spi-pl022.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459
  1. /*
  2. * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
  3. *
  4. * Copyright (C) 2008-2009 ST-Ericsson AB
  5. * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
  6. *
  7. * Author: Linus Walleij <linus.walleij@stericsson.com>
  8. *
  9. * Initial version inspired by:
  10. * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  11. * Initial adoption to PL022 by:
  12. * Sachin Verma <sachin.verma@st.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. */
  24. #include <linux/init.h>
  25. #include <linux/module.h>
  26. #include <linux/device.h>
  27. #include <linux/ioport.h>
  28. #include <linux/errno.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/spi/spi.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/delay.h>
  33. #include <linux/clk.h>
  34. #include <linux/err.h>
  35. #include <linux/amba/bus.h>
  36. #include <linux/amba/pl022.h>
  37. #include <linux/io.h>
  38. #include <linux/slab.h>
  39. #include <linux/dmaengine.h>
  40. #include <linux/dma-mapping.h>
  41. #include <linux/scatterlist.h>
  42. #include <linux/pm_runtime.h>
  43. /*
  44. * This macro is used to define some register default values.
  45. * reg is masked with mask, the OR:ed with an (again masked)
  46. * val shifted sb steps to the left.
  47. */
  48. #define SSP_WRITE_BITS(reg, val, mask, sb) \
  49. ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  50. /*
  51. * This macro is also used to define some default values.
  52. * It will just shift val by sb steps to the left and mask
  53. * the result with mask.
  54. */
  55. #define GEN_MASK_BITS(val, mask, sb) \
  56. (((val)<<(sb)) & (mask))
  57. #define DRIVE_TX 0
  58. #define DO_NOT_DRIVE_TX 1
  59. #define DO_NOT_QUEUE_DMA 0
  60. #define QUEUE_DMA 1
  61. #define RX_TRANSFER 1
  62. #define TX_TRANSFER 2
  63. /*
  64. * Macros to access SSP Registers with their offsets
  65. */
  66. #define SSP_CR0(r) (r + 0x000)
  67. #define SSP_CR1(r) (r + 0x004)
  68. #define SSP_DR(r) (r + 0x008)
  69. #define SSP_SR(r) (r + 0x00C)
  70. #define SSP_CPSR(r) (r + 0x010)
  71. #define SSP_IMSC(r) (r + 0x014)
  72. #define SSP_RIS(r) (r + 0x018)
  73. #define SSP_MIS(r) (r + 0x01C)
  74. #define SSP_ICR(r) (r + 0x020)
  75. #define SSP_DMACR(r) (r + 0x024)
  76. #define SSP_ITCR(r) (r + 0x080)
  77. #define SSP_ITIP(r) (r + 0x084)
  78. #define SSP_ITOP(r) (r + 0x088)
  79. #define SSP_TDR(r) (r + 0x08C)
  80. #define SSP_PID0(r) (r + 0xFE0)
  81. #define SSP_PID1(r) (r + 0xFE4)
  82. #define SSP_PID2(r) (r + 0xFE8)
  83. #define SSP_PID3(r) (r + 0xFEC)
  84. #define SSP_CID0(r) (r + 0xFF0)
  85. #define SSP_CID1(r) (r + 0xFF4)
  86. #define SSP_CID2(r) (r + 0xFF8)
  87. #define SSP_CID3(r) (r + 0xFFC)
  88. /*
  89. * SSP Control Register 0 - SSP_CR0
  90. */
  91. #define SSP_CR0_MASK_DSS (0x0FUL << 0)
  92. #define SSP_CR0_MASK_FRF (0x3UL << 4)
  93. #define SSP_CR0_MASK_SPO (0x1UL << 6)
  94. #define SSP_CR0_MASK_SPH (0x1UL << 7)
  95. #define SSP_CR0_MASK_SCR (0xFFUL << 8)
  96. /*
  97. * The ST version of this block moves som bits
  98. * in SSP_CR0 and extends it to 32 bits
  99. */
  100. #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
  101. #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
  102. #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
  103. #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
  104. /*
  105. * SSP Control Register 0 - SSP_CR1
  106. */
  107. #define SSP_CR1_MASK_LBM (0x1UL << 0)
  108. #define SSP_CR1_MASK_SSE (0x1UL << 1)
  109. #define SSP_CR1_MASK_MS (0x1UL << 2)
  110. #define SSP_CR1_MASK_SOD (0x1UL << 3)
  111. /*
  112. * The ST version of this block adds some bits
  113. * in SSP_CR1
  114. */
  115. #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
  116. #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
  117. #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
  118. #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
  119. #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
  120. /* This one is only in the PL023 variant */
  121. #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
  122. /*
  123. * SSP Status Register - SSP_SR
  124. */
  125. #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
  126. #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
  127. #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
  128. #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
  129. #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
  130. /*
  131. * SSP Clock Prescale Register - SSP_CPSR
  132. */
  133. #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
  134. /*
  135. * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
  136. */
  137. #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
  138. #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
  139. #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
  140. #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
  141. /*
  142. * SSP Raw Interrupt Status Register - SSP_RIS
  143. */
  144. /* Receive Overrun Raw Interrupt status */
  145. #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
  146. /* Receive Timeout Raw Interrupt status */
  147. #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
  148. /* Receive FIFO Raw Interrupt status */
  149. #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
  150. /* Transmit FIFO Raw Interrupt status */
  151. #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
  152. /*
  153. * SSP Masked Interrupt Status Register - SSP_MIS
  154. */
  155. /* Receive Overrun Masked Interrupt status */
  156. #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
  157. /* Receive Timeout Masked Interrupt status */
  158. #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
  159. /* Receive FIFO Masked Interrupt status */
  160. #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
  161. /* Transmit FIFO Masked Interrupt status */
  162. #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
  163. /*
  164. * SSP Interrupt Clear Register - SSP_ICR
  165. */
  166. /* Receive Overrun Raw Clear Interrupt bit */
  167. #define SSP_ICR_MASK_RORIC (0x1UL << 0)
  168. /* Receive Timeout Clear Interrupt bit */
  169. #define SSP_ICR_MASK_RTIC (0x1UL << 1)
  170. /*
  171. * SSP DMA Control Register - SSP_DMACR
  172. */
  173. /* Receive DMA Enable bit */
  174. #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
  175. /* Transmit DMA Enable bit */
  176. #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
  177. /*
  178. * SSP Integration Test control Register - SSP_ITCR
  179. */
  180. #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
  181. #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
  182. /*
  183. * SSP Integration Test Input Register - SSP_ITIP
  184. */
  185. #define ITIP_MASK_SSPRXD (0x1UL << 0)
  186. #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
  187. #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
  188. #define ITIP_MASK_RXDMAC (0x1UL << 3)
  189. #define ITIP_MASK_TXDMAC (0x1UL << 4)
  190. #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
  191. /*
  192. * SSP Integration Test output Register - SSP_ITOP
  193. */
  194. #define ITOP_MASK_SSPTXD (0x1UL << 0)
  195. #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
  196. #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
  197. #define ITOP_MASK_SSPOEn (0x1UL << 3)
  198. #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
  199. #define ITOP_MASK_RORINTR (0x1UL << 5)
  200. #define ITOP_MASK_RTINTR (0x1UL << 6)
  201. #define ITOP_MASK_RXINTR (0x1UL << 7)
  202. #define ITOP_MASK_TXINTR (0x1UL << 8)
  203. #define ITOP_MASK_INTR (0x1UL << 9)
  204. #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
  205. #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
  206. #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
  207. #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
  208. /*
  209. * SSP Test Data Register - SSP_TDR
  210. */
  211. #define TDR_MASK_TESTDATA (0xFFFFFFFF)
  212. /*
  213. * Message State
  214. * we use the spi_message.state (void *) pointer to
  215. * hold a single state value, that's why all this
  216. * (void *) casting is done here.
