sched_fair.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. #else /* CONFIG_FAIR_GROUP_SCHED */
  123. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  124. {
  125. return container_of(cfs_rq, struct rq, cfs);
  126. }
  127. #define entity_is_task(se) 1
  128. #define for_each_sched_entity(se) \
  129. for (; se; se = NULL)
  130. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  131. {
  132. return &task_rq(p)->cfs;
  133. }
  134. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  135. {
  136. struct task_struct *p = task_of(se);
  137. struct rq *rq = task_rq(p);
  138. return &rq->cfs;
  139. }
  140. /* runqueue "owned" by this group */
  141. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  142. {
  143. return NULL;
  144. }
  145. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  146. {
  147. return &cpu_rq(this_cpu)->cfs;
  148. }
  149. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  150. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  151. static inline int
  152. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  153. {
  154. return 1;
  155. }
  156. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  157. {
  158. return NULL;
  159. }
  160. #endif /* CONFIG_FAIR_GROUP_SCHED */
  161. /**************************************************************
  162. * Scheduling class tree data structure manipulation methods:
  163. */
  164. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  165. {
  166. s64 delta = (s64)(vruntime - min_vruntime);
  167. if (delta > 0)
  168. min_vruntime = vruntime;
  169. return min_vruntime;
  170. }
  171. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  172. {
  173. s64 delta = (s64)(vruntime - min_vruntime);
  174. if (delta < 0)
  175. min_vruntime = vruntime;
  176. return min_vruntime;
  177. }
  178. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  179. {
  180. return se->vruntime - cfs_rq->min_vruntime;
  181. }
  182. /*
  183. * Enqueue an entity into the rb-tree:
  184. */
  185. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  186. {
  187. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  188. struct rb_node *parent = NULL;
  189. struct sched_entity *entry;
  190. s64 key = entity_key(cfs_rq, se);
  191. int leftmost = 1;
  192. /*
  193. * Find the right place in the rbtree:
  194. */
  195. while (*link) {
  196. parent = *link;
  197. entry = rb_entry(parent, struct sched_entity, run_node);
  198. /*
  199. * We dont care about collisions. Nodes with
  200. * the same key stay together.
  201. */
  202. if (key < entity_key(cfs_rq, entry)) {
  203. link = &parent->rb_left;
  204. } else {
  205. link = &parent->rb_right;
  206. leftmost = 0;
  207. }
  208. }
  209. /*
  210. * Maintain a cache of leftmost tree entries (it is frequently
  211. * used):
  212. */
  213. if (leftmost) {
  214. cfs_rq->rb_leftmost = &se->run_node;
  215. /*
  216. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  217. * value tracking the leftmost vruntime in the tree.
  218. */
  219. cfs_rq->min_vruntime =
  220. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  221. }
  222. rb_link_node(&se->run_node, parent, link);
  223. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  224. }
  225. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  226. {
  227. if (cfs_rq->rb_leftmost == &se->run_node) {
  228. struct rb_node *next_node;
  229. struct sched_entity *next;
  230. next_node = rb_next(&se->run_node);
  231. cfs_rq->rb_leftmost = next_node;
  232. if (next_node) {
  233. next = rb_entry(next_node,
  234. struct sched_entity, run_node);
  235. cfs_rq->min_vruntime =
  236. max_vruntime(cfs_rq->min_vruntime,
  237. next->vruntime);
  238. }
  239. }
  240. if (cfs_rq->next == se)
  241. cfs_rq->next = NULL;
  242. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  243. }
  244. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  245. {
  246. return cfs_rq->rb_leftmost;
  247. }
  248. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  249. {
  250. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  251. }
  252. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  253. {
  254. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  255. if (!last)
  256. return NULL;
  257. return rb_entry(last, struct sched_entity, run_node);
  258. }
  259. /**************************************************************
  260. * Scheduling class statistics methods:
  261. */
  262. #ifdef CONFIG_SCHED_DEBUG
  263. int sched_nr_latency_handler(struct ctl_table *table, int write,
  264. struct file *filp, void __user *buffer, size_t *lenp,
  265. loff_t *ppos)
  266. {
  267. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  268. if (ret || !write)
  269. return ret;
  270. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  271. sysctl_sched_min_granularity);
  272. return 0;
  273. }
  274. #endif
  275. /*
  276. * delta *= P[w / rw]
  277. */
  278. static inline unsigned long
  279. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  280. {
  281. for_each_sched_entity(se) {
  282. delta = calc_delta_mine(delta,
  283. se->load.weight, &cfs_rq_of(se)->load);
  284. }
  285. return delta;
  286. }
  287. /*
  288. * delta /= w
  289. */
  290. static inline unsigned long
  291. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  292. {
  293. if (unlikely(se->load.weight != NICE_0_LOAD))
  294. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  295. return delta;
  296. }
  297. /*
  298. * The idea is to set a period in which each task runs once.
  299. *
  300. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  301. * this period because otherwise the slices get too small.
