intel_ringbuffer.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "i915_drv.h"
  32. #include "i915_drm.h"
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /*
  36. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  37. * over cache flushing.
  38. */
  39. struct pipe_control {
  40. struct drm_i915_gem_object *obj;
  41. volatile u32 *cpu_page;
  42. u32 gtt_offset;
  43. };
  44. static inline int ring_space(struct intel_ring_buffer *ring)
  45. {
  46. int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
  47. if (space < 0)
  48. space += ring->size;
  49. return space;
  50. }
  51. static u32 i915_gem_get_seqno(struct drm_device *dev)
  52. {
  53. drm_i915_private_t *dev_priv = dev->dev_private;
  54. u32 seqno;
  55. seqno = dev_priv->next_seqno;
  56. /* reserve 0 for non-seqno */
  57. if (++dev_priv->next_seqno == 0)
  58. dev_priv->next_seqno = 1;
  59. return seqno;
  60. }
  61. static int
  62. render_ring_flush(struct intel_ring_buffer *ring,
  63. u32 invalidate_domains,
  64. u32 flush_domains)
  65. {
  66. struct drm_device *dev = ring->dev;
  67. u32 cmd;
  68. int ret;
  69. /*
  70. * read/write caches:
  71. *
  72. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  73. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  74. * also flushed at 2d versus 3d pipeline switches.
  75. *
  76. * read-only caches:
  77. *
  78. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  79. * MI_READ_FLUSH is set, and is always flushed on 965.
  80. *
  81. * I915_GEM_DOMAIN_COMMAND may not exist?
  82. *
  83. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  84. * invalidated when MI_EXE_FLUSH is set.
  85. *
  86. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  87. * invalidated with every MI_FLUSH.
  88. *
  89. * TLBs:
  90. *
  91. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  92. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  93. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  94. * are flushed at any MI_FLUSH.
  95. */
  96. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  97. if ((invalidate_domains|flush_domains) &
  98. I915_GEM_DOMAIN_RENDER)
  99. cmd &= ~MI_NO_WRITE_FLUSH;
  100. if (INTEL_INFO(dev)->gen < 4) {
  101. /*
  102. * On the 965, the sampler cache always gets flushed
  103. * and this bit is reserved.
  104. */
  105. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  106. cmd |= MI_READ_FLUSH;
  107. }
  108. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  109. cmd |= MI_EXE_FLUSH;
  110. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  111. (IS_G4X(dev) || IS_GEN5(dev)))
  112. cmd |= MI_INVALIDATE_ISP;
  113. ret = intel_ring_begin(ring, 2);
  114. if (ret)
  115. return ret;
  116. intel_ring_emit(ring, cmd);
  117. intel_ring_emit(ring, MI_NOOP);
  118. intel_ring_advance(ring);
  119. return 0;
  120. }
  121. /**
  122. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  123. * implementing two workarounds on gen6. From section 1.4.7.1
  124. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  125. *
  126. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  127. * produced by non-pipelined state commands), software needs to first
  128. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  129. * 0.
  130. *
  131. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  132. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  133. *
  134. * And the workaround for these two requires this workaround first:
  135. *
  136. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  137. * BEFORE the pipe-control with a post-sync op and no write-cache
  138. * flushes.
  139. *
  140. * And this last workaround is tricky because of the requirements on
  141. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  142. * volume 2 part 1:
  143. *
  144. * "1 of the following must also be set:
  145. * - Render Target Cache Flush Enable ([12] of DW1)
  146. * - Depth Cache Flush Enable ([0] of DW1)
  147. * - Stall at Pixel Scoreboard ([1] of DW1)
  148. * - Depth Stall ([13] of DW1)
  149. * - Post-Sync Operation ([13] of DW1)
  150. * - Notify Enable ([8] of DW1)"
  151. *
  152. * The cache flushes require the workaround flush that triggered this
  153. * one, so we can't use it. Depth stall would trigger the same.
  154. * Post-sync nonzero is what triggered this second workaround, so we
  155. * can't use that one either. Notify enable is IRQs, which aren't
  156. * really our business. That leaves only stall at scoreboard.
  157. */
  158. static int
  159. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  160. {
  161. struct pipe_control *pc = ring->private;
  162. u32 scratch_addr = pc->gtt_offset + 128;
  163. int ret;
  164. ret = intel_ring_begin(ring, 6);
  165. if (ret)
  166. return ret;
  167. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  168. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  169. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  170. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  171. intel_ring_emit(ring, 0); /* low dword */
  172. intel_ring_emit(ring, 0); /* high dword */
  173. intel_ring_emit(ring, MI_NOOP);
  174. intel_ring_advance(ring);
  175. ret = intel_ring_begin(ring, 6);
  176. if (ret)
  177. return ret;
  178. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  179. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  180. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, 0);
  183. intel_ring_emit(ring, MI_NOOP);
  184. intel_ring_advance(ring);
  185. return 0;
  186. }
  187. static int
  188. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  189. u32 invalidate_domains, u32 flush_domains)
  190. {
  191. u32 flags = 0;
  192. struct pipe_control *pc = ring->private;
  193. u32 scratch_addr = pc->gtt_offset + 128;
  194. int ret;
  195. /* Force SNB workarounds for PIPE_CONTROL flushes */
  196. intel_emit_post_sync_nonzero_flush(ring);
  197. /* Just flush everything. Experiments have shown that reducing the
  198. * number of bits based on the write domains has little performance
  199. * impact.
