md.c 142 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define ITERATE_MDDEV(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (request_queue_t *q, struct bio *bio)
  178. {
  179. bio_io_error(bio, bio->bi_size);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_unregister(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->queue = blk_alloc_queue(GFP_KERNEL);
  233. if (!new->queue) {
  234. kfree(new);
  235. return NULL;
  236. }
  237. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  238. blk_queue_make_request(new->queue, md_fail_request);
  239. goto retry;
  240. }
  241. static inline int mddev_lock(mddev_t * mddev)
  242. {
  243. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  244. }
  245. static inline int mddev_trylock(mddev_t * mddev)
  246. {
  247. return mutex_trylock(&mddev->reconfig_mutex);
  248. }
  249. static inline void mddev_unlock(mddev_t * mddev)
  250. {
  251. mutex_unlock(&mddev->reconfig_mutex);
  252. md_wakeup_thread(mddev->thread);
  253. }
  254. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  255. {
  256. mdk_rdev_t * rdev;
  257. struct list_head *tmp;
  258. ITERATE_RDEV(mddev,rdev,tmp) {
  259. if (rdev->desc_nr == nr)
  260. return rdev;
  261. }
  262. return NULL;
  263. }
  264. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  265. {
  266. struct list_head *tmp;
  267. mdk_rdev_t *rdev;
  268. ITERATE_RDEV(mddev,rdev,tmp) {
  269. if (rdev->bdev->bd_dev == dev)
  270. return rdev;
  271. }
  272. return NULL;
  273. }
  274. static struct mdk_personality *find_pers(int level, char *clevel)
  275. {
  276. struct mdk_personality *pers;
  277. list_for_each_entry(pers, &pers_list, list) {
  278. if (level != LEVEL_NONE && pers->level == level)
  279. return pers;
  280. if (strcmp(pers->name, clevel)==0)
  281. return pers;
  282. }
  283. return NULL;
  284. }
  285. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  286. {
  287. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  288. return MD_NEW_SIZE_BLOCKS(size);
  289. }
  290. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  291. {
  292. sector_t size;
  293. size = rdev->sb_offset;
  294. if (chunk_size)
  295. size &= ~((sector_t)chunk_size/1024 - 1);
  296. return size;
  297. }
  298. static int alloc_disk_sb(mdk_rdev_t * rdev)
  299. {
  300. if (rdev->sb_page)
  301. MD_BUG();
  302. rdev->sb_page = alloc_page(GFP_KERNEL);
  303. if (!rdev->sb_page) {
  304. printk(KERN_ALERT "md: out of memory.\n");
  305. return -EINVAL;
  306. }
  307. return 0;
  308. }
  309. static void free_disk_sb(mdk_rdev_t * rdev)
  310. {
  311. if (rdev->sb_page) {
  312. put_page(rdev->sb_page);
  313. rdev->sb_loaded = 0;
  314. rdev->sb_page = NULL;
  315. rdev->sb_offset = 0;
  316. rdev->size = 0;
  317. }
  318. }
  319. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  320. {
  321. mdk_rdev_t *rdev = bio->bi_private;
  322. mddev_t *mddev = rdev->mddev;
  323. if (bio->bi_size)
  324. return 1;
  325. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  326. printk("md: super_written gets error=%d, uptodate=%d\n",
  327. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  329. md_error(mddev, rdev);
  330. }
  331. if (atomic_dec_and_test(&mddev->pending_writes))
  332. wake_up(&mddev->sb_wait);
  333. bio_put(bio);
  334. return 0;
  335. }
  336. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  337. {
  338. struct bio *bio2 = bio->bi_private;
  339. mdk_rdev_t *rdev = bio2->bi_private;
  340. mddev_t *mddev = rdev->mddev;
  341. if (bio->bi_size)
  342. return 1;
  343. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  344. error == -EOPNOTSUPP) {
  345. unsigned long flags;
  346. /* barriers don't appear to be supported :-( */
  347. set_bit(BarriersNotsupp, &rdev->flags);
  348. mddev->barriers_work = 0;
  349. spin_lock_irqsave(&mddev->write_lock, flags);
  350. bio2->bi_next = mddev->biolist;
  351. mddev->biolist = bio2;
  352. spin_unlock_irqrestore(&mddev->write_lock, flags);
  353. wake_up(&mddev->sb_wait);
  354. bio_put(bio);
  355. return 0;
  356. }
  357. bio_put(bio2);
  358. bio->bi_private = rdev;
  359. return super_written(bio, bytes_done, error);
  360. }
  361. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  362. sector_t sector, int size, struct page *page)
  363. {
  364. /* write first size bytes of page to sector of rdev
  365. * Increment mddev->pending_writes before returning
  366. * and decrement it on completion, waking up sb_wait
  367. * if zero is reached.
  368. * If an error occurred, call md_error
  369. *
  370. * As we might need to resubmit the request if BIO_RW_BARRIER
  371. * causes ENOTSUPP, we allocate a spare bio...
  372. */
  373. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  374. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  375. bio->bi_bdev = rdev->bdev;
  376. bio->bi_sector = sector;
  377. bio_add_page(bio, page, size, 0);
  378. bio->bi_private = rdev;
  379. bio->bi_end_io = super_written;
  380. bio->bi_rw = rw;
  381. atomic_inc(&mddev->pending_writes);
  382. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  383. struct bio *rbio;
  384. rw |= (1<<BIO_RW_BARRIER);
  385. rbio = bio_clone(bio, GFP_NOIO);
  386. rbio->bi_private = bio;
  387. rbio->bi_end_io = super_written_barrier;
  388. submit_bio(rw, rbio);
  389. } else
  390. submit_bio(rw, bio);
  391. }
  392. void md_super_wait(mddev_t *mddev)
  393. {
  394. /* wait for all superblock writes that were scheduled to complete.
  395. * if any had to be retried (due to BARRIER problems), retry them
  396. */
  397. DEFINE_WAIT(wq);
  398. for(;;) {
  399. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  400. if (atomic_read(&mddev->pending_writes)==0)
  401. break;
  402. while (mddev->biolist) {
  403. struct bio *bio;
  404. spin_lock_irq(&mddev->write_lock);
  405. bio = mddev->biolist;
  406. mddev->biolist = bio->bi_next ;
  407. bio->bi_next = NULL;
  408. spin_unlock_irq(&mddev->write_lock);
  409. submit_bio(bio->bi_rw, bio);
  410. }
  411. schedule();
  412. }
  413. finish_wait(&mddev->sb_wait, &wq);
  414. }
  415. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  416. {
  417. if (bio->bi_size)
  418. return 1;
  419. complete((struct completion*)bio->bi_private);
  420. return 0;
  421. }
  422. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  423. struct page *page, int rw)
  424. {
  425. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  426. struct completion event;
  427. int ret;
  428. rw |= (1 << BIO_RW_SYNC);
  429. bio->bi_bdev = bdev;
  430. bio->bi_sector = sector;
  431. bio_add_page(bio, page, size, 0);
  432. init_completion(&event);
  433. bio->bi_private = &event;
  434. bio->bi_end_io = bi_complete;
  435. submit_bio(rw, bio);
  436. wait_for_completion(&event);
  437. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  438. bio_put(bio);
  439. return ret;
  440. }
  441. EXPORT_SYMBOL_GPL(sync_page_io);
  442. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  443. {
  444. char b[BDEVNAME_SIZE];
  445. if (!rdev->sb_page) {
  446. MD_BUG();
  447. return -EINVAL;
  448. }
  449. if (rdev->sb_loaded)
  450. return 0;
  451. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  452. goto fail;
  453. rdev->sb_loaded = 1;
  454. return 0;
  455. fail:
  456. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  457. bdevname(rdev->bdev,b));
  458. return -EINVAL;
  459. }
  460. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  461. {
  462. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  463. (sb1->set_uuid1 == sb2->set_uuid1) &&
  464. (sb1->set_uuid2 == sb2->set_uuid2) &&
  465. (sb1->set_uuid3 == sb2->set_uuid3))
  466. return 1;
  467. return 0;
  468. }
  469. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  470. {
  471. int ret;
  472. mdp_super_t *tmp1, *tmp2;
  473. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  474. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  475. if (!tmp1 || !tmp2) {
  476. ret = 0;
  477. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  478. goto abort;
  479. }
  480. *tmp1 = *sb1;
  481. *tmp2 = *sb2;
  482. /*
  483. * nr_disks is not constant
  484. */
  485. tmp1->nr_disks = 0;
  486. tmp2->nr_disks = 0;
  487. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  488. ret = 0;
  489. else
  490. ret = 1;
  491. abort:
  492. kfree(tmp1);
  493. kfree(tmp2);
  494. return ret;
  495. }
  496. static u32 md_csum_fold(u32 csum)
  497. {
  498. csum = (csum & 0xffff) + (csum >> 16);
  499. return (csum & 0xffff) + (csum >> 16);
  500. }
  501. static unsigned int calc_sb_csum(mdp_super_t * sb)
  502. {
  503. u64 newcsum = 0;
  504. u32 *sb32 = (u32*)sb;
  505. int i;
  506. unsigned int disk_csum, csum;
  507. disk_csum = sb->sb_csum;
  508. sb->sb_csum = 0;
  509. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  510. newcsum += sb32[i];
  511. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  512. #ifdef CONFIG_ALPHA
  513. /* This used to use csum_partial, which was wrong for several
  514. * reasons including that different results are returned on
  515. * different architectures. It isn't critical that we get exactly
  516. * the same return value as before (we always csum_fold before
  517. * testing, and that removes any differences). However as we
  518. * know that csum_partial always returned a 16bit value on
  519. * alphas, do a fold to maximise conformity to previous behaviour.
  520. */
  521. sb->sb_csum = md_csum_fold(disk_csum);
  522. #else
  523. sb->sb_csum = disk_csum;
  524. #endif
  525. return csum;
  526. }
  527. /*
  528. * Handle superblock details.
  529. * We want to be able to handle multiple superblock formats
  530. * so we have a common interface to them all, and an array of
  531. * different handlers.
  532. * We rely on user-space to write the initial superblock, and support
  533. * reading and updating of superblocks.
  534. * Interface methods are:
  535. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  536. * loads and validates a superblock on dev.
  537. * if refdev != NULL, compare superblocks on both devices
  538. * Return:
  539. * 0 - dev has a superblock that is compatible with refdev
  540. * 1 - dev has a superblock that is compatible and newer than refdev
  541. * so dev should be used as the refdev in future
  542. * -EINVAL superblock incompatible or invalid
  543. * -othererror e.g. -EIO
  544. *
  545. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  546. * Verify that dev is acceptable into mddev.
  547. * The first time, mddev->raid_disks will be 0, and data from
  548. * dev should be merged in. Subsequent calls check that dev
  549. * is new enough. Return 0 or -EINVAL
  550. *
  551. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  552. * Update the superblock for rdev with data in mddev
  553. * This does not write to disc.
  554. *
  555. */
  556. struct super_type {
  557. char *name;
  558. struct module *owner;
  559. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  560. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  561. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  562. };
  563. /*
  564. * load_super for 0.90.0
  565. */
  566. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  567. {
  568. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  569. mdp_super_t *sb;
  570. int ret;
  571. sector_t sb_offset;
  572. /*
  573. * Calculate the position of the superblock,
  574. * it's at the end of the disk.
  575. *
  576. * It also happens to be a multiple of 4Kb.
  577. */
  578. sb_offset = calc_dev_sboffset(rdev->bdev);
  579. rdev->sb_offset = sb_offset;
  580. ret = read_disk_sb(rdev, MD_SB_BYTES);
  581. if (ret) return ret;
  582. ret = -EINVAL;
  583. bdevname(rdev->bdev, b);
  584. sb = (mdp_super_t*)page_address(rdev->sb_page);
  585. if (sb->md_magic != MD_SB_MAGIC) {
  586. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  587. b);
  588. goto abort;
  589. }
  590. if (sb->major_version != 0 ||
  591. sb->minor_version < 90 ||
  592. sb->minor_version > 91) {
  593. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  594. sb->major_version, sb->minor_version,
  595. b);
  596. goto abort;
  597. }
  598. if (sb->raid_disks <= 0)
  599. goto abort;
  600. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  601. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  602. b);
  603. goto abort;
  604. }
  605. rdev->preferred_minor = sb->md_minor;
  606. rdev->data_offset = 0;
  607. rdev->sb_size = MD_SB_BYTES;
  608. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  609. if (sb->level != 1 && sb->level != 4
  610. && sb->level != 5 && sb->level != 6
  611. && sb->level != 10) {
  612. /* FIXME use a better test */
  613. printk(KERN_WARNING
  614. "md: bitmaps not supported for this level.\n");
  615. goto abort;
  616. }
  617. }
  618. if (sb->level == LEVEL_MULTIPATH)
  619. rdev->desc_nr = -1;
  620. else
  621. rdev->desc_nr = sb->this_disk.number;
  622. if (refdev == 0)
  623. ret = 1;
  624. else {
  625. __u64 ev1, ev2;
  626. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  627. if (!uuid_equal(refsb, sb)) {
  628. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  629. b, bdevname(refdev->bdev,b2));
  630. goto abort;
  631. }
  632. if (!sb_equal(refsb, sb)) {
  633. printk(KERN_WARNING "md: %s has same UUID"
  634. " but different superblock to %s\n",
  635. b, bdevname(refdev->bdev, b2));
  636. goto abort;
  637. }
  638. ev1 = md_event(sb);
  639. ev2 = md_event(refsb);
  640. if (ev1 > ev2)
  641. ret = 1;
  642. else
  643. ret = 0;
  644. }
  645. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  646. if (rdev->size < sb->size && sb->level > 1)
  647. /* "this cannot possibly happen" ... */
  648. ret = -EINVAL;
  649. abort:
  650. return ret;
  651. }
  652. /*
  653. * validate_super for 0.90.0
  654. */
  655. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  656. {
  657. mdp_disk_t *desc;
  658. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  659. __u64 ev1 = md_event(sb);
  660. rdev->raid_disk = -1;
  661. rdev->flags = 0;
  662. if (mddev->raid_disks == 0) {
  663. mddev->major_version = 0;
  664. mddev->minor_version = sb->minor_version;
  665. mddev->patch_version = sb->patch_version;
  666. mddev->persistent = ! sb->not_persistent;
  667. mddev->chunk_size = sb->chunk_size;
  668. mddev->ctime = sb->ctime;
  669. mddev->utime = sb->utime;
  670. mddev->level = sb->level;
  671. mddev->clevel[0] = 0;
  672. mddev->layout = sb->layout;
  673. mddev->raid_disks = sb->raid_disks;
  674. mddev->size = sb->size;
  675. mddev->events = ev1;
  676. mddev->bitmap_offset = 0;
  677. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  678. if (mddev->minor_version >= 91) {
  679. mddev->reshape_position = sb->reshape_position;
  680. mddev->delta_disks = sb->delta_disks;
  681. mddev->new_level = sb->new_level;
  682. mddev->new_layout = sb->new_layout;
  683. mddev->new_chunk = sb->new_chunk;
  684. } else {
  685. mddev->reshape_position = MaxSector;
  686. mddev->delta_disks = 0;
  687. mddev->new_level = mddev->level;
  688. mddev->new_layout = mddev->layout;
  689. mddev->new_chunk = mddev->chunk_size;
  690. }
  691. if (sb->state & (1<<MD_SB_CLEAN))
  692. mddev->recovery_cp = MaxSector;
  693. else {
  694. if (sb->events_hi == sb->cp_events_hi &&
  695. sb->events_lo == sb->cp_events_lo) {
  696. mddev->recovery_cp = sb->recovery_cp;
  697. } else
  698. mddev->recovery_cp = 0;
  699. }
  700. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  701. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  702. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  703. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  704. mddev->max_disks = MD_SB_DISKS;
  705. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  706. mddev->bitmap_file == NULL)
  707. mddev->bitmap_offset = mddev->default_bitmap_offset;
  708. } else if (mddev->pers == NULL) {
  709. /* Insist on good event counter while assembling */
  710. ++ev1;
  711. if (ev1 < mddev->events)
  712. return -EINVAL;
  713. } else if (mddev->bitmap) {
  714. /* if adding to array with a bitmap, then we can accept an
  715. * older device ... but not too old.
  716. */
  717. if (ev1 < mddev->bitmap->events_cleared)
  718. return 0;
  719. } else {
  720. if (ev1 < mddev->events)
  721. /* just a hot-add of a new device, leave raid_disk at -1 */
  722. return 0;
  723. }
  724. if (mddev->level != LEVEL_MULTIPATH) {
  725. desc = sb->disks + rdev->desc_nr;
  726. if (desc->state & (1<<MD_DISK_FAULTY))
  727. set_bit(Faulty, &rdev->flags);
  728. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  729. desc->raid_disk < mddev->raid_disks */) {
  730. set_bit(In_sync, &rdev->flags);
  731. rdev->raid_disk = desc->raid_disk;
  732. }
  733. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  734. set_bit(WriteMostly, &rdev->flags);
  735. } else /* MULTIPATH are always insync */
  736. set_bit(In_sync, &rdev->flags);
  737. return 0;
  738. }
  739. /*
  740. * sync_super for 0.90.0
  741. */
  742. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  743. {
  744. mdp_super_t *sb;
  745. struct list_head *tmp;
  746. mdk_rdev_t *rdev2;
  747. int next_spare = mddev->raid_disks;
  748. /* make rdev->sb match mddev data..
  749. *
  750. * 1/ zero out disks
  751. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  752. * 3/ any empty disks < next_spare become removed
  753. *
  754. * disks[0] gets initialised to REMOVED because
  755. * we cannot be sure from other fields if it has
  756. * been initialised or not.
  757. */
  758. int i;
  759. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  760. rdev->sb_size = MD_SB_BYTES;
  761. sb = (mdp_super_t*)page_address(rdev->sb_page);
  762. memset(sb, 0, sizeof(*sb));
  763. sb->md_magic = MD_SB_MAGIC;
  764. sb->major_version = mddev->major_version;
  765. sb->patch_version = mddev->patch_version;
  766. sb->gvalid_words = 0; /* ignored */
  767. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  768. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  769. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  770. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  771. sb->ctime = mddev->ctime;
  772. sb->level = mddev->level;
  773. sb->size = mddev->size;
  774. sb->raid_disks = mddev->raid_disks;
  775. sb->md_minor = mddev->md_minor;
  776. sb->not_persistent = !mddev->persistent;
  777. sb->utime = mddev->utime;
  778. sb->state = 0;
  779. sb->events_hi = (mddev->events>>32);
  780. sb->events_lo = (u32)mddev->events;
  781. if (mddev->reshape_position == MaxSector)
  782. sb->minor_version = 90;
  783. else {
  784. sb->minor_version = 91;
  785. sb->reshape_position = mddev->reshape_position;
  786. sb->new_level = mddev->new_level;
  787. sb->delta_disks = mddev->delta_disks;
  788. sb->new_layout = mddev->new_layout;
  789. sb->new_chunk = mddev->new_chunk;
  790. }
  791. mddev->minor_version = sb->minor_version;
  792. if (mddev->in_sync)
  793. {
  794. sb->recovery_cp = mddev->recovery_cp;
  795. sb->cp_events_hi = (mddev->events>>32);
  796. sb->cp_events_lo = (u32)mddev->events;
  797. if (mddev->recovery_cp == MaxSector)
  798. sb->state = (1<< MD_SB_CLEAN);
  799. } else
  800. sb->recovery_cp = 0;
  801. sb->layout = mddev->layout;
  802. sb->chunk_size = mddev->chunk_size;
  803. if (mddev->bitmap && mddev->bitmap_file == NULL)
  804. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  805. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  806. ITERATE_RDEV(mddev,rdev2,tmp) {
  807. mdp_disk_t *d;
  808. int desc_nr;
  809. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  810. && !test_bit(Faulty, &rdev2->flags))
  811. desc_nr = rdev2->raid_disk;
  812. else
  813. desc_nr = next_spare++;
  814. rdev2->desc_nr = desc_nr;
  815. d = &sb->disks[rdev2->desc_nr];
  816. nr_disks++;
  817. d->number = rdev2->desc_nr;
  818. d->major = MAJOR(rdev2->bdev->bd_dev);
  819. d->minor = MINOR(rdev2->bdev->bd_dev);
  820. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  821. && !test_bit(Faulty, &rdev2->flags))
  822. d->raid_disk = rdev2->raid_disk;
  823. else
  824. d->raid_disk = rdev2->desc_nr; /* compatibility */
  825. if (test_bit(Faulty, &rdev2->flags))
  826. d->state = (1<<MD_DISK_FAULTY);
  827. else if (test_bit(In_sync, &rdev2->flags)) {
  828. d->state = (1<<MD_DISK_ACTIVE);
  829. d->state |= (1<<MD_DISK_SYNC);
  830. active++;
  831. working++;
  832. } else {
  833. d->state = 0;
  834. spare++;
  835. working++;
  836. }
  837. if (test_bit(WriteMostly, &rdev2->flags))
  838. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  839. }
  840. /* now set the "removed" and "faulty" bits on any missing devices */
  841. for (i=0 ; i < mddev->raid_disks ; i++) {
  842. mdp_disk_t *d = &sb->disks[i];
  843. if (d->state == 0 && d->number == 0) {
  844. d->number = i;
  845. d->raid_disk = i;
  846. d->state = (1<<MD_DISK_REMOVED);
  847. d->state |= (1<<MD_DISK_FAULTY);
  848. failed++;
  849. }
  850. }
  851. sb->nr_disks = nr_disks;
  852. sb->active_disks = active;
  853. sb->working_disks = working;
  854. sb->failed_disks = failed;
  855. sb->spare_disks = spare;
  856. sb->this_disk = sb->disks[rdev->desc_nr];
  857. sb->sb_csum = calc_sb_csum(sb);
  858. }
  859. /*
  860. * version 1 superblock
  861. */
  862. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  863. {
  864. __le32 disk_csum;
  865. u32 csum;
  866. unsigned long long newcsum;
  867. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  868. __le32 *isuper = (__le32*)sb;
  869. int i;
  870. disk_csum = sb->sb_csum;
  871. sb->sb_csum = 0;
  872. newcsum = 0;
  873. for (i=0; size>=4; size -= 4 )
  874. newcsum += le32_to_cpu(*isuper++);
  875. if (size == 2)
  876. newcsum += le16_to_cpu(*(__le16*) isuper);
  877. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  878. sb->sb_csum = disk_csum;
  879. return cpu_to_le32(csum);
  880. }
  881. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  882. {
  883. struct mdp_superblock_1 *sb;
  884. int ret;
  885. sector_t sb_offset;
  886. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  887. int bmask;
  888. /*
  889. * Calculate the position of the superblock.