  302. *
  303. * p = (nr <= nl) ? l : l*nr/nl
  304. */
  305. static u64 __sched_period(unsigned long nr_running)
  306. {
  307. u64 period = sysctl_sched_latency;
  308. unsigned long nr_latency = sched_nr_latency;
  309. if (unlikely(nr_running > nr_latency)) {
  310. period = sysctl_sched_min_granularity;
  311. period *= nr_running;
  312. }
  313. return period;
  314. }
  315. /*
  316. * We calculate the wall-time slice from the period by taking a part
  317. * proportional to the weight.
  318. *
  319. * s = p*P[w/rw]
  320. */
  321. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  322. {
  323. unsigned long nr_running = cfs_rq->nr_running;
  324. if (unlikely(!se->on_rq))
  325. nr_running++;
  326. return calc_delta_weight(__sched_period(nr_running), se);
  327. }
  328. /*
  329. * We calculate the vruntime slice of a to be inserted task
  330. *
  331. * vs = s/w
  332. */
  333. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  334. {
  335. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  336. }
  337. /*
  338. * Update the current task's runtime statistics. Skip current tasks that
  339. * are not in our scheduling class.
  340. */
  341. static inline void
  342. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  343. unsigned long delta_exec)
  344. {
  345. unsigned long delta_exec_weighted;
  346. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  347. curr->sum_exec_runtime += delta_exec;
  348. schedstat_add(cfs_rq, exec_clock, delta_exec);
  349. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  350. curr->vruntime += delta_exec_weighted;
  351. }
  352. static void update_curr(struct cfs_rq *cfs_rq)
  353. {
  354. struct sched_entity *curr = cfs_rq->curr;
  355. u64 now = rq_of(cfs_rq)->clock;
  356. unsigned long delta_exec;
  357. if (unlikely(!curr))
  358. return;
  359. /*
  360. * Get the amount of time the current task was running
  361. * since the last time we changed load (this cannot
  362. * overflow on 32 bits):
  363. */
  364. delta_exec = (unsigned long)(now - curr->exec_start);
  365. __update_curr(cfs_rq, curr, delta_exec);
  366. curr->exec_start = now;
  367. if (entity_is_task(curr)) {
  368. struct task_struct *curtask = task_of(curr);
  369. cpuacct_charge(curtask, delta_exec);
  370. }
  371. }
  372. static inline void
  373. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  374. {
  375. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  376. }
  377. /*
  378. * Task is being enqueued - update stats:
  379. */
  380. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  381. {
  382. /*
  383. * Are we enqueueing a waiting task? (for current tasks
  384. * a dequeue/enqueue event is a NOP)
  385. */
  386. if (se != cfs_rq->curr)
  387. update_stats_wait_start(cfs_rq, se);
  388. }
  389. static void
  390. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  391. {
  392. schedstat_set(se->wait_max, max(se->wait_max,
  393. rq_of(cfs_rq)->clock - se->wait_start));
  394. schedstat_set(se->wait_count, se->wait_count + 1);
  395. schedstat_set(se->wait_sum, se->wait_sum +
  396. rq_of(cfs_rq)->clock - se->wait_start);
  397. schedstat_set(se->wait_start, 0);
  398. }
  399. static inline void
  400. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  401. {
  402. /*
  403. * Mark the end of the wait period if dequeueing a
  404. * waiting task:
  405. */
  406. if (se != cfs_rq->curr)
  407. update_stats_wait_end(cfs_rq, se);
  408. }
  409. /*
  410. * We are picking a new current task - update its stats:
  411. */
  412. static inline void
  413. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  414. {
  415. /*
  416. * We are starting a new run period:
  417. */
  418. se->exec_start = rq_of(cfs_rq)->clock;
  419. }
  420. /**************************************************
  421. * Scheduling class queueing methods:
  422. */
  423. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  424. static void
  425. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  426. {
  427. cfs_rq->task_weight += weight;
  428. }
  429. #else
  430. static inline void
  431. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  432. {
  433. }
  434. #endif
  435. static void
  436. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  437. {
  438. update_load_add(&cfs_rq->load, se->load.weight);
  439. if (!parent_entity(se))
  440. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  441. if (entity_is_task(se)) {
  442. add_cfs_task_weight(cfs_rq, se->load.weight);
  443. list_add(&se->group_node, &cfs_rq->tasks);
  444. }
  445. cfs_rq->nr_running++;
  446. se->on_rq = 1;
  447. }
  448. static void
  449. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  450. {
  451. update_load_sub(&cfs_rq->load, se->load.weight);
  452. if (!parent_entity(se))