  200. */
  201. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  202. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  203. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  206. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  207. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  208. ret = intel_ring_begin(ring, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, flags);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  214. intel_ring_emit(ring, 0); /* lower dword */
  215. intel_ring_emit(ring, 0); /* uppwer dword */
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static void ring_write_tail(struct intel_ring_buffer *ring,
  221. u32 value)
  222. {
  223. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  224. I915_WRITE_TAIL(ring, value);
  225. }
  226. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  227. {
  228. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  229. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  230. RING_ACTHD(ring->mmio_base) : ACTHD;
  231. return I915_READ(acthd_reg);
  232. }
  233. static int init_ring_common(struct intel_ring_buffer *ring)
  234. {
  235. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  236. struct drm_i915_gem_object *obj = ring->obj;
  237. u32 head;
  238. /* Stop the ring if it's running. */
  239. I915_WRITE_CTL(ring, 0);
  240. I915_WRITE_HEAD(ring, 0);
  241. ring->write_tail(ring, 0);
  242. /* Initialize the ring. */
  243. I915_WRITE_START(ring, obj->gtt_offset);
  244. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  245. /* G45 ring initialization fails to reset head to zero */
  246. if (head != 0) {
  247. DRM_DEBUG_KMS("%s head not reset to zero "
  248. "ctl %08x head %08x tail %08x start %08x\n",
  249. ring->name,
  250. I915_READ_CTL(ring),
  251. I915_READ_HEAD(ring),
  252. I915_READ_TAIL(ring),
  253. I915_READ_START(ring));
  254. I915_WRITE_HEAD(ring, 0);
  255. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  256. DRM_ERROR("failed to set %s head to zero "
  257. "ctl %08x head %08x tail %08x start %08x\n",
  258. ring->name,
  259. I915_READ_CTL(ring),
  260. I915_READ_HEAD(ring),
  261. I915_READ_TAIL(ring),
  262. I915_READ_START(ring));
  263. }
  264. }
  265. I915_WRITE_CTL(ring,
  266. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  267. | RING_REPORT_64K | RING_VALID);
  268. /* If the head is still not zero, the ring is dead */
  269. if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
  270. I915_READ_START(ring) != obj->gtt_offset ||
  271. (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
  272. DRM_ERROR("%s initialization failed "
  273. "ctl %08x head %08x tail %08x start %08x\n",
  274. ring->name,
  275. I915_READ_CTL(ring),
  276. I915_READ_HEAD(ring),
  277. I915_READ_TAIL(ring),
  278. I915_READ_START(ring));
  279. return -EIO;
  280. }
  281. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  282. i915_kernel_lost_context(ring->dev);
  283. else {
  284. ring->head = I915_READ_HEAD(ring);
  285. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  286. ring->space = ring_space(ring);
  287. }
  288. return 0;
  289. }
  290. static int
  291. init_pipe_control(struct intel_ring_buffer *ring)
  292. {
  293. struct pipe_control *pc;
  294. struct drm_i915_gem_object *obj;
  295. int ret;
  296. if (ring->private)
  297. return 0;
  298. pc = kmalloc(sizeof(*pc), GFP_KERNEL);
  299. if (!pc)
  300. return -ENOMEM;
  301. obj = i915_gem_alloc_object(ring->dev, 4096);
  302. if (obj == NULL) {
  303. DRM_ERROR("Failed to allocate seqno page\n");
  304. ret = -ENOMEM;
  305. goto err;
  306. }
  307. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  308. ret = i915_gem_object_pin(obj, 4096, true);
  309. if (ret)
  310. goto err_unref;
  311. pc->gtt_offset = obj->gtt_offset;
  312. pc->cpu_page = kmap(obj->pages[0]);
  313. if (pc->cpu_page == NULL)
  314. goto err_unpin;
  315. pc->obj = obj;
  316. ring->private = pc;
  317. return 0;
  318. err_unpin:
  319. i915_gem_object_unpin(obj);
  320. err_unref:
  321. drm_gem_object_unreference(&obj->base);
  322. err:
  323. kfree(pc);
  324. return ret;
  325. }
  326. static void
  327. cleanup_pipe_control(struct intel_ring_buffer *ring)
  328. {
  329. struct pipe_control *pc = ring->private;
  330. struct drm_i915_gem_object *obj;
  331. if (!ring->private)
  332. return;
  333. obj = pc->obj;
  334. kunmap(obj->pages[0]);
  335. i915_gem_object_unpin(obj);
  336. drm_gem_object_unreference(&obj->base);
  337. kfree(pc);
  338. ring->private = NULL;
  339. }
  340. static int init_render_ring(struct intel_ring_buffer *ring)
  341. {
  342. struct drm_device *dev = ring->dev;
  343. struct drm_i915_private *dev_priv = dev->dev_private;
  344. int ret = init_ring_common(ring);
  345. if (INTEL_INFO(dev)->gen > 3) {
  346. int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
  347. if (IS_GEN6(dev) || IS_GEN7(dev))
  348. mode |= MI_FLUSH_ENABLE << 16 | MI_FLUSH_ENABLE;
  349. I915_WRITE(MI_MODE, mode);
  350. if (IS_GEN7(dev))
  351. I915_WRITE(GFX_MODE_GEN7,
  352. GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  353. GFX_MODE_ENABLE(GFX_REPLAY_MODE));
  354. }
  355. if (INTEL_INFO(dev)->gen >= 5) {
  356. ret = init_pipe_control(ring);
  357. if (ret)
  358. return ret;
  359. }
  360. if (INTEL_INFO(dev)->gen >= 6) {
  361. I915_WRITE(INSTPM,
  362. INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
  363. }
  364. return ret;
  365. }
  366. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  367. {
  368. if (!ring->private)
  369. return;
  370. cleanup_pipe_control(ring);
  371. }
  372. static void
  373. update_mboxes(struct intel_ring_buffer *ring,
  374. u32 seqno,
  375. u32 mmio_offset)
  376. {
  377. intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
  378. MI_SEMAPHORE_GLOBAL_GTT |
  379. MI_SEMAPHORE_REGISTER |
  380. MI_SEMAPHORE_UPDATE);
  381. intel_ring_emit(ring, seqno);
  382. intel_ring_emit(ring, mmio_offset);
  383. }
  384. /**
  385. * gen6_add_request - Update the semaphore mailbox registers
  386. *
  387. * @ring - ring that is adding a request
  388. * @seqno - return seqno stuck into the ring
  389. *
  390. * Update the mailbox registers in the *other* rings with the current seqno.
  391. * This acts like a signal in the canonical semaphore.