  890. * It is always aligned to a 4K boundary and
  891. * depeding on minor_version, it can be:
  892. * 0: At least 8K, but less than 12K, from end of device
  893. * 1: At start of device
  894. * 2: 4K from start of device.
  895. */
  896. switch(minor_version) {
  897. case 0:
  898. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  899. sb_offset -= 8*2;
  900. sb_offset &= ~(sector_t)(4*2-1);
  901. /* convert from sectors to K */
  902. sb_offset /= 2;
  903. break;
  904. case 1:
  905. sb_offset = 0;
  906. break;
  907. case 2:
  908. sb_offset = 4;
  909. break;
  910. default:
  911. return -EINVAL;
  912. }
  913. rdev->sb_offset = sb_offset;
  914. /* superblock is rarely larger than 1K, but it can be larger,
  915. * and it is safe to read 4k, so we do that
  916. */
  917. ret = read_disk_sb(rdev, 4096);
  918. if (ret) return ret;
  919. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  920. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  921. sb->major_version != cpu_to_le32(1) ||
  922. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  923. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  924. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  925. return -EINVAL;
  926. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  927. printk("md: invalid superblock checksum on %s\n",
  928. bdevname(rdev->bdev,b));
  929. return -EINVAL;
  930. }
  931. if (le64_to_cpu(sb->data_size) < 10) {
  932. printk("md: data_size too small on %s\n",
  933. bdevname(rdev->bdev,b));
  934. return -EINVAL;
  935. }
  936. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  937. if (sb->level != cpu_to_le32(1) &&
  938. sb->level != cpu_to_le32(4) &&
  939. sb->level != cpu_to_le32(5) &&
  940. sb->level != cpu_to_le32(6) &&
  941. sb->level != cpu_to_le32(10)) {
  942. printk(KERN_WARNING
  943. "md: bitmaps not supported for this level.\n");
  944. return -EINVAL;
  945. }
  946. }
  947. rdev->preferred_minor = 0xffff;
  948. rdev->data_offset = le64_to_cpu(sb->data_offset);
  949. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  950. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  951. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  952. if (rdev->sb_size & bmask)
  953. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  954. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  955. rdev->desc_nr = -1;
  956. else
  957. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  958. if (refdev == 0)
  959. ret = 1;
  960. else {
  961. __u64 ev1, ev2;
  962. struct mdp_superblock_1 *refsb =
  963. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  964. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  965. sb->level != refsb->level ||
  966. sb->layout != refsb->layout ||
  967. sb->chunksize != refsb->chunksize) {
  968. printk(KERN_WARNING "md: %s has strangely different"
  969. " superblock to %s\n",
  970. bdevname(rdev->bdev,b),
  971. bdevname(refdev->bdev,b2));
  972. return -EINVAL;
  973. }
  974. ev1 = le64_to_cpu(sb->events);
  975. ev2 = le64_to_cpu(refsb->events);
  976. if (ev1 > ev2)
  977. ret = 1;
  978. else
  979. ret = 0;
  980. }
  981. if (minor_version)
  982. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  983. else
  984. rdev->size = rdev->sb_offset;
  985. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  986. return -EINVAL;
  987. rdev->size = le64_to_cpu(sb->data_size)/2;
  988. if (le32_to_cpu(sb->chunksize))
  989. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  990. if (le64_to_cpu(sb->size) > rdev->size*2)
  991. return -EINVAL;
  992. return ret;
  993. }
  994. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  995. {
  996. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  997. __u64 ev1 = le64_to_cpu(sb->events);
  998. rdev->raid_disk = -1;
  999. rdev->flags = 0;
  1000. if (mddev->raid_disks == 0) {
  1001. mddev->major_version = 1;
  1002. mddev->patch_version = 0;
  1003. mddev->persistent = 1;
  1004. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1005. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1006. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1007. mddev->level = le32_to_cpu(sb->level);
  1008. mddev->clevel[0] = 0;
  1009. mddev->layout = le32_to_cpu(sb->layout);
  1010. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1011. mddev->size = le64_to_cpu(sb->size)/2;
  1012. mddev->events = ev1;
  1013. mddev->bitmap_offset = 0;
  1014. mddev->default_bitmap_offset = 1024 >> 9;
  1015. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1016. memcpy(mddev->uuid, sb->set_uuid, 16);
  1017. mddev->max_disks = (4096-256)/2;
  1018. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1019. mddev->bitmap_file == NULL )
  1020. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1021. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1022. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1023. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1024. mddev->new_level = le32_to_cpu(sb->new_level);
  1025. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1026. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1027. } else {
  1028. mddev->reshape_position = MaxSector;
  1029. mddev->delta_disks = 0;
  1030. mddev->new_level = mddev->level;
  1031. mddev->new_layout = mddev->layout;
  1032. mddev->new_chunk = mddev->chunk_size;
  1033. }
  1034. } else if (mddev->pers == NULL) {
  1035. /* Insist of good event counter while assembling */
  1036. ++ev1;
  1037. if (ev1 < mddev->events)
  1038. return -EINVAL;
  1039. } else if (mddev->bitmap) {
  1040. /* If adding to array with a bitmap, then we can accept an
  1041. * older device, but not too old.
  1042. */
  1043. if (ev1 < mddev->bitmap->events_cleared)
  1044. return 0;
  1045. } else {
  1046. if (ev1 < mddev->events)
  1047. /* just a hot-add of a new device, leave raid_disk at -1 */
  1048. return 0;
  1049. }
  1050. if (mddev->level != LEVEL_MULTIPATH) {
  1051. int role;
  1052. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1053. switch(role) {
  1054. case 0xffff: /* spare */
  1055. break;
  1056. case 0xfffe: /* faulty */
  1057. set_bit(Faulty, &rdev->flags);
  1058. break;
  1059. default:
  1060. if ((le32_to_cpu(sb->feature_map) &
  1061. MD_FEATURE_RECOVERY_OFFSET))
  1062. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1063. else
  1064. set_bit(In_sync, &rdev->flags);
  1065. rdev->raid_disk = role;
  1066. break;
  1067. }
  1068. if (sb->devflags & WriteMostly1)
  1069. set_bit(WriteMostly, &rdev->flags);
  1070. } else /* MULTIPATH are always insync */
  1071. set_bit(In_sync, &rdev->flags);
  1072. return 0;
  1073. }
  1074. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1075. {
  1076. struct mdp_superblock_1 *sb;
  1077. struct list_head *tmp;
  1078. mdk_rdev_t *rdev2;
  1079. int max_dev, i;
  1080. /* make rdev->sb match mddev and rdev data. */
  1081. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1082. sb->feature_map = 0;
  1083. sb->pad0 = 0;
  1084. sb->recovery_offset = cpu_to_le64(0);
  1085. memset(sb->pad1, 0, sizeof(sb->pad1));
  1086. memset(sb->pad2, 0, sizeof(sb->pad2));
  1087. memset(sb->pad3, 0, sizeof(sb->pad3));
  1088. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1089. sb->events = cpu_to_le64(mddev->events);
  1090. if (mddev->in_sync)
  1091. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1092. else
  1093. sb->resync_offset = cpu_to_le64(0);
  1094. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1095. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1096. sb->size = cpu_to_le64(mddev->size<<1);
  1097. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1098. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1099. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1100. }
  1101. if (rdev->raid_disk >= 0 &&
  1102. !test_bit(In_sync, &rdev->flags) &&
  1103. rdev->recovery_offset > 0) {
  1104. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1105. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1106. }
  1107. if (mddev->reshape_position != MaxSector) {
  1108. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1109. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1110. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1111. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1112. sb->new_level = cpu_to_le32(mddev->new_level);
  1113. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1114. }
  1115. max_dev = 0;
  1116. ITERATE_RDEV(mddev,rdev2,tmp)
  1117. if (rdev2->desc_nr+1 > max_dev)
  1118. max_dev = rdev2->desc_nr+1;
  1119. sb->max_dev = cpu_to_le32(max_dev);
  1120. for (i=0; i<max_dev;i++)
  1121. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1122. ITERATE_RDEV(mddev,rdev2,tmp) {
  1123. i = rdev2->desc_nr;
  1124. if (test_bit(Faulty, &rdev2->flags))
  1125. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1126. else if (test_bit(In_sync, &rdev2->flags))
  1127. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1128. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1129. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1130. else
  1131. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1132. }
  1133. sb->sb_csum = calc_sb_1_csum(sb);
  1134. }
  1135. static struct super_type super_types[] = {
  1136. [0] = {
  1137. .name = "0.90.0",
  1138. .owner = THIS_MODULE,
  1139. .load_super = super_90_load,
  1140. .validate_super = super_90_validate,
  1141. .sync_super = super_90_sync,
  1142. },
  1143. [1] = {
  1144. .name = "md-1",
  1145. .owner = THIS_MODULE,
  1146. .load_super = super_1_load,
  1147. .validate_super = super_1_validate,
  1148. .sync_super = super_1_sync,
  1149. },
  1150. };
  1151. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1152. {
  1153. struct list_head *tmp, *tmp2;
  1154. mdk_rdev_t *rdev, *rdev2;
  1155. ITERATE_RDEV(mddev1,rdev,tmp)
  1156. ITERATE_RDEV(mddev2, rdev2, tmp2)
  1157. if (rdev->bdev->bd_contains ==
  1158. rdev2->bdev->bd_contains)
  1159. return 1;
  1160. return 0;
  1161. }
  1162. static LIST_HEAD(pending_raid_disks);
  1163. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1164. {
  1165. char b[BDEVNAME_SIZE];
  1166. struct kobject *ko;
  1167. char *s;
  1168. int err;
  1169. if (rdev->mddev) {
  1170. MD_BUG();
  1171. return -EINVAL;
  1172. }
  1173. /* make sure rdev->size exceeds mddev->size */
  1174. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1175. if (mddev->pers)
  1176. /* Cannot change size, so fail */
  1177. return -ENOSPC;
  1178. else
  1179. mddev->size = rdev->size;
  1180. }
  1181. /* Verify rdev->desc_nr is unique.
  1182. * If it is -1, assign a free number, else
  1183. * check number is not in use
  1184. */
  1185. if (rdev->desc_nr < 0) {
  1186. int choice = 0;
  1187. if (mddev->pers) choice = mddev->raid_disks;
  1188. while (find_rdev_nr(mddev, choice))
  1189. choice++;
  1190. rdev->desc_nr = choice;
  1191. } else {
  1192. if (find_rdev_nr(mddev, rdev->desc_nr))
  1193. return -EBUSY;
  1194. }
  1195. bdevname(rdev->bdev,b);
  1196. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1197. return -ENOMEM;
  1198. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1199. *s = '!';
  1200. rdev->mddev = mddev;
  1201. printk(KERN_INFO "md: bind<%s>\n", b);
  1202. rdev->kobj.parent = &mddev->kobj;
  1203. if ((err = kobject_add(&rdev->kobj)))
  1204. goto fail;
  1205. if (rdev->bdev->bd_part)
  1206. ko = &rdev->bdev->bd_part->kobj;
  1207. else
  1208. ko = &rdev->bdev->bd_disk->kobj;
  1209. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1210. kobject_del(&rdev->kobj);
  1211. goto fail;
  1212. }
  1213. list_add(&rdev->same_set, &mddev->disks);
  1214. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1215. return 0;
  1216. fail:
  1217. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1218. b, mdname(mddev));
  1219. return err;
  1220. }
  1221. static void delayed_delete(struct work_struct *ws)
  1222. {
  1223. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1224. kobject_del(&rdev->kobj);
  1225. }
  1226. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1227. {
  1228. char b[BDEVNAME_SIZE];
  1229. if (!rdev->mddev) {
  1230. MD_BUG();
  1231. return;
  1232. }
  1233. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1234. list_del_init(&rdev->same_set);
  1235. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1236. rdev->mddev = NULL;
  1237. sysfs_remove_link(&rdev->kobj, "block");
  1238. /* We need to delay this, otherwise we can deadlock when
  1239. * writing to 'remove' to "dev/state"
  1240. */
  1241. INIT_WORK(&rdev->del_work, delayed_delete);
  1242. schedule_work(&rdev->del_work);
  1243. }
  1244. /*
  1245. * prevent the device from being mounted, repartitioned or
  1246. * otherwise reused by a RAID array (or any other kernel
  1247. * subsystem), by bd_claiming the device.
  1248. */
  1249. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1250. {
  1251. int err = 0;
  1252. struct block_device *bdev;
  1253. char b[BDEVNAME_SIZE];
  1254. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1255. if (IS_ERR(bdev)) {
  1256. printk(KERN_ERR "md: could not open %s.\n",
  1257. __bdevname(dev, b));
  1258. return PTR_ERR(bdev);
  1259. }
  1260. err = bd_claim(bdev, rdev);
  1261. if (err) {
  1262. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1263. bdevname(bdev, b));
  1264. blkdev_put(bdev);
  1265. return err;
  1266. }
  1267. rdev->bdev = bdev;
  1268. return err;
  1269. }
  1270. static void unlock_rdev(mdk_rdev_t *rdev)
  1271. {
  1272. struct block_device *bdev = rdev->bdev;
  1273. rdev->bdev = NULL;
  1274. if (!bdev)
  1275. MD_BUG();
  1276. bd_release(bdev);
  1277. blkdev_put(bdev);
  1278. }
  1279. void md_autodetect_dev(dev_t dev);
  1280. static void export_rdev(mdk_rdev_t * rdev)
  1281. {
  1282. char b[BDEVNAME_SIZE];
  1283. printk(KERN_INFO "md: export_rdev(%s)\n",
  1284. bdevname(rdev->bdev,b));
  1285. if (rdev->mddev)
  1286. MD_BUG();
  1287. free_disk_sb(rdev);
  1288. list_del_init(&rdev->same_set);
  1289. #ifndef MODULE
  1290. md_autodetect_dev(rdev->bdev->bd_dev);
  1291. #endif
  1292. unlock_rdev(rdev);
  1293. kobject_put(&rdev->kobj);
  1294. }
  1295. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1296. {
  1297. unbind_rdev_from_array(rdev);
  1298. export_rdev(rdev);
  1299. }
  1300. static void export_array(mddev_t *mddev)
  1301. {
  1302. struct list_head *tmp;
  1303. mdk_rdev_t *rdev;
  1304. ITERATE_RDEV(mddev,rdev,tmp) {
  1305. if (!rdev->mddev) {
  1306. MD_BUG();
  1307. continue;
  1308. }
  1309. kick_rdev_from_array(rdev);
  1310. }
  1311. if (!list_empty(&mddev->disks))
  1312. MD_BUG();
  1313. mddev->raid_disks = 0;
  1314. mddev->major_version = 0;
  1315. }
  1316. static void print_desc(mdp_disk_t *desc)
  1317. {
  1318. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1319. desc->major,desc->minor,desc->raid_disk,desc->state);
  1320. }
  1321. static void print_sb(mdp_super_t *sb)
  1322. {
  1323. int i;
  1324. printk(KERN_INFO
  1325. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1326. sb->major_version, sb->minor_version, sb->patch_version,
  1327. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1328. sb->ctime);
  1329. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1330. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1331. sb->md_minor, sb->layout, sb->chunk_size);
  1332. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1333. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1334. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1335. sb->failed_disks, sb->spare_disks,
  1336. sb->sb_csum, (unsigned long)sb->events_lo);
  1337. printk(KERN_INFO);
  1338. for (i = 0; i < MD_SB_DISKS; i++) {
  1339. mdp_disk_t *desc;
  1340. desc = sb->disks + i;
  1341. if (desc->number || desc->major || desc->minor ||
  1342. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1343. printk(" D %2d: ", i);
  1344. print_desc(desc);
  1345. }
  1346. }
  1347. printk(KERN_INFO "md: THIS: ");
  1348. print_desc(&sb->this_disk);
  1349. }
  1350. static void print_rdev(mdk_rdev_t *rdev)
  1351. {
  1352. char b[BDEVNAME_SIZE];
  1353. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1354. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1355. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1356. rdev->desc_nr);
  1357. if (rdev->sb_loaded) {
  1358. printk(KERN_INFO "md: rdev superblock:\n");
  1359. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1360. } else
  1361. printk(KERN_INFO "md: no rdev superblock!\n");
  1362. }
  1363. static void md_print_devices(void)
  1364. {
  1365. struct list_head *tmp, *tmp2;
  1366. mdk_rdev_t *rdev;
  1367. mddev_t *mddev;
  1368. char b[BDEVNAME_SIZE];
  1369. printk("\n");
  1370. printk("md: **********************************\n");
  1371. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1372. printk("md: **********************************\n");
  1373. ITERATE_MDDEV(mddev,tmp) {
  1374. if (mddev->bitmap)
  1375. bitmap_print_sb(mddev->bitmap);
  1376. else
  1377. printk("%s: ", mdname(mddev));
  1378. ITERATE_RDEV(mddev,rdev,tmp2)
  1379. printk("<%s>", bdevname(rdev->bdev,b));
  1380. printk("\n");
  1381. ITERATE_RDEV(mddev,rdev,tmp2)
  1382. print_rdev(rdev);
  1383. }
  1384. printk("md: **********************************\n");
  1385. printk("\n");
  1386. }
  1387. static void sync_sbs(mddev_t * mddev, int nospares)
  1388. {
  1389. /* Update each superblock (in-memory image), but
  1390. * if we are allowed to, skip spares which already
  1391. * have the right event counter, or have one earlier
  1392. * (which would mean they aren't being marked as dirty
  1393. * with the rest of the array)
  1394. */
  1395. mdk_rdev_t *rdev;
  1396. struct list_head *tmp;
  1397. ITERATE_RDEV(mddev,rdev,tmp) {
  1398. if (rdev->sb_events == mddev->events ||
  1399. (nospares &&
  1400. rdev->raid_disk < 0 &&
  1401. (rdev->sb_events&1)==0 &&
  1402. rdev->sb_events+1 == mddev->events)) {
  1403. /* Don't update this superblock */
  1404. rdev->sb_loaded = 2;
  1405. } else {
  1406. super_types[mddev->major_version].
  1407. sync_super(mddev, rdev);
  1408. rdev->sb_loaded = 1;
  1409. }
  1410. }
  1411. }
  1412. static void md_update_sb(mddev_t * mddev, int force_change)
  1413. {
  1414. int err;
  1415. struct list_head *tmp;
  1416. mdk_rdev_t *rdev;
  1417. int sync_req;
  1418. int nospares = 0;
  1419. repeat:
  1420. spin_lock_irq(&mddev->write_lock);
  1421. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1422. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1423. force_change = 1;
  1424. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1425. /* just a clean<-> dirty transition, possibly leave spares alone,
  1426. * though if events isn't the right even/odd, we will have to do
  1427. * spares after all
  1428. */
  1429. nospares = 1;
  1430. if (force_change)
  1431. nospares = 0;
  1432. if (mddev->degraded)
  1433. /* If the array is degraded, then skipping spares is both
  1434. * dangerous and fairly pointless.
  1435. * Dangerous because a device that was removed from the array
  1436. * might have a event_count that still looks up-to-date,
  1437. * so it can be re-added without a resync.
  1438. * Pointless because if there are any spares to skip,
  1439. * then a recovery will happen and soon that array won't
  1440. * be degraded any more and the spare can go back to sleep then.
  1441. */
  1442. nospares = 0;
  1443. sync_req = mddev->in_sync;
  1444. mddev->utime = get_seconds();
  1445. /* If this is just a dirty<->clean transition, and the array is clean
  1446. * and 'events' is odd, we can roll back to the previous clean state */
  1447. if (nospares
  1448. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1449. && (mddev->events & 1)
  1450. && mddev->events != 1)
  1451. mddev->events--;
  1452. else {
  1453. /* otherwise we have to go forward and ... */
  1454. mddev->events ++;
  1455. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1456. /* .. if the array isn't clean, insist on an odd 'events' */
  1457. if ((mddev->events&1)==0) {
  1458. mddev->events++;
  1459. nospares = 0;
  1460. }
  1461. } else {
  1462. /* otherwise insist on an even 'events' (for clean states) */
  1463. if ((mddev->events&1)) {
  1464. mddev->events++;
  1465. nospares = 0;
  1466. }
  1467. }
  1468. }
  1469. if (!mddev->events) {
  1470. /*
  1471. * oops, this 64-bit counter should never wrap.
