int adrbytes = 0;
  131. uint32_t ctl1;
  132. uint32_t doneint = 0x80000000;
  133. cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
  134. command, column, page_addr);
  135. if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
  136. /* Second half of a command we already calculated */
  137. cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
  138. ctl1 = cafe->ctl1;
  139. cafe->ctl2 &= ~(1<<30);
  140. cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
  141. cafe->ctl1, cafe->nr_data);
  142. goto do_command;
  143. }
  144. /* Reset ECC engine */
  145. cafe_writel(cafe, 0, NAND_CTRL2);
  146. /* Emulate NAND_CMD_READOOB on large-page chips */
  147. if (mtd->writesize > 512 &&
  148. command == NAND_CMD_READOOB) {
  149. column += mtd->writesize;
  150. command = NAND_CMD_READ0;
  151. }
  152. /* FIXME: Do we need to send read command before sending data
  153. for small-page chips, to position the buffer correctly? */
  154. if (column != -1) {
  155. cafe_writel(cafe, column, NAND_ADDR1);
  156. adrbytes = 2;
  157. if (page_addr != -1)
  158. goto write_adr2;
  159. } else if (page_addr != -1) {
  160. cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
  161. page_addr >>= 16;
  162. write_adr2:
  163. cafe_writel(cafe, page_addr, NAND_ADDR2);
  164. adrbytes += 2;
  165. if (mtd->size > mtd->writesize << 16)
  166. adrbytes++;
  167. }
  168. cafe->data_pos = cafe->datalen = 0;
  169. /* Set command valid bit, mask in the chip select bit */
  170. ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
  171. /* Set RD or WR bits as appropriate */
  172. if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
  173. ctl1 |= (1<<26); /* rd */
  174. /* Always 5 bytes, for now */
  175. cafe->datalen = 4;
  176. /* And one address cycle -- even for STATUS, since the controller doesn't work without */
  177. adrbytes = 1;
  178. } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  179. command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
  180. ctl1 |= 1<<26; /* rd */
  181. /* For now, assume just read to end of page */
  182. cafe->datalen = mtd->writesize + mtd->oobsize - column;
  183. } else if (command == NAND_CMD_SEQIN)
  184. ctl1 |= 1<<25; /* wr */
  185. /* Set number of address bytes */
  186. if (adrbytes)
  187. ctl1 |= ((adrbytes-1)|8) << 27;
  188. if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
  189. /* Ignore the first command of a pair; the hardware
  190. deals with them both at once, later */
  191. cafe->ctl1 = ctl1;
  192. cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
  193. cafe->ctl1, cafe->datalen);
  194. return;
  195. }
  196. /* RNDOUT and READ0 commands need a following byte */
  197. if (command == NAND_CMD_RNDOUT)
  198. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
  199. else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
  200. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
  201. do_command:
  202. cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
  203. cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
  204. /* NB: The datasheet lies -- we really should be subtracting 1 here */
  205. cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
  206. cafe_writel(cafe, 0x90000000, NAND_IRQ);
  207. if (usedma && (ctl1 & (3<<25))) {
  208. uint32_t dmactl = 0xc0000000 + cafe->datalen;
  209. /* If WR or RD bits set, set up DMA */
  210. if (ctl1 & (1<<26)) {
  211. /* It's a read */
  212. dmactl |= (1<<29);
  213. /* ... so it's done when the DMA is done, not just
  214. the command. */
  215. doneint = 0x10000000;
  216. }
  217. cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
  218. }
  219. cafe->datalen = 0;
  220. if (unlikely(regdebug)) {
  221. int i;
  222. printk("About to write command %08x to register 0\n", ctl1);
  223. for (i=4; i< 0x5c; i+=4)
  224. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  225. }
  226. cafe_writel(cafe, ctl1, NAND_CTRL1);
  227. /* Apply this short delay always to ensure that we do wait tWB in
  228. * any case on any machine. */
  229. ndelay(100);
  230. if (1) {
  231. int c;
  232. uint32_t irqs;
  233. for (c = 500000; c != 0; c--) {
  234. irqs = cafe_readl(cafe, NAND_IRQ);
  235. if (irqs & doneint)
  236. break;
  237. udelay(1);
  238. if (!(c % 100000))
  239. cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
  240. cpu_relax();
  241. }
  242. cafe_writel(cafe, doneint, NAND_IRQ);
  243. cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
  244. command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
  245. }
  246. WARN_ON(cafe->ctl2 & (1<<30));
  247. switch (command) {
  248. case NAND_CMD_CACHEDPROG:
  249. case NAND_CMD_PAGEPROG:
  250. case NAND_CMD_ERASE1:
  251. case NAND_CMD_ERASE2:
  252. case NAND_CMD_SEQIN:
  253. case NAND_CMD_RNDIN:
  254. case NAND_CMD_STATUS:
  255. case NAND_CMD_DEPLETE1:
  256. case NAND_CMD_RNDOUT:
  257. case NAND_CMD_STATUS_ERROR:
  258. case NAND_CMD_STATUS_ERROR0:
  259. case NAND_CMD_STATUS_ERROR1:
  260. case NAND_CMD_STATUS_ERROR2:
  261. case NAND_CMD_STATUS_ERROR3:
  262. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  263. return;
  264. }
  265. nand_wait_ready(mtd);
  266. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  267. }
  268. static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
  269. {
  270. struct cafe_priv *cafe = mtd->priv;
  271. cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
  272. /* Mask the appropriate bit into the stored value of ctl1
  273. which will be used by cafe_nand_cmdfunc() */
  274. if (chipnr)
  275. cafe->ctl1 |= CTRL1_CHIPSELECT;
  276. else
  277. cafe->ctl1 &= ~CTRL1_CHIPSELECT;
  278. }
  279. static irqreturn_t cafe_nand_interrupt(int irq, void *id)
  280. {
  281. struct mtd_info *mtd = id;
  282. struct cafe_priv *cafe = mtd->priv;
  283. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  284. cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
  285. if (!irqs)
  286. return IRQ_NONE;
  287. cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
  288. return IRQ_HANDLED;
  289. }
  290. static void cafe_nand_bug(struct mtd_info *mtd)
  291. {
  292. BUG();
  293. }
  294. static int cafe_nand_write_oob(struct mtd_info *mtd,
  295. struct nand_chip *chip, int page)
  296. {
  297. int status = 0;
  298. chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
  299. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  300. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  301. status = chip->waitfunc(mtd, chip);
  302. return status & NAND_STATUS_FAIL ? -EIO : 0;
  303. }
  304. /* Don't use -- use nand_read_oob_std for now */
  305. static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
  306. int page, int sndcmd)
  307. {
  308. chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
  309. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  310. return 1;
  311. }
  312. /**
  313. * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
  314. * @mtd: mtd info structure
  315. * @chip: nand chip info structure
  316. * @buf: buffer to store read data
  317. *
  318. * The hw generator calculates the error syndrome automatically. Therefor
  319. * we need a special oob layout and handling.
  320. */
  321. static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
  322. uint8_t *buf, int page)
  323. {
  324. struct cafe_priv *cafe = mtd->priv;
  325. cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
  326. cafe_readl(cafe, NAND_ECC_RESULT),
  327. cafe_readl(cafe, NAND_ECC_SYN01));
  328. chip->read_buf(mtd, buf, mtd->writesize);
  329. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  330. if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
  331. unsigned short syn[8], pat[4];
  332. int pos[4];
  333. u8 *oob = chip->oob_poi;
  334. int i, n;
  335. for (i=0; i<8; i+=2) {
  336. uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
  337. syn[i] = cafe->rs->index_of[tmp & 0xfff];
  338. syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
  339. }
  340. n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
  341. pat);
  342. for (i = 0; i < n; i++) {
  343. int p = pos[i];
  344. /* The 12-bit symbols are mapped to bytes here */
  345. if (p > 1374) {
  346. /* out of range */
  347. n = -1374;
  348. } else if (p == 0) {
  349. /* high four bits do not correspond to data */
  350. if (pat[i] > 0xff)
  351. n = -2048;
  352. else
  353. buf[0] ^= pat[i];
  354. } else if (p == 1365) {
  355. buf[2047] ^= pat[i] >> 4;
  356. oob[0] ^= pat[i] << 4;
  357. } else if (p > 1365) {
  358. if ((p & 1) == 1) {
  359. oob[3*p/2 - 2048] ^= pat[i] >> 4;
  360. oob[3*p/2 - 2047] ^= pat[i] << 4;
  361. } else {
  362. oob[3*p/2 - 2049] ^= pat[i] >> 8;
  363. oob[3*p/2 - 2048] ^= pat[i];
  364. }
  365. } else if ((p & 1) == 1) {
  366. buf[3*p/2] ^= pat[i] >> 4;
  367. buf[3*p/2 + 1] ^= pat[i] << 4;
  368. } else {
  369. buf[3*p/2 - 1] ^= pat[i] >> 8;
  370. buf[3*p/2] ^= pat[i];
  371. }
  372. }
  373. if (n < 0) {
  374. dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
  375. cafe_readl(cafe, NAND_ADDR2) * 2048);
  376. for (i = 0; i < 0x5c; i += 4)
  377. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  378. mtd->ecc_stats.failed++;
  379. } else {
  380. dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
  381. mtd->ecc_stats.corrected += n;
  382. }
  383. }
  384. return 0;
  385. }
  386. static struct nand_ecclayout cafe_oobinfo_2048 = {
  387. .eccbytes = 14,
