spi.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/cache.h>
  24. #include <linux/mutex.h>
  25. #include <linux/slab.h>
  26. #include <linux/mod_devicetable.h>
  27. #include <linux/spi/spi.h>
  28. #include <linux/of_spi.h>
  29. /* SPI bustype and spi_master class are registered after board init code
  30. * provides the SPI device tables, ensuring that both are present by the
  31. * time controller driver registration causes spi_devices to "enumerate".
  32. */
  33. static void spidev_release(struct device *dev)
  34. {
  35. struct spi_device *spi = to_spi_device(dev);
  36. /* spi masters may cleanup for released devices */
  37. if (spi->master->cleanup)
  38. spi->master->cleanup(spi);
  39. spi_master_put(spi->master);
  40. kfree(spi);
  41. }
  42. static ssize_t
  43. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  44. {
  45. const struct spi_device *spi = to_spi_device(dev);
  46. return sprintf(buf, "%s\n", spi->modalias);
  47. }
  48. static struct device_attribute spi_dev_attrs[] = {
  49. __ATTR_RO(modalias),
  50. __ATTR_NULL,
  51. };
  52. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  53. * and the sysfs version makes coldplug work too.
  54. */
  55. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  56. const struct spi_device *sdev)
  57. {
  58. while (id->name[0]) {
  59. if (!strcmp(sdev->modalias, id->name))
  60. return id;
  61. id++;
  62. }
  63. return NULL;
  64. }
  65. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  66. {
  67. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  68. return spi_match_id(sdrv->id_table, sdev);
  69. }
  70. EXPORT_SYMBOL_GPL(spi_get_device_id);
  71. static int spi_match_device(struct device *dev, struct device_driver *drv)
  72. {
  73. const struct spi_device *spi = to_spi_device(dev);
  74. const struct spi_driver *sdrv = to_spi_driver(drv);
  75. if (sdrv->id_table)
  76. return !!spi_match_id(sdrv->id_table, spi);
  77. return strcmp(spi->modalias, drv->name) == 0;
  78. }
  79. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  80. {
  81. const struct spi_device *spi = to_spi_device(dev);
  82. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  83. return 0;
  84. }
  85. #ifdef CONFIG_PM
  86. static int spi_suspend(struct device *dev, pm_message_t message)
  87. {
  88. int value = 0;
  89. struct spi_driver *drv = to_spi_driver(dev->driver);
  90. /* suspend will stop irqs and dma; no more i/o */
  91. if (drv) {
  92. if (drv->suspend)
  93. value = drv->suspend(to_spi_device(dev), message);
  94. else
  95. dev_dbg(dev, "... can't suspend\n");
  96. }
  97. return value;
  98. }
  99. static int spi_resume(struct device *dev)
  100. {
  101. int value = 0;
  102. struct spi_driver *drv = to_spi_driver(dev->driver);
  103. /* resume may restart the i/o queue */
  104. if (drv) {
  105. if (drv->resume)
  106. value = drv->resume(to_spi_device(dev));
  107. else
  108. dev_dbg(dev, "... can't resume\n");
  109. }
  110. return value;
  111. }
  112. #else
  113. #define spi_suspend NULL
  114. #define spi_resume NULL
  115. #endif
  116. struct bus_type spi_bus_type = {
  117. .name = "spi",
  118. .dev_attrs = spi_dev_attrs,
  119. .match = spi_match_device,
  120. .uevent = spi_uevent,
  121. .suspend = spi_suspend,
  122. .resume = spi_resume,
  123. };
  124. EXPORT_SYMBOL_GPL(spi_bus_type);
  125. static int spi_drv_probe(struct device *dev)
  126. {
  127. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  128. return sdrv->probe(to_spi_device(dev));
  129. }
  130. static int spi_drv_remove(struct device *dev)
  131. {
  132. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  133. return sdrv->remove(to_spi_device(dev));
  134. }
  135. static void spi_drv_shutdown(struct device *dev)
  136. {
  137. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  138. sdrv->shutdown(to_spi_device(dev));
  139. }
  140. /**
  141. * spi_register_driver - register a SPI driver
  142. * @sdrv: the driver to register
  143. * Context: can sleep
  144. */
  145. int spi_register_driver(struct spi_driver *sdrv)
  146. {
  147. sdrv->driver.bus = &spi_bus_type;
  148. if (sdrv->probe)
  149. sdrv->driver.probe = spi_drv_probe;
  150. if (sdrv->remove)
  151. sdrv->driver.remove = spi_drv_remove;
  152. if (sdrv->shutdown)
  153. sdrv->driver.shutdown = spi_drv_shutdown;
  154. return driver_register(&sdrv->driver);
  155. }
  156. EXPORT_SYMBOL_GPL(spi_register_driver);
  157. /*-------------------------------------------------------------------------*/
  158. /* SPI devices should normally not be created by SPI device drivers; that
  159. * would make them board-specific. Similarly with SPI master drivers.