  1472. * Either we are in around ~1 trillion A.C., assuming
  1473. * 1 reboot per second, or we have a bug:
  1474. */
  1475. MD_BUG();
  1476. mddev->events --;
  1477. }
  1478. sync_sbs(mddev, nospares);
  1479. /*
  1480. * do not write anything to disk if using
  1481. * nonpersistent superblocks
  1482. */
  1483. if (!mddev->persistent) {
  1484. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1485. spin_unlock_irq(&mddev->write_lock);
  1486. wake_up(&mddev->sb_wait);
  1487. return;
  1488. }
  1489. spin_unlock_irq(&mddev->write_lock);
  1490. dprintk(KERN_INFO
  1491. "md: updating %s RAID superblock on device (in sync %d)\n",
  1492. mdname(mddev),mddev->in_sync);
  1493. err = bitmap_update_sb(mddev->bitmap);
  1494. ITERATE_RDEV(mddev,rdev,tmp) {
  1495. char b[BDEVNAME_SIZE];
  1496. dprintk(KERN_INFO "md: ");
  1497. if (rdev->sb_loaded != 1)
  1498. continue; /* no noise on spare devices */
  1499. if (test_bit(Faulty, &rdev->flags))
  1500. dprintk("(skipping faulty ");
  1501. dprintk("%s ", bdevname(rdev->bdev,b));
  1502. if (!test_bit(Faulty, &rdev->flags)) {
  1503. md_super_write(mddev,rdev,
  1504. rdev->sb_offset<<1, rdev->sb_size,
  1505. rdev->sb_page);
  1506. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1507. bdevname(rdev->bdev,b),
  1508. (unsigned long long)rdev->sb_offset);
  1509. rdev->sb_events = mddev->events;
  1510. } else
  1511. dprintk(")\n");
  1512. if (mddev->level == LEVEL_MULTIPATH)
  1513. /* only need to write one superblock... */
  1514. break;
  1515. }
  1516. md_super_wait(mddev);
  1517. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1518. spin_lock_irq(&mddev->write_lock);
  1519. if (mddev->in_sync != sync_req ||
  1520. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1521. /* have to write it out again */
  1522. spin_unlock_irq(&mddev->write_lock);
  1523. goto repeat;
  1524. }
  1525. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1526. spin_unlock_irq(&mddev->write_lock);
  1527. wake_up(&mddev->sb_wait);
  1528. }
  1529. /* words written to sysfs files may, or my not, be \n terminated.
  1530. * We want to accept with case. For this we use cmd_match.
  1531. */
  1532. static int cmd_match(const char *cmd, const char *str)
  1533. {
  1534. /* See if cmd, written into a sysfs file, matches
  1535. * str. They must either be the same, or cmd can
  1536. * have a trailing newline
  1537. */
  1538. while (*cmd && *str && *cmd == *str) {
  1539. cmd++;
  1540. str++;
  1541. }
  1542. if (*cmd == '\n')
  1543. cmd++;
  1544. if (*str || *cmd)
  1545. return 0;
  1546. return 1;
  1547. }
  1548. struct rdev_sysfs_entry {
  1549. struct attribute attr;
  1550. ssize_t (*show)(mdk_rdev_t *, char *);
  1551. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1552. };
  1553. static ssize_t
  1554. state_show(mdk_rdev_t *rdev, char *page)
  1555. {
  1556. char *sep = "";
  1557. int len=0;
  1558. if (test_bit(Faulty, &rdev->flags)) {
  1559. len+= sprintf(page+len, "%sfaulty",sep);
  1560. sep = ",";
  1561. }
  1562. if (test_bit(In_sync, &rdev->flags)) {
  1563. len += sprintf(page+len, "%sin_sync",sep);
  1564. sep = ",";
  1565. }
  1566. if (test_bit(WriteMostly, &rdev->flags)) {
  1567. len += sprintf(page+len, "%swrite_mostly",sep);
  1568. sep = ",";
  1569. }
  1570. if (!test_bit(Faulty, &rdev->flags) &&
  1571. !test_bit(In_sync, &rdev->flags)) {
  1572. len += sprintf(page+len, "%sspare", sep);
  1573. sep = ",";
  1574. }
  1575. return len+sprintf(page+len, "\n");
  1576. }
  1577. static ssize_t
  1578. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1579. {
  1580. /* can write
  1581. * faulty - simulates and error
  1582. * remove - disconnects the device
  1583. * writemostly - sets write_mostly
  1584. * -writemostly - clears write_mostly
  1585. */
  1586. int err = -EINVAL;
  1587. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1588. md_error(rdev->mddev, rdev);
  1589. err = 0;
  1590. } else if (cmd_match(buf, "remove")) {
  1591. if (rdev->raid_disk >= 0)
  1592. err = -EBUSY;
  1593. else {
  1594. mddev_t *mddev = rdev->mddev;
  1595. kick_rdev_from_array(rdev);
  1596. if (mddev->pers)
  1597. md_update_sb(mddev, 1);
  1598. md_new_event(mddev);
  1599. err = 0;
  1600. }
  1601. } else if (cmd_match(buf, "writemostly")) {
  1602. set_bit(WriteMostly, &rdev->flags);
  1603. err = 0;
  1604. } else if (cmd_match(buf, "-writemostly")) {
  1605. clear_bit(WriteMostly, &rdev->flags);
  1606. err = 0;
  1607. }
  1608. return err ? err : len;
  1609. }
  1610. static struct rdev_sysfs_entry rdev_state =
  1611. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1612. static ssize_t
  1613. super_show(mdk_rdev_t *rdev, char *page)
  1614. {
  1615. if (rdev->sb_loaded && rdev->sb_size) {
  1616. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1617. return rdev->sb_size;
  1618. } else
  1619. return 0;
  1620. }
  1621. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1622. static ssize_t
  1623. errors_show(mdk_rdev_t *rdev, char *page)
  1624. {
  1625. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1626. }
  1627. static ssize_t
  1628. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1629. {
  1630. char *e;
  1631. unsigned long n = simple_strtoul(buf, &e, 10);
  1632. if (*buf && (*e == 0 || *e == '\n')) {
  1633. atomic_set(&rdev->corrected_errors, n);
  1634. return len;
  1635. }
  1636. return -EINVAL;
  1637. }
  1638. static struct rdev_sysfs_entry rdev_errors =
  1639. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1640. static ssize_t
  1641. slot_show(mdk_rdev_t *rdev, char *page)
  1642. {
  1643. if (rdev->raid_disk < 0)
  1644. return sprintf(page, "none\n");
  1645. else
  1646. return sprintf(page, "%d\n", rdev->raid_disk);
  1647. }
  1648. static ssize_t
  1649. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1650. {
  1651. char *e;
  1652. int slot = simple_strtoul(buf, &e, 10);
  1653. if (strncmp(buf, "none", 4)==0)
  1654. slot = -1;
  1655. else if (e==buf || (*e && *e!= '\n'))
  1656. return -EINVAL;
  1657. if (rdev->mddev->pers)
  1658. /* Cannot set slot in active array (yet) */
  1659. return -EBUSY;
  1660. if (slot >= rdev->mddev->raid_disks)
  1661. return -ENOSPC;
  1662. rdev->raid_disk = slot;
  1663. /* assume it is working */
  1664. rdev->flags = 0;
  1665. set_bit(In_sync, &rdev->flags);
  1666. return len;
  1667. }
  1668. static struct rdev_sysfs_entry rdev_slot =
  1669. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1670. static ssize_t
  1671. offset_show(mdk_rdev_t *rdev, char *page)
  1672. {
  1673. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1674. }
  1675. static ssize_t
  1676. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1677. {
  1678. char *e;
  1679. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1680. if (e==buf || (*e && *e != '\n'))
  1681. return -EINVAL;
  1682. if (rdev->mddev->pers)
  1683. return -EBUSY;
  1684. rdev->data_offset = offset;
  1685. return len;
  1686. }
  1687. static struct rdev_sysfs_entry rdev_offset =
  1688. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1689. static ssize_t
  1690. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1691. {
  1692. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1693. }
  1694. static ssize_t
  1695. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1696. {
  1697. char *e;
  1698. unsigned long long size = simple_strtoull(buf, &e, 10);
  1699. if (e==buf || (*e && *e != '\n'))
  1700. return -EINVAL;
  1701. if (rdev->mddev->pers)
  1702. return -EBUSY;
  1703. rdev->size = size;
  1704. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1705. rdev->mddev->size = size;
  1706. return len;
  1707. }
  1708. static struct rdev_sysfs_entry rdev_size =
  1709. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1710. static struct attribute *rdev_default_attrs[] = {
  1711. &rdev_state.attr,
  1712. &rdev_super.attr,
  1713. &rdev_errors.attr,
  1714. &rdev_slot.attr,
  1715. &rdev_offset.attr,
  1716. &rdev_size.attr,
  1717. NULL,
  1718. };
  1719. static ssize_t
  1720. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1721. {
  1722. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1723. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1724. if (!entry->show)
  1725. return -EIO;
  1726. return entry->show(rdev, page);
  1727. }
  1728. static ssize_t
  1729. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1730. const char *page, size_t length)
  1731. {
  1732. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1733. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1734. if (!entry->store)
  1735. return -EIO;
  1736. if (!capable(CAP_SYS_ADMIN))
  1737. return -EACCES;
  1738. return entry->store(rdev, page, length);
  1739. }
  1740. static void rdev_free(struct kobject *ko)
  1741. {
  1742. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1743. kfree(rdev);
  1744. }
  1745. static struct sysfs_ops rdev_sysfs_ops = {
  1746. .show = rdev_attr_show,
  1747. .store = rdev_attr_store,
  1748. };
  1749. static struct kobj_type rdev_ktype = {
  1750. .release = rdev_free,
  1751. .sysfs_ops = &rdev_sysfs_ops,
  1752. .default_attrs = rdev_default_attrs,
  1753. };
  1754. /*
  1755. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1756. *
  1757. * mark the device faulty if:
  1758. *
  1759. * - the device is nonexistent (zero size)
  1760. * - the device has no valid superblock
  1761. *
  1762. * a faulty rdev _never_ has rdev->sb set.
  1763. */
  1764. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1765. {
  1766. char b[BDEVNAME_SIZE];
  1767. int err;
  1768. mdk_rdev_t *rdev;
  1769. sector_t size;
  1770. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1771. if (!rdev) {
  1772. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1773. return ERR_PTR(-ENOMEM);
  1774. }
  1775. if ((err = alloc_disk_sb(rdev)))
  1776. goto abort_free;
  1777. err = lock_rdev(rdev, newdev);
  1778. if (err)
  1779. goto abort_free;
  1780. rdev->kobj.parent = NULL;
  1781. rdev->kobj.ktype = &rdev_ktype;
  1782. kobject_init(&rdev->kobj);
  1783. rdev->desc_nr = -1;
  1784. rdev->saved_raid_disk = -1;
  1785. rdev->raid_disk = -1;
  1786. rdev->flags = 0;
  1787. rdev->data_offset = 0;
  1788. rdev->sb_events = 0;
  1789. atomic_set(&rdev->nr_pending, 0);
  1790. atomic_set(&rdev->read_errors, 0);
  1791. atomic_set(&rdev->corrected_errors, 0);
  1792. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1793. if (!size) {
  1794. printk(KERN_WARNING
  1795. "md: %s has zero or unknown size, marking faulty!\n",
  1796. bdevname(rdev->bdev,b));
  1797. err = -EINVAL;
  1798. goto abort_free;
  1799. }
  1800. if (super_format >= 0) {
  1801. err = super_types[super_format].
  1802. load_super(rdev, NULL, super_minor);
  1803. if (err == -EINVAL) {
  1804. printk(KERN_WARNING
  1805. "md: %s has invalid sb, not importing!\n",
  1806. bdevname(rdev->bdev,b));
  1807. goto abort_free;
  1808. }
  1809. if (err < 0) {
  1810. printk(KERN_WARNING
  1811. "md: could not read %s's sb, not importing!\n",
  1812. bdevname(rdev->bdev,b));
  1813. goto abort_free;
  1814. }
  1815. }
  1816. INIT_LIST_HEAD(&rdev->same_set);
  1817. return rdev;
  1818. abort_free:
  1819. if (rdev->sb_page) {
  1820. if (rdev->bdev)
  1821. unlock_rdev(rdev);
  1822. free_disk_sb(rdev);
  1823. }
  1824. kfree(rdev);
  1825. return ERR_PTR(err);
  1826. }
  1827. /*
  1828. * Check a full RAID array for plausibility
  1829. */
  1830. static void analyze_sbs(mddev_t * mddev)
  1831. {
  1832. int i;
  1833. struct list_head *tmp;
  1834. mdk_rdev_t *rdev, *freshest;
  1835. char b[BDEVNAME_SIZE];
  1836. freshest = NULL;
  1837. ITERATE_RDEV(mddev,rdev,tmp)
  1838. switch (super_types[mddev->major_version].
  1839. load_super(rdev, freshest, mddev->minor_version)) {
  1840. case 1:
  1841. freshest = rdev;
  1842. break;
  1843. case 0:
  1844. break;
  1845. default:
  1846. printk( KERN_ERR \
  1847. "md: fatal superblock inconsistency in %s"
  1848. " -- removing from array\n",
  1849. bdevname(rdev->bdev,b));
  1850. kick_rdev_from_array(rdev);
  1851. }
  1852. super_types[mddev->major_version].
  1853. validate_super(mddev, freshest);
  1854. i = 0;
  1855. ITERATE_RDEV(mddev,rdev,tmp) {
  1856. if (rdev != freshest)
  1857. if (super_types[mddev->major_version].
  1858. validate_super(mddev, rdev)) {
  1859. printk(KERN_WARNING "md: kicking non-fresh %s"
  1860. " from array!\n",
  1861. bdevname(rdev->bdev,b));
  1862. kick_rdev_from_array(rdev);
  1863. continue;
  1864. }
  1865. if (mddev->level == LEVEL_MULTIPATH) {
  1866. rdev->desc_nr = i++;
  1867. rdev->raid_disk = rdev->desc_nr;
  1868. set_bit(In_sync, &rdev->flags);
  1869. }
  1870. }
  1871. if (mddev->recovery_cp != MaxSector &&
  1872. mddev->level >= 1)
  1873. printk(KERN_ERR "md: %s: raid array is not clean"
  1874. " -- starting background reconstruction\n",
  1875. mdname(mddev));
  1876. }
  1877. static ssize_t
  1878. safe_delay_show(mddev_t *mddev, char *page)
  1879. {
  1880. int msec = (mddev->safemode_delay*1000)/HZ;
  1881. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1882. }
  1883. static ssize_t
  1884. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1885. {
  1886. int scale=1;
  1887. int dot=0;
  1888. int i;
  1889. unsigned long msec;
  1890. char buf[30];
  1891. char *e;
  1892. /* remove a period, and count digits after it */
  1893. if (len >= sizeof(buf))
  1894. return -EINVAL;
  1895. strlcpy(buf, cbuf, len);
  1896. buf[len] = 0;
  1897. for (i=0; i<len; i++) {
  1898. if (dot) {
  1899. if (isdigit(buf[i])) {
  1900. buf[i-1] = buf[i];
  1901. scale *= 10;
  1902. }
  1903. buf[i] = 0;
  1904. } else if (buf[i] == '.') {
  1905. dot=1;
  1906. buf[i] = 0;
  1907. }
  1908. }
  1909. msec = simple_strtoul(buf, &e, 10);
  1910. if (e == buf || (*e && *e != '\n'))
  1911. return -EINVAL;
  1912. msec = (msec * 1000) / scale;
  1913. if (msec == 0)
  1914. mddev->safemode_delay = 0;
  1915. else {
  1916. mddev->safemode_delay = (msec*HZ)/1000;
  1917. if (mddev->safemode_delay == 0)
  1918. mddev->safemode_delay = 1;
  1919. }
  1920. return len;
  1921. }
  1922. static struct md_sysfs_entry md_safe_delay =
  1923. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1924. static ssize_t
  1925. level_show(mddev_t *mddev, char *page)
  1926. {
  1927. struct mdk_personality *p = mddev->pers;
  1928. if (p)
  1929. return sprintf(page, "%s\n", p->name);
  1930. else if (mddev->clevel[0])
  1931. return sprintf(page, "%s\n", mddev->clevel);
  1932. else if (mddev->level != LEVEL_NONE)
  1933. return sprintf(page, "%d\n", mddev->level);
  1934. else
  1935. return 0;
  1936. }
  1937. static ssize_t
  1938. level_store(mddev_t *mddev, const char *buf, size_t len)
  1939. {
  1940. int rv = len;
  1941. if (mddev->pers)
  1942. return -EBUSY;
  1943. if (len == 0)
  1944. return 0;
  1945. if (len >= sizeof(mddev->clevel))
  1946. return -ENOSPC;
  1947. strncpy(mddev->clevel, buf, len);
  1948. if (mddev->clevel[len-1] == '\n')
  1949. len--;
  1950. mddev->clevel[len] = 0;
  1951. mddev->level = LEVEL_NONE;
  1952. return rv;
  1953. }
  1954. static struct md_sysfs_entry md_level =
  1955. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1956. static ssize_t
  1957. layout_show(mddev_t *mddev, char *page)
  1958. {
  1959. /* just a number, not meaningful for all levels */
  1960. return sprintf(page, "%d\n", mddev->layout);
  1961. }
  1962. static ssize_t
  1963. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1964. {
  1965. char *e;
  1966. unsigned long n = simple_strtoul(buf, &e, 10);
  1967. if (mddev->pers)
  1968. return -EBUSY;
  1969. if (!*buf || (*e && *e != '\n'))
  1970. return -EINVAL;
  1971. mddev->layout = n;
  1972. return len;
  1973. }
  1974. static struct md_sysfs_entry md_layout =
  1975. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1976. static ssize_t
  1977. raid_disks_show(mddev_t *mddev, char *page)
  1978. {
  1979. if (mddev->raid_disks == 0)
  1980. return 0;
  1981. return sprintf(page, "%d\n", mddev->raid_disks);
  1982. }
  1983. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1984. static ssize_t
  1985. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1986. {
  1987. char *e;
  1988. int rv = 0;
  1989. unsigned long n = simple_strtoul(buf, &e, 10);
  1990. if (!*buf || (*e && *e != '\n'))
  1991. return -EINVAL;
  1992. if (mddev->pers)
  1993. rv = update_raid_disks(mddev, n);
  1994. else
  1995. mddev->raid_disks = n;
  1996. return rv ? rv : len;
  1997. }
  1998. static struct md_sysfs_entry md_raid_disks =
  1999. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2000. static ssize_t
  2001. chunk_size_show(mddev_t *mddev, char *page)
  2002. {
  2003. return sprintf(page, "%d\n", mddev->chunk_size);
  2004. }
  2005. static ssize_t
  2006. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2007. {
  2008. /* can only set chunk_size if array is not yet active */
  2009. char *e;
  2010. unsigned long n = simple_strtoul(buf, &e, 10);
  2011. if (mddev->pers)
  2012. return -EBUSY;
  2013. if (!*buf || (*e && *e != '\n'))
  2014. return -EINVAL;
  2015. mddev->chunk_size = n;
  2016. return len;
  2017. }
  2018. static struct md_sysfs_entry md_chunk_size =
  2019. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2020. static ssize_t
  2021. resync_start_show(mddev_t *mddev, char *page)
  2022. {
  2023. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2024. }
  2025. static ssize_t
  2026. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2027. {
  2028. /* can only set chunk_size if array is not yet active */
  2029. char *e;
  2030. unsigned long long n = simple_strtoull(buf, &e, 10);
  2031. if (mddev->pers)
  2032. return -EBUSY;
  2033. if (!*buf || (*e && *e != '\n'))
  2034. return -EINVAL;
  2035. mddev->recovery_cp = n;
  2036. return len;
  2037. }
  2038. static struct md_sysfs_entry md_resync_start =
  2039. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2040. /*
  2041. * The array state can be:
  2042. *
  2043. * clear
  2044. * No devices, no size, no level
  2045. * Equivalent to STOP_ARRAY ioctl
  2046. * inactive
  2047. * May have some settings, but array is not active
  2048. * all IO results in error
  2049. * When written, doesn't tear down array, but just stops it
  2050. * suspended (not supported yet)
  2051. * All IO requests will block. The array can be reconfigured.
  2052. * Writing this, if accepted, will block until array is quiessent
  2053. * readonly
  2054. * no resync can happen. no superblocks get written.
  2055. * write requests fail
  2056. * read-auto
  2057. * like readonly, but behaves like 'clean' on a write request.
  2058. *
  2059. * clean - no pending writes, but otherwise active.
  2060. * When written to inactive array, starts without resync
  2061. * If a write request arrives then
  2062. * if metadata is known, mark 'dirty' and switch to 'active'.