  392. */
  393. static int
  394. gen6_add_request(struct intel_ring_buffer *ring,
  395. u32 *seqno)
  396. {
  397. u32 mbox1_reg;
  398. u32 mbox2_reg;
  399. int ret;
  400. ret = intel_ring_begin(ring, 10);
  401. if (ret)
  402. return ret;
  403. mbox1_reg = ring->signal_mbox[0];
  404. mbox2_reg = ring->signal_mbox[1];
  405. *seqno = i915_gem_get_seqno(ring->dev);
  406. update_mboxes(ring, *seqno, mbox1_reg);
  407. update_mboxes(ring, *seqno, mbox2_reg);
  408. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  409. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  410. intel_ring_emit(ring, *seqno);
  411. intel_ring_emit(ring, MI_USER_INTERRUPT);
  412. intel_ring_advance(ring);
  413. return 0;
  414. }
  415. /**
  416. * intel_ring_sync - sync the waiter to the signaller on seqno
  417. *
  418. * @waiter - ring that is waiting
  419. * @signaller - ring which has, or will signal
  420. * @seqno - seqno which the waiter will block on
  421. */
  422. static int
  423. intel_ring_sync(struct intel_ring_buffer *waiter,
  424. struct intel_ring_buffer *signaller,
  425. int ring,
  426. u32 seqno)
  427. {
  428. int ret;
  429. u32 dw1 = MI_SEMAPHORE_MBOX |
  430. MI_SEMAPHORE_COMPARE |
  431. MI_SEMAPHORE_REGISTER;
  432. ret = intel_ring_begin(waiter, 4);
  433. if (ret)
  434. return ret;
  435. intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
  436. intel_ring_emit(waiter, seqno);
  437. intel_ring_emit(waiter, 0);
  438. intel_ring_emit(waiter, MI_NOOP);
  439. intel_ring_advance(waiter);
  440. return 0;
  441. }
  442. /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
  443. int
  444. render_ring_sync_to(struct intel_ring_buffer *waiter,
  445. struct intel_ring_buffer *signaller,
  446. u32 seqno)
  447. {
  448. WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
  449. return intel_ring_sync(waiter,
  450. signaller,
  451. RCS,
  452. seqno);
  453. }
  454. /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
  455. int
  456. gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
  457. struct intel_ring_buffer *signaller,
  458. u32 seqno)
  459. {
  460. WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
  461. return intel_ring_sync(waiter,
  462. signaller,
  463. VCS,
  464. seqno);
  465. }
  466. /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
  467. int
  468. gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
  469. struct intel_ring_buffer *signaller,
  470. u32 seqno)
  471. {
  472. WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
  473. return intel_ring_sync(waiter,
  474. signaller,
  475. BCS,
  476. seqno);
  477. }
  478. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  479. do { \
  480. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  481. PIPE_CONTROL_DEPTH_STALL); \
  482. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  483. intel_ring_emit(ring__, 0); \
  484. intel_ring_emit(ring__, 0); \
  485. } while (0)
  486. static int
  487. pc_render_add_request(struct intel_ring_buffer *ring,
  488. u32 *result)
  489. {
  490. struct drm_device *dev = ring->dev;
  491. u32 seqno = i915_gem_get_seqno(dev);
  492. struct pipe_control *pc = ring->private;
  493. u32 scratch_addr = pc->gtt_offset + 128;
  494. int ret;
  495. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  496. * incoherent with writes to memory, i.e. completely fubar,
  497. * so we need to use PIPE_NOTIFY instead.
  498. *
  499. * However, we also need to workaround the qword write
  500. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  501. * memory before requesting an interrupt.
  502. */
  503. ret = intel_ring_begin(ring, 32);
  504. if (ret)
  505. return ret;
  506. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  507. PIPE_CONTROL_WRITE_FLUSH |
  508. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  509. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  510. intel_ring_emit(ring, seqno);
  511. intel_ring_emit(ring, 0);
  512. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  513. scratch_addr += 128; /* write to separate cachelines */
  514. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  515. scratch_addr += 128;
  516. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  517. scratch_addr += 128;
  518. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  519. scratch_addr += 128;
  520. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  521. scratch_addr += 128;
  522. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  523. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  524. PIPE_CONTROL_WRITE_FLUSH |
  525. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  526. PIPE_CONTROL_NOTIFY);
  527. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  528. intel_ring_emit(ring, seqno);
  529. intel_ring_emit(ring, 0);
  530. intel_ring_advance(ring);
  531. *result = seqno;
  532. return 0;
  533. }
  534. static int
  535. render_ring_add_request(struct intel_ring_buffer *ring,
  536. u32 *result)
  537. {
  538. struct drm_device *dev = ring->dev;
  539. u32 seqno = i915_gem_get_seqno(dev);
  540. int ret;
  541. ret = intel_ring_begin(ring, 4);
  542. if (ret)
  543. return ret;
  544. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  545. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  546. intel_ring_emit(ring, seqno);
  547. intel_ring_emit(ring, MI_USER_INTERRUPT);
  548. intel_ring_advance(ring);
  549. *result = seqno;
  550. return 0;
  551. }
  552. static u32
  553. gen6_ring_get_seqno(struct intel_ring_buffer *ring)
  554. {
  555. struct drm_device *dev = ring->dev;
  556. /* Workaround to force correct ordering between irq and seqno writes on
  557. * ivb (and maybe also on snb) by reading from a CS register (like