  160. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  161. * with other readonly (flashable) information about mainboard devices.
  162. */
  163. struct boardinfo {
  164. struct list_head list;
  165. unsigned n_board_info;
  166. struct spi_board_info board_info[0];
  167. };
  168. static LIST_HEAD(board_list);
  169. static DEFINE_MUTEX(board_lock);
  170. /**
  171. * spi_alloc_device - Allocate a new SPI device
  172. * @master: Controller to which device is connected
  173. * Context: can sleep
  174. *
  175. * Allows a driver to allocate and initialize a spi_device without
  176. * registering it immediately. This allows a driver to directly
  177. * fill the spi_device with device parameters before calling
  178. * spi_add_device() on it.
  179. *
  180. * Caller is responsible to call spi_add_device() on the returned
  181. * spi_device structure to add it to the SPI master. If the caller
  182. * needs to discard the spi_device without adding it, then it should
  183. * call spi_dev_put() on it.
  184. *
  185. * Returns a pointer to the new device, or NULL.
  186. */
  187. struct spi_device *spi_alloc_device(struct spi_master *master)
  188. {
  189. struct spi_device *spi;
  190. struct device *dev = master->dev.parent;
  191. if (!spi_master_get(master))
  192. return NULL;
  193. spi = kzalloc(sizeof *spi, GFP_KERNEL);
  194. if (!spi) {
  195. dev_err(dev, "cannot alloc spi_device\n");
  196. spi_master_put(master);
  197. return NULL;
  198. }
  199. spi->master = master;
  200. spi->dev.parent = dev;
  201. spi->dev.bus = &spi_bus_type;
  202. spi->dev.release = spidev_release;
  203. device_initialize(&spi->dev);
  204. return spi;
  205. }
  206. EXPORT_SYMBOL_GPL(spi_alloc_device);
  207. /**
  208. * spi_add_device - Add spi_device allocated with spi_alloc_device
  209. * @spi: spi_device to register
  210. *
  211. * Companion function to spi_alloc_device. Devices allocated with
  212. * spi_alloc_device can be added onto the spi bus with this function.
  213. *
  214. * Returns 0 on success; negative errno on failure
  215. */
  216. int spi_add_device(struct spi_device *spi)
  217. {
  218. static DEFINE_MUTEX(spi_add_lock);
  219. struct device *dev = spi->master->dev.parent;
  220. struct device *d;
  221. int status;
  222. /* Chipselects are numbered 0..max; validate. */
  223. if (spi->chip_select >= spi->master->num_chipselect) {
  224. dev_err(dev, "cs%d >= max %d\n",
  225. spi->chip_select,
  226. spi->master->num_chipselect);
  227. return -EINVAL;
  228. }
  229. /* Set the bus ID string */
  230. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  231. spi->chip_select);
  232. /* We need to make sure there's no other device with this
  233. * chipselect **BEFORE** we call setup(), else we'll trash
  234. * its configuration. Lock against concurrent add() calls.
  235. */
  236. mutex_lock(&spi_add_lock);
  237. d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
  238. if (d != NULL) {
  239. dev_err(dev, "chipselect %d already in use\n",
  240. spi->chip_select);
  241. put_device(d);
  242. status = -EBUSY;
  243. goto done;
  244. }
  245. /* Drivers may modify this initial i/o setup, but will
  246. * normally rely on the device being setup. Devices
  247. * using SPI_CS_HIGH can't coexist well otherwise...
