sched.c 169 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. #ifdef CONFIG_SMP
  105. /*
  106. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  107. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  108. */
  109. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  110. {
  111. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  112. }
  113. /*
  114. * Each time a sched group cpu_power is changed,
  115. * we must compute its reciprocal value
  116. */
  117. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  118. {
  119. sg->__cpu_power += val;
  120. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  121. }
  122. #endif
  123. static inline int rt_policy(int policy)
  124. {
  125. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  126. return 1;
  127. return 0;
  128. }
  129. static inline int task_has_rt_policy(struct task_struct *p)
  130. {
  131. return rt_policy(p->policy);
  132. }
  133. /*
  134. * This is the priority-queue data structure of the RT scheduling class:
  135. */
  136. struct rt_prio_array {
  137. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  138. struct list_head queue[MAX_RT_PRIO];
  139. };
  140. #ifdef CONFIG_FAIR_GROUP_SCHED
  141. struct cfs_rq;
  142. /* task group related information */
  143. struct task_group {
  144. /* schedulable entities of this group on each cpu */
  145. struct sched_entity **se;
  146. /* runqueue "owned" by this group on each cpu */
  147. struct cfs_rq **cfs_rq;
  148. unsigned long shares;
  149. };
  150. /* Default task group's sched entity on each cpu */
  151. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  152. /* Default task group's cfs_rq on each cpu */
  153. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  154. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  155. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  156. /* Default task group.
  157. * Every task in system belong to this group at bootup.
  158. */
  159. struct task_group init_task_group = {
  160. .se = init_sched_entity_p,
  161. .cfs_rq = init_cfs_rq_p,
  162. };
  163. #ifdef CONFIG_FAIR_USER_SCHED
  164. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  165. #else
  166. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  167. #endif
  168. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  169. /* return group to which a task belongs */
  170. static inline struct task_group *task_group(struct task_struct *p)
  171. {
  172. struct task_group *tg;
  173. #ifdef CONFIG_FAIR_USER_SCHED
  174. tg = p->user->tg;
  175. #else
  176. tg = &init_task_group;
  177. #endif
  178. return tg;
  179. }
  180. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  181. static inline void set_task_cfs_rq(struct task_struct *p)
  182. {
  183. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  184. p->se.parent = task_group(p)->se[task_cpu(p)];
  185. }
  186. #else
  187. static inline void set_task_cfs_rq(struct task_struct *p) { }
  188. #endif /* CONFIG_FAIR_GROUP_SCHED */
  189. /* CFS-related fields in a runqueue */
  190. struct cfs_rq {
  191. struct load_weight load;
  192. unsigned long nr_running;
  193. u64 exec_clock;
  194. u64 min_vruntime;
  195. struct rb_root tasks_timeline;
  196. struct rb_node *rb_leftmost;
  197. struct rb_node *rb_load_balance_curr;
  198. /* 'curr' points to currently running entity on this cfs_rq.
  199. * It is set to NULL otherwise (i.e when none are currently running).
  200. */
  201. struct sched_entity *curr;
  202. unsigned long nr_spread_over;
  203. #ifdef CONFIG_FAIR_GROUP_SCHED
  204. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  205. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  206. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  207. * (like users, containers etc.)
  208. *
  209. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  210. * list is used during load balance.
  211. */
  212. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  213. struct task_group *tg; /* group that "owns" this runqueue */
  214. struct rcu_head rcu;
  215. #endif
  216. };
  217. /* Real-Time classes' related field in a runqueue: */
  218. struct rt_rq {
  219. struct rt_prio_array active;
  220. int rt_load_balance_idx;
  221. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  222. };
  223. /*
  224. * This is the main, per-CPU runqueue data structure.
  225. *
  226. * Locking rule: those places that want to lock multiple runqueues
  227. * (such as the load balancing or the thread migration code), lock
  228. * acquire operations must be ordered by ascending &runqueue.
  229. */
  230. struct rq {
  231. spinlock_t lock; /* runqueue lock */
  232. /*
  233. * nr_running and cpu_load should be in the same cacheline because
  234. * remote CPUs use both these fields when doing load calculation.
  235. */
  236. unsigned long nr_running;
  237. #define CPU_LOAD_IDX_MAX 5
  238. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  239. unsigned char idle_at_tick;
  240. #ifdef CONFIG_NO_HZ
  241. unsigned char in_nohz_recently;
  242. #endif
  243. struct load_weight load; /* capture load from *all* tasks on this cpu */
  244. unsigned long nr_load_updates;
  245. u64 nr_switches;
  246. struct cfs_rq cfs;
  247. #ifdef CONFIG_FAIR_GROUP_SCHED
  248. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  249. #endif
  250. struct rt_rq rt;
  251. /*
  252. * This is part of a global counter where only the total sum
  253. * over all CPUs matters. A task can increase this counter on
  254. * one CPU and if it got migrated afterwards it may decrease
  255. * it on another CPU. Always updated under the runqueue lock:
  256. */
  257. unsigned long nr_uninterruptible;
  258. struct task_struct *curr, *idle;
  259. unsigned long next_balance;
  260. struct mm_struct *prev_mm;
  261. u64 clock, prev_clock_raw;
  262. s64 clock_max_delta;
  263. unsigned int clock_warps, clock_overflows;
  264. u64 idle_clock;
  265. unsigned int clock_deep_idle_events;
  266. u64 tick_timestamp;
  267. atomic_t nr_iowait;
  268. #ifdef CONFIG_SMP
  269. struct sched_domain *sd;
  270. /* For active balancing */
  271. int active_balance;
  272. int push_cpu;
  273. int cpu; /* cpu of this runqueue */
  274. struct task_struct *migration_thread;
  275. struct list_head migration_queue;
  276. #endif
  277. #ifdef CONFIG_SCHEDSTATS
  278. /* latency stats */
  279. struct sched_info rq_sched_info;
  280. /* sys_sched_yield() stats */
  281. unsigned long yld_exp_empty;
  282. unsigned long yld_act_empty;
  283. unsigned long yld_both_empty;
  284. unsigned long yld_count;
  285. /* schedule() stats */
  286. unsigned long sched_switch;
  287. unsigned long sched_count;
  288. unsigned long sched_goidle;
  289. /* try_to_wake_up() stats */
  290. unsigned long ttwu_count;
  291. unsigned long ttwu_local;
  292. /* BKL stats */
  293. unsigned long bkl_count;
  294. #endif
  295. struct lock_class_key rq_lock_key;
  296. };
  297. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  298. static DEFINE_MUTEX(sched_hotcpu_mutex);
  299. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  300. {
  301. rq->curr->sched_class->check_preempt_curr(rq, p);
  302. }
  303. static inline int cpu_of(struct rq *rq)
  304. {
  305. #ifdef CONFIG_SMP
  306. return rq->cpu;
  307. #else
  308. return 0;
  309. #endif
  310. }
  311. /*
  312. * Update the per-runqueue clock, as finegrained as the platform can give
  313. * us, but without assuming monotonicity, etc.:
  314. */
  315. static void __update_rq_clock(struct rq *rq)
  316. {
  317. u64 prev_raw = rq->prev_clock_raw;
  318. u64 now = sched_clock();
  319. s64 delta = now - prev_raw;
  320. u64 clock = rq->clock;
  321. #ifdef CONFIG_SCHED_DEBUG
  322. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  323. #endif
  324. /*
  325. * Protect against sched_clock() occasionally going backwards:
  326. */
  327. if (unlikely(delta < 0)) {
  328. clock++;
  329. rq->clock_warps++;
  330. } else {
  331. /*
  332. * Catch too large forward jumps too:
  333. */
  334. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  335. if (clock < rq->tick_timestamp + TICK_NSEC)
  336. clock = rq->tick_timestamp + TICK_NSEC;
  337. else
  338. clock++;
  339. rq->clock_overflows++;
  340. } else {
  341. if (unlikely(delta > rq->clock_max_delta))
  342. rq->clock_max_delta = delta;
  343. clock += delta;
  344. }
  345. }
  346. rq->prev_clock_raw = now;
  347. rq->clock = clock;
  348. }
  349. static void update_rq_clock(struct rq *rq)
  350. {
  351. if (likely(smp_processor_id() == cpu_of(rq)))
  352. __update_rq_clock(rq);
  353. }
  354. /*
  355. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  356. * See detach_destroy_domains: synchronize_sched for details.
  357. *
  358. * The domain tree of any CPU may only be accessed from within
  359. * preempt-disabled sections.
  360. */
  361. #define for_each_domain(cpu, __sd) \
  362. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  363. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  364. #define this_rq() (&__get_cpu_var(runqueues))
  365. #define task_rq(p) cpu_rq(task_cpu(p))
  366. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  367. /*
  368. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  369. */
  370. #ifdef CONFIG_SCHED_DEBUG
  371. # define const_debug __read_mostly
  372. #else
  373. # define const_debug static const
  374. #endif
  375. /*
  376. * Debugging: various feature bits
  377. */
  378. enum {
  379. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  380. SCHED_FEAT_START_DEBIT = 2,
  381. SCHED_FEAT_TREE_AVG = 4,
  382. SCHED_FEAT_APPROX_AVG = 8,
  383. };
  384. const_debug unsigned int sysctl_sched_features =
  385. SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
  386. SCHED_FEAT_START_DEBIT *1 |
  387. SCHED_FEAT_TREE_AVG *0 |
  388. SCHED_FEAT_APPROX_AVG *0;
  389. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  390. /*
  391. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  392. * clock constructed from sched_clock():
  393. */
  394. unsigned long long cpu_clock(int cpu)
  395. {
  396. unsigned long long now;
  397. unsigned long flags;
  398. struct rq *rq;
  399. local_irq_save(flags);
  400. rq = cpu_rq(cpu);
  401. update_rq_clock(rq);
  402. now = rq->clock;
  403. local_irq_restore(flags);
  404. return now;
  405. }
  406. #ifndef prepare_arch_switch
  407. # define prepare_arch_switch(next) do { } while (0)
  408. #endif
  409. #ifndef finish_arch_switch
  410. # define finish_arch_switch(prev) do { } while (0)
  411. #endif
  412. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  413. static inline int task_running(struct rq *rq, struct task_struct *p)
  414. {
  415. return rq->curr == p;
  416. }
  417. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  418. {
  419. }
  420. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  421. {
  422. #ifdef CONFIG_DEBUG_SPINLOCK
  423. /* this is a valid case when another task releases the spinlock */
  424. rq->lock.owner = current;
  425. #endif
  426. /*
  427. * If we are tracking spinlock dependencies then we have to
  428. * fix up the runqueue lock - which gets 'carried over' from
  429. * prev into current:
  430. */
  431. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  432. spin_unlock_irq(&rq->lock);
  433. }
  434. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  435. static inline int task_running(struct rq *rq, struct task_struct *p)
  436. {
  437. #ifdef CONFIG_SMP
  438. return p->oncpu;
  439. #else
  440. return rq->curr == p;
  441. #endif
  442. }
  443. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  444. {
  445. #ifdef CONFIG_SMP
  446. /*
  447. * We can optimise this out completely for !SMP, because the
  448. * SMP rebalancing from interrupt is the only thing that cares
  449. * here.
  450. */
  451. next->oncpu = 1;
  452. #endif
  453. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  454. spin_unlock_irq(&rq->lock);
  455. #else
  456. spin_unlock(&rq->lock);
  457. #endif
  458. }
  459. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  460. {
  461. #ifdef CONFIG_SMP
  462. /*
  463. * After ->oncpu is cleared, the task can be moved to a different CPU.
  464. * We must ensure this doesn't happen until the switch is completely
  465. * finished.
  466. */
  467. smp_wmb();
  468. prev->oncpu = 0;
  469. #endif
  470. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  471. local_irq_enable();
  472. #endif
  473. }
  474. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  475. /*
  476. * __task_rq_lock - lock the runqueue a given task resides on.
  477. * Must be called interrupts disabled.
  478. */
  479. static inline struct rq *__task_rq_lock(struct task_struct *p)
  480. __acquires(rq->lock)
  481. {
  482. struct rq *rq;
  483. repeat_lock_task:
  484. rq = task_rq(p);
  485. spin_lock(&rq->lock);
  486. if (unlikely(rq != task_rq(p))) {
  487. spin_unlock(&rq->lock);
  488. goto repeat_lock_task;
  489. }
  490. return rq;
  491. }
  492. /*
  493. * task_rq_lock - lock the runqueue a given task resides on and disable
  494. * interrupts. Note the ordering: we can safely lookup the task_rq without
  495. * explicitly disabling preemption.
  496. */
  497. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  498. __acquires(rq->lock)
  499. {
  500. struct rq *rq;
  501. repeat_lock_task:
  502. local_irq_save(*flags);
  503. rq = task_rq(p);
  504. spin_lock(&rq->lock);
  505. if (unlikely(rq != task_rq(p))) {
  506. spin_unlock_irqrestore(&rq->lock, *flags);
  507. goto repeat_lock_task;
  508. }
  509. return rq;
  510. }
  511. static void __task_rq_unlock(struct rq *rq)
  512. __releases(rq->lock)
  513. {
  514. spin_unlock(&rq->lock);
  515. }
  516. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  517. __releases(rq->lock)
  518. {
  519. spin_unlock_irqrestore(&rq->lock, *flags);
  520. }
  521. /*
  522. * this_rq_lock - lock this runqueue and disable interrupts.
  523. */
  524. static struct rq *this_rq_lock(void)
  525. __acquires(rq->lock)
  526. {
  527. struct rq *rq;
  528. local_irq_disable();
  529. rq = this_rq();
  530. spin_lock(&rq->lock);
  531. return rq;
  532. }
  533. /*
  534. * We are going deep-idle (irqs are disabled):
  535. */
  536. void sched_clock_idle_sleep_event(void)
  537. {
  538. struct rq *rq = cpu_rq(smp_processor_id());
  539. spin_lock(&rq->lock);
  540. __update_rq_clock(rq);
  541. spin_unlock(&rq->lock);
  542. rq->clock_deep_idle_events++;
  543. }
  544. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  545. /*
  546. * We just idled delta nanoseconds (called with irqs disabled):
  547. */
  548. void sched_clock_idle_wakeup_event(u64 delta_ns)
  549. {
  550. struct rq *rq = cpu_rq(smp_processor_id());
  551. u64 now = sched_clock();
  552. rq->idle_clock += delta_ns;
  553. /*
  554. * Override the previous timestamp and ignore all
  555. * sched_clock() deltas that occured while we idled,
  556. * and use the PM-provided delta_ns to advance the
  557. * rq clock:
  558. */
  559. spin_lock(&rq->lock);
  560. rq->prev_clock_raw = now;
  561. rq->clock += delta_ns;
  562. spin_unlock(&rq->lock);
  563. }
  564. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  565. /*
  566. * resched_task - mark a task 'to be rescheduled now'.
  567. *
  568. * On UP this means the setting of the need_resched flag, on SMP it
  569. * might also involve a cross-CPU call to trigger the scheduler on
  570. * the target CPU.
  571. */
  572. #ifdef CONFIG_SMP
  573. #ifndef tsk_is_polling
  574. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  575. #endif
  576. static void resched_task(struct task_struct *p)
  577. {
  578. int cpu;
  579. assert_spin_locked(&task_rq(p)->lock);
  580. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  581. return;
  582. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  583. cpu = task_cpu(p);
  584. if (cpu == smp_processor_id())
  585. return;
  586. /* NEED_RESCHED must be visible before we test polling */
  587. smp_mb();
  588. if (!tsk_is_polling(p))
  589. smp_send_reschedule(cpu);
  590. }
  591. static void resched_cpu(int cpu)
  592. {
  593. struct rq *rq = cpu_rq(cpu);
  594. unsigned long flags;
  595. if (!spin_trylock_irqsave(&rq->lock, flags))
  596. return;
  597. resched_task(cpu_curr(cpu));
  598. spin_unlock_irqrestore(&rq->lock, flags);
  599. }
  600. #else
  601. static inline void resched_task(struct task_struct *p)
  602. {
  603. assert_spin_locked(&task_rq(p)->lock);
  604. set_tsk_need_resched(p);
  605. }
  606. #endif
  607. #if BITS_PER_LONG == 32
  608. # define WMULT_CONST (~0UL)
  609. #else
  610. # define WMULT_CONST (1UL << 32)
  611. #endif
  612. #define WMULT_SHIFT 32
  613. /*
  614. * Shift right and round:
  615. */
  616. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  617. static unsigned long
  618. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  619. struct load_weight *lw)
  620. {
  621. u64 tmp;
  622. if (unlikely(!lw->inv_weight))
  623. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  624. tmp = (u64)delta_exec * weight;
  625. /*
  626. * Check whether we'd overflow the 64-bit multiplication:
  627. */
  628. if (unlikely(tmp > WMULT_CONST))
  629. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  630. WMULT_SHIFT/2);
  631. else
  632. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  633. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  634. }
  635. static inline unsigned long
  636. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  637. {
  638. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  639. }
  640. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  641. {
  642. lw->weight += inc;
  643. }
  644. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  645. {
  646. lw->weight -= dec;
  647. }
  648. /*
  649. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  650. * of tasks with abnormal "nice" values across CPUs the contribution that
  651. * each task makes to its run queue's load is weighted according to its
  652. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  653. * scaled version of the new time slice allocation that they receive on time
  654. * slice expiry etc.
  655. */
  656. #define WEIGHT_IDLEPRIO 2
  657. #define WMULT_IDLEPRIO (1 << 31)
  658. /*
  659. * Nice levels are multiplicative, with a gentle 10% change for every
  660. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  661. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  662. * that remained on nice 0.
  663. *
  664. * The "10% effect" is relative and cumulative: from _any_ nice level,
  665. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  666. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  667. * If a task goes up by ~10% and another task goes down by ~10% then
  668. * the relative distance between them is ~25%.)
  669. */
  670. static const int prio_to_weight[40] = {
  671. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  672. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  673. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  674. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  675. /* 0 */ 1024, 820, 655, 526, 423,
  676. /* 5 */ 335, 272, 215, 172, 137,
  677. /* 10 */ 110, 87, 70, 56, 45,
  678. /* 15 */ 36, 29, 23, 18, 15,
  679. };
  680. /*
  681. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  682. *
  683. * In cases where the weight does not change often, we can use the
  684. * precalculated inverse to speed up arithmetics by turning divisions
  685. * into multiplications:
  686. */
  687. static const u32 prio_to_wmult[40] = {
  688. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  689. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  690. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  691. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  692. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  693. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  694. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  695. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  696. };
  697. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  698. /*
  699. * runqueue iterator, to support SMP load-balancing between different
  700. * scheduling classes, without having to expose their internal data
  701. * structures to the load-balancing proper:
  702. */
  703. struct rq_iterator {
  704. void *arg;
  705. struct task_struct *(*start)(void *);
  706. struct task_struct *(*next)(void *);
  707. };
  708. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  709. unsigned long max_nr_move, unsigned long max_load_move,
  710. struct sched_domain *sd, enum cpu_idle_type idle,
  711. int *all_pinned, unsigned long *load_moved,
  712. int *this_best_prio, struct rq_iterator *iterator);
  713. #include "sched_stats.h"
  714. #include "sched_idletask.c"
  715. #include "sched_fair.c"
  716. #include "sched_rt.c"
  717. #ifdef CONFIG_SCHED_DEBUG
  718. # include "sched_debug.c"
  719. #endif
  720. #define sched_class_highest (&rt_sched_class)
  721. /*
  722. * Update delta_exec, delta_fair fields for rq.
  723. *
  724. * delta_fair clock advances at a rate inversely proportional to
  725. * total load (rq->load.weight) on the runqueue, while
  726. * delta_exec advances at the same rate as wall-clock (provided
  727. * cpu is not idle).
  728. *
  729. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  730. * runqueue over any given interval. This (smoothened) load is used
  731. * during load balance.
  732. *
  733. * This function is called /before/ updating rq->load
  734. * and when switching tasks.
  735. */
  736. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  737. {
  738. update_load_add(&rq->load, p->se.load.weight);
  739. }
  740. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  741. {
  742. update_load_sub(&rq->load, p->se.load.weight);
  743. }
  744. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  745. {
  746. rq->nr_running++;
  747. inc_load(rq, p);
  748. }
  749. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  750. {
  751. rq->nr_running--;
  752. dec_load(rq, p);
  753. }
  754. static void set_load_weight(struct task_struct *p)
  755. {
  756. if (task_has_rt_policy(p)) {
  757. p->se.load.weight = prio_to_weight[0] * 2;
  758. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  759. return;
  760. }
  761. /*
  762. * SCHED_IDLE tasks get minimal weight:
  763. */
  764. if (p->policy == SCHED_IDLE) {
  765. p->se.load.weight = WEIGHT_IDLEPRIO;
  766. p->se.load.inv_weight = WMULT_IDLEPRIO;
  767. return;
  768. }
  769. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  770. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  771. }
  772. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  773. {
  774. sched_info_queued(p);
  775. p->sched_class->enqueue_task(rq, p, wakeup);
  776. p->se.on_rq = 1;
  777. }
  778. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  779. {
  780. p->sched_class->dequeue_task(rq, p, sleep);
  781. p->se.on_rq = 0;
  782. }
  783. /*
  784. * __normal_prio - return the priority that is based on the static prio
  785. */
  786. static inline int __normal_prio(struct task_struct *p)
  787. {
  788. return p->static_prio;
  789. }
  790. /*
  791. * Calculate the expected normal priority: i.e. priority
  792. * without taking RT-inheritance into account. Might be
  793. * boosted by interactivity modifiers. Changes upon fork,
  794. * setprio syscalls, and whenever the interactivity
  795. * estimator recalculates.
  796. */
  797. static inline int normal_prio(struct task_struct *p)
  798. {
  799. int prio;
  800. if (task_has_rt_policy(p))
  801. prio = MAX_RT_PRIO-1 - p->rt_priority;
  802. else
  803. prio = __normal_prio(p);
  804. return prio;
  805. }
  806. /*
  807. * Calculate the current priority, i.e. the priority
  808. * taken into account by the scheduler. This value might
  809. * be boosted by RT tasks, or might be boosted by
  810. * interactivity modifiers. Will be RT if the task got
  811. * RT-boosted. If not then it returns p->normal_prio.
  812. */
  813. static int effective_prio(struct task_struct *p)
  814. {
  815. p->normal_prio = normal_prio(p);
  816. /*
  817. * If we are RT tasks or we were boosted to RT priority,
  818. * keep the priority unchanged. Otherwise, update priority
  819. * to the normal priority:
  820. */
  821. if (!rt_prio(p->prio))
  822. return p->normal_prio;
  823. return p->prio;
  824. }
  825. /*
  826. * activate_task - move a task to the runqueue.
  827. */
  828. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  829. {
  830. if (p->state == TASK_UNINTERRUPTIBLE)
  831. rq->nr_uninterruptible--;
  832. enqueue_task(rq, p, wakeup);
  833. inc_nr_running(p, rq);
  834. }
  835. /*
  836. * deactivate_task - remove a task from the runqueue.
  837. */
  838. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  839. {
  840. if (p->state == TASK_UNINTERRUPTIBLE)
  841. rq->nr_uninterruptible++;
  842. dequeue_task(rq, p, sleep);
  843. dec_nr_running(p, rq);
  844. }
  845. /**
  846. * task_curr - is this task currently executing on a CPU?
  847. * @p: the task in question.
  848. */
  849. inline int task_curr(const struct task_struct *p)
  850. {
  851. return cpu_curr(task_cpu(p)) == p;
  852. }
  853. /* Used instead of source_load when we know the type == 0 */
  854. unsigned long weighted_cpuload(const int cpu)
  855. {
  856. return cpu_rq(cpu)->load.weight;
  857. }
  858. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  859. {
  860. #ifdef CONFIG_SMP
  861. task_thread_info(p)->cpu = cpu;
  862. #endif
  863. set_task_cfs_rq(p);
  864. }
  865. #ifdef CONFIG_SMP
  866. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  867. {
  868. int old_cpu = task_cpu(p);
  869. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  870. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  871. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  872. u64 clock_offset;
  873. clock_offset = old_rq->clock - new_rq->clock;
  874. #ifdef CONFIG_SCHEDSTATS
  875. if (p->se.wait_start)
  876. p->se.wait_start -= clock_offset;
  877. if (p->se.sleep_start)
  878. p->se.sleep_start -= clock_offset;
  879. if (p->se.block_start)
  880. p->se.block_start -= clock_offset;
  881. #endif
  882. p->se.vruntime -= old_cfsrq->min_vruntime -
  883. new_cfsrq->min_vruntime;
  884. __set_task_cpu(p, new_cpu);
  885. }
  886. struct migration_req {
  887. struct list_head list;
  888. struct task_struct *task;
  889. int dest_cpu;
  890. struct completion done;
  891. };
  892. /*
  893. * The task's runqueue lock must be held.
  894. * Returns true if you have to wait for migration thread.
  895. */
  896. static int
  897. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  898. {
  899. struct rq *rq = task_rq(p);
  900. /*
  901. * If the task is not on a runqueue (and not running), then
  902. * it is sufficient to simply update the task's cpu field.
  903. */
  904. if (!p->se.on_rq && !task_running(rq, p)) {
  905. set_task_cpu(p, dest_cpu);
  906. return 0;
  907. }
  908. init_completion(&req->done);
  909. req->task = p;
  910. req->dest_cpu = dest_cpu;
  911. list_add(&req->list, &rq->migration_queue);
  912. return 1;
  913. }
  914. /*
  915. * wait_task_inactive - wait for a thread to unschedule.
  916. *
  917. * The caller must ensure that the task *will* unschedule sometime soon,
  918. * else this function might spin for a *long* time. This function can't
  919. * be called with interrupts off, or it may introduce deadlock with
  920. * smp_call_function() if an IPI is sent by the same process we are
  921. * waiting to become inactive.