  2063. * if not known, block and switch to write-pending
  2064. * If written to an active array that has pending writes, then fails.
  2065. * active
  2066. * fully active: IO and resync can be happening.
  2067. * When written to inactive array, starts with resync
  2068. *
  2069. * write-pending
  2070. * clean, but writes are blocked waiting for 'active' to be written.
  2071. *
  2072. * active-idle
  2073. * like active, but no writes have been seen for a while (100msec).
  2074. *
  2075. */
  2076. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2077. write_pending, active_idle, bad_word};
  2078. static char *array_states[] = {
  2079. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2080. "write-pending", "active-idle", NULL };
  2081. static int match_word(const char *word, char **list)
  2082. {
  2083. int n;
  2084. for (n=0; list[n]; n++)
  2085. if (cmd_match(word, list[n]))
  2086. break;
  2087. return n;
  2088. }
  2089. static ssize_t
  2090. array_state_show(mddev_t *mddev, char *page)
  2091. {
  2092. enum array_state st = inactive;
  2093. if (mddev->pers)
  2094. switch(mddev->ro) {
  2095. case 1:
  2096. st = readonly;
  2097. break;
  2098. case 2:
  2099. st = read_auto;
  2100. break;
  2101. case 0:
  2102. if (mddev->in_sync)
  2103. st = clean;
  2104. else if (mddev->safemode)
  2105. st = active_idle;
  2106. else
  2107. st = active;
  2108. }
  2109. else {
  2110. if (list_empty(&mddev->disks) &&
  2111. mddev->raid_disks == 0 &&
  2112. mddev->size == 0)
  2113. st = clear;
  2114. else
  2115. st = inactive;
  2116. }
  2117. return sprintf(page, "%s\n", array_states[st]);
  2118. }
  2119. static int do_md_stop(mddev_t * mddev, int ro);
  2120. static int do_md_run(mddev_t * mddev);
  2121. static int restart_array(mddev_t *mddev);
  2122. static ssize_t
  2123. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2124. {
  2125. int err = -EINVAL;
  2126. enum array_state st = match_word(buf, array_states);
  2127. switch(st) {
  2128. case bad_word:
  2129. break;
  2130. case clear:
  2131. /* stopping an active array */
  2132. if (mddev->pers) {
  2133. if (atomic_read(&mddev->active) > 1)
  2134. return -EBUSY;
  2135. err = do_md_stop(mddev, 0);
  2136. }
  2137. break;
  2138. case inactive:
  2139. /* stopping an active array */
  2140. if (mddev->pers) {
  2141. if (atomic_read(&mddev->active) > 1)
  2142. return -EBUSY;
  2143. err = do_md_stop(mddev, 2);
  2144. }
  2145. break;
  2146. case suspended:
  2147. break; /* not supported yet */
  2148. case readonly:
  2149. if (mddev->pers)
  2150. err = do_md_stop(mddev, 1);
  2151. else {
  2152. mddev->ro = 1;
  2153. err = do_md_run(mddev);
  2154. }
  2155. break;
  2156. case read_auto:
  2157. /* stopping an active array */
  2158. if (mddev->pers) {
  2159. err = do_md_stop(mddev, 1);
  2160. if (err == 0)
  2161. mddev->ro = 2; /* FIXME mark devices writable */
  2162. } else {
  2163. mddev->ro = 2;
  2164. err = do_md_run(mddev);
  2165. }
  2166. break;
  2167. case clean:
  2168. if (mddev->pers) {
  2169. restart_array(mddev);
  2170. spin_lock_irq(&mddev->write_lock);
  2171. if (atomic_read(&mddev->writes_pending) == 0) {
  2172. mddev->in_sync = 1;
  2173. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2174. }
  2175. spin_unlock_irq(&mddev->write_lock);
  2176. } else {
  2177. mddev->ro = 0;
  2178. mddev->recovery_cp = MaxSector;
  2179. err = do_md_run(mddev);
  2180. }
  2181. break;
  2182. case active:
  2183. if (mddev->pers) {
  2184. restart_array(mddev);
  2185. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2186. wake_up(&mddev->sb_wait);
  2187. err = 0;
  2188. } else {
  2189. mddev->ro = 0;
  2190. err = do_md_run(mddev);
  2191. }
  2192. break;
  2193. case write_pending:
  2194. case active_idle:
  2195. /* these cannot be set */
  2196. break;
  2197. }
  2198. if (err)
  2199. return err;
  2200. else
  2201. return len;
  2202. }
  2203. static struct md_sysfs_entry md_array_state =
  2204. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2205. static ssize_t
  2206. null_show(mddev_t *mddev, char *page)
  2207. {
  2208. return -EINVAL;
  2209. }
  2210. static ssize_t
  2211. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2212. {
  2213. /* buf must be %d:%d\n? giving major and minor numbers */
  2214. /* The new device is added to the array.
  2215. * If the array has a persistent superblock, we read the
  2216. * superblock to initialise info and check validity.
  2217. * Otherwise, only checking done is that in bind_rdev_to_array,
  2218. * which mainly checks size.
  2219. */
  2220. char *e;
  2221. int major = simple_strtoul(buf, &e, 10);
  2222. int minor;
  2223. dev_t dev;
  2224. mdk_rdev_t *rdev;
  2225. int err;
  2226. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2227. return -EINVAL;
  2228. minor = simple_strtoul(e+1, &e, 10);
  2229. if (*e && *e != '\n')
  2230. return -EINVAL;
  2231. dev = MKDEV(major, minor);
  2232. if (major != MAJOR(dev) ||
  2233. minor != MINOR(dev))
  2234. return -EOVERFLOW;
  2235. if (mddev->persistent) {
  2236. rdev = md_import_device(dev, mddev->major_version,
  2237. mddev->minor_version);
  2238. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2239. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2240. mdk_rdev_t, same_set);
  2241. err = super_types[mddev->major_version]
  2242. .load_super(rdev, rdev0, mddev->minor_version);
  2243. if (err < 0)
  2244. goto out;
  2245. }
  2246. } else
  2247. rdev = md_import_device(dev, -1, -1);
  2248. if (IS_ERR(rdev))
  2249. return PTR_ERR(rdev);
  2250. err = bind_rdev_to_array(rdev, mddev);
  2251. out:
  2252. if (err)
  2253. export_rdev(rdev);
  2254. return err ? err : len;
  2255. }
  2256. static struct md_sysfs_entry md_new_device =
  2257. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2258. static ssize_t
  2259. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2260. {
  2261. char *end;
  2262. unsigned long chunk, end_chunk;
  2263. if (!mddev->bitmap)
  2264. goto out;
  2265. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2266. while (*buf) {
  2267. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2268. if (buf == end) break;
  2269. if (*end == '-') { /* range */
  2270. buf = end + 1;
  2271. end_chunk = simple_strtoul(buf, &end, 0);
  2272. if (buf == end) break;
  2273. }
  2274. if (*end && !isspace(*end)) break;
  2275. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2276. buf = end;
  2277. while (isspace(*buf)) buf++;
  2278. }
  2279. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2280. out:
  2281. return len;
  2282. }
  2283. static struct md_sysfs_entry md_bitmap =
  2284. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2285. static ssize_t
  2286. size_show(mddev_t *mddev, char *page)
  2287. {
  2288. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2289. }
  2290. static int update_size(mddev_t *mddev, unsigned long size);
  2291. static ssize_t
  2292. size_store(mddev_t *mddev, const char *buf, size_t len)
  2293. {
  2294. /* If array is inactive, we can reduce the component size, but
  2295. * not increase it (except from 0).
  2296. * If array is active, we can try an on-line resize
  2297. */
  2298. char *e;
  2299. int err = 0;
  2300. unsigned long long size = simple_strtoull(buf, &e, 10);
  2301. if (!*buf || *buf == '\n' ||
  2302. (*e && *e != '\n'))
  2303. return -EINVAL;
  2304. if (mddev->pers) {
  2305. err = update_size(mddev, size);
  2306. md_update_sb(mddev, 1);
  2307. } else {
  2308. if (mddev->size == 0 ||
  2309. mddev->size > size)
  2310. mddev->size = size;
  2311. else
  2312. err = -ENOSPC;
  2313. }
  2314. return err ? err : len;
  2315. }
  2316. static struct md_sysfs_entry md_size =
  2317. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2318. /* Metdata version.
  2319. * This is either 'none' for arrays with externally managed metadata,
  2320. * or N.M for internally known formats
  2321. */
  2322. static ssize_t
  2323. metadata_show(mddev_t *mddev, char *page)
  2324. {
  2325. if (mddev->persistent)
  2326. return sprintf(page, "%d.%d\n",
  2327. mddev->major_version, mddev->minor_version);
  2328. else
  2329. return sprintf(page, "none\n");
  2330. }
  2331. static ssize_t
  2332. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2333. {
  2334. int major, minor;
  2335. char *e;
  2336. if (!list_empty(&mddev->disks))
  2337. return -EBUSY;
  2338. if (cmd_match(buf, "none")) {
  2339. mddev->persistent = 0;
  2340. mddev->major_version = 0;
  2341. mddev->minor_version = 90;
  2342. return len;
  2343. }
  2344. major = simple_strtoul(buf, &e, 10);
  2345. if (e==buf || *e != '.')
  2346. return -EINVAL;
  2347. buf = e+1;
  2348. minor = simple_strtoul(buf, &e, 10);
  2349. if (e==buf || (*e && *e != '\n') )
  2350. return -EINVAL;
  2351. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2352. return -ENOENT;
  2353. mddev->major_version = major;
  2354. mddev->minor_version = minor;
  2355. mddev->persistent = 1;
  2356. return len;
  2357. }
  2358. static struct md_sysfs_entry md_metadata =
  2359. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2360. static ssize_t
  2361. action_show(mddev_t *mddev, char *page)
  2362. {
  2363. char *type = "idle";
  2364. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2365. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2366. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2367. type = "reshape";
  2368. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2369. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2370. type = "resync";
  2371. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2372. type = "check";
  2373. else
  2374. type = "repair";
  2375. } else
  2376. type = "recover";
  2377. }
  2378. return sprintf(page, "%s\n", type);
  2379. }
  2380. static ssize_t
  2381. action_store(mddev_t *mddev, const char *page, size_t len)
  2382. {
  2383. if (!mddev->pers || !mddev->pers->sync_request)
  2384. return -EINVAL;
  2385. if (cmd_match(page, "idle")) {
  2386. if (mddev->sync_thread) {
  2387. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2388. md_unregister_thread(mddev->sync_thread);
  2389. mddev->sync_thread = NULL;
  2390. mddev->recovery = 0;
  2391. }
  2392. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2393. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2394. return -EBUSY;
  2395. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2396. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2397. else if (cmd_match(page, "reshape")) {
  2398. int err;
  2399. if (mddev->pers->start_reshape == NULL)
  2400. return -EINVAL;
  2401. err = mddev->pers->start_reshape(mddev);
  2402. if (err)
  2403. return err;
  2404. } else {
  2405. if (cmd_match(page, "check"))
  2406. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2407. else if (!cmd_match(page, "repair"))
  2408. return -EINVAL;
  2409. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2410. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2411. }
  2412. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2413. md_wakeup_thread(mddev->thread);
  2414. return len;
  2415. }
  2416. static ssize_t
  2417. mismatch_cnt_show(mddev_t *mddev, char *page)
  2418. {
  2419. return sprintf(page, "%llu\n",
  2420. (unsigned long long) mddev->resync_mismatches);
  2421. }
  2422. static struct md_sysfs_entry md_scan_mode =
  2423. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2424. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2425. static ssize_t
  2426. sync_min_show(mddev_t *mddev, char *page)
  2427. {
  2428. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2429. mddev->sync_speed_min ? "local": "system");
  2430. }
  2431. static ssize_t
  2432. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2433. {
  2434. int min;
  2435. char *e;
  2436. if (strncmp(buf, "system", 6)==0) {
  2437. mddev->sync_speed_min = 0;
  2438. return len;
  2439. }
  2440. min = simple_strtoul(buf, &e, 10);
  2441. if (buf == e || (*e && *e != '\n') || min <= 0)
  2442. return -EINVAL;
  2443. mddev->sync_speed_min = min;
  2444. return len;
  2445. }
  2446. static struct md_sysfs_entry md_sync_min =
  2447. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2448. static ssize_t
  2449. sync_max_show(mddev_t *mddev, char *page)
  2450. {
  2451. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2452. mddev->sync_speed_max ? "local": "system");
  2453. }
  2454. static ssize_t
  2455. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2456. {
  2457. int max;
  2458. char *e;
  2459. if (strncmp(buf, "system", 6)==0) {
  2460. mddev->sync_speed_max = 0;
  2461. return len;
  2462. }
  2463. max = simple_strtoul(buf, &e, 10);
  2464. if (buf == e || (*e && *e != '\n') || max <= 0)
  2465. return -EINVAL;
  2466. mddev->sync_speed_max = max;
  2467. return len;
  2468. }
  2469. static struct md_sysfs_entry md_sync_max =
  2470. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2471. static ssize_t
  2472. sync_speed_show(mddev_t *mddev, char *page)
  2473. {
  2474. unsigned long resync, dt, db;
  2475. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2476. dt = ((jiffies - mddev->resync_mark) / HZ);
  2477. if (!dt) dt++;
  2478. db = resync - (mddev->resync_mark_cnt);
  2479. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2480. }
  2481. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2482. static ssize_t
  2483. sync_completed_show(mddev_t *mddev, char *page)
  2484. {
  2485. unsigned long max_blocks, resync;
  2486. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2487. max_blocks = mddev->resync_max_sectors;
  2488. else
  2489. max_blocks = mddev->size << 1;
  2490. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2491. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2492. }
  2493. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2494. static ssize_t
  2495. suspend_lo_show(mddev_t *mddev, char *page)
  2496. {
  2497. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2498. }
  2499. static ssize_t
  2500. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2501. {
  2502. char *e;
  2503. unsigned long long new = simple_strtoull(buf, &e, 10);
  2504. if (mddev->pers->quiesce == NULL)
  2505. return -EINVAL;
  2506. if (buf == e || (*e && *e != '\n'))
  2507. return -EINVAL;
  2508. if (new >= mddev->suspend_hi ||
  2509. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2510. mddev->suspend_lo = new;
  2511. mddev->pers->quiesce(mddev, 2);
  2512. return len;
  2513. } else
  2514. return -EINVAL;
  2515. }
  2516. static struct md_sysfs_entry md_suspend_lo =
  2517. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2518. static ssize_t
  2519. suspend_hi_show(mddev_t *mddev, char *page)
  2520. {
  2521. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2522. }
  2523. static ssize_t
  2524. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2525. {
  2526. char *e;
  2527. unsigned long long new = simple_strtoull(buf, &e, 10);
  2528. if (mddev->pers->quiesce == NULL)
  2529. return -EINVAL;
  2530. if (buf == e || (*e && *e != '\n'))
  2531. return -EINVAL;
  2532. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2533. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2534. mddev->suspend_hi = new;
  2535. mddev->pers->quiesce(mddev, 1);
  2536. mddev->pers->quiesce(mddev, 0);
  2537. return len;
  2538. } else
  2539. return -EINVAL;
  2540. }
  2541. static struct md_sysfs_entry md_suspend_hi =
  2542. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2543. static struct attribute *md_default_attrs[] = {
  2544. &md_level.attr,
  2545. &md_layout.attr,
  2546. &md_raid_disks.attr,
  2547. &md_chunk_size.attr,
  2548. &md_size.attr,
  2549. &md_resync_start.attr,
  2550. &md_metadata.attr,
  2551. &md_new_device.attr,
  2552. &md_safe_delay.attr,
  2553. &md_array_state.attr,
  2554. NULL,
  2555. };
  2556. static struct attribute *md_redundancy_attrs[] = {
  2557. &md_scan_mode.attr,
  2558. &md_mismatches.attr,
  2559. &md_sync_min.attr,
  2560. &md_sync_max.attr,
  2561. &md_sync_speed.attr,
  2562. &md_sync_completed.attr,
  2563. &md_suspend_lo.attr,
  2564. &md_suspend_hi.attr,
  2565. &md_bitmap.attr,
  2566. NULL,
  2567. };
  2568. static struct attribute_group md_redundancy_group = {
  2569. .name = NULL,
  2570. .attrs = md_redundancy_attrs,
  2571. };
  2572. static ssize_t
  2573. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2574. {
  2575. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2576. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2577. ssize_t rv;
  2578. if (!entry->show)
  2579. return -EIO;
  2580. rv = mddev_lock(mddev);
  2581. if (!rv) {
  2582. rv = entry->show(mddev, page);
  2583. mddev_unlock(mddev);
  2584. }
  2585. return rv;
  2586. }
  2587. static ssize_t
  2588. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2589. const char *page, size_t length)
  2590. {
  2591. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2592. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2593. ssize_t rv;
  2594. if (!entry->store)
  2595. return -EIO;
  2596. if (!capable(CAP_SYS_ADMIN))
  2597. return -EACCES;
  2598. rv = mddev_lock(mddev);
  2599. if (!rv) {
  2600. rv = entry->store(mddev, page, length);
  2601. mddev_unlock(mddev);
  2602. }
  2603. return rv;
  2604. }
  2605. static void md_free(struct kobject *ko)
  2606. {
  2607. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2608. kfree(mddev);
  2609. }
  2610. static struct sysfs_ops md_sysfs_ops = {
  2611. .show = md_attr_show,
  2612. .store = md_attr_store,
  2613. };
  2614. static struct kobj_type md_ktype = {
  2615. .release = md_free,
  2616. .sysfs_ops = &md_sysfs_ops,
  2617. .default_attrs = md_default_attrs,
  2618. };
  2619. int mdp_major = 0;
  2620. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2621. {
  2622. static DEFINE_MUTEX(disks_mutex);
  2623. mddev_t *mddev = mddev_find(dev);
  2624. struct gendisk *disk;
  2625. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2626. int shift = partitioned ? MdpMinorShift : 0;
  2627. int unit = MINOR(dev) >> shift;
  2628. if (!mddev)
  2629. return NULL;
  2630. mutex_lock(&disks_mutex);
  2631. if (mddev->gendisk) {
  2632. mutex_unlock(&disks_mutex);
  2633. mddev_put(mddev);
  2634. return NULL;
  2635. }
  2636. disk = alloc_disk(1 << shift);
  2637. if (!disk) {
  2638. mutex_unlock(&disks_mutex);
  2639. mddev_put(mddev);
  2640. return NULL;
  2641. }
  2642. disk->major = MAJOR(dev);
  2643. disk->first_minor = unit << shift;
  2644. if (partitioned)
  2645. sprintf(disk->disk_name, "md_d%d", unit);
  2646. else
  2647. sprintf(disk->disk_name, "md%d", unit);
  2648. disk->fops = &md_fops;
  2649. disk->private_data = mddev;
  2650. disk->queue = mddev->queue;
  2651. add_disk(disk);
  2652. mddev->gendisk = disk;
  2653. mutex_unlock(&disks_mutex);
  2654. mddev->kobj.parent = &disk->kobj;
  2655. mddev->kobj.k_name = NULL;
  2656. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2657. mddev->kobj.ktype = &md_ktype;
  2658. if (kobject_register(&mddev->kobj))
  2659. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2660. disk->disk_name);
  2661. return NULL;
  2662. }
  2663. static void md_safemode_timeout(unsigned long data)
  2664. {
  2665. mddev_t *mddev = (mddev_t *) data;
  2666. mddev->safemode = 1;
  2667. md_wakeup_thread(mddev->thread);
  2668. }
  2669. static int start_dirty_degraded;
  2670. static int do_md_run(mddev_t * mddev)
  2671. {
  2672. int err;
  2673. int chunk_size;
  2674. struct list_head *tmp;
  2675. mdk_rdev_t *rdev;
  2676. struct gendisk *disk;
  2677. struct mdk_personality *pers;
  2678. char b[BDEVNAME_SIZE];
  2679. if (list_empty(&mddev->disks))
  2680. /* cannot run an array with no devices.. */
  2681. return -EINVAL;
  2682. if (mddev->pers)
  2683. return -EBUSY;
  2684. /*
  2685. * Analyze all RAID superblock(s)
  2686. */
  2687. if (!mddev->raid_disks)
  2688. analyze_sbs(mddev);
  2689. chunk_size = mddev->chunk_size;
  2690. if (chunk_size) {
  2691. if (chunk_size > MAX_CHUNK_SIZE) {
  2692. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2693. chunk_size, MAX_CHUNK_SIZE);
  2694. return -EINVAL;
  2695. }
  2696. /*
  2697. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2698. */
  2699. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2700. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2701. return -EINVAL;
  2702. }
  2703. if (chunk_size < PAGE_SIZE) {
  2704. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2705. chunk_size, PAGE_SIZE);
  2706. return -EINVAL;
  2707. }
  2708. /* devices must have minimum size of one chunk */
  2709. ITERATE_RDEV(mddev,rdev,tmp) {
  2710. if (test_bit(Faulty, &rdev->flags))
  2711. continue;
  2712. if (rdev->size < chunk_size / 1024) {
  2713. printk(KERN_WARNING
  2714. "md: Dev %s smaller than chunk_size:"
  2715. " %lluk < %dk\n",
  2716. bdevname(rdev->bdev,b),
  2717. (unsigned long long)rdev->size,
  2718. chunk_size / 1024);
  2719. return -EINVAL;
  2720. }
  2721. }
  2722. }
  2723. #ifdef CONFIG_KMOD
  2724. if (mddev->level != LEVEL_NONE)
  2725. request_module("md-level-%d", mddev->level);
  2726. else if (mddev->clevel[0])
  2727. request_module("md-%s", mddev->clevel);
  2728. #endif
  2729. /*
  2730. * Drop all container device buffers, from now on
  2731. * the only valid external interface is through the md
  2732. * device.
