zd_usb.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350
  1. /* zd_usb.c
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation; either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  16. */
  17. #include <asm/unaligned.h>
  18. #include <linux/kernel.h>
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/firmware.h>
  22. #include <linux/device.h>
  23. #include <linux/errno.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/usb.h>
  26. #include <net/ieee80211.h>
  27. #include "zd_def.h"
  28. #include "zd_netdev.h"
  29. #include "zd_mac.h"
  30. #include "zd_usb.h"
  31. #include "zd_util.h"
  32. static struct usb_device_id usb_ids[] = {
  33. /* ZD1211 */
  34. { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
  35. { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
  36. { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
  37. { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
  38. { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
  39. { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
  40. { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
  41. { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
  42. { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
  43. { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
  44. /* ZD1211B */
  45. { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
  46. { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
  47. { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
  48. {}
  49. };
  50. MODULE_LICENSE("GPL");
  51. MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
  52. MODULE_AUTHOR("Ulrich Kunitz");
  53. MODULE_AUTHOR("Daniel Drake");
  54. MODULE_VERSION("1.0");
  55. MODULE_DEVICE_TABLE(usb, usb_ids);
  56. #define FW_ZD1211_PREFIX "zd1211/zd1211_"
  57. #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
  58. /* register address handling */
  59. #ifdef DEBUG
  60. static int check_addr(struct zd_usb *usb, zd_addr_t addr)
  61. {
  62. u32 base = ZD_ADDR_BASE(addr);
  63. u32 offset = ZD_OFFSET(addr);
  64. if ((u32)addr & ADDR_ZERO_MASK)
  65. goto invalid_address;
  66. switch (base) {
  67. case USB_BASE:
  68. break;
  69. case CR_BASE:
  70. if (offset > CR_MAX_OFFSET) {
  71. dev_dbg(zd_usb_dev(usb),
  72. "CR offset %#010x larger than"
  73. " CR_MAX_OFFSET %#10x\n",
  74. offset, CR_MAX_OFFSET);
  75. goto invalid_address;
  76. }
  77. if (offset & 1) {
  78. dev_dbg(zd_usb_dev(usb),
  79. "CR offset %#010x is not a multiple of 2\n",
  80. offset);
  81. goto invalid_address;
  82. }
  83. break;
  84. case E2P_BASE:
  85. if (offset > E2P_MAX_OFFSET) {
  86. dev_dbg(zd_usb_dev(usb),
  87. "E2P offset %#010x larger than"
  88. " E2P_MAX_OFFSET %#010x\n",
  89. offset, E2P_MAX_OFFSET);
  90. goto invalid_address;
  91. }
  92. break;
  93. case FW_BASE:
  94. if (!usb->fw_base_offset) {
  95. dev_dbg(zd_usb_dev(usb),
  96. "ERROR: fw base offset has not been set\n");
  97. return -EAGAIN;
  98. }
  99. if (offset > FW_MAX_OFFSET) {
  100. dev_dbg(zd_usb_dev(usb),
  101. "FW offset %#10x is larger than"
  102. " FW_MAX_OFFSET %#010x\n",
  103. offset, FW_MAX_OFFSET);
  104. goto invalid_address;
  105. }
  106. break;
  107. default:
  108. dev_dbg(zd_usb_dev(usb),
  109. "address has unsupported base %#010x\n", addr);
  110. goto invalid_address;
  111. }
  112. return 0;
  113. invalid_address:
  114. dev_dbg(zd_usb_dev(usb),
  115. "ERROR: invalid address: %#010x\n", addr);
  116. return -EINVAL;
  117. }
  118. #endif /* DEBUG */
  119. static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
  120. {
  121. u32 base;
  122. u16 offset;
  123. base = ZD_ADDR_BASE(addr);
  124. offset = ZD_OFFSET(addr);
  125. ZD_ASSERT(check_addr(usb, addr) == 0);
  126. switch (base) {
  127. case CR_BASE:
  128. offset += CR_BASE_OFFSET;
  129. break;
  130. case E2P_BASE:
  131. offset += E2P_BASE_OFFSET;
  132. break;
  133. case FW_BASE:
  134. offset += usb->fw_base_offset;
  135. break;
  136. }
  137. return offset;
  138. }
  139. /* USB device initialization */
  140. static int request_fw_file(
  141. const struct firmware **fw, const char *name, struct device *device)
  142. {
  143. int r;
  144. dev_dbg_f(device, "fw name %s\n", name);
  145. r = request_firmware(fw, name, device);
  146. if (r)
  147. dev_err(device,
  148. "Could not load firmware file %s. Error number %d\n",
  149. name, r);
  150. return r;
  151. }
  152. static inline u16 get_bcdDevice(const struct usb_device *udev)
  153. {
  154. return le16_to_cpu(udev->descriptor.bcdDevice);
  155. }
  156. enum upload_code_flags {
  157. REBOOT = 1,
  158. };
  159. /* Ensures that MAX_TRANSFER_SIZE is even. */
  160. #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
  161. static int upload_code(struct usb_device *udev,
  162. const u8 *data, size_t size, u16 code_offset, int flags)
  163. {
  164. u8 *p;
  165. int r;
  166. /* USB request blocks need "kmalloced" buffers.
