caps.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/fs.h>
  3. #include <linux/kernel.h>
  4. #include <linux/sched.h>
  5. #include <linux/slab.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/wait.h>
  8. #include <linux/writeback.h>
  9. #include "super.h"
  10. #include "mds_client.h"
  11. #include <linux/ceph/decode.h>
  12. #include <linux/ceph/messenger.h>
  13. /*
  14. * Capability management
  15. *
  16. * The Ceph metadata servers control client access to inode metadata
  17. * and file data by issuing capabilities, granting clients permission
  18. * to read and/or write both inode field and file data to OSDs
  19. * (storage nodes). Each capability consists of a set of bits
  20. * indicating which operations are allowed.
  21. *
  22. * If the client holds a *_SHARED cap, the client has a coherent value
  23. * that can be safely read from the cached inode.
  24. *
  25. * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
  26. * client is allowed to change inode attributes (e.g., file size,
  27. * mtime), note its dirty state in the ceph_cap, and asynchronously
  28. * flush that metadata change to the MDS.
  29. *
  30. * In the event of a conflicting operation (perhaps by another
  31. * client), the MDS will revoke the conflicting client capabilities.
  32. *
  33. * In order for a client to cache an inode, it must hold a capability
  34. * with at least one MDS server. When inodes are released, release
  35. * notifications are batched and periodically sent en masse to the MDS
  36. * cluster to release server state.
  37. */
  38. /*
  39. * Generate readable cap strings for debugging output.
  40. */
  41. #define MAX_CAP_STR 20
  42. static char cap_str[MAX_CAP_STR][40];
  43. static DEFINE_SPINLOCK(cap_str_lock);
  44. static int last_cap_str;
  45. static char *gcap_string(char *s, int c)
  46. {
  47. if (c & CEPH_CAP_GSHARED)
  48. *s++ = 's';
  49. if (c & CEPH_CAP_GEXCL)
  50. *s++ = 'x';
  51. if (c & CEPH_CAP_GCACHE)
  52. *s++ = 'c';
  53. if (c & CEPH_CAP_GRD)
  54. *s++ = 'r';
  55. if (c & CEPH_CAP_GWR)
  56. *s++ = 'w';
  57. if (c & CEPH_CAP_GBUFFER)
  58. *s++ = 'b';
  59. if (c & CEPH_CAP_GLAZYIO)
  60. *s++ = 'l';
  61. return s;
  62. }
  63. const char *ceph_cap_string(int caps)
  64. {
  65. int i;
  66. char *s;
  67. int c;
  68. spin_lock(&cap_str_lock);
  69. i = last_cap_str++;
  70. if (last_cap_str == MAX_CAP_STR)
  71. last_cap_str = 0;
  72. spin_unlock(&cap_str_lock);
  73. s = cap_str[i];
  74. if (caps & CEPH_CAP_PIN)
  75. *s++ = 'p';
  76. c = (caps >> CEPH_CAP_SAUTH) & 3;
  77. if (c) {
  78. *s++ = 'A';
  79. s = gcap_string(s, c);
  80. }
  81. c = (caps >> CEPH_CAP_SLINK) & 3;
  82. if (c) {
  83. *s++ = 'L';
  84. s = gcap_string(s, c);
  85. }
  86. c = (caps >> CEPH_CAP_SXATTR) & 3;
  87. if (c) {
  88. *s++ = 'X';
  89. s = gcap_string(s, c);
  90. }
  91. c = caps >> CEPH_CAP_SFILE;
  92. if (c) {
  93. *s++ = 'F';
  94. s = gcap_string(s, c);
  95. }
  96. if (s == cap_str[i])
  97. *s++ = '-';
  98. *s = 0;
  99. return cap_str[i];
  100. }
  101. void ceph_caps_init(struct ceph_mds_client *mdsc)
  102. {
  103. INIT_LIST_HEAD(&mdsc->caps_list);
  104. spin_lock_init(&mdsc->caps_list_lock);
  105. }
  106. void ceph_caps_finalize(struct ceph_mds_client *mdsc)
  107. {
  108. struct ceph_cap *cap;
  109. spin_lock(&mdsc->caps_list_lock);
  110. while (!list_empty(&mdsc->caps_list)) {
  111. cap = list_first_entry(&mdsc->caps_list,
  112. struct ceph_cap, caps_item);
  113. list_del(&cap->caps_item);
  114. kmem_cache_free(ceph_cap_cachep, cap);
  115. }
  116. mdsc->caps_total_count = 0;
  117. mdsc->caps_avail_count = 0;
  118. mdsc->caps_use_count = 0;
  119. mdsc->caps_reserve_count = 0;
  120. mdsc->caps_min_count = 0;
  121. spin_unlock(&mdsc->caps_list_lock);
  122. }
  123. void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
  124. {
  125. spin_lock(&mdsc->caps_list_lock);
  126. mdsc->caps_min_count += delta;
  127. BUG_ON(mdsc->caps_min_count < 0);
  128. spin_unlock(&mdsc->caps_list_lock);
  129. }
  130. int ceph_reserve_caps(struct ceph_mds_client *mdsc,
  131. struct ceph_cap_reservation *ctx, int need)
  132. {
  133. int i;
  134. struct ceph_cap *cap;
  135. int have;
  136. int alloc = 0;
  137. LIST_HEAD(newcaps);
  138. int ret = 0;
  139. dout("reserve caps ctx=%p need=%d\n", ctx, need);
  140. /* first reserve any caps that are already allocated */
  141. spin_lock(&mdsc->caps_list_lock);
  142. if (mdsc->caps_avail_count >= need)
  143. have = need;
  144. else
  145. have = mdsc->caps_avail_count;
  146. mdsc->caps_avail_count -= have;
  147. mdsc->caps_reserve_count += have;
  148. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  149. mdsc->caps_reserve_count +
  150. mdsc->caps_avail_count);
  151. spin_unlock(&mdsc->caps_list_lock);
  152. for (i = have; i < need; i++) {
  153. cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
  154. if (!cap) {
  155. ret = -ENOMEM;
  156. goto out_alloc_count;
  157. }
  158. list_add(&cap->caps_item, &newcaps);
  159. alloc++;
  160. }
  161. BUG_ON(have + alloc != need);
  162. spin_lock(&mdsc->caps_list_lock);
  163. mdsc->caps_total_count += alloc;
  164. mdsc->caps_reserve_count += alloc;
  165. list_splice(&newcaps, &mdsc->caps_list);
  166. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  167. mdsc->caps_reserve_count +
  168. mdsc->caps_avail_count);
  169. spin_unlock(&mdsc->caps_list_lock);
  170. ctx->count = need;
  171. dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
  172. ctx, mdsc->caps_total_count, mdsc->caps_use_count,
  173. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  174. return 0;
  175. out_alloc_count:
  176. /* we didn't manage to reserve as much as we needed */
  177. pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
  178. ctx, need, have);
  179. return ret;
  180. }
  181. int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
  182. struct ceph_cap_reservation *ctx)
  183. {
  184. dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
  185. if (ctx->count) {
  186. spin_lock(&mdsc->caps_list_lock);
  187. BUG_ON(mdsc->caps_reserve_count < ctx->count);
  188. mdsc->caps_reserve_count -= ctx->count;
  189. mdsc->caps_avail_count += ctx->count;
  190. ctx->count = 0;
  191. dout("unreserve caps %d = %d used + %d resv + %d avail\n",
  192. mdsc->caps_total_count, mdsc->caps_use_count,
  193. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  194. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  195. mdsc->caps_reserve_count +
  196. mdsc->caps_avail_count);
  197. spin_unlock(&mdsc->caps_list_lock);
  198. }
  199. return 0;
  200. }
  201. static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
  202. struct ceph_cap_reservation *ctx)
  203. {
  204. struct ceph_cap *cap = NULL;
  205. /* temporary, until we do something about cap import/export */
  206. if (!ctx) {
  207. cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
  208. if (cap) {
  209. spin_lock(&mdsc->caps_list_lock);
  210. mdsc->caps_use_count++;
  211. mdsc->caps_total_count++;
  212. spin_unlock(&mdsc->caps_list_lock);
  213. }
  214. return cap;
  215. }
  216. spin_lock(&mdsc->caps_list_lock);
  217. dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
  218. ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
  219. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  220. BUG_ON(!ctx->count);
  221. BUG_ON(ctx->count > mdsc->caps_reserve_count);
  222. BUG_ON(list_empty(&mdsc->caps_list));
  223. ctx->count--;
  224. mdsc->caps_reserve_count--;
  225. mdsc->caps_use_count++;
  226. cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
  227. list_del(&cap->caps_item);
  228. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  229. mdsc->caps_reserve_count + mdsc->caps_avail_count);
  230. spin_unlock(&mdsc->caps_list_lock);
  231. return cap;
  232. }
  233. void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
  234. {
  235. spin_lock(&mdsc->caps_list_lock);
  236. dout("put_cap %p %d = %d used + %d resv + %d avail\n",
  237. cap, mdsc->caps_total_count, mdsc->caps_use_count,
  238. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  239. mdsc->caps_use_count--;
  240. /*
  241. * Keep some preallocated caps around (ceph_min_count), to
  242. * avoid lots of free/alloc churn.
  243. */
  244. if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
  245. mdsc->caps_min_count) {
  246. mdsc->caps_total_count--;
  247. kmem_cache_free(ceph_cap_cachep, cap);
  248. } else {
  249. mdsc->caps_avail_count++;
  250. list_add(&cap->caps_item, &mdsc->caps_list);
  251. }
  252. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  253. mdsc->caps_reserve_count + mdsc->caps_avail_count);
  254. spin_unlock(&mdsc->caps_list_lock);
  255. }
  256. void ceph_reservation_status(struct ceph_fs_client *fsc,
  257. int *total, int *avail, int *used, int *reserved,
  258. int *min)
  259. {
  260. struct ceph_mds_client *mdsc = fsc->mdsc;
  261. if (total)
  262. *total = mdsc->caps_total_count;
  263. if (avail)
  264. *avail = mdsc->caps_avail_count;
  265. if (used)
  266. *used = mdsc->caps_use_count;
  267. if (reserved)
  268. *reserved = mdsc->caps_reserve_count;
  269. if (min)
  270. *min = mdsc->caps_min_count;
  271. }
  272. /*
  273. * Find ceph_cap for given mds, if any.
  274. *
  275. * Called with i_ceph_lock held.
  276. */
  277. static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
  278. {
  279. struct ceph_cap *cap;
  280. struct rb_node *n = ci->i_caps.rb_node;
  281. while (n) {
  282. cap = rb_entry(n, struct ceph_cap, ci_node);
  283. if (mds < cap->mds)
  284. n = n->rb_left;
  285. else if (mds > cap->mds)
  286. n = n->rb_right;
  287. else
  288. return cap;
  289. }
  290. return NULL;
  291. }
  292. struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
  293. {
  294. struct ceph_cap *cap;
  295. spin_lock(&ci->i_ceph_lock);
  296. cap = __get_cap_for_mds(ci, mds);
  297. spin_unlock(&ci->i_ceph_lock);
  298. return cap;
  299. }
  300. /*
  301. * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
  302. */
  303. static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
  304. {
  305. struct ceph_cap *cap;
  306. int mds = -1;
  307. struct rb_node *p;
  308. /* prefer mds with WR|BUFFER|EXCL caps */
  309. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  310. cap = rb_entry(p, struct ceph_cap, ci_node);
  311. mds = cap->mds;
  312. if (cap->issued & (CEPH_CAP_FILE_WR |
  313. CEPH_CAP_FILE_BUFFER |
  314. CEPH_CAP_FILE_EXCL))
  315. break;
  316. }
  317. return mds;
  318. }
  319. int ceph_get_cap_mds(struct inode *inode)
  320. {
  321. struct ceph_inode_info *ci = ceph_inode(inode);
  322. int mds;
  323. spin_lock(&ci->i_ceph_lock);
  324. mds = __ceph_get_cap_mds(ceph_inode(inode));
  325. spin_unlock(&ci->i_ceph_lock);
  326. return mds;
  327. }
  328. /*
  329. * Called under i_ceph_lock.
  330. */
  331. static void __insert_cap_node(struct ceph_inode_info *ci,
  332. struct ceph_cap *new)
  333. {
  334. struct rb_node **p = &ci->i_caps.rb_node;
  335. struct rb_node *parent = NULL;
  336. struct ceph_cap *cap = NULL;
  337. while (*p) {
  338. parent = *p;
  339. cap = rb_entry(parent, struct ceph_cap, ci_node);
  340. if (new->mds < cap->mds)
  341. p = &(*p)->rb_left;
  342. else if (new->mds > cap->mds)
  343. p = &(*p)->rb_right;
  344. else
  345. BUG();
  346. }
  347. rb_link_node(&new->ci_node, parent, p);
  348. rb_insert_color(&new->ci_node, &ci->i_caps);
  349. }
  350. /*
  351. * (re)set cap hold timeouts, which control the delayed release
  352. * of unused caps back to the MDS. Should be called on cap use.
  353. */
  354. static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
  355. struct ceph_inode_info *ci)
  356. {
  357. struct ceph_mount_options *ma = mdsc->fsc->mount_options;
  358. ci->i_hold_caps_min = round_jiffies(jiffies +
  359. ma->caps_wanted_delay_min * HZ);
  360. ci->i_hold_caps_max = round_jiffies(jiffies +
  361. ma->caps_wanted_delay_max * HZ);
  362. dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
  363. ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
  364. }
  365. /*
  366. * (Re)queue cap at the end of the delayed cap release list.
  367. *
  368. * If I_FLUSH is set, leave the inode at the front of the list.