  248. */
  249. status = spi_setup(spi);
  250. if (status < 0) {
  251. dev_err(dev, "can't %s %s, status %d\n",
  252. "setup", dev_name(&spi->dev), status);
  253. goto done;
  254. }
  255. /* Device may be bound to an active driver when this returns */
  256. status = device_add(&spi->dev);
  257. if (status < 0)
  258. dev_err(dev, "can't %s %s, status %d\n",
  259. "add", dev_name(&spi->dev), status);
  260. else
  261. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  262. done:
  263. mutex_unlock(&spi_add_lock);
  264. return status;
  265. }
  266. EXPORT_SYMBOL_GPL(spi_add_device);
  267. /**
  268. * spi_new_device - instantiate one new SPI device
  269. * @master: Controller to which device is connected
  270. * @chip: Describes the SPI device
  271. * Context: can sleep
  272. *
  273. * On typical mainboards, this is purely internal; and it's not needed
  274. * after board init creates the hard-wired devices. Some development
  275. * platforms may not be able to use spi_register_board_info though, and
  276. * this is exported so that for example a USB or parport based adapter
  277. * driver could add devices (which it would learn about out-of-band).
  278. *
  279. * Returns the new device, or NULL.
  280. */
  281. struct spi_device *spi_new_device(struct spi_master *master,
  282. struct spi_board_info *chip)
  283. {
  284. struct spi_device *proxy;
  285. int status;
  286. /* NOTE: caller did any chip->bus_num checks necessary.
  287. *
  288. * Also, unless we change the return value convention to use
  289. * error-or-pointer (not NULL-or-pointer), troubleshootability
  290. * suggests syslogged diagnostics are best here (ugh).
  291. */
  292. proxy = spi_alloc_device(master);
  293. if (!proxy)
  294. return NULL;
  295. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  296. proxy->chip_select = chip->chip_select;
  297. proxy->max_speed_hz = chip->max_speed_hz;
  298. proxy->mode = chip->mode;
  299. proxy->irq = chip->irq;
  300. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  301. proxy->dev.platform_data = (void *) chip->platform_data;
  302. proxy->controller_data = chip->controller_data;
  303. proxy->controller_state = NULL;
  304. status = spi_add_device(proxy);
  305. if (status < 0) {
  306. spi_dev_put(proxy);
  307. return NULL;
  308. }
  309. return proxy;
  310. }
  311. EXPORT_SYMBOL_GPL(spi_new_device);
  312. /**
  313. * spi_register_board_info - register SPI devices for a given board
  314. * @info: array of chip descriptors
  315. * @n: how many descriptors are provided
  316. * Context: can sleep
  317. *
  318. * Board-specific early init code calls this (probably during arch_initcall)
  319. * with segments of the SPI device table. Any device nodes are created later,
  320. * after the relevant parent SPI controller (bus_num) is defined. We keep
  321. * this table of devices forever, so that reloading a controller driver will
  322. * not make Linux forget about these hard-wired devices.
  323. *
  324. * Other code can also call this, e.g. a particular add-on board might provide
  325. * SPI devices through its expansion connector, so code initializing that board
  326. * would naturally declare its SPI devices.
  327. *
  328. * The board info passed can safely be __initdata ... but be careful of
  329. * any embedded pointers (platform_data, etc), they're copied as-is.