  167. */
  168. p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
  169. if (!p) {
  170. dev_err(&udev->dev, "out of memory\n");
  171. r = -ENOMEM;
  172. goto error;
  173. }
  174. size &= ~1;
  175. while (size > 0) {
  176. size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
  177. size : MAX_TRANSFER_SIZE;
  178. dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
  179. memcpy(p, data, transfer_size);
  180. r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
  181. USB_REQ_FIRMWARE_DOWNLOAD,
  182. USB_DIR_OUT | USB_TYPE_VENDOR,
  183. code_offset, 0, p, transfer_size, 1000 /* ms */);
  184. if (r < 0) {
  185. dev_err(&udev->dev,
  186. "USB control request for firmware upload"
  187. " failed. Error number %d\n", r);
  188. goto error;
  189. }
  190. transfer_size = r & ~1;
  191. size -= transfer_size;
  192. data += transfer_size;
  193. code_offset += transfer_size/sizeof(u16);
  194. }
  195. if (flags & REBOOT) {
  196. u8 ret;
  197. r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
  198. USB_REQ_FIRMWARE_CONFIRM,
  199. USB_DIR_IN | USB_TYPE_VENDOR,
  200. 0, 0, &ret, sizeof(ret), 5000 /* ms */);
  201. if (r != sizeof(ret)) {
  202. dev_err(&udev->dev,
  203. "control request firmeware confirmation failed."
  204. " Return value %d\n", r);
  205. if (r >= 0)
  206. r = -ENODEV;
  207. goto error;
  208. }
  209. if (ret & 0x80) {
  210. dev_err(&udev->dev,
  211. "Internal error while downloading."
  212. " Firmware confirm return value %#04x\n",
  213. (unsigned int)ret);
  214. r = -ENODEV;
  215. goto error;
  216. }
  217. dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
  218. (unsigned int)ret);
  219. }
  220. r = 0;
  221. error:
  222. kfree(p);
  223. return r;
  224. }
  225. static u16 get_word(const void *data, u16 offset)
  226. {
  227. const __le16 *p = data;
  228. return le16_to_cpu(p[offset]);
  229. }
  230. static char *get_fw_name(char *buffer, size_t size, u8 device_type,
  231. const char* postfix)
  232. {
  233. scnprintf(buffer, size, "%s%s",
  234. device_type == DEVICE_ZD1211B ?
  235. FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
  236. postfix);
  237. return buffer;
  238. }
  239. static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
  240. const struct firmware *ub_fw)
  241. {
  242. const struct firmware *ur_fw = NULL;
  243. int offset;
  244. int r = 0;
  245. char fw_name[128];
  246. r = request_fw_file(&ur_fw,
  247. get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
  248. &udev->dev);
  249. if (r)
  250. goto error;
  251. r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
  252. REBOOT);
  253. if (r)
  254. goto error;
  255. offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
  256. r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
  257. E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
  258. /* At this point, the vendor driver downloads the whole firmware
  259. * image, hacks around with version IDs, and uploads it again,
  260. * completely overwriting the boot code. We do not do this here as
  261. * it is not required on any tested devices, and it is suspected to
  262. * cause problems. */
  263. error:
  264. release_firmware(ur_fw);
  265. return r;
  266. }
  267. static int upload_firmware(struct usb_device *udev, u8 device_type)
  268. {
  269. int r;
  270. u16 fw_bcdDevice;
  271. u16 bcdDevice;
  272. const struct firmware *ub_fw = NULL;
  273. const struct firmware *uph_fw = NULL;
  274. char fw_name[128];
  275. bcdDevice = get_bcdDevice(udev);
  276. r = request_fw_file(&ub_fw,
  277. get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
  278. &udev->dev);
  279. if (r)
  280. goto error;
  281. fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
  282. if (fw_bcdDevice != bcdDevice) {
  283. dev_info(&udev->dev,
  284. "firmware version %#06x and device bootcode version "
  285. "%#06x differ\n", fw_bcdDevice, bcdDevice);
  286. if (bcdDevice <= 0x4313)
  287. dev_warn(&udev->dev, "device has old bootcode, please "
  288. "report success or failure\n");
  289. r = handle_version_mismatch(udev, device_type, ub_fw);
  290. if (r)
  291. goto error;
  292. } else {
  293. dev_dbg_f(&udev->dev,
  294. "firmware device id %#06x is equal to the "
  295. "actual device id\n", fw_bcdDevice);
  296. }
  297. r = request_fw_file(&uph_fw,
  298. get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
  299. &udev->dev);
  300. if (r)
  301. goto error;
  302. r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
  303. REBOOT);
  304. if (r) {
  305. dev_err(&udev->dev,
  306. "Could not upload firmware code uph. Error number %d\n",
  307. r);
  308. }
  309. /* FALL-THROUGH */
  310. error:
  311. release_firmware(ub_fw);
  312. release_firmware(uph_fw);
  313. return r;
  314. }
  315. static void disable_read_regs_int(struct zd_usb *usb)
  316. {
  317. struct zd_usb_interrupt *intr = &usb->intr;
  318. spin_lock(&intr->lock);
  319. intr->read_regs_enabled = 0;
  320. spin_unlock(&intr->lock);
  321. }
  322. #define urb_dev(urb) (&(urb)->dev->dev)
  323. static inline void handle_regs_int(struct urb *urb)
  324. {
  325. struct zd_usb *usb = urb->context;
  326. struct zd_usb_interrupt *intr = &usb->intr;