  922. */
  923. void wait_task_inactive(struct task_struct *p)
  924. {
  925. unsigned long flags;
  926. int running, on_rq;
  927. struct rq *rq;
  928. repeat:
  929. /*
  930. * We do the initial early heuristics without holding
  931. * any task-queue locks at all. We'll only try to get
  932. * the runqueue lock when things look like they will
  933. * work out!
  934. */
  935. rq = task_rq(p);
  936. /*
  937. * If the task is actively running on another CPU
  938. * still, just relax and busy-wait without holding
  939. * any locks.
  940. *
  941. * NOTE! Since we don't hold any locks, it's not
  942. * even sure that "rq" stays as the right runqueue!
  943. * But we don't care, since "task_running()" will
  944. * return false if the runqueue has changed and p
  945. * is actually now running somewhere else!
  946. */
  947. while (task_running(rq, p))
  948. cpu_relax();
  949. /*
  950. * Ok, time to look more closely! We need the rq
  951. * lock now, to be *sure*. If we're wrong, we'll
  952. * just go back and repeat.
  953. */
  954. rq = task_rq_lock(p, &flags);
  955. running = task_running(rq, p);
  956. on_rq = p->se.on_rq;
  957. task_rq_unlock(rq, &flags);
  958. /*
  959. * Was it really running after all now that we
  960. * checked with the proper locks actually held?
  961. *
  962. * Oops. Go back and try again..
  963. */
  964. if (unlikely(running)) {
  965. cpu_relax();
  966. goto repeat;
  967. }
  968. /*
  969. * It's not enough that it's not actively running,
  970. * it must be off the runqueue _entirely_, and not
  971. * preempted!
  972. *
  973. * So if it wa still runnable (but just not actively
  974. * running right now), it's preempted, and we should
  975. * yield - it could be a while.
  976. */
  977. if (unlikely(on_rq)) {
  978. yield();
  979. goto repeat;
  980. }
  981. /*
  982. * Ahh, all good. It wasn't running, and it wasn't
  983. * runnable, which means that it will never become
  984. * running in the future either. We're all done!
  985. */
  986. }
  987. /***
  988. * kick_process - kick a running thread to enter/exit the kernel
  989. * @p: the to-be-kicked thread
  990. *
  991. * Cause a process which is running on another CPU to enter
  992. * kernel-mode, without any delay. (to get signals handled.)
  993. *
  994. * NOTE: this function doesnt have to take the runqueue lock,
  995. * because all it wants to ensure is that the remote task enters
  996. * the kernel. If the IPI races and the task has been migrated
  997. * to another CPU then no harm is done and the purpose has been
  998. * achieved as well.
  999. */
  1000. void kick_process(struct task_struct *p)
  1001. {
  1002. int cpu;
  1003. preempt_disable();
  1004. cpu = task_cpu(p);
  1005. if ((cpu != smp_processor_id()) && task_curr(p))
  1006. smp_send_reschedule(cpu);
  1007. preempt_enable();
  1008. }
  1009. /*
  1010. * Return a low guess at the load of a migration-source cpu weighted
  1011. * according to the scheduling class and "nice" value.
  1012. *
  1013. * We want to under-estimate the load of migration sources, to
  1014. * balance conservatively.
  1015. */
  1016. static unsigned long source_load(int cpu, int type)
  1017. {
  1018. struct rq *rq = cpu_rq(cpu);
  1019. unsigned long total = weighted_cpuload(cpu);
  1020. if (type == 0)
  1021. return total;
  1022. return min(rq->cpu_load[type-1], total);
  1023. }
  1024. /*
  1025. * Return a high guess at the load of a migration-target cpu weighted
  1026. * according to the scheduling class and "nice" value.
  1027. */
  1028. static unsigned long target_load(int cpu, int type)
  1029. {
  1030. struct rq *rq = cpu_rq(cpu);
  1031. unsigned long total = weighted_cpuload(cpu);
  1032. if (type == 0)
  1033. return total;
  1034. return max(rq->cpu_load[type-1], total);
  1035. }
  1036. /*
  1037. * Return the average load per task on the cpu's run queue
  1038. */
  1039. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1040. {
  1041. struct rq *rq = cpu_rq(cpu);
  1042. unsigned long total = weighted_cpuload(cpu);
  1043. unsigned long n = rq->nr_running;
  1044. return n ? total / n : SCHED_LOAD_SCALE;
  1045. }
  1046. /*
  1047. * find_idlest_group finds and returns the least busy CPU group within the
  1048. * domain.
  1049. */
  1050. static struct sched_group *
  1051. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1052. {
  1053. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1054. unsigned long min_load = ULONG_MAX, this_load = 0;
  1055. int load_idx = sd->forkexec_idx;
  1056. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1057. do {
  1058. unsigned long load, avg_load;
  1059. int local_group;
  1060. int i;
  1061. /* Skip over this group if it has no CPUs allowed */
  1062. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1063. goto nextgroup;
  1064. local_group = cpu_isset(this_cpu, group->cpumask);
  1065. /* Tally up the load of all CPUs in the group */
  1066. avg_load = 0;
  1067. for_each_cpu_mask(i, group->cpumask) {
  1068. /* Bias balancing toward cpus of our domain */
  1069. if (local_group)
  1070. load = source_load(i, load_idx);
  1071. else
  1072. load = target_load(i, load_idx);
  1073. avg_load += load;
  1074. }
  1075. /* Adjust by relative CPU power of the group */
  1076. avg_load = sg_div_cpu_power(group,
  1077. avg_load * SCHED_LOAD_SCALE);
  1078. if (local_group) {
  1079. this_load = avg_load;
  1080. this = group;
  1081. } else if (avg_load < min_load) {
  1082. min_load = avg_load;
  1083. idlest = group;
  1084. }
  1085. nextgroup:
  1086. group = group->next;
  1087. } while (group != sd->groups);
  1088. if (!idlest || 100*this_load < imbalance*min_load)
  1089. return NULL;
  1090. return idlest;
  1091. }
  1092. /*
  1093. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1094. */
  1095. static int
  1096. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1097. {
  1098. cpumask_t tmp;
  1099. unsigned long load, min_load = ULONG_MAX;
  1100. int idlest = -1;
  1101. int i;
  1102. /* Traverse only the allowed CPUs */
  1103. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1104. for_each_cpu_mask(i, tmp) {
  1105. load = weighted_cpuload(i);
  1106. if (load < min_load || (load == min_load && i == this_cpu)) {
  1107. min_load = load;
  1108. idlest = i;
  1109. }
  1110. }
  1111. return idlest;
  1112. }
  1113. /*
  1114. * sched_balance_self: balance the current task (running on cpu) in domains
  1115. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1116. * SD_BALANCE_EXEC.
  1117. *
  1118. * Balance, ie. select the least loaded group.
  1119. *
  1120. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1121. *
  1122. * preempt must be disabled.
  1123. */
  1124. static int sched_balance_self(int cpu, int flag)
  1125. {
  1126. struct task_struct *t = current;
  1127. struct sched_domain *tmp, *sd = NULL;
  1128. for_each_domain(cpu, tmp) {
  1129. /*
  1130. * If power savings logic is enabled for a domain, stop there.
  1131. */
  1132. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1133. break;
  1134. if (tmp->flags & flag)
  1135. sd = tmp;
  1136. }
  1137. while (sd) {
  1138. cpumask_t span;
  1139. struct sched_group *group;
  1140. int new_cpu, weight;
  1141. if (!(sd->flags & flag)) {
  1142. sd = sd->child;
  1143. continue;
  1144. }
  1145. span = sd->span;
  1146. group = find_idlest_group(sd, t, cpu);
  1147. if (!group) {
  1148. sd = sd->child;
  1149. continue;
  1150. }
  1151. new_cpu = find_idlest_cpu(group, t, cpu);
  1152. if (new_cpu == -1 || new_cpu == cpu) {
  1153. /* Now try balancing at a lower domain level of cpu */
  1154. sd = sd->child;
  1155. continue;
  1156. }
  1157. /* Now try balancing at a lower domain level of new_cpu */
  1158. cpu = new_cpu;
  1159. sd = NULL;
  1160. weight = cpus_weight(span);
  1161. for_each_domain(cpu, tmp) {
  1162. if (weight <= cpus_weight(tmp->span))
  1163. break;
  1164. if (tmp->flags & flag)
  1165. sd = tmp;
  1166. }
  1167. /* while loop will break here if sd == NULL */
  1168. }
  1169. return cpu;
  1170. }
  1171. #endif /* CONFIG_SMP */
  1172. /*
  1173. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1174. * not idle and an idle cpu is available. The span of cpus to
  1175. * search starts with cpus closest then further out as needed,
  1176. * so we always favor a closer, idle cpu.
  1177. *
  1178. * Returns the CPU we should wake onto.
  1179. */
  1180. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1181. static int wake_idle(int cpu, struct task_struct *p)
  1182. {
  1183. cpumask_t tmp;
  1184. struct sched_domain *sd;
  1185. int i;
  1186. /*
  1187. * If it is idle, then it is the best cpu to run this task.
  1188. *
  1189. * This cpu is also the best, if it has more than one task already.
  1190. * Siblings must be also busy(in most cases) as they didn't already
  1191. * pickup the extra load from this cpu and hence we need not check
  1192. * sibling runqueue info. This will avoid the checks and cache miss
  1193. * penalities associated with that.
  1194. */
  1195. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1196. return cpu;
  1197. for_each_domain(cpu, sd) {
  1198. if (sd->flags & SD_WAKE_IDLE) {
  1199. cpus_and(tmp, sd->span, p->cpus_allowed);
  1200. for_each_cpu_mask(i, tmp) {
  1201. if (idle_cpu(i))
  1202. return i;
  1203. }
  1204. } else {
  1205. break;
  1206. }
  1207. }
  1208. return cpu;
  1209. }
  1210. #else
  1211. static inline int wake_idle(int cpu, struct task_struct *p)
  1212. {
  1213. return cpu;
  1214. }
  1215. #endif
  1216. /***
  1217. * try_to_wake_up - wake up a thread
  1218. * @p: the to-be-woken-up thread
  1219. * @state: the mask of task states that can be woken
  1220. * @sync: do a synchronous wakeup?
  1221. *
  1222. * Put it on the run-queue if it's not already there. The "current"
  1223. * thread is always on the run-queue (except when the actual
  1224. * re-schedule is in progress), and as such you're allowed to do
  1225. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1226. * runnable without the overhead of this.
  1227. *
  1228. * returns failure only if the task is already active.
  1229. */
  1230. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1231. {
  1232. int cpu, this_cpu, success = 0;
  1233. unsigned long flags;
  1234. long old_state;
  1235. struct rq *rq;
  1236. #ifdef CONFIG_SMP
  1237. struct sched_domain *sd, *this_sd = NULL;
  1238. unsigned long load, this_load;
  1239. int new_cpu;
  1240. #endif
  1241. rq = task_rq_lock(p, &flags);
  1242. old_state = p->state;
  1243. if (!(old_state & state))
  1244. goto out;
  1245. if (p->se.on_rq)
  1246. goto out_running;
  1247. cpu = task_cpu(p);
  1248. this_cpu = smp_processor_id();
  1249. #ifdef CONFIG_SMP
  1250. if (unlikely(task_running(rq, p)))
  1251. goto out_activate;
  1252. new_cpu = cpu;
  1253. schedstat_inc(rq, ttwu_count);
  1254. if (cpu == this_cpu) {
  1255. schedstat_inc(rq, ttwu_local);
  1256. goto out_set_cpu;
  1257. }
  1258. for_each_domain(this_cpu, sd) {
  1259. if (cpu_isset(cpu, sd->span)) {
  1260. schedstat_inc(sd, ttwu_wake_remote);
  1261. this_sd = sd;
  1262. break;
  1263. }
  1264. }
  1265. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1266. goto out_set_cpu;
  1267. /*
  1268. * Check for affine wakeup and passive balancing possibilities.
  1269. */
  1270. if (this_sd) {
  1271. int idx = this_sd->wake_idx;
  1272. unsigned int imbalance;
  1273. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1274. load = source_load(cpu, idx);
  1275. this_load = target_load(this_cpu, idx);
  1276. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1277. if (this_sd->flags & SD_WAKE_AFFINE) {
  1278. unsigned long tl = this_load;
  1279. unsigned long tl_per_task;
  1280. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1281. /*
  1282. * If sync wakeup then subtract the (maximum possible)
  1283. * effect of the currently running task from the load
  1284. * of the current CPU:
  1285. */
  1286. if (sync)
  1287. tl -= current->se.load.weight;
  1288. if ((tl <= load &&
  1289. tl + target_load(cpu, idx) <= tl_per_task) ||
  1290. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1291. /*
  1292. * This domain has SD_WAKE_AFFINE and
  1293. * p is cache cold in this domain, and
  1294. * there is no bad imbalance.
  1295. */
  1296. schedstat_inc(this_sd, ttwu_move_affine);
  1297. goto out_set_cpu;
  1298. }
  1299. }
  1300. /*
  1301. * Start passive balancing when half the imbalance_pct
  1302. * limit is reached.
  1303. */
  1304. if (this_sd->flags & SD_WAKE_BALANCE) {
  1305. if (imbalance*this_load <= 100*load) {
  1306. schedstat_inc(this_sd, ttwu_move_balance);
  1307. goto out_set_cpu;
  1308. }
  1309. }
  1310. }
  1311. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1312. out_set_cpu:
  1313. new_cpu = wake_idle(new_cpu, p);
  1314. if (new_cpu != cpu) {
  1315. set_task_cpu(p, new_cpu);
  1316. task_rq_unlock(rq, &flags);
  1317. /* might preempt at this point */
  1318. rq = task_rq_lock(p, &flags);
  1319. old_state = p->state;
  1320. if (!(old_state & state))
  1321. goto out;
  1322. if (p->se.on_rq)
  1323. goto out_running;
  1324. this_cpu = smp_processor_id();
  1325. cpu = task_cpu(p);
  1326. }
  1327. out_activate:
  1328. #endif /* CONFIG_SMP */
  1329. update_rq_clock(rq);
  1330. activate_task(rq, p, 1);
  1331. /*
  1332. * Sync wakeups (i.e. those types of wakeups where the waker
  1333. * has indicated that it will leave the CPU in short order)
  1334. * don't trigger a preemption, if the woken up task will run on
  1335. * this cpu. (in this case the 'I will reschedule' promise of
  1336. * the waker guarantees that the freshly woken up task is going
  1337. * to be considered on this CPU.)
  1338. */
  1339. if (!sync || cpu != this_cpu)
  1340. check_preempt_curr(rq, p);
  1341. success = 1;
  1342. out_running:
  1343. p->state = TASK_RUNNING;
  1344. out:
  1345. task_rq_unlock(rq, &flags);
  1346. return success;
  1347. }
  1348. int fastcall wake_up_process(struct task_struct *p)
  1349. {
  1350. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1351. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1352. }
  1353. EXPORT_SYMBOL(wake_up_process);
  1354. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1355. {
  1356. return try_to_wake_up(p, state, 0);
  1357. }
  1358. /*
  1359. * Perform scheduler related setup for a newly forked process p.
  1360. * p is forked by current.
  1361. *
  1362. * __sched_fork() is basic setup used by init_idle() too:
  1363. */
  1364. static void __sched_fork(struct task_struct *p)
  1365. {
  1366. p->se.exec_start = 0;
  1367. p->se.sum_exec_runtime = 0;
  1368. p->se.prev_sum_exec_runtime = 0;
  1369. #ifdef CONFIG_SCHEDSTATS
  1370. p->se.wait_start = 0;
  1371. p->se.sum_sleep_runtime = 0;
  1372. p->se.sleep_start = 0;
  1373. p->se.block_start = 0;
  1374. p->se.sleep_max = 0;
  1375. p->se.block_max = 0;
  1376. p->se.exec_max = 0;
  1377. p->se.slice_max = 0;
  1378. p->se.wait_max = 0;
  1379. #endif
  1380. INIT_LIST_HEAD(&p->run_list);
  1381. p->se.on_rq = 0;
  1382. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1383. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1384. #endif
  1385. /*
  1386. * We mark the process as running here, but have not actually
  1387. * inserted it onto the runqueue yet. This guarantees that
  1388. * nobody will actually run it, and a signal or other external
  1389. * event cannot wake it up and insert it on the runqueue either.
  1390. */
  1391. p->state = TASK_RUNNING;
  1392. }
  1393. /*
  1394. * fork()/clone()-time setup:
  1395. */
  1396. void sched_fork(struct task_struct *p, int clone_flags)
  1397. {
  1398. int cpu = get_cpu();
  1399. __sched_fork(p);
  1400. #ifdef CONFIG_SMP
  1401. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1402. #endif
  1403. set_task_cpu(p, cpu);
  1404. /*
  1405. * Make sure we do not leak PI boosting priority to the child:
  1406. */
  1407. p->prio = current->normal_prio;
  1408. if (!rt_prio(p->prio))
  1409. p->sched_class = &fair_sched_class;
  1410. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1411. if (likely(sched_info_on()))
  1412. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1413. #endif
  1414. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1415. p->oncpu = 0;
  1416. #endif
  1417. #ifdef CONFIG_PREEMPT
  1418. /* Want to start with kernel preemption disabled. */
  1419. task_thread_info(p)->preempt_count = 1;
  1420. #endif
  1421. put_cpu();
  1422. }
  1423. /*
  1424. * wake_up_new_task - wake up a newly created task for the first time.
  1425. *
  1426. * This function will do some initial scheduler statistics housekeeping
  1427. * that must be done for every newly created context, then puts the task
  1428. * on the runqueue and wakes it.
  1429. */
  1430. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1431. {
  1432. unsigned long flags;
  1433. struct rq *rq;
  1434. int this_cpu;
  1435. rq = task_rq_lock(p, &flags);
  1436. BUG_ON(p->state != TASK_RUNNING);
  1437. this_cpu = smp_processor_id(); /* parent's CPU */
  1438. update_rq_clock(rq);
  1439. p->prio = effective_prio(p);
  1440. if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
  1441. !current->se.on_rq) {
  1442. activate_task(rq, p, 0);
  1443. } else {
  1444. /*
  1445. * Let the scheduling class do new task startup
  1446. * management (if any):
  1447. */
  1448. p->sched_class->task_new(rq, p);
  1449. inc_nr_running(p, rq);
  1450. }
  1451. check_preempt_curr(rq, p);
  1452. task_rq_unlock(rq, &flags);
  1453. }
  1454. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1455. /**
  1456. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1457. * @notifier: notifier struct to register
  1458. */
  1459. void preempt_notifier_register(struct preempt_notifier *notifier)
  1460. {
  1461. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1462. }
  1463. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1464. /**
  1465. * preempt_notifier_unregister - no longer interested in preemption notifications
  1466. * @notifier: notifier struct to unregister
  1467. *
  1468. * This is safe to call from within a preemption notifier.
  1469. */
  1470. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1471. {
  1472. hlist_del(&notifier->link);
  1473. }
  1474. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1475. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1476. {
  1477. struct preempt_notifier *notifier;
  1478. struct hlist_node *node;
  1479. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1480. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1481. }
  1482. static void
  1483. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1484. struct task_struct *next)
  1485. {
  1486. struct preempt_notifier *notifier;
  1487. struct hlist_node *node;
  1488. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1489. notifier->ops->sched_out(notifier, next);
  1490. }
  1491. #else
  1492. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1493. {
  1494. }
  1495. static void
  1496. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1497. struct task_struct *next)
  1498. {
  1499. }
  1500. #endif
  1501. /**
  1502. * prepare_task_switch - prepare to switch tasks
  1503. * @rq: the runqueue preparing to switch
  1504. * @prev: the current task that is being switched out
  1505. * @next: the task we are going to switch to.
  1506. *
  1507. * This is called with the rq lock held and interrupts off. It must
  1508. * be paired with a subsequent finish_task_switch after the context
  1509. * switch.
  1510. *
  1511. * prepare_task_switch sets up locking and calls architecture specific
  1512. * hooks.
  1513. */
  1514. static inline void
  1515. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1516. struct task_struct *next)
  1517. {
  1518. fire_sched_out_preempt_notifiers(prev, next);
  1519. prepare_lock_switch(rq, next);
  1520. prepare_arch_switch(next);
  1521. }
  1522. /**
  1523. * finish_task_switch - clean up after a task-switch
  1524. * @rq: runqueue associated with task-switch
  1525. * @prev: the thread we just switched away from.
  1526. *
  1527. * finish_task_switch must be called after the context switch, paired
  1528. * with a prepare_task_switch call before the context switch.
  1529. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1530. * and do any other architecture-specific cleanup actions.
  1531. *
  1532. * Note that we may have delayed dropping an mm in context_switch(). If
  1533. * so, we finish that here outside of the runqueue lock. (Doing it
  1534. * with the lock held can cause deadlocks; see schedule() for
  1535. * details.)
  1536. */
  1537. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1538. __releases(rq->lock)
  1539. {
  1540. struct mm_struct *mm = rq->prev_mm;
  1541. long prev_state;
  1542. rq->prev_mm = NULL;
  1543. /*
  1544. * A task struct has one reference for the use as "current".
  1545. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1546. * schedule one last time. The schedule call will never return, and
  1547. * the scheduled task must drop that reference.
  1548. * The test for TASK_DEAD must occur while the runqueue locks are
  1549. * still held, otherwise prev could be scheduled on another cpu, die
  1550. * there before we look at prev->state, and then the reference would
  1551. * be dropped twice.
  1552. * Manfred Spraul <manfred@colorfullife.com>
  1553. */
  1554. prev_state = prev->state;
  1555. finish_arch_switch(prev);
  1556. finish_lock_switch(rq, prev);
  1557. fire_sched_in_preempt_notifiers(current);
  1558. if (mm)
  1559. mmdrop(mm);
  1560. if (unlikely(prev_state == TASK_DEAD)) {
  1561. /*
  1562. * Remove function-return probe instances associated with this
  1563. * task and put them back on the free list.
  1564. */
  1565. kprobe_flush_task(prev);
  1566. put_task_struct(prev);
  1567. }
  1568. }
  1569. /**
  1570. * schedule_tail - first thing a freshly forked thread must call.
  1571. * @prev: the thread we just switched away from.
  1572. */
  1573. asmlinkage void schedule_tail(struct task_struct *prev)
  1574. __releases(rq->lock)
  1575. {
  1576. struct rq *rq = this_rq();
  1577. finish_task_switch(rq, prev);
  1578. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1579. /* In this case, finish_task_switch does not reenable preemption */
  1580. preempt_enable();
  1581. #endif
  1582. if (current->set_child_tid)
  1583. put_user(current->pid, current->set_child_tid);
  1584. }
  1585. /*
  1586. * context_switch - switch to the new MM and the new
  1587. * thread's register state.
  1588. */
  1589. static inline void
  1590. context_switch(struct rq *rq, struct task_struct *prev,
  1591. struct task_struct *next)
  1592. {
  1593. struct mm_struct *mm, *oldmm;
  1594. prepare_task_switch(rq, prev, next);
  1595. mm = next->mm;
  1596. oldmm = prev->active_mm;
  1597. /*
  1598. * For paravirt, this is coupled with an exit in switch_to to
  1599. * combine the page table reload and the switch backend into
  1600. * one hypercall.
  1601. */
  1602. arch_enter_lazy_cpu_mode();
  1603. if (unlikely(!mm)) {
  1604. next->active_mm = oldmm;
  1605. atomic_inc(&oldmm->mm_count);
  1606. enter_lazy_tlb(oldmm, next);
  1607. } else
  1608. switch_mm(oldmm, mm, next);
  1609. if (unlikely(!prev->mm)) {
  1610. prev->active_mm = NULL;
  1611. rq->prev_mm = oldmm;
  1612. }
  1613. /*
  1614. * Since the runqueue lock will be released by the next
  1615. * task (which is an invalid locking op but in the case
  1616. * of the scheduler it's an obvious special-case), so we
  1617. * do an early lockdep release here:
  1618. */
  1619. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1620. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1621. #endif
  1622. /* Here we just switch the register state and the stack. */
  1623. switch_to(prev, next, prev);
  1624. barrier();
  1625. /*
  1626. * this_rq must be evaluated again because prev may have moved
  1627. * CPUs since it called schedule(), thus the 'rq' on its stack
  1628. * frame will be invalid.
  1629. */
  1630. finish_task_switch(this_rq(), prev);
  1631. }
  1632. /*
  1633. * nr_running, nr_uninterruptible and nr_context_switches:
  1634. *
  1635. * externally visible scheduler statistics: current number of runnable
  1636. * threads, current number of uninterruptible-sleeping threads, total
  1637. * number of context switches performed since bootup.
  1638. */
  1639. unsigned long nr_running(void)
  1640. {
  1641. unsigned long i, sum = 0;
  1642. for_each_online_cpu(i)
  1643. sum += cpu_rq(i)->nr_running;
  1644. return sum;
  1645. }
  1646. unsigned long nr_uninterruptible(void)
  1647. {
  1648. unsigned long i, sum = 0;
  1649. for_each_possible_cpu(i)
  1650. sum += cpu_rq(i)->nr_uninterruptible;
  1651. /*
  1652. * Since we read the counters lockless, it might be slightly
  1653. * inaccurate. Do not allow it to go below zero though:
  1654. */
  1655. if (unlikely((long)sum < 0))
  1656. sum = 0;
  1657. return sum;
  1658. }
  1659. unsigned long long nr_context_switches(void)
  1660. {
  1661. int i;
  1662. unsigned long long sum = 0;
  1663. for_each_possible_cpu(i)
  1664. sum += cpu_rq(i)->nr_switches;
  1665. return sum;
  1666. }
  1667. unsigned long nr_iowait(void)
  1668. {
  1669. unsigned long i, sum = 0;
  1670. for_each_possible_cpu(i)
  1671. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1672. return sum;
  1673. }
  1674. unsigned long nr_active(void)
  1675. {
  1676. unsigned long i, running = 0, uninterruptible = 0;
  1677. for_each_online_cpu(i) {
  1678. running += cpu_rq(i)->nr_running;
  1679. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1680. }
  1681. if (unlikely((long)uninterruptible < 0))
  1682. uninterruptible = 0;
  1683. return running + uninterruptible;
  1684. }
  1685. /*
  1686. * Update rq->cpu_load[] statistics. This function is usually called every
  1687. * scheduler tick (TICK_NSEC).