  330. */
  331. int __init
  332. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  333. {
  334. struct boardinfo *bi;
  335. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  336. if (!bi)
  337. return -ENOMEM;
  338. bi->n_board_info = n;
  339. memcpy(bi->board_info, info, n * sizeof *info);
  340. mutex_lock(&board_lock);
  341. list_add_tail(&bi->list, &board_list);
  342. mutex_unlock(&board_lock);
  343. return 0;
  344. }
  345. /* FIXME someone should add support for a __setup("spi", ...) that
  346. * creates board info from kernel command lines
  347. */
  348. static void scan_boardinfo(struct spi_master *master)
  349. {
  350. struct boardinfo *bi;
  351. mutex_lock(&board_lock);
  352. list_for_each_entry(bi, &board_list, list) {
  353. struct spi_board_info *chip = bi->board_info;
  354. unsigned n;
  355. for (n = bi->n_board_info; n > 0; n--, chip++) {
  356. if (chip->bus_num != master->bus_num)
  357. continue;
  358. /* NOTE: this relies on spi_new_device to
  359. * issue diagnostics when given bogus inputs
  360. */
  361. (void) spi_new_device(master, chip);
  362. }
  363. }
  364. mutex_unlock(&board_lock);
  365. }
  366. /*-------------------------------------------------------------------------*/
  367. static void spi_master_release(struct device *dev)
  368. {
  369. struct spi_master *master;
  370. master = container_of(dev, struct spi_master, dev);
  371. kfree(master);
  372. }
  373. static struct class spi_master_class = {
  374. .name = "spi_master",
  375. .owner = THIS_MODULE,
  376. .dev_release = spi_master_release,
  377. };
  378. /**
  379. * spi_alloc_master - allocate SPI master controller
  380. * @dev: the controller, possibly using the platform_bus
  381. * @size: how much zeroed driver-private data to allocate; the pointer to this
  382. * memory is in the driver_data field of the returned device,
  383. * accessible with spi_master_get_devdata().
  384. * Context: can sleep
  385. *
  386. * This call is used only by SPI master controller drivers, which are the
  387. * only ones directly touching chip registers. It's how they allocate
  388. * an spi_master structure, prior to calling spi_register_master().
  389. *
  390. * This must be called from context that can sleep. It returns the SPI
  391. * master structure on success, else NULL.
  392. *
  393. * The caller is responsible for assigning the bus number and initializing
  394. * the master's methods before calling spi_register_master(); and (after errors
  395. * adding the device) calling spi_master_put() to prevent a memory leak.
  396. */
  397. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  398. {
  399. struct spi_master *master;
  400. if (!dev)
  401. return NULL;
  402. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  403. if (!master)
  404. return NULL;
  405. device_initialize(&master->dev);
  406. master->dev.class = &spi_master_class;
  407. master->dev.parent = get_device(dev);
  408. spi_master_set_devdata(master, &master[1]);
  409. return master;
  410. }
  411. EXPORT_SYMBOL_GPL(spi_alloc_master);
  412. /**
  413. * spi_register_master - register SPI master controller
  414. * @master: initialized master, originally from spi_alloc_master()
  415. * Context: can sleep
  416. *
  417. * SPI master controllers connect to their drivers using some non-SPI bus,
  418. * such as the platform bus. The final stage of probe() in that code
  419. * includes calling spi_register_master() to hook up to this SPI bus glue.
  420. *
  421. * SPI controllers use board specific (often SOC specific) bus numbers,
  422. * and board-specific addressing for SPI devices combines those numbers
  423. * with chip select numbers. Since SPI does not directly support dynamic
  424. * device identification, boards need configuration tables telling which
  425. * chip is at which address.
  426. *
  427. * This must be called from context that can sleep. It returns zero on
  428. * success, else a negative error code (dropping the master's refcount).
  429. * After a successful return, the caller is responsible for calling
  430. * spi_unregister_master().
  431. */
  432. int spi_register_master(struct spi_master *master)
  433. {
  434. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  435. struct device *dev = master->dev.parent;
  436. int status = -ENODEV;
  437. int dynamic = 0;
  438. if (!dev)
  439. return -ENODEV;
  440. /* even if it's just one always-selected device, there must
  441. * be at least one chipselect
  442. */
  443. if (master->num_chipselect == 0)
  444. return -EINVAL;
  445. /* convention: dynamically assigned bus IDs count down from the max */
  446. if (master->bus_num < 0) {
  447. /* FIXME switch to an IDR based scheme, something like
  448. * I2C now uses, so we can't run out of "dynamic" IDs
  449. */
  450. master->bus_num = atomic_dec_return(&dyn_bus_id);
  451. dynamic = 1;
  452. }
  453. spin_lock_init(&master->bus_lock_spinlock);
  454. mutex_init(&master->bus_lock_mutex);
  455. master->bus_lock_flag = 0;
  456. /* register the device, then userspace will see it.
  457. * registration fails if the bus ID is in use.