  327. int len;
  328. ZD_ASSERT(in_interrupt());
  329. spin_lock(&intr->lock);
  330. if (intr->read_regs_enabled) {
  331. intr->read_regs.length = len = urb->actual_length;
  332. if (len > sizeof(intr->read_regs.buffer))
  333. len = sizeof(intr->read_regs.buffer);
  334. memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
  335. intr->read_regs_enabled = 0;
  336. complete(&intr->read_regs.completion);
  337. goto out;
  338. }
  339. dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
  340. out:
  341. spin_unlock(&intr->lock);
  342. }
  343. static inline void handle_retry_failed_int(struct urb *urb)
  344. {
  345. dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
  346. }
  347. static void int_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  348. {
  349. int r;
  350. struct usb_int_header *hdr;
  351. switch (urb->status) {
  352. case 0:
  353. break;
  354. case -ESHUTDOWN:
  355. case -EINVAL:
  356. case -ENODEV:
  357. case -ENOENT:
  358. case -ECONNRESET:
  359. case -EPIPE:
  360. goto kfree;
  361. default:
  362. goto resubmit;
  363. }
  364. if (urb->actual_length < sizeof(hdr)) {
  365. dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
  366. goto resubmit;
  367. }
  368. hdr = urb->transfer_buffer;
  369. if (hdr->type != USB_INT_TYPE) {
  370. dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
  371. goto resubmit;
  372. }
  373. switch (hdr->id) {
  374. case USB_INT_ID_REGS:
  375. handle_regs_int(urb);
  376. break;
  377. case USB_INT_ID_RETRY_FAILED:
  378. handle_retry_failed_int(urb);
  379. break;
  380. default:
  381. dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
  382. (unsigned int)hdr->id);
  383. goto resubmit;
  384. }
  385. resubmit:
  386. r = usb_submit_urb(urb, GFP_ATOMIC);
  387. if (r) {
  388. dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
  389. goto kfree;
  390. }
  391. return;
  392. kfree:
  393. kfree(urb->transfer_buffer);
  394. }
  395. static inline int int_urb_interval(struct usb_device *udev)
  396. {
  397. switch (udev->speed) {
  398. case USB_SPEED_HIGH:
  399. return 4;
  400. case USB_SPEED_LOW:
  401. return 10;
  402. case USB_SPEED_FULL:
  403. default:
  404. return 1;
  405. }
  406. }
  407. static inline int usb_int_enabled(struct zd_usb *usb)
  408. {
  409. unsigned long flags;
  410. struct zd_usb_interrupt *intr = &usb->intr;
  411. struct urb *urb;
  412. spin_lock_irqsave(&intr->lock, flags);
  413. urb = intr->urb;
  414. spin_unlock_irqrestore(&intr->lock, flags);
  415. return urb != NULL;
  416. }
  417. int zd_usb_enable_int(struct zd_usb *usb)
  418. {
  419. int r;
  420. struct usb_device *udev;
  421. struct zd_usb_interrupt *intr = &usb->intr;
  422. void *transfer_buffer = NULL;
  423. struct urb *urb;
  424. dev_dbg_f(zd_usb_dev(usb), "\n");
  425. urb = usb_alloc_urb(0, GFP_NOFS);
  426. if (!urb) {
  427. r = -ENOMEM;
  428. goto out;
  429. }
  430. ZD_ASSERT(!irqs_disabled());
  431. spin_lock_irq(&intr->lock);
  432. if (intr->urb) {
  433. spin_unlock_irq(&intr->lock);
  434. r = 0;
  435. goto error_free_urb;
  436. }
  437. intr->urb = urb;
  438. spin_unlock_irq(&intr->lock);
  439. /* TODO: make it a DMA buffer */
  440. r = -ENOMEM;
  441. transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
  442. if (!transfer_buffer) {
  443. dev_dbg_f(zd_usb_dev(usb),
  444. "couldn't allocate transfer_buffer\n");
  445. goto error_set_urb_null;
  446. }
  447. udev = zd_usb_to_usbdev(usb);
  448. usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
  449. transfer_buffer, USB_MAX_EP_INT_BUFFER,
  450. int_urb_complete, usb,
  451. intr->interval);
  452. dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
  453. r = usb_submit_urb(urb, GFP_NOFS);
  454. if (r) {
  455. dev_dbg_f(zd_usb_dev(usb),
  456. "Couldn't submit urb. Error number %d\n", r);
  457. goto error;
  458. }
  459. return 0;
  460. error:
  461. kfree(transfer_buffer);
  462. error_set_urb_null:
  463. spin_lock_irq(&intr->lock);
  464. intr->urb = NULL;
  465. spin_unlock_irq(&intr->lock);
  466. error_free_urb:
  467. usb_free_urb(urb);
  468. out:
  469. return r;
  470. }
  471. void zd_usb_disable_int(struct zd_usb *usb)
  472. {
  473. unsigned long flags;
  474. struct zd_usb_interrupt *intr = &usb->intr;
  475. struct urb *urb;
  476. spin_lock_irqsave(&intr->lock, flags);
  477. urb = intr->urb;
  478. if (!urb) {
  479. spin_unlock_irqrestore(&intr->lock, flags);
  480. return;
  481. }
  482. intr->urb = NULL;
  483. spin_unlock_irqrestore(&intr->lock, flags);
  484. usb_kill_urb(urb);
  485. dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
  486. usb_free_urb(urb);
  487. }
  488. static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
  489. unsigned int length)
  490. {
  491. int i;
  492. struct zd_mac *mac = zd_usb_to_mac(usb);
  493. const struct rx_length_info *length_info;
  494. if (length < sizeof(struct rx_length_info)) {
  495. /* It's not a complete packet anyhow. */
  496. return;
  497. }
  498. length_info = (struct rx_length_info *)
  499. (buffer + length - sizeof(struct rx_length_info));
  500. /* It might be that three frames are merged into a single URB
  501. * transaction. We have to check for the length info tag.