  558. * ACTHD) before reading the status page. */
  559. if (IS_GEN7(dev))
  560. intel_ring_get_active_head(ring);
  561. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  562. }
  563. static u32
  564. ring_get_seqno(struct intel_ring_buffer *ring)
  565. {
  566. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  567. }
  568. static u32
  569. pc_render_get_seqno(struct intel_ring_buffer *ring)
  570. {
  571. struct pipe_control *pc = ring->private;
  572. return pc->cpu_page[0];
  573. }
  574. static void
  575. ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  576. {
  577. dev_priv->gt_irq_mask &= ~mask;
  578. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  579. POSTING_READ(GTIMR);
  580. }
  581. static void
  582. ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  583. {
  584. dev_priv->gt_irq_mask |= mask;
  585. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  586. POSTING_READ(GTIMR);
  587. }
  588. static void
  589. i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  590. {
  591. dev_priv->irq_mask &= ~mask;
  592. I915_WRITE(IMR, dev_priv->irq_mask);
  593. POSTING_READ(IMR);
  594. }
  595. static void
  596. i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  597. {
  598. dev_priv->irq_mask |= mask;
  599. I915_WRITE(IMR, dev_priv->irq_mask);
  600. POSTING_READ(IMR);
  601. }
  602. static bool
  603. render_ring_get_irq(struct intel_ring_buffer *ring)
  604. {
  605. struct drm_device *dev = ring->dev;
  606. drm_i915_private_t *dev_priv = dev->dev_private;
  607. if (!dev->irq_enabled)
  608. return false;
  609. spin_lock(&ring->irq_lock);
  610. if (ring->irq_refcount++ == 0) {
  611. if (HAS_PCH_SPLIT(dev))
  612. ironlake_enable_irq(dev_priv,
  613. GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
  614. else
  615. i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
  616. }
  617. spin_unlock(&ring->irq_lock);
  618. return true;
  619. }
  620. static void
  621. render_ring_put_irq(struct intel_ring_buffer *ring)
  622. {
  623. struct drm_device *dev = ring->dev;
  624. drm_i915_private_t *dev_priv = dev->dev_private;
  625. spin_lock(&ring->irq_lock);
  626. if (--ring->irq_refcount == 0) {
  627. if (HAS_PCH_SPLIT(dev))
  628. ironlake_disable_irq(dev_priv,
  629. GT_USER_INTERRUPT |
  630. GT_PIPE_NOTIFY);
  631. else
  632. i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
  633. }
  634. spin_unlock(&ring->irq_lock);
  635. }
  636. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  637. {
  638. struct drm_device *dev = ring->dev;
  639. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  640. u32 mmio = 0;
  641. /* The ring status page addresses are no longer next to the rest of
  642. * the ring registers as of gen7.
  643. */
  644. if (IS_GEN7(dev)) {
  645. switch (ring->id) {
  646. case RING_RENDER:
  647. mmio = RENDER_HWS_PGA_GEN7;
  648. break;
  649. case RING_BLT:
  650. mmio = BLT_HWS_PGA_GEN7;
  651. break;
  652. case RING_BSD:
  653. mmio = BSD_HWS_PGA_GEN7;
  654. break;
  655. }
  656. } else if (IS_GEN6(ring->dev)) {
  657. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  658. } else {
  659. mmio = RING_HWS_PGA(ring->mmio_base);
  660. }
  661. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  662. POSTING_READ(mmio);
  663. }
  664. static int
  665. bsd_ring_flush(struct intel_ring_buffer *ring,
  666. u32 invalidate_domains,
  667. u32 flush_domains)
  668. {
  669. int ret;
  670. ret = intel_ring_begin(ring, 2);
  671. if (ret)
  672. return ret;
  673. intel_ring_emit(ring, MI_FLUSH);
  674. intel_ring_emit(ring, MI_NOOP);
  675. intel_ring_advance(ring);
  676. return 0;
  677. }
  678. static int
  679. ring_add_request(struct intel_ring_buffer *ring,
  680. u32 *result)
  681. {
  682. u32 seqno;
  683. int ret;
  684. ret = intel_ring_begin(ring, 4);
  685. if (ret)
  686. return ret;
  687. seqno = i915_gem_get_seqno(ring->dev);
  688. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  689. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  690. intel_ring_emit(ring, seqno);
  691. intel_ring_emit(ring, MI_USER_INTERRUPT);
  692. intel_ring_advance(ring);
  693. *result = seqno;
  694. return 0;
  695. }
  696. static bool
  697. gen7_blt_ring_get_irq(struct intel_ring_buffer *ring)
  698. {
  699. /* The BLT ring on IVB appears to have broken synchronization
  700. * between the seqno write and the interrupt, so that the
  701. * interrupt appears first. Returning false here makes
  702. * i915_wait_request() do a polling loop, instead.
  703. */
  704. return false;
  705. }
  706. static bool
  707. gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
  708. {
  709. struct drm_device *dev = ring->dev;
  710. drm_i915_private_t *dev_priv = dev->dev_private;
  711. if (!dev->irq_enabled)
  712. return false;
  713. /* It looks like we need to prevent the gt from suspending while waiting
  714. * for an notifiy irq, otherwise irqs seem to get lost on at least the
  715. * blt/bsd rings on ivb. */
  716. if (IS_GEN7(dev))
  717. gen6_gt_force_wake_get(dev_priv);
  718. spin_lock(&ring->irq_lock);
  719. if (ring->irq_refcount++ == 0) {
  720. ring->irq_mask &= ~rflag;
  721. I915_WRITE_IMR(ring, ring->irq_mask);
  722. ironlake_enable_irq(dev_priv, gflag);
  723. }
  724. spin_unlock(&ring->irq_lock);
  725. return true;
  726. }
  727. static void
  728. gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
  729. {
  730. struct drm_device *dev = ring->dev;
  731. drm_i915_private_t *dev_priv = dev->dev_private;
  732. spin_lock(&ring->irq_lock);
  733. if (--ring->irq_refcount == 0) {
  734. ring->irq_mask |= rflag;
  735. I915_WRITE_IMR(ring, ring->irq_mask);