  2733. * Also find largest hardsector size
  2734. */
  2735. ITERATE_RDEV(mddev,rdev,tmp) {
  2736. if (test_bit(Faulty, &rdev->flags))
  2737. continue;
  2738. sync_blockdev(rdev->bdev);
  2739. invalidate_bdev(rdev->bdev);
  2740. }
  2741. md_probe(mddev->unit, NULL, NULL);
  2742. disk = mddev->gendisk;
  2743. if (!disk)
  2744. return -ENOMEM;
  2745. spin_lock(&pers_lock);
  2746. pers = find_pers(mddev->level, mddev->clevel);
  2747. if (!pers || !try_module_get(pers->owner)) {
  2748. spin_unlock(&pers_lock);
  2749. if (mddev->level != LEVEL_NONE)
  2750. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2751. mddev->level);
  2752. else
  2753. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2754. mddev->clevel);
  2755. return -EINVAL;
  2756. }
  2757. mddev->pers = pers;
  2758. spin_unlock(&pers_lock);
  2759. mddev->level = pers->level;
  2760. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2761. if (mddev->reshape_position != MaxSector &&
  2762. pers->start_reshape == NULL) {
  2763. /* This personality cannot handle reshaping... */
  2764. mddev->pers = NULL;
  2765. module_put(pers->owner);
  2766. return -EINVAL;
  2767. }
  2768. if (pers->sync_request) {
  2769. /* Warn if this is a potentially silly
  2770. * configuration.
  2771. */
  2772. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2773. mdk_rdev_t *rdev2;
  2774. struct list_head *tmp2;
  2775. int warned = 0;
  2776. ITERATE_RDEV(mddev, rdev, tmp) {
  2777. ITERATE_RDEV(mddev, rdev2, tmp2) {
  2778. if (rdev < rdev2 &&
  2779. rdev->bdev->bd_contains ==
  2780. rdev2->bdev->bd_contains) {
  2781. printk(KERN_WARNING
  2782. "%s: WARNING: %s appears to be"
  2783. " on the same physical disk as"
  2784. " %s.\n",
  2785. mdname(mddev),
  2786. bdevname(rdev->bdev,b),
  2787. bdevname(rdev2->bdev,b2));
  2788. warned = 1;
  2789. }
  2790. }
  2791. }
  2792. if (warned)
  2793. printk(KERN_WARNING
  2794. "True protection against single-disk"
  2795. " failure might be compromised.\n");
  2796. }
  2797. mddev->recovery = 0;
  2798. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2799. mddev->barriers_work = 1;
  2800. mddev->ok_start_degraded = start_dirty_degraded;
  2801. if (start_readonly)
  2802. mddev->ro = 2; /* read-only, but switch on first write */
  2803. err = mddev->pers->run(mddev);
  2804. if (!err && mddev->pers->sync_request) {
  2805. err = bitmap_create(mddev);
  2806. if (err) {
  2807. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2808. mdname(mddev), err);
  2809. mddev->pers->stop(mddev);
  2810. }
  2811. }
  2812. if (err) {
  2813. printk(KERN_ERR "md: pers->run() failed ...\n");
  2814. module_put(mddev->pers->owner);
  2815. mddev->pers = NULL;
  2816. bitmap_destroy(mddev);
  2817. return err;
  2818. }
  2819. if (mddev->pers->sync_request) {
  2820. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2821. printk(KERN_WARNING
  2822. "md: cannot register extra attributes for %s\n",
  2823. mdname(mddev));
  2824. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2825. mddev->ro = 0;
  2826. atomic_set(&mddev->writes_pending,0);
  2827. mddev->safemode = 0;
  2828. mddev->safemode_timer.function = md_safemode_timeout;
  2829. mddev->safemode_timer.data = (unsigned long) mddev;
  2830. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2831. mddev->in_sync = 1;
  2832. ITERATE_RDEV(mddev,rdev,tmp)
  2833. if (rdev->raid_disk >= 0) {
  2834. char nm[20];
  2835. sprintf(nm, "rd%d", rdev->raid_disk);
  2836. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  2837. printk("md: cannot register %s for %s\n",
  2838. nm, mdname(mddev));
  2839. }
  2840. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2841. if (mddev->flags)
  2842. md_update_sb(mddev, 0);
  2843. set_capacity(disk, mddev->array_size<<1);
  2844. /* If we call blk_queue_make_request here, it will
  2845. * re-initialise max_sectors etc which may have been
  2846. * refined inside -> run. So just set the bits we need to set.
  2847. * Most initialisation happended when we called
  2848. * blk_queue_make_request(..., md_fail_request)
  2849. * earlier.
  2850. */
  2851. mddev->queue->queuedata = mddev;
  2852. mddev->queue->make_request_fn = mddev->pers->make_request;
  2853. /* If there is a partially-recovered drive we need to
  2854. * start recovery here. If we leave it to md_check_recovery,
  2855. * it will remove the drives and not do the right thing
  2856. */
  2857. if (mddev->degraded && !mddev->sync_thread) {
  2858. struct list_head *rtmp;
  2859. int spares = 0;
  2860. ITERATE_RDEV(mddev,rdev,rtmp)
  2861. if (rdev->raid_disk >= 0 &&
  2862. !test_bit(In_sync, &rdev->flags) &&
  2863. !test_bit(Faulty, &rdev->flags))
  2864. /* complete an interrupted recovery */
  2865. spares++;
  2866. if (spares && mddev->pers->sync_request) {
  2867. mddev->recovery = 0;
  2868. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2869. mddev->sync_thread = md_register_thread(md_do_sync,
  2870. mddev,
  2871. "%s_resync");
  2872. if (!mddev->sync_thread) {
  2873. printk(KERN_ERR "%s: could not start resync"
  2874. " thread...\n",
  2875. mdname(mddev));
  2876. /* leave the spares where they are, it shouldn't hurt */
  2877. mddev->recovery = 0;
  2878. }
  2879. }
  2880. }
  2881. md_wakeup_thread(mddev->thread);
  2882. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2883. mddev->changed = 1;
  2884. md_new_event(mddev);
  2885. kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
  2886. return 0;
  2887. }
  2888. static int restart_array(mddev_t *mddev)
  2889. {
  2890. struct gendisk *disk = mddev->gendisk;
  2891. int err;
  2892. /*
  2893. * Complain if it has no devices
  2894. */
  2895. err = -ENXIO;
  2896. if (list_empty(&mddev->disks))
  2897. goto out;
  2898. if (mddev->pers) {
  2899. err = -EBUSY;
  2900. if (!mddev->ro)
  2901. goto out;
  2902. mddev->safemode = 0;
  2903. mddev->ro = 0;
  2904. set_disk_ro(disk, 0);
  2905. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2906. mdname(mddev));
  2907. /*
  2908. * Kick recovery or resync if necessary
  2909. */
  2910. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2911. md_wakeup_thread(mddev->thread);
  2912. md_wakeup_thread(mddev->sync_thread);
  2913. err = 0;
  2914. } else
  2915. err = -EINVAL;
  2916. out:
  2917. return err;
  2918. }
  2919. /* similar to deny_write_access, but accounts for our holding a reference
  2920. * to the file ourselves */
  2921. static int deny_bitmap_write_access(struct file * file)
  2922. {
  2923. struct inode *inode = file->f_mapping->host;
  2924. spin_lock(&inode->i_lock);
  2925. if (atomic_read(&inode->i_writecount) > 1) {
  2926. spin_unlock(&inode->i_lock);
  2927. return -ETXTBSY;
  2928. }
  2929. atomic_set(&inode->i_writecount, -1);
  2930. spin_unlock(&inode->i_lock);
  2931. return 0;
  2932. }
  2933. static void restore_bitmap_write_access(struct file *file)
  2934. {
  2935. struct inode *inode = file->f_mapping->host;
  2936. spin_lock(&inode->i_lock);
  2937. atomic_set(&inode->i_writecount, 1);
  2938. spin_unlock(&inode->i_lock);
  2939. }
  2940. /* mode:
  2941. * 0 - completely stop and dis-assemble array
  2942. * 1 - switch to readonly
  2943. * 2 - stop but do not disassemble array
  2944. */
  2945. static int do_md_stop(mddev_t * mddev, int mode)
  2946. {
  2947. int err = 0;
  2948. struct gendisk *disk = mddev->gendisk;
  2949. if (mddev->pers) {
  2950. if (atomic_read(&mddev->active)>2) {
  2951. printk("md: %s still in use.\n",mdname(mddev));
  2952. return -EBUSY;
  2953. }
  2954. if (mddev->sync_thread) {
  2955. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2956. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2957. md_unregister_thread(mddev->sync_thread);
  2958. mddev->sync_thread = NULL;
  2959. }
  2960. del_timer_sync(&mddev->safemode_timer);
  2961. invalidate_partition(disk, 0);
  2962. switch(mode) {
  2963. case 1: /* readonly */
  2964. err = -ENXIO;
  2965. if (mddev->ro==1)
  2966. goto out;
  2967. mddev->ro = 1;
  2968. break;
  2969. case 0: /* disassemble */
  2970. case 2: /* stop */
  2971. bitmap_flush(mddev);
  2972. md_super_wait(mddev);
  2973. if (mddev->ro)
  2974. set_disk_ro(disk, 0);
  2975. blk_queue_make_request(mddev->queue, md_fail_request);
  2976. mddev->pers->stop(mddev);
  2977. mddev->queue->merge_bvec_fn = NULL;
  2978. mddev->queue->unplug_fn = NULL;
  2979. mddev->queue->issue_flush_fn = NULL;
  2980. mddev->queue->backing_dev_info.congested_fn = NULL;
  2981. if (mddev->pers->sync_request)
  2982. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2983. module_put(mddev->pers->owner);
  2984. mddev->pers = NULL;
  2985. set_capacity(disk, 0);
  2986. mddev->changed = 1;
  2987. if (mddev->ro)
  2988. mddev->ro = 0;
  2989. }
  2990. if (!mddev->in_sync || mddev->flags) {
  2991. /* mark array as shutdown cleanly */
  2992. mddev->in_sync = 1;
  2993. md_update_sb(mddev, 1);
  2994. }
  2995. if (mode == 1)
  2996. set_disk_ro(disk, 1);
  2997. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2998. }
  2999. /*
  3000. * Free resources if final stop
  3001. */
  3002. if (mode == 0) {
  3003. mdk_rdev_t *rdev;
  3004. struct list_head *tmp;
  3005. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3006. bitmap_destroy(mddev);
  3007. if (mddev->bitmap_file) {
  3008. restore_bitmap_write_access(mddev->bitmap_file);
  3009. fput(mddev->bitmap_file);
  3010. mddev->bitmap_file = NULL;
  3011. }
  3012. mddev->bitmap_offset = 0;
  3013. ITERATE_RDEV(mddev,rdev,tmp)
  3014. if (rdev->raid_disk >= 0) {
  3015. char nm[20];
  3016. sprintf(nm, "rd%d", rdev->raid_disk);
  3017. sysfs_remove_link(&mddev->kobj, nm);
  3018. }
  3019. /* make sure all delayed_delete calls have finished */
  3020. flush_scheduled_work();
  3021. export_array(mddev);
  3022. mddev->array_size = 0;
  3023. mddev->size = 0;
  3024. mddev->raid_disks = 0;
  3025. mddev->recovery_cp = 0;
  3026. } else if (mddev->pers)
  3027. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3028. mdname(mddev));
  3029. err = 0;
  3030. md_new_event(mddev);
  3031. out:
  3032. return err;
  3033. }
  3034. #ifndef MODULE
  3035. static void autorun_array(mddev_t *mddev)
  3036. {
  3037. mdk_rdev_t *rdev;
  3038. struct list_head *tmp;
  3039. int err;
  3040. if (list_empty(&mddev->disks))
  3041. return;
  3042. printk(KERN_INFO "md: running: ");
  3043. ITERATE_RDEV(mddev,rdev,tmp) {
  3044. char b[BDEVNAME_SIZE];
  3045. printk("<%s>", bdevname(rdev->bdev,b));
  3046. }
  3047. printk("\n");
  3048. err = do_md_run (mddev);
  3049. if (err) {
  3050. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3051. do_md_stop (mddev, 0);
  3052. }
  3053. }
  3054. /*
  3055. * lets try to run arrays based on all disks that have arrived
  3056. * until now. (those are in pending_raid_disks)
  3057. *
  3058. * the method: pick the first pending disk, collect all disks with
  3059. * the same UUID, remove all from the pending list and put them into
  3060. * the 'same_array' list. Then order this list based on superblock
  3061. * update time (freshest comes first), kick out 'old' disks and
  3062. * compare superblocks. If everything's fine then run it.
  3063. *
  3064. * If "unit" is allocated, then bump its reference count
  3065. */
  3066. static void autorun_devices(int part)
  3067. {
  3068. struct list_head *tmp;
  3069. mdk_rdev_t *rdev0, *rdev;
  3070. mddev_t *mddev;
  3071. char b[BDEVNAME_SIZE];
  3072. printk(KERN_INFO "md: autorun ...\n");
  3073. while (!list_empty(&pending_raid_disks)) {
  3074. int unit;
  3075. dev_t dev;
  3076. LIST_HEAD(candidates);
  3077. rdev0 = list_entry(pending_raid_disks.next,
  3078. mdk_rdev_t, same_set);
  3079. printk(KERN_INFO "md: considering %s ...\n",
  3080. bdevname(rdev0->bdev,b));
  3081. INIT_LIST_HEAD(&candidates);
  3082. ITERATE_RDEV_PENDING(rdev,tmp)
  3083. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3084. printk(KERN_INFO "md: adding %s ...\n",
  3085. bdevname(rdev->bdev,b));
  3086. list_move(&rdev->same_set, &candidates);
  3087. }
  3088. /*
  3089. * now we have a set of devices, with all of them having
  3090. * mostly sane superblocks. It's time to allocate the
  3091. * mddev.
  3092. */
  3093. if (part) {
  3094. dev = MKDEV(mdp_major,
  3095. rdev0->preferred_minor << MdpMinorShift);
  3096. unit = MINOR(dev) >> MdpMinorShift;
  3097. } else {
  3098. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3099. unit = MINOR(dev);
  3100. }
  3101. if (rdev0->preferred_minor != unit) {
  3102. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3103. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3104. break;
  3105. }
  3106. md_probe(dev, NULL, NULL);
  3107. mddev = mddev_find(dev);
  3108. if (!mddev) {
  3109. printk(KERN_ERR
  3110. "md: cannot allocate memory for md drive.\n");
  3111. break;
  3112. }
  3113. if (mddev_lock(mddev))
  3114. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3115. mdname(mddev));
  3116. else if (mddev->raid_disks || mddev->major_version
  3117. || !list_empty(&mddev->disks)) {
  3118. printk(KERN_WARNING
  3119. "md: %s already running, cannot run %s\n",
  3120. mdname(mddev), bdevname(rdev0->bdev,b));
  3121. mddev_unlock(mddev);
  3122. } else {
  3123. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3124. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3125. list_del_init(&rdev->same_set);
  3126. if (bind_rdev_to_array(rdev, mddev))
  3127. export_rdev(rdev);
  3128. }
  3129. autorun_array(mddev);
  3130. mddev_unlock(mddev);
  3131. }
  3132. /* on success, candidates will be empty, on error
  3133. * it won't...
  3134. */
  3135. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3136. export_rdev(rdev);
  3137. mddev_put(mddev);
  3138. }
  3139. printk(KERN_INFO "md: ... autorun DONE.\n");
  3140. }
  3141. #endif /* !MODULE */
  3142. static int get_version(void __user * arg)
  3143. {
  3144. mdu_version_t ver;
  3145. ver.major = MD_MAJOR_VERSION;
  3146. ver.minor = MD_MINOR_VERSION;
  3147. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3148. if (copy_to_user(arg, &ver, sizeof(ver)))
  3149. return -EFAULT;
  3150. return 0;
  3151. }
  3152. static int get_array_info(mddev_t * mddev, void __user * arg)
  3153. {
  3154. mdu_array_info_t info;
  3155. int nr,working,active,failed,spare;
  3156. mdk_rdev_t *rdev;
  3157. struct list_head *tmp;
  3158. nr=working=active=failed=spare=0;
  3159. ITERATE_RDEV(mddev,rdev,tmp) {
  3160. nr++;
  3161. if (test_bit(Faulty, &rdev->flags))
  3162. failed++;
  3163. else {
  3164. working++;
  3165. if (test_bit(In_sync, &rdev->flags))
  3166. active++;
  3167. else
  3168. spare++;
  3169. }
  3170. }
  3171. info.major_version = mddev->major_version;
  3172. info.minor_version = mddev->minor_version;
  3173. info.patch_version = MD_PATCHLEVEL_VERSION;
  3174. info.ctime = mddev->ctime;
  3175. info.level = mddev->level;
  3176. info.size = mddev->size;
  3177. if (info.size != mddev->size) /* overflow */
  3178. info.size = -1;
  3179. info.nr_disks = nr;
  3180. info.raid_disks = mddev->raid_disks;
  3181. info.md_minor = mddev->md_minor;
  3182. info.not_persistent= !mddev->persistent;
  3183. info.utime = mddev->utime;
  3184. info.state = 0;
  3185. if (mddev->in_sync)
  3186. info.state = (1<<MD_SB_CLEAN);
  3187. if (mddev->bitmap && mddev->bitmap_offset)
  3188. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3189. info.active_disks = active;
  3190. info.working_disks = working;
  3191. info.failed_disks = failed;
  3192. info.spare_disks = spare;
  3193. info.layout = mddev->layout;
  3194. info.chunk_size = mddev->chunk_size;
  3195. if (copy_to_user(arg, &info, sizeof(info)))
  3196. return -EFAULT;
  3197. return 0;
  3198. }
  3199. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3200. {
  3201. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3202. char *ptr, *buf = NULL;
  3203. int err = -ENOMEM;
  3204. md_allow_write(mddev);
  3205. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3206. if (!file)
  3207. goto out;
  3208. /* bitmap disabled, zero the first byte and copy out */
  3209. if (!mddev->bitmap || !mddev->bitmap->file) {
  3210. file->pathname[0] = '\0';
  3211. goto copy_out;
  3212. }
  3213. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3214. if (!buf)
  3215. goto out;
  3216. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3217. if (!ptr)
  3218. goto out;
  3219. strcpy(file->pathname, ptr);
  3220. copy_out:
  3221. err = 0;
  3222. if (copy_to_user(arg, file, sizeof(*file)))
  3223. err = -EFAULT;
  3224. out:
  3225. kfree(buf);
  3226. kfree(file);
  3227. return err;
  3228. }
  3229. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3230. {
  3231. mdu_disk_info_t info;
  3232. unsigned int nr;
  3233. mdk_rdev_t *rdev;
  3234. if (copy_from_user(&info, arg, sizeof(info)))
  3235. return -EFAULT;
  3236. nr = info.number;
  3237. rdev = find_rdev_nr(mddev, nr);
  3238. if (rdev) {
  3239. info.major = MAJOR(rdev->bdev->bd_dev);
  3240. info.minor = MINOR(rdev->bdev->bd_dev);
  3241. info.raid_disk = rdev->raid_disk;
  3242. info.state = 0;
  3243. if (test_bit(Faulty, &rdev->flags))
  3244. info.state |= (1<<MD_DISK_FAULTY);
  3245. else if (test_bit(In_sync, &rdev->flags)) {
  3246. info.state |= (1<<MD_DISK_ACTIVE);
  3247. info.state |= (1<<MD_DISK_SYNC);
  3248. }
  3249. if (test_bit(WriteMostly, &rdev->flags))
  3250. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3251. } else {
  3252. info.major = info.minor = 0;
  3253. info.raid_disk = -1;
  3254. info.state = (1<<MD_DISK_REMOVED);
  3255. }
  3256. if (copy_to_user(arg, &info, sizeof(info)))
  3257. return -EFAULT;
  3258. return 0;
  3259. }
  3260. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3261. {
  3262. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3263. mdk_rdev_t *rdev;
  3264. dev_t dev = MKDEV(info->major,info->minor);
  3265. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3266. return -EOVERFLOW;
  3267. if (!mddev->raid_disks) {
  3268. int err;
  3269. /* expecting a device which has a superblock */
  3270. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3271. if (IS_ERR(rdev)) {
  3272. printk(KERN_WARNING
  3273. "md: md_import_device returned %ld\n",
  3274. PTR_ERR(rdev));
  3275. return PTR_ERR(rdev);
  3276. }
  3277. if (!list_empty(&mddev->disks)) {
  3278. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3279. mdk_rdev_t, same_set);
  3280. int err = super_types[mddev->major_version]
  3281. .load_super(rdev, rdev0, mddev->minor_version);
  3282. if (err < 0) {
  3283. printk(KERN_WARNING
  3284. "md: %s has different UUID to %s\n",
  3285. bdevname(rdev->bdev,b),
  3286. bdevname(rdev0->bdev,b2));
  3287. export_rdev(rdev);
  3288. return -EINVAL;
  3289. }
  3290. }
  3291. err = bind_rdev_to_array(rdev, mddev);
  3292. if (err)
  3293. export_rdev(rdev);
  3294. return err;
  3295. }
  3296. /*
  3297. * add_new_disk can be used once the array is assembled
  3298. * to add "hot spares". They must already have a superblock
  3299. * written
  3300. */
  3301. if (mddev->pers) {
  3302. int err;
  3303. if (!mddev->pers->hot_add_disk) {
  3304. printk(KERN_WARNING
  3305. "%s: personality does not support diskops!\n",
  3306. mdname(mddev));
  3307. return -EINVAL;
  3308. }
  3309. if (mddev->persistent)
  3310. rdev = md_import_device(dev, mddev->major_version,
  3311. mddev->minor_version);
  3312. else
  3313. rdev = md_import_device(dev, -1, -1);
  3314. if (IS_ERR(rdev)) {
  3315. printk(KERN_WARNING
  3316. "md: md_import_device returned %ld\n",
  3317. PTR_ERR(rdev));
  3318. return PTR_ERR(rdev);
  3319. }
  3320. /* set save_raid_disk if appropriate */
  3321. if (!mddev->persistent) {
  3322. if (info->state & (1<<MD_DISK_SYNC) &&
  3323. info->raid_disk < mddev->raid_disks)
  3324. rdev->raid_disk = info->raid_disk;
  3325. else
  3326. rdev->raid_disk = -1;
  3327. } else
  3328. super_types[mddev->major_version].
