i3000_edac.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. /*
  2. * Intel 3000/3010 Memory Controller kernel module
  3. * Copyright (C) 2007 Akamai Technologies, Inc.
  4. * Shamelessly copied from:
  5. * Intel D82875P Memory Controller kernel module
  6. * (C) 2003 Linux Networx (http://lnxi.com)
  7. *
  8. * This file may be distributed under the terms of the
  9. * GNU General Public License.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/pci.h>
  14. #include <linux/pci_ids.h>
  15. #include <linux/slab.h>
  16. #include "edac_core.h"
  17. #define I3000_REVISION "1.1"
  18. #define EDAC_MOD_STR "i3000_edac"
  19. #define I3000_RANKS 8
  20. #define I3000_RANKS_PER_CHANNEL 4
  21. #define I3000_CHANNELS 2
  22. /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
  23. #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
  24. #define I3000_MCHBAR_MASK 0xffffc000
  25. #define I3000_MMR_WINDOW_SIZE 16384
  26. #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
  27. *
  28. * 7:1 reserved
  29. * 0 bit 32 of address
  30. */
  31. #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
  32. *
  33. * 31:7 address
  34. * 6:1 reserved
  35. * 0 Error channel 0/1
  36. */
  37. #define I3000_DEAP_GRAIN (1 << 7)
  38. static inline unsigned long deap_pfn(u8 edeap, u32 deap)
  39. {
  40. deap >>= PAGE_SHIFT;
  41. deap |= (edeap & 1) << (32 - PAGE_SHIFT);
  42. return deap;
  43. }
  44. static inline unsigned long deap_offset(u32 deap)
  45. {
  46. return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
  47. }
  48. static inline int deap_channel(u32 deap)
  49. {
  50. return deap & 1;
  51. }
  52. #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
  53. *
  54. * 7:0 DRAM ECC Syndrome
  55. */
  56. #define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
  57. *
  58. * 15:12 reserved
  59. * 11 MCH Thermal Sensor Event
  60. * for SMI/SCI/SERR
  61. * 10 reserved
  62. * 9 LOCK to non-DRAM Memory Flag (LCKF)
  63. * 8 Received Refresh Timeout Flag (RRTOF)
  64. * 7:2 reserved
  65. * 1 Multi-bit DRAM ECC Error Flag (DMERR)
  66. * 0 Single-bit DRAM ECC Error Flag (DSERR)
  67. */
  68. #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
  69. #define I3000_ERRSTS_UE 0x0002
  70. #define I3000_ERRSTS_CE 0x0001
  71. #define I3000_ERRCMD 0xca /* Error Command (16b)
  72. *
  73. * 15:12 reserved
  74. * 11 SERR on MCH Thermal Sensor Event
  75. * (TSESERR)
  76. * 10 reserved
  77. * 9 SERR on LOCK to non-DRAM Memory
  78. * (LCKERR)
  79. * 8 SERR on DRAM Refresh Timeout
  80. * (DRTOERR)
  81. * 7:2 reserved
  82. * 1 SERR Multi-Bit DRAM ECC Error
  83. * (DMERR)
  84. * 0 SERR on Single-Bit ECC Error
  85. * (DSERR)
  86. */
  87. /* Intel MMIO register space - device 0 function 0 - MMR space */
  88. #define I3000_DRB_SHIFT 25 /* 32MiB grain */
  89. #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
  90. *
  91. * 7:0 Channel 0 DRAM Rank Boundary Address
  92. */
  93. #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
  94. *
  95. * 7:0 Channel 1 DRAM Rank Boundary Address
  96. */
  97. #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
  98. *
  99. * 7 reserved
  100. * 6:4 DRAM odd Rank Attribute
  101. * 3 reserved
  102. * 2:0 DRAM even Rank Attribute
  103. *
  104. * Each attribute defines the page
  105. * size of the corresponding rank:
  106. * 000: unpopulated
  107. * 001: reserved
  108. * 010: 4 KB
  109. * 011: 8 KB
  110. * 100: 16 KB
  111. * Others: reserved
  112. */
  113. #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
  114. static inline unsigned char odd_rank_attrib(unsigned char dra)
  115. {
  116. return (dra & 0x70) >> 4;
  117. }
  118. static inline unsigned char even_rank_attrib(unsigned char dra)
  119. {
  120. return dra & 0x07;
  121. }
  122. #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
  123. *