  736. ironlake_disable_irq(dev_priv, gflag);
  737. }
  738. spin_unlock(&ring->irq_lock);
  739. if (IS_GEN7(dev))
  740. gen6_gt_force_wake_put(dev_priv);
  741. }
  742. static bool
  743. bsd_ring_get_irq(struct intel_ring_buffer *ring)
  744. {
  745. struct drm_device *dev = ring->dev;
  746. drm_i915_private_t *dev_priv = dev->dev_private;
  747. if (!dev->irq_enabled)
  748. return false;
  749. spin_lock(&ring->irq_lock);
  750. if (ring->irq_refcount++ == 0) {
  751. if (IS_G4X(dev))
  752. i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  753. else
  754. ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  755. }
  756. spin_unlock(&ring->irq_lock);
  757. return true;
  758. }
  759. static void
  760. bsd_ring_put_irq(struct intel_ring_buffer *ring)
  761. {
  762. struct drm_device *dev = ring->dev;
  763. drm_i915_private_t *dev_priv = dev->dev_private;
  764. spin_lock(&ring->irq_lock);
  765. if (--ring->irq_refcount == 0) {
  766. if (IS_G4X(dev))
  767. i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  768. else
  769. ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  770. }
  771. spin_unlock(&ring->irq_lock);
  772. }
  773. static int
  774. ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
  775. {
  776. int ret;
  777. ret = intel_ring_begin(ring, 2);
  778. if (ret)
  779. return ret;
  780. intel_ring_emit(ring,
  781. MI_BATCH_BUFFER_START | (2 << 6) |
  782. MI_BATCH_NON_SECURE_I965);
  783. intel_ring_emit(ring, offset);
  784. intel_ring_advance(ring);
  785. return 0;
  786. }
  787. static int
  788. render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  789. u32 offset, u32 len)
  790. {
  791. struct drm_device *dev = ring->dev;
  792. int ret;
  793. if (IS_I830(dev) || IS_845G(dev)) {
  794. ret = intel_ring_begin(ring, 4);
  795. if (ret)
  796. return ret;
  797. intel_ring_emit(ring, MI_BATCH_BUFFER);
  798. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  799. intel_ring_emit(ring, offset + len - 8);
  800. intel_ring_emit(ring, 0);
  801. } else {
  802. ret = intel_ring_begin(ring, 2);
  803. if (ret)
  804. return ret;
  805. if (INTEL_INFO(dev)->gen >= 4) {
  806. intel_ring_emit(ring,
  807. MI_BATCH_BUFFER_START | (2 << 6) |
  808. MI_BATCH_NON_SECURE_I965);
  809. intel_ring_emit(ring, offset);
  810. } else {
  811. intel_ring_emit(ring,
  812. MI_BATCH_BUFFER_START | (2 << 6));
  813. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  814. }
  815. }
  816. intel_ring_advance(ring);
  817. return 0;
  818. }
  819. static void cleanup_status_page(struct intel_ring_buffer *ring)
  820. {
  821. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  822. struct drm_i915_gem_object *obj;
  823. obj = ring->status_page.obj;
  824. if (obj == NULL)
  825. return;
  826. kunmap(obj->pages[0]);
  827. i915_gem_object_unpin(obj);
  828. drm_gem_object_unreference(&obj->base);
  829. ring->status_page.obj = NULL;
  830. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  831. }
  832. static int init_status_page(struct intel_ring_buffer *ring)
  833. {
  834. struct drm_device *dev = ring->dev;
  835. drm_i915_private_t *dev_priv = dev->dev_private;
  836. struct drm_i915_gem_object *obj;
  837. int ret;
  838. obj = i915_gem_alloc_object(dev, 4096);
  839. if (obj == NULL) {
  840. DRM_ERROR("Failed to allocate status page\n");
  841. ret = -ENOMEM;
  842. goto err;
  843. }
  844. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  845. ret = i915_gem_object_pin(obj, 4096, true);
  846. if (ret != 0) {
  847. goto err_unref;
  848. }
  849. ring->status_page.gfx_addr = obj->gtt_offset;
  850. ring->status_page.page_addr = kmap(obj->pages[0]);
  851. if (ring->status_page.page_addr == NULL) {
  852. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  853. goto err_unpin;
  854. }
  855. ring->status_page.obj = obj;
  856. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  857. intel_ring_setup_status_page(ring);
  858. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  859. ring->name, ring->status_page.gfx_addr);
  860. return 0;
  861. err_unpin:
  862. i915_gem_object_unpin(obj);
  863. err_unref:
  864. drm_gem_object_unreference(&obj->base);
  865. err:
  866. return ret;
  867. }
  868. int intel_init_ring_buffer(struct drm_device *dev,
  869. struct intel_ring_buffer *ring)
  870. {
  871. struct drm_i915_gem_object *obj;
  872. int ret;
  873. ring->dev = dev;
  874. INIT_LIST_HEAD(&ring->active_list);
  875. INIT_LIST_HEAD(&ring->request_list);
  876. INIT_LIST_HEAD(&ring->gpu_write_list);
  877. init_waitqueue_head(&ring->irq_queue);
  878. spin_lock_init(&ring->irq_lock);
  879. ring->irq_mask = ~0;
  880. if (I915_NEED_GFX_HWS(dev)) {
  881. ret = init_status_page(ring);
  882. if (ret)
  883. return ret;
  884. }
  885. obj = i915_gem_alloc_object(dev, ring->size);
  886. if (obj == NULL) {
  887. DRM_ERROR("Failed to allocate ringbuffer\n");
  888. ret = -ENOMEM;
  889. goto err_hws;
  890. }
  891. ring->obj = obj;
  892. ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
  893. if (ret)
  894. goto err_unref;
  895. ring->map.size = ring->size;
  896. ring->map.offset = dev->agp->base + obj->gtt_offset;
  897. ring->map.type = 0;
  898. ring->map.flags = 0;
  899. ring->map.mtrr = 0;
  900. drm_core_ioremap_wc(&ring->map, dev);
  901. if (ring->map.handle == NULL) {
  902. DRM_ERROR("Failed to map ringbuffer.\n");
  903. ret = -EINVAL;
  904. goto err_unpin;
  905. }
  906. ring->virtual_start = ring->map.handle;
  907. ret = ring->init(ring);
  908. if (ret)
  909. goto err_unmap;
  910. /* Workaround an erratum on the i830 which causes a hang if
  911. * the TAIL pointer points to within the last 2 cachelines
  912. * of the buffer.