  1688. */
  1689. static void update_cpu_load(struct rq *this_rq)
  1690. {
  1691. unsigned long this_load = this_rq->load.weight;
  1692. int i, scale;
  1693. this_rq->nr_load_updates++;
  1694. /* Update our load: */
  1695. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1696. unsigned long old_load, new_load;
  1697. /* scale is effectively 1 << i now, and >> i divides by scale */
  1698. old_load = this_rq->cpu_load[i];
  1699. new_load = this_load;
  1700. /*
  1701. * Round up the averaging division if load is increasing. This
  1702. * prevents us from getting stuck on 9 if the load is 10, for
  1703. * example.
  1704. */
  1705. if (new_load > old_load)
  1706. new_load += scale-1;
  1707. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1708. }
  1709. }
  1710. #ifdef CONFIG_SMP
  1711. /*
  1712. * double_rq_lock - safely lock two runqueues
  1713. *
  1714. * Note this does not disable interrupts like task_rq_lock,
  1715. * you need to do so manually before calling.
  1716. */
  1717. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1718. __acquires(rq1->lock)
  1719. __acquires(rq2->lock)
  1720. {
  1721. BUG_ON(!irqs_disabled());
  1722. if (rq1 == rq2) {
  1723. spin_lock(&rq1->lock);
  1724. __acquire(rq2->lock); /* Fake it out ;) */
  1725. } else {
  1726. if (rq1 < rq2) {
  1727. spin_lock(&rq1->lock);
  1728. spin_lock(&rq2->lock);
  1729. } else {
  1730. spin_lock(&rq2->lock);
  1731. spin_lock(&rq1->lock);
  1732. }
  1733. }
  1734. update_rq_clock(rq1);
  1735. update_rq_clock(rq2);
  1736. }
  1737. /*
  1738. * double_rq_unlock - safely unlock two runqueues
  1739. *
  1740. * Note this does not restore interrupts like task_rq_unlock,
  1741. * you need to do so manually after calling.
  1742. */
  1743. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1744. __releases(rq1->lock)
  1745. __releases(rq2->lock)
  1746. {
  1747. spin_unlock(&rq1->lock);
  1748. if (rq1 != rq2)
  1749. spin_unlock(&rq2->lock);
  1750. else
  1751. __release(rq2->lock);
  1752. }
  1753. /*
  1754. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1755. */
  1756. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1757. __releases(this_rq->lock)
  1758. __acquires(busiest->lock)
  1759. __acquires(this_rq->lock)
  1760. {
  1761. if (unlikely(!irqs_disabled())) {
  1762. /* printk() doesn't work good under rq->lock */
  1763. spin_unlock(&this_rq->lock);
  1764. BUG_ON(1);
  1765. }
  1766. if (unlikely(!spin_trylock(&busiest->lock))) {
  1767. if (busiest < this_rq) {
  1768. spin_unlock(&this_rq->lock);
  1769. spin_lock(&busiest->lock);
  1770. spin_lock(&this_rq->lock);
  1771. } else
  1772. spin_lock(&busiest->lock);
  1773. }
  1774. }
  1775. /*
  1776. * If dest_cpu is allowed for this process, migrate the task to it.
  1777. * This is accomplished by forcing the cpu_allowed mask to only
  1778. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1779. * the cpu_allowed mask is restored.
  1780. */
  1781. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1782. {
  1783. struct migration_req req;
  1784. unsigned long flags;
  1785. struct rq *rq;
  1786. rq = task_rq_lock(p, &flags);
  1787. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1788. || unlikely(cpu_is_offline(dest_cpu)))
  1789. goto out;
  1790. /* force the process onto the specified CPU */
  1791. if (migrate_task(p, dest_cpu, &req)) {
  1792. /* Need to wait for migration thread (might exit: take ref). */
  1793. struct task_struct *mt = rq->migration_thread;
  1794. get_task_struct(mt);
  1795. task_rq_unlock(rq, &flags);
  1796. wake_up_process(mt);
  1797. put_task_struct(mt);
  1798. wait_for_completion(&req.done);
  1799. return;
  1800. }
  1801. out:
  1802. task_rq_unlock(rq, &flags);
  1803. }
  1804. /*
  1805. * sched_exec - execve() is a valuable balancing opportunity, because at
  1806. * this point the task has the smallest effective memory and cache footprint.
  1807. */
  1808. void sched_exec(void)
  1809. {
  1810. int new_cpu, this_cpu = get_cpu();
  1811. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1812. put_cpu();
  1813. if (new_cpu != this_cpu)
  1814. sched_migrate_task(current, new_cpu);
  1815. }
  1816. /*
  1817. * pull_task - move a task from a remote runqueue to the local runqueue.
  1818. * Both runqueues must be locked.
  1819. */
  1820. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1821. struct rq *this_rq, int this_cpu)
  1822. {
  1823. deactivate_task(src_rq, p, 0);
  1824. set_task_cpu(p, this_cpu);
  1825. activate_task(this_rq, p, 0);
  1826. /*
  1827. * Note that idle threads have a prio of MAX_PRIO, for this test
  1828. * to be always true for them.
  1829. */
  1830. check_preempt_curr(this_rq, p);
  1831. }
  1832. /*
  1833. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1834. */
  1835. static
  1836. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1837. struct sched_domain *sd, enum cpu_idle_type idle,
  1838. int *all_pinned)
  1839. {
  1840. /*
  1841. * We do not migrate tasks that are:
  1842. * 1) running (obviously), or
  1843. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1844. * 3) are cache-hot on their current CPU.
  1845. */
  1846. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1847. return 0;
  1848. *all_pinned = 0;
  1849. if (task_running(rq, p))
  1850. return 0;
  1851. return 1;
  1852. }
  1853. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1854. unsigned long max_nr_move, unsigned long max_load_move,
  1855. struct sched_domain *sd, enum cpu_idle_type idle,
  1856. int *all_pinned, unsigned long *load_moved,
  1857. int *this_best_prio, struct rq_iterator *iterator)
  1858. {
  1859. int pulled = 0, pinned = 0, skip_for_load;
  1860. struct task_struct *p;
  1861. long rem_load_move = max_load_move;
  1862. if (max_nr_move == 0 || max_load_move == 0)
  1863. goto out;
  1864. pinned = 1;
  1865. /*
  1866. * Start the load-balancing iterator:
  1867. */
  1868. p = iterator->start(iterator->arg);
  1869. next:
  1870. if (!p)
  1871. goto out;
  1872. /*
  1873. * To help distribute high priority tasks accross CPUs we don't
  1874. * skip a task if it will be the highest priority task (i.e. smallest
  1875. * prio value) on its new queue regardless of its load weight
  1876. */
  1877. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1878. SCHED_LOAD_SCALE_FUZZ;
  1879. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1880. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1881. p = iterator->next(iterator->arg);
  1882. goto next;
  1883. }
  1884. pull_task(busiest, p, this_rq, this_cpu);
  1885. pulled++;
  1886. rem_load_move -= p->se.load.weight;
  1887. /*
  1888. * We only want to steal up to the prescribed number of tasks
  1889. * and the prescribed amount of weighted load.
  1890. */
  1891. if (pulled < max_nr_move && rem_load_move > 0) {
  1892. if (p->prio < *this_best_prio)
  1893. *this_best_prio = p->prio;
  1894. p = iterator->next(iterator->arg);
  1895. goto next;
  1896. }
  1897. out:
  1898. /*
  1899. * Right now, this is the only place pull_task() is called,
  1900. * so we can safely collect pull_task() stats here rather than
  1901. * inside pull_task().
  1902. */
  1903. schedstat_add(sd, lb_gained[idle], pulled);
  1904. if (all_pinned)
  1905. *all_pinned = pinned;
  1906. *load_moved = max_load_move - rem_load_move;
  1907. return pulled;
  1908. }
  1909. /*
  1910. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1911. * this_rq, as part of a balancing operation within domain "sd".
  1912. * Returns 1 if successful and 0 otherwise.
  1913. *
  1914. * Called with both runqueues locked.
  1915. */
  1916. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1917. unsigned long max_load_move,
  1918. struct sched_domain *sd, enum cpu_idle_type idle,
  1919. int *all_pinned)
  1920. {
  1921. const struct sched_class *class = sched_class_highest;
  1922. unsigned long total_load_moved = 0;
  1923. int this_best_prio = this_rq->curr->prio;
  1924. do {
  1925. total_load_moved +=
  1926. class->load_balance(this_rq, this_cpu, busiest,
  1927. ULONG_MAX, max_load_move - total_load_moved,
  1928. sd, idle, all_pinned, &this_best_prio);
  1929. class = class->next;
  1930. } while (class && max_load_move > total_load_moved);
  1931. return total_load_moved > 0;
  1932. }
  1933. /*
  1934. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1935. * part of active balancing operations within "domain".
  1936. * Returns 1 if successful and 0 otherwise.
  1937. *
  1938. * Called with both runqueues locked.
  1939. */
  1940. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1941. struct sched_domain *sd, enum cpu_idle_type idle)
  1942. {
  1943. const struct sched_class *class;
  1944. int this_best_prio = MAX_PRIO;
  1945. for (class = sched_class_highest; class; class = class->next)
  1946. if (class->load_balance(this_rq, this_cpu, busiest,
  1947. 1, ULONG_MAX, sd, idle, NULL,
  1948. &this_best_prio))
  1949. return 1;
  1950. return 0;
  1951. }
  1952. /*
  1953. * find_busiest_group finds and returns the busiest CPU group within the
  1954. * domain. It calculates and returns the amount of weighted load which
  1955. * should be moved to restore balance via the imbalance parameter.
  1956. */
  1957. static struct sched_group *
  1958. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1959. unsigned long *imbalance, enum cpu_idle_type idle,
  1960. int *sd_idle, cpumask_t *cpus, int *balance)
  1961. {
  1962. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1963. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1964. unsigned long max_pull;
  1965. unsigned long busiest_load_per_task, busiest_nr_running;
  1966. unsigned long this_load_per_task, this_nr_running;
  1967. int load_idx;
  1968. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1969. int power_savings_balance = 1;
  1970. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1971. unsigned long min_nr_running = ULONG_MAX;
  1972. struct sched_group *group_min = NULL, *group_leader = NULL;
  1973. #endif
  1974. max_load = this_load = total_load = total_pwr = 0;
  1975. busiest_load_per_task = busiest_nr_running = 0;
  1976. this_load_per_task = this_nr_running = 0;
  1977. if (idle == CPU_NOT_IDLE)
  1978. load_idx = sd->busy_idx;
  1979. else if (idle == CPU_NEWLY_IDLE)
  1980. load_idx = sd->newidle_idx;
  1981. else
  1982. load_idx = sd->idle_idx;
  1983. do {
  1984. unsigned long load, group_capacity;
  1985. int local_group;
  1986. int i;
  1987. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1988. unsigned long sum_nr_running, sum_weighted_load;
  1989. local_group = cpu_isset(this_cpu, group->cpumask);
  1990. if (local_group)
  1991. balance_cpu = first_cpu(group->cpumask);
  1992. /* Tally up the load of all CPUs in the group */
  1993. sum_weighted_load = sum_nr_running = avg_load = 0;
  1994. for_each_cpu_mask(i, group->cpumask) {
  1995. struct rq *rq;
  1996. if (!cpu_isset(i, *cpus))
  1997. continue;
  1998. rq = cpu_rq(i);
  1999. if (*sd_idle && rq->nr_running)
  2000. *sd_idle = 0;
  2001. /* Bias balancing toward cpus of our domain */
  2002. if (local_group) {
  2003. if (idle_cpu(i) && !first_idle_cpu) {
  2004. first_idle_cpu = 1;
  2005. balance_cpu = i;
  2006. }
  2007. load = target_load(i, load_idx);
  2008. } else
  2009. load = source_load(i, load_idx);
  2010. avg_load += load;
  2011. sum_nr_running += rq->nr_running;
  2012. sum_weighted_load += weighted_cpuload(i);
  2013. }
  2014. /*
  2015. * First idle cpu or the first cpu(busiest) in this sched group
  2016. * is eligible for doing load balancing at this and above
  2017. * domains. In the newly idle case, we will allow all the cpu's
  2018. * to do the newly idle load balance.
  2019. */
  2020. if (idle != CPU_NEWLY_IDLE && local_group &&
  2021. balance_cpu != this_cpu && balance) {
  2022. *balance = 0;
  2023. goto ret;
  2024. }
  2025. total_load += avg_load;
  2026. total_pwr += group->__cpu_power;
  2027. /* Adjust by relative CPU power of the group */
  2028. avg_load = sg_div_cpu_power(group,
  2029. avg_load * SCHED_LOAD_SCALE);
  2030. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2031. if (local_group) {
  2032. this_load = avg_load;
  2033. this = group;
  2034. this_nr_running = sum_nr_running;
  2035. this_load_per_task = sum_weighted_load;
  2036. } else if (avg_load > max_load &&
  2037. sum_nr_running > group_capacity) {
  2038. max_load = avg_load;
  2039. busiest = group;
  2040. busiest_nr_running = sum_nr_running;
  2041. busiest_load_per_task = sum_weighted_load;
  2042. }
  2043. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2044. /*
  2045. * Busy processors will not participate in power savings
  2046. * balance.
  2047. */
  2048. if (idle == CPU_NOT_IDLE ||
  2049. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2050. goto group_next;
  2051. /*
  2052. * If the local group is idle or completely loaded
  2053. * no need to do power savings balance at this domain
  2054. */
  2055. if (local_group && (this_nr_running >= group_capacity ||
  2056. !this_nr_running))
  2057. power_savings_balance = 0;
  2058. /*
  2059. * If a group is already running at full capacity or idle,
  2060. * don't include that group in power savings calculations
  2061. */
  2062. if (!power_savings_balance || sum_nr_running >= group_capacity
  2063. || !sum_nr_running)
  2064. goto group_next;
  2065. /*
  2066. * Calculate the group which has the least non-idle load.
  2067. * This is the group from where we need to pick up the load
  2068. * for saving power
  2069. */
  2070. if ((sum_nr_running < min_nr_running) ||
  2071. (sum_nr_running == min_nr_running &&
  2072. first_cpu(group->cpumask) <
  2073. first_cpu(group_min->cpumask))) {
  2074. group_min = group;
  2075. min_nr_running = sum_nr_running;
  2076. min_load_per_task = sum_weighted_load /
  2077. sum_nr_running;
  2078. }
  2079. /*
  2080. * Calculate the group which is almost near its
  2081. * capacity but still has some space to pick up some load
  2082. * from other group and save more power
  2083. */
  2084. if (sum_nr_running <= group_capacity - 1) {
  2085. if (sum_nr_running > leader_nr_running ||
  2086. (sum_nr_running == leader_nr_running &&
  2087. first_cpu(group->cpumask) >
  2088. first_cpu(group_leader->cpumask))) {
  2089. group_leader = group;
  2090. leader_nr_running = sum_nr_running;
  2091. }
  2092. }
  2093. group_next:
  2094. #endif
  2095. group = group->next;
  2096. } while (group != sd->groups);
  2097. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2098. goto out_balanced;
  2099. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2100. if (this_load >= avg_load ||
  2101. 100*max_load <= sd->imbalance_pct*this_load)
  2102. goto out_balanced;
  2103. busiest_load_per_task /= busiest_nr_running;
  2104. /*
  2105. * We're trying to get all the cpus to the average_load, so we don't
  2106. * want to push ourselves above the average load, nor do we wish to
  2107. * reduce the max loaded cpu below the average load, as either of these
  2108. * actions would just result in more rebalancing later, and ping-pong
  2109. * tasks around. Thus we look for the minimum possible imbalance.
  2110. * Negative imbalances (*we* are more loaded than anyone else) will
  2111. * be counted as no imbalance for these purposes -- we can't fix that
  2112. * by pulling tasks to us. Be careful of negative numbers as they'll
  2113. * appear as very large values with unsigned longs.
  2114. */
  2115. if (max_load <= busiest_load_per_task)
  2116. goto out_balanced;
  2117. /*
  2118. * In the presence of smp nice balancing, certain scenarios can have
  2119. * max load less than avg load(as we skip the groups at or below
  2120. * its cpu_power, while calculating max_load..)
  2121. */
  2122. if (max_load < avg_load) {
  2123. *imbalance = 0;
  2124. goto small_imbalance;
  2125. }
  2126. /* Don't want to pull so many tasks that a group would go idle */
  2127. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2128. /* How much load to actually move to equalise the imbalance */
  2129. *imbalance = min(max_pull * busiest->__cpu_power,
  2130. (avg_load - this_load) * this->__cpu_power)
  2131. / SCHED_LOAD_SCALE;
  2132. /*
  2133. * if *imbalance is less than the average load per runnable task
  2134. * there is no gaurantee that any tasks will be moved so we'll have
  2135. * a think about bumping its value to force at least one task to be
  2136. * moved
  2137. */
  2138. if (*imbalance < busiest_load_per_task) {
  2139. unsigned long tmp, pwr_now, pwr_move;
  2140. unsigned int imbn;
  2141. small_imbalance:
  2142. pwr_move = pwr_now = 0;
  2143. imbn = 2;
  2144. if (this_nr_running) {
  2145. this_load_per_task /= this_nr_running;
  2146. if (busiest_load_per_task > this_load_per_task)
  2147. imbn = 1;
  2148. } else
  2149. this_load_per_task = SCHED_LOAD_SCALE;
  2150. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2151. busiest_load_per_task * imbn) {
  2152. *imbalance = busiest_load_per_task;
  2153. return busiest;
  2154. }
  2155. /*
  2156. * OK, we don't have enough imbalance to justify moving tasks,
  2157. * however we may be able to increase total CPU power used by
  2158. * moving them.
  2159. */
  2160. pwr_now += busiest->__cpu_power *
  2161. min(busiest_load_per_task, max_load);
  2162. pwr_now += this->__cpu_power *
  2163. min(this_load_per_task, this_load);
  2164. pwr_now /= SCHED_LOAD_SCALE;
  2165. /* Amount of load we'd subtract */
  2166. tmp = sg_div_cpu_power(busiest,
  2167. busiest_load_per_task * SCHED_LOAD_SCALE);
  2168. if (max_load > tmp)
  2169. pwr_move += busiest->__cpu_power *
  2170. min(busiest_load_per_task, max_load - tmp);
  2171. /* Amount of load we'd add */
  2172. if (max_load * busiest->__cpu_power <
  2173. busiest_load_per_task * SCHED_LOAD_SCALE)
  2174. tmp = sg_div_cpu_power(this,
  2175. max_load * busiest->__cpu_power);
  2176. else
  2177. tmp = sg_div_cpu_power(this,
  2178. busiest_load_per_task * SCHED_LOAD_SCALE);
  2179. pwr_move += this->__cpu_power *
  2180. min(this_load_per_task, this_load + tmp);
  2181. pwr_move /= SCHED_LOAD_SCALE;
  2182. /* Move if we gain throughput */
  2183. if (pwr_move > pwr_now)
  2184. *imbalance = busiest_load_per_task;
  2185. }
  2186. return busiest;
  2187. out_balanced:
  2188. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2189. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2190. goto ret;
  2191. if (this == group_leader && group_leader != group_min) {
  2192. *imbalance = min_load_per_task;
  2193. return group_min;
  2194. }
  2195. #endif
  2196. ret:
  2197. *imbalance = 0;
  2198. return NULL;
  2199. }
  2200. /*
  2201. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2202. */
  2203. static struct rq *
  2204. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2205. unsigned long imbalance, cpumask_t *cpus)
  2206. {
  2207. struct rq *busiest = NULL, *rq;
  2208. unsigned long max_load = 0;
  2209. int i;
  2210. for_each_cpu_mask(i, group->cpumask) {
  2211. unsigned long wl;
  2212. if (!cpu_isset(i, *cpus))
  2213. continue;
  2214. rq = cpu_rq(i);
  2215. wl = weighted_cpuload(i);
  2216. if (rq->nr_running == 1 && wl > imbalance)
  2217. continue;
  2218. if (wl > max_load) {
  2219. max_load = wl;
  2220. busiest = rq;
  2221. }
  2222. }
  2223. return busiest;
  2224. }
  2225. /*
  2226. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2227. * so long as it is large enough.
  2228. */
  2229. #define MAX_PINNED_INTERVAL 512
  2230. /*
  2231. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2232. * tasks if there is an imbalance.
  2233. */
  2234. static int load_balance(int this_cpu, struct rq *this_rq,
  2235. struct sched_domain *sd, enum cpu_idle_type idle,
  2236. int *balance)
  2237. {
  2238. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2239. struct sched_group *group;
  2240. unsigned long imbalance;
  2241. struct rq *busiest;
  2242. cpumask_t cpus = CPU_MASK_ALL;
  2243. unsigned long flags;
  2244. /*
  2245. * When power savings policy is enabled for the parent domain, idle
  2246. * sibling can pick up load irrespective of busy siblings. In this case,
  2247. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2248. * portraying it as CPU_NOT_IDLE.
  2249. */
  2250. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2251. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2252. sd_idle = 1;
  2253. schedstat_inc(sd, lb_count[idle]);
  2254. redo:
  2255. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2256. &cpus, balance);
  2257. if (*balance == 0)
  2258. goto out_balanced;
  2259. if (!group) {
  2260. schedstat_inc(sd, lb_nobusyg[idle]);
  2261. goto out_balanced;
  2262. }
  2263. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2264. if (!busiest) {
  2265. schedstat_inc(sd, lb_nobusyq[idle]);
  2266. goto out_balanced;
  2267. }
  2268. BUG_ON(busiest == this_rq);
  2269. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2270. ld_moved = 0;
  2271. if (busiest->nr_running > 1) {
  2272. /*
  2273. * Attempt to move tasks. If find_busiest_group has found
  2274. * an imbalance but busiest->nr_running <= 1, the group is
  2275. * still unbalanced. ld_moved simply stays zero, so it is
  2276. * correctly treated as an imbalance.
  2277. */
  2278. local_irq_save(flags);
  2279. double_rq_lock(this_rq, busiest);
  2280. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2281. imbalance, sd, idle, &all_pinned);
  2282. double_rq_unlock(this_rq, busiest);
  2283. local_irq_restore(flags);
  2284. /*
  2285. * some other cpu did the load balance for us.
  2286. */
  2287. if (ld_moved && this_cpu != smp_processor_id())
  2288. resched_cpu(this_cpu);
  2289. /* All tasks on this runqueue were pinned by CPU affinity */
  2290. if (unlikely(all_pinned)) {
  2291. cpu_clear(cpu_of(busiest), cpus);
  2292. if (!cpus_empty(cpus))
  2293. goto redo;
  2294. goto out_balanced;
  2295. }
  2296. }
  2297. if (!ld_moved) {
  2298. schedstat_inc(sd, lb_failed[idle]);
  2299. sd->nr_balance_failed++;
  2300. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2301. spin_lock_irqsave(&busiest->lock, flags);
  2302. /* don't kick the migration_thread, if the curr
  2303. * task on busiest cpu can't be moved to this_cpu
  2304. */
  2305. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2306. spin_unlock_irqrestore(&busiest->lock, flags);
  2307. all_pinned = 1;
  2308. goto out_one_pinned;
  2309. }
  2310. if (!busiest->active_balance) {
  2311. busiest->active_balance = 1;
  2312. busiest->push_cpu = this_cpu;
  2313. active_balance = 1;
  2314. }
  2315. spin_unlock_irqrestore(&busiest->lock, flags);
  2316. if (active_balance)
  2317. wake_up_process(busiest->migration_thread);
  2318. /*
  2319. * We've kicked active balancing, reset the failure
  2320. * counter.
  2321. */
  2322. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2323. }
  2324. } else
  2325. sd->nr_balance_failed = 0;
  2326. if (likely(!active_balance)) {
  2327. /* We were unbalanced, so reset the balancing interval */
  2328. sd->balance_interval = sd->min_interval;
  2329. } else {
  2330. /*
  2331. * If we've begun active balancing, start to back off. This
  2332. * case may not be covered by the all_pinned logic if there
  2333. * is only 1 task on the busy runqueue (because we don't call
  2334. * move_tasks).
  2335. */
  2336. if (sd->balance_interval < sd->max_interval)
  2337. sd->balance_interval *= 2;
  2338. }
  2339. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2340. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2341. return -1;
  2342. return ld_moved;
  2343. out_balanced:
  2344. schedstat_inc(sd, lb_balanced[idle]);
  2345. sd->nr_balance_failed = 0;
  2346. out_one_pinned:
  2347. /* tune up the balancing interval */
  2348. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2349. (sd->balance_interval < sd->max_interval))
  2350. sd->balance_interval *= 2;
  2351. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2352. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2353. return -1;
  2354. return 0;
  2355. }
  2356. /*
  2357. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2358. * tasks if there is an imbalance.
  2359. *
  2360. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2361. * this_rq is locked.