  217. */
  218. #define STATE_START ((void *) 0)
  219. #define STATE_RUNNING ((void *) 1)
  220. #define STATE_DONE ((void *) 2)
  221. #define STATE_ERROR ((void *) -1)
  222. /*
  223. * SSP State - Whether Enabled or Disabled
  224. */
  225. #define SSP_DISABLED (0)
  226. #define SSP_ENABLED (1)
  227. /*
  228. * SSP DMA State - Whether DMA Enabled or Disabled
  229. */
  230. #define SSP_DMA_DISABLED (0)
  231. #define SSP_DMA_ENABLED (1)
  232. /*
  233. * SSP Clock Defaults
  234. */
  235. #define SSP_DEFAULT_CLKRATE 0x2
  236. #define SSP_DEFAULT_PRESCALE 0x40
  237. /*
  238. * SSP Clock Parameter ranges
  239. */
  240. #define CPSDVR_MIN 0x02
  241. #define CPSDVR_MAX 0xFE
  242. #define SCR_MIN 0x00
  243. #define SCR_MAX 0xFF
  244. /*
  245. * SSP Interrupt related Macros
  246. */
  247. #define DEFAULT_SSP_REG_IMSC 0x0UL
  248. #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
  249. #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
  250. #define CLEAR_ALL_INTERRUPTS 0x3
  251. #define SPI_POLLING_TIMEOUT 1000
  252. /*
  253. * The type of reading going on on this chip
  254. */
  255. enum ssp_reading {
  256. READING_NULL,
  257. READING_U8,
  258. READING_U16,
  259. READING_U32
  260. };
  261. /**
  262. * The type of writing going on on this chip
  263. */
  264. enum ssp_writing {
  265. WRITING_NULL,
  266. WRITING_U8,
  267. WRITING_U16,
  268. WRITING_U32
  269. };
  270. /**
  271. * struct vendor_data - vendor-specific config parameters
  272. * for PL022 derivates
  273. * @fifodepth: depth of FIFOs (both)
  274. * @max_bpw: maximum number of bits per word
  275. * @unidir: supports unidirection transfers
  276. * @extended_cr: 32 bit wide control register 0 with extra
  277. * features and extra features in CR1 as found in the ST variants
  278. * @pl023: supports a subset of the ST extensions called "PL023"
  279. */
  280. struct vendor_data {
  281. int fifodepth;
  282. int max_bpw;
  283. bool unidir;
  284. bool extended_cr;
  285. bool pl023;
  286. bool loopback;
  287. };
  288. /**
  289. * struct pl022 - This is the private SSP driver data structure
  290. * @adev: AMBA device model hookup
  291. * @vendor: vendor data for the IP block
  292. * @phybase: the physical memory where the SSP device resides
  293. * @virtbase: the virtual memory where the SSP is mapped
  294. * @clk: outgoing clock "SPICLK" for the SPI bus
  295. * @master: SPI framework hookup
  296. * @master_info: controller-specific data from machine setup
  297. * @workqueue: a workqueue on which any spi_message request is queued
  298. * @pump_messages: work struct for scheduling work to the workqueue
  299. * @queue_lock: spinlock to syncronise access to message queue
  300. * @queue: message queue
  301. * @busy: workqueue is busy
  302. * @running: workqueue is running
  303. * @pump_transfers: Tasklet used in Interrupt Transfer mode
  304. * @cur_msg: Pointer to current spi_message being processed
  305. * @cur_transfer: Pointer to current spi_transfer
  306. * @cur_chip: pointer to current clients chip(assigned from controller_state)
  307. * @tx: current position in TX buffer to be read
  308. * @tx_end: end position in TX buffer to be read
  309. * @rx: current position in RX buffer to be written
  310. * @rx_end: end position in RX buffer to be written
  311. * @read: the type of read currently going on
  312. * @write: the type of write currently going on
  313. * @exp_fifo_level: expected FIFO level
  314. * @dma_rx_channel: optional channel for RX DMA
  315. * @dma_tx_channel: optional channel for TX DMA
  316. * @sgt_rx: scattertable for the RX transfer
  317. * @sgt_tx: scattertable for the TX transfer
  318. * @dummypage: a dummy page used for driving data on the bus with DMA
  319. */
  320. struct pl022 {
  321. struct amba_device *adev;
  322. struct vendor_data *vendor;
  323. resource_size_t phybase;
  324. void __iomem *virtbase;
  325. struct clk *clk;
  326. struct spi_master *master;
  327. struct pl022_ssp_controller *master_info;
  328. /* Driver message queue */
  329. struct workqueue_struct *workqueue;
  330. struct work_struct pump_messages;
  331. spinlock_t queue_lock;
  332. struct list_head queue;
  333. bool busy;
  334. bool running;
  335. /* Message transfer pump */
  336. struct tasklet_struct pump_transfers;
  337. struct spi_message *cur_msg;
  338. struct spi_transfer *cur_transfer;
  339. struct chip_data *cur_chip;
  340. void *tx;
  341. void *tx_end;
  342. void *rx;
  343. void *rx_end;
  344. enum ssp_reading read;
  345. enum ssp_writing write;
  346. u32 exp_fifo_level;
  347. enum ssp_rx_level_trig rx_lev_trig;
  348. enum ssp_tx_level_trig tx_lev_trig;
  349. /* DMA settings */
  350. #ifdef CONFIG_DMA_ENGINE
  351. struct dma_chan *dma_rx_channel;
  352. struct dma_chan *dma_tx_channel;
  353. struct sg_table sgt_rx;
  354. struct sg_table sgt_tx;
  355. char *dummypage;
  356. #endif
  357. };
  358. /**
  359. * struct chip_data - To maintain runtime state of SSP for each client chip
  360. * @cr0: Value of control register CR0 of SSP - on later ST variants this
  361. * register is 32 bits wide rather than just 16
  362. * @cr1: Value of control register CR1 of SSP
  363. * @dmacr: Value of DMA control Register of SSP
  364. * @cpsr: Value of Clock prescale register
  365. * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
  366. * @enable_dma: Whether to enable DMA or not
  367. * @read: function ptr to be used to read when doing xfer for this chip
  368. * @write: function ptr to be used to write when doing xfer for this chip
  369. * @cs_control: chip select callback provided by chip
  370. * @xfer_type: polling/interrupt/DMA
  371. *
  372. * Runtime state of the SSP controller, maintained per chip,
  373. * This would be set according to the current message that would be served
  374. */
  375. struct chip_data {
  376. u32 cr0;
  377. u16 cr1;
  378. u16 dmacr;
  379. u16 cpsr;
  380. u8 n_bytes;
  381. bool enable_dma;
  382. enum ssp_reading read;
  383. enum ssp_writing write;
  384. void (*cs_control) (u32 command);
  385. int xfer_type;
  386. };
  387. /**
  388. * null_cs_control - Dummy chip select function
  389. * @command: select/delect the chip
  390. *
  391. * If no chip select function is provided by client this is used as dummy
  392. * chip select
  393. */
  394. static void null_cs_control(u32 command)
  395. {
  396. pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
  397. }
  398. /**
  399. * giveback - current spi_message is over, schedule next message and call
  400. * callback of this message. Assumes that caller already
  401. * set message->status; dma and pio irqs are blocked
  402. * @pl022: SSP driver private data structure
  403. */
  404. static void giveback(struct pl022 *pl022)
  405. {
  406. struct spi_transfer *last_transfer;
  407. unsigned long flags;
  408. struct spi_message *msg;
  409. void (*curr_cs_control) (u32 command);
  410. /*
  411. * This local reference to the chip select function
  412. * is needed because we set curr_chip to NULL
  413. * as a step toward termininating the message.
  414. */
  415. curr_cs_control = pl022->cur_chip->cs_control;
  416. spin_lock_irqsave(&pl022->queue_lock, flags);
  417. msg = pl022->cur_msg;
  418. pl022->cur_msg = NULL;
  419. pl022->cur_transfer = NULL;
  420. pl022->cur_chip = NULL;
  421. queue_work(pl022->workqueue, &pl022->pump_messages);
  422. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  423. last_transfer = list_entry(msg->transfers.prev,
  424. struct spi_transfer,
  425. transfer_list);
  426. /* Delay if requested before any change in chip select */
  427. if (last_transfer->delay_usecs)
  428. /*
  429. * FIXME: This runs in interrupt context.
  430. * Is this really smart?
  431. */
  432. udelay(last_transfer->delay_usecs);
  433. /*
  434. * Drop chip select UNLESS cs_change is true or we are returning
  435. * a message with an error, or next message is for another chip
  436. */
  437. if (!last_transfer->cs_change)
  438. curr_cs_control(SSP_CHIP_DESELECT);
  439. else {
  440. struct spi_message *next_msg;
  441. /* Holding of cs was hinted, but we need to make sure
  442. * the next message is for the same chip. Don't waste
  443. * time with the following tests unless this was hinted.
  444. *
  445. * We cannot postpone this until pump_messages, because
  446. * after calling msg->complete (below) the driver that
  447. * sent the current message could be unloaded, which
  448. * could invalidate the cs_control() callback...
  449. */
  450. /* get a pointer to the next message, if any */
  451. spin_lock_irqsave(&pl022->queue_lock, flags);
  452. if (list_empty(&pl022->queue))
  453. next_msg = NULL;
  454. else
  455. next_msg = list_entry(pl022->queue.next,
  456. struct spi_message, queue);
  457. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  458. /* see if the next and current messages point
  459. * to the same chip
  460. */
  461. if (next_msg && next_msg->spi != msg->spi)
  462. next_msg = NULL;
  463. if (!next_msg || msg->state == STATE_ERROR)
  464. curr_cs_control(SSP_CHIP_DESELECT);
  465. }
  466. msg->state = NULL;
  467. if (msg->complete)
  468. msg->complete(msg->context);
  469. /* This message is completed, so let's turn off the clocks & power */
  470. pm_runtime_put(&pl022->adev->dev);
  471. }
  472. /**
  473. * flush - flush the FIFO to reach a clean state
  474. * @pl022: SSP driver private data structure
  475. */
  476. static int flush(struct pl022 *pl022)
  477. {
  478. unsigned long limit = loops_per_jiffy << 1;
  479. dev_dbg(&pl022->adev->dev, "flush\n");
  480. do {
  481. while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  482. readw(SSP_DR(pl022->virtbase));
  483. } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
  484. pl022->exp_fifo_level = 0;
  485. return limit;
  486. }
  487. /**
  488. * restore_state - Load configuration of current chip
  489. * @pl022: SSP driver private data structure
  490. */
  491. static void restore_state(struct pl022 *pl022)
  492. {
  493. struct chip_data *chip = pl022->cur_chip;
  494. if (pl022->vendor->extended_cr)
  495. writel(chip->cr0, SSP_CR0(pl022->virtbase));
  496. else
  497. writew(chip->cr0, SSP_CR0(pl022->virtbase));
  498. writew(chip->cr1, SSP_CR1(pl022->virtbase));
  499. writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
  500. writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
  501. writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
  502. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  503. }
  504. /*
  505. * Default SSP Register Values
  506. */
  507. #define DEFAULT_SSP_REG_CR0 ( \
  508. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
  509. GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
  510. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  511. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  512. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
  513. )
  514. /* ST versions have slightly different bit layout */
  515. #define DEFAULT_SSP_REG_CR0_ST ( \
  516. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
  517. GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
  518. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  519. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  520. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
  521. GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
  522. GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
  523. )
  524. /* The PL023 version is slightly different again */
  525. #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
  526. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
  527. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  528. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  529. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
  530. )
  531. #define DEFAULT_SSP_REG_CR1 ( \
  532. GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
  533. GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
  534. GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
  535. GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
  536. )
  537. /* ST versions extend this register to use all 16 bits */
  538. #define DEFAULT_SSP_REG_CR1_ST ( \
  539. DEFAULT_SSP_REG_CR1 | \
  540. GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
  541. GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
  542. GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
  543. GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
  544. GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
  545. )
  546. /*
  547. * The PL023 variant has further differences: no loopback mode, no microwire
  548. * support, and a new clock feedback delay setting.
  549. */
  550. #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
  551. GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
  552. GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
  553. GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
  554. GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
  555. GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
  556. GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
  557. GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
  558. GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
  559. )
  560. #define DEFAULT_SSP_REG_CPSR ( \
  561. GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
  562. )
  563. #define DEFAULT_SSP_REG_DMACR (\
  564. GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
  565. GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
  566. )
  567. /**
  568. * load_ssp_default_config - Load default configuration for SSP
  569. * @pl022: SSP driver private data structure
  570. */
  571. static void load_ssp_default_config(struct pl022 *pl022)
  572. {
  573. if (pl022->vendor->pl023) {
  574. writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
  575. writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
  576. } else if (pl022->vendor->extended_cr) {
  577. writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
  578. writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
  579. } else {
  580. writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
  581. writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
  582. }
  583. writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
  584. writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
  585. writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
  586. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  587. }
  588. /**
  589. * This will write to TX and read from RX according to the parameters
  590. * set in pl022.