  453. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  454. if (entity_is_task(se)) {
  455. add_cfs_task_weight(cfs_rq, -se->load.weight);
  456. list_del_init(&se->group_node);
  457. }
  458. cfs_rq->nr_running--;
  459. se->on_rq = 0;
  460. }
  461. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  462. {
  463. #ifdef CONFIG_SCHEDSTATS
  464. if (se->sleep_start) {
  465. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  466. struct task_struct *tsk = task_of(se);
  467. if ((s64)delta < 0)
  468. delta = 0;
  469. if (unlikely(delta > se->sleep_max))
  470. se->sleep_max = delta;
  471. se->sleep_start = 0;
  472. se->sum_sleep_runtime += delta;
  473. account_scheduler_latency(tsk, delta >> 10, 1);
  474. }
  475. if (se->block_start) {
  476. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  477. struct task_struct *tsk = task_of(se);
  478. if ((s64)delta < 0)
  479. delta = 0;
  480. if (unlikely(delta > se->block_max))
  481. se->block_max = delta;
  482. se->block_start = 0;
  483. se->sum_sleep_runtime += delta;
  484. /*
  485. * Blocking time is in units of nanosecs, so shift by 20 to
  486. * get a milliseconds-range estimation of the amount of
  487. * time that the task spent sleeping:
  488. */
  489. if (unlikely(prof_on == SLEEP_PROFILING)) {
  490. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  491. delta >> 20);
  492. }
  493. account_scheduler_latency(tsk, delta >> 10, 0);
  494. }
  495. #endif
  496. }
  497. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  498. {
  499. #ifdef CONFIG_SCHED_DEBUG
  500. s64 d = se->vruntime - cfs_rq->min_vruntime;
  501. if (d < 0)
  502. d = -d;
  503. if (d > 3*sysctl_sched_latency)
  504. schedstat_inc(cfs_rq, nr_spread_over);
  505. #endif
  506. }
  507. static void
  508. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  509. {
  510. u64 vruntime;
  511. if (first_fair(cfs_rq)) {
  512. vruntime = min_vruntime(cfs_rq->min_vruntime,
  513. __pick_next_entity(cfs_rq)->vruntime);
  514. } else
  515. vruntime = cfs_rq->min_vruntime;
  516. /*
  517. * The 'current' period is already promised to the current tasks,
  518. * however the extra weight of the new task will slow them down a
  519. * little, place the new task so that it fits in the slot that
  520. * stays open at the end.
  521. */
  522. if (initial && sched_feat(START_DEBIT))
  523. vruntime += sched_vslice(cfs_rq, se);
  524. if (!initial) {
  525. /* sleeps upto a single latency don't count. */
  526. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  527. unsigned long thresh = sysctl_sched_latency;
  528. /*
  529. * convert the sleeper threshold into virtual time
  530. */
  531. if (sched_feat(NORMALIZED_SLEEPER))
  532. thresh = calc_delta_fair(thresh, se);
  533. vruntime -= thresh;
  534. }
  535. /* ensure we never gain time by being placed backwards. */
  536. vruntime = max_vruntime(se->vruntime, vruntime);
  537. }
  538. se->vruntime = vruntime;
  539. }
  540. static void
  541. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  542. {
  543. /*
  544. * Update run-time statistics of the 'current'.
  545. */
  546. update_curr(cfs_rq);
  547. account_entity_enqueue(cfs_rq, se);
  548. if (wakeup) {
  549. place_entity(cfs_rq, se, 0);
  550. enqueue_sleeper(cfs_rq, se);
  551. }
  552. update_stats_enqueue(cfs_rq, se);
  553. check_spread(cfs_rq, se);
  554. if (se != cfs_rq->curr)
  555. __enqueue_entity(cfs_rq, se);
  556. }
  557. static void
  558. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  559. {
  560. /*
  561. * Update run-time statistics of the 'current'.
  562. */
  563. update_curr(cfs_rq);
  564. update_stats_dequeue(cfs_rq, se);
  565. if (sleep) {
  566. #ifdef CONFIG_SCHEDSTATS
  567. if (entity_is_task(se)) {
  568. struct task_struct *tsk = task_of(se);
  569. if (tsk->state & TASK_INTERRUPTIBLE)
  570. se->sleep_start = rq_of(cfs_rq)->clock;
  571. if (tsk->state & TASK_UNINTERRUPTIBLE)
  572. se->block_start = rq_of(cfs_rq)->clock;
  573. }
  574. #endif
  575. }
  576. if (se != cfs_rq->curr)
  577. __dequeue_entity(cfs_rq, se);
  578. account_entity_dequeue(cfs_rq, se);
  579. }
  580. /*
  581. * Preempt the current task with a newly woken task if needed:
  582. */
  583. static void
  584. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  585. {
  586. unsigned long ideal_runtime, delta_exec;
  587. ideal_runtime = sched_slice(cfs_rq, curr);
  588. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  589. if (delta_exec > ideal_runtime)
  590. resched_task(rq_of(cfs_rq)->curr);
  591. }
  592. static void
  593. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  594. {
  595. /* 'current' is not kept within the tree. */
  596. if (se->on_rq) {
  597. /*
  598. * Any task has to be enqueued before it get to execute on
  599. * a CPU. So account for the time it spent waiting on the
  600. * runqueue.