  913. */
  914. ring->effective_size = ring->size;
  915. if (IS_I830(ring->dev))
  916. ring->effective_size -= 128;
  917. return 0;
  918. err_unmap:
  919. drm_core_ioremapfree(&ring->map, dev);
  920. err_unpin:
  921. i915_gem_object_unpin(obj);
  922. err_unref:
  923. drm_gem_object_unreference(&obj->base);
  924. ring->obj = NULL;
  925. err_hws:
  926. cleanup_status_page(ring);
  927. return ret;
  928. }
  929. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  930. {
  931. struct drm_i915_private *dev_priv;
  932. int ret;
  933. if (ring->obj == NULL)
  934. return;
  935. /* Disable the ring buffer. The ring must be idle at this point */
  936. dev_priv = ring->dev->dev_private;
  937. ret = intel_wait_ring_idle(ring);
  938. if (ret)
  939. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  940. ring->name, ret);
  941. I915_WRITE_CTL(ring, 0);
  942. drm_core_ioremapfree(&ring->map, ring->dev);
  943. i915_gem_object_unpin(ring->obj);
  944. drm_gem_object_unreference(&ring->obj->base);
  945. ring->obj = NULL;
  946. if (ring->cleanup)
  947. ring->cleanup(ring);
  948. cleanup_status_page(ring);
  949. }
  950. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  951. {
  952. unsigned int *virt;
  953. int rem = ring->size - ring->tail;
  954. if (ring->space < rem) {
  955. int ret = intel_wait_ring_buffer(ring, rem);
  956. if (ret)
  957. return ret;
  958. }
  959. virt = (unsigned int *)(ring->virtual_start + ring->tail);
  960. rem /= 8;
  961. while (rem--) {
  962. *virt++ = MI_NOOP;
  963. *virt++ = MI_NOOP;
  964. }
  965. ring->tail = 0;
  966. ring->space = ring_space(ring);
  967. return 0;
  968. }
  969. int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
  970. {
  971. struct drm_device *dev = ring->dev;
  972. struct drm_i915_private *dev_priv = dev->dev_private;
  973. unsigned long end;
  974. u32 head;
  975. /* If the reported head position has wrapped or hasn't advanced,
  976. * fallback to the slow and accurate path.
  977. */
  978. head = intel_read_status_page(ring, 4);
  979. if (head > ring->head) {
  980. ring->head = head;
  981. ring->space = ring_space(ring);
  982. if (ring->space >= n)
  983. return 0;
  984. }
  985. trace_i915_ring_wait_begin(ring);
  986. if (drm_core_check_feature(dev, DRIVER_GEM))
  987. /* With GEM the hangcheck timer should kick us out of the loop,
  988. * leaving it early runs the risk of corrupting GEM state (due
  989. * to running on almost untested codepaths). But on resume
  990. * timers don't work yet, so prevent a complete hang in that
  991. * case by choosing an insanely large timeout. */
  992. end = jiffies + 60 * HZ;
  993. else
  994. end = jiffies + 3 * HZ;
  995. do {
  996. ring->head = I915_READ_HEAD(ring);
  997. ring->space = ring_space(ring);
  998. if (ring->space >= n) {
  999. trace_i915_ring_wait_end(ring);
  1000. return 0;
  1001. }
  1002. if (dev->primary->master) {
  1003. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1004. if (master_priv->sarea_priv)
  1005. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1006. }
  1007. msleep(1);
  1008. if (atomic_read(&dev_priv->mm.wedged))
  1009. return -EAGAIN;
  1010. } while (!time_after(jiffies, end));
  1011. trace_i915_ring_wait_end(ring);
  1012. return -EBUSY;
  1013. }
  1014. int intel_ring_begin(struct intel_ring_buffer *ring,
  1015. int num_dwords)
  1016. {
  1017. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1018. int n = 4*num_dwords;
  1019. int ret;
  1020. if (unlikely(atomic_read(&dev_priv->mm.wedged)))
  1021. return -EIO;
  1022. if (unlikely(ring->tail + n > ring->effective_size)) {
  1023. ret = intel_wrap_ring_buffer(ring);
  1024. if (unlikely(ret))
  1025. return ret;
  1026. }
  1027. if (unlikely(ring->space < n)) {
  1028. ret = intel_wait_ring_buffer(ring, n);
  1029. if (unlikely(ret))
  1030. return ret;
  1031. }
  1032. ring->space -= n;
  1033. return 0;
  1034. }
  1035. void intel_ring_advance(struct intel_ring_buffer *ring)
  1036. {
  1037. ring->tail &= ring->size - 1;
  1038. ring->write_tail(ring, ring->tail);
  1039. }
  1040. static const struct intel_ring_buffer render_ring = {
  1041. .name = "render ring",
  1042. .id = RING_RENDER,
  1043. .mmio_base = RENDER_RING_BASE,
  1044. .size = 32 * PAGE_SIZE,
  1045. .init = init_render_ring,
  1046. .write_tail = ring_write_tail,
  1047. .flush = render_ring_flush,
  1048. .add_request = render_ring_add_request,
  1049. .get_seqno = ring_get_seqno,
  1050. .irq_get = render_ring_get_irq,
  1051. .irq_put = render_ring_put_irq,
  1052. .dispatch_execbuffer = render_ring_dispatch_execbuffer,
  1053. .cleanup = render_ring_cleanup,
  1054. .sync_to = render_ring_sync_to,
  1055. .semaphore_register = {MI_SEMAPHORE_SYNC_INVALID,
  1056. MI_SEMAPHORE_SYNC_RV,
  1057. MI_SEMAPHORE_SYNC_RB},
  1058. .signal_mbox = {GEN6_VRSYNC, GEN6_BRSYNC},
  1059. };
  1060. /* ring buffer for bit-stream decoder */
  1061. static const struct intel_ring_buffer bsd_ring = {
  1062. .name = "bsd ring",
  1063. .id = RING_BSD,
  1064. .mmio_base = BSD_RING_BASE,
  1065. .size = 32 * PAGE_SIZE,
  1066. .init = init_ring_common,
  1067. .write_tail = ring_write_tail,