  502. *
  503. * While testing we discovered that length_info might be unaligned,
  504. * because if USB transactions are merged, the last packet will not
  505. * be padded. Unaligned access might also happen if the length_info
  506. * structure is not present.
  507. */
  508. if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
  509. {
  510. unsigned int l, k, n;
  511. for (i = 0, l = 0;; i++) {
  512. k = le16_to_cpu(get_unaligned(&length_info->length[i]));
  513. n = l+k;
  514. if (n > length)
  515. return;
  516. zd_mac_rx(mac, buffer+l, k);
  517. if (i >= 2)
  518. return;
  519. l = (n+3) & ~3;
  520. }
  521. } else {
  522. zd_mac_rx(mac, buffer, length);
  523. }
  524. }
  525. static void rx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  526. {
  527. struct zd_usb *usb;
  528. struct zd_usb_rx *rx;
  529. const u8 *buffer;
  530. unsigned int length;
  531. switch (urb->status) {
  532. case 0:
  533. break;
  534. case -ESHUTDOWN:
  535. case -EINVAL:
  536. case -ENODEV:
  537. case -ENOENT:
  538. case -ECONNRESET:
  539. case -EPIPE:
  540. return;
  541. default:
  542. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  543. goto resubmit;
  544. }
  545. buffer = urb->transfer_buffer;
  546. length = urb->actual_length;
  547. usb = urb->context;
  548. rx = &usb->rx;
  549. if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
  550. /* If there is an old first fragment, we don't care. */
  551. dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
  552. ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
  553. spin_lock(&rx->lock);
  554. memcpy(rx->fragment, buffer, length);
  555. rx->fragment_length = length;
  556. spin_unlock(&rx->lock);
  557. goto resubmit;
  558. }
  559. spin_lock(&rx->lock);
  560. if (rx->fragment_length > 0) {
  561. /* We are on a second fragment, we believe */
  562. ZD_ASSERT(length + rx->fragment_length <=
  563. ARRAY_SIZE(rx->fragment));
  564. dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
  565. memcpy(rx->fragment+rx->fragment_length, buffer, length);
  566. handle_rx_packet(usb, rx->fragment,
  567. rx->fragment_length + length);
  568. rx->fragment_length = 0;
  569. spin_unlock(&rx->lock);
  570. } else {
  571. spin_unlock(&rx->lock);
  572. handle_rx_packet(usb, buffer, length);
  573. }
  574. resubmit:
  575. usb_submit_urb(urb, GFP_ATOMIC);
  576. }
  577. struct urb *alloc_urb(struct zd_usb *usb)
  578. {
  579. struct usb_device *udev = zd_usb_to_usbdev(usb);
  580. struct urb *urb;
  581. void *buffer;
  582. urb = usb_alloc_urb(0, GFP_NOFS);
  583. if (!urb)
  584. return NULL;
  585. buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
  586. &urb->transfer_dma);
  587. if (!buffer) {
  588. usb_free_urb(urb);
  589. return NULL;
  590. }
  591. usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
  592. buffer, USB_MAX_RX_SIZE,
  593. rx_urb_complete, usb);
  594. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  595. return urb;
  596. }
  597. void free_urb(struct urb *urb)
  598. {
  599. if (!urb)
  600. return;
  601. usb_buffer_free(urb->dev, urb->transfer_buffer_length,
  602. urb->transfer_buffer, urb->transfer_dma);
  603. usb_free_urb(urb);
  604. }
  605. int zd_usb_enable_rx(struct zd_usb *usb)
  606. {
  607. int i, r;
  608. struct zd_usb_rx *rx = &usb->rx;
  609. struct urb **urbs;
  610. dev_dbg_f(zd_usb_dev(usb), "\n");
  611. r = -ENOMEM;
  612. urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
  613. if (!urbs)
  614. goto error;
  615. for (i = 0; i < URBS_COUNT; i++) {
  616. urbs[i] = alloc_urb(usb);
  617. if (!urbs[i])
  618. goto error;
  619. }
  620. ZD_ASSERT(!irqs_disabled());
  621. spin_lock_irq(&rx->lock);
  622. if (rx->urbs) {
  623. spin_unlock_irq(&rx->lock);
  624. r = 0;
  625. goto error;
  626. }
  627. rx->urbs = urbs;
  628. rx->urbs_count = URBS_COUNT;
  629. spin_unlock_irq(&rx->lock);
  630. for (i = 0; i < URBS_COUNT; i++) {
  631. r = usb_submit_urb(urbs[i], GFP_NOFS);
  632. if (r)
  633. goto error_submit;
  634. }
  635. return 0;
  636. error_submit:
  637. for (i = 0; i < URBS_COUNT; i++) {
  638. usb_kill_urb(urbs[i]);