  601. */
  602. update_stats_wait_end(cfs_rq, se);
  603. __dequeue_entity(cfs_rq, se);
  604. }
  605. update_stats_curr_start(cfs_rq, se);
  606. cfs_rq->curr = se;
  607. #ifdef CONFIG_SCHEDSTATS
  608. /*
  609. * Track our maximum slice length, if the CPU's load is at
  610. * least twice that of our own weight (i.e. dont track it
  611. * when there are only lesser-weight tasks around):
  612. */
  613. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  614. se->slice_max = max(se->slice_max,
  615. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  616. }
  617. #endif
  618. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  619. }
  620. static struct sched_entity *
  621. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. struct rq *rq = rq_of(cfs_rq);
  624. u64 pair_slice = rq->clock - cfs_rq->pair_start;
  625. if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
  626. cfs_rq->pair_start = rq->clock;
  627. return se;
  628. }
  629. return cfs_rq->next;
  630. }
  631. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  632. {
  633. struct sched_entity *se = NULL;
  634. if (first_fair(cfs_rq)) {
  635. se = __pick_next_entity(cfs_rq);
  636. se = pick_next(cfs_rq, se);
  637. set_next_entity(cfs_rq, se);
  638. }
  639. return se;
  640. }
  641. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  642. {
  643. /*
  644. * If still on the runqueue then deactivate_task()
  645. * was not called and update_curr() has to be done:
  646. */
  647. if (prev->on_rq)
  648. update_curr(cfs_rq);
  649. check_spread(cfs_rq, prev);
  650. if (prev->on_rq) {
  651. update_stats_wait_start(cfs_rq, prev);
  652. /* Put 'current' back into the tree. */
  653. __enqueue_entity(cfs_rq, prev);
  654. }
  655. cfs_rq->curr = NULL;
  656. }
  657. static void
  658. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  659. {
  660. /*
  661. * Update run-time statistics of the 'current'.
  662. */
  663. update_curr(cfs_rq);
  664. #ifdef CONFIG_SCHED_HRTICK
  665. /*
  666. * queued ticks are scheduled to match the slice, so don't bother
  667. * validating it and just reschedule.
  668. */
  669. if (queued) {
  670. resched_task(rq_of(cfs_rq)->curr);
  671. return;
  672. }
  673. /*
  674. * don't let the period tick interfere with the hrtick preemption
  675. */
  676. if (!sched_feat(DOUBLE_TICK) &&
  677. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  678. return;
  679. #endif
  680. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  681. check_preempt_tick(cfs_rq, curr);
  682. }
  683. /**************************************************
  684. * CFS operations on tasks:
  685. */
  686. #ifdef CONFIG_SCHED_HRTICK
  687. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  688. {
  689. struct sched_entity *se = &p->se;
  690. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  691. WARN_ON(task_rq(p) != rq);
  692. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  693. u64 slice = sched_slice(cfs_rq, se);
  694. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  695. s64 delta = slice - ran;
  696. if (delta < 0) {
  697. if (rq->curr == p)
  698. resched_task(p);
  699. return;
  700. }
  701. /*
  702. * Don't schedule slices shorter than 10000ns, that just
  703. * doesn't make sense. Rely on vruntime for fairness.
  704. */
  705. if (rq->curr != p)
  706. delta = max_t(s64, 10000LL, delta);
  707. hrtick_start(rq, delta);
  708. }
  709. }
  710. /*
  711. * called from enqueue/dequeue and updates the hrtick when the
  712. * current task is from our class and nr_running is low enough
  713. * to matter.
  714. */
  715. static void hrtick_update(struct rq *rq)
  716. {
  717. struct task_struct *curr = rq->curr;
  718. if (curr->sched_class != &fair_sched_class)
  719. return;
  720. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  721. hrtick_start_fair(rq, curr);
  722. }
  723. #else /* !CONFIG_SCHED_HRTICK */
  724. static inline void
  725. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  726. {
  727. }
  728. static inline void hrtick_update(struct rq *rq)
  729. {
  730. }
  731. #endif
  732. /*
  733. * The enqueue_task method is called before nr_running is
  734. * increased. Here we update the fair scheduling stats and
  735. * then put the task into the rbtree:
  736. */
  737. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  738. {
  739. struct cfs_rq *cfs_rq;
  740. struct sched_entity *se = &p->se;
  741. for_each_sched_entity(se) {
  742. if (se->on_rq)
  743. break;
  744. cfs_rq = cfs_rq_of(se);
  745. enqueue_entity(cfs_rq, se, wakeup);
  746. wakeup = 1;
  747. }
  748. hrtick_update(rq);
  749. }
  750. /*
  751. * The dequeue_task method is called before nr_running is
  752. * decreased. We remove the task from the rbtree and
  753. * update the fair scheduling stats:
  754. */
  755. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  756. {
  757. struct cfs_rq *cfs_rq;
  758. struct sched_entity *se = &p->se;
  759. for_each_sched_entity(se) {
  760. cfs_rq = cfs_rq_of(se);
  761. dequeue_entity(cfs_rq, se, sleep);
  762. /* Don't dequeue parent if it has other entities besides us */
  763. if (cfs_rq->load.weight)
  764. break;
  765. sleep = 1;
  766. }
  767. hrtick_update(rq);
  768. }
  769. /*
  770. * sched_yield() support is very simple - we dequeue and enqueue.
  771. *
  772. * If compat_yield is turned on then we requeue to the end of the tree.
  773. */
  774. static void yield_task_fair(struct rq *rq)
  775. {
  776. struct task_struct *curr = rq->curr;
  777. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  778. struct sched_entity *rightmost, *se = &curr->se;
  779. /*
  780. * Are we the only task in the tree?
  781. */
  782. if (unlikely(cfs_rq->nr_running == 1))
  783. return;
  784. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  785. update_rq_clock(rq);
  786. /*
  787. * Update run-time statistics of the 'current'.