  3329. validate_super(mddev, rdev);
  3330. rdev->saved_raid_disk = rdev->raid_disk;
  3331. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3332. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3333. set_bit(WriteMostly, &rdev->flags);
  3334. rdev->raid_disk = -1;
  3335. err = bind_rdev_to_array(rdev, mddev);
  3336. if (!err && !mddev->pers->hot_remove_disk) {
  3337. /* If there is hot_add_disk but no hot_remove_disk
  3338. * then added disks for geometry changes,
  3339. * and should be added immediately.
  3340. */
  3341. super_types[mddev->major_version].
  3342. validate_super(mddev, rdev);
  3343. err = mddev->pers->hot_add_disk(mddev, rdev);
  3344. if (err)
  3345. unbind_rdev_from_array(rdev);
  3346. }
  3347. if (err)
  3348. export_rdev(rdev);
  3349. md_update_sb(mddev, 1);
  3350. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3351. md_wakeup_thread(mddev->thread);
  3352. return err;
  3353. }
  3354. /* otherwise, add_new_disk is only allowed
  3355. * for major_version==0 superblocks
  3356. */
  3357. if (mddev->major_version != 0) {
  3358. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3359. mdname(mddev));
  3360. return -EINVAL;
  3361. }
  3362. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3363. int err;
  3364. rdev = md_import_device (dev, -1, 0);
  3365. if (IS_ERR(rdev)) {
  3366. printk(KERN_WARNING
  3367. "md: error, md_import_device() returned %ld\n",
  3368. PTR_ERR(rdev));
  3369. return PTR_ERR(rdev);
  3370. }
  3371. rdev->desc_nr = info->number;
  3372. if (info->raid_disk < mddev->raid_disks)
  3373. rdev->raid_disk = info->raid_disk;
  3374. else
  3375. rdev->raid_disk = -1;
  3376. rdev->flags = 0;
  3377. if (rdev->raid_disk < mddev->raid_disks)
  3378. if (info->state & (1<<MD_DISK_SYNC))
  3379. set_bit(In_sync, &rdev->flags);
  3380. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3381. set_bit(WriteMostly, &rdev->flags);
  3382. if (!mddev->persistent) {
  3383. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3384. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3385. } else
  3386. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3387. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3388. err = bind_rdev_to_array(rdev, mddev);
  3389. if (err) {
  3390. export_rdev(rdev);
  3391. return err;
  3392. }
  3393. }
  3394. return 0;
  3395. }
  3396. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3397. {
  3398. char b[BDEVNAME_SIZE];
  3399. mdk_rdev_t *rdev;
  3400. if (!mddev->pers)
  3401. return -ENODEV;
  3402. rdev = find_rdev(mddev, dev);
  3403. if (!rdev)
  3404. return -ENXIO;
  3405. if (rdev->raid_disk >= 0)
  3406. goto busy;
  3407. kick_rdev_from_array(rdev);
  3408. md_update_sb(mddev, 1);
  3409. md_new_event(mddev);
  3410. return 0;
  3411. busy:
  3412. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3413. bdevname(rdev->bdev,b), mdname(mddev));
  3414. return -EBUSY;
  3415. }
  3416. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3417. {
  3418. char b[BDEVNAME_SIZE];
  3419. int err;
  3420. unsigned int size;
  3421. mdk_rdev_t *rdev;
  3422. if (!mddev->pers)
  3423. return -ENODEV;
  3424. if (mddev->major_version != 0) {
  3425. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3426. " version-0 superblocks.\n",
  3427. mdname(mddev));
  3428. return -EINVAL;
  3429. }
  3430. if (!mddev->pers->hot_add_disk) {
  3431. printk(KERN_WARNING
  3432. "%s: personality does not support diskops!\n",
  3433. mdname(mddev));
  3434. return -EINVAL;
  3435. }
  3436. rdev = md_import_device (dev, -1, 0);
  3437. if (IS_ERR(rdev)) {
  3438. printk(KERN_WARNING
  3439. "md: error, md_import_device() returned %ld\n",
  3440. PTR_ERR(rdev));
  3441. return -EINVAL;
  3442. }
  3443. if (mddev->persistent)
  3444. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3445. else
  3446. rdev->sb_offset =
  3447. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3448. size = calc_dev_size(rdev, mddev->chunk_size);
  3449. rdev->size = size;
  3450. if (test_bit(Faulty, &rdev->flags)) {
  3451. printk(KERN_WARNING
  3452. "md: can not hot-add faulty %s disk to %s!\n",
  3453. bdevname(rdev->bdev,b), mdname(mddev));
  3454. err = -EINVAL;
  3455. goto abort_export;
  3456. }
  3457. clear_bit(In_sync, &rdev->flags);
  3458. rdev->desc_nr = -1;
  3459. rdev->saved_raid_disk = -1;
  3460. err = bind_rdev_to_array(rdev, mddev);
  3461. if (err)
  3462. goto abort_export;
  3463. /*
  3464. * The rest should better be atomic, we can have disk failures
  3465. * noticed in interrupt contexts ...
  3466. */
  3467. if (rdev->desc_nr == mddev->max_disks) {
  3468. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3469. mdname(mddev));
  3470. err = -EBUSY;
  3471. goto abort_unbind_export;
  3472. }
  3473. rdev->raid_disk = -1;
  3474. md_update_sb(mddev, 1);
  3475. /*
  3476. * Kick recovery, maybe this spare has to be added to the
  3477. * array immediately.
  3478. */
  3479. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3480. md_wakeup_thread(mddev->thread);
  3481. md_new_event(mddev);
  3482. return 0;
  3483. abort_unbind_export:
  3484. unbind_rdev_from_array(rdev);
  3485. abort_export:
  3486. export_rdev(rdev);
  3487. return err;
  3488. }
  3489. static int set_bitmap_file(mddev_t *mddev, int fd)
  3490. {
  3491. int err;
  3492. if (mddev->pers) {
  3493. if (!mddev->pers->quiesce)
  3494. return -EBUSY;
  3495. if (mddev->recovery || mddev->sync_thread)
  3496. return -EBUSY;
  3497. /* we should be able to change the bitmap.. */
  3498. }
  3499. if (fd >= 0) {
  3500. if (mddev->bitmap)
  3501. return -EEXIST; /* cannot add when bitmap is present */
  3502. mddev->bitmap_file = fget(fd);
  3503. if (mddev->bitmap_file == NULL) {
  3504. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3505. mdname(mddev));
  3506. return -EBADF;
  3507. }
  3508. err = deny_bitmap_write_access(mddev->bitmap_file);
  3509. if (err) {
  3510. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3511. mdname(mddev));
  3512. fput(mddev->bitmap_file);
  3513. mddev->bitmap_file = NULL;
  3514. return err;
  3515. }
  3516. mddev->bitmap_offset = 0; /* file overrides offset */
  3517. } else if (mddev->bitmap == NULL)
  3518. return -ENOENT; /* cannot remove what isn't there */
  3519. err = 0;
  3520. if (mddev->pers) {
  3521. mddev->pers->quiesce(mddev, 1);
  3522. if (fd >= 0)
  3523. err = bitmap_create(mddev);
  3524. if (fd < 0 || err) {
  3525. bitmap_destroy(mddev);
  3526. fd = -1; /* make sure to put the file */
  3527. }
  3528. mddev->pers->quiesce(mddev, 0);
  3529. }
  3530. if (fd < 0) {
  3531. if (mddev->bitmap_file) {
  3532. restore_bitmap_write_access(mddev->bitmap_file);
  3533. fput(mddev->bitmap_file);
  3534. }
  3535. mddev->bitmap_file = NULL;
  3536. }
  3537. return err;
  3538. }
  3539. /*
  3540. * set_array_info is used two different ways
  3541. * The original usage is when creating a new array.
  3542. * In this usage, raid_disks is > 0 and it together with
  3543. * level, size, not_persistent,layout,chunksize determine the
  3544. * shape of the array.
  3545. * This will always create an array with a type-0.90.0 superblock.
  3546. * The newer usage is when assembling an array.
  3547. * In this case raid_disks will be 0, and the major_version field is
  3548. * use to determine which style super-blocks are to be found on the devices.
  3549. * The minor and patch _version numbers are also kept incase the
  3550. * super_block handler wishes to interpret them.
  3551. */
  3552. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3553. {
  3554. if (info->raid_disks == 0) {
  3555. /* just setting version number for superblock loading */
  3556. if (info->major_version < 0 ||
  3557. info->major_version >= ARRAY_SIZE(super_types) ||
  3558. super_types[info->major_version].name == NULL) {
  3559. /* maybe try to auto-load a module? */
  3560. printk(KERN_INFO
  3561. "md: superblock version %d not known\n",
  3562. info->major_version);
  3563. return -EINVAL;
  3564. }
  3565. mddev->major_version = info->major_version;
  3566. mddev->minor_version = info->minor_version;
  3567. mddev->patch_version = info->patch_version;
  3568. mddev->persistent = !info->not_persistent;
  3569. return 0;
  3570. }
  3571. mddev->major_version = MD_MAJOR_VERSION;
  3572. mddev->minor_version = MD_MINOR_VERSION;
  3573. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3574. mddev->ctime = get_seconds();
  3575. mddev->level = info->level;
  3576. mddev->clevel[0] = 0;
  3577. mddev->size = info->size;
  3578. mddev->raid_disks = info->raid_disks;
  3579. /* don't set md_minor, it is determined by which /dev/md* was
  3580. * openned
  3581. */
  3582. if (info->state & (1<<MD_SB_CLEAN))
  3583. mddev->recovery_cp = MaxSector;
  3584. else
  3585. mddev->recovery_cp = 0;
  3586. mddev->persistent = ! info->not_persistent;
  3587. mddev->layout = info->layout;
  3588. mddev->chunk_size = info->chunk_size;
  3589. mddev->max_disks = MD_SB_DISKS;
  3590. mddev->flags = 0;
  3591. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3592. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3593. mddev->bitmap_offset = 0;
  3594. mddev->reshape_position = MaxSector;
  3595. /*
  3596. * Generate a 128 bit UUID
  3597. */
  3598. get_random_bytes(mddev->uuid, 16);
  3599. mddev->new_level = mddev->level;
  3600. mddev->new_chunk = mddev->chunk_size;
  3601. mddev->new_layout = mddev->layout;
  3602. mddev->delta_disks = 0;
  3603. return 0;
  3604. }
  3605. static int update_size(mddev_t *mddev, unsigned long size)
  3606. {
  3607. mdk_rdev_t * rdev;
  3608. int rv;
  3609. struct list_head *tmp;
  3610. int fit = (size == 0);
  3611. if (mddev->pers->resize == NULL)
  3612. return -EINVAL;
  3613. /* The "size" is the amount of each device that is used.
  3614. * This can only make sense for arrays with redundancy.
  3615. * linear and raid0 always use whatever space is available
  3616. * We can only consider changing the size if no resync
  3617. * or reconstruction is happening, and if the new size
  3618. * is acceptable. It must fit before the sb_offset or,
  3619. * if that is <data_offset, it must fit before the
  3620. * size of each device.
  3621. * If size is zero, we find the largest size that fits.
  3622. */
  3623. if (mddev->sync_thread)
  3624. return -EBUSY;
  3625. ITERATE_RDEV(mddev,rdev,tmp) {
  3626. sector_t avail;
  3627. avail = rdev->size * 2;
  3628. if (fit && (size == 0 || size > avail/2))
  3629. size = avail/2;
  3630. if (avail < ((sector_t)size << 1))
  3631. return -ENOSPC;
  3632. }
  3633. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3634. if (!rv) {
  3635. struct block_device *bdev;
  3636. bdev = bdget_disk(mddev->gendisk, 0);
  3637. if (bdev) {
  3638. mutex_lock(&bdev->bd_inode->i_mutex);
  3639. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3640. mutex_unlock(&bdev->bd_inode->i_mutex);
  3641. bdput(bdev);
  3642. }
  3643. }
  3644. return rv;
  3645. }
  3646. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3647. {
  3648. int rv;
  3649. /* change the number of raid disks */
  3650. if (mddev->pers->check_reshape == NULL)
  3651. return -EINVAL;
  3652. if (raid_disks <= 0 ||
  3653. raid_disks >= mddev->max_disks)
  3654. return -EINVAL;
  3655. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3656. return -EBUSY;
  3657. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3658. rv = mddev->pers->check_reshape(mddev);
  3659. return rv;
  3660. }
  3661. /*
  3662. * update_array_info is used to change the configuration of an
  3663. * on-line array.
  3664. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3665. * fields in the info are checked against the array.
  3666. * Any differences that cannot be handled will cause an error.
  3667. * Normally, only one change can be managed at a time.
  3668. */
  3669. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3670. {
  3671. int rv = 0;
  3672. int cnt = 0;
  3673. int state = 0;
  3674. /* calculate expected state,ignoring low bits */
  3675. if (mddev->bitmap && mddev->bitmap_offset)
  3676. state |= (1 << MD_SB_BITMAP_PRESENT);
  3677. if (mddev->major_version != info->major_version ||
  3678. mddev->minor_version != info->minor_version ||
  3679. /* mddev->patch_version != info->patch_version || */
  3680. mddev->ctime != info->ctime ||
  3681. mddev->level != info->level ||
  3682. /* mddev->layout != info->layout || */
  3683. !mddev->persistent != info->not_persistent||
  3684. mddev->chunk_size != info->chunk_size ||
  3685. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3686. ((state^info->state) & 0xfffffe00)
  3687. )
  3688. return -EINVAL;
  3689. /* Check there is only one change */
  3690. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3691. if (mddev->raid_disks != info->raid_disks) cnt++;
  3692. if (mddev->layout != info->layout) cnt++;
  3693. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3694. if (cnt == 0) return 0;
  3695. if (cnt > 1) return -EINVAL;
  3696. if (mddev->layout != info->layout) {
  3697. /* Change layout
  3698. * we don't need to do anything at the md level, the
  3699. * personality will take care of it all.
  3700. */
  3701. if (mddev->pers->reconfig == NULL)
  3702. return -EINVAL;
  3703. else
  3704. return mddev->pers->reconfig(mddev, info->layout, -1);
  3705. }
  3706. if (info->size >= 0 && mddev->size != info->size)
  3707. rv = update_size(mddev, info->size);
  3708. if (mddev->raid_disks != info->raid_disks)
  3709. rv = update_raid_disks(mddev, info->raid_disks);
  3710. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3711. if (mddev->pers->quiesce == NULL)
  3712. return -EINVAL;
  3713. if (mddev->recovery || mddev->sync_thread)
  3714. return -EBUSY;
  3715. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3716. /* add the bitmap */
  3717. if (mddev->bitmap)
  3718. return -EEXIST;
  3719. if (mddev->default_bitmap_offset == 0)
  3720. return -EINVAL;
  3721. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3722. mddev->pers->quiesce(mddev, 1);
  3723. rv = bitmap_create(mddev);
  3724. if (rv)
  3725. bitmap_destroy(mddev);
  3726. mddev->pers->quiesce(mddev, 0);
  3727. } else {
  3728. /* remove the bitmap */
  3729. if (!mddev->bitmap)
  3730. return -ENOENT;
  3731. if (mddev->bitmap->file)
  3732. return -EINVAL;
  3733. mddev->pers->quiesce(mddev, 1);
  3734. bitmap_destroy(mddev);
  3735. mddev->pers->quiesce(mddev, 0);
  3736. mddev->bitmap_offset = 0;
  3737. }
  3738. }
  3739. md_update_sb(mddev, 1);
  3740. return rv;
  3741. }
  3742. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3743. {
  3744. mdk_rdev_t *rdev;
  3745. if (mddev->pers == NULL)
  3746. return -ENODEV;
  3747. rdev = find_rdev(mddev, dev);
  3748. if (!rdev)
  3749. return -ENODEV;
  3750. md_error(mddev, rdev);
  3751. return 0;
  3752. }
  3753. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3754. {
  3755. mddev_t *mddev = bdev->bd_disk->private_data;
  3756. geo->heads = 2;
  3757. geo->sectors = 4;
  3758. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3759. return 0;
  3760. }
  3761. static int md_ioctl(struct inode *inode, struct file *file,
  3762. unsigned int cmd, unsigned long arg)
  3763. {
  3764. int err = 0;
  3765. void __user *argp = (void __user *)arg;
  3766. mddev_t *mddev = NULL;
  3767. if (!capable(CAP_SYS_ADMIN))
  3768. return -EACCES;
  3769. /*
  3770. * Commands dealing with the RAID driver but not any
  3771. * particular array:
  3772. */
  3773. switch (cmd)
  3774. {
  3775. case RAID_VERSION:
  3776. err = get_version(argp);
  3777. goto done;
  3778. case PRINT_RAID_DEBUG:
  3779. err = 0;
  3780. md_print_devices();
  3781. goto done;
  3782. #ifndef MODULE
  3783. case RAID_AUTORUN:
  3784. err = 0;
  3785. autostart_arrays(arg);
  3786. goto done;
  3787. #endif
  3788. default:;
  3789. }
  3790. /*
  3791. * Commands creating/starting a new array:
  3792. */
  3793. mddev = inode->i_bdev->bd_disk->private_data;
  3794. if (!mddev) {
  3795. BUG();
  3796. goto abort;
  3797. }
  3798. err = mddev_lock(mddev);
  3799. if (err) {
  3800. printk(KERN_INFO
  3801. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3802. err, cmd);
  3803. goto abort;
  3804. }
  3805. switch (cmd)
  3806. {
  3807. case SET_ARRAY_INFO:
  3808. {
  3809. mdu_array_info_t info;
  3810. if (!arg)
  3811. memset(&info, 0, sizeof(info));
  3812. else if (copy_from_user(&info, argp, sizeof(info))) {
  3813. err = -EFAULT;
  3814. goto abort_unlock;
  3815. }
  3816. if (mddev->pers) {
  3817. err = update_array_info(mddev, &info);
  3818. if (err) {
  3819. printk(KERN_WARNING "md: couldn't update"
  3820. " array info. %d\n", err);
  3821. goto abort_unlock;
  3822. }
  3823. goto done_unlock;
  3824. }
  3825. if (!list_empty(&mddev->disks)) {
  3826. printk(KERN_WARNING
  3827. "md: array %s already has disks!\n",
  3828. mdname(mddev));
  3829. err = -EBUSY;
  3830. goto abort_unlock;
  3831. }
  3832. if (mddev->raid_disks) {
  3833. printk(KERN_WARNING
  3834. "md: array %s already initialised!\n",
  3835. mdname(mddev));
  3836. err = -EBUSY;
  3837. goto abort_unlock;
  3838. }
  3839. err = set_array_info(mddev, &info);
  3840. if (err) {
  3841. printk(KERN_WARNING "md: couldn't set"
  3842. " array info. %d\n", err);
  3843. goto abort_unlock;
  3844. }
  3845. }
  3846. goto done_unlock;
  3847. default:;
  3848. }
  3849. /*
  3850. * Commands querying/configuring an existing array:
  3851. */
  3852. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3853. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  3854. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3855. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  3856. && cmd != GET_BITMAP_FILE) {
  3857. err = -ENODEV;
  3858. goto abort_unlock;
  3859. }
  3860. /*
  3861. * Commands even a read-only array can execute:
  3862. */
  3863. switch (cmd)
  3864. {
  3865. case GET_ARRAY_INFO:
  3866. err = get_array_info(mddev, argp);
  3867. goto done_unlock;
  3868. case GET_BITMAP_FILE:
  3869. err = get_bitmap_file(mddev, argp);
  3870. goto done_unlock;
  3871. case GET_DISK_INFO:
  3872. err = get_disk_info(mddev, argp);
  3873. goto done_unlock;
  3874. case RESTART_ARRAY_RW:
  3875. err = restart_array(mddev);
  3876. goto done_unlock;
  3877. case STOP_ARRAY:
  3878. err = do_md_stop (mddev, 0);
  3879. goto done_unlock;
  3880. case STOP_ARRAY_RO:
  3881. err = do_md_stop (mddev, 1);
  3882. goto done_unlock;
  3883. /*
  3884. * We have a problem here : there is no easy way to give a CHS
  3885. * virtual geometry. We currently pretend that we have a 2 heads
  3886. * 4 sectors (with a BIG number of cylinders...). This drives
  3887. * dosfs just mad... ;-)
  3888. */
  3889. }
  3890. /*
  3891. * The remaining ioctls are changing the state of the
  3892. * superblock, so we do not allow them on read-only arrays.