  369. *
  370. * Caller holds i_ceph_lock
  371. * -> we take mdsc->cap_delay_lock
  372. */
  373. static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
  374. struct ceph_inode_info *ci)
  375. {
  376. __cap_set_timeouts(mdsc, ci);
  377. dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
  378. ci->i_ceph_flags, ci->i_hold_caps_max);
  379. if (!mdsc->stopping) {
  380. spin_lock(&mdsc->cap_delay_lock);
  381. if (!list_empty(&ci->i_cap_delay_list)) {
  382. if (ci->i_ceph_flags & CEPH_I_FLUSH)
  383. goto no_change;
  384. list_del_init(&ci->i_cap_delay_list);
  385. }
  386. list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
  387. no_change:
  388. spin_unlock(&mdsc->cap_delay_lock);
  389. }
  390. }
  391. /*
  392. * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
  393. * indicating we should send a cap message to flush dirty metadata
  394. * asap, and move to the front of the delayed cap list.
  395. */
  396. static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
  397. struct ceph_inode_info *ci)
  398. {
  399. dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
  400. spin_lock(&mdsc->cap_delay_lock);
  401. ci->i_ceph_flags |= CEPH_I_FLUSH;
  402. if (!list_empty(&ci->i_cap_delay_list))
  403. list_del_init(&ci->i_cap_delay_list);
  404. list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
  405. spin_unlock(&mdsc->cap_delay_lock);
  406. }
  407. /*
  408. * Cancel delayed work on cap.
  409. *
  410. * Caller must hold i_ceph_lock.
  411. */
  412. static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
  413. struct ceph_inode_info *ci)
  414. {
  415. dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
  416. if (list_empty(&ci->i_cap_delay_list))
  417. return;
  418. spin_lock(&mdsc->cap_delay_lock);
  419. list_del_init(&ci->i_cap_delay_list);
  420. spin_unlock(&mdsc->cap_delay_lock);
  421. }
  422. /*
  423. * Common issue checks for add_cap, handle_cap_grant.
  424. */
  425. static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
  426. unsigned issued)
  427. {
  428. unsigned had = __ceph_caps_issued(ci, NULL);
  429. /*
  430. * Each time we receive FILE_CACHE anew, we increment
  431. * i_rdcache_gen.
  432. */
  433. if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
  434. (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
  435. ci->i_rdcache_gen++;
  436. /*
  437. * if we are newly issued FILE_SHARED, clear D_COMPLETE; we
  438. * don't know what happened to this directory while we didn't
  439. * have the cap.
  440. */
  441. if ((issued & CEPH_CAP_FILE_SHARED) &&
  442. (had & CEPH_CAP_FILE_SHARED) == 0) {
  443. ci->i_shared_gen++;
  444. if (S_ISDIR(ci->vfs_inode.i_mode))
  445. ceph_dir_clear_complete(&ci->vfs_inode);
  446. }
  447. }
  448. /*
  449. * Add a capability under the given MDS session.
  450. *
  451. * Caller should hold session snap_rwsem (read) and s_mutex.
  452. *
  453. * @fmode is the open file mode, if we are opening a file, otherwise
  454. * it is < 0. (This is so we can atomically add the cap and add an
  455. * open file reference to it.)
  456. */
  457. int ceph_add_cap(struct inode *inode,
  458. struct ceph_mds_session *session, u64 cap_id,
  459. int fmode, unsigned issued, unsigned wanted,
  460. unsigned seq, unsigned mseq, u64 realmino, int flags,
  461. struct ceph_cap_reservation *caps_reservation)
  462. {
  463. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  464. struct ceph_inode_info *ci = ceph_inode(inode);
  465. struct ceph_cap *new_cap = NULL;
  466. struct ceph_cap *cap;
  467. int mds = session->s_mds;
  468. int actual_wanted;
  469. dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
  470. session->s_mds, cap_id, ceph_cap_string(issued), seq);
  471. /*
  472. * If we are opening the file, include file mode wanted bits
  473. * in wanted.
  474. */
  475. if (fmode >= 0)
  476. wanted |= ceph_caps_for_mode(fmode);
  477. retry:
  478. spin_lock(&ci->i_ceph_lock);
  479. cap = __get_cap_for_mds(ci, mds);
  480. if (!cap) {
  481. if (new_cap) {
  482. cap = new_cap;
  483. new_cap = NULL;
  484. } else {
  485. spin_unlock(&ci->i_ceph_lock);
  486. new_cap = get_cap(mdsc, caps_reservation);
  487. if (new_cap == NULL)
  488. return -ENOMEM;
  489. goto retry;
  490. }
  491. cap->issued = 0;
  492. cap->implemented = 0;
  493. cap->mds = mds;
  494. cap->mds_wanted = 0;
  495. cap->ci = ci;
  496. __insert_cap_node(ci, cap);
  497. /* clear out old exporting info? (i.e. on cap import) */
  498. if (ci->i_cap_exporting_mds == mds) {
  499. ci->i_cap_exporting_issued = 0;
  500. ci->i_cap_exporting_mseq = 0;
  501. ci->i_cap_exporting_mds = -1;
  502. }
  503. /* add to session cap list */
  504. cap->session = session;
  505. spin_lock(&session->s_cap_lock);
  506. list_add_tail(&cap->session_caps, &session->s_caps);
  507. session->s_nr_caps++;
  508. spin_unlock(&session->s_cap_lock);
  509. } else if (new_cap)
  510. ceph_put_cap(mdsc, new_cap);
  511. if (!ci->i_snap_realm) {
  512. /*
  513. * add this inode to the appropriate snap realm
  514. */
  515. struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
  516. realmino);
  517. if (realm) {
  518. ceph_get_snap_realm(mdsc, realm);
  519. spin_lock(&realm->inodes_with_caps_lock);
  520. ci->i_snap_realm = realm;
  521. list_add(&ci->i_snap_realm_item,
  522. &realm->inodes_with_caps);
  523. spin_unlock(&realm->inodes_with_caps_lock);
  524. } else {
  525. pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
  526. realmino);
  527. WARN_ON(!realm);
  528. }
  529. }
  530. __check_cap_issue(ci, cap, issued);
  531. /*
  532. * If we are issued caps we don't want, or the mds' wanted
  533. * value appears to be off, queue a check so we'll release
  534. * later and/or update the mds wanted value.
  535. */
  536. actual_wanted = __ceph_caps_wanted(ci);
  537. if ((wanted & ~actual_wanted) ||
  538. (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
  539. dout(" issued %s, mds wanted %s, actual %s, queueing\n",
  540. ceph_cap_string(issued), ceph_cap_string(wanted),
  541. ceph_cap_string(actual_wanted));
  542. __cap_delay_requeue(mdsc, ci);
  543. }
  544. if (flags & CEPH_CAP_FLAG_AUTH)
  545. ci->i_auth_cap = cap;
  546. else if (ci->i_auth_cap == cap)
  547. ci->i_auth_cap = NULL;
  548. dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
  549. inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
  550. ceph_cap_string(issued|cap->issued), seq, mds);
  551. cap->cap_id = cap_id;
  552. cap->issued = issued;
  553. cap->implemented |= issued;
  554. cap->mds_wanted |= wanted;
  555. cap->seq = seq;
  556. cap->issue_seq = seq;
  557. cap->mseq = mseq;
  558. cap->cap_gen = session->s_cap_gen;
  559. if (fmode >= 0)
  560. __ceph_get_fmode(ci, fmode);
  561. spin_unlock(&ci->i_ceph_lock);
  562. wake_up_all(&ci->i_cap_wq);
  563. return 0;
  564. }
  565. /*
  566. * Return true if cap has not timed out and belongs to the current
  567. * generation of the MDS session (i.e. has not gone 'stale' due to
  568. * us losing touch with the mds).
  569. */
  570. static int __cap_is_valid(struct ceph_cap *cap)
  571. {
  572. unsigned long ttl;
  573. u32 gen;
  574. spin_lock(&cap->session->s_gen_ttl_lock);
  575. gen = cap->session->s_cap_gen;
  576. ttl = cap->session->s_cap_ttl;
  577. spin_unlock(&cap->session->s_gen_ttl_lock);
  578. if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
  579. dout("__cap_is_valid %p cap %p issued %s "
  580. "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
  581. cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
  582. return 0;
  583. }
  584. return 1;
  585. }
  586. /*
  587. * Return set of valid cap bits issued to us. Note that caps time
  588. * out, and may be invalidated in bulk if the client session times out
  589. * and session->s_cap_gen is bumped.
  590. */
  591. int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
  592. {
  593. int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
  594. struct ceph_cap *cap;
  595. struct rb_node *p;
  596. if (implemented)
  597. *implemented = 0;
  598. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  599. cap = rb_entry(p, struct ceph_cap, ci_node);
  600. if (!__cap_is_valid(cap))
  601. continue;
  602. dout("__ceph_caps_issued %p cap %p issued %s\n",
  603. &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
  604. have |= cap->issued;
  605. if (implemented)
  606. *implemented |= cap->implemented;
  607. }
  608. return have;
  609. }
  610. /*
  611. * Get cap bits issued by caps other than @ocap
  612. */
  613. int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
  614. {
  615. int have = ci->i_snap_caps;
  616. struct ceph_cap *cap;
  617. struct rb_node *p;
  618. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  619. cap = rb_entry(p, struct ceph_cap, ci_node);
  620. if (cap == ocap)
  621. continue;
  622. if (!__cap_is_valid(cap))
  623. continue;
  624. have |= cap->issued;
  625. }
  626. return have;
  627. }
  628. /*
  629. * Move a cap to the end of the LRU (oldest caps at list head, newest
  630. * at list tail).
  631. */
  632. static void __touch_cap(struct ceph_cap *cap)
  633. {
  634. struct ceph_mds_session *s = cap->session;
  635. spin_lock(&s->s_cap_lock);
  636. if (s->s_cap_iterator == NULL) {
  637. dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
  638. s->s_mds);
  639. list_move_tail(&cap->session_caps, &s->s_caps);
  640. } else {
  641. dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
  642. &cap->ci->vfs_inode, cap, s->s_mds);
  643. }
  644. spin_unlock(&s->s_cap_lock);
  645. }
  646. /*
  647. * Check if we hold the given mask. If so, move the cap(s) to the
  648. * front of their respective LRUs. (This is the preferred way for
  649. * callers to check for caps they want.)
  650. */
  651. int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
  652. {
  653. struct ceph_cap *cap;
  654. struct rb_node *p;
  655. int have = ci->i_snap_caps;
  656. if ((have & mask) == mask) {
  657. dout("__ceph_caps_issued_mask %p snap issued %s"
  658. " (mask %s)\n", &ci->vfs_inode,
  659. ceph_cap_string(have),
  660. ceph_cap_string(mask));
  661. return 1;
  662. }
  663. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  664. cap = rb_entry(p, struct ceph_cap, ci_node);
  665. if (!__cap_is_valid(cap))
  666. continue;
  667. if ((cap->issued & mask) == mask) {
  668. dout("__ceph_caps_issued_mask %p cap %p issued %s"
  669. " (mask %s)\n", &ci->vfs_inode, cap,
  670. ceph_cap_string(cap->issued),
  671. ceph_cap_string(mask));
  672. if (touch)
  673. __touch_cap(cap);
  674. return 1;
  675. }
  676. /* does a combination of caps satisfy mask? */
  677. have |= cap->issued;
  678. if ((have & mask) == mask) {
  679. dout("__ceph_caps_issued_mask %p combo issued %s"
  680. " (mask %s)\n", &ci->vfs_inode,
  681. ceph_cap_string(cap->issued),
  682. ceph_cap_string(mask));
  683. if (touch) {
  684. struct rb_node *q;
  685. /* touch this + preceding caps */
  686. __touch_cap(cap);
  687. for (q = rb_first(&ci->i_caps); q != p;
  688. q = rb_next(q)) {
  689. cap = rb_entry(q, struct ceph_cap,
  690. ci_node);
  691. if (!__cap_is_valid(cap))
  692. continue;
  693. __touch_cap(cap);
  694. }
  695. }
  696. return 1;
  697. }
  698. }
  699. return 0;
  700. }
  701. /*
  702. * Return true if mask caps are currently being revoked by an MDS.
  703. */
  704. int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
  705. {
  706. struct inode *inode = &ci->vfs_inode;
  707. struct ceph_cap *cap;
  708. struct rb_node *p;
  709. int ret = 0;
  710. spin_lock(&ci->i_ceph_lock);
  711. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  712. cap = rb_entry(p, struct ceph_cap, ci_node);
  713. if (__cap_is_valid(cap) &&
  714. (cap->implemented & ~cap->issued & mask)) {
  715. ret = 1;
  716. break;
  717. }
  718. }
  719. spin_unlock(&ci->i_ceph_lock);
  720. dout("ceph_caps_revoking %p %s = %d\n", inode,
  721. ceph_cap_string(mask), ret);
  722. return ret;
  723. }
  724. int __ceph_caps_used(struct ceph_inode_info *ci)
  725. {
  726. int used = 0;
  727. if (ci->i_pin_ref)
  728. used |= CEPH_CAP_PIN;
  729. if (ci->i_rd_ref)
  730. used |= CEPH_CAP_FILE_RD;
  731. if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
  732. used |= CEPH_CAP_FILE_CACHE;
  733. if (ci->i_wr_ref)
  734. used |= CEPH_CAP_FILE_WR;
  735. if (ci->i_wb_ref || ci->i_wrbuffer_ref)
  736. used |= CEPH_CAP_FILE_BUFFER;
  737. return used;
  738. }
  739. /*
  740. * wanted, by virtue of open file modes
  741. */
  742. int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
  743. {
  744. int want = 0;
  745. int mode;
  746. for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
  747. if (ci->i_nr_by_mode[mode])
  748. want |= ceph_caps_for_mode(mode);
  749. return want;
  750. }
  751. /*
  752. * Return caps we have registered with the MDS(s) as 'wanted'.
  753. */
  754. int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
  755. {
  756. struct ceph_cap *cap;
  757. struct rb_node *p;
  758. int mds_wanted = 0;
  759. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  760. cap = rb_entry(p, struct ceph_cap, ci_node);
  761. if (!__cap_is_valid(cap))
  762. continue;
  763. mds_wanted |= cap->mds_wanted;
  764. }
  765. return mds_wanted;
  766. }
  767. /*
  768. * called under i_ceph_lock
  769. */
  770. static int __ceph_is_any_caps(struct ceph_inode_info *ci)
  771. {
  772. return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
  773. }
  774. /*
  775. * Remove a cap. Take steps to deal with a racing iterate_session_caps.