  788. */
  789. update_curr(cfs_rq);
  790. return;
  791. }
  792. /*
  793. * Find the rightmost entry in the rbtree:
  794. */
  795. rightmost = __pick_last_entity(cfs_rq);
  796. /*
  797. * Already in the rightmost position?
  798. */
  799. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  800. return;
  801. /*
  802. * Minimally necessary key value to be last in the tree:
  803. * Upon rescheduling, sched_class::put_prev_task() will place
  804. * 'current' within the tree based on its new key value.
  805. */
  806. se->vruntime = rightmost->vruntime + 1;
  807. }
  808. /*
  809. * wake_idle() will wake a task on an idle cpu if task->cpu is
  810. * not idle and an idle cpu is available. The span of cpus to
  811. * search starts with cpus closest then further out as needed,
  812. * so we always favor a closer, idle cpu.
  813. * Domains may include CPUs that are not usable for migration,
  814. * hence we need to mask them out (cpu_active_map)
  815. *
  816. * Returns the CPU we should wake onto.
  817. */
  818. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  819. static int wake_idle(int cpu, struct task_struct *p)
  820. {
  821. cpumask_t tmp;
  822. struct sched_domain *sd;
  823. int i;
  824. /*
  825. * If it is idle, then it is the best cpu to run this task.
  826. *
  827. * This cpu is also the best, if it has more than one task already.
  828. * Siblings must be also busy(in most cases) as they didn't already
  829. * pickup the extra load from this cpu and hence we need not check
  830. * sibling runqueue info. This will avoid the checks and cache miss
  831. * penalities associated with that.
  832. */
  833. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  834. return cpu;
  835. for_each_domain(cpu, sd) {
  836. if ((sd->flags & SD_WAKE_IDLE)
  837. || ((sd->flags & SD_WAKE_IDLE_FAR)
  838. && !task_hot(p, task_rq(p)->clock, sd))) {
  839. cpus_and(tmp, sd->span, p->cpus_allowed);
  840. cpus_and(tmp, tmp, cpu_active_map);
  841. for_each_cpu_mask_nr(i, tmp) {
  842. if (idle_cpu(i)) {
  843. if (i != task_cpu(p)) {
  844. schedstat_inc(p,
  845. se.nr_wakeups_idle);
  846. }
  847. return i;
  848. }
  849. }
  850. } else {
  851. break;
  852. }
  853. }
  854. return cpu;
  855. }
  856. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  857. static inline int wake_idle(int cpu, struct task_struct *p)
  858. {
  859. return cpu;
  860. }
  861. #endif
  862. #ifdef CONFIG_SMP
  863. #ifdef CONFIG_FAIR_GROUP_SCHED
  864. /*
  865. * effective_load() calculates the load change as seen from the root_task_group
  866. *
  867. * Adding load to a group doesn't make a group heavier, but can cause movement
  868. * of group shares between cpus. Assuming the shares were perfectly aligned one
  869. * can calculate the shift in shares.
  870. *
  871. * The problem is that perfectly aligning the shares is rather expensive, hence
  872. * we try to avoid doing that too often - see update_shares(), which ratelimits
  873. * this change.
  874. *
  875. * We compensate this by not only taking the current delta into account, but
  876. * also considering the delta between when the shares were last adjusted and
  877. * now.
  878. *
  879. * We still saw a performance dip, some tracing learned us that between
  880. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  881. * significantly. Therefore try to bias the error in direction of failing
  882. * the affine wakeup.
  883. *
  884. */
  885. static long effective_load(struct task_group *tg, int cpu,
  886. long wl, long wg)
  887. {
  888. struct sched_entity *se = tg->se[cpu];
  889. if (!tg->parent)
  890. return wl;
  891. /*
  892. * By not taking the decrease of shares on the other cpu into
  893. * account our error leans towards reducing the affine wakeups.
  894. */
  895. if (!wl && sched_feat(ASYM_EFF_LOAD))
  896. return wl;
  897. for_each_sched_entity(se) {
  898. long S, rw, s, a, b;
  899. long more_w;
  900. /*
  901. * Instead of using this increment, also add the difference
  902. * between when the shares were last updated and now.
  903. */
  904. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  905. wl += more_w;
  906. wg += more_w;
  907. S = se->my_q->tg->shares;
  908. s = se->my_q->shares;
  909. rw = se->my_q->rq_weight;
  910. a = S*(rw + wl);
  911. b = S*rw + s*wg;
  912. wl = s*(a-b);
  913. if (likely(b))
  914. wl /= b;
  915. /*
  916. * Assume the group is already running and will
  917. * thus already be accounted for in the weight.
  918. *
  919. * That is, moving shares between CPUs, does not
  920. * alter the group weight.