  591. */
  592. static void readwriter(struct pl022 *pl022)
  593. {
  594. /*
  595. * The FIFO depth is different between primecell variants.
  596. * I believe filling in too much in the FIFO might cause
  597. * errons in 8bit wide transfers on ARM variants (just 8 words
  598. * FIFO, means only 8x8 = 64 bits in FIFO) at least.
  599. *
  600. * To prevent this issue, the TX FIFO is only filled to the
  601. * unused RX FIFO fill length, regardless of what the TX
  602. * FIFO status flag indicates.
  603. */
  604. dev_dbg(&pl022->adev->dev,
  605. "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
  606. __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
  607. /* Read as much as you can */
  608. while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  609. && (pl022->rx < pl022->rx_end)) {
  610. switch (pl022->read) {
  611. case READING_NULL:
  612. readw(SSP_DR(pl022->virtbase));
  613. break;
  614. case READING_U8:
  615. *(u8 *) (pl022->rx) =
  616. readw(SSP_DR(pl022->virtbase)) & 0xFFU;
  617. break;
  618. case READING_U16:
  619. *(u16 *) (pl022->rx) =
  620. (u16) readw(SSP_DR(pl022->virtbase));
  621. break;
  622. case READING_U32:
  623. *(u32 *) (pl022->rx) =
  624. readl(SSP_DR(pl022->virtbase));
  625. break;
  626. }
  627. pl022->rx += (pl022->cur_chip->n_bytes);
  628. pl022->exp_fifo_level--;
  629. }
  630. /*
  631. * Write as much as possible up to the RX FIFO size
  632. */
  633. while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
  634. && (pl022->tx < pl022->tx_end)) {
  635. switch (pl022->write) {
  636. case WRITING_NULL:
  637. writew(0x0, SSP_DR(pl022->virtbase));
  638. break;
  639. case WRITING_U8:
  640. writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
  641. break;
  642. case WRITING_U16:
  643. writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
  644. break;
  645. case WRITING_U32:
  646. writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
  647. break;
  648. }
  649. pl022->tx += (pl022->cur_chip->n_bytes);
  650. pl022->exp_fifo_level++;
  651. /*
  652. * This inner reader takes care of things appearing in the RX
  653. * FIFO as we're transmitting. This will happen a lot since the
  654. * clock starts running when you put things into the TX FIFO,
  655. * and then things are continuously clocked into the RX FIFO.
  656. */
  657. while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  658. && (pl022->rx < pl022->rx_end)) {
  659. switch (pl022->read) {
  660. case READING_NULL:
  661. readw(SSP_DR(pl022->virtbase));
  662. break;
  663. case READING_U8:
  664. *(u8 *) (pl022->rx) =
  665. readw(SSP_DR(pl022->virtbase)) & 0xFFU;
  666. break;
  667. case READING_U16:
  668. *(u16 *) (pl022->rx) =
  669. (u16) readw(SSP_DR(pl022->virtbase));
  670. break;
  671. case READING_U32:
  672. *(u32 *) (pl022->rx) =
  673. readl(SSP_DR(pl022->virtbase));
  674. break;
  675. }
  676. pl022->rx += (pl022->cur_chip->n_bytes);
  677. pl022->exp_fifo_level--;
  678. }
  679. }
  680. /*
  681. * When we exit here the TX FIFO should be full and the RX FIFO
  682. * should be empty
  683. */
  684. }
  685. /**
  686. * next_transfer - Move to the Next transfer in the current spi message
  687. * @pl022: SSP driver private data structure
  688. *
  689. * This function moves though the linked list of spi transfers in the
  690. * current spi message and returns with the state of current spi
  691. * message i.e whether its last transfer is done(STATE_DONE) or
  692. * Next transfer is ready(STATE_RUNNING)
  693. */
  694. static void *next_transfer(struct pl022 *pl022)
  695. {
  696. struct spi_message *msg = pl022->cur_msg;
  697. struct spi_transfer *trans = pl022->cur_transfer;
  698. /* Move to next transfer */
  699. if (trans->transfer_list.next != &msg->transfers) {
  700. pl022->cur_transfer =
  701. list_entry(trans->transfer_list.next,
  702. struct spi_transfer, transfer_list);
  703. return STATE_RUNNING;
  704. }
  705. return STATE_DONE;
  706. }
  707. /*
  708. * This DMA functionality is only compiled in if we have
  709. * access to the generic DMA devices/DMA engine.
  710. */
  711. #ifdef CONFIG_DMA_ENGINE
  712. static void unmap_free_dma_scatter(struct pl022 *pl022)
  713. {
  714. /* Unmap and free the SG tables */
  715. dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
  716. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  717. dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
  718. pl022->sgt_rx.nents, DMA_FROM_DEVICE);
  719. sg_free_table(&pl022->sgt_rx);
  720. sg_free_table(&pl022->sgt_tx);
  721. }
  722. static void dma_callback(void *data)
  723. {
  724. struct pl022 *pl022 = data;
  725. struct spi_message *msg = pl022->cur_msg;
  726. BUG_ON(!pl022->sgt_rx.sgl);
  727. #ifdef VERBOSE_DEBUG
  728. /*
  729. * Optionally dump out buffers to inspect contents, this is
  730. * good if you want to convince yourself that the loopback
  731. * read/write contents are the same, when adopting to a new
  732. * DMA engine.
  733. */
  734. {
  735. struct scatterlist *sg;
  736. unsigned int i;
  737. dma_sync_sg_for_cpu(&pl022->adev->dev,
  738. pl022->sgt_rx.sgl,
  739. pl022->sgt_rx.nents,
  740. DMA_FROM_DEVICE);
  741. for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
  742. dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
  743. print_hex_dump(KERN_ERR, "SPI RX: ",
  744. DUMP_PREFIX_OFFSET,
  745. 16,
  746. 1,
  747. sg_virt(sg),
  748. sg_dma_len(sg),
  749. 1);
  750. }
  751. for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
  752. dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
  753. print_hex_dump(KERN_ERR, "SPI TX: ",
  754. DUMP_PREFIX_OFFSET,
  755. 16,
  756. 1,
  757. sg_virt(sg),
  758. sg_dma_len(sg),
  759. 1);
  760. }
  761. }
  762. #endif
  763. unmap_free_dma_scatter(pl022);
  764. /* Update total bytes transferred */
  765. msg->actual_length += pl022->cur_transfer->len;
  766. if (pl022->cur_transfer->cs_change)
  767. pl022->cur_chip->
  768. cs_control(SSP_CHIP_DESELECT);
  769. /* Move to next transfer */
  770. msg->state = next_transfer(pl022);
  771. tasklet_schedule(&pl022->pump_transfers);
  772. }
  773. static void setup_dma_scatter(struct pl022 *pl022,
  774. void *buffer,
  775. unsigned int length,
  776. struct sg_table *sgtab)
  777. {
  778. struct scatterlist *sg;
  779. int bytesleft = length;
  780. void *bufp = buffer;
  781. int mapbytes;
  782. int i;
  783. if (buffer) {
  784. for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
  785. /*
  786. * If there are less bytes left than what fits
  787. * in the current page (plus page alignment offset)
  788. * we just feed in this, else we stuff in as much
  789. * as we can.
  790. */
  791. if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
  792. mapbytes = bytesleft;
  793. else
  794. mapbytes = PAGE_SIZE - offset_in_page(bufp);
  795. sg_set_page(sg, virt_to_page(bufp),
  796. mapbytes, offset_in_page(bufp));
  797. bufp += mapbytes;
  798. bytesleft -= mapbytes;
  799. dev_dbg(&pl022->adev->dev,
  800. "set RX/TX target page @ %p, %d bytes, %d left\n",
  801. bufp, mapbytes, bytesleft);
  802. }
  803. } else {
  804. /* Map the dummy buffer on every page */
  805. for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
  806. if (bytesleft < PAGE_SIZE)
  807. mapbytes = bytesleft;
  808. else
  809. mapbytes = PAGE_SIZE;
  810. sg_set_page(sg, virt_to_page(pl022->dummypage),
  811. mapbytes, 0);
  812. bytesleft -= mapbytes;
  813. dev_dbg(&pl022->adev->dev,
  814. "set RX/TX to dummy page %d bytes, %d left\n",
  815. mapbytes, bytesleft);
  816. }
  817. }
  818. BUG_ON(bytesleft);
  819. }
  820. /**
  821. * configure_dma - configures the channels for the next transfer
  822. * @pl022: SSP driver's private data structure
  823. */
  824. static int configure_dma(struct pl022 *pl022)
  825. {
  826. struct dma_slave_config rx_conf = {
  827. .src_addr = SSP_DR(pl022->phybase),
  828. .direction = DMA_FROM_DEVICE,
  829. };
  830. struct dma_slave_config tx_conf = {
  831. .dst_addr = SSP_DR(pl022->phybase),
  832. .direction = DMA_TO_DEVICE,
  833. };
  834. unsigned int pages;
  835. int ret;
  836. int rx_sglen, tx_sglen;
  837. struct dma_chan *rxchan = pl022->dma_rx_channel;
  838. struct dma_chan *txchan = pl022->dma_tx_channel;
  839. struct dma_async_tx_descriptor *rxdesc;
  840. struct dma_async_tx_descriptor *txdesc;
  841. /* Check that the channels are available */
  842. if (!rxchan || !txchan)
  843. return -ENODEV;
  844. /*
  845. * If supplied, the DMA burstsize should equal the FIFO trigger level.
  846. * Notice that the DMA engine uses one-to-one mapping. Since we can
  847. * not trigger on 2 elements this needs explicit mapping rather than
  848. * calculation.