  3893. * However non-MD ioctls (e.g. get-size) will still come through
  3894. * here and hit the 'default' below, so only disallow
  3895. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3896. */
  3897. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3898. mddev->ro && mddev->pers) {
  3899. if (mddev->ro == 2) {
  3900. mddev->ro = 0;
  3901. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3902. md_wakeup_thread(mddev->thread);
  3903. } else {
  3904. err = -EROFS;
  3905. goto abort_unlock;
  3906. }
  3907. }
  3908. switch (cmd)
  3909. {
  3910. case ADD_NEW_DISK:
  3911. {
  3912. mdu_disk_info_t info;
  3913. if (copy_from_user(&info, argp, sizeof(info)))
  3914. err = -EFAULT;
  3915. else
  3916. err = add_new_disk(mddev, &info);
  3917. goto done_unlock;
  3918. }
  3919. case HOT_REMOVE_DISK:
  3920. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3921. goto done_unlock;
  3922. case HOT_ADD_DISK:
  3923. err = hot_add_disk(mddev, new_decode_dev(arg));
  3924. goto done_unlock;
  3925. case SET_DISK_FAULTY:
  3926. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3927. goto done_unlock;
  3928. case RUN_ARRAY:
  3929. err = do_md_run (mddev);
  3930. goto done_unlock;
  3931. case SET_BITMAP_FILE:
  3932. err = set_bitmap_file(mddev, (int)arg);
  3933. goto done_unlock;
  3934. default:
  3935. err = -EINVAL;
  3936. goto abort_unlock;
  3937. }
  3938. done_unlock:
  3939. abort_unlock:
  3940. mddev_unlock(mddev);
  3941. return err;
  3942. done:
  3943. if (err)
  3944. MD_BUG();
  3945. abort:
  3946. return err;
  3947. }
  3948. static int md_open(struct inode *inode, struct file *file)
  3949. {
  3950. /*
  3951. * Succeed if we can lock the mddev, which confirms that
  3952. * it isn't being stopped right now.
  3953. */
  3954. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3955. int err;
  3956. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  3957. goto out;
  3958. err = 0;
  3959. mddev_get(mddev);
  3960. mddev_unlock(mddev);
  3961. check_disk_change(inode->i_bdev);
  3962. out:
  3963. return err;
  3964. }
  3965. static int md_release(struct inode *inode, struct file * file)
  3966. {
  3967. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3968. BUG_ON(!mddev);
  3969. mddev_put(mddev);
  3970. return 0;
  3971. }
  3972. static int md_media_changed(struct gendisk *disk)
  3973. {
  3974. mddev_t *mddev = disk->private_data;
  3975. return mddev->changed;
  3976. }
  3977. static int md_revalidate(struct gendisk *disk)
  3978. {
  3979. mddev_t *mddev = disk->private_data;
  3980. mddev->changed = 0;
  3981. return 0;
  3982. }
  3983. static struct block_device_operations md_fops =
  3984. {
  3985. .owner = THIS_MODULE,
  3986. .open = md_open,
  3987. .release = md_release,
  3988. .ioctl = md_ioctl,
  3989. .getgeo = md_getgeo,
  3990. .media_changed = md_media_changed,
  3991. .revalidate_disk= md_revalidate,
  3992. };
  3993. static int md_thread(void * arg)
  3994. {
  3995. mdk_thread_t *thread = arg;
  3996. /*
  3997. * md_thread is a 'system-thread', it's priority should be very
  3998. * high. We avoid resource deadlocks individually in each
  3999. * raid personality. (RAID5 does preallocation) We also use RR and
  4000. * the very same RT priority as kswapd, thus we will never get
  4001. * into a priority inversion deadlock.
  4002. *
  4003. * we definitely have to have equal or higher priority than
  4004. * bdflush, otherwise bdflush will deadlock if there are too
  4005. * many dirty RAID5 blocks.
  4006. */
  4007. current->flags |= PF_NOFREEZE;
  4008. allow_signal(SIGKILL);
  4009. while (!kthread_should_stop()) {
  4010. /* We need to wait INTERRUPTIBLE so that
  4011. * we don't add to the load-average.
  4012. * That means we need to be sure no signals are
  4013. * pending
  4014. */
  4015. if (signal_pending(current))
  4016. flush_signals(current);
  4017. wait_event_interruptible_timeout
  4018. (thread->wqueue,
  4019. test_bit(THREAD_WAKEUP, &thread->flags)
  4020. || kthread_should_stop(),
  4021. thread->timeout);
  4022. clear_bit(THREAD_WAKEUP, &thread->flags);
  4023. thread->run(thread->mddev);
  4024. }
  4025. return 0;
  4026. }
  4027. void md_wakeup_thread(mdk_thread_t *thread)
  4028. {
  4029. if (thread) {
  4030. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4031. set_bit(THREAD_WAKEUP, &thread->flags);
  4032. wake_up(&thread->wqueue);
  4033. }
  4034. }
  4035. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4036. const char *name)
  4037. {
  4038. mdk_thread_t *thread;
  4039. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4040. if (!thread)
  4041. return NULL;
  4042. init_waitqueue_head(&thread->wqueue);
  4043. thread->run = run;
  4044. thread->mddev = mddev;
  4045. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4046. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4047. if (IS_ERR(thread->tsk)) {
  4048. kfree(thread);
  4049. return NULL;
  4050. }
  4051. return thread;
  4052. }
  4053. void md_unregister_thread(mdk_thread_t *thread)
  4054. {
  4055. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  4056. kthread_stop(thread->tsk);
  4057. kfree(thread);
  4058. }
  4059. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4060. {
  4061. if (!mddev) {
  4062. MD_BUG();
  4063. return;
  4064. }
  4065. if (!rdev || test_bit(Faulty, &rdev->flags))
  4066. return;
  4067. /*
  4068. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4069. mdname(mddev),
  4070. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4071. __builtin_return_address(0),__builtin_return_address(1),
  4072. __builtin_return_address(2),__builtin_return_address(3));
  4073. */
  4074. if (!mddev->pers)
  4075. return;
  4076. if (!mddev->pers->error_handler)
  4077. return;
  4078. mddev->pers->error_handler(mddev,rdev);
  4079. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4080. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4081. md_wakeup_thread(mddev->thread);
  4082. md_new_event_inintr(mddev);
  4083. }
  4084. /* seq_file implementation /proc/mdstat */
  4085. static void status_unused(struct seq_file *seq)
  4086. {
  4087. int i = 0;
  4088. mdk_rdev_t *rdev;
  4089. struct list_head *tmp;
  4090. seq_printf(seq, "unused devices: ");
  4091. ITERATE_RDEV_PENDING(rdev,tmp) {
  4092. char b[BDEVNAME_SIZE];
  4093. i++;
  4094. seq_printf(seq, "%s ",
  4095. bdevname(rdev->bdev,b));
  4096. }
  4097. if (!i)
  4098. seq_printf(seq, "<none>");
  4099. seq_printf(seq, "\n");
  4100. }
  4101. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4102. {
  4103. sector_t max_blocks, resync, res;
  4104. unsigned long dt, db, rt;
  4105. int scale;
  4106. unsigned int per_milli;
  4107. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4108. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4109. max_blocks = mddev->resync_max_sectors >> 1;
  4110. else
  4111. max_blocks = mddev->size;
  4112. /*
  4113. * Should not happen.
  4114. */
  4115. if (!max_blocks) {
  4116. MD_BUG();
  4117. return;
  4118. }
  4119. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4120. * in a sector_t, and (max_blocks>>scale) will fit in a
  4121. * u32, as those are the requirements for sector_div.
  4122. * Thus 'scale' must be at least 10
  4123. */
  4124. scale = 10;
  4125. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4126. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4127. scale++;
  4128. }
  4129. res = (resync>>scale)*1000;
  4130. sector_div(res, (u32)((max_blocks>>scale)+1));
  4131. per_milli = res;
  4132. {
  4133. int i, x = per_milli/50, y = 20-x;
  4134. seq_printf(seq, "[");
  4135. for (i = 0; i < x; i++)
  4136. seq_printf(seq, "=");
  4137. seq_printf(seq, ">");
  4138. for (i = 0; i < y; i++)
  4139. seq_printf(seq, ".");
  4140. seq_printf(seq, "] ");
  4141. }
  4142. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4143. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4144. "reshape" :
  4145. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4146. "check" :
  4147. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4148. "resync" : "recovery"))),
  4149. per_milli/10, per_milli % 10,
  4150. (unsigned long long) resync,
  4151. (unsigned long long) max_blocks);
  4152. /*
  4153. * We do not want to overflow, so the order of operands and
  4154. * the * 100 / 100 trick are important. We do a +1 to be
  4155. * safe against division by zero. We only estimate anyway.
  4156. *
  4157. * dt: time from mark until now
  4158. * db: blocks written from mark until now
  4159. * rt: remaining time
  4160. */
  4161. dt = ((jiffies - mddev->resync_mark) / HZ);
  4162. if (!dt) dt++;
  4163. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4164. - mddev->resync_mark_cnt;
  4165. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4166. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4167. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4168. }
  4169. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4170. {
  4171. struct list_head *tmp;
  4172. loff_t l = *pos;
  4173. mddev_t *mddev;
  4174. if (l >= 0x10000)
  4175. return NULL;
  4176. if (!l--)
  4177. /* header */
  4178. return (void*)1;
  4179. spin_lock(&all_mddevs_lock);
  4180. list_for_each(tmp,&all_mddevs)
  4181. if (!l--) {
  4182. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4183. mddev_get(mddev);
  4184. spin_unlock(&all_mddevs_lock);
  4185. return mddev;
  4186. }
  4187. spin_unlock(&all_mddevs_lock);
  4188. if (!l--)
  4189. return (void*)2;/* tail */
  4190. return NULL;
  4191. }
  4192. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4193. {
  4194. struct list_head *tmp;
  4195. mddev_t *next_mddev, *mddev = v;
  4196. ++*pos;
  4197. if (v == (void*)2)
  4198. return NULL;
  4199. spin_lock(&all_mddevs_lock);
  4200. if (v == (void*)1)
  4201. tmp = all_mddevs.next;
  4202. else
  4203. tmp = mddev->all_mddevs.next;
  4204. if (tmp != &all_mddevs)
  4205. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4206. else {
  4207. next_mddev = (void*)2;
  4208. *pos = 0x10000;
  4209. }
  4210. spin_unlock(&all_mddevs_lock);
  4211. if (v != (void*)1)
  4212. mddev_put(mddev);
  4213. return next_mddev;
  4214. }
  4215. static void md_seq_stop(struct seq_file *seq, void *v)
  4216. {
  4217. mddev_t *mddev = v;
  4218. if (mddev && v != (void*)1 && v != (void*)2)
  4219. mddev_put(mddev);
  4220. }
  4221. struct mdstat_info {
  4222. int event;
  4223. };
  4224. static int md_seq_show(struct seq_file *seq, void *v)
  4225. {
  4226. mddev_t *mddev = v;
  4227. sector_t size;
  4228. struct list_head *tmp2;
  4229. mdk_rdev_t *rdev;
  4230. struct mdstat_info *mi = seq->private;
  4231. struct bitmap *bitmap;
  4232. if (v == (void*)1) {
  4233. struct mdk_personality *pers;
  4234. seq_printf(seq, "Personalities : ");
  4235. spin_lock(&pers_lock);
  4236. list_for_each_entry(pers, &pers_list, list)
  4237. seq_printf(seq, "[%s] ", pers->name);
  4238. spin_unlock(&pers_lock);
  4239. seq_printf(seq, "\n");
  4240. mi->event = atomic_read(&md_event_count);
  4241. return 0;
  4242. }
  4243. if (v == (void*)2) {
  4244. status_unused(seq);
  4245. return 0;
  4246. }
  4247. if (mddev_lock(mddev) < 0)
  4248. return -EINTR;
  4249. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4250. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4251. mddev->pers ? "" : "in");
  4252. if (mddev->pers) {
  4253. if (mddev->ro==1)
  4254. seq_printf(seq, " (read-only)");
  4255. if (mddev->ro==2)
  4256. seq_printf(seq, "(auto-read-only)");
  4257. seq_printf(seq, " %s", mddev->pers->name);
  4258. }
  4259. size = 0;
  4260. ITERATE_RDEV(mddev,rdev,tmp2) {
  4261. char b[BDEVNAME_SIZE];
  4262. seq_printf(seq, " %s[%d]",
  4263. bdevname(rdev->bdev,b), rdev->desc_nr);
  4264. if (test_bit(WriteMostly, &rdev->flags))
  4265. seq_printf(seq, "(W)");
  4266. if (test_bit(Faulty, &rdev->flags)) {
  4267. seq_printf(seq, "(F)");
  4268. continue;
  4269. } else if (rdev->raid_disk < 0)
  4270. seq_printf(seq, "(S)"); /* spare */
  4271. size += rdev->size;
  4272. }
  4273. if (!list_empty(&mddev->disks)) {
  4274. if (mddev->pers)
  4275. seq_printf(seq, "\n %llu blocks",
  4276. (unsigned long long)mddev->array_size);
  4277. else
  4278. seq_printf(seq, "\n %llu blocks",
  4279. (unsigned long long)size);
  4280. }
  4281. if (mddev->persistent) {
  4282. if (mddev->major_version != 0 ||
  4283. mddev->minor_version != 90) {
  4284. seq_printf(seq," super %d.%d",
  4285. mddev->major_version,
  4286. mddev->minor_version);
  4287. }
  4288. } else
  4289. seq_printf(seq, " super non-persistent");
  4290. if (mddev->pers) {
  4291. mddev->pers->status (seq, mddev);
  4292. seq_printf(seq, "\n ");
  4293. if (mddev->pers->sync_request) {
  4294. if (mddev->curr_resync > 2) {
  4295. status_resync (seq, mddev);
  4296. seq_printf(seq, "\n ");
  4297. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4298. seq_printf(seq, "\tresync=DELAYED\n ");
  4299. else if (mddev->recovery_cp < MaxSector)
  4300. seq_printf(seq, "\tresync=PENDING\n ");
  4301. }
  4302. } else
  4303. seq_printf(seq, "\n ");
  4304. if ((bitmap = mddev->bitmap)) {
  4305. unsigned long chunk_kb;
  4306. unsigned long flags;
  4307. spin_lock_irqsave(&bitmap->lock, flags);
  4308. chunk_kb = bitmap->chunksize >> 10;
  4309. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4310. "%lu%s chunk",
  4311. bitmap->pages - bitmap->missing_pages,
  4312. bitmap->pages,
  4313. (bitmap->pages - bitmap->missing_pages)
  4314. << (PAGE_SHIFT - 10),
  4315. chunk_kb ? chunk_kb : bitmap->chunksize,
  4316. chunk_kb ? "KB" : "B");
  4317. if (bitmap->file) {
  4318. seq_printf(seq, ", file: ");
  4319. seq_path(seq, bitmap->file->f_path.mnt,
  4320. bitmap->file->f_path.dentry," \t\n");
  4321. }
  4322. seq_printf(seq, "\n");
  4323. spin_unlock_irqrestore(&bitmap->lock, flags);
  4324. }
  4325. seq_printf(seq, "\n");
  4326. }
  4327. mddev_unlock(mddev);
  4328. return 0;
  4329. }
  4330. static struct seq_operations md_seq_ops = {
  4331. .start = md_seq_start,
  4332. .next = md_seq_next,
  4333. .stop = md_seq_stop,
  4334. .show = md_seq_show,
  4335. };
  4336. static int md_seq_open(struct inode *inode, struct file *file)
  4337. {
  4338. int error;
  4339. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4340. if (mi == NULL)
  4341. return -ENOMEM;
  4342. error = seq_open(file, &md_seq_ops);
  4343. if (error)
  4344. kfree(mi);
  4345. else {
  4346. struct seq_file *p = file->private_data;
  4347. p->private = mi;
  4348. mi->event = atomic_read(&md_event_count);
  4349. }
  4350. return error;
  4351. }
  4352. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4353. {
  4354. struct seq_file *m = filp->private_data;
  4355. struct mdstat_info *mi = m->private;
  4356. int mask;
  4357. poll_wait(filp, &md_event_waiters, wait);
  4358. /* always allow read */
  4359. mask = POLLIN | POLLRDNORM;
  4360. if (mi->event != atomic_read(&md_event_count))
  4361. mask |= POLLERR | POLLPRI;
  4362. return mask;
  4363. }
  4364. static const struct file_operations md_seq_fops = {
  4365. .owner = THIS_MODULE,
  4366. .open = md_seq_open,
  4367. .read = seq_read,
  4368. .llseek = seq_lseek,
  4369. .release = seq_release_private,
  4370. .poll = mdstat_poll,
  4371. };
  4372. int register_md_personality(struct mdk_personality *p)
  4373. {
  4374. spin_lock(&pers_lock);
  4375. list_add_tail(&p->list, &pers_list);
  4376. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4377. spin_unlock(&pers_lock);
  4378. return 0;
  4379. }
  4380. int unregister_md_personality(struct mdk_personality *p)
  4381. {
  4382. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4383. spin_lock(&pers_lock);
  4384. list_del_init(&p->list);
  4385. spin_unlock(&pers_lock);
  4386. return 0;
  4387. }
  4388. static int is_mddev_idle(mddev_t *mddev)
  4389. {
  4390. mdk_rdev_t * rdev;
  4391. struct list_head *tmp;
  4392. int idle;
  4393. unsigned long curr_events;
  4394. idle = 1;
  4395. ITERATE_RDEV(mddev,rdev,tmp) {
  4396. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4397. curr_events = disk_stat_read(disk, sectors[0]) +
  4398. disk_stat_read(disk, sectors[1]) -
  4399. atomic_read(&disk->sync_io);
  4400. /* The difference between curr_events and last_events
  4401. * will be affected by any new non-sync IO (making
  4402. * curr_events bigger) and any difference in the amount of
  4403. * in-flight syncio (making current_events bigger or smaller)
  4404. * The amount in-flight is currently limited to
  4405. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  4406. * which is at most 4096 sectors.
  4407. * These numbers are fairly fragile and should be made
  4408. * more robust, probably by enforcing the
  4409. * 'window size' that md_do_sync sort-of uses.
  4410. *
  4411. * Note: the following is an unsigned comparison.
  4412. */
  4413. if ((curr_events - rdev->last_events + 4096) > 8192) {
  4414. rdev->last_events = curr_events;
  4415. idle = 0;
  4416. }
  4417. }
  4418. return idle;
  4419. }
  4420. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4421. {
  4422. /* another "blocks" (512byte) blocks have been synced */
  4423. atomic_sub(blocks, &mddev->recovery_active);
  4424. wake_up(&mddev->recovery_wait);
  4425. if (!ok) {
  4426. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4427. md_wakeup_thread(mddev->thread);
  4428. // stop recovery, signal do_sync ....
  4429. }
  4430. }
  4431. /* md_write_start(mddev, bi)
  4432. * If we need to update some array metadata (e.g. 'active' flag
  4433. * in superblock) before writing, schedule a superblock update
  4434. * and wait for it to complete.
  4435. */
  4436. void md_write_start(mddev_t *mddev, struct bio *bi)
  4437. {
  4438. if (bio_data_dir(bi) != WRITE)
  4439. return;
  4440. BUG_ON(mddev->ro == 1);
  4441. if (mddev->ro == 2) {
  4442. /* need to switch to read/write */
  4443. mddev->ro = 0;
  4444. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4445. md_wakeup_thread(mddev->thread);
  4446. }
  4447. atomic_inc(&mddev->writes_pending);
  4448. if (mddev->in_sync) {
  4449. spin_lock_irq(&mddev->write_lock);
  4450. if (mddev->in_sync) {
  4451. mddev->in_sync = 0;
  4452. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4453. md_wakeup_thread(mddev->thread);
  4454. }
  4455. spin_unlock_irq(&mddev->write_lock);
  4456. }
  4457. wait_event(mddev->sb_wait, mddev->flags==0);
  4458. }
  4459. void md_write_end(mddev_t *mddev)
  4460. {
  4461. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4462. if (mddev->safemode == 2)
  4463. md_wakeup_thread(mddev->thread);
  4464. else if (mddev->safemode_delay)
  4465. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4466. }
  4467. }
  4468. /* md_allow_write(mddev)
  4469. * Calling this ensures that the array is marked 'active' so that writes
  4470. * may proceed without blocking. It is important to call this before
  4471. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4472. * Must be called with mddev_lock held.