  1068. .flush = bsd_ring_flush,
  1069. .add_request = ring_add_request,
  1070. .get_seqno = ring_get_seqno,
  1071. .irq_get = bsd_ring_get_irq,
  1072. .irq_put = bsd_ring_put_irq,
  1073. .dispatch_execbuffer = ring_dispatch_execbuffer,
  1074. };
  1075. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1076. u32 value)
  1077. {
  1078. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1079. /* Every tail move must follow the sequence below */
  1080. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1081. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1082. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
  1083. I915_WRITE(GEN6_BSD_RNCID, 0x0);
  1084. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1085. GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
  1086. 50))
  1087. DRM_ERROR("timed out waiting for IDLE Indicator\n");
  1088. I915_WRITE_TAIL(ring, value);
  1089. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1090. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1091. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
  1092. }
  1093. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1094. u32 invalidate, u32 flush)
  1095. {
  1096. uint32_t cmd;
  1097. int ret;
  1098. ret = intel_ring_begin(ring, 4);
  1099. if (ret)
  1100. return ret;
  1101. cmd = MI_FLUSH_DW;
  1102. if (invalidate & I915_GEM_GPU_DOMAINS)
  1103. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1104. intel_ring_emit(ring, cmd);
  1105. intel_ring_emit(ring, 0);
  1106. intel_ring_emit(ring, 0);
  1107. intel_ring_emit(ring, MI_NOOP);
  1108. intel_ring_advance(ring);
  1109. return 0;
  1110. }
  1111. static int
  1112. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1113. u32 offset, u32 len)
  1114. {
  1115. int ret;
  1116. ret = intel_ring_begin(ring, 2);
  1117. if (ret)
  1118. return ret;
  1119. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
  1120. /* bit0-7 is the length on GEN6+ */
  1121. intel_ring_emit(ring, offset);
  1122. intel_ring_advance(ring);
  1123. return 0;
  1124. }
  1125. static bool
  1126. gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
  1127. {
  1128. return gen6_ring_get_irq(ring,
  1129. GT_USER_INTERRUPT,
  1130. GEN6_RENDER_USER_INTERRUPT);
  1131. }
  1132. static void
  1133. gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
  1134. {
  1135. return gen6_ring_put_irq(ring,
  1136. GT_USER_INTERRUPT,
  1137. GEN6_RENDER_USER_INTERRUPT);
  1138. }
  1139. static bool
  1140. gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
  1141. {
  1142. return gen6_ring_get_irq(ring,
  1143. GT_GEN6_BSD_USER_INTERRUPT,
  1144. GEN6_BSD_USER_INTERRUPT);
  1145. }
  1146. static void
  1147. gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
  1148. {
  1149. return gen6_ring_put_irq(ring,
  1150. GT_GEN6_BSD_USER_INTERRUPT,
  1151. GEN6_BSD_USER_INTERRUPT);
  1152. }
  1153. /* ring buffer for Video Codec for Gen6+ */
  1154. static const struct intel_ring_buffer gen6_bsd_ring = {
  1155. .name = "gen6 bsd ring",
  1156. .id = RING_BSD,
  1157. .mmio_base = GEN6_BSD_RING_BASE,
  1158. .size = 32 * PAGE_SIZE,
  1159. .init = init_ring_common,
  1160. .write_tail = gen6_bsd_ring_write_tail,
  1161. .flush = gen6_ring_flush,
  1162. .add_request = gen6_add_request,
  1163. .get_seqno = gen6_ring_get_seqno,
  1164. .irq_get = gen6_bsd_ring_get_irq,
  1165. .irq_put = gen6_bsd_ring_put_irq,
  1166. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1167. .sync_to = gen6_bsd_ring_sync_to,
  1168. .semaphore_register = {MI_SEMAPHORE_SYNC_VR,
  1169. MI_SEMAPHORE_SYNC_INVALID,
  1170. MI_SEMAPHORE_SYNC_VB},
  1171. .signal_mbox = {GEN6_RVSYNC, GEN6_BVSYNC},
  1172. };
  1173. /* Blitter support (SandyBridge+) */
  1174. static bool
  1175. blt_ring_get_irq(struct intel_ring_buffer *ring)
  1176. {
  1177. return gen6_ring_get_irq(ring,
  1178. GT_BLT_USER_INTERRUPT,
  1179. GEN6_BLITTER_USER_INTERRUPT);
  1180. }
  1181. static void
  1182. blt_ring_put_irq(struct intel_ring_buffer *ring)
  1183. {
  1184. gen6_ring_put_irq(ring,
  1185. GT_BLT_USER_INTERRUPT,
  1186. GEN6_BLITTER_USER_INTERRUPT);
  1187. }
  1188. /* Workaround for some stepping of SNB,
  1189. * each time when BLT engine ring tail moved,
  1190. * the first command in the ring to be parsed
  1191. * should be MI_BATCH_BUFFER_START
  1192. */
  1193. #define NEED_BLT_WORKAROUND(dev) \
  1194. (IS_GEN6(dev) && (dev->pdev->revision < 8))
  1195. static inline struct drm_i915_gem_object *
  1196. to_blt_workaround(struct intel_ring_buffer *ring)
  1197. {
  1198. return ring->private;
  1199. }
  1200. static int blt_ring_init(struct intel_ring_buffer *ring)
  1201. {
  1202. if (NEED_BLT_WORKAROUND(ring->dev)) {
  1203. struct drm_i915_gem_object *obj;
  1204. u32 *ptr;
  1205. int ret;
  1206. obj = i915_gem_alloc_object(ring->dev, 4096);
  1207. if (obj == NULL)
  1208. return -ENOMEM;
  1209. ret = i915_gem_object_pin(obj, 4096, true);
  1210. if (ret) {
  1211. drm_gem_object_unreference(&obj->base);
  1212. return ret;
  1213. }
  1214. ptr = kmap(obj->pages[0]);
  1215. *ptr++ = MI_BATCH_BUFFER_END;
  1216. *ptr++ = MI_NOOP;
  1217. kunmap(obj->pages[0]);