  124. * 31:30 reserved
  125. * 29 Initialization Complete (IC)
  126. * 28:11 reserved
  127. * 10:8 Refresh Mode Select (RMS)
  128. * 7 reserved
  129. * 6:4 Mode Select (SMS)
  130. * 3:2 reserved
  131. * 1:0 DRAM Type (DT)
  132. */
  133. #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
  134. *
  135. * 31 Enhanced Addressing Enable (ENHADE)
  136. * 30:0 reserved
  137. */
  138. enum i3000p_chips {
  139. I3000 = 0,
  140. };
  141. struct i3000_dev_info {
  142. const char *ctl_name;
  143. };
  144. struct i3000_error_info {
  145. u16 errsts;
  146. u8 derrsyn;
  147. u8 edeap;
  148. u32 deap;
  149. u16 errsts2;
  150. };
  151. static const struct i3000_dev_info i3000_devs[] = {
  152. [I3000] = {
  153. .ctl_name = "i3000"},
  154. };
  155. static struct pci_dev *mci_pdev;
  156. static int i3000_registered = 1;
  157. static struct edac_pci_ctl_info *i3000_pci;
  158. static void i3000_get_error_info(struct mem_ctl_info *mci,
  159. struct i3000_error_info *info)
  160. {
  161. struct pci_dev *pdev;
  162. pdev = to_pci_dev(mci->dev);
  163. /*
  164. * This is a mess because there is no atomic way to read all the
  165. * registers at once and the registers can transition from CE being
  166. * overwritten by UE.
  167. */
  168. pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
  169. if (!(info->errsts & I3000_ERRSTS_BITS))
  170. return;
  171. pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
  172. pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
  173. pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
  174. pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
  175. /*
  176. * If the error is the same for both reads then the first set
  177. * of reads is valid. If there is a change then there is a CE
  178. * with no info and the second set of reads is valid and
  179. * should be UE info.
  180. */
  181. if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
  182. pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
  183. pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
  184. pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
  185. }
  186. /*
  187. * Clear any error bits.
  188. * (Yes, we really clear bits by writing 1 to them.)
  189. */
  190. pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
  191. I3000_ERRSTS_BITS);
  192. }
  193. static int i3000_process_error_info(struct mem_ctl_info *mci,
  194. struct i3000_error_info *info,
  195. int handle_errors)
  196. {
  197. int row, multi_chan, channel;
  198. unsigned long pfn, offset;
  199. multi_chan = mci->csrows[0].nr_channels - 1;
  200. if (!(info->errsts & I3000_ERRSTS_BITS))
  201. return 0;
  202. if (!handle_errors)
  203. return 1;
  204. if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
  205. edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
  206. info->errsts = info->errsts2;
  207. }
  208. pfn = deap_pfn(info->edeap, info->deap);
  209. offset = deap_offset(info->deap);
  210. channel = deap_channel(info->deap);
  211. row = edac_mc_find_csrow_by_page(mci, pfn);
  212. if (info->errsts & I3000_ERRSTS_UE)
  213. edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
  214. else
  215. edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
  216. multi_chan ? channel : 0, "i3000 CE");
  217. return 1;
  218. }
  219. static void i3000_check(struct mem_ctl_info *mci)
  220. {
  221. struct i3000_error_info info;
  222. debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
  223. i3000_get_error_info(mci, &info);
  224. i3000_process_error_info(mci, &info, 1);
  225. }
  226. static int i3000_is_interleaved(const unsigned char *c0dra,
  227. const unsigned char *c1dra,
  228. const unsigned char *c0drb,
  229. const unsigned char *c1drb)
  230. {
  231. int i;
  232. /*
  233. * If the channels aren't populated identically then
  234. * we're not interleaved.