  849. */
  850. switch (pl022->rx_lev_trig) {
  851. case SSP_RX_1_OR_MORE_ELEM:
  852. rx_conf.src_maxburst = 1;
  853. break;
  854. case SSP_RX_4_OR_MORE_ELEM:
  855. rx_conf.src_maxburst = 4;
  856. break;
  857. case SSP_RX_8_OR_MORE_ELEM:
  858. rx_conf.src_maxburst = 8;
  859. break;
  860. case SSP_RX_16_OR_MORE_ELEM:
  861. rx_conf.src_maxburst = 16;
  862. break;
  863. case SSP_RX_32_OR_MORE_ELEM:
  864. rx_conf.src_maxburst = 32;
  865. break;
  866. default:
  867. rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
  868. break;
  869. }
  870. switch (pl022->tx_lev_trig) {
  871. case SSP_TX_1_OR_MORE_EMPTY_LOC:
  872. tx_conf.dst_maxburst = 1;
  873. break;
  874. case SSP_TX_4_OR_MORE_EMPTY_LOC:
  875. tx_conf.dst_maxburst = 4;
  876. break;
  877. case SSP_TX_8_OR_MORE_EMPTY_LOC:
  878. tx_conf.dst_maxburst = 8;
  879. break;
  880. case SSP_TX_16_OR_MORE_EMPTY_LOC:
  881. tx_conf.dst_maxburst = 16;
  882. break;
  883. case SSP_TX_32_OR_MORE_EMPTY_LOC:
  884. tx_conf.dst_maxburst = 32;
  885. break;
  886. default:
  887. tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
  888. break;
  889. }
  890. switch (pl022->read) {
  891. case READING_NULL:
  892. /* Use the same as for writing */
  893. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  894. break;
  895. case READING_U8:
  896. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  897. break;
  898. case READING_U16:
  899. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  900. break;
  901. case READING_U32:
  902. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  903. break;
  904. }
  905. switch (pl022->write) {
  906. case WRITING_NULL:
  907. /* Use the same as for reading */
  908. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  909. break;
  910. case WRITING_U8:
  911. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  912. break;
  913. case WRITING_U16:
  914. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  915. break;
  916. case WRITING_U32:
  917. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  918. break;
  919. }
  920. /* SPI pecularity: we need to read and write the same width */
  921. if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  922. rx_conf.src_addr_width = tx_conf.dst_addr_width;
  923. if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  924. tx_conf.dst_addr_width = rx_conf.src_addr_width;
  925. BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
  926. dmaengine_slave_config(rxchan, &rx_conf);
  927. dmaengine_slave_config(txchan, &tx_conf);
  928. /* Create sglists for the transfers */
  929. pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
  930. dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
  931. ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
  932. if (ret)
  933. goto err_alloc_rx_sg;
  934. ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
  935. if (ret)
  936. goto err_alloc_tx_sg;
  937. /* Fill in the scatterlists for the RX+TX buffers */
  938. setup_dma_scatter(pl022, pl022->rx,
  939. pl022->cur_transfer->len, &pl022->sgt_rx);
  940. setup_dma_scatter(pl022, pl022->tx,
  941. pl022->cur_transfer->len, &pl022->sgt_tx);
  942. /* Map DMA buffers */
  943. rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
  944. pl022->sgt_rx.nents, DMA_FROM_DEVICE);
  945. if (!rx_sglen)
  946. goto err_rx_sgmap;
  947. tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
  948. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  949. if (!tx_sglen)
  950. goto err_tx_sgmap;
  951. /* Send both scatterlists */
  952. rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
  953. pl022->sgt_rx.sgl,
  954. rx_sglen,
  955. DMA_FROM_DEVICE,
  956. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  957. if (!rxdesc)
  958. goto err_rxdesc;
  959. txdesc = txchan->device->device_prep_slave_sg(txchan,
  960. pl022->sgt_tx.sgl,
  961. tx_sglen,
  962. DMA_TO_DEVICE,
  963. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  964. if (!txdesc)
  965. goto err_txdesc;
  966. /* Put the callback on the RX transfer only, that should finish last */
  967. rxdesc->callback = dma_callback;
  968. rxdesc->callback_param = pl022;
  969. /* Submit and fire RX and TX with TX last so we're ready to read! */
  970. dmaengine_submit(rxdesc);
  971. dmaengine_submit(txdesc);
  972. dma_async_issue_pending(rxchan);
  973. dma_async_issue_pending(txchan);
  974. return 0;
  975. err_txdesc:
  976. dmaengine_terminate_all(txchan);
  977. err_rxdesc:
  978. dmaengine_terminate_all(rxchan);
  979. dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
  980. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  981. err_tx_sgmap:
  982. dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
  983. pl022->sgt_tx.nents, DMA_FROM_DEVICE);
  984. err_rx_sgmap:
  985. sg_free_table(&pl022->sgt_tx);
  986. err_alloc_tx_sg:
  987. sg_free_table(&pl022->sgt_rx);
  988. err_alloc_rx_sg:
  989. return -ENOMEM;
  990. }
  991. static int __init pl022_dma_probe(struct pl022 *pl022)
  992. {
  993. dma_cap_mask_t mask;
  994. /* Try to acquire a generic DMA engine slave channel */
  995. dma_cap_zero(mask);
  996. dma_cap_set(DMA_SLAVE, mask);
  997. /*
  998. * We need both RX and TX channels to do DMA, else do none
  999. * of them.
  1000. */
  1001. pl022->dma_rx_channel = dma_request_channel(mask,
  1002. pl022->master_info->dma_filter,
  1003. pl022->master_info->dma_rx_param);
  1004. if (!pl022->dma_rx_channel) {
  1005. dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
  1006. goto err_no_rxchan;
  1007. }
  1008. pl022->dma_tx_channel = dma_request_channel(mask,
  1009. pl022->master_info->dma_filter,
  1010. pl022->master_info->dma_tx_param);
  1011. if (!pl022->dma_tx_channel) {
  1012. dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
  1013. goto err_no_txchan;
  1014. }
  1015. pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1016. if (!pl022->dummypage) {
  1017. dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
  1018. goto err_no_dummypage;
  1019. }
  1020. dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
  1021. dma_chan_name(pl022->dma_rx_channel),
  1022. dma_chan_name(pl022->dma_tx_channel));
  1023. return 0;
  1024. err_no_dummypage:
  1025. dma_release_channel(pl022->dma_tx_channel);
  1026. err_no_txchan:
  1027. dma_release_channel(pl022->dma_rx_channel);
  1028. pl022->dma_rx_channel = NULL;
  1029. err_no_rxchan:
  1030. dev_err(&pl022->adev->dev,
  1031. "Failed to work in dma mode, work without dma!\n");
  1032. return -ENODEV;
  1033. }
  1034. static void terminate_dma(struct pl022 *pl022)
  1035. {
  1036. struct dma_chan *rxchan = pl022->dma_rx_channel;
  1037. struct dma_chan *txchan = pl022->dma_tx_channel;
  1038. dmaengine_terminate_all(rxchan);
  1039. dmaengine_terminate_all(txchan);
  1040. unmap_free_dma_scatter(pl022);
  1041. }
  1042. static void pl022_dma_remove(struct pl022 *pl022)
  1043. {
  1044. if (pl022->busy)
  1045. terminate_dma(pl022);
  1046. if (pl022->dma_tx_channel)
  1047. dma_release_channel(pl022->dma_tx_channel);
  1048. if (pl022->dma_rx_channel)
  1049. dma_release_channel(pl022->dma_rx_channel);
  1050. kfree(pl022->dummypage);
  1051. }
  1052. #else
  1053. static inline int configure_dma(struct pl022 *pl022)
  1054. {
  1055. return -ENODEV;
  1056. }
  1057. static inline int pl022_dma_probe(struct pl022 *pl022)
  1058. {
  1059. return 0;
  1060. }
  1061. static inline void pl022_dma_remove(struct pl022 *pl022)
  1062. {
  1063. }
  1064. #endif
  1065. /**
  1066. * pl022_interrupt_handler - Interrupt handler for SSP controller
  1067. *
  1068. * This function handles interrupts generated for an interrupt based transfer.
  1069. * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
  1070. * current message's state as STATE_ERROR and schedule the tasklet
  1071. * pump_transfers which will do the postprocessing of the current message by
  1072. * calling giveback(). Otherwise it reads data from RX FIFO till there is no
  1073. * more data, and writes data in TX FIFO till it is not full. If we complete
  1074. * the transfer we move to the next transfer and schedule the tasklet.
  1075. */
  1076. static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
  1077. {
  1078. struct pl022 *pl022 = dev_id;
  1079. struct spi_message *msg = pl022->cur_msg;
  1080. u16 irq_status = 0;
  1081. u16 flag = 0;
  1082. if (unlikely(!msg)) {
  1083. dev_err(&pl022->adev->dev,
  1084. "bad message state in interrupt handler");
  1085. /* Never fail */
  1086. return IRQ_HANDLED;
  1087. }
  1088. /* Read the Interrupt Status Register */
  1089. irq_status = readw(SSP_MIS(pl022->virtbase));
  1090. if (unlikely(!irq_status))
  1091. return IRQ_NONE;
  1092. /*
  1093. * This handles the FIFO interrupts, the timeout
  1094. * interrupts are flatly ignored, they cannot be
  1095. * trusted.
  1096. */
  1097. if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
  1098. /*
  1099. * Overrun interrupt - bail out since our Data has been
  1100. * corrupted
  1101. */
  1102. dev_err(&pl022->adev->dev, "FIFO overrun\n");
  1103. if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
  1104. dev_err(&pl022->adev->dev,
  1105. "RXFIFO is full\n");
  1106. if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
  1107. dev_err(&pl022->adev->dev,
  1108. "TXFIFO is full\n");
  1109. /*
  1110. * Disable and clear interrupts, disable SSP,
  1111. * mark message with bad status so it can be
  1112. * retried.
  1113. */
  1114. writew(DISABLE_ALL_INTERRUPTS,
  1115. SSP_IMSC(pl022->virtbase));
  1116. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  1117. writew((readw(SSP_CR1(pl022->virtbase)) &
  1118. (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
  1119. msg->state = STATE_ERROR;
  1120. /* Schedule message queue handler */
  1121. tasklet_schedule(&pl022->pump_transfers);
  1122. return IRQ_HANDLED;
  1123. }
  1124. readwriter(pl022);
  1125. if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
  1126. flag = 1;
  1127. /* Disable Transmit interrupt, enable receive interrupt */
  1128. writew((readw(SSP_IMSC(pl022->virtbase)) &
  1129. ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
  1130. SSP_IMSC(pl022->virtbase));
  1131. }
  1132. /*
  1133. * Since all transactions must write as much as shall be read,
  1134. * we can conclude the entire transaction once RX is complete.
  1135. * At this point, all TX will always be finished.