  776. *
  777. * caller should hold i_ceph_lock.
  778. * caller will not hold session s_mutex if called from destroy_inode.
  779. */
  780. void __ceph_remove_cap(struct ceph_cap *cap)
  781. {
  782. struct ceph_mds_session *session = cap->session;
  783. struct ceph_inode_info *ci = cap->ci;
  784. struct ceph_mds_client *mdsc =
  785. ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
  786. int removed = 0;
  787. dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
  788. /* remove from session list */
  789. spin_lock(&session->s_cap_lock);
  790. if (session->s_cap_iterator == cap) {
  791. /* not yet, we are iterating over this very cap */
  792. dout("__ceph_remove_cap delaying %p removal from session %p\n",
  793. cap, cap->session);
  794. } else {
  795. list_del_init(&cap->session_caps);
  796. session->s_nr_caps--;
  797. cap->session = NULL;
  798. removed = 1;
  799. }
  800. /* protect backpointer with s_cap_lock: see iterate_session_caps */
  801. cap->ci = NULL;
  802. spin_unlock(&session->s_cap_lock);
  803. /* remove from inode list */
  804. rb_erase(&cap->ci_node, &ci->i_caps);
  805. if (ci->i_auth_cap == cap)
  806. ci->i_auth_cap = NULL;
  807. if (removed)
  808. ceph_put_cap(mdsc, cap);
  809. if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
  810. struct ceph_snap_realm *realm = ci->i_snap_realm;
  811. spin_lock(&realm->inodes_with_caps_lock);
  812. list_del_init(&ci->i_snap_realm_item);
  813. ci->i_snap_realm_counter++;
  814. ci->i_snap_realm = NULL;
  815. spin_unlock(&realm->inodes_with_caps_lock);
  816. ceph_put_snap_realm(mdsc, realm);
  817. }
  818. if (!__ceph_is_any_real_caps(ci))
  819. __cap_delay_cancel(mdsc, ci);
  820. }
  821. /*
  822. * Build and send a cap message to the given MDS.
  823. *
  824. * Caller should be holding s_mutex.
  825. */
  826. static int send_cap_msg(struct ceph_mds_session *session,
  827. u64 ino, u64 cid, int op,
  828. int caps, int wanted, int dirty,
  829. u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
  830. u64 size, u64 max_size,
  831. struct timespec *mtime, struct timespec *atime,
  832. u64 time_warp_seq,
  833. uid_t uid, gid_t gid, umode_t mode,
  834. u64 xattr_version,
  835. struct ceph_buffer *xattrs_buf,
  836. u64 follows)
  837. {
  838. struct ceph_mds_caps *fc;
  839. struct ceph_msg *msg;
  840. dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
  841. " seq %u/%u mseq %u follows %lld size %llu/%llu"
  842. " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
  843. cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
  844. ceph_cap_string(dirty),
  845. seq, issue_seq, mseq, follows, size, max_size,
  846. xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
  847. msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
  848. if (!msg)
  849. return -ENOMEM;
  850. msg->hdr.tid = cpu_to_le64(flush_tid);
  851. fc = msg->front.iov_base;
  852. memset(fc, 0, sizeof(*fc));
  853. fc->cap_id = cpu_to_le64(cid);
  854. fc->op = cpu_to_le32(op);
  855. fc->seq = cpu_to_le32(seq);
  856. fc->issue_seq = cpu_to_le32(issue_seq);
  857. fc->migrate_seq = cpu_to_le32(mseq);
  858. fc->caps = cpu_to_le32(caps);
  859. fc->wanted = cpu_to_le32(wanted);
  860. fc->dirty = cpu_to_le32(dirty);
  861. fc->ino = cpu_to_le64(ino);
  862. fc->snap_follows = cpu_to_le64(follows);
  863. fc->size = cpu_to_le64(size);
  864. fc->max_size = cpu_to_le64(max_size);
  865. if (mtime)
  866. ceph_encode_timespec(&fc->mtime, mtime);
  867. if (atime)
  868. ceph_encode_timespec(&fc->atime, atime);
  869. fc->time_warp_seq = cpu_to_le32(time_warp_seq);
  870. fc->uid = cpu_to_le32(uid);
  871. fc->gid = cpu_to_le32(gid);
  872. fc->mode = cpu_to_le32(mode);
  873. fc->xattr_version = cpu_to_le64(xattr_version);
  874. if (xattrs_buf) {
  875. msg->middle = ceph_buffer_get(xattrs_buf);
  876. fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
  877. msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
  878. }
  879. ceph_con_send(&session->s_con, msg);
  880. return 0;
  881. }
  882. static void __queue_cap_release(struct ceph_mds_session *session,
  883. u64 ino, u64 cap_id, u32 migrate_seq,
  884. u32 issue_seq)
  885. {
  886. struct ceph_msg *msg;
  887. struct ceph_mds_cap_release *head;
  888. struct ceph_mds_cap_item *item;
  889. spin_lock(&session->s_cap_lock);
  890. BUG_ON(!session->s_num_cap_releases);
  891. msg = list_first_entry(&session->s_cap_releases,
  892. struct ceph_msg, list_head);
  893. dout(" adding %llx release to mds%d msg %p (%d left)\n",
  894. ino, session->s_mds, msg, session->s_num_cap_releases);
  895. BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
  896. head = msg->front.iov_base;
  897. le32_add_cpu(&head->num, 1);
  898. item = msg->front.iov_base + msg->front.iov_len;
  899. item->ino = cpu_to_le64(ino);
  900. item->cap_id = cpu_to_le64(cap_id);
  901. item->migrate_seq = cpu_to_le32(migrate_seq);
  902. item->seq = cpu_to_le32(issue_seq);
  903. session->s_num_cap_releases--;
  904. msg->front.iov_len += sizeof(*item);
  905. if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
  906. dout(" release msg %p full\n", msg);
  907. list_move_tail(&msg->list_head, &session->s_cap_releases_done);
  908. } else {
  909. dout(" release msg %p at %d/%d (%d)\n", msg,
  910. (int)le32_to_cpu(head->num),
  911. (int)CEPH_CAPS_PER_RELEASE,
  912. (int)msg->front.iov_len);
  913. }
  914. spin_unlock(&session->s_cap_lock);
  915. }
  916. /*
  917. * Queue cap releases when an inode is dropped from our cache. Since
  918. * inode is about to be destroyed, there is no need for i_ceph_lock.
  919. */
  920. void ceph_queue_caps_release(struct inode *inode)
  921. {
  922. struct ceph_inode_info *ci = ceph_inode(inode);
  923. struct rb_node *p;
  924. p = rb_first(&ci->i_caps);
  925. while (p) {
  926. struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
  927. struct ceph_mds_session *session = cap->session;
  928. __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
  929. cap->mseq, cap->issue_seq);
  930. p = rb_next(p);
  931. __ceph_remove_cap(cap);
  932. }
  933. }
  934. /*
  935. * Send a cap msg on the given inode. Update our caps state, then
  936. * drop i_ceph_lock and send the message.
  937. *
  938. * Make note of max_size reported/requested from mds, revoked caps
  939. * that have now been implemented.
  940. *
  941. * Make half-hearted attempt ot to invalidate page cache if we are
  942. * dropping RDCACHE. Note that this will leave behind locked pages
  943. * that we'll then need to deal with elsewhere.
  944. *
  945. * Return non-zero if delayed release, or we experienced an error
  946. * such that the caller should requeue + retry later.
  947. *
  948. * called with i_ceph_lock, then drops it.
  949. * caller should hold snap_rwsem (read), s_mutex.
  950. */
  951. static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
  952. int op, int used, int want, int retain, int flushing,
  953. unsigned *pflush_tid)
  954. __releases(cap->ci->i_ceph_lock)
  955. {
  956. struct ceph_inode_info *ci = cap->ci;
  957. struct inode *inode = &ci->vfs_inode;
  958. u64 cap_id = cap->cap_id;
  959. int held, revoking, dropping, keep;
  960. u64 seq, issue_seq, mseq, time_warp_seq, follows;
  961. u64 size, max_size;
  962. struct timespec mtime, atime;
  963. int wake = 0;
  964. umode_t mode;
  965. uid_t uid;
  966. gid_t gid;
  967. struct ceph_mds_session *session;
  968. u64 xattr_version = 0;
  969. struct ceph_buffer *xattr_blob = NULL;
  970. int delayed = 0;
  971. u64 flush_tid = 0;
  972. int i;
  973. int ret;
  974. held = cap->issued | cap->implemented;
  975. revoking = cap->implemented & ~cap->issued;
  976. retain &= ~revoking;
  977. dropping = cap->issued & ~retain;
  978. dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
  979. inode, cap, cap->session,
  980. ceph_cap_string(held), ceph_cap_string(held & retain),
  981. ceph_cap_string(revoking));
  982. BUG_ON((retain & CEPH_CAP_PIN) == 0);
  983. session = cap->session;
  984. /* don't release wanted unless we've waited a bit. */
  985. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
  986. time_before(jiffies, ci->i_hold_caps_min)) {
  987. dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
  988. ceph_cap_string(cap->issued),
  989. ceph_cap_string(cap->issued & retain),
  990. ceph_cap_string(cap->mds_wanted),
  991. ceph_cap_string(want));
  992. want |= cap->mds_wanted;
  993. retain |= cap->issued;
  994. delayed = 1;
  995. }
  996. ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
  997. cap->issued &= retain; /* drop bits we don't want */
  998. if (cap->implemented & ~cap->issued) {
  999. /*
  1000. * Wake up any waiters on wanted -> needed transition.
  1001. * This is due to the weird transition from buffered
  1002. * to sync IO... we need to flush dirty pages _before_
  1003. * allowing sync writes to avoid reordering.
  1004. */
  1005. wake = 1;
  1006. }
  1007. cap->implemented &= cap->issued | used;
  1008. cap->mds_wanted = want;
  1009. if (flushing) {
  1010. /*
  1011. * assign a tid for flush operations so we can avoid
  1012. * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
  1013. * clean type races. track latest tid for every bit
  1014. * so we can handle flush AxFw, flush Fw, and have the
  1015. * first ack clean Ax.
  1016. */
  1017. flush_tid = ++ci->i_cap_flush_last_tid;
  1018. if (pflush_tid)
  1019. *pflush_tid = flush_tid;
  1020. dout(" cap_flush_tid %d\n", (int)flush_tid);
  1021. for (i = 0; i < CEPH_CAP_BITS; i++)
  1022. if (flushing & (1 << i))
  1023. ci->i_cap_flush_tid[i] = flush_tid;
  1024. follows = ci->i_head_snapc->seq;
  1025. } else {
  1026. follows = 0;
  1027. }
  1028. keep = cap->implemented;
  1029. seq = cap->seq;
  1030. issue_seq = cap->issue_seq;
  1031. mseq = cap->mseq;
  1032. size = inode->i_size;
  1033. ci->i_reported_size = size;
  1034. max_size = ci->i_wanted_max_size;
  1035. ci->i_requested_max_size = max_size;
  1036. mtime = inode->i_mtime;
  1037. atime = inode->i_atime;
  1038. time_warp_seq = ci->i_time_warp_seq;
  1039. uid = inode->i_uid;
  1040. gid = inode->i_gid;
  1041. mode = inode->i_mode;
  1042. if (flushing & CEPH_CAP_XATTR_EXCL) {
  1043. __ceph_build_xattrs_blob(ci);
  1044. xattr_blob = ci->i_xattrs.blob;
  1045. xattr_version = ci->i_xattrs.version;
  1046. }
  1047. spin_unlock(&ci->i_ceph_lock);
  1048. ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
  1049. op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
  1050. size, max_size, &mtime, &atime, time_warp_seq,
  1051. uid, gid, mode, xattr_version, xattr_blob,
  1052. follows);
  1053. if (ret < 0) {
  1054. dout("error sending cap msg, must requeue %p\n", inode);
  1055. delayed = 1;
  1056. }
  1057. if (wake)
  1058. wake_up_all(&ci->i_cap_wq);
  1059. return delayed;
  1060. }
  1061. /*
  1062. * When a snapshot is taken, clients accumulate dirty metadata on
  1063. * inodes with capabilities in ceph_cap_snaps to describe the file
  1064. * state at the time the snapshot was taken. This must be flushed
  1065. * asynchronously back to the MDS once sync writes complete and dirty
  1066. * data is written out.
  1067. *
  1068. * Unless @again is true, skip cap_snaps that were already sent to
  1069. * the MDS (i.e., during this session).
  1070. *
  1071. * Called under i_ceph_lock. Takes s_mutex as needed.
  1072. */
  1073. void __ceph_flush_snaps(struct ceph_inode_info *ci,
  1074. struct ceph_mds_session **psession,
  1075. int again)
  1076. __releases(ci->i_ceph_lock)
  1077. __acquires(ci->i_ceph_lock)
  1078. {
  1079. struct inode *inode = &ci->vfs_inode;
  1080. int mds;
  1081. struct ceph_cap_snap *capsnap;
  1082. u32 mseq;
  1083. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  1084. struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
  1085. session->s_mutex */
  1086. u64 next_follows = 0; /* keep track of how far we've gotten through the
  1087. i_cap_snaps list, and skip these entries next time
  1088. around to avoid an infinite loop */
  1089. if (psession)
  1090. session = *psession;
  1091. dout("__flush_snaps %p\n", inode);
  1092. retry:
  1093. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  1094. /* avoid an infiniute loop after retry */
  1095. if (capsnap->follows < next_follows)
  1096. continue;
  1097. /*
  1098. * we need to wait for sync writes to complete and for dirty
  1099. * pages to be written out.
  1100. */
  1101. if (capsnap->dirty_pages || capsnap->writing)
  1102. break;
  1103. /*
  1104. * if cap writeback already occurred, we should have dropped
  1105. * the capsnap in ceph_put_wrbuffer_cap_refs.