  2362. */
  2363. static int
  2364. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2365. {
  2366. struct sched_group *group;
  2367. struct rq *busiest = NULL;
  2368. unsigned long imbalance;
  2369. int ld_moved = 0;
  2370. int sd_idle = 0;
  2371. int all_pinned = 0;
  2372. cpumask_t cpus = CPU_MASK_ALL;
  2373. /*
  2374. * When power savings policy is enabled for the parent domain, idle
  2375. * sibling can pick up load irrespective of busy siblings. In this case,
  2376. * let the state of idle sibling percolate up as IDLE, instead of
  2377. * portraying it as CPU_NOT_IDLE.
  2378. */
  2379. if (sd->flags & SD_SHARE_CPUPOWER &&
  2380. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2381. sd_idle = 1;
  2382. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2383. redo:
  2384. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2385. &sd_idle, &cpus, NULL);
  2386. if (!group) {
  2387. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2388. goto out_balanced;
  2389. }
  2390. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2391. &cpus);
  2392. if (!busiest) {
  2393. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2394. goto out_balanced;
  2395. }
  2396. BUG_ON(busiest == this_rq);
  2397. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2398. ld_moved = 0;
  2399. if (busiest->nr_running > 1) {
  2400. /* Attempt to move tasks */
  2401. double_lock_balance(this_rq, busiest);
  2402. /* this_rq->clock is already updated */
  2403. update_rq_clock(busiest);
  2404. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2405. imbalance, sd, CPU_NEWLY_IDLE,
  2406. &all_pinned);
  2407. spin_unlock(&busiest->lock);
  2408. if (unlikely(all_pinned)) {
  2409. cpu_clear(cpu_of(busiest), cpus);
  2410. if (!cpus_empty(cpus))
  2411. goto redo;
  2412. }
  2413. }
  2414. if (!ld_moved) {
  2415. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2416. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2417. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2418. return -1;
  2419. } else
  2420. sd->nr_balance_failed = 0;
  2421. return ld_moved;
  2422. out_balanced:
  2423. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2424. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2425. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2426. return -1;
  2427. sd->nr_balance_failed = 0;
  2428. return 0;
  2429. }
  2430. /*
  2431. * idle_balance is called by schedule() if this_cpu is about to become
  2432. * idle. Attempts to pull tasks from other CPUs.
  2433. */
  2434. static void idle_balance(int this_cpu, struct rq *this_rq)
  2435. {
  2436. struct sched_domain *sd;
  2437. int pulled_task = -1;
  2438. unsigned long next_balance = jiffies + HZ;
  2439. for_each_domain(this_cpu, sd) {
  2440. unsigned long interval;
  2441. if (!(sd->flags & SD_LOAD_BALANCE))
  2442. continue;
  2443. if (sd->flags & SD_BALANCE_NEWIDLE)
  2444. /* If we've pulled tasks over stop searching: */
  2445. pulled_task = load_balance_newidle(this_cpu,
  2446. this_rq, sd);
  2447. interval = msecs_to_jiffies(sd->balance_interval);
  2448. if (time_after(next_balance, sd->last_balance + interval))
  2449. next_balance = sd->last_balance + interval;
  2450. if (pulled_task)
  2451. break;
  2452. }
  2453. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2454. /*
  2455. * We are going idle. next_balance may be set based on
  2456. * a busy processor. So reset next_balance.
  2457. */
  2458. this_rq->next_balance = next_balance;
  2459. }
  2460. }
  2461. /*
  2462. * active_load_balance is run by migration threads. It pushes running tasks
  2463. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2464. * running on each physical CPU where possible, and avoids physical /
  2465. * logical imbalances.
  2466. *
  2467. * Called with busiest_rq locked.
  2468. */
  2469. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2470. {
  2471. int target_cpu = busiest_rq->push_cpu;
  2472. struct sched_domain *sd;
  2473. struct rq *target_rq;
  2474. /* Is there any task to move? */
  2475. if (busiest_rq->nr_running <= 1)
  2476. return;
  2477. target_rq = cpu_rq(target_cpu);
  2478. /*
  2479. * This condition is "impossible", if it occurs
  2480. * we need to fix it. Originally reported by
  2481. * Bjorn Helgaas on a 128-cpu setup.
  2482. */
  2483. BUG_ON(busiest_rq == target_rq);
  2484. /* move a task from busiest_rq to target_rq */
  2485. double_lock_balance(busiest_rq, target_rq);
  2486. update_rq_clock(busiest_rq);
  2487. update_rq_clock(target_rq);
  2488. /* Search for an sd spanning us and the target CPU. */
  2489. for_each_domain(target_cpu, sd) {
  2490. if ((sd->flags & SD_LOAD_BALANCE) &&
  2491. cpu_isset(busiest_cpu, sd->span))
  2492. break;
  2493. }
  2494. if (likely(sd)) {
  2495. schedstat_inc(sd, alb_count);
  2496. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2497. sd, CPU_IDLE))
  2498. schedstat_inc(sd, alb_pushed);
  2499. else
  2500. schedstat_inc(sd, alb_failed);
  2501. }
  2502. spin_unlock(&target_rq->lock);
  2503. }
  2504. #ifdef CONFIG_NO_HZ
  2505. static struct {
  2506. atomic_t load_balancer;
  2507. cpumask_t cpu_mask;
  2508. } nohz ____cacheline_aligned = {
  2509. .load_balancer = ATOMIC_INIT(-1),
  2510. .cpu_mask = CPU_MASK_NONE,
  2511. };
  2512. /*
  2513. * This routine will try to nominate the ilb (idle load balancing)
  2514. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2515. * load balancing on behalf of all those cpus. If all the cpus in the system
  2516. * go into this tickless mode, then there will be no ilb owner (as there is
  2517. * no need for one) and all the cpus will sleep till the next wakeup event
  2518. * arrives...
  2519. *
  2520. * For the ilb owner, tick is not stopped. And this tick will be used
  2521. * for idle load balancing. ilb owner will still be part of
  2522. * nohz.cpu_mask..
  2523. *
  2524. * While stopping the tick, this cpu will become the ilb owner if there
  2525. * is no other owner. And will be the owner till that cpu becomes busy
  2526. * or if all cpus in the system stop their ticks at which point
  2527. * there is no need for ilb owner.
  2528. *
  2529. * When the ilb owner becomes busy, it nominates another owner, during the
  2530. * next busy scheduler_tick()
  2531. */
  2532. int select_nohz_load_balancer(int stop_tick)
  2533. {
  2534. int cpu = smp_processor_id();
  2535. if (stop_tick) {
  2536. cpu_set(cpu, nohz.cpu_mask);
  2537. cpu_rq(cpu)->in_nohz_recently = 1;
  2538. /*
  2539. * If we are going offline and still the leader, give up!
  2540. */
  2541. if (cpu_is_offline(cpu) &&
  2542. atomic_read(&nohz.load_balancer) == cpu) {
  2543. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2544. BUG();
  2545. return 0;
  2546. }
  2547. /* time for ilb owner also to sleep */
  2548. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2549. if (atomic_read(&nohz.load_balancer) == cpu)
  2550. atomic_set(&nohz.load_balancer, -1);
  2551. return 0;
  2552. }
  2553. if (atomic_read(&nohz.load_balancer) == -1) {
  2554. /* make me the ilb owner */
  2555. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2556. return 1;
  2557. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2558. return 1;
  2559. } else {
  2560. if (!cpu_isset(cpu, nohz.cpu_mask))
  2561. return 0;
  2562. cpu_clear(cpu, nohz.cpu_mask);
  2563. if (atomic_read(&nohz.load_balancer) == cpu)
  2564. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2565. BUG();
  2566. }
  2567. return 0;
  2568. }
  2569. #endif
  2570. static DEFINE_SPINLOCK(balancing);
  2571. /*
  2572. * It checks each scheduling domain to see if it is due to be balanced,
  2573. * and initiates a balancing operation if so.
  2574. *
  2575. * Balancing parameters are set up in arch_init_sched_domains.
  2576. */
  2577. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2578. {
  2579. int balance = 1;
  2580. struct rq *rq = cpu_rq(cpu);
  2581. unsigned long interval;
  2582. struct sched_domain *sd;
  2583. /* Earliest time when we have to do rebalance again */
  2584. unsigned long next_balance = jiffies + 60*HZ;
  2585. int update_next_balance = 0;
  2586. for_each_domain(cpu, sd) {
  2587. if (!(sd->flags & SD_LOAD_BALANCE))
  2588. continue;
  2589. interval = sd->balance_interval;
  2590. if (idle != CPU_IDLE)
  2591. interval *= sd->busy_factor;
  2592. /* scale ms to jiffies */
  2593. interval = msecs_to_jiffies(interval);
  2594. if (unlikely(!interval))
  2595. interval = 1;
  2596. if (interval > HZ*NR_CPUS/10)
  2597. interval = HZ*NR_CPUS/10;
  2598. if (sd->flags & SD_SERIALIZE) {
  2599. if (!spin_trylock(&balancing))
  2600. goto out;
  2601. }
  2602. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2603. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2604. /*
  2605. * We've pulled tasks over so either we're no
  2606. * longer idle, or one of our SMT siblings is
  2607. * not idle.
  2608. */
  2609. idle = CPU_NOT_IDLE;
  2610. }
  2611. sd->last_balance = jiffies;
  2612. }
  2613. if (sd->flags & SD_SERIALIZE)
  2614. spin_unlock(&balancing);
  2615. out:
  2616. if (time_after(next_balance, sd->last_balance + interval)) {
  2617. next_balance = sd->last_balance + interval;
  2618. update_next_balance = 1;
  2619. }
  2620. /*
  2621. * Stop the load balance at this level. There is another
  2622. * CPU in our sched group which is doing load balancing more
  2623. * actively.
  2624. */
  2625. if (!balance)
  2626. break;
  2627. }
  2628. /*
  2629. * next_balance will be updated only when there is a need.
  2630. * When the cpu is attached to null domain for ex, it will not be
  2631. * updated.
  2632. */
  2633. if (likely(update_next_balance))
  2634. rq->next_balance = next_balance;
  2635. }
  2636. /*
  2637. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2638. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2639. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2640. */
  2641. static void run_rebalance_domains(struct softirq_action *h)
  2642. {
  2643. int this_cpu = smp_processor_id();
  2644. struct rq *this_rq = cpu_rq(this_cpu);
  2645. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2646. CPU_IDLE : CPU_NOT_IDLE;
  2647. rebalance_domains(this_cpu, idle);
  2648. #ifdef CONFIG_NO_HZ
  2649. /*
  2650. * If this cpu is the owner for idle load balancing, then do the
  2651. * balancing on behalf of the other idle cpus whose ticks are
  2652. * stopped.
  2653. */
  2654. if (this_rq->idle_at_tick &&
  2655. atomic_read(&nohz.load_balancer) == this_cpu) {
  2656. cpumask_t cpus = nohz.cpu_mask;
  2657. struct rq *rq;
  2658. int balance_cpu;
  2659. cpu_clear(this_cpu, cpus);
  2660. for_each_cpu_mask(balance_cpu, cpus) {
  2661. /*
  2662. * If this cpu gets work to do, stop the load balancing
  2663. * work being done for other cpus. Next load
  2664. * balancing owner will pick it up.
  2665. */
  2666. if (need_resched())
  2667. break;
  2668. rebalance_domains(balance_cpu, CPU_IDLE);
  2669. rq = cpu_rq(balance_cpu);
  2670. if (time_after(this_rq->next_balance, rq->next_balance))
  2671. this_rq->next_balance = rq->next_balance;
  2672. }
  2673. }
  2674. #endif
  2675. }
  2676. /*
  2677. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2678. *
  2679. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2680. * idle load balancing owner or decide to stop the periodic load balancing,
  2681. * if the whole system is idle.
  2682. */
  2683. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2684. {
  2685. #ifdef CONFIG_NO_HZ
  2686. /*
  2687. * If we were in the nohz mode recently and busy at the current
  2688. * scheduler tick, then check if we need to nominate new idle
  2689. * load balancer.
  2690. */
  2691. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2692. rq->in_nohz_recently = 0;
  2693. if (atomic_read(&nohz.load_balancer) == cpu) {
  2694. cpu_clear(cpu, nohz.cpu_mask);
  2695. atomic_set(&nohz.load_balancer, -1);
  2696. }
  2697. if (atomic_read(&nohz.load_balancer) == -1) {
  2698. /*
  2699. * simple selection for now: Nominate the
  2700. * first cpu in the nohz list to be the next
  2701. * ilb owner.
  2702. *
  2703. * TBD: Traverse the sched domains and nominate
  2704. * the nearest cpu in the nohz.cpu_mask.
  2705. */
  2706. int ilb = first_cpu(nohz.cpu_mask);
  2707. if (ilb != NR_CPUS)
  2708. resched_cpu(ilb);
  2709. }
  2710. }
  2711. /*
  2712. * If this cpu is idle and doing idle load balancing for all the
  2713. * cpus with ticks stopped, is it time for that to stop?
  2714. */
  2715. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2716. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2717. resched_cpu(cpu);
  2718. return;
  2719. }
  2720. /*
  2721. * If this cpu is idle and the idle load balancing is done by
  2722. * someone else, then no need raise the SCHED_SOFTIRQ
  2723. */
  2724. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2725. cpu_isset(cpu, nohz.cpu_mask))
  2726. return;
  2727. #endif
  2728. if (time_after_eq(jiffies, rq->next_balance))
  2729. raise_softirq(SCHED_SOFTIRQ);
  2730. }
  2731. #else /* CONFIG_SMP */
  2732. /*
  2733. * on UP we do not need to balance between CPUs:
  2734. */
  2735. static inline void idle_balance(int cpu, struct rq *rq)
  2736. {
  2737. }
  2738. /* Avoid "used but not defined" warning on UP */
  2739. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2740. unsigned long max_nr_move, unsigned long max_load_move,
  2741. struct sched_domain *sd, enum cpu_idle_type idle,
  2742. int *all_pinned, unsigned long *load_moved,
  2743. int *this_best_prio, struct rq_iterator *iterator)
  2744. {
  2745. *load_moved = 0;
  2746. return 0;
  2747. }
  2748. #endif
  2749. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2750. EXPORT_PER_CPU_SYMBOL(kstat);
  2751. /*
  2752. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2753. * that have not yet been banked in case the task is currently running.
  2754. */
  2755. unsigned long long task_sched_runtime(struct task_struct *p)
  2756. {
  2757. unsigned long flags;
  2758. u64 ns, delta_exec;
  2759. struct rq *rq;
  2760. rq = task_rq_lock(p, &flags);
  2761. ns = p->se.sum_exec_runtime;
  2762. if (rq->curr == p) {
  2763. update_rq_clock(rq);
  2764. delta_exec = rq->clock - p->se.exec_start;
  2765. if ((s64)delta_exec > 0)
  2766. ns += delta_exec;
  2767. }
  2768. task_rq_unlock(rq, &flags);
  2769. return ns;
  2770. }
  2771. /*
  2772. * Account user cpu time to a process.
  2773. * @p: the process that the cpu time gets accounted to
  2774. * @hardirq_offset: the offset to subtract from hardirq_count()
  2775. * @cputime: the cpu time spent in user space since the last update
  2776. */
  2777. void account_user_time(struct task_struct *p, cputime_t cputime)
  2778. {
  2779. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2780. cputime64_t tmp;
  2781. p->utime = cputime_add(p->utime, cputime);
  2782. /* Add user time to cpustat. */
  2783. tmp = cputime_to_cputime64(cputime);
  2784. if (TASK_NICE(p) > 0)
  2785. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2786. else
  2787. cpustat->user = cputime64_add(cpustat->user, tmp);
  2788. }
  2789. /*
  2790. * Account system cpu time to a process.
  2791. * @p: the process that the cpu time gets accounted to
  2792. * @hardirq_offset: the offset to subtract from hardirq_count()
  2793. * @cputime: the cpu time spent in kernel space since the last update
  2794. */
  2795. void account_system_time(struct task_struct *p, int hardirq_offset,
  2796. cputime_t cputime)
  2797. {
  2798. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2799. struct rq *rq = this_rq();
  2800. cputime64_t tmp;
  2801. p->stime = cputime_add(p->stime, cputime);
  2802. /* Add system time to cpustat. */
  2803. tmp = cputime_to_cputime64(cputime);
  2804. if (hardirq_count() - hardirq_offset)
  2805. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2806. else if (softirq_count())
  2807. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2808. else if (p != rq->idle)
  2809. cpustat->system = cputime64_add(cpustat->system, tmp);
  2810. else if (atomic_read(&rq->nr_iowait) > 0)
  2811. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2812. else
  2813. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2814. /* Account for system time used */
  2815. acct_update_integrals(p);
  2816. }
  2817. /*
  2818. * Account for involuntary wait time.
  2819. * @p: the process from which the cpu time has been stolen
  2820. * @steal: the cpu time spent in involuntary wait
  2821. */
  2822. void account_steal_time(struct task_struct *p, cputime_t steal)
  2823. {
  2824. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2825. cputime64_t tmp = cputime_to_cputime64(steal);
  2826. struct rq *rq = this_rq();
  2827. if (p == rq->idle) {
  2828. p->stime = cputime_add(p->stime, steal);
  2829. if (atomic_read(&rq->nr_iowait) > 0)
  2830. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2831. else
  2832. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2833. } else
  2834. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2835. }
  2836. /*
  2837. * This function gets called by the timer code, with HZ frequency.
  2838. * We call it with interrupts disabled.
  2839. *
  2840. * It also gets called by the fork code, when changing the parent's
  2841. * timeslices.
  2842. */
  2843. void scheduler_tick(void)
  2844. {
  2845. int cpu = smp_processor_id();
  2846. struct rq *rq = cpu_rq(cpu);
  2847. struct task_struct *curr = rq->curr;
  2848. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2849. spin_lock(&rq->lock);
  2850. __update_rq_clock(rq);
  2851. /*
  2852. * Let rq->clock advance by at least TICK_NSEC:
  2853. */
  2854. if (unlikely(rq->clock < next_tick))
  2855. rq->clock = next_tick;
  2856. rq->tick_timestamp = rq->clock;
  2857. update_cpu_load(rq);
  2858. if (curr != rq->idle) /* FIXME: needed? */
  2859. curr->sched_class->task_tick(rq, curr);
  2860. spin_unlock(&rq->lock);
  2861. #ifdef CONFIG_SMP
  2862. rq->idle_at_tick = idle_cpu(cpu);
  2863. trigger_load_balance(rq, cpu);
  2864. #endif
  2865. }
  2866. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2867. void fastcall add_preempt_count(int val)
  2868. {
  2869. /*
  2870. * Underflow?
  2871. */
  2872. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2873. return;
  2874. preempt_count() += val;
  2875. /*
  2876. * Spinlock count overflowing soon?
  2877. */
  2878. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2879. PREEMPT_MASK - 10);
  2880. }
  2881. EXPORT_SYMBOL(add_preempt_count);
  2882. void fastcall sub_preempt_count(int val)
  2883. {
  2884. /*
  2885. * Underflow?
  2886. */
  2887. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2888. return;
  2889. /*
  2890. * Is the spinlock portion underflowing?
  2891. */
  2892. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2893. !(preempt_count() & PREEMPT_MASK)))
  2894. return;
  2895. preempt_count() -= val;
  2896. }
  2897. EXPORT_SYMBOL(sub_preempt_count);
  2898. #endif
  2899. /*
  2900. * Print scheduling while atomic bug:
  2901. */
  2902. static noinline void __schedule_bug(struct task_struct *prev)
  2903. {
  2904. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2905. prev->comm, preempt_count(), prev->pid);
  2906. debug_show_held_locks(prev);
  2907. if (irqs_disabled())
  2908. print_irqtrace_events(prev);
  2909. dump_stack();
  2910. }
  2911. /*
  2912. * Various schedule()-time debugging checks and statistics:
  2913. */
  2914. static inline void schedule_debug(struct task_struct *prev)
  2915. {
  2916. /*
  2917. * Test if we are atomic. Since do_exit() needs to call into
  2918. * schedule() atomically, we ignore that path for now.
  2919. * Otherwise, whine if we are scheduling when we should not be.
  2920. */
  2921. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2922. __schedule_bug(prev);
  2923. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2924. schedstat_inc(this_rq(), sched_count);
  2925. #ifdef CONFIG_SCHEDSTATS
  2926. if (unlikely(prev->lock_depth >= 0)) {
  2927. schedstat_inc(this_rq(), bkl_count);
  2928. schedstat_inc(prev, sched_info.bkl_count);
  2929. }
  2930. #endif
  2931. }
  2932. /*
  2933. * Pick up the highest-prio task:
  2934. */
  2935. static inline struct task_struct *
  2936. pick_next_task(struct rq *rq, struct task_struct *prev)
  2937. {
  2938. const struct sched_class *class;
  2939. struct task_struct *p;
  2940. /*
  2941. * Optimization: we know that if all tasks are in
  2942. * the fair class we can call that function directly:
  2943. */
  2944. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2945. p = fair_sched_class.pick_next_task(rq);
  2946. if (likely(p))
  2947. return p;
  2948. }
  2949. class = sched_class_highest;
  2950. for ( ; ; ) {
  2951. p = class->pick_next_task(rq);
  2952. if (p)
  2953. return p;
  2954. /*
  2955. * Will never be NULL as the idle class always
  2956. * returns a non-NULL p:
  2957. */
  2958. class = class->next;
  2959. }
  2960. }
  2961. /*
  2962. * schedule() is the main scheduler function.
  2963. */
  2964. asmlinkage void __sched schedule(void)
  2965. {
  2966. struct task_struct *prev, *next;
  2967. long *switch_count;
  2968. struct rq *rq;
  2969. int cpu;
  2970. need_resched:
  2971. preempt_disable();
  2972. cpu = smp_processor_id();
  2973. rq = cpu_rq(cpu);
  2974. rcu_qsctr_inc(cpu);
  2975. prev = rq->curr;
  2976. switch_count = &prev->nivcsw;
  2977. release_kernel_lock(prev);
  2978. need_resched_nonpreemptible:
  2979. schedule_debug(prev);
  2980. /*
  2981. * Do the rq-clock update outside the rq lock:
  2982. */
  2983. local_irq_disable();
  2984. __update_rq_clock(rq);
  2985. spin_lock(&rq->lock);
  2986. clear_tsk_need_resched(prev);
  2987. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2988. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2989. unlikely(signal_pending(prev)))) {
  2990. prev->state = TASK_RUNNING;
  2991. } else {
  2992. deactivate_task(rq, prev, 1);
  2993. }
  2994. switch_count = &prev->nvcsw;
  2995. }
  2996. if (unlikely(!rq->nr_running))
  2997. idle_balance(cpu, rq);
  2998. prev->sched_class->put_prev_task(rq, prev);
  2999. next = pick_next_task(rq, prev);
  3000. sched_info_switch(prev, next);
  3001. if (likely(prev != next)) {
  3002. rq->nr_switches++;
  3003. rq->curr = next;
  3004. ++*switch_count;
  3005. context_switch(rq, prev, next); /* unlocks the rq */
  3006. } else
  3007. spin_unlock_irq(&rq->lock);
  3008. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3009. cpu = smp_processor_id();
  3010. rq = cpu_rq(cpu);
  3011. goto need_resched_nonpreemptible;
  3012. }
  3013. preempt_enable_no_resched();
  3014. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3015. goto need_resched;
  3016. }
  3017. EXPORT_SYMBOL(schedule);
  3018. #ifdef CONFIG_PREEMPT
  3019. /*
  3020. * this is the entry point to schedule() from in-kernel preemption
  3021. * off of preempt_enable. Kernel preemptions off return from interrupt
  3022. * occur there and call schedule directly.
  3023. */
  3024. asmlinkage void __sched preempt_schedule(void)
  3025. {
  3026. struct thread_info *ti = current_thread_info();
  3027. #ifdef CONFIG_PREEMPT_BKL
  3028. struct task_struct *task = current;
  3029. int saved_lock_depth;
  3030. #endif
  3031. /*
  3032. * If there is a non-zero preempt_count or interrupts are disabled,
  3033. * we do not want to preempt the current task. Just return..
  3034. */
  3035. if (likely(ti->preempt_count || irqs_disabled()))
  3036. return;
  3037. need_resched:
  3038. add_preempt_count(PREEMPT_ACTIVE);
  3039. /*
  3040. * We keep the big kernel semaphore locked, but we
  3041. * clear ->lock_depth so that schedule() doesnt
  3042. * auto-release the semaphore:
  3043. */
  3044. #ifdef CONFIG_PREEMPT_BKL
  3045. saved_lock_depth = task->lock_depth;
  3046. task->lock_depth = -1;
  3047. #endif
  3048. schedule();
  3049. #ifdef CONFIG_PREEMPT_BKL
  3050. task->lock_depth = saved_lock_depth;
  3051. #endif
  3052. sub_preempt_count(PREEMPT_ACTIVE);
  3053. /* we could miss a preemption opportunity between schedule and now */
  3054. barrier();
  3055. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3056. goto need_resched;
  3057. }
  3058. EXPORT_SYMBOL(preempt_schedule);
  3059. /*
  3060. * this is the entry point to schedule() from kernel preemption
  3061. * off of irq context.
  3062. * Note, that this is called and return with irqs disabled. This will
  3063. * protect us against recursive calling from irq.