  639. }
  640. spin_lock_irq(&rx->lock);
  641. rx->urbs = NULL;
  642. rx->urbs_count = 0;
  643. spin_unlock_irq(&rx->lock);
  644. error:
  645. if (urbs) {
  646. for (i = 0; i < URBS_COUNT; i++)
  647. free_urb(urbs[i]);
  648. }
  649. return r;
  650. }
  651. void zd_usb_disable_rx(struct zd_usb *usb)
  652. {
  653. int i;
  654. unsigned long flags;
  655. struct urb **urbs;
  656. unsigned int count;
  657. struct zd_usb_rx *rx = &usb->rx;
  658. spin_lock_irqsave(&rx->lock, flags);
  659. urbs = rx->urbs;
  660. count = rx->urbs_count;
  661. spin_unlock_irqrestore(&rx->lock, flags);
  662. if (!urbs)
  663. return;
  664. for (i = 0; i < count; i++) {
  665. usb_kill_urb(urbs[i]);
  666. free_urb(urbs[i]);
  667. }
  668. kfree(urbs);
  669. spin_lock_irqsave(&rx->lock, flags);
  670. rx->urbs = NULL;
  671. rx->urbs_count = 0;
  672. spin_unlock_irqrestore(&rx->lock, flags);
  673. }
  674. static void tx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  675. {
  676. int r;
  677. switch (urb->status) {
  678. case 0:
  679. break;
  680. case -ESHUTDOWN:
  681. case -EINVAL:
  682. case -ENODEV:
  683. case -ENOENT:
  684. case -ECONNRESET:
  685. case -EPIPE:
  686. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  687. break;
  688. default:
  689. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  690. goto resubmit;
  691. }
  692. free_urb:
  693. usb_buffer_free(urb->dev, urb->transfer_buffer_length,
  694. urb->transfer_buffer, urb->transfer_dma);
  695. usb_free_urb(urb);
  696. return;
  697. resubmit:
  698. r = usb_submit_urb(urb, GFP_ATOMIC);
  699. if (r) {
  700. dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
  701. goto free_urb;
  702. }
  703. }
  704. /* Puts the frame on the USB endpoint. It doesn't wait for
  705. * completion. The frame must contain the control set.
  706. */
  707. int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
  708. {
  709. int r;
  710. struct usb_device *udev = zd_usb_to_usbdev(usb);
  711. struct urb *urb;
  712. void *buffer;
  713. urb = usb_alloc_urb(0, GFP_ATOMIC);
  714. if (!urb) {
  715. r = -ENOMEM;
  716. goto out;
  717. }
  718. buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
  719. &urb->transfer_dma);
  720. if (!buffer) {
  721. r = -ENOMEM;
  722. goto error_free_urb;
  723. }
  724. memcpy(buffer, frame, length);
  725. usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
  726. buffer, length, tx_urb_complete, NULL);
  727. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  728. r = usb_submit_urb(urb, GFP_ATOMIC);
  729. if (r)
  730. goto error;
  731. return 0;
  732. error:
  733. usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
  734. urb->transfer_dma);
  735. error_free_urb:
  736. usb_free_urb(urb);
  737. out:
  738. return r;
  739. }
  740. static inline void init_usb_interrupt(struct zd_usb *usb)
  741. {
  742. struct zd_usb_interrupt *intr = &usb->intr;
  743. spin_lock_init(&intr->lock);
  744. intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
  745. init_completion(&intr->read_regs.completion);
  746. intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
  747. }
  748. static inline void init_usb_rx(struct zd_usb *usb)
  749. {
  750. struct zd_usb_rx *rx = &usb->rx;
  751. spin_lock_init(&rx->lock);
  752. if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
  753. rx->usb_packet_size = 512;
  754. } else {
  755. rx->usb_packet_size = 64;
  756. }
  757. ZD_ASSERT(rx->fragment_length == 0);
  758. }
  759. static inline void init_usb_tx(struct zd_usb *usb)
  760. {
  761. /* FIXME: at this point we will allocate a fixed number of urb's for
  762. * use in a cyclic scheme */
  763. }
  764. void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
  765. struct usb_interface *intf)
  766. {
  767. memset(usb, 0, sizeof(*usb));
  768. usb->intf = usb_get_intf(intf);
  769. usb_set_intfdata(usb->intf, netdev);
  770. init_usb_interrupt(usb);
  771. init_usb_tx(usb);
  772. init_usb_rx(usb);
  773. }
  774. int zd_usb_init_hw(struct zd_usb *usb)
  775. {
  776. int r;
  777. struct zd_chip *chip = zd_usb_to_chip(usb);