  235. */
  236. for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
  237. if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
  238. even_rank_attrib(c0dra[i]) !=
  239. even_rank_attrib(c1dra[i]))
  240. return 0;
  241. /*
  242. * If the rank boundaries for the two channels are different
  243. * then we're not interleaved.
  244. */
  245. for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
  246. if (c0drb[i] != c1drb[i])
  247. return 0;
  248. return 1;
  249. }
  250. static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
  251. {
  252. int rc;
  253. int i;
  254. struct mem_ctl_info *mci = NULL;
  255. unsigned long last_cumul_size;
  256. int interleaved, nr_channels;
  257. unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
  258. unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
  259. unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
  260. unsigned long mchbar;
  261. void __iomem *window;
  262. debugf0("MC: %s()\n", __func__);
  263. pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
  264. mchbar &= I3000_MCHBAR_MASK;
  265. window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
  266. if (!window) {
  267. printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
  268. mchbar);
  269. return -ENODEV;
  270. }
  271. c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
  272. c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
  273. c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
  274. c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
  275. for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
  276. c0drb[i] = readb(window + I3000_C0DRB + i);
  277. c1drb[i] = readb(window + I3000_C1DRB + i);
  278. }
  279. iounmap(window);
  280. /*
  281. * Figure out how many channels we have.
  282. *
  283. * If we have what the datasheet calls "asymmetric channels"
  284. * (essentially the same as what was called "virtual single
  285. * channel mode" in the i82875) then it's a single channel as
  286. * far as EDAC is concerned.
  287. */
  288. interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
  289. nr_channels = interleaved ? 2 : 1;
  290. mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
  291. if (!mci)
  292. return -ENOMEM;
  293. debugf3("MC: %s(): init mci\n", __func__);
  294. mci->dev = &pdev->dev;
  295. mci->mtype_cap = MEM_FLAG_DDR2;
  296. mci->edac_ctl_cap = EDAC_FLAG_SECDED;
  297. mci->edac_cap = EDAC_FLAG_SECDED;
  298. mci->mod_name = EDAC_MOD_STR;
  299. mci->mod_ver = I3000_REVISION;
  300. mci->ctl_name = i3000_devs[dev_idx].ctl_name;
  301. mci->dev_name = pci_name(pdev);
  302. mci->edac_check = i3000_check;
  303. mci->ctl_page_to_phys = NULL;
  304. /*
  305. * The dram rank boundary (DRB) reg values are boundary addresses
  306. * for each DRAM rank with a granularity of 32MB. DRB regs are
  307. * cumulative; the last one will contain the total memory
  308. * contained in all ranks.
  309. *
  310. * If we're in interleaved mode then we're only walking through
  311. * the ranks of controller 0, so we double all the values we see.
  312. */
  313. for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
  314. u8 value;
  315. u32 cumul_size;
  316. struct csrow_info *csrow = &mci->csrows[i];
  317. value = drb[i];
  318. cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
  319. if (interleaved)
  320. cumul_size <<= 1;
  321. debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
  322. __func__, i, cumul_size);
  323. if (cumul_size == last_cumul_size) {
  324. csrow->mtype = MEM_EMPTY;
  325. continue;
  326. }
  327. csrow->first_page = last_cumul_size;
  328. csrow->last_page = cumul_size - 1;
  329. csrow->nr_pages = cumul_size - last_cumul_size;
  330. last_cumul_size = cumul_size;
  331. csrow->grain = I3000_DEAP_GRAIN;
  332. csrow->mtype = MEM_DDR2;
  333. csrow->dtype = DEV_UNKNOWN;
  334. csrow->edac_mode = EDAC_UNKNOWN;
  335. }
  336. /*
  337. * Clear any error bits.