  1106. */
  1107. BUG_ON(capsnap->dirty == 0);
  1108. /* pick mds, take s_mutex */
  1109. if (ci->i_auth_cap == NULL) {
  1110. dout("no auth cap (migrating?), doing nothing\n");
  1111. goto out;
  1112. }
  1113. /* only flush each capsnap once */
  1114. if (!again && !list_empty(&capsnap->flushing_item)) {
  1115. dout("already flushed %p, skipping\n", capsnap);
  1116. continue;
  1117. }
  1118. mds = ci->i_auth_cap->session->s_mds;
  1119. mseq = ci->i_auth_cap->mseq;
  1120. if (session && session->s_mds != mds) {
  1121. dout("oops, wrong session %p mutex\n", session);
  1122. mutex_unlock(&session->s_mutex);
  1123. ceph_put_mds_session(session);
  1124. session = NULL;
  1125. }
  1126. if (!session) {
  1127. spin_unlock(&ci->i_ceph_lock);
  1128. mutex_lock(&mdsc->mutex);
  1129. session = __ceph_lookup_mds_session(mdsc, mds);
  1130. mutex_unlock(&mdsc->mutex);
  1131. if (session) {
  1132. dout("inverting session/ino locks on %p\n",
  1133. session);
  1134. mutex_lock(&session->s_mutex);
  1135. }
  1136. /*
  1137. * if session == NULL, we raced against a cap
  1138. * deletion or migration. retry, and we'll
  1139. * get a better @mds value next time.
  1140. */
  1141. spin_lock(&ci->i_ceph_lock);
  1142. goto retry;
  1143. }
  1144. capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
  1145. atomic_inc(&capsnap->nref);
  1146. if (!list_empty(&capsnap->flushing_item))
  1147. list_del_init(&capsnap->flushing_item);
  1148. list_add_tail(&capsnap->flushing_item,
  1149. &session->s_cap_snaps_flushing);
  1150. spin_unlock(&ci->i_ceph_lock);
  1151. dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
  1152. inode, capsnap, capsnap->follows, capsnap->flush_tid);
  1153. send_cap_msg(session, ceph_vino(inode).ino, 0,
  1154. CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
  1155. capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
  1156. capsnap->size, 0,
  1157. &capsnap->mtime, &capsnap->atime,
  1158. capsnap->time_warp_seq,
  1159. capsnap->uid, capsnap->gid, capsnap->mode,
  1160. capsnap->xattr_version, capsnap->xattr_blob,
  1161. capsnap->follows);
  1162. next_follows = capsnap->follows + 1;
  1163. ceph_put_cap_snap(capsnap);
  1164. spin_lock(&ci->i_ceph_lock);
  1165. goto retry;
  1166. }
  1167. /* we flushed them all; remove this inode from the queue */
  1168. spin_lock(&mdsc->snap_flush_lock);
  1169. list_del_init(&ci->i_snap_flush_item);
  1170. spin_unlock(&mdsc->snap_flush_lock);
  1171. out:
  1172. if (psession)
  1173. *psession = session;
  1174. else if (session) {
  1175. mutex_unlock(&session->s_mutex);
  1176. ceph_put_mds_session(session);
  1177. }
  1178. }
  1179. static void ceph_flush_snaps(struct ceph_inode_info *ci)
  1180. {
  1181. spin_lock(&ci->i_ceph_lock);
  1182. __ceph_flush_snaps(ci, NULL, 0);
  1183. spin_unlock(&ci->i_ceph_lock);
  1184. }
  1185. /*
  1186. * Mark caps dirty. If inode is newly dirty, return the dirty flags.
  1187. * Caller is then responsible for calling __mark_inode_dirty with the
  1188. * returned flags value.
  1189. */
  1190. int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
  1191. {
  1192. struct ceph_mds_client *mdsc =
  1193. ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
  1194. struct inode *inode = &ci->vfs_inode;
  1195. int was = ci->i_dirty_caps;
  1196. int dirty = 0;
  1197. dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
  1198. ceph_cap_string(mask), ceph_cap_string(was),
  1199. ceph_cap_string(was | mask));
  1200. ci->i_dirty_caps |= mask;
  1201. if (was == 0) {
  1202. if (!ci->i_head_snapc)
  1203. ci->i_head_snapc = ceph_get_snap_context(
  1204. ci->i_snap_realm->cached_context);
  1205. dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode,
  1206. ci->i_head_snapc);
  1207. BUG_ON(!list_empty(&ci->i_dirty_item));
  1208. spin_lock(&mdsc->cap_dirty_lock);
  1209. list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
  1210. spin_unlock(&mdsc->cap_dirty_lock);
  1211. if (ci->i_flushing_caps == 0) {
  1212. ihold(inode);
  1213. dirty |= I_DIRTY_SYNC;
  1214. }
  1215. }
  1216. BUG_ON(list_empty(&ci->i_dirty_item));
  1217. if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
  1218. (mask & CEPH_CAP_FILE_BUFFER))
  1219. dirty |= I_DIRTY_DATASYNC;
  1220. __cap_delay_requeue(mdsc, ci);
  1221. return dirty;
  1222. }
  1223. /*
  1224. * Add dirty inode to the flushing list. Assigned a seq number so we
  1225. * can wait for caps to flush without starving.
  1226. *
  1227. * Called under i_ceph_lock.
  1228. */
  1229. static int __mark_caps_flushing(struct inode *inode,
  1230. struct ceph_mds_session *session)
  1231. {
  1232. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  1233. struct ceph_inode_info *ci = ceph_inode(inode);
  1234. int flushing;
  1235. BUG_ON(ci->i_dirty_caps == 0);
  1236. BUG_ON(list_empty(&ci->i_dirty_item));
  1237. flushing = ci->i_dirty_caps;
  1238. dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
  1239. ceph_cap_string(flushing),
  1240. ceph_cap_string(ci->i_flushing_caps),
  1241. ceph_cap_string(ci->i_flushing_caps | flushing));
  1242. ci->i_flushing_caps |= flushing;
  1243. ci->i_dirty_caps = 0;
  1244. dout(" inode %p now !dirty\n", inode);
  1245. spin_lock(&mdsc->cap_dirty_lock);
  1246. list_del_init(&ci->i_dirty_item);
  1247. ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
  1248. if (list_empty(&ci->i_flushing_item)) {
  1249. list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
  1250. mdsc->num_cap_flushing++;
  1251. dout(" inode %p now flushing seq %lld\n", inode,
  1252. ci->i_cap_flush_seq);
  1253. } else {
  1254. list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
  1255. dout(" inode %p now flushing (more) seq %lld\n", inode,
  1256. ci->i_cap_flush_seq);
  1257. }
  1258. spin_unlock(&mdsc->cap_dirty_lock);
  1259. return flushing;
  1260. }
  1261. /*
  1262. * try to invalidate mapping pages without blocking.
  1263. */
  1264. static int try_nonblocking_invalidate(struct inode *inode)
  1265. {
  1266. struct ceph_inode_info *ci = ceph_inode(inode);
  1267. u32 invalidating_gen = ci->i_rdcache_gen;
  1268. spin_unlock(&ci->i_ceph_lock);
  1269. invalidate_mapping_pages(&inode->i_data, 0, -1);
  1270. spin_lock(&ci->i_ceph_lock);
  1271. if (inode->i_data.nrpages == 0 &&
  1272. invalidating_gen == ci->i_rdcache_gen) {
  1273. /* success. */
  1274. dout("try_nonblocking_invalidate %p success\n", inode);
  1275. /* save any racing async invalidate some trouble */
  1276. ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
  1277. return 0;
  1278. }
  1279. dout("try_nonblocking_invalidate %p failed\n", inode);
  1280. return -1;
  1281. }
  1282. /*
  1283. * Swiss army knife function to examine currently used and wanted
  1284. * versus held caps. Release, flush, ack revoked caps to mds as
  1285. * appropriate.
  1286. *
  1287. * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
  1288. * cap release further.
  1289. * CHECK_CAPS_AUTHONLY - we should only check the auth cap
  1290. * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
  1291. * further delay.
  1292. */
  1293. void ceph_check_caps(struct ceph_inode_info *ci, int flags,
  1294. struct ceph_mds_session *session)
  1295. {
  1296. struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
  1297. struct ceph_mds_client *mdsc = fsc->mdsc;
  1298. struct inode *inode = &ci->vfs_inode;
  1299. struct ceph_cap *cap;
  1300. int file_wanted, used;
  1301. int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
  1302. int issued, implemented, want, retain, revoking, flushing = 0;
  1303. int mds = -1; /* keep track of how far we've gone through i_caps list
  1304. to avoid an infinite loop on retry */
  1305. struct rb_node *p;
  1306. int tried_invalidate = 0;
  1307. int delayed = 0, sent = 0, force_requeue = 0, num;
  1308. int queue_invalidate = 0;
  1309. int is_delayed = flags & CHECK_CAPS_NODELAY;
  1310. /* if we are unmounting, flush any unused caps immediately. */
  1311. if (mdsc->stopping)
  1312. is_delayed = 1;
  1313. spin_lock(&ci->i_ceph_lock);
  1314. if (ci->i_ceph_flags & CEPH_I_FLUSH)
  1315. flags |= CHECK_CAPS_FLUSH;
  1316. /* flush snaps first time around only */
  1317. if (!list_empty(&ci->i_cap_snaps))
  1318. __ceph_flush_snaps(ci, &session, 0);
  1319. goto retry_locked;
  1320. retry:
  1321. spin_lock(&ci->i_ceph_lock);
  1322. retry_locked:
  1323. file_wanted = __ceph_caps_file_wanted(ci);
  1324. used = __ceph_caps_used(ci);
  1325. want = file_wanted | used;
  1326. issued = __ceph_caps_issued(ci, &implemented);
  1327. revoking = implemented & ~issued;
  1328. retain = want | CEPH_CAP_PIN;
  1329. if (!mdsc->stopping && inode->i_nlink > 0) {
  1330. if (want) {
  1331. retain |= CEPH_CAP_ANY; /* be greedy */
  1332. } else {
  1333. retain |= CEPH_CAP_ANY_SHARED;
  1334. /*
  1335. * keep RD only if we didn't have the file open RW,
  1336. * because then the mds would revoke it anyway to
  1337. * journal max_size=0.
  1338. */
  1339. if (ci->i_max_size == 0)
  1340. retain |= CEPH_CAP_ANY_RD;
  1341. }
  1342. }
  1343. dout("check_caps %p file_want %s used %s dirty %s flushing %s"
  1344. " issued %s revoking %s retain %s %s%s%s\n", inode,
  1345. ceph_cap_string(file_wanted),
  1346. ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
  1347. ceph_cap_string(ci->i_flushing_caps),
  1348. ceph_cap_string(issued), ceph_cap_string(revoking),
  1349. ceph_cap_string(retain),
  1350. (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
  1351. (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
  1352. (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
  1353. /*
  1354. * If we no longer need to hold onto old our caps, and we may
  1355. * have cached pages, but don't want them, then try to invalidate.
  1356. * If we fail, it's because pages are locked.... try again later.
  1357. */
  1358. if ((!is_delayed || mdsc->stopping) &&
  1359. ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
  1360. inode->i_data.nrpages && /* have cached pages */
  1361. (file_wanted == 0 || /* no open files */
  1362. (revoking & (CEPH_CAP_FILE_CACHE|
  1363. CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
  1364. !tried_invalidate) {
  1365. dout("check_caps trying to invalidate on %p\n", inode);
  1366. if (try_nonblocking_invalidate(inode) < 0) {
  1367. if (revoking & (CEPH_CAP_FILE_CACHE|
  1368. CEPH_CAP_FILE_LAZYIO)) {
  1369. dout("check_caps queuing invalidate\n");
  1370. queue_invalidate = 1;
  1371. ci->i_rdcache_revoking = ci->i_rdcache_gen;
  1372. } else {
  1373. dout("check_caps failed to invalidate pages\n");
  1374. /* we failed to invalidate pages. check these
  1375. caps again later. */
  1376. force_requeue = 1;
  1377. __cap_set_timeouts(mdsc, ci);
  1378. }
  1379. }
  1380. tried_invalidate = 1;
  1381. goto retry_locked;
  1382. }
  1383. num = 0;
  1384. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  1385. cap = rb_entry(p, struct ceph_cap, ci_node);
  1386. num++;
  1387. /* avoid looping forever */
  1388. if (mds >= cap->mds ||
  1389. ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
  1390. continue;
  1391. /* NOTE: no side-effects allowed, until we take s_mutex */
  1392. revoking = cap->implemented & ~cap->issued;
  1393. dout(" mds%d cap %p issued %s implemented %s revoking %s\n",
  1394. cap->mds, cap, ceph_cap_string(cap->issued),
  1395. ceph_cap_string(cap->implemented),
  1396. ceph_cap_string(revoking));
  1397. if (cap == ci->i_auth_cap &&
  1398. (cap->issued & CEPH_CAP_FILE_WR)) {
  1399. /* request larger max_size from MDS? */
  1400. if (ci->i_wanted_max_size > ci->i_max_size &&
  1401. ci->i_wanted_max_size > ci->i_requested_max_size) {
  1402. dout("requesting new max_size\n");
  1403. goto ack;
  1404. }
  1405. /* approaching file_max? */
  1406. if ((inode->i_size << 1) >= ci->i_max_size &&
  1407. (ci->i_reported_size << 1) < ci->i_max_size) {
  1408. dout("i_size approaching max_size\n");
  1409. goto ack;
  1410. }
  1411. }
  1412. /* flush anything dirty? */
  1413. if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
  1414. ci->i_dirty_caps) {
  1415. dout("flushing dirty caps\n");
  1416. goto ack;
  1417. }
  1418. /* completed revocation? going down and there are no caps? */
  1419. if (revoking && (revoking & used) == 0) {
  1420. dout("completed revocation of %s\n",
  1421. ceph_cap_string(cap->implemented & ~cap->issued));
  1422. goto ack;
  1423. }
  1424. /* want more caps from mds? */
  1425. if (want & ~(cap->mds_wanted | cap->issued))
  1426. goto ack;
  1427. /* things we might delay */
  1428. if ((cap->issued & ~retain) == 0 &&
  1429. cap->mds_wanted == want)
  1430. continue; /* nope, all good */
  1431. if (is_delayed)
  1432. goto ack;
  1433. /* delay? */
  1434. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
  1435. time_before(jiffies, ci->i_hold_caps_max)) {
  1436. dout(" delaying issued %s -> %s, wanted %s -> %s\n",
  1437. ceph_cap_string(cap->issued),
  1438. ceph_cap_string(cap->issued & retain),
  1439. ceph_cap_string(cap->mds_wanted),
  1440. ceph_cap_string(want));
  1441. delayed++;
  1442. continue;
  1443. }
  1444. ack:
  1445. if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
  1446. dout(" skipping %p I_NOFLUSH set\n", inode);
  1447. continue;
  1448. }
  1449. if (session && session != cap->session) {
  1450. dout("oops, wrong session %p mutex\n", session);
  1451. mutex_unlock(&session->s_mutex);
  1452. session = NULL;
  1453. }
  1454. if (!session) {
  1455. session = cap->session;
  1456. if (mutex_trylock(&session->s_mutex) == 0) {
  1457. dout("inverting session/ino locks on %p\n",
  1458. session);
  1459. spin_unlock(&ci->i_ceph_lock);
  1460. if (took_snap_rwsem) {
  1461. up_read(&mdsc->snap_rwsem);
  1462. took_snap_rwsem = 0;
  1463. }
  1464. mutex_lock(&session->s_mutex);
  1465. goto retry;
  1466. }
  1467. }
  1468. /* take snap_rwsem after session mutex */
  1469. if (!took_snap_rwsem) {
  1470. if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
  1471. dout("inverting snap/in locks on %p\n",
  1472. inode);
  1473. spin_unlock(&ci->i_ceph_lock);
  1474. down_read(&mdsc->snap_rwsem);
  1475. took_snap_rwsem = 1;
  1476. goto retry;
  1477. }
  1478. took_snap_rwsem = 1;
  1479. }
  1480. if (cap == ci->i_auth_cap && ci->i_dirty_caps)
  1481. flushing = __mark_caps_flushing(inode, session);
  1482. else
  1483. flushing = 0;
  1484. mds = cap->mds; /* remember mds, so we don't repeat */
  1485. sent++;
  1486. /* __send_cap drops i_ceph_lock */
  1487. delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
  1488. retain, flushing, NULL);
  1489. goto retry; /* retake i_ceph_lock and restart our cap scan. */
  1490. }
  1491. /*
  1492. * Reschedule delayed caps release if we delayed anything,
  1493. * otherwise cancel.