  921. */
  922. wg = 0;
  923. }
  924. return wl;
  925. }
  926. #else
  927. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  928. unsigned long wl, unsigned long wg)
  929. {
  930. return wl;
  931. }
  932. #endif
  933. static int
  934. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  935. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  936. int idx, unsigned long load, unsigned long this_load,
  937. unsigned int imbalance)
  938. {
  939. struct task_struct *curr = this_rq->curr;
  940. struct task_group *tg;
  941. unsigned long tl = this_load;
  942. unsigned long tl_per_task;
  943. unsigned long weight;
  944. int balanced;
  945. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  946. return 0;
  947. if (!sync && sched_feat(SYNC_WAKEUPS) &&
  948. curr->se.avg_overlap < sysctl_sched_migration_cost &&
  949. p->se.avg_overlap < sysctl_sched_migration_cost)
  950. sync = 1;
  951. /*
  952. * If sync wakeup then subtract the (maximum possible)
  953. * effect of the currently running task from the load
  954. * of the current CPU:
  955. */
  956. if (sync) {
  957. tg = task_group(current);
  958. weight = current->se.load.weight;
  959. tl += effective_load(tg, this_cpu, -weight, -weight);
  960. load += effective_load(tg, prev_cpu, 0, -weight);
  961. }
  962. tg = task_group(p);
  963. weight = p->se.load.weight;
  964. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  965. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  966. /*
  967. * If the currently running task will sleep within
  968. * a reasonable amount of time then attract this newly
  969. * woken task:
  970. */
  971. if (sync && balanced)
  972. return 1;
  973. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  974. tl_per_task = cpu_avg_load_per_task(this_cpu);
  975. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  976. tl_per_task)) {
  977. /*
  978. * This domain has SD_WAKE_AFFINE and
  979. * p is cache cold in this domain, and
  980. * there is no bad imbalance.
  981. */
  982. schedstat_inc(this_sd, ttwu_move_affine);
  983. schedstat_inc(p, se.nr_wakeups_affine);
  984. return 1;
  985. }
  986. return 0;
  987. }
  988. static int select_task_rq_fair(struct task_struct *p, int sync)
  989. {
  990. struct sched_domain *sd, *this_sd = NULL;
  991. int prev_cpu, this_cpu, new_cpu;
  992. unsigned long load, this_load;
  993. struct rq *this_rq;
  994. unsigned int imbalance;
  995. int idx;
  996. prev_cpu = task_cpu(p);
  997. this_cpu = smp_processor_id();
  998. this_rq = cpu_rq(this_cpu);
  999. new_cpu = prev_cpu;
  1000. if (prev_cpu == this_cpu)
  1001. goto out;
  1002. /*
  1003. * 'this_sd' is the first domain that both
  1004. * this_cpu and prev_cpu are present in:
  1005. */
  1006. for_each_domain(this_cpu, sd) {
  1007. if (cpu_isset(prev_cpu, sd->span)) {
  1008. this_sd = sd;
  1009. break;
  1010. }
  1011. }
  1012. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1013. goto out;
  1014. /*
  1015. * Check for affine wakeup and passive balancing possibilities.
  1016. */
  1017. if (!this_sd)
  1018. goto out;
  1019. idx = this_sd->wake_idx;
  1020. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1021. load = source_load(prev_cpu, idx);
  1022. this_load = target_load(this_cpu, idx);
  1023. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1024. load, this_load, imbalance))
  1025. return this_cpu;
  1026. /*
  1027. * Start passive balancing when half the imbalance_pct
  1028. * limit is reached.
  1029. */
  1030. if (this_sd->flags & SD_WAKE_BALANCE) {
  1031. if (imbalance*this_load <= 100*load) {
  1032. schedstat_inc(this_sd, ttwu_move_balance);
  1033. schedstat_inc(p, se.nr_wakeups_passive);
  1034. return this_cpu;
  1035. }
  1036. }
  1037. out:
  1038. return wake_idle(new_cpu, p);
  1039. }
  1040. #endif /* CONFIG_SMP */
  1041. static unsigned long wakeup_gran(struct sched_entity *se)
  1042. {
  1043. unsigned long gran = sysctl_sched_wakeup_granularity;
  1044. /*
  1045. * More easily preempt - nice tasks, while not making it harder for
  1046. * + nice tasks.
  1047. */
  1048. if (sched_feat(ASYM_GRAN))
  1049. gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
  1050. return gran;
  1051. }
  1052. /*
  1053. * Preempt the current task with a newly woken task if needed:
  1054. */
  1055. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1056. {
  1057. struct task_struct *curr = rq->curr;
  1058. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1059. struct sched_entity *se = &curr->se, *pse = &p->se;
  1060. s64 delta_exec;
  1061. if (unlikely(rt_prio(p->prio))) {
  1062. update_rq_clock(rq);
  1063. update_curr(cfs_rq);
  1064. resched_task(curr);
  1065. return;
  1066. }
  1067. if (unlikely(se == pse))
  1068. return;
  1069. cfs_rq_of(pse)->next = pse;
  1070. /*
  1071. * We can come here with TIF_NEED_RESCHED already set from new task
  1072. * wake up path.