  778. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  779. r = zd_ioread16_locked(chip, &usb->fw_base_offset,
  780. USB_REG((u16)FW_BASE_ADDR_OFFSET));
  781. if (r)
  782. return r;
  783. dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
  784. usb->fw_base_offset);
  785. return 0;
  786. }
  787. void zd_usb_clear(struct zd_usb *usb)
  788. {
  789. usb_set_intfdata(usb->intf, NULL);
  790. usb_put_intf(usb->intf);
  791. memset(usb, 0, sizeof(*usb));
  792. /* FIXME: usb_interrupt, usb_tx, usb_rx? */
  793. }
  794. static const char *speed(enum usb_device_speed speed)
  795. {
  796. switch (speed) {
  797. case USB_SPEED_LOW:
  798. return "low";
  799. case USB_SPEED_FULL:
  800. return "full";
  801. case USB_SPEED_HIGH:
  802. return "high";
  803. default:
  804. return "unknown speed";
  805. }
  806. }
  807. static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
  808. {
  809. return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
  810. le16_to_cpu(udev->descriptor.idVendor),
  811. le16_to_cpu(udev->descriptor.idProduct),
  812. get_bcdDevice(udev),
  813. speed(udev->speed));
  814. }
  815. int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
  816. {
  817. struct usb_device *udev = interface_to_usbdev(usb->intf);
  818. return scnprint_id(udev, buffer, size);
  819. }
  820. #ifdef DEBUG
  821. static void print_id(struct usb_device *udev)
  822. {
  823. char buffer[40];
  824. scnprint_id(udev, buffer, sizeof(buffer));
  825. buffer[sizeof(buffer)-1] = 0;
  826. dev_dbg_f(&udev->dev, "%s\n", buffer);
  827. }
  828. #else
  829. #define print_id(udev) do { } while (0)
  830. #endif
  831. static int probe(struct usb_interface *intf, const struct usb_device_id *id)
  832. {
  833. int r;
  834. struct usb_device *udev = interface_to_usbdev(intf);
  835. struct net_device *netdev = NULL;
  836. print_id(udev);
  837. switch (udev->speed) {
  838. case USB_SPEED_LOW:
  839. case USB_SPEED_FULL:
  840. case USB_SPEED_HIGH:
  841. break;
  842. default:
  843. dev_dbg_f(&intf->dev, "Unknown USB speed\n");
  844. r = -ENODEV;
  845. goto error;
  846. }
  847. netdev = zd_netdev_alloc(intf);
  848. if (netdev == NULL) {
  849. r = -ENOMEM;
  850. goto error;
  851. }
  852. r = upload_firmware(udev, id->driver_info);
  853. if (r) {
  854. dev_err(&intf->dev,
  855. "couldn't load firmware. Error number %d\n", r);
  856. goto error;
  857. }
  858. r = usb_reset_configuration(udev);
  859. if (r) {
  860. dev_dbg_f(&intf->dev,
  861. "couldn't reset configuration. Error number %d\n", r);
  862. goto error;
  863. }
  864. /* At this point the interrupt endpoint is not generally enabled. We
  865. * save the USB bandwidth until the network device is opened. But
  866. * notify that the initialization of the MAC will require the
  867. * interrupts to be temporary enabled.
  868. */
  869. r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
  870. if (r) {
  871. dev_dbg_f(&intf->dev,
  872. "couldn't initialize mac. Error number %d\n", r);
  873. goto error;
  874. }
  875. r = register_netdev(netdev);
  876. if (r) {
  877. dev_dbg_f(&intf->dev,
  878. "couldn't register netdev. Error number %d\n", r);
  879. goto error;
  880. }
  881. dev_dbg_f(&intf->dev, "successful\n");
  882. dev_info(&intf->dev,"%s\n", netdev->name);
  883. return 0;
  884. error:
  885. usb_reset_device(interface_to_usbdev(intf));
  886. zd_netdev_free(netdev);
  887. return r;
  888. }
  889. static void disconnect(struct usb_interface *intf)
  890. {
  891. struct net_device *netdev = zd_intf_to_netdev(intf);
  892. struct zd_mac *mac = zd_netdev_mac(netdev);
  893. struct zd_usb *usb = &mac->chip.usb;
  894. dev_dbg_f(zd_usb_dev(usb), "\n");
  895. zd_netdev_disconnect(netdev);
  896. /* Just in case something has gone wrong! */
  897. zd_usb_disable_rx(usb);
  898. zd_usb_disable_int(usb);
  899. /* If the disconnect has been caused by a removal of the
  900. * driver module, the reset allows reloading of the driver. If the
  901. * reset will not be executed here, the upload of the firmware in the
  902. * probe function caused by the reloading of the driver will fail.