  1494. */
  1495. if (delayed && is_delayed)
  1496. force_requeue = 1; /* __send_cap delayed release; requeue */
  1497. if (!delayed && !is_delayed)
  1498. __cap_delay_cancel(mdsc, ci);
  1499. else if (!is_delayed || force_requeue)
  1500. __cap_delay_requeue(mdsc, ci);
  1501. spin_unlock(&ci->i_ceph_lock);
  1502. if (queue_invalidate)
  1503. ceph_queue_invalidate(inode);
  1504. if (session)
  1505. mutex_unlock(&session->s_mutex);
  1506. if (took_snap_rwsem)
  1507. up_read(&mdsc->snap_rwsem);
  1508. }
  1509. /*
  1510. * Try to flush dirty caps back to the auth mds.
  1511. */
  1512. static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
  1513. unsigned *flush_tid)
  1514. {
  1515. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  1516. struct ceph_inode_info *ci = ceph_inode(inode);
  1517. int unlock_session = session ? 0 : 1;
  1518. int flushing = 0;
  1519. retry:
  1520. spin_lock(&ci->i_ceph_lock);
  1521. if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
  1522. dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
  1523. goto out;
  1524. }
  1525. if (ci->i_dirty_caps && ci->i_auth_cap) {
  1526. struct ceph_cap *cap = ci->i_auth_cap;
  1527. int used = __ceph_caps_used(ci);
  1528. int want = __ceph_caps_wanted(ci);
  1529. int delayed;
  1530. if (!session) {
  1531. spin_unlock(&ci->i_ceph_lock);
  1532. session = cap->session;
  1533. mutex_lock(&session->s_mutex);
  1534. goto retry;
  1535. }
  1536. BUG_ON(session != cap->session);
  1537. if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
  1538. goto out;
  1539. flushing = __mark_caps_flushing(inode, session);
  1540. /* __send_cap drops i_ceph_lock */
  1541. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
  1542. cap->issued | cap->implemented, flushing,
  1543. flush_tid);
  1544. if (!delayed)
  1545. goto out_unlocked;
  1546. spin_lock(&ci->i_ceph_lock);
  1547. __cap_delay_requeue(mdsc, ci);
  1548. }
  1549. out:
  1550. spin_unlock(&ci->i_ceph_lock);
  1551. out_unlocked:
  1552. if (session && unlock_session)
  1553. mutex_unlock(&session->s_mutex);
  1554. return flushing;
  1555. }
  1556. /*
  1557. * Return true if we've flushed caps through the given flush_tid.
  1558. */
  1559. static int caps_are_flushed(struct inode *inode, unsigned tid)
  1560. {
  1561. struct ceph_inode_info *ci = ceph_inode(inode);
  1562. int i, ret = 1;
  1563. spin_lock(&ci->i_ceph_lock);
  1564. for (i = 0; i < CEPH_CAP_BITS; i++)
  1565. if ((ci->i_flushing_caps & (1 << i)) &&
  1566. ci->i_cap_flush_tid[i] <= tid) {
  1567. /* still flushing this bit */
  1568. ret = 0;
  1569. break;
  1570. }
  1571. spin_unlock(&ci->i_ceph_lock);
  1572. return ret;
  1573. }
  1574. /*
  1575. * Wait on any unsafe replies for the given inode. First wait on the
  1576. * newest request, and make that the upper bound. Then, if there are
  1577. * more requests, keep waiting on the oldest as long as it is still older
  1578. * than the original request.
  1579. */
  1580. static void sync_write_wait(struct inode *inode)
  1581. {
  1582. struct ceph_inode_info *ci = ceph_inode(inode);
  1583. struct list_head *head = &ci->i_unsafe_writes;
  1584. struct ceph_osd_request *req;
  1585. u64 last_tid;
  1586. spin_lock(&ci->i_unsafe_lock);
  1587. if (list_empty(head))
  1588. goto out;
  1589. /* set upper bound as _last_ entry in chain */
  1590. req = list_entry(head->prev, struct ceph_osd_request,
  1591. r_unsafe_item);
  1592. last_tid = req->r_tid;
  1593. do {
  1594. ceph_osdc_get_request(req);
  1595. spin_unlock(&ci->i_unsafe_lock);
  1596. dout("sync_write_wait on tid %llu (until %llu)\n",
  1597. req->r_tid, last_tid);
  1598. wait_for_completion(&req->r_safe_completion);
  1599. spin_lock(&ci->i_unsafe_lock);
  1600. ceph_osdc_put_request(req);
  1601. /*
  1602. * from here on look at first entry in chain, since we
  1603. * only want to wait for anything older than last_tid
  1604. */
  1605. if (list_empty(head))
  1606. break;
  1607. req = list_entry(head->next, struct ceph_osd_request,
  1608. r_unsafe_item);
  1609. } while (req->r_tid < last_tid);
  1610. out:
  1611. spin_unlock(&ci->i_unsafe_lock);
  1612. }
  1613. int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
  1614. {
  1615. struct inode *inode = file->f_mapping->host;
  1616. struct ceph_inode_info *ci = ceph_inode(inode);
  1617. unsigned flush_tid;
  1618. int ret;
  1619. int dirty;
  1620. dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
  1621. sync_write_wait(inode);
  1622. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  1623. if (ret < 0)
  1624. return ret;
  1625. mutex_lock(&inode->i_mutex);
  1626. dirty = try_flush_caps(inode, NULL, &flush_tid);
  1627. dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
  1628. /*
  1629. * only wait on non-file metadata writeback (the mds
  1630. * can recover size and mtime, so we don't need to
  1631. * wait for that)
  1632. */
  1633. if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
  1634. dout("fsync waiting for flush_tid %u\n", flush_tid);
  1635. ret = wait_event_interruptible(ci->i_cap_wq,
  1636. caps_are_flushed(inode, flush_tid));
  1637. }
  1638. dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
  1639. mutex_unlock(&inode->i_mutex);
  1640. return ret;
  1641. }
  1642. /*
  1643. * Flush any dirty caps back to the mds. If we aren't asked to wait,
  1644. * queue inode for flush but don't do so immediately, because we can
  1645. * get by with fewer MDS messages if we wait for data writeback to
  1646. * complete first.
  1647. */
  1648. int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
  1649. {
  1650. struct ceph_inode_info *ci = ceph_inode(inode);
  1651. unsigned flush_tid;
  1652. int err = 0;
  1653. int dirty;
  1654. int wait = wbc->sync_mode == WB_SYNC_ALL;
  1655. dout("write_inode %p wait=%d\n", inode, wait);
  1656. if (wait) {
  1657. dirty = try_flush_caps(inode, NULL, &flush_tid);
  1658. if (dirty)
  1659. err = wait_event_interruptible(ci->i_cap_wq,
  1660. caps_are_flushed(inode, flush_tid));
  1661. } else {
  1662. struct ceph_mds_client *mdsc =
  1663. ceph_sb_to_client(inode->i_sb)->mdsc;
  1664. spin_lock(&ci->i_ceph_lock);
  1665. if (__ceph_caps_dirty(ci))
  1666. __cap_delay_requeue_front(mdsc, ci);
  1667. spin_unlock(&ci->i_ceph_lock);
  1668. }
  1669. return err;
  1670. }
  1671. /*
  1672. * After a recovering MDS goes active, we need to resend any caps
  1673. * we were flushing.
  1674. *
  1675. * Caller holds session->s_mutex.
  1676. */
  1677. static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
  1678. struct ceph_mds_session *session)
  1679. {
  1680. struct ceph_cap_snap *capsnap;
  1681. dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
  1682. list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
  1683. flushing_item) {
  1684. struct ceph_inode_info *ci = capsnap->ci;
  1685. struct inode *inode = &ci->vfs_inode;
  1686. struct ceph_cap *cap;
  1687. spin_lock(&ci->i_ceph_lock);
  1688. cap = ci->i_auth_cap;
  1689. if (cap && cap->session == session) {
  1690. dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
  1691. cap, capsnap);
  1692. __ceph_flush_snaps(ci, &session, 1);
  1693. } else {
  1694. pr_err("%p auth cap %p not mds%d ???\n", inode,
  1695. cap, session->s_mds);
  1696. }
  1697. spin_unlock(&ci->i_ceph_lock);
  1698. }
  1699. }
  1700. void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
  1701. struct ceph_mds_session *session)
  1702. {
  1703. struct ceph_inode_info *ci;
  1704. kick_flushing_capsnaps(mdsc, session);
  1705. dout("kick_flushing_caps mds%d\n", session->s_mds);
  1706. list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
  1707. struct inode *inode = &ci->vfs_inode;
  1708. struct ceph_cap *cap;
  1709. int delayed = 0;
  1710. spin_lock(&ci->i_ceph_lock);
  1711. cap = ci->i_auth_cap;
  1712. if (cap && cap->session == session) {
  1713. dout("kick_flushing_caps %p cap %p %s\n", inode,
  1714. cap, ceph_cap_string(ci->i_flushing_caps));
  1715. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
  1716. __ceph_caps_used(ci),
  1717. __ceph_caps_wanted(ci),
  1718. cap->issued | cap->implemented,
  1719. ci->i_flushing_caps, NULL);
  1720. if (delayed) {
  1721. spin_lock(&ci->i_ceph_lock);
  1722. __cap_delay_requeue(mdsc, ci);
  1723. spin_unlock(&ci->i_ceph_lock);
  1724. }
  1725. } else {
  1726. pr_err("%p auth cap %p not mds%d ???\n", inode,
  1727. cap, session->s_mds);
  1728. spin_unlock(&ci->i_ceph_lock);
  1729. }
  1730. }
  1731. }
  1732. static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
  1733. struct ceph_mds_session *session,
  1734. struct inode *inode)
  1735. {
  1736. struct ceph_inode_info *ci = ceph_inode(inode);
  1737. struct ceph_cap *cap;
  1738. int delayed = 0;
  1739. spin_lock(&ci->i_ceph_lock);
  1740. cap = ci->i_auth_cap;
  1741. dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
  1742. ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
  1743. __ceph_flush_snaps(ci, &session, 1);
  1744. if (ci->i_flushing_caps) {
  1745. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
  1746. __ceph_caps_used(ci),
  1747. __ceph_caps_wanted(ci),
  1748. cap->issued | cap->implemented,
  1749. ci->i_flushing_caps, NULL);
  1750. if (delayed) {
  1751. spin_lock(&ci->i_ceph_lock);
  1752. __cap_delay_requeue(mdsc, ci);
  1753. spin_unlock(&ci->i_ceph_lock);
  1754. }
  1755. } else {
  1756. spin_unlock(&ci->i_ceph_lock);
  1757. }
  1758. }
  1759. /*
  1760. * Take references to capabilities we hold, so that we don't release
  1761. * them to the MDS prematurely.
  1762. *
  1763. * Protected by i_ceph_lock.