  458. */
  459. dev_set_name(&master->dev, "spi%u", master->bus_num);
  460. status = device_add(&master->dev);
  461. if (status < 0)
  462. goto done;
  463. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  464. dynamic ? " (dynamic)" : "");
  465. /* populate children from any spi device tables */
  466. scan_boardinfo(master);
  467. status = 0;
  468. /* Register devices from the device tree */
  469. of_register_spi_devices(master);
  470. done:
  471. return status;
  472. }
  473. EXPORT_SYMBOL_GPL(spi_register_master);
  474. static int __unregister(struct device *dev, void *master_dev)
  475. {
  476. /* note: before about 2.6.14-rc1 this would corrupt memory: */
  477. if (dev != master_dev)
  478. spi_unregister_device(to_spi_device(dev));
  479. return 0;
  480. }
  481. /**
  482. * spi_unregister_master - unregister SPI master controller
  483. * @master: the master being unregistered
  484. * Context: can sleep
  485. *
  486. * This call is used only by SPI master controller drivers, which are the
  487. * only ones directly touching chip registers.
  488. *
  489. * This must be called from context that can sleep.
  490. */
  491. void spi_unregister_master(struct spi_master *master)
  492. {
  493. int dummy;
  494. dummy = device_for_each_child(master->dev.parent, &master->dev,
  495. __unregister);
  496. device_unregister(&master->dev);
  497. }
  498. EXPORT_SYMBOL_GPL(spi_unregister_master);
  499. static int __spi_master_match(struct device *dev, void *data)
  500. {
  501. struct spi_master *m;
  502. u16 *bus_num = data;
  503. m = container_of(dev, struct spi_master, dev);
  504. return m->bus_num == *bus_num;
  505. }
  506. /**
  507. * spi_busnum_to_master - look up master associated with bus_num
  508. * @bus_num: the master's bus number
  509. * Context: can sleep
  510. *
  511. * This call may be used with devices that are registered after
  512. * arch init time. It returns a refcounted pointer to the relevant
  513. * spi_master (which the caller must release), or NULL if there is
  514. * no such master registered.
  515. */
  516. struct spi_master *spi_busnum_to_master(u16 bus_num)
  517. {
  518. struct device *dev;
  519. struct spi_master *master = NULL;
  520. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  521. __spi_master_match);
  522. if (dev)
  523. master = container_of(dev, struct spi_master, dev);
  524. /* reference got in class_find_device */
  525. return master;
  526. }
  527. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  528. /*-------------------------------------------------------------------------*/
  529. /* Core methods for SPI master protocol drivers. Some of the
  530. * other core methods are currently defined as inline functions.
  531. */
  532. /**
  533. * spi_setup - setup SPI mode and clock rate
  534. * @spi: the device whose settings are being modified
  535. * Context: can sleep, and no requests are queued to the device
  536. *
  537. * SPI protocol drivers may need to update the transfer mode if the
  538. * device doesn't work with its default. They may likewise need
  539. * to update clock rates or word sizes from initial values. This function
  540. * changes those settings, and must be called from a context that can sleep.
  541. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  542. * effect the next time the device is selected and data is transferred to
  543. * or from it. When this function returns, the spi device is deselected.
  544. *
  545. * Note that this call will fail if the protocol driver specifies an option
  546. * that the underlying controller or its driver does not support. For
  547. * example, not all hardware supports wire transfers using nine bit words,
  548. * LSB-first wire encoding, or active-high chipselects.
  549. */
  550. int spi_setup(struct spi_device *spi)
  551. {
  552. unsigned bad_bits;
  553. int status;
  554. /* help drivers fail *cleanly* when they need options
  555. * that aren't supported with their current master
  556. */
  557. bad_bits = spi->mode & ~spi->master->mode_bits;
  558. if (bad_bits) {
  559. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  560. bad_bits);
  561. return -EINVAL;
  562. }
  563. if (!spi->bits_per_word)
  564. spi->bits_per_word = 8;
  565. status = spi->master->setup(spi);
  566. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
  567. "%u bits/w, %u Hz max --> %d\n",
  568. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  569. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  570. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  571. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  572. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  573. spi->bits_per_word, spi->max_speed_hz,
  574. status);
  575. return status;
  576. }
  577. EXPORT_SYMBOL_GPL(spi_setup);
  578. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  579. {
  580. struct spi_master *master = spi->master;
  581. /* Half-duplex links include original MicroWire, and ones with
  582. * only one data pin like SPI_3WIRE (switches direction) or where
  583. * either MOSI or MISO is missing. They can also be caused by
  584. * software limitations.