  388. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  389. .oobfree = {{14, 50}}
  390. };
  391. /* Ick. The BBT code really ought to be able to work this bit out
  392. for itself from the above, at least for the 2KiB case */
  393. static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
  394. static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
  395. static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
  396. static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
  397. static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
  398. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  399. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  400. .offs = 14,
  401. .len = 4,
  402. .veroffs = 18,
  403. .maxblocks = 4,
  404. .pattern = cafe_bbt_pattern_2048
  405. };
  406. static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
  407. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  408. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  409. .offs = 14,
  410. .len = 4,
  411. .veroffs = 18,
  412. .maxblocks = 4,
  413. .pattern = cafe_mirror_pattern_2048
  414. };
  415. static struct nand_ecclayout cafe_oobinfo_512 = {
  416. .eccbytes = 14,
  417. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  418. .oobfree = {{14, 2}}
  419. };
  420. static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
  421. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  422. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  423. .offs = 14,
  424. .len = 1,
  425. .veroffs = 15,
  426. .maxblocks = 4,
  427. .pattern = cafe_bbt_pattern_512
  428. };
  429. static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
  430. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  431. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  432. .offs = 14,
  433. .len = 1,
  434. .veroffs = 15,
  435. .maxblocks = 4,
  436. .pattern = cafe_mirror_pattern_512
  437. };
  438. static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
  439. struct nand_chip *chip, const uint8_t *buf)
  440. {
  441. struct cafe_priv *cafe = mtd->priv;
  442. chip->write_buf(mtd, buf, mtd->writesize);
  443. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  444. /* Set up ECC autogeneration */
  445. cafe->ctl2 |= (1<<30);
  446. }
  447. static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  448. const uint8_t *buf, int page, int cached, int raw)
  449. {
  450. int status;
  451. chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
  452. if (unlikely(raw))
  453. chip->ecc.write_page_raw(mtd, chip, buf);
  454. else
  455. chip->ecc.write_page(mtd, chip, buf);
  456. /*
  457. * Cached progamming disabled for now, Not sure if its worth the
  458. * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
  459. */
  460. cached = 0;
  461. if (!cached || !(chip->options & NAND_CACHEPRG)) {
  462. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  463. status = chip->waitfunc(mtd, chip);
  464. /*
  465. * See if operation failed and additional status checks are
  466. * available
  467. */
  468. if ((status & NAND_STATUS_FAIL) && (chip->errstat))
  469. status = chip->errstat(mtd, chip, FL_WRITING, status,
  470. page);
  471. if (status & NAND_STATUS_FAIL)
  472. return -EIO;
  473. } else {
  474. chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
  475. status = chip->waitfunc(mtd, chip);
  476. }
  477. #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
  478. /* Send command to read back the data */
  479. chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
  480. if (chip->verify_buf(mtd, buf, mtd->writesize))
  481. return -EIO;
  482. #endif
  483. return 0;
  484. }
  485. static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
  486. {
  487. return 0;
  488. }
  489. /* F_2[X]/(X**6+X+1) */
  490. static unsigned short __devinit gf64_mul(u8 a, u8 b)
  491. {
  492. u8 c;
  493. unsigned int i;
  494. c = 0;
  495. for (i = 0; i < 6; i++) {
  496. if (a & 1)
  497. c ^= b;
  498. a >>= 1;
  499. b <<= 1;
  500. if ((b & 0x40) != 0)
  501. b ^= 0x43;
  502. }
  503. return c;
  504. }
  505. /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
  506. static u16 __devinit gf4096_mul(u16 a, u16 b)
  507. {
  508. u8 ah, al, bh, bl, ch, cl;
  509. ah = a >> 6;
  510. al = a & 0x3f;
  511. bh = b >> 6;
  512. bl = b & 0x3f;
  513. ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
  514. cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
  515. return (ch << 6) ^ cl;
  516. }
  517. static int __devinit cafe_mul(int x)
  518. {
  519. if (x == 0)
  520. return 1;
  521. return gf4096_mul(x, 0xe01);
  522. }
  523. static int __devinit cafe_nand_probe(struct pci_dev *pdev,