  1764. */
  1765. static void __take_cap_refs(struct ceph_inode_info *ci, int got)
  1766. {
  1767. if (got & CEPH_CAP_PIN)
  1768. ci->i_pin_ref++;
  1769. if (got & CEPH_CAP_FILE_RD)
  1770. ci->i_rd_ref++;
  1771. if (got & CEPH_CAP_FILE_CACHE)
  1772. ci->i_rdcache_ref++;
  1773. if (got & CEPH_CAP_FILE_WR)
  1774. ci->i_wr_ref++;
  1775. if (got & CEPH_CAP_FILE_BUFFER) {
  1776. if (ci->i_wb_ref == 0)
  1777. ihold(&ci->vfs_inode);
  1778. ci->i_wb_ref++;
  1779. dout("__take_cap_refs %p wb %d -> %d (?)\n",
  1780. &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
  1781. }
  1782. }
  1783. /*
  1784. * Try to grab cap references. Specify those refs we @want, and the
  1785. * minimal set we @need. Also include the larger offset we are writing
  1786. * to (when applicable), and check against max_size here as well.
  1787. * Note that caller is responsible for ensuring max_size increases are
  1788. * requested from the MDS.
  1789. */
  1790. static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
  1791. int *got, loff_t endoff, int *check_max, int *err)
  1792. {
  1793. struct inode *inode = &ci->vfs_inode;
  1794. int ret = 0;
  1795. int have, implemented;
  1796. int file_wanted;
  1797. dout("get_cap_refs %p need %s want %s\n", inode,
  1798. ceph_cap_string(need), ceph_cap_string(want));
  1799. spin_lock(&ci->i_ceph_lock);
  1800. /* make sure file is actually open */
  1801. file_wanted = __ceph_caps_file_wanted(ci);
  1802. if ((file_wanted & need) == 0) {
  1803. dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
  1804. ceph_cap_string(need), ceph_cap_string(file_wanted));
  1805. *err = -EBADF;
  1806. ret = 1;
  1807. goto out;
  1808. }
  1809. if (need & CEPH_CAP_FILE_WR) {
  1810. if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
  1811. dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
  1812. inode, endoff, ci->i_max_size);
  1813. if (endoff > ci->i_wanted_max_size) {
  1814. *check_max = 1;
  1815. ret = 1;
  1816. }
  1817. goto out;
  1818. }
  1819. /*
  1820. * If a sync write is in progress, we must wait, so that we
  1821. * can get a final snapshot value for size+mtime.
  1822. */
  1823. if (__ceph_have_pending_cap_snap(ci)) {
  1824. dout("get_cap_refs %p cap_snap_pending\n", inode);
  1825. goto out;
  1826. }
  1827. }
  1828. have = __ceph_caps_issued(ci, &implemented);
  1829. /*
  1830. * disallow writes while a truncate is pending
  1831. */
  1832. if (ci->i_truncate_pending)
  1833. have &= ~CEPH_CAP_FILE_WR;
  1834. if ((have & need) == need) {
  1835. /*
  1836. * Look at (implemented & ~have & not) so that we keep waiting
  1837. * on transition from wanted -> needed caps. This is needed
  1838. * for WRBUFFER|WR -> WR to avoid a new WR sync write from
  1839. * going before a prior buffered writeback happens.
  1840. */
  1841. int not = want & ~(have & need);
  1842. int revoking = implemented & ~have;
  1843. dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
  1844. inode, ceph_cap_string(have), ceph_cap_string(not),
  1845. ceph_cap_string(revoking));
  1846. if ((revoking & not) == 0) {
  1847. *got = need | (have & want);
  1848. __take_cap_refs(ci, *got);
  1849. ret = 1;
  1850. }
  1851. } else {
  1852. dout("get_cap_refs %p have %s needed %s\n", inode,
  1853. ceph_cap_string(have), ceph_cap_string(need));
  1854. }
  1855. out:
  1856. spin_unlock(&ci->i_ceph_lock);
  1857. dout("get_cap_refs %p ret %d got %s\n", inode,
  1858. ret, ceph_cap_string(*got));
  1859. return ret;
  1860. }
  1861. /*
  1862. * Check the offset we are writing up to against our current
  1863. * max_size. If necessary, tell the MDS we want to write to
  1864. * a larger offset.
  1865. */
  1866. static void check_max_size(struct inode *inode, loff_t endoff)
  1867. {
  1868. struct ceph_inode_info *ci = ceph_inode(inode);
  1869. int check = 0;
  1870. /* do we need to explicitly request a larger max_size? */
  1871. spin_lock(&ci->i_ceph_lock);
  1872. if ((endoff >= ci->i_max_size ||
  1873. endoff > (inode->i_size << 1)) &&
  1874. endoff > ci->i_wanted_max_size) {
  1875. dout("write %p at large endoff %llu, req max_size\n",
  1876. inode, endoff);
  1877. ci->i_wanted_max_size = endoff;
  1878. check = 1;
  1879. }
  1880. spin_unlock(&ci->i_ceph_lock);
  1881. if (check)
  1882. ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
  1883. }
  1884. /*
  1885. * Wait for caps, and take cap references. If we can't get a WR cap
  1886. * due to a small max_size, make sure we check_max_size (and possibly
  1887. * ask the mds) so we don't get hung up indefinitely.
  1888. */
  1889. int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
  1890. loff_t endoff)
  1891. {
  1892. int check_max, ret, err;
  1893. retry:
  1894. if (endoff > 0)
  1895. check_max_size(&ci->vfs_inode, endoff);
  1896. check_max = 0;
  1897. err = 0;
  1898. ret = wait_event_interruptible(ci->i_cap_wq,
  1899. try_get_cap_refs(ci, need, want,
  1900. got, endoff,
  1901. &check_max, &err));
  1902. if (err)
  1903. ret = err;
  1904. if (check_max)
  1905. goto retry;
  1906. return ret;
  1907. }
  1908. /*
  1909. * Take cap refs. Caller must already know we hold at least one ref
  1910. * on the caps in question or we don't know this is safe.
  1911. */
  1912. void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
  1913. {
  1914. spin_lock(&ci->i_ceph_lock);
  1915. __take_cap_refs(ci, caps);
  1916. spin_unlock(&ci->i_ceph_lock);
  1917. }
  1918. /*
  1919. * Release cap refs.
  1920. *
  1921. * If we released the last ref on any given cap, call ceph_check_caps
  1922. * to release (or schedule a release).
  1923. *
  1924. * If we are releasing a WR cap (from a sync write), finalize any affected
  1925. * cap_snap, and wake up any waiters.
  1926. */
  1927. void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
  1928. {
  1929. struct inode *inode = &ci->vfs_inode;
  1930. int last = 0, put = 0, flushsnaps = 0, wake = 0;
  1931. struct ceph_cap_snap *capsnap;
  1932. spin_lock(&ci->i_ceph_lock);
  1933. if (had & CEPH_CAP_PIN)
  1934. --ci->i_pin_ref;
  1935. if (had & CEPH_CAP_FILE_RD)
  1936. if (--ci->i_rd_ref == 0)
  1937. last++;
  1938. if (had & CEPH_CAP_FILE_CACHE)
  1939. if (--ci->i_rdcache_ref == 0)
  1940. last++;
  1941. if (had & CEPH_CAP_FILE_BUFFER) {
  1942. if (--ci->i_wb_ref == 0) {
  1943. last++;
  1944. put++;
  1945. }
  1946. dout("put_cap_refs %p wb %d -> %d (?)\n",
  1947. inode, ci->i_wb_ref+1, ci->i_wb_ref);
  1948. }
  1949. if (had & CEPH_CAP_FILE_WR)
  1950. if (--ci->i_wr_ref == 0) {
  1951. last++;
  1952. if (!list_empty(&ci->i_cap_snaps)) {
  1953. capsnap = list_first_entry(&ci->i_cap_snaps,
  1954. struct ceph_cap_snap,
  1955. ci_item);
  1956. if (capsnap->writing) {
  1957. capsnap->writing = 0;
  1958. flushsnaps =
  1959. __ceph_finish_cap_snap(ci,
  1960. capsnap);
  1961. wake = 1;
  1962. }
  1963. }
  1964. }
  1965. spin_unlock(&ci->i_ceph_lock);
  1966. dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
  1967. last ? " last" : "", put ? " put" : "");
  1968. if (last && !flushsnaps)
  1969. ceph_check_caps(ci, 0, NULL);
  1970. else if (flushsnaps)
  1971. ceph_flush_snaps(ci);
  1972. if (wake)
  1973. wake_up_all(&ci->i_cap_wq);
  1974. if (put)
  1975. iput(inode);
  1976. }
  1977. /*
  1978. * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
  1979. * context. Adjust per-snap dirty page accounting as appropriate.
  1980. * Once all dirty data for a cap_snap is flushed, flush snapped file
  1981. * metadata back to the MDS. If we dropped the last ref, call
  1982. * ceph_check_caps.
  1983. */
  1984. void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
  1985. struct ceph_snap_context *snapc)
  1986. {
  1987. struct inode *inode = &ci->vfs_inode;
  1988. int last = 0;
  1989. int complete_capsnap = 0;
  1990. int drop_capsnap = 0;
  1991. int found = 0;
  1992. struct ceph_cap_snap *capsnap = NULL;
  1993. spin_lock(&ci->i_ceph_lock);
  1994. ci->i_wrbuffer_ref -= nr;
  1995. last = !ci->i_wrbuffer_ref;
  1996. if (ci->i_head_snapc == snapc) {
  1997. ci->i_wrbuffer_ref_head -= nr;
  1998. if (ci->i_wrbuffer_ref_head == 0 &&
  1999. ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
  2000. BUG_ON(!ci->i_head_snapc);
  2001. ceph_put_snap_context(ci->i_head_snapc);
  2002. ci->i_head_snapc = NULL;
  2003. }
  2004. dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
  2005. inode,
  2006. ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
  2007. ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
  2008. last ? " LAST" : "");
  2009. } else {
  2010. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  2011. if (capsnap->context == snapc) {
  2012. found = 1;
  2013. break;
  2014. }
  2015. }
  2016. BUG_ON(!found);
  2017. capsnap->dirty_pages -= nr;
  2018. if (capsnap->dirty_pages == 0) {
  2019. complete_capsnap = 1;
  2020. if (capsnap->dirty == 0)
  2021. /* cap writeback completed before we created
  2022. * the cap_snap; no FLUSHSNAP is needed */
  2023. drop_capsnap = 1;
  2024. }
  2025. dout("put_wrbuffer_cap_refs on %p cap_snap %p "
  2026. " snap %lld %d/%d -> %d/%d %s%s%s\n",
  2027. inode, capsnap, capsnap->context->seq,
  2028. ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
  2029. ci->i_wrbuffer_ref, capsnap->dirty_pages,
  2030. last ? " (wrbuffer last)" : "",
  2031. complete_capsnap ? " (complete capsnap)" : "",
  2032. drop_capsnap ? " (drop capsnap)" : "");
  2033. if (drop_capsnap) {
  2034. ceph_put_snap_context(capsnap->context);
  2035. list_del(&capsnap->ci_item);
  2036. list_del(&capsnap->flushing_item);
  2037. ceph_put_cap_snap(capsnap);
  2038. }
  2039. }
  2040. spin_unlock(&ci->i_ceph_lock);
  2041. if (last) {
  2042. ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
  2043. iput(inode);
  2044. } else if (complete_capsnap) {
  2045. ceph_flush_snaps(ci);
  2046. wake_up_all(&ci->i_cap_wq);
  2047. }
  2048. if (drop_capsnap)
  2049. iput(inode);
  2050. }
  2051. /*
  2052. * Handle a cap GRANT message from the MDS. (Note that a GRANT may
  2053. * actually be a revocation if it specifies a smaller cap set.)
  2054. *
  2055. * caller holds s_mutex and i_ceph_lock, we drop both.
  2056. *
  2057. * return value:
  2058. * 0 - ok
  2059. * 1 - check_caps on auth cap only (writeback)
  2060. * 2 - check_caps (ack revoke)
  2061. */
  2062. static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
  2063. struct ceph_mds_session *session,
  2064. struct ceph_cap *cap,
  2065. struct ceph_buffer *xattr_buf)
  2066. __releases(ci->i_ceph_lock)
  2067. {
  2068. struct ceph_inode_info *ci = ceph_inode(inode);
  2069. int mds = session->s_mds;
  2070. int seq = le32_to_cpu(grant->seq);
  2071. int newcaps = le32_to_cpu(grant->caps);
  2072. int issued, implemented, used, wanted, dirty;
  2073. u64 size = le64_to_cpu(grant->size);
  2074. u64 max_size = le64_to_cpu(grant->max_size);
  2075. struct timespec mtime, atime, ctime;
  2076. int check_caps = 0;
  2077. int wake = 0;
  2078. int writeback = 0;
  2079. int revoked_rdcache = 0;
  2080. int queue_invalidate = 0;
  2081. dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
  2082. inode, cap, mds, seq, ceph_cap_string(newcaps));
  2083. dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
  2084. inode->i_size);
  2085. /*
  2086. * If CACHE is being revoked, and we have no dirty buffers,
  2087. * try to invalidate (once). (If there are dirty buffers, we
  2088. * will invalidate _after_ writeback.)