  3064. */
  3065. asmlinkage void __sched preempt_schedule_irq(void)
  3066. {
  3067. struct thread_info *ti = current_thread_info();
  3068. #ifdef CONFIG_PREEMPT_BKL
  3069. struct task_struct *task = current;
  3070. int saved_lock_depth;
  3071. #endif
  3072. /* Catch callers which need to be fixed */
  3073. BUG_ON(ti->preempt_count || !irqs_disabled());
  3074. need_resched:
  3075. add_preempt_count(PREEMPT_ACTIVE);
  3076. /*
  3077. * We keep the big kernel semaphore locked, but we
  3078. * clear ->lock_depth so that schedule() doesnt
  3079. * auto-release the semaphore:
  3080. */
  3081. #ifdef CONFIG_PREEMPT_BKL
  3082. saved_lock_depth = task->lock_depth;
  3083. task->lock_depth = -1;
  3084. #endif
  3085. local_irq_enable();
  3086. schedule();
  3087. local_irq_disable();
  3088. #ifdef CONFIG_PREEMPT_BKL
  3089. task->lock_depth = saved_lock_depth;
  3090. #endif
  3091. sub_preempt_count(PREEMPT_ACTIVE);
  3092. /* we could miss a preemption opportunity between schedule and now */
  3093. barrier();
  3094. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3095. goto need_resched;
  3096. }
  3097. #endif /* CONFIG_PREEMPT */
  3098. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3099. void *key)
  3100. {
  3101. return try_to_wake_up(curr->private, mode, sync);
  3102. }
  3103. EXPORT_SYMBOL(default_wake_function);
  3104. /*
  3105. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3106. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3107. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3108. *
  3109. * There are circumstances in which we can try to wake a task which has already
  3110. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3111. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3112. */
  3113. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3114. int nr_exclusive, int sync, void *key)
  3115. {
  3116. wait_queue_t *curr, *next;
  3117. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3118. unsigned flags = curr->flags;
  3119. if (curr->func(curr, mode, sync, key) &&
  3120. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3121. break;
  3122. }
  3123. }
  3124. /**
  3125. * __wake_up - wake up threads blocked on a waitqueue.
  3126. * @q: the waitqueue
  3127. * @mode: which threads
  3128. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3129. * @key: is directly passed to the wakeup function
  3130. */
  3131. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3132. int nr_exclusive, void *key)
  3133. {
  3134. unsigned long flags;
  3135. spin_lock_irqsave(&q->lock, flags);
  3136. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3137. spin_unlock_irqrestore(&q->lock, flags);
  3138. }
  3139. EXPORT_SYMBOL(__wake_up);
  3140. /*
  3141. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3142. */
  3143. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3144. {
  3145. __wake_up_common(q, mode, 1, 0, NULL);
  3146. }
  3147. /**
  3148. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3149. * @q: the waitqueue
  3150. * @mode: which threads
  3151. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3152. *
  3153. * The sync wakeup differs that the waker knows that it will schedule
  3154. * away soon, so while the target thread will be woken up, it will not
  3155. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3156. * with each other. This can prevent needless bouncing between CPUs.
  3157. *
  3158. * On UP it can prevent extra preemption.
  3159. */
  3160. void fastcall
  3161. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3162. {
  3163. unsigned long flags;
  3164. int sync = 1;
  3165. if (unlikely(!q))
  3166. return;
  3167. if (unlikely(!nr_exclusive))
  3168. sync = 0;
  3169. spin_lock_irqsave(&q->lock, flags);
  3170. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3171. spin_unlock_irqrestore(&q->lock, flags);
  3172. }
  3173. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3174. void fastcall complete(struct completion *x)
  3175. {
  3176. unsigned long flags;
  3177. spin_lock_irqsave(&x->wait.lock, flags);
  3178. x->done++;
  3179. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3180. 1, 0, NULL);
  3181. spin_unlock_irqrestore(&x->wait.lock, flags);
  3182. }
  3183. EXPORT_SYMBOL(complete);
  3184. void fastcall complete_all(struct completion *x)
  3185. {
  3186. unsigned long flags;
  3187. spin_lock_irqsave(&x->wait.lock, flags);
  3188. x->done += UINT_MAX/2;
  3189. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3190. 0, 0, NULL);
  3191. spin_unlock_irqrestore(&x->wait.lock, flags);
  3192. }
  3193. EXPORT_SYMBOL(complete_all);
  3194. void fastcall __sched wait_for_completion(struct completion *x)
  3195. {
  3196. might_sleep();
  3197. spin_lock_irq(&x->wait.lock);
  3198. if (!x->done) {
  3199. DECLARE_WAITQUEUE(wait, current);
  3200. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3201. __add_wait_queue_tail(&x->wait, &wait);
  3202. do {
  3203. __set_current_state(TASK_UNINTERRUPTIBLE);
  3204. spin_unlock_irq(&x->wait.lock);
  3205. schedule();
  3206. spin_lock_irq(&x->wait.lock);
  3207. } while (!x->done);
  3208. __remove_wait_queue(&x->wait, &wait);
  3209. }
  3210. x->done--;
  3211. spin_unlock_irq(&x->wait.lock);
  3212. }
  3213. EXPORT_SYMBOL(wait_for_completion);
  3214. unsigned long fastcall __sched
  3215. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3216. {
  3217. might_sleep();
  3218. spin_lock_irq(&x->wait.lock);
  3219. if (!x->done) {
  3220. DECLARE_WAITQUEUE(wait, current);
  3221. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3222. __add_wait_queue_tail(&x->wait, &wait);
  3223. do {
  3224. __set_current_state(TASK_UNINTERRUPTIBLE);
  3225. spin_unlock_irq(&x->wait.lock);
  3226. timeout = schedule_timeout(timeout);
  3227. spin_lock_irq(&x->wait.lock);
  3228. if (!timeout) {
  3229. __remove_wait_queue(&x->wait, &wait);
  3230. goto out;
  3231. }
  3232. } while (!x->done);
  3233. __remove_wait_queue(&x->wait, &wait);
  3234. }
  3235. x->done--;
  3236. out:
  3237. spin_unlock_irq(&x->wait.lock);
  3238. return timeout;
  3239. }
  3240. EXPORT_SYMBOL(wait_for_completion_timeout);
  3241. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3242. {
  3243. int ret = 0;
  3244. might_sleep();
  3245. spin_lock_irq(&x->wait.lock);
  3246. if (!x->done) {
  3247. DECLARE_WAITQUEUE(wait, current);
  3248. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3249. __add_wait_queue_tail(&x->wait, &wait);
  3250. do {
  3251. if (signal_pending(current)) {
  3252. ret = -ERESTARTSYS;
  3253. __remove_wait_queue(&x->wait, &wait);
  3254. goto out;
  3255. }
  3256. __set_current_state(TASK_INTERRUPTIBLE);
  3257. spin_unlock_irq(&x->wait.lock);
  3258. schedule();
  3259. spin_lock_irq(&x->wait.lock);
  3260. } while (!x->done);
  3261. __remove_wait_queue(&x->wait, &wait);
  3262. }
  3263. x->done--;
  3264. out:
  3265. spin_unlock_irq(&x->wait.lock);
  3266. return ret;
  3267. }
  3268. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3269. unsigned long fastcall __sched
  3270. wait_for_completion_interruptible_timeout(struct completion *x,
  3271. unsigned long timeout)
  3272. {
  3273. might_sleep();
  3274. spin_lock_irq(&x->wait.lock);
  3275. if (!x->done) {
  3276. DECLARE_WAITQUEUE(wait, current);
  3277. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3278. __add_wait_queue_tail(&x->wait, &wait);
  3279. do {
  3280. if (signal_pending(current)) {
  3281. timeout = -ERESTARTSYS;
  3282. __remove_wait_queue(&x->wait, &wait);
  3283. goto out;
  3284. }
  3285. __set_current_state(TASK_INTERRUPTIBLE);
  3286. spin_unlock_irq(&x->wait.lock);
  3287. timeout = schedule_timeout(timeout);
  3288. spin_lock_irq(&x->wait.lock);
  3289. if (!timeout) {
  3290. __remove_wait_queue(&x->wait, &wait);
  3291. goto out;
  3292. }
  3293. } while (!x->done);
  3294. __remove_wait_queue(&x->wait, &wait);
  3295. }
  3296. x->done--;
  3297. out:
  3298. spin_unlock_irq(&x->wait.lock);
  3299. return timeout;
  3300. }
  3301. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3302. static inline void
  3303. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3304. {
  3305. spin_lock_irqsave(&q->lock, *flags);
  3306. __add_wait_queue(q, wait);
  3307. spin_unlock(&q->lock);
  3308. }
  3309. static inline void
  3310. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3311. {
  3312. spin_lock_irq(&q->lock);
  3313. __remove_wait_queue(q, wait);
  3314. spin_unlock_irqrestore(&q->lock, *flags);
  3315. }
  3316. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3317. {
  3318. unsigned long flags;
  3319. wait_queue_t wait;
  3320. init_waitqueue_entry(&wait, current);
  3321. current->state = TASK_INTERRUPTIBLE;
  3322. sleep_on_head(q, &wait, &flags);
  3323. schedule();
  3324. sleep_on_tail(q, &wait, &flags);
  3325. }
  3326. EXPORT_SYMBOL(interruptible_sleep_on);
  3327. long __sched
  3328. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3329. {
  3330. unsigned long flags;
  3331. wait_queue_t wait;
  3332. init_waitqueue_entry(&wait, current);
  3333. current->state = TASK_INTERRUPTIBLE;
  3334. sleep_on_head(q, &wait, &flags);
  3335. timeout = schedule_timeout(timeout);
  3336. sleep_on_tail(q, &wait, &flags);
  3337. return timeout;
  3338. }
  3339. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3340. void __sched sleep_on(wait_queue_head_t *q)
  3341. {
  3342. unsigned long flags;
  3343. wait_queue_t wait;
  3344. init_waitqueue_entry(&wait, current);
  3345. current->state = TASK_UNINTERRUPTIBLE;
  3346. sleep_on_head(q, &wait, &flags);
  3347. schedule();
  3348. sleep_on_tail(q, &wait, &flags);
  3349. }
  3350. EXPORT_SYMBOL(sleep_on);
  3351. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3352. {
  3353. unsigned long flags;
  3354. wait_queue_t wait;
  3355. init_waitqueue_entry(&wait, current);
  3356. current->state = TASK_UNINTERRUPTIBLE;
  3357. sleep_on_head(q, &wait, &flags);
  3358. timeout = schedule_timeout(timeout);
  3359. sleep_on_tail(q, &wait, &flags);
  3360. return timeout;
  3361. }
  3362. EXPORT_SYMBOL(sleep_on_timeout);
  3363. #ifdef CONFIG_RT_MUTEXES
  3364. /*
  3365. * rt_mutex_setprio - set the current priority of a task
  3366. * @p: task
  3367. * @prio: prio value (kernel-internal form)
  3368. *
  3369. * This function changes the 'effective' priority of a task. It does
  3370. * not touch ->normal_prio like __setscheduler().
  3371. *
  3372. * Used by the rt_mutex code to implement priority inheritance logic.
  3373. */
  3374. void rt_mutex_setprio(struct task_struct *p, int prio)
  3375. {
  3376. unsigned long flags;
  3377. int oldprio, on_rq, running;
  3378. struct rq *rq;
  3379. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3380. rq = task_rq_lock(p, &flags);
  3381. update_rq_clock(rq);
  3382. oldprio = p->prio;
  3383. on_rq = p->se.on_rq;
  3384. running = task_running(rq, p);
  3385. if (on_rq) {
  3386. dequeue_task(rq, p, 0);
  3387. if (running)
  3388. p->sched_class->put_prev_task(rq, p);
  3389. }
  3390. if (rt_prio(prio))
  3391. p->sched_class = &rt_sched_class;
  3392. else
  3393. p->sched_class = &fair_sched_class;
  3394. p->prio = prio;
  3395. if (on_rq) {
  3396. if (running)
  3397. p->sched_class->set_curr_task(rq);
  3398. enqueue_task(rq, p, 0);
  3399. /*
  3400. * Reschedule if we are currently running on this runqueue and
  3401. * our priority decreased, or if we are not currently running on
  3402. * this runqueue and our priority is higher than the current's
  3403. */
  3404. if (running) {
  3405. if (p->prio > oldprio)
  3406. resched_task(rq->curr);
  3407. } else {
  3408. check_preempt_curr(rq, p);
  3409. }
  3410. }
  3411. task_rq_unlock(rq, &flags);
  3412. }
  3413. #endif
  3414. void set_user_nice(struct task_struct *p, long nice)
  3415. {
  3416. int old_prio, delta, on_rq;
  3417. unsigned long flags;
  3418. struct rq *rq;
  3419. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3420. return;
  3421. /*
  3422. * We have to be careful, if called from sys_setpriority(),
  3423. * the task might be in the middle of scheduling on another CPU.
  3424. */
  3425. rq = task_rq_lock(p, &flags);
  3426. update_rq_clock(rq);
  3427. /*
  3428. * The RT priorities are set via sched_setscheduler(), but we still
  3429. * allow the 'normal' nice value to be set - but as expected
  3430. * it wont have any effect on scheduling until the task is
  3431. * SCHED_FIFO/SCHED_RR:
  3432. */
  3433. if (task_has_rt_policy(p)) {
  3434. p->static_prio = NICE_TO_PRIO(nice);
  3435. goto out_unlock;
  3436. }
  3437. on_rq = p->se.on_rq;
  3438. if (on_rq) {
  3439. dequeue_task(rq, p, 0);
  3440. dec_load(rq, p);
  3441. }
  3442. p->static_prio = NICE_TO_PRIO(nice);
  3443. set_load_weight(p);
  3444. old_prio = p->prio;
  3445. p->prio = effective_prio(p);
  3446. delta = p->prio - old_prio;
  3447. if (on_rq) {
  3448. enqueue_task(rq, p, 0);
  3449. inc_load(rq, p);
  3450. /*
  3451. * If the task increased its priority or is running and
  3452. * lowered its priority, then reschedule its CPU:
  3453. */
  3454. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3455. resched_task(rq->curr);
  3456. }
  3457. out_unlock:
  3458. task_rq_unlock(rq, &flags);
  3459. }
  3460. EXPORT_SYMBOL(set_user_nice);
  3461. /*
  3462. * can_nice - check if a task can reduce its nice value
  3463. * @p: task
  3464. * @nice: nice value
  3465. */
  3466. int can_nice(const struct task_struct *p, const int nice)
  3467. {
  3468. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3469. int nice_rlim = 20 - nice;
  3470. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3471. capable(CAP_SYS_NICE));
  3472. }
  3473. #ifdef __ARCH_WANT_SYS_NICE
  3474. /*
  3475. * sys_nice - change the priority of the current process.
  3476. * @increment: priority increment
  3477. *
  3478. * sys_setpriority is a more generic, but much slower function that
  3479. * does similar things.
  3480. */
  3481. asmlinkage long sys_nice(int increment)
  3482. {
  3483. long nice, retval;
  3484. /*
  3485. * Setpriority might change our priority at the same moment.
  3486. * We don't have to worry. Conceptually one call occurs first
  3487. * and we have a single winner.
  3488. */
  3489. if (increment < -40)
  3490. increment = -40;
  3491. if (increment > 40)
  3492. increment = 40;
  3493. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3494. if (nice < -20)
  3495. nice = -20;
  3496. if (nice > 19)
  3497. nice = 19;
  3498. if (increment < 0 && !can_nice(current, nice))
  3499. return -EPERM;
  3500. retval = security_task_setnice(current, nice);
  3501. if (retval)
  3502. return retval;
  3503. set_user_nice(current, nice);
  3504. return 0;
  3505. }
  3506. #endif
  3507. /**
  3508. * task_prio - return the priority value of a given task.
  3509. * @p: the task in question.
  3510. *
  3511. * This is the priority value as seen by users in /proc.
  3512. * RT tasks are offset by -200. Normal tasks are centered
  3513. * around 0, value goes from -16 to +15.
  3514. */
  3515. int task_prio(const struct task_struct *p)
  3516. {
  3517. return p->prio - MAX_RT_PRIO;
  3518. }
  3519. /**
  3520. * task_nice - return the nice value of a given task.
  3521. * @p: the task in question.
  3522. */
  3523. int task_nice(const struct task_struct *p)
  3524. {
  3525. return TASK_NICE(p);
  3526. }
  3527. EXPORT_SYMBOL_GPL(task_nice);
  3528. /**
  3529. * idle_cpu - is a given cpu idle currently?
  3530. * @cpu: the processor in question.
  3531. */
  3532. int idle_cpu(int cpu)
  3533. {
  3534. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3535. }
  3536. /**
  3537. * idle_task - return the idle task for a given cpu.
  3538. * @cpu: the processor in question.
  3539. */
  3540. struct task_struct *idle_task(int cpu)
  3541. {
  3542. return cpu_rq(cpu)->idle;
  3543. }
  3544. /**
  3545. * find_process_by_pid - find a process with a matching PID value.
  3546. * @pid: the pid in question.
  3547. */
  3548. static struct task_struct *find_process_by_pid(pid_t pid)
  3549. {
  3550. return pid ? find_task_by_pid(pid) : current;
  3551. }
  3552. /* Actually do priority change: must hold rq lock. */
  3553. static void
  3554. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3555. {
  3556. BUG_ON(p->se.on_rq);
  3557. p->policy = policy;
  3558. switch (p->policy) {
  3559. case SCHED_NORMAL:
  3560. case SCHED_BATCH:
  3561. case SCHED_IDLE:
  3562. p->sched_class = &fair_sched_class;
  3563. break;
  3564. case SCHED_FIFO:
  3565. case SCHED_RR:
  3566. p->sched_class = &rt_sched_class;
  3567. break;
  3568. }
  3569. p->rt_priority = prio;
  3570. p->normal_prio = normal_prio(p);
  3571. /* we are holding p->pi_lock already */
  3572. p->prio = rt_mutex_getprio(p);
  3573. set_load_weight(p);
  3574. }
  3575. /**
  3576. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3577. * @p: the task in question.
  3578. * @policy: new policy.
  3579. * @param: structure containing the new RT priority.
  3580. *
  3581. * NOTE that the task may be already dead.
  3582. */
  3583. int sched_setscheduler(struct task_struct *p, int policy,
  3584. struct sched_param *param)
  3585. {
  3586. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3587. unsigned long flags;
  3588. struct rq *rq;
  3589. /* may grab non-irq protected spin_locks */
  3590. BUG_ON(in_interrupt());
  3591. recheck:
  3592. /* double check policy once rq lock held */
  3593. if (policy < 0)
  3594. policy = oldpolicy = p->policy;
  3595. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3596. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3597. policy != SCHED_IDLE)
  3598. return -EINVAL;
  3599. /*
  3600. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3601. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3602. * SCHED_BATCH and SCHED_IDLE is 0.
  3603. */
  3604. if (param->sched_priority < 0 ||
  3605. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3606. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3607. return -EINVAL;
  3608. if (rt_policy(policy) != (param->sched_priority != 0))
  3609. return -EINVAL;
  3610. /*
  3611. * Allow unprivileged RT tasks to decrease priority:
  3612. */
  3613. if (!capable(CAP_SYS_NICE)) {
  3614. if (rt_policy(policy)) {
  3615. unsigned long rlim_rtprio;
  3616. if (!lock_task_sighand(p, &flags))
  3617. return -ESRCH;
  3618. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3619. unlock_task_sighand(p, &flags);
  3620. /* can't set/change the rt policy */
  3621. if (policy != p->policy && !rlim_rtprio)
  3622. return -EPERM;
  3623. /* can't increase priority */
  3624. if (param->sched_priority > p->rt_priority &&
  3625. param->sched_priority > rlim_rtprio)
  3626. return -EPERM;
  3627. }
  3628. /*
  3629. * Like positive nice levels, dont allow tasks to
  3630. * move out of SCHED_IDLE either:
  3631. */
  3632. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3633. return -EPERM;
  3634. /* can't change other user's priorities */
  3635. if ((current->euid != p->euid) &&
  3636. (current->euid != p->uid))
  3637. return -EPERM;
  3638. }
  3639. retval = security_task_setscheduler(p, policy, param);
  3640. if (retval)
  3641. return retval;
  3642. /*
  3643. * make sure no PI-waiters arrive (or leave) while we are
  3644. * changing the priority of the task:
  3645. */
  3646. spin_lock_irqsave(&p->pi_lock, flags);
  3647. /*
  3648. * To be able to change p->policy safely, the apropriate
  3649. * runqueue lock must be held.
  3650. */
  3651. rq = __task_rq_lock(p);
  3652. /* recheck policy now with rq lock held */
  3653. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3654. policy = oldpolicy = -1;
  3655. __task_rq_unlock(rq);
  3656. spin_unlock_irqrestore(&p->pi_lock, flags);
  3657. goto recheck;
  3658. }
  3659. update_rq_clock(rq);
  3660. on_rq = p->se.on_rq;
  3661. running = task_running(rq, p);
  3662. if (on_rq) {
  3663. deactivate_task(rq, p, 0);
  3664. if (running)
  3665. p->sched_class->put_prev_task(rq, p);
  3666. }
  3667. oldprio = p->prio;
  3668. __setscheduler(rq, p, policy, param->sched_priority);
  3669. if (on_rq) {
  3670. if (running)
  3671. p->sched_class->set_curr_task(rq);
  3672. activate_task(rq, p, 0);
  3673. /*
  3674. * Reschedule if we are currently running on this runqueue and
  3675. * our priority decreased, or if we are not currently running on
  3676. * this runqueue and our priority is higher than the current's
  3677. */
  3678. if (running) {
  3679. if (p->prio > oldprio)
  3680. resched_task(rq->curr);
  3681. } else {
  3682. check_preempt_curr(rq, p);
  3683. }
  3684. }
  3685. __task_rq_unlock(rq);
  3686. spin_unlock_irqrestore(&p->pi_lock, flags);
  3687. rt_mutex_adjust_pi(p);
  3688. return 0;
  3689. }
  3690. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3691. static int
  3692. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3693. {
  3694. struct sched_param lparam;
  3695. struct task_struct *p;
  3696. int retval;
  3697. if (!param || pid < 0)
  3698. return -EINVAL;
  3699. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3700. return -EFAULT;
  3701. rcu_read_lock();
  3702. retval = -ESRCH;
  3703. p = find_process_by_pid(pid);
  3704. if (p != NULL)
  3705. retval = sched_setscheduler(p, policy, &lparam);
  3706. rcu_read_unlock();
  3707. return retval;
  3708. }
  3709. /**
  3710. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3711. * @pid: the pid in question.
  3712. * @policy: new policy.
  3713. * @param: structure containing the new RT priority.
  3714. */
  3715. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3716. struct sched_param __user *param)
  3717. {
  3718. /* negative values for policy are not valid */
  3719. if (policy < 0)
  3720. return -EINVAL;
  3721. return do_sched_setscheduler(pid, policy, param);
  3722. }
  3723. /**
  3724. * sys_sched_setparam - set/change the RT priority of a thread
  3725. * @pid: the pid in question.
  3726. * @param: structure containing the new RT priority.
  3727. */
  3728. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3729. {
  3730. return do_sched_setscheduler(pid, -1, param);
  3731. }
  3732. /**
  3733. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3734. * @pid: the pid in question.
  3735. */
  3736. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3737. {
  3738. struct task_struct *p;
  3739. int retval = -EINVAL;
  3740. if (pid < 0)
  3741. goto out_nounlock;
  3742. retval = -ESRCH;
  3743. read_lock(&tasklist_lock);
  3744. p = find_process_by_pid(pid);
  3745. if (p) {
  3746. retval = security_task_getscheduler(p);
  3747. if (!retval)
  3748. retval = p->policy;
  3749. }
  3750. read_unlock(&tasklist_lock);
  3751. out_nounlock:
  3752. return retval;
  3753. }
  3754. /**
  3755. * sys_sched_getscheduler - get the RT priority of a thread
  3756. * @pid: the pid in question.
  3757. * @param: structure containing the RT priority.
  3758. */
  3759. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3760. {
  3761. struct sched_param lp;
  3762. struct task_struct *p;
  3763. int retval = -EINVAL;
  3764. if (!param || pid < 0)
  3765. goto out_nounlock;
  3766. read_lock(&tasklist_lock);
  3767. p = find_process_by_pid(pid);
  3768. retval = -ESRCH;
  3769. if (!p)
  3770. goto out_unlock;
  3771. retval = security_task_getscheduler(p);
  3772. if (retval)
  3773. goto out_unlock;
  3774. lp.sched_priority = p->rt_priority;
  3775. read_unlock(&tasklist_lock);
  3776. /*
  3777. * This one might sleep, we cannot do it with a spinlock held ...
  3778. */
  3779. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3780. out_nounlock:
  3781. return retval;
  3782. out_unlock:
  3783. read_unlock(&tasklist_lock);
  3784. return retval;
  3785. }
  3786. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3787. {
  3788. cpumask_t cpus_allowed;
  3789. struct task_struct *p;
  3790. int retval;
  3791. mutex_lock(&sched_hotcpu_mutex);
  3792. read_lock(&tasklist_lock);
  3793. p = find_process_by_pid(pid);
  3794. if (!p) {
  3795. read_unlock(&tasklist_lock);
  3796. mutex_unlock(&sched_hotcpu_mutex);
  3797. return -ESRCH;
  3798. }
  3799. /*
  3800. * It is not safe to call set_cpus_allowed with the
  3801. * tasklist_lock held. We will bump the task_struct's
  3802. * usage count and then drop tasklist_lock.