  524. const struct pci_device_id *ent)
  525. {
  526. struct mtd_info *mtd;
  527. struct cafe_priv *cafe;
  528. uint32_t ctrl;
  529. int err = 0;
  530. /* Very old versions shared the same PCI ident for all three
  531. functions on the chip. Verify the class too... */
  532. if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
  533. return -ENODEV;
  534. err = pci_enable_device(pdev);
  535. if (err)
  536. return err;
  537. pci_set_master(pdev);
  538. mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
  539. if (!mtd) {
  540. dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
  541. return -ENOMEM;
  542. }
  543. cafe = (void *)(&mtd[1]);
  544. mtd->dev.parent = &pdev->dev;
  545. mtd->priv = cafe;
  546. mtd->owner = THIS_MODULE;
  547. cafe->pdev = pdev;
  548. cafe->mmio = pci_iomap(pdev, 0, 0);
  549. if (!cafe->mmio) {
  550. dev_warn(&pdev->dev, "failed to iomap\n");
  551. err = -ENOMEM;
  552. goto out_free_mtd;
  553. }
  554. cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
  555. &cafe->dmaaddr, GFP_KERNEL);
  556. if (!cafe->dmabuf) {
  557. err = -ENOMEM;
  558. goto out_ior;
  559. }
  560. cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
  561. cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
  562. if (!cafe->rs) {
  563. err = -ENOMEM;
  564. goto out_ior;
  565. }
  566. cafe->nand.cmdfunc = cafe_nand_cmdfunc;
  567. cafe->nand.dev_ready = cafe_device_ready;
  568. cafe->nand.read_byte = cafe_read_byte;
  569. cafe->nand.read_buf = cafe_read_buf;
  570. cafe->nand.write_buf = cafe_write_buf;
  571. cafe->nand.select_chip = cafe_select_chip;
  572. cafe->nand.chip_delay = 0;
  573. /* Enable the following for a flash based bad block table */
  574. cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
  575. cafe->nand.options = NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
  576. if (skipbbt) {
  577. cafe->nand.options |= NAND_SKIP_BBTSCAN;
  578. cafe->nand.block_bad = cafe_nand_block_bad;
  579. }
  580. if (numtimings && numtimings != 3) {
  581. dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
  582. }
  583. if (numtimings == 3) {
  584. cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
  585. timing[0], timing[1], timing[2]);
  586. } else {
  587. timing[0] = cafe_readl(cafe, NAND_TIMING1);
  588. timing[1] = cafe_readl(cafe, NAND_TIMING2);
  589. timing[2] = cafe_readl(cafe, NAND_TIMING3);
  590. if (timing[0] | timing[1] | timing[2]) {
  591. cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
  592. timing[0], timing[1], timing[2]);
  593. } else {
  594. dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
  595. timing[0] = timing[1] = timing[2] = 0xffffffff;
  596. }
  597. }
  598. /* Start off by resetting the NAND controller completely */
  599. cafe_writel(cafe, 1, NAND_RESET);
  600. cafe_writel(cafe, 0, NAND_RESET);
  601. cafe_writel(cafe, timing[0], NAND_TIMING1);
  602. cafe_writel(cafe, timing[1], NAND_TIMING2);
  603. cafe_writel(cafe, timing[2], NAND_TIMING3);
  604. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  605. err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
  606. "CAFE NAND", mtd);
  607. if (err) {
  608. dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
  609. goto out_free_dma;
  610. }
  611. /* Disable master reset, enable NAND clock */
  612. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  613. ctrl &= 0xffffeff0;
  614. ctrl |= 0x00007000;
  615. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  616. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  617. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  618. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  619. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  620. /* Set up DMA address */
  621. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  622. if (sizeof(cafe->dmaaddr) > 4)
  623. /* Shift in two parts to shut the compiler up */
  624. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  625. else
  626. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  627. cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
  628. cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
  629. /* Enable NAND IRQ in global IRQ mask register */
  630. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  631. cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
  632. cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  633. /* Scan to find existence of the device */
  634. if (nand_scan_ident(mtd, 2, NULL)) {
  635. err = -ENXIO;
  636. goto out_irq;
  637. }
  638. cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
  639. if (mtd->writesize == 2048)
  640. cafe->ctl2 |= 1<<29; /* 2KiB page size */