  1073. */
  1074. if (test_tsk_need_resched(curr))
  1075. return;
  1076. /*
  1077. * Batch tasks do not preempt (their preemption is driven by
  1078. * the tick):
  1079. */
  1080. if (unlikely(p->policy == SCHED_BATCH))
  1081. return;
  1082. if (!sched_feat(WAKEUP_PREEMPT))
  1083. return;
  1084. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1085. (se->avg_overlap < sysctl_sched_migration_cost &&
  1086. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1087. resched_task(curr);
  1088. return;
  1089. }
  1090. delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1091. if (delta_exec > wakeup_gran(pse))
  1092. resched_task(curr);
  1093. }
  1094. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1095. {
  1096. struct task_struct *p;
  1097. struct cfs_rq *cfs_rq = &rq->cfs;
  1098. struct sched_entity *se;
  1099. if (unlikely(!cfs_rq->nr_running))
  1100. return NULL;
  1101. do {
  1102. se = pick_next_entity(cfs_rq);
  1103. cfs_rq = group_cfs_rq(se);
  1104. } while (cfs_rq);
  1105. p = task_of(se);
  1106. hrtick_start_fair(rq, p);
  1107. return p;
  1108. }
  1109. /*
  1110. * Account for a descheduled task:
  1111. */
  1112. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1113. {
  1114. struct sched_entity *se = &prev->se;
  1115. struct cfs_rq *cfs_rq;
  1116. for_each_sched_entity(se) {
  1117. cfs_rq = cfs_rq_of(se);
  1118. put_prev_entity(cfs_rq, se);
  1119. }
  1120. }
  1121. #ifdef CONFIG_SMP
  1122. /**************************************************
  1123. * Fair scheduling class load-balancing methods:
  1124. */
  1125. /*
  1126. * Load-balancing iterator. Note: while the runqueue stays locked
  1127. * during the whole iteration, the current task might be
  1128. * dequeued so the iterator has to be dequeue-safe. Here we
  1129. * achieve that by always pre-iterating before returning
  1130. * the current task:
  1131. */
  1132. static struct task_struct *
  1133. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1134. {
  1135. struct task_struct *p = NULL;
  1136. struct sched_entity *se;
  1137. if (next == &cfs_rq->tasks)
  1138. return NULL;
  1139. se = list_entry(next, struct sched_entity, group_node);
  1140. p = task_of(se);
  1141. cfs_rq->balance_iterator = next->next;
  1142. return p;
  1143. }
  1144. static struct task_struct *load_balance_start_fair(void *arg)
  1145. {
  1146. struct cfs_rq *cfs_rq = arg;
  1147. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1148. }
  1149. static struct task_struct *load_balance_next_fair(void *arg)
  1150. {
  1151. struct cfs_rq *cfs_rq = arg;
  1152. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1153. }
  1154. static unsigned long
  1155. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1156. unsigned long max_load_move, struct sched_domain *sd,
  1157. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1158. struct cfs_rq *cfs_rq)
  1159. {
  1160. struct rq_iterator cfs_rq_iterator;
  1161. cfs_rq_iterator.start = load_balance_start_fair;
  1162. cfs_rq_iterator.next = load_balance_next_fair;
  1163. cfs_rq_iterator.arg = cfs_rq;
  1164. return balance_tasks(this_rq, this_cpu, busiest,
  1165. max_load_move, sd, idle, all_pinned,
  1166. this_best_prio, &cfs_rq_iterator);
  1167. }
  1168. #ifdef CONFIG_FAIR_GROUP_SCHED
  1169. static unsigned long
  1170. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1171. unsigned long max_load_move,
  1172. struct sched_domain *sd, enum cpu_idle_type idle,
  1173. int *all_pinned, int *this_best_prio)
  1174. {
  1175. long rem_load_move = max_load_move;
  1176. int busiest_cpu = cpu_of(busiest);
  1177. struct task_group *tg;
  1178. rcu_read_lock();
  1179. update_h_load(busiest_cpu);
  1180. list_for_each_entry_rcu(tg, &task_groups, list) {
  1181. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1182. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1183. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1184. u64 rem_load, moved_load;
  1185. /*
  1186. * empty group
  1187. */
  1188. if (!busiest_cfs_rq->task_weight)
  1189. continue;
  1190. rem_load = (u64)rem_load_move * busiest_weight;
  1191. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1192. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1193. rem_load, sd, idle, all_pinned, this_best_prio,
  1194. tg->cfs_rq[busiest_cpu]);
  1195. if (!moved_load)
  1196. continue;
  1197. moved_load *= busiest_h_load;
  1198. moved_load = div_u64(moved_load, busiest_weight + 1);
  1199. rem_load_move -= moved_load;
  1200. if (rem_load_move < 0)
  1201. break;
  1202. }
  1203. rcu_read_unlock();
  1204. return max_load_move - rem_load_move;
  1205. }
  1206. #else
  1207. static unsigned long
  1208. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1209. unsigned long max_load_move,
  1210. struct sched_domain *sd, enum cpu_idle_type idle,
  1211. int *all_pinned, int *this_best_prio)
  1212. {
  1213. return __load_balance_fair(this_rq, this_cpu, busiest,
  1214. max_load_move, sd, idle, all_pinned,
  1215. this_best_prio, &busiest->cfs);
  1216. }
  1217. #endif
  1218. static int
  1219. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1220. struct sched_domain *sd, enum cpu_idle_type idle)
  1221. {
  1222. struct cfs_rq *busy_cfs_rq;
  1223. struct rq_iterator cfs_rq_iterator;
  1224. cfs_rq_iterator.start = load_balance_start_fair;
  1225. cfs_rq_iterator.next = load_balance_next_fair;
  1226. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1227. /*
  1228. * pass busy_cfs_rq argument into
  1229. * load_balance_[start|next]_fair iterators
  1230. */
  1231. cfs_rq_iterator.arg = busy_cfs_rq;
  1232. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1233. &cfs_rq_iterator))
  1234. return 1;
  1235. }
  1236. return 0;
  1237. }
  1238. #endif /* CONFIG_SMP */
  1239. /*
  1240. * scheduler tick hitting a task of our scheduling class:
  1241. */
  1242. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1243. {
  1244. struct cfs_rq *cfs_rq;
  1245. struct sched_entity *se = &curr->se;
  1246. for_each_sched_entity(se) {
  1247. cfs_rq = cfs_rq_of(se);
  1248. entity_tick(cfs_rq, se, queued);
  1249. }
  1250. }
  1251. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1252. /*
  1253. * Share the fairness runtime between parent and child, thus the
  1254. * total amount of pressure for CPU stays equal - new tasks
  1255. * get a chance to run but frequent forkers are not allowed to
  1256. * monopolize the CPU. Note: the parent runqueue is locked,
  1257. * the child is not running yet.