  3803. */
  3804. get_task_struct(p);
  3805. read_unlock(&tasklist_lock);
  3806. retval = -EPERM;
  3807. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3808. !capable(CAP_SYS_NICE))
  3809. goto out_unlock;
  3810. retval = security_task_setscheduler(p, 0, NULL);
  3811. if (retval)
  3812. goto out_unlock;
  3813. cpus_allowed = cpuset_cpus_allowed(p);
  3814. cpus_and(new_mask, new_mask, cpus_allowed);
  3815. retval = set_cpus_allowed(p, new_mask);
  3816. out_unlock:
  3817. put_task_struct(p);
  3818. mutex_unlock(&sched_hotcpu_mutex);
  3819. return retval;
  3820. }
  3821. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3822. cpumask_t *new_mask)
  3823. {
  3824. if (len < sizeof(cpumask_t)) {
  3825. memset(new_mask, 0, sizeof(cpumask_t));
  3826. } else if (len > sizeof(cpumask_t)) {
  3827. len = sizeof(cpumask_t);
  3828. }
  3829. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3830. }
  3831. /**
  3832. * sys_sched_setaffinity - set the cpu affinity of a process
  3833. * @pid: pid of the process
  3834. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3835. * @user_mask_ptr: user-space pointer to the new cpu mask
  3836. */
  3837. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3838. unsigned long __user *user_mask_ptr)
  3839. {
  3840. cpumask_t new_mask;
  3841. int retval;
  3842. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3843. if (retval)
  3844. return retval;
  3845. return sched_setaffinity(pid, new_mask);
  3846. }
  3847. /*
  3848. * Represents all cpu's present in the system
  3849. * In systems capable of hotplug, this map could dynamically grow
  3850. * as new cpu's are detected in the system via any platform specific
  3851. * method, such as ACPI for e.g.
  3852. */
  3853. cpumask_t cpu_present_map __read_mostly;
  3854. EXPORT_SYMBOL(cpu_present_map);
  3855. #ifndef CONFIG_SMP
  3856. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3857. EXPORT_SYMBOL(cpu_online_map);
  3858. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3859. EXPORT_SYMBOL(cpu_possible_map);
  3860. #endif
  3861. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3862. {
  3863. struct task_struct *p;
  3864. int retval;
  3865. mutex_lock(&sched_hotcpu_mutex);
  3866. read_lock(&tasklist_lock);
  3867. retval = -ESRCH;
  3868. p = find_process_by_pid(pid);
  3869. if (!p)
  3870. goto out_unlock;
  3871. retval = security_task_getscheduler(p);
  3872. if (retval)
  3873. goto out_unlock;
  3874. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3875. out_unlock:
  3876. read_unlock(&tasklist_lock);
  3877. mutex_unlock(&sched_hotcpu_mutex);
  3878. return retval;
  3879. }
  3880. /**
  3881. * sys_sched_getaffinity - get the cpu affinity of a process
  3882. * @pid: pid of the process
  3883. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3884. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3885. */
  3886. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3887. unsigned long __user *user_mask_ptr)
  3888. {
  3889. int ret;
  3890. cpumask_t mask;
  3891. if (len < sizeof(cpumask_t))
  3892. return -EINVAL;
  3893. ret = sched_getaffinity(pid, &mask);
  3894. if (ret < 0)
  3895. return ret;
  3896. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3897. return -EFAULT;
  3898. return sizeof(cpumask_t);
  3899. }
  3900. /**
  3901. * sys_sched_yield - yield the current processor to other threads.
  3902. *
  3903. * This function yields the current CPU to other tasks. If there are no
  3904. * other threads running on this CPU then this function will return.
  3905. */
  3906. asmlinkage long sys_sched_yield(void)
  3907. {
  3908. struct rq *rq = this_rq_lock();
  3909. schedstat_inc(rq, yld_count);
  3910. current->sched_class->yield_task(rq);
  3911. /*
  3912. * Since we are going to call schedule() anyway, there's
  3913. * no need to preempt or enable interrupts:
  3914. */
  3915. __release(rq->lock);
  3916. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3917. _raw_spin_unlock(&rq->lock);
  3918. preempt_enable_no_resched();
  3919. schedule();
  3920. return 0;
  3921. }
  3922. static void __cond_resched(void)
  3923. {
  3924. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3925. __might_sleep(__FILE__, __LINE__);
  3926. #endif
  3927. /*
  3928. * The BKS might be reacquired before we have dropped
  3929. * PREEMPT_ACTIVE, which could trigger a second
  3930. * cond_resched() call.
  3931. */
  3932. do {
  3933. add_preempt_count(PREEMPT_ACTIVE);
  3934. schedule();
  3935. sub_preempt_count(PREEMPT_ACTIVE);
  3936. } while (need_resched());
  3937. }
  3938. int __sched cond_resched(void)
  3939. {
  3940. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3941. system_state == SYSTEM_RUNNING) {
  3942. __cond_resched();
  3943. return 1;
  3944. }
  3945. return 0;
  3946. }
  3947. EXPORT_SYMBOL(cond_resched);
  3948. /*
  3949. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3950. * call schedule, and on return reacquire the lock.
  3951. *
  3952. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3953. * operations here to prevent schedule() from being called twice (once via
  3954. * spin_unlock(), once by hand).
  3955. */
  3956. int cond_resched_lock(spinlock_t *lock)
  3957. {
  3958. int ret = 0;
  3959. if (need_lockbreak(lock)) {
  3960. spin_unlock(lock);
  3961. cpu_relax();
  3962. ret = 1;
  3963. spin_lock(lock);
  3964. }
  3965. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3966. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3967. _raw_spin_unlock(lock);
  3968. preempt_enable_no_resched();
  3969. __cond_resched();
  3970. ret = 1;
  3971. spin_lock(lock);
  3972. }
  3973. return ret;
  3974. }
  3975. EXPORT_SYMBOL(cond_resched_lock);
  3976. int __sched cond_resched_softirq(void)
  3977. {
  3978. BUG_ON(!in_softirq());
  3979. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3980. local_bh_enable();
  3981. __cond_resched();
  3982. local_bh_disable();
  3983. return 1;
  3984. }
  3985. return 0;
  3986. }
  3987. EXPORT_SYMBOL(cond_resched_softirq);
  3988. /**
  3989. * yield - yield the current processor to other threads.
  3990. *
  3991. * This is a shortcut for kernel-space yielding - it marks the
  3992. * thread runnable and calls sys_sched_yield().
  3993. */
  3994. void __sched yield(void)
  3995. {
  3996. set_current_state(TASK_RUNNING);
  3997. sys_sched_yield();
  3998. }
  3999. EXPORT_SYMBOL(yield);
  4000. /*
  4001. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4002. * that process accounting knows that this is a task in IO wait state.
  4003. *
  4004. * But don't do that if it is a deliberate, throttling IO wait (this task
  4005. * has set its backing_dev_info: the queue against which it should throttle)
  4006. */
  4007. void __sched io_schedule(void)
  4008. {
  4009. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4010. delayacct_blkio_start();
  4011. atomic_inc(&rq->nr_iowait);
  4012. schedule();
  4013. atomic_dec(&rq->nr_iowait);
  4014. delayacct_blkio_end();
  4015. }
  4016. EXPORT_SYMBOL(io_schedule);
  4017. long __sched io_schedule_timeout(long timeout)
  4018. {
  4019. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4020. long ret;
  4021. delayacct_blkio_start();
  4022. atomic_inc(&rq->nr_iowait);
  4023. ret = schedule_timeout(timeout);
  4024. atomic_dec(&rq->nr_iowait);
  4025. delayacct_blkio_end();
  4026. return ret;
  4027. }
  4028. /**
  4029. * sys_sched_get_priority_max - return maximum RT priority.
  4030. * @policy: scheduling class.
  4031. *
  4032. * this syscall returns the maximum rt_priority that can be used
  4033. * by a given scheduling class.
  4034. */
  4035. asmlinkage long sys_sched_get_priority_max(int policy)
  4036. {
  4037. int ret = -EINVAL;
  4038. switch (policy) {
  4039. case SCHED_FIFO:
  4040. case SCHED_RR:
  4041. ret = MAX_USER_RT_PRIO-1;
  4042. break;
  4043. case SCHED_NORMAL:
  4044. case SCHED_BATCH:
  4045. case SCHED_IDLE:
  4046. ret = 0;
  4047. break;
  4048. }
  4049. return ret;
  4050. }
  4051. /**
  4052. * sys_sched_get_priority_min - return minimum RT priority.
  4053. * @policy: scheduling class.
  4054. *
  4055. * this syscall returns the minimum rt_priority that can be used
  4056. * by a given scheduling class.
  4057. */
  4058. asmlinkage long sys_sched_get_priority_min(int policy)
  4059. {
  4060. int ret = -EINVAL;
  4061. switch (policy) {
  4062. case SCHED_FIFO:
  4063. case SCHED_RR:
  4064. ret = 1;
  4065. break;
  4066. case SCHED_NORMAL:
  4067. case SCHED_BATCH:
  4068. case SCHED_IDLE:
  4069. ret = 0;
  4070. }
  4071. return ret;
  4072. }
  4073. /**
  4074. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4075. * @pid: pid of the process.
  4076. * @interval: userspace pointer to the timeslice value.
  4077. *
  4078. * this syscall writes the default timeslice value of a given process
  4079. * into the user-space timespec buffer. A value of '0' means infinity.
  4080. */
  4081. asmlinkage
  4082. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4083. {
  4084. struct task_struct *p;
  4085. unsigned int time_slice;
  4086. int retval = -EINVAL;
  4087. struct timespec t;
  4088. if (pid < 0)
  4089. goto out_nounlock;
  4090. retval = -ESRCH;
  4091. read_lock(&tasklist_lock);
  4092. p = find_process_by_pid(pid);
  4093. if (!p)
  4094. goto out_unlock;
  4095. retval = security_task_getscheduler(p);
  4096. if (retval)
  4097. goto out_unlock;
  4098. if (p->policy == SCHED_FIFO)
  4099. time_slice = 0;
  4100. else if (p->policy == SCHED_RR)
  4101. time_slice = DEF_TIMESLICE;
  4102. else {
  4103. struct sched_entity *se = &p->se;
  4104. unsigned long flags;
  4105. struct rq *rq;
  4106. rq = task_rq_lock(p, &flags);
  4107. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4108. task_rq_unlock(rq, &flags);
  4109. }
  4110. read_unlock(&tasklist_lock);
  4111. jiffies_to_timespec(time_slice, &t);
  4112. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4113. out_nounlock:
  4114. return retval;
  4115. out_unlock:
  4116. read_unlock(&tasklist_lock);
  4117. return retval;
  4118. }
  4119. static const char stat_nam[] = "RSDTtZX";
  4120. static void show_task(struct task_struct *p)
  4121. {
  4122. unsigned long free = 0;
  4123. unsigned state;
  4124. state = p->state ? __ffs(p->state) + 1 : 0;
  4125. printk("%-13.13s %c", p->comm,
  4126. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4127. #if BITS_PER_LONG == 32
  4128. if (state == TASK_RUNNING)
  4129. printk(" running ");
  4130. else
  4131. printk(" %08lx ", thread_saved_pc(p));
  4132. #else
  4133. if (state == TASK_RUNNING)
  4134. printk(" running task ");
  4135. else
  4136. printk(" %016lx ", thread_saved_pc(p));
  4137. #endif
  4138. #ifdef CONFIG_DEBUG_STACK_USAGE
  4139. {
  4140. unsigned long *n = end_of_stack(p);
  4141. while (!*n)
  4142. n++;
  4143. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4144. }
  4145. #endif
  4146. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4147. if (state != TASK_RUNNING)
  4148. show_stack(p, NULL);
  4149. }
  4150. void show_state_filter(unsigned long state_filter)
  4151. {
  4152. struct task_struct *g, *p;
  4153. #if BITS_PER_LONG == 32
  4154. printk(KERN_INFO
  4155. " task PC stack pid father\n");
  4156. #else
  4157. printk(KERN_INFO
  4158. " task PC stack pid father\n");
  4159. #endif
  4160. read_lock(&tasklist_lock);
  4161. do_each_thread(g, p) {
  4162. /*
  4163. * reset the NMI-timeout, listing all files on a slow
  4164. * console might take alot of time:
  4165. */
  4166. touch_nmi_watchdog();
  4167. if (!state_filter || (p->state & state_filter))
  4168. show_task(p);
  4169. } while_each_thread(g, p);
  4170. touch_all_softlockup_watchdogs();
  4171. #ifdef CONFIG_SCHED_DEBUG
  4172. sysrq_sched_debug_show();
  4173. #endif
  4174. read_unlock(&tasklist_lock);
  4175. /*
  4176. * Only show locks if all tasks are dumped:
  4177. */
  4178. if (state_filter == -1)
  4179. debug_show_all_locks();
  4180. }
  4181. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4182. {
  4183. idle->sched_class = &idle_sched_class;
  4184. }
  4185. /**
  4186. * init_idle - set up an idle thread for a given CPU
  4187. * @idle: task in question
  4188. * @cpu: cpu the idle task belongs to
  4189. *
  4190. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4191. * flag, to make booting more robust.
  4192. */
  4193. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4194. {
  4195. struct rq *rq = cpu_rq(cpu);
  4196. unsigned long flags;
  4197. __sched_fork(idle);
  4198. idle->se.exec_start = sched_clock();
  4199. idle->prio = idle->normal_prio = MAX_PRIO;
  4200. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4201. __set_task_cpu(idle, cpu);
  4202. spin_lock_irqsave(&rq->lock, flags);
  4203. rq->curr = rq->idle = idle;
  4204. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4205. idle->oncpu = 1;
  4206. #endif
  4207. spin_unlock_irqrestore(&rq->lock, flags);
  4208. /* Set the preempt count _outside_ the spinlocks! */
  4209. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4210. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4211. #else
  4212. task_thread_info(idle)->preempt_count = 0;
  4213. #endif
  4214. /*
  4215. * The idle tasks have their own, simple scheduling class:
  4216. */
  4217. idle->sched_class = &idle_sched_class;
  4218. }
  4219. /*
  4220. * In a system that switches off the HZ timer nohz_cpu_mask
  4221. * indicates which cpus entered this state. This is used
  4222. * in the rcu update to wait only for active cpus. For system
  4223. * which do not switch off the HZ timer nohz_cpu_mask should
  4224. * always be CPU_MASK_NONE.
  4225. */
  4226. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4227. #ifdef CONFIG_SMP
  4228. /*
  4229. * This is how migration works:
  4230. *
  4231. * 1) we queue a struct migration_req structure in the source CPU's
  4232. * runqueue and wake up that CPU's migration thread.
  4233. * 2) we down() the locked semaphore => thread blocks.
  4234. * 3) migration thread wakes up (implicitly it forces the migrated
  4235. * thread off the CPU)
  4236. * 4) it gets the migration request and checks whether the migrated
  4237. * task is still in the wrong runqueue.
  4238. * 5) if it's in the wrong runqueue then the migration thread removes
  4239. * it and puts it into the right queue.
  4240. * 6) migration thread up()s the semaphore.
  4241. * 7) we wake up and the migration is done.
  4242. */
  4243. /*
  4244. * Change a given task's CPU affinity. Migrate the thread to a
  4245. * proper CPU and schedule it away if the CPU it's executing on
  4246. * is removed from the allowed bitmask.
  4247. *
  4248. * NOTE: the caller must have a valid reference to the task, the
  4249. * task must not exit() & deallocate itself prematurely. The
  4250. * call is not atomic; no spinlocks may be held.
  4251. */
  4252. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4253. {
  4254. struct migration_req req;
  4255. unsigned long flags;
  4256. struct rq *rq;
  4257. int ret = 0;
  4258. rq = task_rq_lock(p, &flags);
  4259. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4260. ret = -EINVAL;
  4261. goto out;
  4262. }
  4263. p->cpus_allowed = new_mask;
  4264. /* Can the task run on the task's current CPU? If so, we're done */
  4265. if (cpu_isset(task_cpu(p), new_mask))
  4266. goto out;
  4267. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4268. /* Need help from migration thread: drop lock and wait. */
  4269. task_rq_unlock(rq, &flags);
  4270. wake_up_process(rq->migration_thread);
  4271. wait_for_completion(&req.done);
  4272. tlb_migrate_finish(p->mm);
  4273. return 0;
  4274. }
  4275. out:
  4276. task_rq_unlock(rq, &flags);
  4277. return ret;
  4278. }
  4279. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4280. /*
  4281. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4282. * this because either it can't run here any more (set_cpus_allowed()
  4283. * away from this CPU, or CPU going down), or because we're
  4284. * attempting to rebalance this task on exec (sched_exec).
  4285. *
  4286. * So we race with normal scheduler movements, but that's OK, as long
  4287. * as the task is no longer on this CPU.
  4288. *
  4289. * Returns non-zero if task was successfully migrated.
  4290. */
  4291. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4292. {
  4293. struct rq *rq_dest, *rq_src;
  4294. int ret = 0, on_rq;
  4295. if (unlikely(cpu_is_offline(dest_cpu)))
  4296. return ret;
  4297. rq_src = cpu_rq(src_cpu);
  4298. rq_dest = cpu_rq(dest_cpu);
  4299. double_rq_lock(rq_src, rq_dest);
  4300. /* Already moved. */
  4301. if (task_cpu(p) != src_cpu)
  4302. goto out;
  4303. /* Affinity changed (again). */
  4304. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4305. goto out;
  4306. on_rq = p->se.on_rq;
  4307. if (on_rq)
  4308. deactivate_task(rq_src, p, 0);
  4309. set_task_cpu(p, dest_cpu);
  4310. if (on_rq) {
  4311. activate_task(rq_dest, p, 0);
  4312. check_preempt_curr(rq_dest, p);
  4313. }
  4314. ret = 1;
  4315. out:
  4316. double_rq_unlock(rq_src, rq_dest);
  4317. return ret;
  4318. }
  4319. /*
  4320. * migration_thread - this is a highprio system thread that performs
  4321. * thread migration by bumping thread off CPU then 'pushing' onto
  4322. * another runqueue.
  4323. */
  4324. static int migration_thread(void *data)
  4325. {
  4326. int cpu = (long)data;
  4327. struct rq *rq;
  4328. rq = cpu_rq(cpu);
  4329. BUG_ON(rq->migration_thread != current);
  4330. set_current_state(TASK_INTERRUPTIBLE);
  4331. while (!kthread_should_stop()) {
  4332. struct migration_req *req;
  4333. struct list_head *head;
  4334. spin_lock_irq(&rq->lock);
  4335. if (cpu_is_offline(cpu)) {
  4336. spin_unlock_irq(&rq->lock);
  4337. goto wait_to_die;
  4338. }
  4339. if (rq->active_balance) {
  4340. active_load_balance(rq, cpu);
  4341. rq->active_balance = 0;
  4342. }
  4343. head = &rq->migration_queue;
  4344. if (list_empty(head)) {
  4345. spin_unlock_irq(&rq->lock);
  4346. schedule();
  4347. set_current_state(TASK_INTERRUPTIBLE);
  4348. continue;
  4349. }
  4350. req = list_entry(head->next, struct migration_req, list);
  4351. list_del_init(head->next);
  4352. spin_unlock(&rq->lock);
  4353. __migrate_task(req->task, cpu, req->dest_cpu);
  4354. local_irq_enable();
  4355. complete(&req->done);
  4356. }
  4357. __set_current_state(TASK_RUNNING);
  4358. return 0;
  4359. wait_to_die:
  4360. /* Wait for kthread_stop */
  4361. set_current_state(TASK_INTERRUPTIBLE);
  4362. while (!kthread_should_stop()) {
  4363. schedule();
  4364. set_current_state(TASK_INTERRUPTIBLE);
  4365. }
  4366. __set_current_state(TASK_RUNNING);
  4367. return 0;
  4368. }
  4369. #ifdef CONFIG_HOTPLUG_CPU
  4370. /*
  4371. * Figure out where task on dead CPU should go, use force if neccessary.
  4372. * NOTE: interrupts should be disabled by the caller
  4373. */
  4374. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4375. {
  4376. unsigned long flags;
  4377. cpumask_t mask;
  4378. struct rq *rq;
  4379. int dest_cpu;
  4380. restart:
  4381. /* On same node? */
  4382. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4383. cpus_and(mask, mask, p->cpus_allowed);
  4384. dest_cpu = any_online_cpu(mask);
  4385. /* On any allowed CPU? */
  4386. if (dest_cpu == NR_CPUS)
  4387. dest_cpu = any_online_cpu(p->cpus_allowed);
  4388. /* No more Mr. Nice Guy. */
  4389. if (dest_cpu == NR_CPUS) {
  4390. rq = task_rq_lock(p, &flags);
  4391. cpus_setall(p->cpus_allowed);
  4392. dest_cpu = any_online_cpu(p->cpus_allowed);
  4393. task_rq_unlock(rq, &flags);
  4394. /*
  4395. * Don't tell them about moving exiting tasks or
  4396. * kernel threads (both mm NULL), since they never
  4397. * leave kernel.
  4398. */
  4399. if (p->mm && printk_ratelimit())
  4400. printk(KERN_INFO "process %d (%s) no "
  4401. "longer affine to cpu%d\n",
  4402. p->pid, p->comm, dead_cpu);
  4403. }
  4404. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4405. goto restart;
  4406. }
  4407. /*
  4408. * While a dead CPU has no uninterruptible tasks queued at this point,
  4409. * it might still have a nonzero ->nr_uninterruptible counter, because
  4410. * for performance reasons the counter is not stricly tracking tasks to
  4411. * their home CPUs. So we just add the counter to another CPU's counter,
  4412. * to keep the global sum constant after CPU-down:
  4413. */
  4414. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4415. {
  4416. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4417. unsigned long flags;
  4418. local_irq_save(flags);
  4419. double_rq_lock(rq_src, rq_dest);
  4420. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4421. rq_src->nr_uninterruptible = 0;
  4422. double_rq_unlock(rq_src, rq_dest);
  4423. local_irq_restore(flags);
  4424. }
  4425. /* Run through task list and migrate tasks from the dead cpu. */
  4426. static void migrate_live_tasks(int src_cpu)
  4427. {
  4428. struct task_struct *p, *t;
  4429. write_lock_irq(&tasklist_lock);
  4430. do_each_thread(t, p) {
  4431. if (p == current)
  4432. continue;
  4433. if (task_cpu(p) == src_cpu)
  4434. move_task_off_dead_cpu(src_cpu, p);
  4435. } while_each_thread(t, p);
  4436. write_unlock_irq(&tasklist_lock);
  4437. }
  4438. /*
  4439. * activate_idle_task - move idle task to the _front_ of runqueue.
  4440. */
  4441. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4442. {
  4443. update_rq_clock(rq);
  4444. if (p->state == TASK_UNINTERRUPTIBLE)
  4445. rq->nr_uninterruptible--;
  4446. enqueue_task(rq, p, 0);
  4447. inc_nr_running(p, rq);
  4448. }
  4449. /*
  4450. * Schedules idle task to be the next runnable task on current CPU.
  4451. * It does so by boosting its priority to highest possible and adding it to
  4452. * the _front_ of the runqueue. Used by CPU offline code.
  4453. */
  4454. void sched_idle_next(void)
  4455. {
  4456. int this_cpu = smp_processor_id();
  4457. struct rq *rq = cpu_rq(this_cpu);
  4458. struct task_struct *p = rq->idle;
  4459. unsigned long flags;
  4460. /* cpu has to be offline */
  4461. BUG_ON(cpu_online(this_cpu));
  4462. /*
  4463. * Strictly not necessary since rest of the CPUs are stopped by now
  4464. * and interrupts disabled on the current cpu.
  4465. */
  4466. spin_lock_irqsave(&rq->lock, flags);
  4467. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4468. /* Add idle task to the _front_ of its priority queue: */
  4469. activate_idle_task(p, rq);
  4470. spin_unlock_irqrestore(&rq->lock, flags);
  4471. }
  4472. /*
  4473. * Ensures that the idle task is using init_mm right before its cpu goes
  4474. * offline.
  4475. */
  4476. void idle_task_exit(void)
  4477. {
  4478. struct mm_struct *mm = current->active_mm;
  4479. BUG_ON(cpu_online(smp_processor_id()));
  4480. if (mm != &init_mm)
  4481. switch_mm(mm, &init_mm, current);
  4482. mmdrop(mm);
  4483. }
  4484. /* called under rq->lock with disabled interrupts */
  4485. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4486. {
  4487. struct rq *rq = cpu_rq(dead_cpu);
  4488. /* Must be exiting, otherwise would be on tasklist. */
  4489. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4490. /* Cannot have done final schedule yet: would have vanished. */
  4491. BUG_ON(p->state == TASK_DEAD);
  4492. get_task_struct(p);
  4493. /*
  4494. * Drop lock around migration; if someone else moves it,
  4495. * that's OK. No task can be added to this CPU, so iteration is
  4496. * fine.