  585. */
  586. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  587. || (spi->mode & SPI_3WIRE)) {
  588. struct spi_transfer *xfer;
  589. unsigned flags = master->flags;
  590. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  591. if (xfer->rx_buf && xfer->tx_buf)
  592. return -EINVAL;
  593. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  594. return -EINVAL;
  595. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  596. return -EINVAL;
  597. }
  598. }
  599. message->spi = spi;
  600. message->status = -EINPROGRESS;
  601. return master->transfer(spi, message);
  602. }
  603. /**
  604. * spi_async - asynchronous SPI transfer
  605. * @spi: device with which data will be exchanged
  606. * @message: describes the data transfers, including completion callback
  607. * Context: any (irqs may be blocked, etc)
  608. *
  609. * This call may be used in_irq and other contexts which can't sleep,
  610. * as well as from task contexts which can sleep.
  611. *
  612. * The completion callback is invoked in a context which can't sleep.
  613. * Before that invocation, the value of message->status is undefined.
  614. * When the callback is issued, message->status holds either zero (to
  615. * indicate complete success) or a negative error code. After that
  616. * callback returns, the driver which issued the transfer request may
  617. * deallocate the associated memory; it's no longer in use by any SPI
  618. * core or controller driver code.
  619. *
  620. * Note that although all messages to a spi_device are handled in
  621. * FIFO order, messages may go to different devices in other orders.
  622. * Some device might be higher priority, or have various "hard" access
  623. * time requirements, for example.
  624. *
  625. * On detection of any fault during the transfer, processing of
  626. * the entire message is aborted, and the device is deselected.
  627. * Until returning from the associated message completion callback,
  628. * no other spi_message queued to that device will be processed.
  629. * (This rule applies equally to all the synchronous transfer calls,
  630. * which are wrappers around this core asynchronous primitive.)
  631. */
  632. int spi_async(struct spi_device *spi, struct spi_message *message)
  633. {
  634. struct spi_master *master = spi->master;
  635. int ret;
  636. unsigned long flags;
  637. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  638. if (master->bus_lock_flag)
  639. ret = -EBUSY;
  640. else
  641. ret = __spi_async(spi, message);
  642. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  643. return ret;
  644. }
  645. EXPORT_SYMBOL_GPL(spi_async);
  646. /**
  647. * spi_async_locked - version of spi_async with exclusive bus usage
  648. * @spi: device with which data will be exchanged
  649. * @message: describes the data transfers, including completion callback
  650. * Context: any (irqs may be blocked, etc)
  651. *
  652. * This call may be used in_irq and other contexts which can't sleep,
  653. * as well as from task contexts which can sleep.
  654. *
  655. * The completion callback is invoked in a context which can't sleep.
  656. * Before that invocation, the value of message->status is undefined.
  657. * When the callback is issued, message->status holds either zero (to
  658. * indicate complete success) or a negative error code. After that
  659. * callback returns, the driver which issued the transfer request may
  660. * deallocate the associated memory; it's no longer in use by any SPI
  661. * core or controller driver code.
  662. *
  663. * Note that although all messages to a spi_device are handled in
  664. * FIFO order, messages may go to different devices in other orders.
  665. * Some device might be higher priority, or have various "hard" access
  666. * time requirements, for example.
  667. *
  668. * On detection of any fault during the transfer, processing of
  669. * the entire message is aborted, and the device is deselected.
  670. * Until returning from the associated message completion callback,
  671. * no other spi_message queued to that device will be processed.
  672. * (This rule applies equally to all the synchronous transfer calls,
  673. * which are wrappers around this core asynchronous primitive.)