  1258. */
  1259. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1260. {
  1261. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1262. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1263. int this_cpu = smp_processor_id();
  1264. sched_info_queued(p);
  1265. update_curr(cfs_rq);
  1266. place_entity(cfs_rq, se, 1);
  1267. /* 'curr' will be NULL if the child belongs to a different group */
  1268. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1269. curr && curr->vruntime < se->vruntime) {
  1270. /*
  1271. * Upon rescheduling, sched_class::put_prev_task() will place
  1272. * 'current' within the tree based on its new key value.
  1273. */
  1274. swap(curr->vruntime, se->vruntime);
  1275. resched_task(rq->curr);
  1276. }
  1277. enqueue_task_fair(rq, p, 0);
  1278. }
  1279. /*
  1280. * Priority of the task has changed. Check to see if we preempt
  1281. * the current task.
  1282. */
  1283. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1284. int oldprio, int running)
  1285. {
  1286. /*
  1287. * Reschedule if we are currently running on this runqueue and
  1288. * our priority decreased, or if we are not currently running on
  1289. * this runqueue and our priority is higher than the current's
  1290. */
  1291. if (running) {
  1292. if (p->prio > oldprio)
  1293. resched_task(rq->curr);
  1294. } else
  1295. check_preempt_curr(rq, p, 0);
  1296. }
  1297. /*
  1298. * We switched to the sched_fair class.
  1299. */
  1300. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1301. int running)
  1302. {
  1303. /*
  1304. * We were most likely switched from sched_rt, so
  1305. * kick off the schedule if running, otherwise just see
  1306. * if we can still preempt the current task.
  1307. */
  1308. if (running)
  1309. resched_task(rq->curr);
  1310. else
  1311. check_preempt_curr(rq, p, 0);
  1312. }
  1313. /* Account for a task changing its policy or group.
  1314. *
  1315. * This routine is mostly called to set cfs_rq->curr field when a task
  1316. * migrates between groups/classes.
  1317. */
  1318. static void set_curr_task_fair(struct rq *rq)
  1319. {
  1320. struct sched_entity *se = &rq->curr->se;
  1321. for_each_sched_entity(se)
  1322. set_next_entity(cfs_rq_of(se), se);
  1323. }
  1324. #ifdef CONFIG_FAIR_GROUP_SCHED
  1325. static void moved_group_fair(struct task_struct *p)
  1326. {
  1327. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1328. update_curr(cfs_rq);
  1329. place_entity(cfs_rq, &p->se, 1);
  1330. }
  1331. #endif
  1332. /*
  1333. * All the scheduling class methods:
  1334. */
  1335. static const struct sched_class fair_sched_class = {
  1336. .next = &idle_sched_class,
  1337. .enqueue_task = enqueue_task_fair,
  1338. .dequeue_task = dequeue_task_fair,
  1339. .yield_task = yield_task_fair,
  1340. .check_preempt_curr = check_preempt_wakeup,
  1341. .pick_next_task = pick_next_task_fair,
  1342. .put_prev_task = put_prev_task_fair,
  1343. #ifdef CONFIG_SMP
  1344. .select_task_rq = select_task_rq_fair,
  1345. .load_balance = load_balance_fair,
  1346. .move_one_task = move_one_task_fair,
  1347. #endif
  1348. .set_curr_task = set_curr_task_fair,
  1349. .task_tick = task_tick_fair,
  1350. .task_new = task_new_fair,
  1351. .prio_changed = prio_changed_fair,
  1352. .switched_to = switched_to_fair,
  1353. #ifdef CONFIG_FAIR_GROUP_SCHED
  1354. .moved_group = moved_group_fair,
  1355. #endif
  1356. };
  1357. #ifdef CONFIG_SCHED_DEBUG
  1358. static void print_cfs_stats(struct seq_file *m, int cpu)
  1359. {
  1360. struct cfs_rq *cfs_rq;
  1361. rcu_read_lock();
  1362. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1363. print_cfs_rq(m, cpu, cfs_rq);
  1364. rcu_read_unlock();
  1365. }
  1366. #endif