  4497. * NOTE: interrupts should be left disabled --dev@
  4498. */
  4499. spin_unlock(&rq->lock);
  4500. move_task_off_dead_cpu(dead_cpu, p);
  4501. spin_lock(&rq->lock);
  4502. put_task_struct(p);
  4503. }
  4504. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4505. static void migrate_dead_tasks(unsigned int dead_cpu)
  4506. {
  4507. struct rq *rq = cpu_rq(dead_cpu);
  4508. struct task_struct *next;
  4509. for ( ; ; ) {
  4510. if (!rq->nr_running)
  4511. break;
  4512. update_rq_clock(rq);
  4513. next = pick_next_task(rq, rq->curr);
  4514. if (!next)
  4515. break;
  4516. migrate_dead(dead_cpu, next);
  4517. }
  4518. }
  4519. #endif /* CONFIG_HOTPLUG_CPU */
  4520. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4521. static struct ctl_table sd_ctl_dir[] = {
  4522. {
  4523. .procname = "sched_domain",
  4524. .mode = 0555,
  4525. },
  4526. {0,},
  4527. };
  4528. static struct ctl_table sd_ctl_root[] = {
  4529. {
  4530. .ctl_name = CTL_KERN,
  4531. .procname = "kernel",
  4532. .mode = 0555,
  4533. .child = sd_ctl_dir,
  4534. },
  4535. {0,},
  4536. };
  4537. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4538. {
  4539. struct ctl_table *entry =
  4540. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4541. BUG_ON(!entry);
  4542. memset(entry, 0, n * sizeof(struct ctl_table));
  4543. return entry;
  4544. }
  4545. static void
  4546. set_table_entry(struct ctl_table *entry,
  4547. const char *procname, void *data, int maxlen,
  4548. mode_t mode, proc_handler *proc_handler)
  4549. {
  4550. entry->procname = procname;
  4551. entry->data = data;
  4552. entry->maxlen = maxlen;
  4553. entry->mode = mode;
  4554. entry->proc_handler = proc_handler;
  4555. }
  4556. static struct ctl_table *
  4557. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4558. {
  4559. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4560. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4561. sizeof(long), 0644, proc_doulongvec_minmax);
  4562. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4563. sizeof(long), 0644, proc_doulongvec_minmax);
  4564. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4565. sizeof(int), 0644, proc_dointvec_minmax);
  4566. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4567. sizeof(int), 0644, proc_dointvec_minmax);
  4568. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4569. sizeof(int), 0644, proc_dointvec_minmax);
  4570. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4571. sizeof(int), 0644, proc_dointvec_minmax);
  4572. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4573. sizeof(int), 0644, proc_dointvec_minmax);
  4574. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4575. sizeof(int), 0644, proc_dointvec_minmax);
  4576. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4577. sizeof(int), 0644, proc_dointvec_minmax);
  4578. set_table_entry(&table[10], "cache_nice_tries",
  4579. &sd->cache_nice_tries,
  4580. sizeof(int), 0644, proc_dointvec_minmax);
  4581. set_table_entry(&table[12], "flags", &sd->flags,
  4582. sizeof(int), 0644, proc_dointvec_minmax);
  4583. return table;
  4584. }
  4585. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4586. {
  4587. struct ctl_table *entry, *table;
  4588. struct sched_domain *sd;
  4589. int domain_num = 0, i;
  4590. char buf[32];
  4591. for_each_domain(cpu, sd)
  4592. domain_num++;
  4593. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4594. i = 0;
  4595. for_each_domain(cpu, sd) {
  4596. snprintf(buf, 32, "domain%d", i);
  4597. entry->procname = kstrdup(buf, GFP_KERNEL);
  4598. entry->mode = 0555;
  4599. entry->child = sd_alloc_ctl_domain_table(sd);
  4600. entry++;
  4601. i++;
  4602. }
  4603. return table;
  4604. }
  4605. static struct ctl_table_header *sd_sysctl_header;
  4606. static void init_sched_domain_sysctl(void)
  4607. {
  4608. int i, cpu_num = num_online_cpus();
  4609. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4610. char buf[32];
  4611. sd_ctl_dir[0].child = entry;
  4612. for (i = 0; i < cpu_num; i++, entry++) {
  4613. snprintf(buf, 32, "cpu%d", i);
  4614. entry->procname = kstrdup(buf, GFP_KERNEL);
  4615. entry->mode = 0555;
  4616. entry->child = sd_alloc_ctl_cpu_table(i);
  4617. }
  4618. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4619. }
  4620. #else
  4621. static void init_sched_domain_sysctl(void)
  4622. {
  4623. }
  4624. #endif
  4625. /*
  4626. * migration_call - callback that gets triggered when a CPU is added.
  4627. * Here we can start up the necessary migration thread for the new CPU.
  4628. */
  4629. static int __cpuinit
  4630. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4631. {
  4632. struct task_struct *p;
  4633. int cpu = (long)hcpu;
  4634. unsigned long flags;
  4635. struct rq *rq;
  4636. switch (action) {
  4637. case CPU_LOCK_ACQUIRE:
  4638. mutex_lock(&sched_hotcpu_mutex);
  4639. break;
  4640. case CPU_UP_PREPARE:
  4641. case CPU_UP_PREPARE_FROZEN:
  4642. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4643. if (IS_ERR(p))
  4644. return NOTIFY_BAD;
  4645. kthread_bind(p, cpu);
  4646. /* Must be high prio: stop_machine expects to yield to it. */
  4647. rq = task_rq_lock(p, &flags);
  4648. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4649. task_rq_unlock(rq, &flags);
  4650. cpu_rq(cpu)->migration_thread = p;
  4651. break;
  4652. case CPU_ONLINE:
  4653. case CPU_ONLINE_FROZEN:
  4654. /* Strictly unneccessary, as first user will wake it. */
  4655. wake_up_process(cpu_rq(cpu)->migration_thread);
  4656. break;
  4657. #ifdef CONFIG_HOTPLUG_CPU
  4658. case CPU_UP_CANCELED:
  4659. case CPU_UP_CANCELED_FROZEN:
  4660. if (!cpu_rq(cpu)->migration_thread)
  4661. break;
  4662. /* Unbind it from offline cpu so it can run. Fall thru. */
  4663. kthread_bind(cpu_rq(cpu)->migration_thread,
  4664. any_online_cpu(cpu_online_map));
  4665. kthread_stop(cpu_rq(cpu)->migration_thread);
  4666. cpu_rq(cpu)->migration_thread = NULL;
  4667. break;
  4668. case CPU_DEAD:
  4669. case CPU_DEAD_FROZEN:
  4670. migrate_live_tasks(cpu);
  4671. rq = cpu_rq(cpu);
  4672. kthread_stop(rq->migration_thread);
  4673. rq->migration_thread = NULL;
  4674. /* Idle task back to normal (off runqueue, low prio) */
  4675. rq = task_rq_lock(rq->idle, &flags);
  4676. update_rq_clock(rq);
  4677. deactivate_task(rq, rq->idle, 0);
  4678. rq->idle->static_prio = MAX_PRIO;
  4679. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4680. rq->idle->sched_class = &idle_sched_class;
  4681. migrate_dead_tasks(cpu);
  4682. task_rq_unlock(rq, &flags);
  4683. migrate_nr_uninterruptible(rq);
  4684. BUG_ON(rq->nr_running != 0);
  4685. /* No need to migrate the tasks: it was best-effort if
  4686. * they didn't take sched_hotcpu_mutex. Just wake up
  4687. * the requestors. */
  4688. spin_lock_irq(&rq->lock);
  4689. while (!list_empty(&rq->migration_queue)) {
  4690. struct migration_req *req;
  4691. req = list_entry(rq->migration_queue.next,
  4692. struct migration_req, list);
  4693. list_del_init(&req->list);
  4694. complete(&req->done);
  4695. }
  4696. spin_unlock_irq(&rq->lock);
  4697. break;
  4698. #endif
  4699. case CPU_LOCK_RELEASE:
  4700. mutex_unlock(&sched_hotcpu_mutex);
  4701. break;
  4702. }
  4703. return NOTIFY_OK;
  4704. }
  4705. /* Register at highest priority so that task migration (migrate_all_tasks)
  4706. * happens before everything else.
  4707. */
  4708. static struct notifier_block __cpuinitdata migration_notifier = {
  4709. .notifier_call = migration_call,
  4710. .priority = 10
  4711. };
  4712. int __init migration_init(void)
  4713. {
  4714. void *cpu = (void *)(long)smp_processor_id();
  4715. int err;
  4716. /* Start one for the boot CPU: */
  4717. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4718. BUG_ON(err == NOTIFY_BAD);
  4719. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4720. register_cpu_notifier(&migration_notifier);
  4721. return 0;
  4722. }
  4723. #endif
  4724. #ifdef CONFIG_SMP
  4725. /* Number of possible processor ids */
  4726. int nr_cpu_ids __read_mostly = NR_CPUS;
  4727. EXPORT_SYMBOL(nr_cpu_ids);
  4728. #ifdef CONFIG_SCHED_DEBUG
  4729. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4730. {
  4731. int level = 0;
  4732. if (!sd) {
  4733. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4734. return;
  4735. }
  4736. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4737. do {
  4738. int i;
  4739. char str[NR_CPUS];
  4740. struct sched_group *group = sd->groups;
  4741. cpumask_t groupmask;
  4742. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4743. cpus_clear(groupmask);
  4744. printk(KERN_DEBUG);
  4745. for (i = 0; i < level + 1; i++)
  4746. printk(" ");
  4747. printk("domain %d: ", level);
  4748. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4749. printk("does not load-balance\n");
  4750. if (sd->parent)
  4751. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4752. " has parent");
  4753. break;
  4754. }
  4755. printk("span %s\n", str);
  4756. if (!cpu_isset(cpu, sd->span))
  4757. printk(KERN_ERR "ERROR: domain->span does not contain "
  4758. "CPU%d\n", cpu);
  4759. if (!cpu_isset(cpu, group->cpumask))
  4760. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4761. " CPU%d\n", cpu);
  4762. printk(KERN_DEBUG);
  4763. for (i = 0; i < level + 2; i++)
  4764. printk(" ");
  4765. printk("groups:");
  4766. do {
  4767. if (!group) {
  4768. printk("\n");
  4769. printk(KERN_ERR "ERROR: group is NULL\n");
  4770. break;
  4771. }
  4772. if (!group->__cpu_power) {
  4773. printk("\n");
  4774. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4775. "set\n");
  4776. break;
  4777. }
  4778. if (!cpus_weight(group->cpumask)) {
  4779. printk("\n");
  4780. printk(KERN_ERR "ERROR: empty group\n");
  4781. break;
  4782. }
  4783. if (cpus_intersects(groupmask, group->cpumask)) {
  4784. printk("\n");
  4785. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4786. break;
  4787. }
  4788. cpus_or(groupmask, groupmask, group->cpumask);
  4789. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4790. printk(" %s", str);
  4791. group = group->next;
  4792. } while (group != sd->groups);
  4793. printk("\n");
  4794. if (!cpus_equal(sd->span, groupmask))
  4795. printk(KERN_ERR "ERROR: groups don't span "
  4796. "domain->span\n");
  4797. level++;
  4798. sd = sd->parent;
  4799. if (!sd)
  4800. continue;
  4801. if (!cpus_subset(groupmask, sd->span))
  4802. printk(KERN_ERR "ERROR: parent span is not a superset "
  4803. "of domain->span\n");
  4804. } while (sd);
  4805. }
  4806. #else
  4807. # define sched_domain_debug(sd, cpu) do { } while (0)
  4808. #endif
  4809. static int sd_degenerate(struct sched_domain *sd)
  4810. {
  4811. if (cpus_weight(sd->span) == 1)
  4812. return 1;
  4813. /* Following flags need at least 2 groups */
  4814. if (sd->flags & (SD_LOAD_BALANCE |
  4815. SD_BALANCE_NEWIDLE |
  4816. SD_BALANCE_FORK |
  4817. SD_BALANCE_EXEC |
  4818. SD_SHARE_CPUPOWER |
  4819. SD_SHARE_PKG_RESOURCES)) {
  4820. if (sd->groups != sd->groups->next)
  4821. return 0;
  4822. }
  4823. /* Following flags don't use groups */
  4824. if (sd->flags & (SD_WAKE_IDLE |
  4825. SD_WAKE_AFFINE |
  4826. SD_WAKE_BALANCE))
  4827. return 0;
  4828. return 1;
  4829. }
  4830. static int
  4831. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4832. {
  4833. unsigned long cflags = sd->flags, pflags = parent->flags;
  4834. if (sd_degenerate(parent))
  4835. return 1;
  4836. if (!cpus_equal(sd->span, parent->span))
  4837. return 0;
  4838. /* Does parent contain flags not in child? */
  4839. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4840. if (cflags & SD_WAKE_AFFINE)
  4841. pflags &= ~SD_WAKE_BALANCE;
  4842. /* Flags needing groups don't count if only 1 group in parent */
  4843. if (parent->groups == parent->groups->next) {
  4844. pflags &= ~(SD_LOAD_BALANCE |
  4845. SD_BALANCE_NEWIDLE |
  4846. SD_BALANCE_FORK |
  4847. SD_BALANCE_EXEC |
  4848. SD_SHARE_CPUPOWER |
  4849. SD_SHARE_PKG_RESOURCES);
  4850. }
  4851. if (~cflags & pflags)
  4852. return 0;
  4853. return 1;
  4854. }
  4855. /*
  4856. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4857. * hold the hotplug lock.
  4858. */
  4859. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4860. {
  4861. struct rq *rq = cpu_rq(cpu);
  4862. struct sched_domain *tmp;
  4863. /* Remove the sched domains which do not contribute to scheduling. */
  4864. for (tmp = sd; tmp; tmp = tmp->parent) {
  4865. struct sched_domain *parent = tmp->parent;
  4866. if (!parent)
  4867. break;
  4868. if (sd_parent_degenerate(tmp, parent)) {
  4869. tmp->parent = parent->parent;
  4870. if (parent->parent)
  4871. parent->parent->child = tmp;
  4872. }
  4873. }
  4874. if (sd && sd_degenerate(sd)) {
  4875. sd = sd->parent;
  4876. if (sd)
  4877. sd->child = NULL;
  4878. }
  4879. sched_domain_debug(sd, cpu);
  4880. rcu_assign_pointer(rq->sd, sd);
  4881. }
  4882. /* cpus with isolated domains */
  4883. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4884. /* Setup the mask of cpus configured for isolated domains */
  4885. static int __init isolated_cpu_setup(char *str)
  4886. {
  4887. int ints[NR_CPUS], i;
  4888. str = get_options(str, ARRAY_SIZE(ints), ints);
  4889. cpus_clear(cpu_isolated_map);
  4890. for (i = 1; i <= ints[0]; i++)
  4891. if (ints[i] < NR_CPUS)
  4892. cpu_set(ints[i], cpu_isolated_map);
  4893. return 1;
  4894. }
  4895. __setup("isolcpus=", isolated_cpu_setup);
  4896. /*
  4897. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4898. * to a function which identifies what group(along with sched group) a CPU
  4899. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4900. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4901. *
  4902. * init_sched_build_groups will build a circular linked list of the groups
  4903. * covered by the given span, and will set each group's ->cpumask correctly,
  4904. * and ->cpu_power to 0.
  4905. */
  4906. static void
  4907. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4908. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4909. struct sched_group **sg))
  4910. {
  4911. struct sched_group *first = NULL, *last = NULL;
  4912. cpumask_t covered = CPU_MASK_NONE;
  4913. int i;
  4914. for_each_cpu_mask(i, span) {
  4915. struct sched_group *sg;
  4916. int group = group_fn(i, cpu_map, &sg);
  4917. int j;
  4918. if (cpu_isset(i, covered))
  4919. continue;
  4920. sg->cpumask = CPU_MASK_NONE;
  4921. sg->__cpu_power = 0;
  4922. for_each_cpu_mask(j, span) {
  4923. if (group_fn(j, cpu_map, NULL) != group)
  4924. continue;
  4925. cpu_set(j, covered);
  4926. cpu_set(j, sg->cpumask);
  4927. }
  4928. if (!first)
  4929. first = sg;
  4930. if (last)
  4931. last->next = sg;
  4932. last = sg;
  4933. }
  4934. last->next = first;
  4935. }
  4936. #define SD_NODES_PER_DOMAIN 16
  4937. #ifdef CONFIG_NUMA
  4938. /**
  4939. * find_next_best_node - find the next node to include in a sched_domain
  4940. * @node: node whose sched_domain we're building
  4941. * @used_nodes: nodes already in the sched_domain
  4942. *
  4943. * Find the next node to include in a given scheduling domain. Simply
  4944. * finds the closest node not already in the @used_nodes map.
  4945. *
  4946. * Should use nodemask_t.
  4947. */
  4948. static int find_next_best_node(int node, unsigned long *used_nodes)
  4949. {
  4950. int i, n, val, min_val, best_node = 0;
  4951. min_val = INT_MAX;
  4952. for (i = 0; i < MAX_NUMNODES; i++) {
  4953. /* Start at @node */
  4954. n = (node + i) % MAX_NUMNODES;
  4955. if (!nr_cpus_node(n))
  4956. continue;
  4957. /* Skip already used nodes */
  4958. if (test_bit(n, used_nodes))
  4959. continue;
  4960. /* Simple min distance search */
  4961. val = node_distance(node, n);
  4962. if (val < min_val) {
  4963. min_val = val;
  4964. best_node = n;
  4965. }
  4966. }
  4967. set_bit(best_node, used_nodes);
  4968. return best_node;
  4969. }
  4970. /**
  4971. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4972. * @node: node whose cpumask we're constructing
  4973. * @size: number of nodes to include in this span
  4974. *
  4975. * Given a node, construct a good cpumask for its sched_domain to span. It
  4976. * should be one that prevents unnecessary balancing, but also spreads tasks
  4977. * out optimally.
  4978. */
  4979. static cpumask_t sched_domain_node_span(int node)
  4980. {
  4981. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4982. cpumask_t span, nodemask;
  4983. int i;
  4984. cpus_clear(span);
  4985. bitmap_zero(used_nodes, MAX_NUMNODES);
  4986. nodemask = node_to_cpumask(node);
  4987. cpus_or(span, span, nodemask);
  4988. set_bit(node, used_nodes);
  4989. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4990. int next_node = find_next_best_node(node, used_nodes);
  4991. nodemask = node_to_cpumask(next_node);
  4992. cpus_or(span, span, nodemask);
  4993. }
  4994. return span;
  4995. }
  4996. #endif
  4997. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4998. /*
  4999. * SMT sched-domains:
  5000. */
  5001. #ifdef CONFIG_SCHED_SMT
  5002. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5003. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5004. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5005. struct sched_group **sg)
  5006. {
  5007. if (sg)
  5008. *sg = &per_cpu(sched_group_cpus, cpu);
  5009. return cpu;
  5010. }
  5011. #endif
  5012. /*
  5013. * multi-core sched-domains:
  5014. */
  5015. #ifdef CONFIG_SCHED_MC
  5016. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5017. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5018. #endif
  5019. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5020. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5021. struct sched_group **sg)
  5022. {
  5023. int group;
  5024. cpumask_t mask = cpu_sibling_map[cpu];
  5025. cpus_and(mask, mask, *cpu_map);
  5026. group = first_cpu(mask);
  5027. if (sg)
  5028. *sg = &per_cpu(sched_group_core, group);
  5029. return group;
  5030. }
  5031. #elif defined(CONFIG_SCHED_MC)
  5032. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5033. struct sched_group **sg)
  5034. {
  5035. if (sg)
  5036. *sg = &per_cpu(sched_group_core, cpu);
  5037. return cpu;
  5038. }
  5039. #endif
  5040. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5041. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5042. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5043. struct sched_group **sg)
  5044. {
  5045. int group;
  5046. #ifdef CONFIG_SCHED_MC
  5047. cpumask_t mask = cpu_coregroup_map(cpu);
  5048. cpus_and(mask, mask, *cpu_map);
  5049. group = first_cpu(mask);
  5050. #elif defined(CONFIG_SCHED_SMT)
  5051. cpumask_t mask = cpu_sibling_map[cpu];
  5052. cpus_and(mask, mask, *cpu_map);
  5053. group = first_cpu(mask);
  5054. #else
  5055. group = cpu;
  5056. #endif
  5057. if (sg)
  5058. *sg = &per_cpu(sched_group_phys, group);
  5059. return group;
  5060. }
  5061. #ifdef CONFIG_NUMA
  5062. /*
  5063. * The init_sched_build_groups can't handle what we want to do with node
  5064. * groups, so roll our own. Now each node has its own list of groups which
  5065. * gets dynamically allocated.
  5066. */
  5067. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5068. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5069. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5070. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5071. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5072. struct sched_group **sg)
  5073. {
  5074. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5075. int group;
  5076. cpus_and(nodemask, nodemask, *cpu_map);
  5077. group = first_cpu(nodemask);
  5078. if (sg)
  5079. *sg = &per_cpu(sched_group_allnodes, group);
  5080. return group;
  5081. }
  5082. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5083. {
  5084. struct sched_group *sg = group_head;
  5085. int j;
  5086. if (!sg)
  5087. return;
  5088. next_sg:
  5089. for_each_cpu_mask(j, sg->cpumask) {
  5090. struct sched_domain *sd;
  5091. sd = &per_cpu(phys_domains, j);
  5092. if (j != first_cpu(sd->groups->cpumask)) {
  5093. /*
  5094. * Only add "power" once for each
  5095. * physical package.
  5096. */
  5097. continue;
  5098. }
  5099. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5100. }
  5101. sg = sg->next;
  5102. if (sg != group_head)
  5103. goto next_sg;
  5104. }
  5105. #endif
  5106. #ifdef CONFIG_NUMA
  5107. /* Free memory allocated for various sched_group structures */
  5108. static void free_sched_groups(const cpumask_t *cpu_map)
  5109. {
  5110. int cpu, i;
  5111. for_each_cpu_mask(cpu, *cpu_map) {
  5112. struct sched_group **sched_group_nodes
  5113. = sched_group_nodes_bycpu[cpu];
  5114. if (!sched_group_nodes)
  5115. continue;
  5116. for (i = 0; i < MAX_NUMNODES; i++) {
  5117. cpumask_t nodemask = node_to_cpumask(i);
  5118. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5119. cpus_and(nodemask, nodemask, *cpu_map);
  5120. if (cpus_empty(nodemask))
  5121. continue;
  5122. if (sg == NULL)
  5123. continue;
  5124. sg = sg->next;
  5125. next_sg:
  5126. oldsg = sg;
  5127. sg = sg->next;
  5128. kfree(oldsg);
  5129. if (oldsg != sched_group_nodes[i])
  5130. goto next_sg;
  5131. }
  5132. kfree(sched_group_nodes);
  5133. sched_group_nodes_bycpu[cpu] = NULL;
  5134. }
  5135. }
  5136. #else
  5137. static void free_sched_groups(const cpumask_t *cpu_map)
  5138. {
  5139. }
  5140. #endif
  5141. /*
  5142. * Initialize sched groups cpu_power.
  5143. *
  5144. * cpu_power indicates the capacity of sched group, which is used while
  5145. * distributing the load between different sched groups in a sched domain.
  5146. * Typically cpu_power for all the groups in a sched domain will be same unless
  5147. * there are asymmetries in the topology. If there are asymmetries, group
  5148. * having more cpu_power will pickup more load compared to the group having
  5149. * less cpu_power.
  5150. *
  5151. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5152. * the maximum number of tasks a group can handle in the presence of other idle
  5153. * or lightly loaded groups in the same sched domain.
  5154. */
  5155. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5156. {
  5157. struct sched_domain *child;
  5158. struct sched_group *group;
  5159. WARN_ON(!sd || !sd->groups);
  5160. if (cpu != first_cpu(sd->groups->cpumask))
  5161. return;
  5162. child = sd->child;
  5163. sd->groups->__cpu_power = 0;
  5164. /*
  5165. * For perf policy, if the groups in child domain share resources
  5166. * (for example cores sharing some portions of the cache hierarchy
  5167. * or SMT), then set this domain groups cpu_power such that each group
  5168. * can handle only one task, when there are other idle groups in the
  5169. * same sched domain.
  5170. */
  5171. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5172. (child->flags &
  5173. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5174. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5175. return;
  5176. }
  5177. /*
  5178. * add cpu_power of each child group to this groups cpu_power
  5179. */
  5180. group = child->groups;
  5181. do {
  5182. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5183. group = group->next;
  5184. } while (group != child->groups);
  5185. }
  5186. /*
  5187. * Build sched domains for a given set of cpus and attach the sched domains
  5188. * to the individual cpus
  5189. */
  5190. static int build_sched_domains(const cpumask_t *cpu_map)
  5191. {
  5192. int i;
  5193. #ifdef CONFIG_NUMA
  5194. struct sched_group **sched_group_nodes = NULL;
  5195. int sd_allnodes = 0;
  5196. /*
  5197. * Allocate the per-node list of sched groups
  5198. */
  5199. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5200. GFP_KERNEL);
  5201. if (!sched_group_nodes) {
  5202. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5203. return -ENOMEM;
  5204. }
  5205. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5206. #endif
  5207. /*
  5208. * Set up domains for cpus specified by the cpu_map.