  2089. */
  2090. if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
  2091. (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
  2092. !ci->i_wrbuffer_ref) {
  2093. if (try_nonblocking_invalidate(inode) == 0) {
  2094. revoked_rdcache = 1;
  2095. } else {
  2096. /* there were locked pages.. invalidate later
  2097. in a separate thread. */
  2098. if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
  2099. queue_invalidate = 1;
  2100. ci->i_rdcache_revoking = ci->i_rdcache_gen;
  2101. }
  2102. }
  2103. }
  2104. /* side effects now are allowed */
  2105. issued = __ceph_caps_issued(ci, &implemented);
  2106. issued |= implemented | __ceph_caps_dirty(ci);
  2107. cap->cap_gen = session->s_cap_gen;
  2108. __check_cap_issue(ci, cap, newcaps);
  2109. if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
  2110. inode->i_mode = le32_to_cpu(grant->mode);
  2111. inode->i_uid = le32_to_cpu(grant->uid);
  2112. inode->i_gid = le32_to_cpu(grant->gid);
  2113. dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
  2114. inode->i_uid, inode->i_gid);
  2115. }
  2116. if ((issued & CEPH_CAP_LINK_EXCL) == 0)
  2117. set_nlink(inode, le32_to_cpu(grant->nlink));
  2118. if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
  2119. int len = le32_to_cpu(grant->xattr_len);
  2120. u64 version = le64_to_cpu(grant->xattr_version);
  2121. if (version > ci->i_xattrs.version) {
  2122. dout(" got new xattrs v%llu on %p len %d\n",
  2123. version, inode, len);
  2124. if (ci->i_xattrs.blob)
  2125. ceph_buffer_put(ci->i_xattrs.blob);
  2126. ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
  2127. ci->i_xattrs.version = version;
  2128. }
  2129. }
  2130. /* size/ctime/mtime/atime? */
  2131. ceph_fill_file_size(inode, issued,
  2132. le32_to_cpu(grant->truncate_seq),
  2133. le64_to_cpu(grant->truncate_size), size);
  2134. ceph_decode_timespec(&mtime, &grant->mtime);
  2135. ceph_decode_timespec(&atime, &grant->atime);
  2136. ceph_decode_timespec(&ctime, &grant->ctime);
  2137. ceph_fill_file_time(inode, issued,
  2138. le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
  2139. &atime);
  2140. /* max size increase? */
  2141. if (max_size != ci->i_max_size) {
  2142. dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
  2143. ci->i_max_size = max_size;
  2144. if (max_size >= ci->i_wanted_max_size) {
  2145. ci->i_wanted_max_size = 0; /* reset */
  2146. ci->i_requested_max_size = 0;
  2147. }
  2148. wake = 1;
  2149. }
  2150. /* check cap bits */
  2151. wanted = __ceph_caps_wanted(ci);
  2152. used = __ceph_caps_used(ci);
  2153. dirty = __ceph_caps_dirty(ci);
  2154. dout(" my wanted = %s, used = %s, dirty %s\n",
  2155. ceph_cap_string(wanted),
  2156. ceph_cap_string(used),
  2157. ceph_cap_string(dirty));
  2158. if (wanted != le32_to_cpu(grant->wanted)) {
  2159. dout("mds wanted %s -> %s\n",
  2160. ceph_cap_string(le32_to_cpu(grant->wanted)),
  2161. ceph_cap_string(wanted));
  2162. grant->wanted = cpu_to_le32(wanted);
  2163. }
  2164. cap->seq = seq;
  2165. /* file layout may have changed */
  2166. ci->i_layout = grant->layout;
  2167. /* revocation, grant, or no-op? */
  2168. if (cap->issued & ~newcaps) {
  2169. int revoking = cap->issued & ~newcaps;
  2170. dout("revocation: %s -> %s (revoking %s)\n",
  2171. ceph_cap_string(cap->issued),
  2172. ceph_cap_string(newcaps),
  2173. ceph_cap_string(revoking));
  2174. if (revoking & used & CEPH_CAP_FILE_BUFFER)
  2175. writeback = 1; /* initiate writeback; will delay ack */
  2176. else if (revoking == CEPH_CAP_FILE_CACHE &&
  2177. (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
  2178. queue_invalidate)
  2179. ; /* do nothing yet, invalidation will be queued */
  2180. else if (cap == ci->i_auth_cap)
  2181. check_caps = 1; /* check auth cap only */
  2182. else
  2183. check_caps = 2; /* check all caps */
  2184. cap->issued = newcaps;
  2185. cap->implemented |= newcaps;
  2186. } else if (cap->issued == newcaps) {
  2187. dout("caps unchanged: %s -> %s\n",
  2188. ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
  2189. } else {
  2190. dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
  2191. ceph_cap_string(newcaps));
  2192. cap->issued = newcaps;
  2193. cap->implemented |= newcaps; /* add bits only, to
  2194. * avoid stepping on a
  2195. * pending revocation */
  2196. wake = 1;
  2197. }
  2198. BUG_ON(cap->issued & ~cap->implemented);
  2199. spin_unlock(&ci->i_ceph_lock);
  2200. if (writeback)
  2201. /*
  2202. * queue inode for writeback: we can't actually call
  2203. * filemap_write_and_wait, etc. from message handler
  2204. * context.
  2205. */
  2206. ceph_queue_writeback(inode);
  2207. if (queue_invalidate)
  2208. ceph_queue_invalidate(inode);
  2209. if (wake)
  2210. wake_up_all(&ci->i_cap_wq);
  2211. if (check_caps == 1)
  2212. ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
  2213. session);
  2214. else if (check_caps == 2)
  2215. ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
  2216. else
  2217. mutex_unlock(&session->s_mutex);
  2218. }
  2219. /*
  2220. * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
  2221. * MDS has been safely committed.
  2222. */
  2223. static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
  2224. struct ceph_mds_caps *m,
  2225. struct ceph_mds_session *session,
  2226. struct ceph_cap *cap)
  2227. __releases(ci->i_ceph_lock)
  2228. {
  2229. struct ceph_inode_info *ci = ceph_inode(inode);
  2230. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  2231. unsigned seq = le32_to_cpu(m->seq);
  2232. int dirty = le32_to_cpu(m->dirty);
  2233. int cleaned = 0;
  2234. int drop = 0;
  2235. int i;
  2236. for (i = 0; i < CEPH_CAP_BITS; i++)
  2237. if ((dirty & (1 << i)) &&
  2238. flush_tid == ci->i_cap_flush_tid[i])
  2239. cleaned |= 1 << i;
  2240. dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
  2241. " flushing %s -> %s\n",
  2242. inode, session->s_mds, seq, ceph_cap_string(dirty),
  2243. ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
  2244. ceph_cap_string(ci->i_flushing_caps & ~cleaned));
  2245. if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
  2246. goto out;
  2247. ci->i_flushing_caps &= ~cleaned;
  2248. spin_lock(&mdsc->cap_dirty_lock);
  2249. if (ci->i_flushing_caps == 0) {
  2250. list_del_init(&ci->i_flushing_item);
  2251. if (!list_empty(&session->s_cap_flushing))
  2252. dout(" mds%d still flushing cap on %p\n",
  2253. session->s_mds,
  2254. &list_entry(session->s_cap_flushing.next,
  2255. struct ceph_inode_info,
  2256. i_flushing_item)->vfs_inode);
  2257. mdsc->num_cap_flushing--;
  2258. wake_up_all(&mdsc->cap_flushing_wq);
  2259. dout(" inode %p now !flushing\n", inode);
  2260. if (ci->i_dirty_caps == 0) {
  2261. dout(" inode %p now clean\n", inode);
  2262. BUG_ON(!list_empty(&ci->i_dirty_item));
  2263. drop = 1;
  2264. if (ci->i_wrbuffer_ref_head == 0) {
  2265. BUG_ON(!ci->i_head_snapc);
  2266. ceph_put_snap_context(ci->i_head_snapc);
  2267. ci->i_head_snapc = NULL;
  2268. }
  2269. } else {
  2270. BUG_ON(list_empty(&ci->i_dirty_item));
  2271. }
  2272. }
  2273. spin_unlock(&mdsc->cap_dirty_lock);
  2274. wake_up_all(&ci->i_cap_wq);
  2275. out:
  2276. spin_unlock(&ci->i_ceph_lock);
  2277. if (drop)
  2278. iput(inode);
  2279. }
  2280. /*
  2281. * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
  2282. * throw away our cap_snap.
  2283. *
  2284. * Caller hold s_mutex.
  2285. */
  2286. static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
  2287. struct ceph_mds_caps *m,
  2288. struct ceph_mds_session *session)
  2289. {
  2290. struct ceph_inode_info *ci = ceph_inode(inode);
  2291. u64 follows = le64_to_cpu(m->snap_follows);
  2292. struct ceph_cap_snap *capsnap;
  2293. int drop = 0;
  2294. dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
  2295. inode, ci, session->s_mds, follows);
  2296. spin_lock(&ci->i_ceph_lock);
  2297. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  2298. if (capsnap->follows == follows) {
  2299. if (capsnap->flush_tid != flush_tid) {
  2300. dout(" cap_snap %p follows %lld tid %lld !="
  2301. " %lld\n", capsnap, follows,
  2302. flush_tid, capsnap->flush_tid);
  2303. break;
  2304. }
  2305. WARN_ON(capsnap->dirty_pages || capsnap->writing);
  2306. dout(" removing %p cap_snap %p follows %lld\n",
  2307. inode, capsnap, follows);
  2308. ceph_put_snap_context(capsnap->context);
  2309. list_del(&capsnap->ci_item);
  2310. list_del(&capsnap->flushing_item);
  2311. ceph_put_cap_snap(capsnap);
  2312. drop = 1;
  2313. break;
  2314. } else {
  2315. dout(" skipping cap_snap %p follows %lld\n",
  2316. capsnap, capsnap->follows);
  2317. }
  2318. }
  2319. spin_unlock(&ci->i_ceph_lock);
  2320. if (drop)
  2321. iput(inode);
  2322. }
  2323. /*
  2324. * Handle TRUNC from MDS, indicating file truncation.
  2325. *
  2326. * caller hold s_mutex.
  2327. */
  2328. static void handle_cap_trunc(struct inode *inode,
  2329. struct ceph_mds_caps *trunc,
  2330. struct ceph_mds_session *session)
  2331. __releases(ci->i_ceph_lock)
  2332. {
  2333. struct ceph_inode_info *ci = ceph_inode(inode);
  2334. int mds = session->s_mds;
  2335. int seq = le32_to_cpu(trunc->seq);
  2336. u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
  2337. u64 truncate_size = le64_to_cpu(trunc->truncate_size);
  2338. u64 size = le64_to_cpu(trunc->size);
  2339. int implemented = 0;
  2340. int dirty = __ceph_caps_dirty(ci);
  2341. int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
  2342. int queue_trunc = 0;
  2343. issued |= implemented | dirty;
  2344. dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
  2345. inode, mds, seq, truncate_size, truncate_seq);
  2346. queue_trunc = ceph_fill_file_size(inode, issued,
  2347. truncate_seq, truncate_size, size);
  2348. spin_unlock(&ci->i_ceph_lock);
  2349. if (queue_trunc)
  2350. ceph_queue_vmtruncate(inode);
  2351. }
  2352. /*
  2353. * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
  2354. * different one. If we are the most recent migration we've seen (as
  2355. * indicated by mseq), make note of the migrating cap bits for the
  2356. * duration (until we see the corresponding IMPORT).
  2357. *
  2358. * caller holds s_mutex
  2359. */
  2360. static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
  2361. struct ceph_mds_session *session,
  2362. int *open_target_sessions)
  2363. {
  2364. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  2365. struct ceph_inode_info *ci = ceph_inode(inode);
  2366. int mds = session->s_mds;
  2367. unsigned mseq = le32_to_cpu(ex->migrate_seq);
  2368. struct ceph_cap *cap = NULL, *t;
  2369. struct rb_node *p;
  2370. int remember = 1;
  2371. dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
  2372. inode, ci, mds, mseq);
  2373. spin_lock(&ci->i_ceph_lock);
  2374. /* make sure we haven't seen a higher mseq */
  2375. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  2376. t = rb_entry(p, struct ceph_cap, ci_node);
  2377. if (ceph_seq_cmp(t->mseq, mseq) > 0) {
  2378. dout(" higher mseq on cap from mds%d\n",
  2379. t->session->s_mds);
  2380. remember = 0;
  2381. }
  2382. if (t->session->s_mds == mds)
  2383. cap = t;
  2384. }
  2385. if (cap) {
  2386. if (remember) {
  2387. /* make note */
  2388. ci->i_cap_exporting_mds = mds;
  2389. ci->i_cap_exporting_mseq = mseq;
  2390. ci->i_cap_exporting_issued = cap->issued;
  2391. /*
  2392. * make sure we have open sessions with all possible
  2393. * export targets, so that we get the matching IMPORT
  2394. */
  2395. *open_target_sessions = 1;
  2396. /*
  2397. * we can't flush dirty caps that we've seen the
  2398. * EXPORT but no IMPORT for
  2399. */
  2400. spin_lock(&mdsc->cap_dirty_lock);
  2401. if (!list_empty(&ci->i_dirty_item)) {
  2402. dout(" moving %p to cap_dirty_migrating\n",
  2403. inode);
  2404. list_move(&ci->i_dirty_item,
  2405. &mdsc->cap_dirty_migrating);
  2406. }
  2407. spin_unlock(&mdsc->cap_dirty_lock);
  2408. }
  2409. __ceph_remove_cap(cap);
  2410. }
  2411. /* else, we already released it */
  2412. spin_unlock(&ci->i_ceph_lock);
  2413. }
  2414. /*
  2415. * Handle cap IMPORT. If there are temp bits from an older EXPORT,
  2416. * clean them up.
  2417. *
  2418. * caller holds s_mutex.
  2419. */
  2420. static void handle_cap_import(struct ceph_mds_client *mdsc,
  2421. struct inode *inode, struct ceph_mds_caps *im,
  2422. struct ceph_mds_session *session,
  2423. void *snaptrace, int snaptrace_len)
  2424. {
  2425. struct ceph_inode_info *ci = ceph_inode(inode);
  2426. int mds = session->s_mds;
  2427. unsigned issued = le32_to_cpu(im->caps);
  2428. unsigned wanted = le32_to_cpu(im->wanted);
  2429. unsigned seq = le32_to_cpu(im->seq);
  2430. unsigned mseq = le32_to_cpu(im->migrate_seq);
  2431. u64 realmino = le64_to_cpu(im->realm);
  2432. u64 cap_id = le64_to_cpu(im->cap_id);
  2433. if (ci->i_cap_exporting_mds >= 0 &&
  2434. ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
  2435. dout("handle_cap_import inode %p ci %p mds%d mseq %d"
  2436. " - cleared exporting from mds%d\n",
  2437. inode, ci, mds, mseq,
  2438. ci->i_cap_exporting_mds);
  2439. ci->i_cap_exporting_issued = 0;
  2440. ci->i_cap_exporting_mseq = 0;
  2441. ci->i_cap_exporting_mds = -1;
  2442. spin_lock(&mdsc->cap_dirty_lock);
  2443. if (!list_empty(&ci->i_dirty_item)) {
  2444. dout(" moving %p back to cap_dirty\n", inode);
  2445. list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
  2446. }
  2447. spin_unlock(&mdsc->cap_dirty_lock);
  2448. } else {
  2449. dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
  2450. inode, ci, mds, mseq);
  2451. }
  2452. down_write(&mdsc->snap_rwsem);
  2453. ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
  2454. false);
  2455. downgrade_write(&mdsc->snap_rwsem);
  2456. ceph_add_cap(inode, session, cap_id, -1,
  2457. issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
  2458. NULL /* no caps context */);
  2459. kick_flushing_inode_caps(mdsc, session, inode);
  2460. up_read(&mdsc->snap_rwsem);
  2461. /* make sure we re-request max_size, if necessary */
  2462. spin_lock(&ci->i_ceph_lock);
  2463. ci->i_requested_max_size = 0;
  2464. spin_unlock(&ci->i_ceph_lock);
  2465. }
  2466. /*
  2467. * Handle a caps message from the MDS.