  1136. */
  1137. if (pl022->rx >= pl022->rx_end) {
  1138. writew(DISABLE_ALL_INTERRUPTS,
  1139. SSP_IMSC(pl022->virtbase));
  1140. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  1141. if (unlikely(pl022->rx > pl022->rx_end)) {
  1142. dev_warn(&pl022->adev->dev, "read %u surplus "
  1143. "bytes (did you request an odd "
  1144. "number of bytes on a 16bit bus?)\n",
  1145. (u32) (pl022->rx - pl022->rx_end));
  1146. }
  1147. /* Update total bytes transferred */
  1148. msg->actual_length += pl022->cur_transfer->len;
  1149. if (pl022->cur_transfer->cs_change)
  1150. pl022->cur_chip->
  1151. cs_control(SSP_CHIP_DESELECT);
  1152. /* Move to next transfer */
  1153. msg->state = next_transfer(pl022);
  1154. tasklet_schedule(&pl022->pump_transfers);
  1155. return IRQ_HANDLED;
  1156. }
  1157. return IRQ_HANDLED;
  1158. }
  1159. /**
  1160. * This sets up the pointers to memory for the next message to
  1161. * send out on the SPI bus.
  1162. */
  1163. static int set_up_next_transfer(struct pl022 *pl022,
  1164. struct spi_transfer *transfer)
  1165. {
  1166. int residue;
  1167. /* Sanity check the message for this bus width */
  1168. residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
  1169. if (unlikely(residue != 0)) {
  1170. dev_err(&pl022->adev->dev,
  1171. "message of %u bytes to transmit but the current "
  1172. "chip bus has a data width of %u bytes!\n",
  1173. pl022->cur_transfer->len,
  1174. pl022->cur_chip->n_bytes);
  1175. dev_err(&pl022->adev->dev, "skipping this message\n");
  1176. return -EIO;
  1177. }
  1178. pl022->tx = (void *)transfer->tx_buf;
  1179. pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
  1180. pl022->rx = (void *)transfer->rx_buf;
  1181. pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
  1182. pl022->write =
  1183. pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
  1184. pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
  1185. return 0;
  1186. }
  1187. /**
  1188. * pump_transfers - Tasklet function which schedules next transfer
  1189. * when running in interrupt or DMA transfer mode.
  1190. * @data: SSP driver private data structure
  1191. *
  1192. */
  1193. static void pump_transfers(unsigned long data)
  1194. {
  1195. struct pl022 *pl022 = (struct pl022 *) data;
  1196. struct spi_message *message = NULL;
  1197. struct spi_transfer *transfer = NULL;
  1198. struct spi_transfer *previous = NULL;
  1199. /* Get current state information */
  1200. message = pl022->cur_msg;
  1201. transfer = pl022->cur_transfer;
  1202. /* Handle for abort */
  1203. if (message->state == STATE_ERROR) {
  1204. message->status = -EIO;
  1205. giveback(pl022);
  1206. return;
  1207. }
  1208. /* Handle end of message */
  1209. if (message->state == STATE_DONE) {
  1210. message->status = 0;
  1211. giveback(pl022);
  1212. return;
  1213. }
  1214. /* Delay if requested at end of transfer before CS change */
  1215. if (message->state == STATE_RUNNING) {
  1216. previous = list_entry(transfer->transfer_list.prev,
  1217. struct spi_transfer,
  1218. transfer_list);
  1219. if (previous->delay_usecs)
  1220. /*
  1221. * FIXME: This runs in interrupt context.
  1222. * Is this really smart?
  1223. */
  1224. udelay(previous->delay_usecs);
  1225. /* Drop chip select only if cs_change is requested */
  1226. if (previous->cs_change)
  1227. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1228. } else {
  1229. /* STATE_START */
  1230. message->state = STATE_RUNNING;
  1231. }
  1232. if (set_up_next_transfer(pl022, transfer)) {
  1233. message->state = STATE_ERROR;
  1234. message->status = -EIO;
  1235. giveback(pl022);
  1236. return;
  1237. }
  1238. /* Flush the FIFOs and let's go! */
  1239. flush(pl022);
  1240. if (pl022->cur_chip->enable_dma) {
  1241. if (configure_dma(pl022)) {
  1242. dev_dbg(&pl022->adev->dev,
  1243. "configuration of DMA failed, fall back to interrupt mode\n");
  1244. goto err_config_dma;
  1245. }
  1246. return;
  1247. }
  1248. err_config_dma:
  1249. /* enable all interrupts except RX */
  1250. writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
  1251. }
  1252. static void do_interrupt_dma_transfer(struct pl022 *pl022)
  1253. {
  1254. /*
  1255. * Default is to enable all interrupts except RX -
  1256. * this will be enabled once TX is complete
  1257. */
  1258. u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
  1259. /* Enable target chip */
  1260. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1261. if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
  1262. /* Error path */
  1263. pl022->cur_msg->state = STATE_ERROR;
  1264. pl022->cur_msg->status = -EIO;
  1265. giveback(pl022);
  1266. return;
  1267. }
  1268. /* If we're using DMA, set up DMA here */
  1269. if (pl022->cur_chip->enable_dma) {
  1270. /* Configure DMA transfer */
  1271. if (configure_dma(pl022)) {
  1272. dev_dbg(&pl022->adev->dev,
  1273. "configuration of DMA failed, fall back to interrupt mode\n");
  1274. goto err_config_dma;
  1275. }
  1276. /* Disable interrupts in DMA mode, IRQ from DMA controller */
  1277. irqflags = DISABLE_ALL_INTERRUPTS;
  1278. }
  1279. err_config_dma:
  1280. /* Enable SSP, turn on interrupts */
  1281. writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
  1282. SSP_CR1(pl022->virtbase));
  1283. writew(irqflags, SSP_IMSC(pl022->virtbase));
  1284. }
  1285. static void do_polling_transfer(struct pl022 *pl022)
  1286. {
  1287. struct spi_message *message = NULL;
  1288. struct spi_transfer *transfer = NULL;
  1289. struct spi_transfer *previous = NULL;
  1290. struct chip_data *chip;
  1291. unsigned long time, timeout;
  1292. chip = pl022->cur_chip;
  1293. message = pl022->cur_msg;
  1294. while (message->state != STATE_DONE) {
  1295. /* Handle for abort */
  1296. if (message->state == STATE_ERROR)
  1297. break;
  1298. transfer = pl022->cur_transfer;
  1299. /* Delay if requested at end of transfer */
  1300. if (message->state == STATE_RUNNING) {
  1301. previous =
  1302. list_entry(transfer->transfer_list.prev,
  1303. struct spi_transfer, transfer_list);
  1304. if (previous->delay_usecs)
  1305. udelay(previous->delay_usecs);
  1306. if (previous->cs_change)
  1307. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1308. } else {
  1309. /* STATE_START */
  1310. message->state = STATE_RUNNING;
  1311. pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
  1312. }
  1313. /* Configuration Changing Per Transfer */
  1314. if (set_up_next_transfer(pl022, transfer)) {
  1315. /* Error path */
  1316. message->state = STATE_ERROR;
  1317. break;
  1318. }
  1319. /* Flush FIFOs and enable SSP */
  1320. flush(pl022);
  1321. writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
  1322. SSP_CR1(pl022->virtbase));
  1323. dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
  1324. timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
  1325. while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
  1326. time = jiffies;
  1327. readwriter(pl022);
  1328. if (time_after(time, timeout)) {
  1329. dev_warn(&pl022->adev->dev,
  1330. "%s: timeout!\n", __func__);
  1331. message->state = STATE_ERROR;
  1332. goto out;
  1333. }
  1334. cpu_relax();
  1335. }
  1336. /* Update total byte transferred */
  1337. message->actual_length += pl022->cur_transfer->len;
  1338. if (pl022->cur_transfer->cs_change)
  1339. pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
  1340. /* Move to next transfer */
  1341. message->state = next_transfer(pl022);
  1342. }
  1343. out:
  1344. /* Handle end of message */
  1345. if (message->state == STATE_DONE)
  1346. message->status = 0;
  1347. else
  1348. message->status = -EIO;
  1349. giveback(pl022);
  1350. return;
  1351. }
  1352. /**
  1353. * pump_messages - Workqueue function which processes spi message queue
  1354. * @data: pointer to private data of SSP driver
  1355. *
  1356. * This function checks if there is any spi message in the queue that
  1357. * needs processing and delegate control to appropriate function
  1358. * do_polling_transfer()/do_interrupt_dma_transfer()
  1359. * based on the kind of the transfer
  1360. *
  1361. */
  1362. static void pump_messages(struct work_struct *work)
  1363. {
  1364. struct pl022 *pl022 =
  1365. container_of(work, struct pl022, pump_messages);
  1366. unsigned long flags;
  1367. /* Lock queue and check for queue work */
  1368. spin_lock_irqsave(&pl022->queue_lock, flags);
  1369. if (list_empty(&pl022->queue) || !pl022->running) {
  1370. pl022->busy = false;
  1371. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1372. return;
  1373. }
  1374. /* Make sure we are not already running a message */
  1375. if (pl022->cur_msg) {
  1376. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1377. return;
  1378. }
  1379. /* Extract head of queue */
  1380. pl022->cur_msg =
  1381. list_entry(pl022->queue.next, struct spi_message, queue);
  1382. list_del_init(&pl022->cur_msg->queue);
  1383. pl022->busy = true;
  1384. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1385. /* Initial message state */
  1386. pl022->cur_msg->state = STATE_START;
  1387. pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
  1388. struct spi_transfer, transfer_list);
  1389. /* Setup the SPI using the per chip configuration */
  1390. pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
  1391. /*
  1392. * We enable the core voltage and clocks here, then the clocks
  1393. * and core will be disabled when giveback() is called in each method
  1394. * (poll/interrupt/DMA)
  1395. */
  1396. pm_runtime_get_sync(&pl022->adev->dev);
  1397. restore_state(pl022);
  1398. flush(pl022);
  1399. if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
  1400. do_polling_transfer(pl022);
  1401. else
  1402. do_interrupt_dma_transfer(pl022);
  1403. }
  1404. static int __init init_queue(struct pl022 *pl022)
  1405. {
  1406. INIT_LIST_HEAD(&pl022->queue);
  1407. spin_lock_init(&pl022->queue_lock);
  1408. pl022->running = false;
  1409. pl022->busy = false;
  1410. tasklet_init(&pl022->pump_transfers, pump_transfers,
  1411. (unsigned long)pl022);
  1412. INIT_WORK(&pl022->pump_messages, pump_messages);
  1413. pl022->workqueue = create_singlethread_workqueue(
  1414. dev_name(pl022->master->dev.parent));
  1415. if (pl022->workqueue == NULL)
  1416. return -EBUSY;
  1417. return 0;
  1418. }
  1419. static int start_queue(struct pl022 *pl022)
  1420. {
  1421. unsigned long flags;
  1422. spin_lock_irqsave(&pl022->queue_lock, flags);
  1423. if (pl022->running || pl022->busy) {
  1424. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1425. return -EBUSY;
  1426. }
  1427. pl022->running = true;
  1428. pl022->cur_msg = NULL;
  1429. pl022->cur_transfer = NULL;
  1430. pl022->cur_chip = NULL;
  1431. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1432. queue_work(pl022->workqueue, &pl022->pump_messages);
  1433. return 0;
  1434. }
  1435. static int stop_queue(struct pl022 *pl022)
  1436. {
  1437. unsigned long flags;
  1438. unsigned limit = 500;
  1439. int status = 0;
  1440. spin_lock_irqsave(&pl022->queue_lock, flags);
  1441. /* This is a bit lame, but is optimized for the common execution path.