  641. /* Set up ECC according to the type of chip we found */
  642. if (mtd->writesize == 2048) {
  643. cafe->nand.ecc.layout = &cafe_oobinfo_2048;
  644. cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
  645. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
  646. } else if (mtd->writesize == 512) {
  647. cafe->nand.ecc.layout = &cafe_oobinfo_512;
  648. cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
  649. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
  650. } else {
  651. printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
  652. mtd->writesize);
  653. goto out_irq;
  654. }
  655. cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
  656. cafe->nand.ecc.size = mtd->writesize;
  657. cafe->nand.ecc.bytes = 14;
  658. cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
  659. cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
  660. cafe->nand.ecc.correct = (void *)cafe_nand_bug;
  661. cafe->nand.write_page = cafe_nand_write_page;
  662. cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
  663. cafe->nand.ecc.write_oob = cafe_nand_write_oob;
  664. cafe->nand.ecc.read_page = cafe_nand_read_page;
  665. cafe->nand.ecc.read_oob = cafe_nand_read_oob;
  666. err = nand_scan_tail(mtd);
  667. if (err)
  668. goto out_irq;
  669. pci_set_drvdata(pdev, mtd);
  670. mtd->name = "cafe_nand";
  671. mtd_device_parse_register(mtd, part_probes, 0, NULL, 0);
  672. goto out;
  673. out_irq:
  674. /* Disable NAND IRQ in global IRQ mask register */
  675. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  676. free_irq(pdev->irq, mtd);
  677. out_free_dma:
  678. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  679. out_ior:
  680. pci_iounmap(pdev, cafe->mmio);
  681. out_free_mtd:
  682. kfree(mtd);
  683. out:
  684. return err;
  685. }
  686. static void __devexit cafe_nand_remove(struct pci_dev *pdev)
  687. {
  688. struct mtd_info *mtd = pci_get_drvdata(pdev);
  689. struct cafe_priv *cafe = mtd->priv;
  690. /* Disable NAND IRQ in global IRQ mask register */
  691. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  692. free_irq(pdev->irq, mtd);
  693. nand_release(mtd);
  694. free_rs(cafe->rs);
  695. pci_iounmap(pdev, cafe->mmio);
  696. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  697. kfree(mtd);
  698. }
  699. static const struct pci_device_id cafe_nand_tbl[] = {
  700. { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
  701. PCI_ANY_ID, PCI_ANY_ID },
  702. { }
  703. };
  704. MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
  705. static int cafe_nand_resume(struct pci_dev *pdev)
  706. {
  707. uint32_t ctrl;
  708. struct mtd_info *mtd = pci_get_drvdata(pdev);
  709. struct cafe_priv *cafe = mtd->priv;
  710. /* Start off by resetting the NAND controller completely */
  711. cafe_writel(cafe, 1, NAND_RESET);
  712. cafe_writel(cafe, 0, NAND_RESET);
  713. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  714. /* Restore timing configuration */
  715. cafe_writel(cafe, timing[0], NAND_TIMING1);
  716. cafe_writel(cafe, timing[1], NAND_TIMING2);
  717. cafe_writel(cafe, timing[2], NAND_TIMING3);
  718. /* Disable master reset, enable NAND clock */
  719. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  720. ctrl &= 0xffffeff0;
  721. ctrl |= 0x00007000;
  722. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  723. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  724. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  725. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  726. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  727. /* Set up DMA address */
  728. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  729. if (sizeof(cafe->dmaaddr) > 4)
  730. /* Shift in two parts to shut the compiler up */
  731. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  732. else
  733. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  734. /* Enable NAND IRQ in global IRQ mask register */
  735. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  736. return 0;
  737. }
  738. static struct pci_driver cafe_nand_pci_driver = {
  739. .name = "CAFÉ NAND",
  740. .id_table = cafe_nand_tbl,
  741. .probe = cafe_nand_probe,
  742. .remove = __devexit_p(cafe_nand_remove),
  743. .resume = cafe_nand_resume,
  744. };
  745. static int __init cafe_nand_init(void)
  746. {
  747. return pci_register_driver(&cafe_nand_pci_driver);
  748. }
  749. static void __exit cafe_nand_exit(void)
  750. {
  751. pci_unregister_driver(&cafe_nand_pci_driver);
  752. }
  753. module_init(cafe_nand_init);
  754. module_exit(cafe_nand_exit);
  755. MODULE_LICENSE("GPL");
  756. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  757. MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");