  2468. *
  2469. * Identify the appropriate session, inode, and call the right handler
  2470. * based on the cap op.
  2471. */
  2472. void ceph_handle_caps(struct ceph_mds_session *session,
  2473. struct ceph_msg *msg)
  2474. {
  2475. struct ceph_mds_client *mdsc = session->s_mdsc;
  2476. struct super_block *sb = mdsc->fsc->sb;
  2477. struct inode *inode;
  2478. struct ceph_inode_info *ci;
  2479. struct ceph_cap *cap;
  2480. struct ceph_mds_caps *h;
  2481. int mds = session->s_mds;
  2482. int op;
  2483. u32 seq, mseq;
  2484. struct ceph_vino vino;
  2485. u64 cap_id;
  2486. u64 size, max_size;
  2487. u64 tid;
  2488. void *snaptrace;
  2489. size_t snaptrace_len;
  2490. void *flock;
  2491. u32 flock_len;
  2492. int open_target_sessions = 0;
  2493. dout("handle_caps from mds%d\n", mds);
  2494. /* decode */
  2495. tid = le64_to_cpu(msg->hdr.tid);
  2496. if (msg->front.iov_len < sizeof(*h))
  2497. goto bad;
  2498. h = msg->front.iov_base;
  2499. op = le32_to_cpu(h->op);
  2500. vino.ino = le64_to_cpu(h->ino);
  2501. vino.snap = CEPH_NOSNAP;
  2502. cap_id = le64_to_cpu(h->cap_id);
  2503. seq = le32_to_cpu(h->seq);
  2504. mseq = le32_to_cpu(h->migrate_seq);
  2505. size = le64_to_cpu(h->size);
  2506. max_size = le64_to_cpu(h->max_size);
  2507. snaptrace = h + 1;
  2508. snaptrace_len = le32_to_cpu(h->snap_trace_len);
  2509. if (le16_to_cpu(msg->hdr.version) >= 2) {
  2510. void *p, *end;
  2511. p = snaptrace + snaptrace_len;
  2512. end = msg->front.iov_base + msg->front.iov_len;
  2513. ceph_decode_32_safe(&p, end, flock_len, bad);
  2514. flock = p;
  2515. } else {
  2516. flock = NULL;
  2517. flock_len = 0;
  2518. }
  2519. mutex_lock(&session->s_mutex);
  2520. session->s_seq++;
  2521. dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
  2522. (unsigned)seq);
  2523. /* lookup ino */
  2524. inode = ceph_find_inode(sb, vino);
  2525. ci = ceph_inode(inode);
  2526. dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
  2527. vino.snap, inode);
  2528. if (!inode) {
  2529. dout(" i don't have ino %llx\n", vino.ino);
  2530. if (op == CEPH_CAP_OP_IMPORT)
  2531. __queue_cap_release(session, vino.ino, cap_id,
  2532. mseq, seq);
  2533. goto flush_cap_releases;
  2534. }
  2535. /* these will work even if we don't have a cap yet */
  2536. switch (op) {
  2537. case CEPH_CAP_OP_FLUSHSNAP_ACK:
  2538. handle_cap_flushsnap_ack(inode, tid, h, session);
  2539. goto done;
  2540. case CEPH_CAP_OP_EXPORT:
  2541. handle_cap_export(inode, h, session, &open_target_sessions);
  2542. goto done;
  2543. case CEPH_CAP_OP_IMPORT:
  2544. handle_cap_import(mdsc, inode, h, session,
  2545. snaptrace, snaptrace_len);
  2546. ceph_check_caps(ceph_inode(inode), 0, session);
  2547. goto done_unlocked;
  2548. }
  2549. /* the rest require a cap */
  2550. spin_lock(&ci->i_ceph_lock);
  2551. cap = __get_cap_for_mds(ceph_inode(inode), mds);
  2552. if (!cap) {
  2553. dout(" no cap on %p ino %llx.%llx from mds%d\n",
  2554. inode, ceph_ino(inode), ceph_snap(inode), mds);
  2555. spin_unlock(&ci->i_ceph_lock);
  2556. goto flush_cap_releases;
  2557. }
  2558. /* note that each of these drops i_ceph_lock for us */
  2559. switch (op) {
  2560. case CEPH_CAP_OP_REVOKE:
  2561. case CEPH_CAP_OP_GRANT:
  2562. handle_cap_grant(inode, h, session, cap, msg->middle);
  2563. goto done_unlocked;
  2564. case CEPH_CAP_OP_FLUSH_ACK:
  2565. handle_cap_flush_ack(inode, tid, h, session, cap);
  2566. break;
  2567. case CEPH_CAP_OP_TRUNC:
  2568. handle_cap_trunc(inode, h, session);
  2569. break;
  2570. default:
  2571. spin_unlock(&ci->i_ceph_lock);
  2572. pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
  2573. ceph_cap_op_name(op));
  2574. }
  2575. goto done;
  2576. flush_cap_releases:
  2577. /*
  2578. * send any full release message to try to move things
  2579. * along for the mds (who clearly thinks we still have this
  2580. * cap).
  2581. */
  2582. ceph_add_cap_releases(mdsc, session);
  2583. ceph_send_cap_releases(mdsc, session);
  2584. done:
  2585. mutex_unlock(&session->s_mutex);
  2586. done_unlocked:
  2587. if (inode)
  2588. iput(inode);
  2589. if (open_target_sessions)
  2590. ceph_mdsc_open_export_target_sessions(mdsc, session);
  2591. return;
  2592. bad:
  2593. pr_err("ceph_handle_caps: corrupt message\n");
  2594. ceph_msg_dump(msg);
  2595. return;
  2596. }
  2597. /*
  2598. * Delayed work handler to process end of delayed cap release LRU list.
  2599. */
  2600. void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
  2601. {
  2602. struct ceph_inode_info *ci;
  2603. int flags = CHECK_CAPS_NODELAY;
  2604. dout("check_delayed_caps\n");
  2605. while (1) {
  2606. spin_lock(&mdsc->cap_delay_lock);
  2607. if (list_empty(&mdsc->cap_delay_list))
  2608. break;
  2609. ci = list_first_entry(&mdsc->cap_delay_list,
  2610. struct ceph_inode_info,
  2611. i_cap_delay_list);
  2612. if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
  2613. time_before(jiffies, ci->i_hold_caps_max))
  2614. break;
  2615. list_del_init(&ci->i_cap_delay_list);
  2616. spin_unlock(&mdsc->cap_delay_lock);
  2617. dout("check_delayed_caps on %p\n", &ci->vfs_inode);
  2618. ceph_check_caps(ci, flags, NULL);
  2619. }
  2620. spin_unlock(&mdsc->cap_delay_lock);
  2621. }
  2622. /*
  2623. * Flush all dirty caps to the mds
  2624. */
  2625. void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
  2626. {
  2627. struct ceph_inode_info *ci;
  2628. struct inode *inode;
  2629. dout("flush_dirty_caps\n");
  2630. spin_lock(&mdsc->cap_dirty_lock);
  2631. while (!list_empty(&mdsc->cap_dirty)) {
  2632. ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
  2633. i_dirty_item);
  2634. inode = &ci->vfs_inode;
  2635. ihold(inode);
  2636. dout("flush_dirty_caps %p\n", inode);
  2637. spin_unlock(&mdsc->cap_dirty_lock);
  2638. ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
  2639. iput(inode);
  2640. spin_lock(&mdsc->cap_dirty_lock);
  2641. }
  2642. spin_unlock(&mdsc->cap_dirty_lock);
  2643. dout("flush_dirty_caps done\n");
  2644. }
  2645. /*
  2646. * Drop open file reference. If we were the last open file,
  2647. * we may need to release capabilities to the MDS (or schedule
  2648. * their delayed release).
  2649. */
  2650. void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
  2651. {
  2652. struct inode *inode = &ci->vfs_inode;
  2653. int last = 0;
  2654. spin_lock(&ci->i_ceph_lock);
  2655. dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
  2656. ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
  2657. BUG_ON(ci->i_nr_by_mode[fmode] == 0);
  2658. if (--ci->i_nr_by_mode[fmode] == 0)
  2659. last++;
  2660. spin_unlock(&ci->i_ceph_lock);
  2661. if (last && ci->i_vino.snap == CEPH_NOSNAP)
  2662. ceph_check_caps(ci, 0, NULL);
  2663. }
  2664. /*
  2665. * Helpers for embedding cap and dentry lease releases into mds
  2666. * requests.
  2667. *
  2668. * @force is used by dentry_release (below) to force inclusion of a
  2669. * record for the directory inode, even when there aren't any caps to
  2670. * drop.
  2671. */
  2672. int ceph_encode_inode_release(void **p, struct inode *inode,
  2673. int mds, int drop, int unless, int force)
  2674. {
  2675. struct ceph_inode_info *ci = ceph_inode(inode);
  2676. struct ceph_cap *cap;
  2677. struct ceph_mds_request_release *rel = *p;
  2678. int used, dirty;
  2679. int ret = 0;
  2680. spin_lock(&ci->i_ceph_lock);
  2681. used = __ceph_caps_used(ci);
  2682. dirty = __ceph_caps_dirty(ci);
  2683. dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
  2684. inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
  2685. ceph_cap_string(unless));
  2686. /* only drop unused, clean caps */
  2687. drop &= ~(used | dirty);
  2688. cap = __get_cap_for_mds(ci, mds);
  2689. if (cap && __cap_is_valid(cap)) {
  2690. if (force ||
  2691. ((cap->issued & drop) &&
  2692. (cap->issued & unless) == 0)) {
  2693. if ((cap->issued & drop) &&
  2694. (cap->issued & unless) == 0) {
  2695. dout("encode_inode_release %p cap %p %s -> "
  2696. "%s\n", inode, cap,
  2697. ceph_cap_string(cap->issued),
  2698. ceph_cap_string(cap->issued & ~drop));
  2699. cap->issued &= ~drop;
  2700. cap->implemented &= ~drop;
  2701. if (ci->i_ceph_flags & CEPH_I_NODELAY) {
  2702. int wanted = __ceph_caps_wanted(ci);
  2703. dout(" wanted %s -> %s (act %s)\n",
  2704. ceph_cap_string(cap->mds_wanted),
  2705. ceph_cap_string(cap->mds_wanted &
  2706. ~wanted),
  2707. ceph_cap_string(wanted));
  2708. cap->mds_wanted &= wanted;
  2709. }
  2710. } else {
  2711. dout("encode_inode_release %p cap %p %s"
  2712. " (force)\n", inode, cap,
  2713. ceph_cap_string(cap->issued));
  2714. }
  2715. rel->ino = cpu_to_le64(ceph_ino(inode));
  2716. rel->cap_id = cpu_to_le64(cap->cap_id);
  2717. rel->seq = cpu_to_le32(cap->seq);
  2718. rel->issue_seq = cpu_to_le32(cap->issue_seq),
  2719. rel->mseq = cpu_to_le32(cap->mseq);
  2720. rel->caps = cpu_to_le32(cap->issued);
  2721. rel->wanted = cpu_to_le32(cap->mds_wanted);
  2722. rel->dname_len = 0;
  2723. rel->dname_seq = 0;
  2724. *p += sizeof(*rel);
  2725. ret = 1;
  2726. } else {
  2727. dout("encode_inode_release %p cap %p %s\n",
  2728. inode, cap, ceph_cap_string(cap->issued));
  2729. }
  2730. }
  2731. spin_unlock(&ci->i_ceph_lock);
  2732. return ret;
  2733. }
  2734. int ceph_encode_dentry_release(void **p, struct dentry *dentry,
  2735. int mds, int drop, int unless)
  2736. {
  2737. struct inode *dir = dentry->d_parent->d_inode;
  2738. struct ceph_mds_request_release *rel = *p;
  2739. struct ceph_dentry_info *di = ceph_dentry(dentry);
  2740. int force = 0;
  2741. int ret;
  2742. /*
  2743. * force an record for the directory caps if we have a dentry lease.
  2744. * this is racy (can't take i_ceph_lock and d_lock together), but it
  2745. * doesn't have to be perfect; the mds will revoke anything we don't
  2746. * release.
  2747. */
  2748. spin_lock(&dentry->d_lock);
  2749. if (di->lease_session && di->lease_session->s_mds == mds)
  2750. force = 1;
  2751. spin_unlock(&dentry->d_lock);
  2752. ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
  2753. spin_lock(&dentry->d_lock);
  2754. if (ret && di->lease_session && di->lease_session->s_mds == mds) {
  2755. dout("encode_dentry_release %p mds%d seq %d\n",
  2756. dentry, mds, (int)di->lease_seq);
  2757. rel->dname_len = cpu_to_le32(dentry->d_name.len);
  2758. memcpy(*p, dentry->d_name.name, dentry->d_name.len);
  2759. *p += dentry->d_name.len;
  2760. rel->dname_seq = cpu_to_le32(di->lease_seq);
  2761. __ceph_mdsc_drop_dentry_lease(dentry);
  2762. }
  2763. spin_unlock(&dentry->d_lock);
  2764. return ret;
  2765. }