  903. */
  904. usb_reset_device(interface_to_usbdev(intf));
  905. /* If somebody still waits on this lock now, this is an error. */
  906. zd_netdev_free(netdev);
  907. dev_dbg(&intf->dev, "disconnected\n");
  908. }
  909. static struct usb_driver driver = {
  910. .name = "zd1211rw",
  911. .id_table = usb_ids,
  912. .probe = probe,
  913. .disconnect = disconnect,
  914. };
  915. static int __init usb_init(void)
  916. {
  917. int r;
  918. pr_debug("usb_init()\n");
  919. r = usb_register(&driver);
  920. if (r) {
  921. printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
  922. return r;
  923. }
  924. pr_debug("zd1211rw initialized\n");
  925. return 0;
  926. }
  927. static void __exit usb_exit(void)
  928. {
  929. pr_debug("usb_exit()\n");
  930. usb_deregister(&driver);
  931. }
  932. module_init(usb_init);
  933. module_exit(usb_exit);
  934. static int usb_int_regs_length(unsigned int count)
  935. {
  936. return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
  937. }
  938. static void prepare_read_regs_int(struct zd_usb *usb)
  939. {
  940. struct zd_usb_interrupt *intr = &usb->intr;
  941. spin_lock(&intr->lock);
  942. intr->read_regs_enabled = 1;
  943. INIT_COMPLETION(intr->read_regs.completion);
  944. spin_unlock(&intr->lock);
  945. }
  946. static int get_results(struct zd_usb *usb, u16 *values,
  947. struct usb_req_read_regs *req, unsigned int count)
  948. {
  949. int r;
  950. int i;
  951. struct zd_usb_interrupt *intr = &usb->intr;
  952. struct read_regs_int *rr = &intr->read_regs;
  953. struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
  954. spin_lock(&intr->lock);
  955. r = -EIO;
  956. /* The created block size seems to be larger than expected.
  957. * However results appear to be correct.
  958. */
  959. if (rr->length < usb_int_regs_length(count)) {
  960. dev_dbg_f(zd_usb_dev(usb),
  961. "error: actual length %d less than expected %d\n",
  962. rr->length, usb_int_regs_length(count));
  963. goto error_unlock;
  964. }
  965. if (rr->length > sizeof(rr->buffer)) {
  966. dev_dbg_f(zd_usb_dev(usb),
  967. "error: actual length %d exceeds buffer size %zu\n",
  968. rr->length, sizeof(rr->buffer));
  969. goto error_unlock;
  970. }
  971. for (i = 0; i < count; i++) {
  972. struct reg_data *rd = &regs->regs[i];
  973. if (rd->addr != req->addr[i]) {
  974. dev_dbg_f(zd_usb_dev(usb),
  975. "rd[%d] addr %#06hx expected %#06hx\n", i,
  976. le16_to_cpu(rd->addr),
  977. le16_to_cpu(req->addr[i]));
  978. goto error_unlock;
  979. }
  980. values[i] = le16_to_cpu(rd->value);
  981. }
  982. r = 0;
  983. error_unlock:
  984. spin_unlock(&intr->lock);
  985. return r;
  986. }
  987. int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
  988. const zd_addr_t *addresses, unsigned int count)
  989. {
  990. int r;
  991. int i, req_len, actual_req_len;
  992. struct usb_device *udev;
  993. struct usb_req_read_regs *req = NULL;
  994. unsigned long timeout;
  995. if (count < 1) {
  996. dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
  997. return -EINVAL;
  998. }
  999. if (count > USB_MAX_IOREAD16_COUNT) {
  1000. dev_dbg_f(zd_usb_dev(usb),
  1001. "error: count %u exceeds possible max %u\n",
  1002. count, USB_MAX_IOREAD16_COUNT);
  1003. return -EINVAL;
  1004. }
  1005. if (in_atomic()) {
  1006. dev_dbg_f(zd_usb_dev(usb),
  1007. "error: io in atomic context not supported\n");
  1008. return -EWOULDBLOCK;
  1009. }
  1010. if (!usb_int_enabled(usb)) {
  1011. dev_dbg_f(zd_usb_dev(usb),
  1012. "error: usb interrupt not enabled\n");
  1013. return -EWOULDBLOCK;
  1014. }
  1015. req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
  1016. req = kmalloc(req_len, GFP_NOFS);
  1017. if (!req)
  1018. return -ENOMEM;
  1019. req->id = cpu_to_le16(USB_REQ_READ_REGS);
  1020. for (i = 0; i < count; i++)
  1021. req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
  1022. udev = zd_usb_to_usbdev(usb);
  1023. prepare_read_regs_int(usb);
  1024. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1025. req, req_len, &actual_req_len, 1000 /* ms */);
  1026. if (r) {
  1027. dev_dbg_f(zd_usb_dev(usb),
  1028. "error in usb_bulk_msg(). Error number %d\n", r);
  1029. goto error;
  1030. }
  1031. if (req_len != actual_req_len) {
  1032. dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
  1033. " req_len %d != actual_req_len %d\n",
  1034. req_len, actual_req_len);
  1035. r = -EIO;
  1036. goto error;
  1037. }
  1038. timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
  1039. msecs_to_jiffies(1000));