  674. */
  675. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  676. {
  677. struct spi_master *master = spi->master;
  678. int ret;
  679. unsigned long flags;
  680. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  681. ret = __spi_async(spi, message);
  682. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  683. return ret;
  684. }
  685. EXPORT_SYMBOL_GPL(spi_async_locked);
  686. /*-------------------------------------------------------------------------*/
  687. /* Utility methods for SPI master protocol drivers, layered on
  688. * top of the core. Some other utility methods are defined as
  689. * inline functions.
  690. */
  691. static void spi_complete(void *arg)
  692. {
  693. complete(arg);
  694. }
  695. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  696. int bus_locked)
  697. {
  698. DECLARE_COMPLETION_ONSTACK(done);
  699. int status;
  700. struct spi_master *master = spi->master;
  701. message->complete = spi_complete;
  702. message->context = &done;
  703. if (!bus_locked)
  704. mutex_lock(&master->bus_lock_mutex);
  705. status = spi_async_locked(spi, message);
  706. if (!bus_locked)
  707. mutex_unlock(&master->bus_lock_mutex);
  708. if (status == 0) {
  709. wait_for_completion(&done);
  710. status = message->status;
  711. }
  712. message->context = NULL;
  713. return status;
  714. }
  715. /**
  716. * spi_sync - blocking/synchronous SPI data transfers
  717. * @spi: device with which data will be exchanged
  718. * @message: describes the data transfers
  719. * Context: can sleep
  720. *
  721. * This call may only be used from a context that may sleep. The sleep
  722. * is non-interruptible, and has no timeout. Low-overhead controller
  723. * drivers may DMA directly into and out of the message buffers.
  724. *
  725. * Note that the SPI device's chip select is active during the message,
  726. * and then is normally disabled between messages. Drivers for some
  727. * frequently-used devices may want to minimize costs of selecting a chip,
  728. * by leaving it selected in anticipation that the next message will go
  729. * to the same chip. (That may increase power usage.)
  730. *
  731. * Also, the caller is guaranteeing that the memory associated with the
  732. * message will not be freed before this call returns.
  733. *
  734. * It returns zero on success, else a negative error code.
  735. */
  736. int spi_sync(struct spi_device *spi, struct spi_message *message)
  737. {
  738. return __spi_sync(spi, message, 0);
  739. }
  740. EXPORT_SYMBOL_GPL(spi_sync);
  741. /**
  742. * spi_sync_locked - version of spi_sync with exclusive bus usage
  743. * @spi: device with which data will be exchanged
  744. * @message: describes the data transfers
  745. * Context: can sleep
  746. *
  747. * This call may only be used from a context that may sleep. The sleep
  748. * is non-interruptible, and has no timeout. Low-overhead controller
  749. * drivers may DMA directly into and out of the message buffers.
  750. *
  751. * This call should be used by drivers that require exclusive access to the
  752. * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
  753. * be released by a spi_bus_unlock call when the exclusive access is over.
  754. *
  755. * It returns zero on success, else a negative error code.
  756. */
  757. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  758. {
  759. return __spi_sync(spi, message, 1);
  760. }
  761. EXPORT_SYMBOL_GPL(spi_sync_locked);
  762. /**
  763. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  764. * @master: SPI bus master that should be locked for exclusive bus access
  765. * Context: can sleep
  766. *
  767. * This call may only be used from a context that may sleep. The sleep
  768. * is non-interruptible, and has no timeout.
  769. *
  770. * This call should be used by drivers that require exclusive access to the
  771. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  772. * exclusive access is over. Data transfer must be done by spi_sync_locked
  773. * and spi_async_locked calls when the SPI bus lock is held.
  774. *
  775. * It returns zero on success, else a negative error code.
  776. */
  777. int spi_bus_lock(struct spi_master *master)
  778. {
  779. unsigned long flags;
  780. mutex_lock(&master->bus_lock_mutex);
  781. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  782. master->bus_lock_flag = 1;
  783. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  784. /* mutex remains locked until spi_bus_unlock is called */
  785. return 0;
  786. }
  787. EXPORT_SYMBOL_GPL(spi_bus_lock);
  788. /**
  789. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  790. * @master: SPI bus master that was locked for exclusive bus access
  791. * Context: can sleep
  792. *
  793. * This call may only be used from a context that may sleep. The sleep
  794. * is non-interruptible, and has no timeout.