  4473. */
  4474. void md_allow_write(mddev_t *mddev)
  4475. {
  4476. if (!mddev->pers)
  4477. return;
  4478. if (mddev->ro)
  4479. return;
  4480. spin_lock_irq(&mddev->write_lock);
  4481. if (mddev->in_sync) {
  4482. mddev->in_sync = 0;
  4483. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4484. if (mddev->safemode_delay &&
  4485. mddev->safemode == 0)
  4486. mddev->safemode = 1;
  4487. spin_unlock_irq(&mddev->write_lock);
  4488. md_update_sb(mddev, 0);
  4489. } else
  4490. spin_unlock_irq(&mddev->write_lock);
  4491. }
  4492. EXPORT_SYMBOL_GPL(md_allow_write);
  4493. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4494. #define SYNC_MARKS 10
  4495. #define SYNC_MARK_STEP (3*HZ)
  4496. void md_do_sync(mddev_t *mddev)
  4497. {
  4498. mddev_t *mddev2;
  4499. unsigned int currspeed = 0,
  4500. window;
  4501. sector_t max_sectors,j, io_sectors;
  4502. unsigned long mark[SYNC_MARKS];
  4503. sector_t mark_cnt[SYNC_MARKS];
  4504. int last_mark,m;
  4505. struct list_head *tmp;
  4506. sector_t last_check;
  4507. int skipped = 0;
  4508. struct list_head *rtmp;
  4509. mdk_rdev_t *rdev;
  4510. char *desc;
  4511. /* just incase thread restarts... */
  4512. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4513. return;
  4514. if (mddev->ro) /* never try to sync a read-only array */
  4515. return;
  4516. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4517. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4518. desc = "data-check";
  4519. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4520. desc = "requested-resync";
  4521. else
  4522. desc = "resync";
  4523. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4524. desc = "reshape";
  4525. else
  4526. desc = "recovery";
  4527. /* we overload curr_resync somewhat here.
  4528. * 0 == not engaged in resync at all
  4529. * 2 == checking that there is no conflict with another sync
  4530. * 1 == like 2, but have yielded to allow conflicting resync to
  4531. * commense
  4532. * other == active in resync - this many blocks
  4533. *
  4534. * Before starting a resync we must have set curr_resync to
  4535. * 2, and then checked that every "conflicting" array has curr_resync
  4536. * less than ours. When we find one that is the same or higher
  4537. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4538. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4539. * This will mean we have to start checking from the beginning again.
  4540. *
  4541. */
  4542. do {
  4543. mddev->curr_resync = 2;
  4544. try_again:
  4545. if (kthread_should_stop()) {
  4546. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4547. goto skip;
  4548. }
  4549. ITERATE_MDDEV(mddev2,tmp) {
  4550. if (mddev2 == mddev)
  4551. continue;
  4552. if (mddev2->curr_resync &&
  4553. match_mddev_units(mddev,mddev2)) {
  4554. DEFINE_WAIT(wq);
  4555. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4556. /* arbitrarily yield */
  4557. mddev->curr_resync = 1;
  4558. wake_up(&resync_wait);
  4559. }
  4560. if (mddev > mddev2 && mddev->curr_resync == 1)
  4561. /* no need to wait here, we can wait the next
  4562. * time 'round when curr_resync == 2
  4563. */
  4564. continue;
  4565. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4566. if (!kthread_should_stop() &&
  4567. mddev2->curr_resync >= mddev->curr_resync) {
  4568. printk(KERN_INFO "md: delaying %s of %s"
  4569. " until %s has finished (they"
  4570. " share one or more physical units)\n",
  4571. desc, mdname(mddev), mdname(mddev2));
  4572. mddev_put(mddev2);
  4573. schedule();
  4574. finish_wait(&resync_wait, &wq);
  4575. goto try_again;
  4576. }
  4577. finish_wait(&resync_wait, &wq);
  4578. }
  4579. }
  4580. } while (mddev->curr_resync < 2);
  4581. j = 0;
  4582. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4583. /* resync follows the size requested by the personality,
  4584. * which defaults to physical size, but can be virtual size
  4585. */
  4586. max_sectors = mddev->resync_max_sectors;
  4587. mddev->resync_mismatches = 0;
  4588. /* we don't use the checkpoint if there's a bitmap */
  4589. if (!mddev->bitmap &&
  4590. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4591. j = mddev->recovery_cp;
  4592. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4593. max_sectors = mddev->size << 1;
  4594. else {
  4595. /* recovery follows the physical size of devices */
  4596. max_sectors = mddev->size << 1;
  4597. j = MaxSector;
  4598. ITERATE_RDEV(mddev,rdev,rtmp)
  4599. if (rdev->raid_disk >= 0 &&
  4600. !test_bit(Faulty, &rdev->flags) &&
  4601. !test_bit(In_sync, &rdev->flags) &&
  4602. rdev->recovery_offset < j)
  4603. j = rdev->recovery_offset;
  4604. }
  4605. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4606. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4607. " %d KB/sec/disk.\n", speed_min(mddev));
  4608. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4609. "(but not more than %d KB/sec) for %s.\n",
  4610. speed_max(mddev), desc);
  4611. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4612. io_sectors = 0;
  4613. for (m = 0; m < SYNC_MARKS; m++) {
  4614. mark[m] = jiffies;
  4615. mark_cnt[m] = io_sectors;
  4616. }
  4617. last_mark = 0;
  4618. mddev->resync_mark = mark[last_mark];
  4619. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4620. /*
  4621. * Tune reconstruction:
  4622. */
  4623. window = 32*(PAGE_SIZE/512);
  4624. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4625. window/2,(unsigned long long) max_sectors/2);
  4626. atomic_set(&mddev->recovery_active, 0);
  4627. init_waitqueue_head(&mddev->recovery_wait);
  4628. last_check = 0;
  4629. if (j>2) {
  4630. printk(KERN_INFO
  4631. "md: resuming %s of %s from checkpoint.\n",
  4632. desc, mdname(mddev));
  4633. mddev->curr_resync = j;
  4634. }
  4635. while (j < max_sectors) {
  4636. sector_t sectors;
  4637. skipped = 0;
  4638. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4639. currspeed < speed_min(mddev));
  4640. if (sectors == 0) {
  4641. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4642. goto out;
  4643. }
  4644. if (!skipped) { /* actual IO requested */
  4645. io_sectors += sectors;
  4646. atomic_add(sectors, &mddev->recovery_active);
  4647. }
  4648. j += sectors;
  4649. if (j>1) mddev->curr_resync = j;
  4650. mddev->curr_mark_cnt = io_sectors;
  4651. if (last_check == 0)
  4652. /* this is the earliers that rebuilt will be
  4653. * visible in /proc/mdstat
  4654. */
  4655. md_new_event(mddev);
  4656. if (last_check + window > io_sectors || j == max_sectors)
  4657. continue;
  4658. last_check = io_sectors;
  4659. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4660. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4661. break;
  4662. repeat:
  4663. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4664. /* step marks */
  4665. int next = (last_mark+1) % SYNC_MARKS;
  4666. mddev->resync_mark = mark[next];
  4667. mddev->resync_mark_cnt = mark_cnt[next];
  4668. mark[next] = jiffies;
  4669. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4670. last_mark = next;
  4671. }
  4672. if (kthread_should_stop()) {
  4673. /*
  4674. * got a signal, exit.
  4675. */
  4676. printk(KERN_INFO
  4677. "md: md_do_sync() got signal ... exiting\n");
  4678. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4679. goto out;
  4680. }
  4681. /*
  4682. * this loop exits only if either when we are slower than
  4683. * the 'hard' speed limit, or the system was IO-idle for
  4684. * a jiffy.
  4685. * the system might be non-idle CPU-wise, but we only care
  4686. * about not overloading the IO subsystem. (things like an
  4687. * e2fsck being done on the RAID array should execute fast)
  4688. */
  4689. mddev->queue->unplug_fn(mddev->queue);
  4690. cond_resched();
  4691. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4692. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4693. if (currspeed > speed_min(mddev)) {
  4694. if ((currspeed > speed_max(mddev)) ||
  4695. !is_mddev_idle(mddev)) {
  4696. msleep(500);
  4697. goto repeat;
  4698. }
  4699. }
  4700. }
  4701. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4702. /*
  4703. * this also signals 'finished resyncing' to md_stop
  4704. */
  4705. out:
  4706. mddev->queue->unplug_fn(mddev->queue);
  4707. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4708. /* tell personality that we are finished */
  4709. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4710. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4711. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4712. mddev->curr_resync > 2) {
  4713. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4714. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4715. if (mddev->curr_resync >= mddev->recovery_cp) {
  4716. printk(KERN_INFO
  4717. "md: checkpointing %s of %s.\n",
  4718. desc, mdname(mddev));
  4719. mddev->recovery_cp = mddev->curr_resync;
  4720. }
  4721. } else
  4722. mddev->recovery_cp = MaxSector;
  4723. } else {
  4724. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4725. mddev->curr_resync = MaxSector;
  4726. ITERATE_RDEV(mddev,rdev,rtmp)
  4727. if (rdev->raid_disk >= 0 &&
  4728. !test_bit(Faulty, &rdev->flags) &&
  4729. !test_bit(In_sync, &rdev->flags) &&
  4730. rdev->recovery_offset < mddev->curr_resync)
  4731. rdev->recovery_offset = mddev->curr_resync;
  4732. }
  4733. }
  4734. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4735. skip:
  4736. mddev->curr_resync = 0;
  4737. wake_up(&resync_wait);
  4738. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4739. md_wakeup_thread(mddev->thread);
  4740. }
  4741. EXPORT_SYMBOL_GPL(md_do_sync);
  4742. static int remove_and_add_spares(mddev_t *mddev)
  4743. {
  4744. mdk_rdev_t *rdev;
  4745. struct list_head *rtmp;
  4746. int spares = 0;
  4747. ITERATE_RDEV(mddev,rdev,rtmp)
  4748. if (rdev->raid_disk >= 0 &&
  4749. (test_bit(Faulty, &rdev->flags) ||
  4750. ! test_bit(In_sync, &rdev->flags)) &&
  4751. atomic_read(&rdev->nr_pending)==0) {
  4752. if (mddev->pers->hot_remove_disk(
  4753. mddev, rdev->raid_disk)==0) {
  4754. char nm[20];
  4755. sprintf(nm,"rd%d", rdev->raid_disk);
  4756. sysfs_remove_link(&mddev->kobj, nm);
  4757. rdev->raid_disk = -1;
  4758. }
  4759. }
  4760. if (mddev->degraded) {
  4761. ITERATE_RDEV(mddev,rdev,rtmp)
  4762. if (rdev->raid_disk < 0
  4763. && !test_bit(Faulty, &rdev->flags)) {
  4764. rdev->recovery_offset = 0;
  4765. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4766. char nm[20];
  4767. sprintf(nm, "rd%d", rdev->raid_disk);
  4768. if (sysfs_create_link(&mddev->kobj,
  4769. &rdev->kobj, nm))
  4770. printk(KERN_WARNING
  4771. "md: cannot register "
  4772. "%s for %s\n",
  4773. nm, mdname(mddev));
  4774. spares++;
  4775. md_new_event(mddev);
  4776. } else
  4777. break;
  4778. }
  4779. }
  4780. return spares;
  4781. }
  4782. /*
  4783. * This routine is regularly called by all per-raid-array threads to
  4784. * deal with generic issues like resync and super-block update.
  4785. * Raid personalities that don't have a thread (linear/raid0) do not
  4786. * need this as they never do any recovery or update the superblock.
  4787. *
  4788. * It does not do any resync itself, but rather "forks" off other threads
  4789. * to do that as needed.
  4790. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4791. * "->recovery" and create a thread at ->sync_thread.
  4792. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4793. * and wakeups up this thread which will reap the thread and finish up.
  4794. * This thread also removes any faulty devices (with nr_pending == 0).
  4795. *
  4796. * The overall approach is:
  4797. * 1/ if the superblock needs updating, update it.
  4798. * 2/ If a recovery thread is running, don't do anything else.
  4799. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4800. * 4/ If there are any faulty devices, remove them.
  4801. * 5/ If array is degraded, try to add spares devices
  4802. * 6/ If array has spares or is not in-sync, start a resync thread.
  4803. */
  4804. void md_check_recovery(mddev_t *mddev)
  4805. {
  4806. mdk_rdev_t *rdev;
  4807. struct list_head *rtmp;
  4808. if (mddev->bitmap)
  4809. bitmap_daemon_work(mddev->bitmap);
  4810. if (mddev->ro)
  4811. return;
  4812. if (signal_pending(current)) {
  4813. if (mddev->pers->sync_request) {
  4814. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4815. mdname(mddev));
  4816. mddev->safemode = 2;
  4817. }
  4818. flush_signals(current);
  4819. }
  4820. if ( ! (
  4821. mddev->flags ||
  4822. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4823. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4824. (mddev->safemode == 1) ||
  4825. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4826. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4827. ))
  4828. return;
  4829. if (mddev_trylock(mddev)) {
  4830. int spares = 0;
  4831. spin_lock_irq(&mddev->write_lock);
  4832. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4833. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4834. mddev->in_sync = 1;
  4835. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4836. }
  4837. if (mddev->safemode == 1)
  4838. mddev->safemode = 0;
  4839. spin_unlock_irq(&mddev->write_lock);
  4840. if (mddev->flags)
  4841. md_update_sb(mddev, 0);
  4842. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4843. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4844. /* resync/recovery still happening */
  4845. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4846. goto unlock;
  4847. }
  4848. if (mddev->sync_thread) {
  4849. /* resync has finished, collect result */
  4850. md_unregister_thread(mddev->sync_thread);
  4851. mddev->sync_thread = NULL;
  4852. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4853. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4854. /* success...*/
  4855. /* activate any spares */
  4856. mddev->pers->spare_active(mddev);
  4857. }
  4858. md_update_sb(mddev, 1);
  4859. /* if array is no-longer degraded, then any saved_raid_disk
  4860. * information must be scrapped
  4861. */
  4862. if (!mddev->degraded)
  4863. ITERATE_RDEV(mddev,rdev,rtmp)
  4864. rdev->saved_raid_disk = -1;
  4865. mddev->recovery = 0;
  4866. /* flag recovery needed just to double check */
  4867. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4868. md_new_event(mddev);
  4869. goto unlock;
  4870. }
  4871. /* Clear some bits that don't mean anything, but
  4872. * might be left set
  4873. */
  4874. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4875. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4876. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4877. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4878. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4879. goto unlock;
  4880. /* no recovery is running.
  4881. * remove any failed drives, then
  4882. * add spares if possible.
  4883. * Spare are also removed and re-added, to allow
  4884. * the personality to fail the re-add.
  4885. */
  4886. if (mddev->reshape_position != MaxSector) {
  4887. if (mddev->pers->check_reshape(mddev) != 0)
  4888. /* Cannot proceed */
  4889. goto unlock;
  4890. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4891. } else if ((spares = remove_and_add_spares(mddev))) {
  4892. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4893. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4894. } else if (mddev->recovery_cp < MaxSector) {
  4895. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4896. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4897. /* nothing to be done ... */
  4898. goto unlock;
  4899. if (mddev->pers->sync_request) {
  4900. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4901. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4902. /* We are adding a device or devices to an array
  4903. * which has the bitmap stored on all devices.
  4904. * So make sure all bitmap pages get written
  4905. */
  4906. bitmap_write_all(mddev->bitmap);
  4907. }
  4908. mddev->sync_thread = md_register_thread(md_do_sync,
  4909. mddev,
  4910. "%s_resync");
  4911. if (!mddev->sync_thread) {
  4912. printk(KERN_ERR "%s: could not start resync"
  4913. " thread...\n",
  4914. mdname(mddev));
  4915. /* leave the spares where they are, it shouldn't hurt */
  4916. mddev->recovery = 0;
  4917. } else
  4918. md_wakeup_thread(mddev->sync_thread);
  4919. md_new_event(mddev);
  4920. }
  4921. unlock:
  4922. mddev_unlock(mddev);
  4923. }
  4924. }
  4925. static int md_notify_reboot(struct notifier_block *this,
  4926. unsigned long code, void *x)
  4927. {
  4928. struct list_head *tmp;
  4929. mddev_t *mddev;
  4930. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4931. printk(KERN_INFO "md: stopping all md devices.\n");
  4932. ITERATE_MDDEV(mddev,tmp)
  4933. if (mddev_trylock(mddev)) {
  4934. do_md_stop (mddev, 1);
  4935. mddev_unlock(mddev);
  4936. }
  4937. /*
  4938. * certain more exotic SCSI devices are known to be
  4939. * volatile wrt too early system reboots. While the
  4940. * right place to handle this issue is the given
  4941. * driver, we do want to have a safe RAID driver ...
  4942. */
  4943. mdelay(1000*1);
  4944. }
  4945. return NOTIFY_DONE;
  4946. }
  4947. static struct notifier_block md_notifier = {
  4948. .notifier_call = md_notify_reboot,
  4949. .next = NULL,
  4950. .priority = INT_MAX, /* before any real devices */
  4951. };
  4952. static void md_geninit(void)
  4953. {
  4954. struct proc_dir_entry *p;
  4955. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4956. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4957. if (p)
  4958. p->proc_fops = &md_seq_fops;
  4959. }
  4960. static int __init md_init(void)
  4961. {
  4962. if (register_blkdev(MAJOR_NR, "md"))
  4963. return -1;
  4964. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4965. unregister_blkdev(MAJOR_NR, "md");
  4966. return -1;
  4967. }
  4968. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  4969. md_probe, NULL, NULL);
  4970. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  4971. md_probe, NULL, NULL);
  4972. register_reboot_notifier(&md_notifier);
  4973. raid_table_header = register_sysctl_table(raid_root_table);
  4974. md_geninit();
  4975. return (0);
  4976. }
  4977. #ifndef MODULE
  4978. /*
  4979. * Searches all registered partitions for autorun RAID arrays
  4980. * at boot time.
  4981. */
  4982. static dev_t detected_devices[128];
  4983. static int dev_cnt;
  4984. void md_autodetect_dev(dev_t dev)
  4985. {
  4986. if (dev_cnt >= 0 && dev_cnt < 127)
  4987. detected_devices[dev_cnt++] = dev;
  4988. }
  4989. static void autostart_arrays(int part)
  4990. {
  4991. mdk_rdev_t *rdev;
  4992. int i;
  4993. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4994. for (i = 0; i < dev_cnt; i++) {
  4995. dev_t dev = detected_devices[i];
  4996. rdev = md_import_device(dev,0, 0);
  4997. if (IS_ERR(rdev))
  4998. continue;
  4999. if (test_bit(Faulty, &rdev->flags)) {
  5000. MD_BUG();
  5001. continue;
  5002. }
  5003. list_add(&rdev->same_set, &pending_raid_disks);
  5004. }
  5005. dev_cnt = 0;
  5006. autorun_devices(part);
  5007. }
  5008. #endif /* !MODULE */
  5009. static __exit void md_exit(void)
  5010. {
  5011. mddev_t *mddev;
  5012. struct list_head *tmp;
  5013. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5014. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5015. unregister_blkdev(MAJOR_NR,"md");
  5016. unregister_blkdev(mdp_major, "mdp");
  5017. unregister_reboot_notifier(&md_notifier);
  5018. unregister_sysctl_table(raid_table_header);
  5019. remove_proc_entry("mdstat", NULL);
  5020. ITERATE_MDDEV(mddev,tmp) {
  5021. struct gendisk *disk = mddev->gendisk;
  5022. if (!disk)
  5023. continue;
  5024. export_array(mddev);
  5025. del_gendisk(disk);
  5026. put_disk(disk);
  5027. mddev->gendisk = NULL;
  5028. mddev_put(mddev);
  5029. }
  5030. }
  5031. module_init(md_init)
  5032. module_exit(md_exit)
  5033. static int get_ro(char *buffer, struct kernel_param *kp)
  5034. {
  5035. return sprintf(buffer, "%d", start_readonly);
  5036. }
  5037. static int set_ro(const char *val, struct kernel_param *kp)
  5038. {
  5039. char *e;
  5040. int num = simple_strtoul(val, &e, 10);
  5041. if (*val && (*e == '\0' || *e == '\n')) {
  5042. start_readonly = num;
  5043. return 0;
  5044. }
  5045. return -EINVAL;
  5046. }
  5047. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5048. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5049. EXPORT_SYMBOL(register_md_personality);
  5050. EXPORT_SYMBOL(unregister_md_personality);
  5051. EXPORT_SYMBOL(md_error);
  5052. EXPORT_SYMBOL(md_done_sync);
  5053. EXPORT_SYMBOL(md_write_start);
  5054. EXPORT_SYMBOL(md_write_end);
  5055. EXPORT_SYMBOL(md_register_thread);
  5056. EXPORT_SYMBOL(md_unregister_thread);
  5057. EXPORT_SYMBOL(md_wakeup_thread);
  5058. EXPORT_SYMBOL(md_check_recovery);
  5059. MODULE_LICENSE("GPL");
  5060. MODULE_ALIAS("md");
  5061. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);