  1442. * A wait_queue on the pl022->busy could be used, but then the common
  1443. * execution path (pump_messages) would be required to call wake_up or
  1444. * friends on every SPI message. Do this instead */
  1445. while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
  1446. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1447. msleep(10);
  1448. spin_lock_irqsave(&pl022->queue_lock, flags);
  1449. }
  1450. if (!list_empty(&pl022->queue) || pl022->busy)
  1451. status = -EBUSY;
  1452. else
  1453. pl022->running = false;
  1454. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1455. return status;
  1456. }
  1457. static int destroy_queue(struct pl022 *pl022)
  1458. {
  1459. int status;
  1460. status = stop_queue(pl022);
  1461. /* we are unloading the module or failing to load (only two calls
  1462. * to this routine), and neither call can handle a return value.
  1463. * However, destroy_workqueue calls flush_workqueue, and that will
  1464. * block until all work is done. If the reason that stop_queue
  1465. * timed out is that the work will never finish, then it does no
  1466. * good to call destroy_workqueue, so return anyway. */
  1467. if (status != 0)
  1468. return status;
  1469. destroy_workqueue(pl022->workqueue);
  1470. return 0;
  1471. }
  1472. static int verify_controller_parameters(struct pl022 *pl022,
  1473. struct pl022_config_chip const *chip_info)
  1474. {
  1475. if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
  1476. || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
  1477. dev_err(&pl022->adev->dev,
  1478. "interface is configured incorrectly\n");
  1479. return -EINVAL;
  1480. }
  1481. if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
  1482. (!pl022->vendor->unidir)) {
  1483. dev_err(&pl022->adev->dev,
  1484. "unidirectional mode not supported in this "
  1485. "hardware version\n");
  1486. return -EINVAL;
  1487. }
  1488. if ((chip_info->hierarchy != SSP_MASTER)
  1489. && (chip_info->hierarchy != SSP_SLAVE)) {
  1490. dev_err(&pl022->adev->dev,
  1491. "hierarchy is configured incorrectly\n");
  1492. return -EINVAL;
  1493. }
  1494. if ((chip_info->com_mode != INTERRUPT_TRANSFER)
  1495. && (chip_info->com_mode != DMA_TRANSFER)
  1496. && (chip_info->com_mode != POLLING_TRANSFER)) {
  1497. dev_err(&pl022->adev->dev,
  1498. "Communication mode is configured incorrectly\n");
  1499. return -EINVAL;
  1500. }
  1501. switch (chip_info->rx_lev_trig) {
  1502. case SSP_RX_1_OR_MORE_ELEM:
  1503. case SSP_RX_4_OR_MORE_ELEM:
  1504. case SSP_RX_8_OR_MORE_ELEM:
  1505. /* These are always OK, all variants can handle this */
  1506. break;
  1507. case SSP_RX_16_OR_MORE_ELEM:
  1508. if (pl022->vendor->fifodepth < 16) {
  1509. dev_err(&pl022->adev->dev,
  1510. "RX FIFO Trigger Level is configured incorrectly\n");
  1511. return -EINVAL;
  1512. }
  1513. break;
  1514. case SSP_RX_32_OR_MORE_ELEM:
  1515. if (pl022->vendor->fifodepth < 32) {
  1516. dev_err(&pl022->adev->dev,
  1517. "RX FIFO Trigger Level is configured incorrectly\n");
  1518. return -EINVAL;
  1519. }
  1520. break;
  1521. default:
  1522. dev_err(&pl022->adev->dev,
  1523. "RX FIFO Trigger Level is configured incorrectly\n");
  1524. return -EINVAL;
  1525. break;
  1526. }
  1527. switch (chip_info->tx_lev_trig) {
  1528. case SSP_TX_1_OR_MORE_EMPTY_LOC:
  1529. case SSP_TX_4_OR_MORE_EMPTY_LOC:
  1530. case SSP_TX_8_OR_MORE_EMPTY_LOC:
  1531. /* These are always OK, all variants can handle this */
  1532. break;
  1533. case SSP_TX_16_OR_MORE_EMPTY_LOC:
  1534. if (pl022->vendor->fifodepth < 16) {
  1535. dev_err(&pl022->adev->dev,
  1536. "TX FIFO Trigger Level is configured incorrectly\n");
  1537. return -EINVAL;
  1538. }
  1539. break;
  1540. case SSP_TX_32_OR_MORE_EMPTY_LOC:
  1541. if (pl022->vendor->fifodepth < 32) {
  1542. dev_err(&pl022->adev->dev,
  1543. "TX FIFO Trigger Level is configured incorrectly\n");
  1544. return -EINVAL;
  1545. }
  1546. break;
  1547. default:
  1548. dev_err(&pl022->adev->dev,
  1549. "TX FIFO Trigger Level is configured incorrectly\n");
  1550. return -EINVAL;
  1551. break;
  1552. }
  1553. if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
  1554. if ((chip_info->ctrl_len < SSP_BITS_4)
  1555. || (chip_info->ctrl_len > SSP_BITS_32)) {
  1556. dev_err(&pl022->adev->dev,
  1557. "CTRL LEN is configured incorrectly\n");
  1558. return -EINVAL;
  1559. }
  1560. if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
  1561. && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
  1562. dev_err(&pl022->adev->dev,
  1563. "Wait State is configured incorrectly\n");
  1564. return -EINVAL;
  1565. }
  1566. /* Half duplex is only available in the ST Micro version */
  1567. if (pl022->vendor->extended_cr) {
  1568. if ((chip_info->duplex !=
  1569. SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
  1570. && (chip_info->duplex !=
  1571. SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
  1572. dev_err(&pl022->adev->dev,
  1573. "Microwire duplex mode is configured incorrectly\n");
  1574. return -EINVAL;
  1575. }
  1576. } else {
  1577. if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
  1578. dev_err(&pl022->adev->dev,
  1579. "Microwire half duplex mode requested,"
  1580. " but this is only available in the"
  1581. " ST version of PL022\n");
  1582. return -EINVAL;
  1583. }
  1584. }
  1585. return 0;
  1586. }
  1587. /**
  1588. * pl022_transfer - transfer function registered to SPI master framework
  1589. * @spi: spi device which is requesting transfer
  1590. * @msg: spi message which is to handled is queued to driver queue
  1591. *
  1592. * This function is registered to the SPI framework for this SPI master
  1593. * controller. It will queue the spi_message in the queue of driver if
  1594. * the queue is not stopped and return.
  1595. */
  1596. static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
  1597. {
  1598. struct pl022 *pl022 = spi_master_get_devdata(spi->master);
  1599. unsigned long flags;
  1600. spin_lock_irqsave(&pl022->queue_lock, flags);
  1601. if (!pl022->running) {
  1602. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1603. return -ESHUTDOWN;
  1604. }
  1605. msg->actual_length = 0;
  1606. msg->status = -EINPROGRESS;
  1607. msg->state = STATE_START;
  1608. list_add_tail(&msg->queue, &pl022->queue);
  1609. if (pl022->running && !pl022->busy)
  1610. queue_work(pl022->workqueue, &pl022->pump_messages);
  1611. spin_unlock_irqrestore(&pl022->queue_lock, flags);
  1612. return 0;
  1613. }
  1614. static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
  1615. {
  1616. return rate / (cpsdvsr * (1 + scr));
  1617. }
  1618. static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
  1619. ssp_clock_params * clk_freq)
  1620. {
  1621. /* Lets calculate the frequency parameters */
  1622. u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
  1623. u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
  1624. best_scr = 0, tmp, found = 0;
  1625. rate = clk_get_rate(pl022->clk);
  1626. /* cpsdvscr = 2 & scr 0 */
  1627. max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
  1628. /* cpsdvsr = 254 & scr = 255 */
  1629. min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
  1630. if (!((freq <= max_tclk) && (freq >= min_tclk))) {
  1631. dev_err(&pl022->adev->dev,
  1632. "controller data is incorrect: out of range frequency");
  1633. return -EINVAL;
  1634. }
  1635. /*
  1636. * best_freq will give closest possible available rate (<= requested
  1637. * freq) for all values of scr & cpsdvsr.
  1638. */
  1639. while ((cpsdvsr <= CPSDVR_MAX) && !found) {
  1640. while (scr <= SCR_MAX) {
  1641. tmp = spi_rate(rate, cpsdvsr, scr);
  1642. if (tmp > freq)
  1643. scr++;
  1644. /*
  1645. * If found exact value, update and break.
  1646. * If found more closer value, update and continue.
  1647. */
  1648. else if ((tmp == freq) || (tmp > best_freq)) {
  1649. best_freq = tmp;
  1650. best_cpsdvsr = cpsdvsr;
  1651. best_scr = scr;
  1652. if (tmp == freq)
  1653. break;
  1654. }
  1655. scr++;
  1656. }
  1657. cpsdvsr += 2;
  1658. scr = SCR_MIN;
  1659. }
  1660. clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
  1661. clk_freq->scr = (u8) (best_scr & 0xFF);
  1662. dev_dbg(&pl022->adev->dev,
  1663. "SSP Target Frequency is: %u, Effective Frequency is %u\n",
  1664. freq, best_freq);
  1665. dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
  1666. clk_freq->cpsdvsr, clk_freq->scr);
  1667. return 0;
  1668. }
  1669. /*
  1670. * A piece of default chip info unless the platform
  1671. * supplies it.