  795. *
  796. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  797. * call.
  798. *
  799. * It returns zero on success, else a negative error code.
  800. */
  801. int spi_bus_unlock(struct spi_master *master)
  802. {
  803. master->bus_lock_flag = 0;
  804. mutex_unlock(&master->bus_lock_mutex);
  805. return 0;
  806. }
  807. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  808. /* portable code must never pass more than 32 bytes */
  809. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  810. static u8 *buf;
  811. /**
  812. * spi_write_then_read - SPI synchronous write followed by read
  813. * @spi: device with which data will be exchanged
  814. * @txbuf: data to be written (need not be dma-safe)
  815. * @n_tx: size of txbuf, in bytes
  816. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  817. * @n_rx: size of rxbuf, in bytes
  818. * Context: can sleep
  819. *
  820. * This performs a half duplex MicroWire style transaction with the
  821. * device, sending txbuf and then reading rxbuf. The return value
  822. * is zero for success, else a negative errno status code.
  823. * This call may only be used from a context that may sleep.
  824. *
  825. * Parameters to this routine are always copied using a small buffer;
  826. * portable code should never use this for more than 32 bytes.
  827. * Performance-sensitive or bulk transfer code should instead use
  828. * spi_{async,sync}() calls with dma-safe buffers.
  829. */
  830. int spi_write_then_read(struct spi_device *spi,
  831. const u8 *txbuf, unsigned n_tx,
  832. u8 *rxbuf, unsigned n_rx)
  833. {
  834. static DEFINE_MUTEX(lock);
  835. int status;
  836. struct spi_message message;
  837. struct spi_transfer x[2];
  838. u8 *local_buf;
  839. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  840. * (as a pure convenience thing), but we can keep heap costs
  841. * out of the hot path ...
  842. */
  843. if ((n_tx + n_rx) > SPI_BUFSIZ)
  844. return -EINVAL;
  845. spi_message_init(&message);
  846. memset(x, 0, sizeof x);
  847. if (n_tx) {
  848. x[0].len = n_tx;
  849. spi_message_add_tail(&x[0], &message);
  850. }
  851. if (n_rx) {
  852. x[1].len = n_rx;
  853. spi_message_add_tail(&x[1], &message);
  854. }
  855. /* ... unless someone else is using the pre-allocated buffer */
  856. if (!mutex_trylock(&lock)) {
  857. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  858. if (!local_buf)
  859. return -ENOMEM;
  860. } else
  861. local_buf = buf;
  862. memcpy(local_buf, txbuf, n_tx);
  863. x[0].tx_buf = local_buf;
  864. x[1].rx_buf = local_buf + n_tx;
  865. /* do the i/o */
  866. status = spi_sync(spi, &message);
  867. if (status == 0)
  868. memcpy(rxbuf, x[1].rx_buf, n_rx);
  869. if (x[0].tx_buf == buf)
  870. mutex_unlock(&lock);
  871. else
  872. kfree(local_buf);
  873. return status;
  874. }
  875. EXPORT_SYMBOL_GPL(spi_write_then_read);
  876. /*-------------------------------------------------------------------------*/
  877. static int __init spi_init(void)
  878. {
  879. int status;
  880. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  881. if (!buf) {
  882. status = -ENOMEM;
  883. goto err0;
  884. }
  885. status = bus_register(&spi_bus_type);
  886. if (status < 0)
  887. goto err1;
  888. status = class_register(&spi_master_class);
  889. if (status < 0)
  890. goto err2;
  891. return 0;
  892. err2:
  893. bus_unregister(&spi_bus_type);
  894. err1:
  895. kfree(buf);
  896. buf = NULL;
  897. err0:
  898. return status;
  899. }
  900. /* board_info is normally registered in arch_initcall(),
  901. * but even essential drivers wait till later
  902. *
  903. * REVISIT only boardinfo really needs static linking. the rest (device and
  904. * driver registration) _could_ be dynamically linked (modular) ... costs
  905. * include needing to have boardinfo data structures be much more public.
  906. */
  907. postcore_initcall(spi_init);