  1218. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  1219. if (ret) {
  1220. i915_gem_object_unpin(obj);
  1221. drm_gem_object_unreference(&obj->base);
  1222. return ret;
  1223. }
  1224. ring->private = obj;
  1225. }
  1226. return init_ring_common(ring);
  1227. }
  1228. static int blt_ring_begin(struct intel_ring_buffer *ring,
  1229. int num_dwords)
  1230. {
  1231. if (ring->private) {
  1232. int ret = intel_ring_begin(ring, num_dwords+2);
  1233. if (ret)
  1234. return ret;
  1235. intel_ring_emit(ring, MI_BATCH_BUFFER_START);
  1236. intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);
  1237. return 0;
  1238. } else
  1239. return intel_ring_begin(ring, 4);
  1240. }
  1241. static int blt_ring_flush(struct intel_ring_buffer *ring,
  1242. u32 invalidate, u32 flush)
  1243. {
  1244. uint32_t cmd;
  1245. int ret;
  1246. ret = blt_ring_begin(ring, 4);
  1247. if (ret)
  1248. return ret;
  1249. cmd = MI_FLUSH_DW;
  1250. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1251. cmd |= MI_INVALIDATE_TLB;
  1252. intel_ring_emit(ring, cmd);
  1253. intel_ring_emit(ring, 0);
  1254. intel_ring_emit(ring, 0);
  1255. intel_ring_emit(ring, MI_NOOP);
  1256. intel_ring_advance(ring);
  1257. return 0;
  1258. }
  1259. static void blt_ring_cleanup(struct intel_ring_buffer *ring)
  1260. {
  1261. if (!ring->private)
  1262. return;
  1263. i915_gem_object_unpin(ring->private);
  1264. drm_gem_object_unreference(ring->private);
  1265. ring->private = NULL;
  1266. }
  1267. static const struct intel_ring_buffer gen6_blt_ring = {
  1268. .name = "blt ring",
  1269. .id = RING_BLT,
  1270. .mmio_base = BLT_RING_BASE,
  1271. .size = 32 * PAGE_SIZE,
  1272. .init = blt_ring_init,
  1273. .write_tail = ring_write_tail,
  1274. .flush = blt_ring_flush,
  1275. .add_request = gen6_add_request,
  1276. .get_seqno = gen6_ring_get_seqno,
  1277. .irq_get = blt_ring_get_irq,
  1278. .irq_put = blt_ring_put_irq,
  1279. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1280. .cleanup = blt_ring_cleanup,
  1281. .sync_to = gen6_blt_ring_sync_to,
  1282. .semaphore_register = {MI_SEMAPHORE_SYNC_BR,
  1283. MI_SEMAPHORE_SYNC_BV,
  1284. MI_SEMAPHORE_SYNC_INVALID},
  1285. .signal_mbox = {GEN6_RBSYNC, GEN6_VBSYNC},
  1286. };
  1287. int intel_init_render_ring_buffer(struct drm_device *dev)
  1288. {
  1289. drm_i915_private_t *dev_priv = dev->dev_private;
  1290. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1291. *ring = render_ring;
  1292. if (INTEL_INFO(dev)->gen >= 6) {
  1293. ring->add_request = gen6_add_request;
  1294. ring->flush = gen6_render_ring_flush;
  1295. ring->irq_get = gen6_render_ring_get_irq;
  1296. ring->irq_put = gen6_render_ring_put_irq;
  1297. ring->get_seqno = gen6_ring_get_seqno;
  1298. } else if (IS_GEN5(dev)) {
  1299. ring->add_request = pc_render_add_request;
  1300. ring->get_seqno = pc_render_get_seqno;
  1301. }
  1302. if (!I915_NEED_GFX_HWS(dev)) {
  1303. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1304. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1305. }
  1306. return intel_init_ring_buffer(dev, ring);
  1307. }
  1308. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1309. {
  1310. drm_i915_private_t *dev_priv = dev->dev_private;
  1311. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1312. *ring = render_ring;
  1313. if (INTEL_INFO(dev)->gen >= 6) {
  1314. ring->add_request = gen6_add_request;
  1315. ring->irq_get = gen6_render_ring_get_irq;
  1316. ring->irq_put = gen6_render_ring_put_irq;
  1317. } else if (IS_GEN5(dev)) {
  1318. ring->add_request = pc_render_add_request;
  1319. ring->get_seqno = pc_render_get_seqno;
  1320. }
  1321. if (!I915_NEED_GFX_HWS(dev))
  1322. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1323. ring->dev = dev;
  1324. INIT_LIST_HEAD(&ring->active_list);
  1325. INIT_LIST_HEAD(&ring->request_list);
  1326. INIT_LIST_HEAD(&ring->gpu_write_list);
  1327. ring->size = size;
  1328. ring->effective_size = ring->size;
  1329. if (IS_I830(ring->dev))
  1330. ring->effective_size -= 128;
  1331. ring->map.offset = start;
  1332. ring->map.size = size;
  1333. ring->map.type = 0;
  1334. ring->map.flags = 0;
  1335. ring->map.mtrr = 0;
  1336. drm_core_ioremap_wc(&ring->map, dev);
  1337. if (ring->map.handle == NULL) {
  1338. DRM_ERROR("can not ioremap virtual address for"
  1339. " ring buffer\n");
  1340. return -ENOMEM;
  1341. }
  1342. ring->virtual_start = (void __force __iomem *)ring->map.handle;
  1343. return 0;
  1344. }
  1345. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1346. {
  1347. drm_i915_private_t *dev_priv = dev->dev_private;
  1348. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1349. if (IS_GEN6(dev) || IS_GEN7(dev))
  1350. *ring = gen6_bsd_ring;
  1351. else
  1352. *ring = bsd_ring;
  1353. return intel_init_ring_buffer(dev, ring);
  1354. }
  1355. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1356. {
  1357. drm_i915_private_t *dev_priv = dev->dev_private;
  1358. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1359. *ring = gen6_blt_ring;
  1360. if (IS_GEN7(dev))
  1361. ring->irq_get = gen7_blt_ring_get_irq;
  1362. return intel_init_ring_buffer(dev, ring);
  1363. }