  1672. */
  1673. static const struct pl022_config_chip pl022_default_chip_info = {
  1674. .com_mode = POLLING_TRANSFER,
  1675. .iface = SSP_INTERFACE_MOTOROLA_SPI,
  1676. .hierarchy = SSP_SLAVE,
  1677. .slave_tx_disable = DO_NOT_DRIVE_TX,
  1678. .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
  1679. .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
  1680. .ctrl_len = SSP_BITS_8,
  1681. .wait_state = SSP_MWIRE_WAIT_ZERO,
  1682. .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
  1683. .cs_control = null_cs_control,
  1684. };
  1685. /**
  1686. * pl022_setup - setup function registered to SPI master framework
  1687. * @spi: spi device which is requesting setup
  1688. *
  1689. * This function is registered to the SPI framework for this SPI master
  1690. * controller. If it is the first time when setup is called by this device,
  1691. * this function will initialize the runtime state for this chip and save
  1692. * the same in the device structure. Else it will update the runtime info
  1693. * with the updated chip info. Nothing is really being written to the
  1694. * controller hardware here, that is not done until the actual transfer
  1695. * commence.
  1696. */
  1697. static int pl022_setup(struct spi_device *spi)
  1698. {
  1699. struct pl022_config_chip const *chip_info;
  1700. struct chip_data *chip;
  1701. struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
  1702. int status = 0;
  1703. struct pl022 *pl022 = spi_master_get_devdata(spi->master);
  1704. unsigned int bits = spi->bits_per_word;
  1705. u32 tmp;
  1706. if (!spi->max_speed_hz)
  1707. return -EINVAL;
  1708. /* Get controller_state if one is supplied */
  1709. chip = spi_get_ctldata(spi);
  1710. if (chip == NULL) {
  1711. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1712. if (!chip) {
  1713. dev_err(&spi->dev,
  1714. "cannot allocate controller state\n");
  1715. return -ENOMEM;
  1716. }
  1717. dev_dbg(&spi->dev,
  1718. "allocated memory for controller's runtime state\n");
  1719. }
  1720. /* Get controller data if one is supplied */
  1721. chip_info = spi->controller_data;
  1722. if (chip_info == NULL) {
  1723. chip_info = &pl022_default_chip_info;
  1724. /* spi_board_info.controller_data not is supplied */
  1725. dev_dbg(&spi->dev,
  1726. "using default controller_data settings\n");
  1727. } else
  1728. dev_dbg(&spi->dev,
  1729. "using user supplied controller_data settings\n");
  1730. /*
  1731. * We can override with custom divisors, else we use the board
  1732. * frequency setting
  1733. */
  1734. if ((0 == chip_info->clk_freq.cpsdvsr)
  1735. && (0 == chip_info->clk_freq.scr)) {
  1736. status = calculate_effective_freq(pl022,
  1737. spi->max_speed_hz,
  1738. &clk_freq);
  1739. if (status < 0)
  1740. goto err_config_params;
  1741. } else {
  1742. memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
  1743. if ((clk_freq.cpsdvsr % 2) != 0)
  1744. clk_freq.cpsdvsr =
  1745. clk_freq.cpsdvsr - 1;
  1746. }
  1747. if ((clk_freq.cpsdvsr < CPSDVR_MIN)
  1748. || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
  1749. status = -EINVAL;
  1750. dev_err(&spi->dev,
  1751. "cpsdvsr is configured incorrectly\n");
  1752. goto err_config_params;
  1753. }
  1754. status = verify_controller_parameters(pl022, chip_info);
  1755. if (status) {
  1756. dev_err(&spi->dev, "controller data is incorrect");
  1757. goto err_config_params;
  1758. }
  1759. pl022->rx_lev_trig = chip_info->rx_lev_trig;
  1760. pl022->tx_lev_trig = chip_info->tx_lev_trig;
  1761. /* Now set controller state based on controller data */
  1762. chip->xfer_type = chip_info->com_mode;
  1763. if (!chip_info->cs_control) {
  1764. chip->cs_control = null_cs_control;
  1765. dev_warn(&spi->dev,
  1766. "chip select function is NULL for this chip\n");
  1767. } else
  1768. chip->cs_control = chip_info->cs_control;
  1769. if (bits <= 3) {
  1770. /* PL022 doesn't support less than 4-bits */
  1771. status = -ENOTSUPP;
  1772. goto err_config_params;
  1773. } else if (bits <= 8) {
  1774. dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
  1775. chip->n_bytes = 1;
  1776. chip->read = READING_U8;
  1777. chip->write = WRITING_U8;
  1778. } else if (bits <= 16) {
  1779. dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
  1780. chip->n_bytes = 2;
  1781. chip->read = READING_U16;
  1782. chip->write = WRITING_U16;
  1783. } else {
  1784. if (pl022->vendor->max_bpw >= 32) {
  1785. dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
  1786. chip->n_bytes = 4;
  1787. chip->read = READING_U32;
  1788. chip->write = WRITING_U32;
  1789. } else {
  1790. dev_err(&spi->dev,
  1791. "illegal data size for this controller!\n");
  1792. dev_err(&spi->dev,
  1793. "a standard pl022 can only handle "
  1794. "1 <= n <= 16 bit words\n");
  1795. status = -ENOTSUPP;
  1796. goto err_config_params;
  1797. }
  1798. }
  1799. /* Now Initialize all register settings required for this chip */
  1800. chip->cr0 = 0;
  1801. chip->cr1 = 0;
  1802. chip->dmacr = 0;
  1803. chip->cpsr = 0;
  1804. if ((chip_info->com_mode == DMA_TRANSFER)
  1805. && ((pl022->master_info)->enable_dma)) {
  1806. chip->enable_dma = true;
  1807. dev_dbg(&spi->dev, "DMA mode set in controller state\n");
  1808. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
  1809. SSP_DMACR_MASK_RXDMAE, 0);
  1810. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
  1811. SSP_DMACR_MASK_TXDMAE, 1);
  1812. } else {
  1813. chip->enable_dma = false;
  1814. dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
  1815. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
  1816. SSP_DMACR_MASK_RXDMAE, 0);
  1817. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
  1818. SSP_DMACR_MASK_TXDMAE, 1);
  1819. }
  1820. chip->cpsr = clk_freq.cpsdvsr;
  1821. /* Special setup for the ST micro extended control registers */
  1822. if (pl022->vendor->extended_cr) {
  1823. u32 etx;
  1824. if (pl022->vendor->pl023) {
  1825. /* These bits are only in the PL023 */
  1826. SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
  1827. SSP_CR1_MASK_FBCLKDEL_ST, 13);
  1828. } else {
  1829. /* These bits are in the PL022 but not PL023 */
  1830. SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
  1831. SSP_CR0_MASK_HALFDUP_ST, 5);
  1832. SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
  1833. SSP_CR0_MASK_CSS_ST, 16);
  1834. SSP_WRITE_BITS(chip->cr0, chip_info->iface,
  1835. SSP_CR0_MASK_FRF_ST, 21);
  1836. SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
  1837. SSP_CR1_MASK_MWAIT_ST, 6);
  1838. }
  1839. SSP_WRITE_BITS(chip->cr0, bits - 1,
  1840. SSP_CR0_MASK_DSS_ST, 0);
  1841. if (spi->mode & SPI_LSB_FIRST) {
  1842. tmp = SSP_RX_LSB;
  1843. etx = SSP_TX_LSB;
  1844. } else {
  1845. tmp = SSP_RX_MSB;
  1846. etx = SSP_TX_MSB;
  1847. }
  1848. SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
  1849. SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
  1850. SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
  1851. SSP_CR1_MASK_RXIFLSEL_ST, 7);
  1852. SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
  1853. SSP_CR1_MASK_TXIFLSEL_ST, 10);
  1854. } else {
  1855. SSP_WRITE_BITS(chip->cr0, bits - 1,
  1856. SSP_CR0_MASK_DSS, 0);
  1857. SSP_WRITE_BITS(chip->cr0, chip_info->iface,
  1858. SSP_CR0_MASK_FRF, 4);
  1859. }
  1860. /* Stuff that is common for all versions */
  1861. if (spi->mode & SPI_CPOL)
  1862. tmp = SSP_CLK_POL_IDLE_HIGH;
  1863. else
  1864. tmp = SSP_CLK_POL_IDLE_LOW;
  1865. SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
  1866. if (spi->mode & SPI_CPHA)
  1867. tmp = SSP_CLK_SECOND_EDGE;
  1868. else
  1869. tmp = SSP_CLK_FIRST_EDGE;
  1870. SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
  1871. SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
  1872. /* Loopback is available on all versions except PL023 */
  1873. if (pl022->vendor->loopback) {
  1874. if (spi->mode & SPI_LOOP)
  1875. tmp = LOOPBACK_ENABLED;
  1876. else
  1877. tmp = LOOPBACK_DISABLED;
  1878. SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
  1879. }
  1880. SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
  1881. SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
  1882. SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
  1883. 3);
  1884. /* Save controller_state */
  1885. spi_set_ctldata(spi, chip);
  1886. return status;
  1887. err_config_params:
  1888. spi_set_ctldata(spi, NULL);
  1889. kfree(chip);
  1890. return status;
  1891. }
  1892. /**
  1893. * pl022_cleanup - cleanup function registered to SPI master framework
  1894. * @spi: spi device which is requesting cleanup
  1895. *
  1896. * This function is registered to the SPI framework for this SPI master
  1897. * controller. It will free the runtime state of chip.
  1898. */
  1899. static void pl022_cleanup(struct spi_device *spi)
  1900. {
  1901. struct chip_data *chip = spi_get_ctldata(spi);
  1902. spi_set_ctldata(spi, NULL);
  1903. kfree(chip);
  1904. }
  1905. static int __devinit
  1906. pl022_probe(struct amba_device *adev, const struct amba_id *id)
  1907. {
  1908. struct device *dev = &adev->dev;
  1909. struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
  1910. struct spi_master *master;
  1911. struct pl022 *pl022 = NULL; /*Data for this driver */
  1912. int status = 0;
  1913. dev_info(&adev->dev,
  1914. "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
  1915. if (platform_info == NULL) {
  1916. dev_err(&adev->dev, "probe - no platform data supplied\n");
  1917. status = -ENODEV;
  1918. goto err_no_pdata;
  1919. }
  1920. /* Allocate master with space for data */
  1921. master = spi_alloc_master(dev, sizeof(struct pl022));
  1922. if (master == NULL) {
  1923. dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
  1924. status = -ENOMEM;
  1925. goto err_no_master;
  1926. }
  1927. pl022 = spi_master_get_devdata(master);
  1928. pl022->master = master;
  1929. pl022->master_info = platform_info;
  1930. pl022->adev = adev;
  1931. pl022->vendor = id->data;
  1932. /*
  1933. * Bus Number Which has been Assigned to this SSP controller
  1934. * on this board
  1935. */
  1936. master->bus_num = platform_info->bus_id;
  1937. master->num_chipselect = platform_info->num_chipselect;
  1938. master->cleanup = pl022_cleanup;
  1939. master->setup = pl022_setup;
  1940. master->transfer = pl022_transfer;
  1941. /*
  1942. * Supports mode 0-3, loopback, and active low CS. Transfers are
  1943. * always MS bit first on the original pl022.