  5209. */
  5210. for_each_cpu_mask(i, *cpu_map) {
  5211. struct sched_domain *sd = NULL, *p;
  5212. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5213. cpus_and(nodemask, nodemask, *cpu_map);
  5214. #ifdef CONFIG_NUMA
  5215. if (cpus_weight(*cpu_map) >
  5216. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5217. sd = &per_cpu(allnodes_domains, i);
  5218. *sd = SD_ALLNODES_INIT;
  5219. sd->span = *cpu_map;
  5220. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5221. p = sd;
  5222. sd_allnodes = 1;
  5223. } else
  5224. p = NULL;
  5225. sd = &per_cpu(node_domains, i);
  5226. *sd = SD_NODE_INIT;
  5227. sd->span = sched_domain_node_span(cpu_to_node(i));
  5228. sd->parent = p;
  5229. if (p)
  5230. p->child = sd;
  5231. cpus_and(sd->span, sd->span, *cpu_map);
  5232. #endif
  5233. p = sd;
  5234. sd = &per_cpu(phys_domains, i);
  5235. *sd = SD_CPU_INIT;
  5236. sd->span = nodemask;
  5237. sd->parent = p;
  5238. if (p)
  5239. p->child = sd;
  5240. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5241. #ifdef CONFIG_SCHED_MC
  5242. p = sd;
  5243. sd = &per_cpu(core_domains, i);
  5244. *sd = SD_MC_INIT;
  5245. sd->span = cpu_coregroup_map(i);
  5246. cpus_and(sd->span, sd->span, *cpu_map);
  5247. sd->parent = p;
  5248. p->child = sd;
  5249. cpu_to_core_group(i, cpu_map, &sd->groups);
  5250. #endif
  5251. #ifdef CONFIG_SCHED_SMT
  5252. p = sd;
  5253. sd = &per_cpu(cpu_domains, i);
  5254. *sd = SD_SIBLING_INIT;
  5255. sd->span = cpu_sibling_map[i];
  5256. cpus_and(sd->span, sd->span, *cpu_map);
  5257. sd->parent = p;
  5258. p->child = sd;
  5259. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5260. #endif
  5261. }
  5262. #ifdef CONFIG_SCHED_SMT
  5263. /* Set up CPU (sibling) groups */
  5264. for_each_cpu_mask(i, *cpu_map) {
  5265. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5266. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5267. if (i != first_cpu(this_sibling_map))
  5268. continue;
  5269. init_sched_build_groups(this_sibling_map, cpu_map,
  5270. &cpu_to_cpu_group);
  5271. }
  5272. #endif
  5273. #ifdef CONFIG_SCHED_MC
  5274. /* Set up multi-core groups */
  5275. for_each_cpu_mask(i, *cpu_map) {
  5276. cpumask_t this_core_map = cpu_coregroup_map(i);
  5277. cpus_and(this_core_map, this_core_map, *cpu_map);
  5278. if (i != first_cpu(this_core_map))
  5279. continue;
  5280. init_sched_build_groups(this_core_map, cpu_map,
  5281. &cpu_to_core_group);
  5282. }
  5283. #endif
  5284. /* Set up physical groups */
  5285. for (i = 0; i < MAX_NUMNODES; i++) {
  5286. cpumask_t nodemask = node_to_cpumask(i);
  5287. cpus_and(nodemask, nodemask, *cpu_map);
  5288. if (cpus_empty(nodemask))
  5289. continue;
  5290. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5291. }
  5292. #ifdef CONFIG_NUMA
  5293. /* Set up node groups */
  5294. if (sd_allnodes)
  5295. init_sched_build_groups(*cpu_map, cpu_map,
  5296. &cpu_to_allnodes_group);
  5297. for (i = 0; i < MAX_NUMNODES; i++) {
  5298. /* Set up node groups */
  5299. struct sched_group *sg, *prev;
  5300. cpumask_t nodemask = node_to_cpumask(i);
  5301. cpumask_t domainspan;
  5302. cpumask_t covered = CPU_MASK_NONE;
  5303. int j;
  5304. cpus_and(nodemask, nodemask, *cpu_map);
  5305. if (cpus_empty(nodemask)) {
  5306. sched_group_nodes[i] = NULL;
  5307. continue;
  5308. }
  5309. domainspan = sched_domain_node_span(i);
  5310. cpus_and(domainspan, domainspan, *cpu_map);
  5311. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5312. if (!sg) {
  5313. printk(KERN_WARNING "Can not alloc domain group for "
  5314. "node %d\n", i);
  5315. goto error;
  5316. }
  5317. sched_group_nodes[i] = sg;
  5318. for_each_cpu_mask(j, nodemask) {
  5319. struct sched_domain *sd;
  5320. sd = &per_cpu(node_domains, j);
  5321. sd->groups = sg;
  5322. }
  5323. sg->__cpu_power = 0;
  5324. sg->cpumask = nodemask;
  5325. sg->next = sg;
  5326. cpus_or(covered, covered, nodemask);
  5327. prev = sg;
  5328. for (j = 0; j < MAX_NUMNODES; j++) {
  5329. cpumask_t tmp, notcovered;
  5330. int n = (i + j) % MAX_NUMNODES;
  5331. cpus_complement(notcovered, covered);
  5332. cpus_and(tmp, notcovered, *cpu_map);
  5333. cpus_and(tmp, tmp, domainspan);
  5334. if (cpus_empty(tmp))
  5335. break;
  5336. nodemask = node_to_cpumask(n);
  5337. cpus_and(tmp, tmp, nodemask);
  5338. if (cpus_empty(tmp))
  5339. continue;
  5340. sg = kmalloc_node(sizeof(struct sched_group),
  5341. GFP_KERNEL, i);
  5342. if (!sg) {
  5343. printk(KERN_WARNING
  5344. "Can not alloc domain group for node %d\n", j);
  5345. goto error;
  5346. }
  5347. sg->__cpu_power = 0;
  5348. sg->cpumask = tmp;
  5349. sg->next = prev->next;
  5350. cpus_or(covered, covered, tmp);
  5351. prev->next = sg;
  5352. prev = sg;
  5353. }
  5354. }
  5355. #endif
  5356. /* Calculate CPU power for physical packages and nodes */
  5357. #ifdef CONFIG_SCHED_SMT
  5358. for_each_cpu_mask(i, *cpu_map) {
  5359. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5360. init_sched_groups_power(i, sd);
  5361. }
  5362. #endif
  5363. #ifdef CONFIG_SCHED_MC
  5364. for_each_cpu_mask(i, *cpu_map) {
  5365. struct sched_domain *sd = &per_cpu(core_domains, i);
  5366. init_sched_groups_power(i, sd);
  5367. }
  5368. #endif
  5369. for_each_cpu_mask(i, *cpu_map) {
  5370. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5371. init_sched_groups_power(i, sd);
  5372. }
  5373. #ifdef CONFIG_NUMA
  5374. for (i = 0; i < MAX_NUMNODES; i++)
  5375. init_numa_sched_groups_power(sched_group_nodes[i]);
  5376. if (sd_allnodes) {
  5377. struct sched_group *sg;
  5378. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5379. init_numa_sched_groups_power(sg);
  5380. }
  5381. #endif
  5382. /* Attach the domains */
  5383. for_each_cpu_mask(i, *cpu_map) {
  5384. struct sched_domain *sd;
  5385. #ifdef CONFIG_SCHED_SMT
  5386. sd = &per_cpu(cpu_domains, i);
  5387. #elif defined(CONFIG_SCHED_MC)
  5388. sd = &per_cpu(core_domains, i);
  5389. #else
  5390. sd = &per_cpu(phys_domains, i);
  5391. #endif
  5392. cpu_attach_domain(sd, i);
  5393. }
  5394. return 0;
  5395. #ifdef CONFIG_NUMA
  5396. error:
  5397. free_sched_groups(cpu_map);
  5398. return -ENOMEM;
  5399. #endif
  5400. }
  5401. /*
  5402. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5403. */
  5404. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5405. {
  5406. cpumask_t cpu_default_map;
  5407. int err;
  5408. /*
  5409. * Setup mask for cpus without special case scheduling requirements.
  5410. * For now this just excludes isolated cpus, but could be used to
  5411. * exclude other special cases in the future.
  5412. */
  5413. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5414. err = build_sched_domains(&cpu_default_map);
  5415. return err;
  5416. }
  5417. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5418. {
  5419. free_sched_groups(cpu_map);
  5420. }
  5421. /*
  5422. * Detach sched domains from a group of cpus specified in cpu_map
  5423. * These cpus will now be attached to the NULL domain
  5424. */
  5425. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5426. {
  5427. int i;
  5428. for_each_cpu_mask(i, *cpu_map)
  5429. cpu_attach_domain(NULL, i);
  5430. synchronize_sched();
  5431. arch_destroy_sched_domains(cpu_map);
  5432. }
  5433. /*
  5434. * Partition sched domains as specified by the cpumasks below.
  5435. * This attaches all cpus from the cpumasks to the NULL domain,
  5436. * waits for a RCU quiescent period, recalculates sched
  5437. * domain information and then attaches them back to the
  5438. * correct sched domains
  5439. * Call with hotplug lock held
  5440. */
  5441. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5442. {
  5443. cpumask_t change_map;
  5444. int err = 0;
  5445. cpus_and(*partition1, *partition1, cpu_online_map);
  5446. cpus_and(*partition2, *partition2, cpu_online_map);
  5447. cpus_or(change_map, *partition1, *partition2);
  5448. /* Detach sched domains from all of the affected cpus */
  5449. detach_destroy_domains(&change_map);
  5450. if (!cpus_empty(*partition1))
  5451. err = build_sched_domains(partition1);
  5452. if (!err && !cpus_empty(*partition2))
  5453. err = build_sched_domains(partition2);
  5454. return err;
  5455. }
  5456. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5457. static int arch_reinit_sched_domains(void)
  5458. {
  5459. int err;
  5460. mutex_lock(&sched_hotcpu_mutex);
  5461. detach_destroy_domains(&cpu_online_map);
  5462. err = arch_init_sched_domains(&cpu_online_map);
  5463. mutex_unlock(&sched_hotcpu_mutex);
  5464. return err;
  5465. }
  5466. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5467. {
  5468. int ret;
  5469. if (buf[0] != '0' && buf[0] != '1')
  5470. return -EINVAL;
  5471. if (smt)
  5472. sched_smt_power_savings = (buf[0] == '1');
  5473. else
  5474. sched_mc_power_savings = (buf[0] == '1');
  5475. ret = arch_reinit_sched_domains();
  5476. return ret ? ret : count;
  5477. }
  5478. #ifdef CONFIG_SCHED_MC
  5479. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5480. {
  5481. return sprintf(page, "%u\n", sched_mc_power_savings);
  5482. }
  5483. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5484. const char *buf, size_t count)
  5485. {
  5486. return sched_power_savings_store(buf, count, 0);
  5487. }
  5488. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5489. sched_mc_power_savings_store);
  5490. #endif
  5491. #ifdef CONFIG_SCHED_SMT
  5492. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5493. {
  5494. return sprintf(page, "%u\n", sched_smt_power_savings);
  5495. }
  5496. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5497. const char *buf, size_t count)
  5498. {
  5499. return sched_power_savings_store(buf, count, 1);
  5500. }
  5501. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5502. sched_smt_power_savings_store);
  5503. #endif
  5504. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5505. {
  5506. int err = 0;
  5507. #ifdef CONFIG_SCHED_SMT
  5508. if (smt_capable())
  5509. err = sysfs_create_file(&cls->kset.kobj,
  5510. &attr_sched_smt_power_savings.attr);
  5511. #endif
  5512. #ifdef CONFIG_SCHED_MC
  5513. if (!err && mc_capable())
  5514. err = sysfs_create_file(&cls->kset.kobj,
  5515. &attr_sched_mc_power_savings.attr);
  5516. #endif
  5517. return err;
  5518. }
  5519. #endif
  5520. /*
  5521. * Force a reinitialization of the sched domains hierarchy. The domains
  5522. * and groups cannot be updated in place without racing with the balancing
  5523. * code, so we temporarily attach all running cpus to the NULL domain
  5524. * which will prevent rebalancing while the sched domains are recalculated.
  5525. */
  5526. static int update_sched_domains(struct notifier_block *nfb,
  5527. unsigned long action, void *hcpu)
  5528. {
  5529. switch (action) {
  5530. case CPU_UP_PREPARE:
  5531. case CPU_UP_PREPARE_FROZEN:
  5532. case CPU_DOWN_PREPARE:
  5533. case CPU_DOWN_PREPARE_FROZEN:
  5534. detach_destroy_domains(&cpu_online_map);
  5535. return NOTIFY_OK;
  5536. case CPU_UP_CANCELED:
  5537. case CPU_UP_CANCELED_FROZEN:
  5538. case CPU_DOWN_FAILED:
  5539. case CPU_DOWN_FAILED_FROZEN:
  5540. case CPU_ONLINE:
  5541. case CPU_ONLINE_FROZEN:
  5542. case CPU_DEAD:
  5543. case CPU_DEAD_FROZEN:
  5544. /*
  5545. * Fall through and re-initialise the domains.
  5546. */
  5547. break;
  5548. default:
  5549. return NOTIFY_DONE;
  5550. }
  5551. /* The hotplug lock is already held by cpu_up/cpu_down */
  5552. arch_init_sched_domains(&cpu_online_map);
  5553. return NOTIFY_OK;
  5554. }
  5555. void __init sched_init_smp(void)
  5556. {
  5557. cpumask_t non_isolated_cpus;
  5558. mutex_lock(&sched_hotcpu_mutex);
  5559. arch_init_sched_domains(&cpu_online_map);
  5560. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5561. if (cpus_empty(non_isolated_cpus))
  5562. cpu_set(smp_processor_id(), non_isolated_cpus);
  5563. mutex_unlock(&sched_hotcpu_mutex);
  5564. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5565. hotcpu_notifier(update_sched_domains, 0);
  5566. init_sched_domain_sysctl();
  5567. /* Move init over to a non-isolated CPU */
  5568. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5569. BUG();
  5570. }
  5571. #else
  5572. void __init sched_init_smp(void)
  5573. {
  5574. }
  5575. #endif /* CONFIG_SMP */
  5576. int in_sched_functions(unsigned long addr)
  5577. {
  5578. /* Linker adds these: start and end of __sched functions */
  5579. extern char __sched_text_start[], __sched_text_end[];
  5580. return in_lock_functions(addr) ||
  5581. (addr >= (unsigned long)__sched_text_start
  5582. && addr < (unsigned long)__sched_text_end);
  5583. }
  5584. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5585. {
  5586. cfs_rq->tasks_timeline = RB_ROOT;
  5587. #ifdef CONFIG_FAIR_GROUP_SCHED
  5588. cfs_rq->rq = rq;
  5589. #endif
  5590. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5591. }
  5592. void __init sched_init(void)
  5593. {
  5594. int highest_cpu = 0;
  5595. int i, j;
  5596. for_each_possible_cpu(i) {
  5597. struct rt_prio_array *array;
  5598. struct rq *rq;
  5599. rq = cpu_rq(i);
  5600. spin_lock_init(&rq->lock);
  5601. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5602. rq->nr_running = 0;
  5603. rq->clock = 1;
  5604. init_cfs_rq(&rq->cfs, rq);
  5605. #ifdef CONFIG_FAIR_GROUP_SCHED
  5606. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5607. {
  5608. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5609. struct sched_entity *se =
  5610. &per_cpu(init_sched_entity, i);
  5611. init_cfs_rq_p[i] = cfs_rq;
  5612. init_cfs_rq(cfs_rq, rq);
  5613. cfs_rq->tg = &init_task_group;
  5614. list_add(&cfs_rq->leaf_cfs_rq_list,
  5615. &rq->leaf_cfs_rq_list);
  5616. init_sched_entity_p[i] = se;
  5617. se->cfs_rq = &rq->cfs;
  5618. se->my_q = cfs_rq;
  5619. se->load.weight = init_task_group_load;
  5620. se->load.inv_weight =
  5621. div64_64(1ULL<<32, init_task_group_load);
  5622. se->parent = NULL;
  5623. }
  5624. init_task_group.shares = init_task_group_load;
  5625. #endif
  5626. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5627. rq->cpu_load[j] = 0;
  5628. #ifdef CONFIG_SMP
  5629. rq->sd = NULL;
  5630. rq->active_balance = 0;
  5631. rq->next_balance = jiffies;
  5632. rq->push_cpu = 0;
  5633. rq->cpu = i;
  5634. rq->migration_thread = NULL;
  5635. INIT_LIST_HEAD(&rq->migration_queue);
  5636. #endif
  5637. atomic_set(&rq->nr_iowait, 0);
  5638. array = &rq->rt.active;
  5639. for (j = 0; j < MAX_RT_PRIO; j++) {
  5640. INIT_LIST_HEAD(array->queue + j);
  5641. __clear_bit(j, array->bitmap);
  5642. }
  5643. highest_cpu = i;
  5644. /* delimiter for bitsearch: */
  5645. __set_bit(MAX_RT_PRIO, array->bitmap);
  5646. }
  5647. set_load_weight(&init_task);
  5648. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5649. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5650. #endif
  5651. #ifdef CONFIG_SMP
  5652. nr_cpu_ids = highest_cpu + 1;
  5653. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5654. #endif
  5655. #ifdef CONFIG_RT_MUTEXES
  5656. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5657. #endif
  5658. /*
  5659. * The boot idle thread does lazy MMU switching as well:
  5660. */
  5661. atomic_inc(&init_mm.mm_count);
  5662. enter_lazy_tlb(&init_mm, current);
  5663. /*
  5664. * Make us the idle thread. Technically, schedule() should not be
  5665. * called from this thread, however somewhere below it might be,
  5666. * but because we are the idle thread, we just pick up running again
  5667. * when this runqueue becomes "idle".
  5668. */
  5669. init_idle(current, smp_processor_id());
  5670. /*
  5671. * During early bootup we pretend to be a normal task:
  5672. */
  5673. current->sched_class = &fair_sched_class;
  5674. }
  5675. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5676. void __might_sleep(char *file, int line)
  5677. {
  5678. #ifdef in_atomic
  5679. static unsigned long prev_jiffy; /* ratelimiting */
  5680. if ((in_atomic() || irqs_disabled()) &&
  5681. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5682. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5683. return;
  5684. prev_jiffy = jiffies;
  5685. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5686. " context at %s:%d\n", file, line);
  5687. printk("in_atomic():%d, irqs_disabled():%d\n",
  5688. in_atomic(), irqs_disabled());
  5689. debug_show_held_locks(current);
  5690. if (irqs_disabled())
  5691. print_irqtrace_events(current);
  5692. dump_stack();
  5693. }
  5694. #endif
  5695. }
  5696. EXPORT_SYMBOL(__might_sleep);
  5697. #endif
  5698. #ifdef CONFIG_MAGIC_SYSRQ
  5699. void normalize_rt_tasks(void)
  5700. {
  5701. struct task_struct *g, *p;
  5702. unsigned long flags;
  5703. struct rq *rq;
  5704. int on_rq;
  5705. read_lock_irq(&tasklist_lock);
  5706. do_each_thread(g, p) {
  5707. p->se.exec_start = 0;
  5708. #ifdef CONFIG_SCHEDSTATS
  5709. p->se.wait_start = 0;
  5710. p->se.sleep_start = 0;
  5711. p->se.block_start = 0;
  5712. #endif
  5713. task_rq(p)->clock = 0;
  5714. if (!rt_task(p)) {
  5715. /*
  5716. * Renice negative nice level userspace
  5717. * tasks back to 0:
  5718. */
  5719. if (TASK_NICE(p) < 0 && p->mm)
  5720. set_user_nice(p, 0);
  5721. continue;
  5722. }
  5723. spin_lock_irqsave(&p->pi_lock, flags);
  5724. rq = __task_rq_lock(p);
  5725. #ifdef CONFIG_SMP
  5726. /*
  5727. * Do not touch the migration thread:
  5728. */
  5729. if (p == rq->migration_thread)
  5730. goto out_unlock;
  5731. #endif
  5732. update_rq_clock(rq);
  5733. on_rq = p->se.on_rq;
  5734. if (on_rq)
  5735. deactivate_task(rq, p, 0);
  5736. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5737. if (on_rq) {
  5738. activate_task(rq, p, 0);
  5739. resched_task(rq->curr);
  5740. }
  5741. #ifdef CONFIG_SMP
  5742. out_unlock:
  5743. #endif
  5744. __task_rq_unlock(rq);
  5745. spin_unlock_irqrestore(&p->pi_lock, flags);
  5746. } while_each_thread(g, p);
  5747. read_unlock_irq(&tasklist_lock);
  5748. }
  5749. #endif /* CONFIG_MAGIC_SYSRQ */
  5750. #ifdef CONFIG_IA64
  5751. /*
  5752. * These functions are only useful for the IA64 MCA handling.
  5753. *
  5754. * They can only be called when the whole system has been
  5755. * stopped - every CPU needs to be quiescent, and no scheduling
  5756. * activity can take place. Using them for anything else would
  5757. * be a serious bug, and as a result, they aren't even visible
  5758. * under any other configuration.
  5759. */
  5760. /**
  5761. * curr_task - return the current task for a given cpu.
  5762. * @cpu: the processor in question.
  5763. *
  5764. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5765. */
  5766. struct task_struct *curr_task(int cpu)
  5767. {
  5768. return cpu_curr(cpu);
  5769. }
  5770. /**
  5771. * set_curr_task - set the current task for a given cpu.
  5772. * @cpu: the processor in question.
  5773. * @p: the task pointer to set.
  5774. *
  5775. * Description: This function must only be used when non-maskable interrupts
  5776. * are serviced on a separate stack. It allows the architecture to switch the
  5777. * notion of the current task on a cpu in a non-blocking manner. This function
  5778. * must be called with all CPU's synchronized, and interrupts disabled, the
  5779. * and caller must save the original value of the current task (see
  5780. * curr_task() above) and restore that value before reenabling interrupts and
  5781. * re-starting the system.
  5782. *
  5783. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5784. */
  5785. void set_curr_task(int cpu, struct task_struct *p)
  5786. {
  5787. cpu_curr(cpu) = p;
  5788. }
  5789. #endif
  5790. #ifdef CONFIG_FAIR_GROUP_SCHED
  5791. /* allocate runqueue etc for a new task group */
  5792. struct task_group *sched_create_group(void)
  5793. {
  5794. struct task_group *tg;
  5795. struct cfs_rq *cfs_rq;
  5796. struct sched_entity *se;
  5797. struct rq *rq;
  5798. int i;
  5799. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5800. if (!tg)
  5801. return ERR_PTR(-ENOMEM);
  5802. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  5803. if (!tg->cfs_rq)
  5804. goto err;
  5805. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  5806. if (!tg->se)
  5807. goto err;
  5808. for_each_possible_cpu(i) {
  5809. rq = cpu_rq(i);
  5810. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  5811. cpu_to_node(i));
  5812. if (!cfs_rq)
  5813. goto err;
  5814. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  5815. cpu_to_node(i));
  5816. if (!se)
  5817. goto err;
  5818. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  5819. memset(se, 0, sizeof(struct sched_entity));
  5820. tg->cfs_rq[i] = cfs_rq;
  5821. init_cfs_rq(cfs_rq, rq);
  5822. cfs_rq->tg = tg;
  5823. tg->se[i] = se;
  5824. se->cfs_rq = &rq->cfs;
  5825. se->my_q = cfs_rq;
  5826. se->load.weight = NICE_0_LOAD;
  5827. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  5828. se->parent = NULL;
  5829. }
  5830. for_each_possible_cpu(i) {
  5831. rq = cpu_rq(i);
  5832. cfs_rq = tg->cfs_rq[i];
  5833. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5834. }
  5835. tg->shares = NICE_0_LOAD;
  5836. return tg;
  5837. err:
  5838. for_each_possible_cpu(i) {
  5839. if (tg->cfs_rq)
  5840. kfree(tg->cfs_rq[i]);
  5841. if (tg->se)
  5842. kfree(tg->se[i]);
  5843. }
  5844. kfree(tg->cfs_rq);
  5845. kfree(tg->se);
  5846. kfree(tg);
  5847. return ERR_PTR(-ENOMEM);
  5848. }
  5849. /* rcu callback to free various structures associated with a task group */
  5850. static void free_sched_group(struct rcu_head *rhp)
  5851. {
  5852. struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
  5853. struct task_group *tg = cfs_rq->tg;
  5854. struct sched_entity *se;
  5855. int i;
  5856. /* now it should be safe to free those cfs_rqs */
  5857. for_each_possible_cpu(i) {
  5858. cfs_rq = tg->cfs_rq[i];
  5859. kfree(cfs_rq);
  5860. se = tg->se[i];
  5861. kfree(se);
  5862. }
  5863. kfree(tg->cfs_rq);
  5864. kfree(tg->se);
  5865. kfree(tg);
  5866. }
  5867. /* Destroy runqueue etc associated with a task group */
  5868. void sched_destroy_group(struct task_group *tg)
  5869. {
  5870. struct cfs_rq *cfs_rq;
  5871. int i;
  5872. for_each_possible_cpu(i) {
  5873. cfs_rq = tg->cfs_rq[i];
  5874. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  5875. }
  5876. cfs_rq = tg->cfs_rq[0];
  5877. /* wait for possible concurrent references to cfs_rqs complete */
  5878. call_rcu(&cfs_rq->rcu, free_sched_group);
  5879. }
  5880. /* change task's runqueue when it moves between groups.
  5881. * The caller of this function should have put the task in its new group
  5882. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5883. * reflect its new group.
  5884. */
  5885. void sched_move_task(struct task_struct *tsk)
  5886. {
  5887. int on_rq, running;
  5888. unsigned long flags;
  5889. struct rq *rq;
  5890. rq = task_rq_lock(tsk, &flags);
  5891. if (tsk->sched_class != &fair_sched_class)
  5892. goto done;
  5893. update_rq_clock(rq);
  5894. running = task_running(rq, tsk);
  5895. on_rq = tsk->se.on_rq;
  5896. if (on_rq) {
  5897. dequeue_task(rq, tsk, 0);
  5898. if (unlikely(running))
  5899. tsk->sched_class->put_prev_task(rq, tsk);
  5900. }
  5901. set_task_cfs_rq(tsk);
  5902. if (on_rq) {
  5903. if (unlikely(running))
  5904. tsk->sched_class->set_curr_task(rq);
  5905. enqueue_task(rq, tsk, 0);
  5906. }
  5907. done:
  5908. task_rq_unlock(rq, &flags);
  5909. }
  5910. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  5911. {
  5912. struct cfs_rq *cfs_rq = se->cfs_rq;
  5913. struct rq *rq = cfs_rq->rq;
  5914. int on_rq;
  5915. spin_lock_irq(&rq->lock);
  5916. on_rq = se->on_rq;
  5917. if (on_rq)
  5918. dequeue_entity(cfs_rq, se, 0);
  5919. se->load.weight = shares;
  5920. se->load.inv_weight = div64_64((1ULL<<32), shares);
  5921. if (on_rq)
  5922. enqueue_entity(cfs_rq, se, 0);
  5923. spin_unlock_irq(&rq->lock);
  5924. }
  5925. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  5926. {
  5927. int i;
  5928. if (tg->shares == shares)
  5929. return 0;
  5930. /* return -EINVAL if the new value is not sane */
  5931. tg->shares = shares;
  5932. for_each_possible_cpu(i)
  5933. set_se_shares(tg->se[i], shares);
  5934. return 0;
  5935. }
  5936. #endif /* CONFIG_FAIR_GROUP_SCHED */