  1040. if (!timeout) {
  1041. disable_read_regs_int(usb);
  1042. dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
  1043. r = -ETIMEDOUT;
  1044. goto error;
  1045. }
  1046. r = get_results(usb, values, req, count);
  1047. error:
  1048. kfree(req);
  1049. return r;
  1050. }
  1051. int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
  1052. unsigned int count)
  1053. {
  1054. int r;
  1055. struct usb_device *udev;
  1056. struct usb_req_write_regs *req = NULL;
  1057. int i, req_len, actual_req_len;
  1058. if (count == 0)
  1059. return 0;
  1060. if (count > USB_MAX_IOWRITE16_COUNT) {
  1061. dev_dbg_f(zd_usb_dev(usb),
  1062. "error: count %u exceeds possible max %u\n",
  1063. count, USB_MAX_IOWRITE16_COUNT);
  1064. return -EINVAL;
  1065. }
  1066. if (in_atomic()) {
  1067. dev_dbg_f(zd_usb_dev(usb),
  1068. "error: io in atomic context not supported\n");
  1069. return -EWOULDBLOCK;
  1070. }
  1071. req_len = sizeof(struct usb_req_write_regs) +
  1072. count * sizeof(struct reg_data);
  1073. req = kmalloc(req_len, GFP_NOFS);
  1074. if (!req)
  1075. return -ENOMEM;
  1076. req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
  1077. for (i = 0; i < count; i++) {
  1078. struct reg_data *rw = &req->reg_writes[i];
  1079. rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
  1080. rw->value = cpu_to_le16(ioreqs[i].value);
  1081. }
  1082. udev = zd_usb_to_usbdev(usb);
  1083. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1084. req, req_len, &actual_req_len, 1000 /* ms */);
  1085. if (r) {
  1086. dev_dbg_f(zd_usb_dev(usb),
  1087. "error in usb_bulk_msg(). Error number %d\n", r);
  1088. goto error;
  1089. }
  1090. if (req_len != actual_req_len) {
  1091. dev_dbg_f(zd_usb_dev(usb),
  1092. "error in usb_bulk_msg()"
  1093. " req_len %d != actual_req_len %d\n",
  1094. req_len, actual_req_len);
  1095. r = -EIO;
  1096. goto error;
  1097. }
  1098. /* FALL-THROUGH with r == 0 */
  1099. error:
  1100. kfree(req);
  1101. return r;
  1102. }
  1103. int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
  1104. {
  1105. int r;
  1106. struct usb_device *udev;
  1107. struct usb_req_rfwrite *req = NULL;
  1108. int i, req_len, actual_req_len;
  1109. u16 bit_value_template;
  1110. if (in_atomic()) {
  1111. dev_dbg_f(zd_usb_dev(usb),
  1112. "error: io in atomic context not supported\n");
  1113. return -EWOULDBLOCK;
  1114. }
  1115. if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
  1116. dev_dbg_f(zd_usb_dev(usb),
  1117. "error: bits %d are smaller than"
  1118. " USB_MIN_RFWRITE_BIT_COUNT %d\n",
  1119. bits, USB_MIN_RFWRITE_BIT_COUNT);
  1120. return -EINVAL;
  1121. }
  1122. if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
  1123. dev_dbg_f(zd_usb_dev(usb),
  1124. "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
  1125. bits, USB_MAX_RFWRITE_BIT_COUNT);
  1126. return -EINVAL;
  1127. }
  1128. #ifdef DEBUG
  1129. if (value & (~0UL << bits)) {
  1130. dev_dbg_f(zd_usb_dev(usb),
  1131. "error: value %#09x has bits >= %d set\n",
  1132. value, bits);
  1133. return -EINVAL;
  1134. }
  1135. #endif /* DEBUG */
  1136. dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
  1137. r = zd_usb_ioread16(usb, &bit_value_template, CR203);
  1138. if (r) {
  1139. dev_dbg_f(zd_usb_dev(usb),
  1140. "error %d: Couldn't read CR203\n", r);
  1141. goto out;
  1142. }
  1143. bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
  1144. req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
  1145. req = kmalloc(req_len, GFP_NOFS);
  1146. if (!req)
  1147. return -ENOMEM;
  1148. req->id = cpu_to_le16(USB_REQ_WRITE_RF);
  1149. /* 1: 3683a, but not used in ZYDAS driver */
  1150. req->value = cpu_to_le16(2);
  1151. req->bits = cpu_to_le16(bits);
  1152. for (i = 0; i < bits; i++) {
  1153. u16 bv = bit_value_template;
  1154. if (value & (1 << (bits-1-i)))
  1155. bv |= RF_DATA;
  1156. req->bit_values[i] = cpu_to_le16(bv);
  1157. }
  1158. udev = zd_usb_to_usbdev(usb);
  1159. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1160. req, req_len, &actual_req_len, 1000 /* ms */);
  1161. if (r) {
  1162. dev_dbg_f(zd_usb_dev(usb),
  1163. "error in usb_bulk_msg(). Error number %d\n", r);
  1164. goto out;
  1165. }
  1166. if (req_len != actual_req_len) {
  1167. dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
  1168. " req_len %d != actual_req_len %d\n",
  1169. req_len, actual_req_len);
  1170. r = -EIO;
  1171. goto out;
  1172. }
  1173. /* FALL-THROUGH with r == 0 */
  1174. out:
  1175. kfree(req);
  1176. return r;
  1177. }