  1944. */
  1945. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  1946. if (pl022->vendor->extended_cr)
  1947. master->mode_bits |= SPI_LSB_FIRST;
  1948. dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
  1949. status = amba_request_regions(adev, NULL);
  1950. if (status)
  1951. goto err_no_ioregion;
  1952. pl022->phybase = adev->res.start;
  1953. pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
  1954. if (pl022->virtbase == NULL) {
  1955. status = -ENOMEM;
  1956. goto err_no_ioremap;
  1957. }
  1958. printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
  1959. adev->res.start, pl022->virtbase);
  1960. pl022->clk = clk_get(&adev->dev, NULL);
  1961. if (IS_ERR(pl022->clk)) {
  1962. status = PTR_ERR(pl022->clk);
  1963. dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
  1964. goto err_no_clk;
  1965. }
  1966. status = clk_prepare(pl022->clk);
  1967. if (status) {
  1968. dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
  1969. goto err_clk_prep;
  1970. }
  1971. status = clk_enable(pl022->clk);
  1972. if (status) {
  1973. dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
  1974. goto err_no_clk_en;
  1975. }
  1976. /* Disable SSP */
  1977. writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
  1978. SSP_CR1(pl022->virtbase));
  1979. load_ssp_default_config(pl022);
  1980. status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
  1981. pl022);
  1982. if (status < 0) {
  1983. dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
  1984. goto err_no_irq;
  1985. }
  1986. /* Get DMA channels */
  1987. if (platform_info->enable_dma) {
  1988. status = pl022_dma_probe(pl022);
  1989. if (status != 0)
  1990. platform_info->enable_dma = 0;
  1991. }
  1992. /* Initialize and start queue */
  1993. status = init_queue(pl022);
  1994. if (status != 0) {
  1995. dev_err(&adev->dev, "probe - problem initializing queue\n");
  1996. goto err_init_queue;
  1997. }
  1998. status = start_queue(pl022);
  1999. if (status != 0) {
  2000. dev_err(&adev->dev, "probe - problem starting queue\n");
  2001. goto err_start_queue;
  2002. }
  2003. /* Register with the SPI framework */
  2004. amba_set_drvdata(adev, pl022);
  2005. status = spi_register_master(master);
  2006. if (status != 0) {
  2007. dev_err(&adev->dev,
  2008. "probe - problem registering spi master\n");
  2009. goto err_spi_register;
  2010. }
  2011. dev_dbg(dev, "probe succeeded\n");
  2012. /* let runtime pm put suspend */
  2013. pm_runtime_put(dev);
  2014. return 0;
  2015. err_spi_register:
  2016. err_start_queue:
  2017. err_init_queue:
  2018. destroy_queue(pl022);
  2019. if (platform_info->enable_dma)
  2020. pl022_dma_remove(pl022);
  2021. free_irq(adev->irq[0], pl022);
  2022. err_no_irq:
  2023. clk_disable(pl022->clk);
  2024. err_no_clk_en:
  2025. clk_unprepare(pl022->clk);
  2026. err_clk_prep:
  2027. clk_put(pl022->clk);
  2028. err_no_clk:
  2029. iounmap(pl022->virtbase);
  2030. err_no_ioremap:
  2031. amba_release_regions(adev);
  2032. err_no_ioregion:
  2033. spi_master_put(master);
  2034. err_no_master:
  2035. err_no_pdata:
  2036. return status;
  2037. }
  2038. static int __devexit
  2039. pl022_remove(struct amba_device *adev)
  2040. {
  2041. struct pl022 *pl022 = amba_get_drvdata(adev);
  2042. if (!pl022)
  2043. return 0;
  2044. /*
  2045. * undo pm_runtime_put() in probe. I assume that we're not
  2046. * accessing the primecell here.
  2047. */
  2048. pm_runtime_get_noresume(&adev->dev);
  2049. /* Remove the queue */
  2050. if (destroy_queue(pl022) != 0)
  2051. dev_err(&adev->dev, "queue remove failed\n");
  2052. load_ssp_default_config(pl022);
  2053. if (pl022->master_info->enable_dma)
  2054. pl022_dma_remove(pl022);
  2055. free_irq(adev->irq[0], pl022);
  2056. clk_disable(pl022->clk);
  2057. clk_unprepare(pl022->clk);
  2058. clk_put(pl022->clk);
  2059. iounmap(pl022->virtbase);
  2060. amba_release_regions(adev);
  2061. tasklet_disable(&pl022->pump_transfers);
  2062. spi_unregister_master(pl022->master);
  2063. spi_master_put(pl022->master);
  2064. amba_set_drvdata(adev, NULL);
  2065. return 0;
  2066. }
  2067. #ifdef CONFIG_SUSPEND
  2068. static int pl022_suspend(struct device *dev)
  2069. {
  2070. struct pl022 *pl022 = dev_get_drvdata(dev);
  2071. int status = 0;
  2072. status = stop_queue(pl022);
  2073. if (status) {
  2074. dev_warn(dev, "suspend cannot stop queue\n");
  2075. return status;
  2076. }
  2077. dev_dbg(dev, "suspended\n");
  2078. return 0;
  2079. }
  2080. static int pl022_resume(struct device *dev)
  2081. {
  2082. struct pl022 *pl022 = dev_get_drvdata(dev);
  2083. int status = 0;
  2084. /* Start the queue running */
  2085. status = start_queue(pl022);
  2086. if (status)
  2087. dev_err(dev, "problem starting queue (%d)\n", status);
  2088. else
  2089. dev_dbg(dev, "resumed\n");
  2090. return status;
  2091. }
  2092. #endif /* CONFIG_PM */
  2093. #ifdef CONFIG_PM_RUNTIME
  2094. static int pl022_runtime_suspend(struct device *dev)
  2095. {
  2096. struct pl022 *pl022 = dev_get_drvdata(dev);
  2097. clk_disable(pl022->clk);
  2098. amba_vcore_disable(pl022->adev);
  2099. return 0;
  2100. }
  2101. static int pl022_runtime_resume(struct device *dev)
  2102. {
  2103. struct pl022 *pl022 = dev_get_drvdata(dev);
  2104. amba_vcore_enable(pl022->adev);
  2105. clk_enable(pl022->clk);
  2106. return 0;
  2107. }
  2108. #endif
  2109. static const struct dev_pm_ops pl022_dev_pm_ops = {
  2110. SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
  2111. SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
  2112. };
  2113. static struct vendor_data vendor_arm = {
  2114. .fifodepth = 8,
  2115. .max_bpw = 16,
  2116. .unidir = false,
  2117. .extended_cr = false,
  2118. .pl023 = false,
  2119. .loopback = true,
  2120. };
  2121. static struct vendor_data vendor_st = {
  2122. .fifodepth = 32,
  2123. .max_bpw = 32,
  2124. .unidir = false,
  2125. .extended_cr = true,
  2126. .pl023 = false,
  2127. .loopback = true,
  2128. };
  2129. static struct vendor_data vendor_st_pl023 = {
  2130. .fifodepth = 32,
  2131. .max_bpw = 32,
  2132. .unidir = false,
  2133. .extended_cr = true,
  2134. .pl023 = true,
  2135. .loopback = false,
  2136. };
  2137. static struct vendor_data vendor_db5500_pl023 = {
  2138. .fifodepth = 32,
  2139. .max_bpw = 32,
  2140. .unidir = false,
  2141. .extended_cr = true,
  2142. .pl023 = true,
  2143. .loopback = true,
  2144. };
  2145. static struct amba_id pl022_ids[] = {
  2146. {
  2147. /*
  2148. * ARM PL022 variant, this has a 16bit wide
  2149. * and 8 locations deep TX/RX FIFO
  2150. */
  2151. .id = 0x00041022,
  2152. .mask = 0x000fffff,
  2153. .data = &vendor_arm,
  2154. },
  2155. {
  2156. /*
  2157. * ST Micro derivative, this has 32bit wide
  2158. * and 32 locations deep TX/RX FIFO
  2159. */
  2160. .id = 0x01080022,
  2161. .mask = 0xffffffff,
  2162. .data = &vendor_st,
  2163. },
  2164. {
  2165. /*
  2166. * ST-Ericsson derivative "PL023" (this is not
  2167. * an official ARM number), this is a PL022 SSP block
  2168. * stripped to SPI mode only, it has 32bit wide
  2169. * and 32 locations deep TX/RX FIFO but no extended
  2170. * CR0/CR1 register
  2171. */
  2172. .id = 0x00080023,
  2173. .mask = 0xffffffff,
  2174. .data = &vendor_st_pl023,
  2175. },
  2176. {
  2177. .id = 0x10080023,
  2178. .mask = 0xffffffff,
  2179. .data = &vendor_db5500_pl023,
  2180. },
  2181. { 0, 0 },
  2182. };
  2183. static struct amba_driver pl022_driver = {
  2184. .drv = {
  2185. .name = "ssp-pl022",
  2186. .pm = &pl022_dev_pm_ops,
  2187. },
  2188. .id_table = pl022_ids,
  2189. .probe = pl022_probe,
  2190. .remove = __devexit_p(pl022_remove),
  2191. };
  2192. static int __init pl022_init(void)
  2193. {
  2194. return amba_driver_register(&pl022_driver);
  2195. }
  2196. subsys_initcall(pl022_init);
  2197. static void __exit pl022_exit(void)
  2198. {
  2199. amba_driver_unregister(&pl022_driver);
  2200. }
  2201. module_exit(pl022_exit);
  2202. MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
  2203. MODULE_DESCRIPTION("PL022 SSP Controller Driver");
  2204. MODULE_LICENSE("GPL");