  338. * (Yes, we really clear bits by writing 1 to them.)
  339. */
  340. pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
  341. I3000_ERRSTS_BITS);
  342. rc = -ENODEV;
  343. if (edac_mc_add_mc(mci)) {
  344. debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
  345. goto fail;
  346. }
  347. /* allocating generic PCI control info */
  348. i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
  349. if (!i3000_pci) {
  350. printk(KERN_WARNING
  351. "%s(): Unable to create PCI control\n",
  352. __func__);
  353. printk(KERN_WARNING
  354. "%s(): PCI error report via EDAC not setup\n",
  355. __func__);
  356. }
  357. /* get this far and it's successful */
  358. debugf3("MC: %s(): success\n", __func__);
  359. return 0;
  360. fail:
  361. if (mci)
  362. edac_mc_free(mci);
  363. return rc;
  364. }
  365. /* returns count (>= 0), or negative on error */
  366. static int __devinit i3000_init_one(struct pci_dev *pdev,
  367. const struct pci_device_id *ent)
  368. {
  369. int rc;
  370. debugf0("MC: %s()\n", __func__);
  371. if (pci_enable_device(pdev) < 0)
  372. return -EIO;
  373. rc = i3000_probe1(pdev, ent->driver_data);
  374. if (!mci_pdev)
  375. mci_pdev = pci_dev_get(pdev);
  376. return rc;
  377. }
  378. static void __devexit i3000_remove_one(struct pci_dev *pdev)
  379. {
  380. struct mem_ctl_info *mci;
  381. debugf0("%s()\n", __func__);
  382. if (i3000_pci)
  383. edac_pci_release_generic_ctl(i3000_pci);
  384. mci = edac_mc_del_mc(&pdev->dev);
  385. if (!mci)
  386. return;
  387. edac_mc_free(mci);
  388. }
  389. static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
  390. {
  391. PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  392. I3000},
  393. {
  394. 0,
  395. } /* 0 terminated list. */
  396. };
  397. MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
  398. static struct pci_driver i3000_driver = {
  399. .name = EDAC_MOD_STR,
  400. .probe = i3000_init_one,
  401. .remove = __devexit_p(i3000_remove_one),
  402. .id_table = i3000_pci_tbl,
  403. };
  404. static int __init i3000_init(void)
  405. {
  406. int pci_rc;
  407. debugf3("MC: %s()\n", __func__);
  408. pci_rc = pci_register_driver(&i3000_driver);
  409. if (pci_rc < 0)
  410. goto fail0;
  411. if (!mci_pdev) {
  412. i3000_registered = 0;
  413. mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  414. PCI_DEVICE_ID_INTEL_3000_HB, NULL);
  415. if (!mci_pdev) {
  416. debugf0("i3000 pci_get_device fail\n");
  417. pci_rc = -ENODEV;
  418. goto fail1;
  419. }
  420. pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
  421. if (pci_rc < 0) {
  422. debugf0("i3000 init fail\n");
  423. pci_rc = -ENODEV;
  424. goto fail1;
  425. }
  426. }
  427. return 0;
  428. fail1:
  429. pci_unregister_driver(&i3000_driver);
  430. fail0:
  431. if (mci_pdev)
  432. pci_dev_put(mci_pdev);
  433. return pci_rc;
  434. }
  435. static void __exit i3000_exit(void)
  436. {
  437. debugf3("MC: %s()\n", __func__);
  438. pci_unregister_driver(&i3000_driver);
  439. if (!i3000_registered) {
  440. i3000_remove_one(mci_pdev);
  441. pci_dev_put(mci_pdev);
  442. }
  443. }
  444. module_init(i3000_init);
  445. module_exit(i3000_exit);
  446. MODULE_LICENSE("GPL");
  447. MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
  448. MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");