input.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/smp_lock.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. static LIST_HEAD(input_dev_list);
  32. static LIST_HEAD(input_handler_list);
  33. /*
  34. * input_mutex protects access to both input_dev_list and input_handler_list.
  35. * This also causes input_[un]register_device and input_[un]register_handler
  36. * be mutually exclusive which simplifies locking in drivers implementing
  37. * input handlers.
  38. */
  39. static DEFINE_MUTEX(input_mutex);
  40. static struct input_handler *input_table[8];
  41. static inline int is_event_supported(unsigned int code,
  42. unsigned long *bm, unsigned int max)
  43. {
  44. return code <= max && test_bit(code, bm);
  45. }
  46. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  47. {
  48. if (fuzz) {
  49. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  50. return old_val;
  51. if (value > old_val - fuzz && value < old_val + fuzz)
  52. return (old_val * 3 + value) / 4;
  53. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  54. return (old_val + value) / 2;
  55. }
  56. return value;
  57. }
  58. /*
  59. * Pass event first through all filters and then, if event has not been
  60. * filtered out, through all open handles. This function is called with
  61. * dev->event_lock held and interrupts disabled.
  62. */
  63. static void input_pass_event(struct input_dev *dev,
  64. unsigned int type, unsigned int code, int value)
  65. {
  66. struct input_handler *handler;
  67. struct input_handle *handle;
  68. rcu_read_lock();
  69. handle = rcu_dereference(dev->grab);
  70. if (handle)
  71. handle->handler->event(handle, type, code, value);
  72. else {
  73. bool filtered = false;
  74. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  75. if (!handle->open)
  76. continue;
  77. handler = handle->handler;
  78. if (!handler->filter) {
  79. if (filtered)
  80. break;
  81. handler->event(handle, type, code, value);
  82. } else if (handler->filter(handle, type, code, value))
  83. filtered = true;
  84. }
  85. }
  86. rcu_read_unlock();
  87. }
  88. /*
  89. * Generate software autorepeat event. Note that we take
  90. * dev->event_lock here to avoid racing with input_event
  91. * which may cause keys get "stuck".
  92. */
  93. static void input_repeat_key(unsigned long data)
  94. {
  95. struct input_dev *dev = (void *) data;
  96. unsigned long flags;
  97. spin_lock_irqsave(&dev->event_lock, flags);
  98. if (test_bit(dev->repeat_key, dev->key) &&
  99. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  100. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  101. if (dev->sync) {
  102. /*
  103. * Only send SYN_REPORT if we are not in a middle
  104. * of driver parsing a new hardware packet.
  105. * Otherwise assume that the driver will send
  106. * SYN_REPORT once it's done.
  107. */
  108. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  109. }
  110. if (dev->rep[REP_PERIOD])
  111. mod_timer(&dev->timer, jiffies +
  112. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  113. }
  114. spin_unlock_irqrestore(&dev->event_lock, flags);
  115. }
  116. static void input_start_autorepeat(struct input_dev *dev, int code)
  117. {
  118. if (test_bit(EV_REP, dev->evbit) &&
  119. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  120. dev->timer.data) {
  121. dev->repeat_key = code;
  122. mod_timer(&dev->timer,
  123. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  124. }
  125. }
  126. static void input_stop_autorepeat(struct input_dev *dev)
  127. {
  128. del_timer(&dev->timer);
  129. }
  130. #define INPUT_IGNORE_EVENT 0
  131. #define INPUT_PASS_TO_HANDLERS 1
  132. #define INPUT_PASS_TO_DEVICE 2
  133. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  134. static int input_handle_abs_event(struct input_dev *dev,
  135. unsigned int code, int *pval)
  136. {
  137. bool is_mt_event;
  138. int *pold;
  139. if (code == ABS_MT_SLOT) {
  140. /*
  141. * "Stage" the event; we'll flush it later, when we
  142. * get actiual touch data.
  143. */
  144. if (*pval >= 0 && *pval < dev->mtsize)
  145. dev->slot = *pval;
  146. return INPUT_IGNORE_EVENT;
  147. }
  148. is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
  149. if (!is_mt_event) {
  150. pold = &dev->absinfo[code].value;
  151. } else if (dev->mt) {
  152. struct input_mt_slot *mtslot = &dev->mt[dev->slot];
  153. pold = &mtslot->abs[code - ABS_MT_FIRST];
  154. } else {
  155. /*
  156. * Bypass filtering for multitouch events when
  157. * not employing slots.
  158. */
  159. pold = NULL;
  160. }
  161. if (pold) {
  162. *pval = input_defuzz_abs_event(*pval, *pold,
  163. dev->absinfo[code].fuzz);
  164. if (*pold == *pval)
  165. return INPUT_IGNORE_EVENT;
  166. *pold = *pval;
  167. }
  168. /* Flush pending "slot" event */
  169. if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
  170. input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
  171. input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
  172. }
  173. return INPUT_PASS_TO_HANDLERS;
  174. }
  175. static void input_handle_event(struct input_dev *dev,
  176. unsigned int type, unsigned int code, int value)
  177. {
  178. int disposition = INPUT_IGNORE_EVENT;
  179. switch (type) {
  180. case EV_SYN:
  181. switch (code) {
  182. case SYN_CONFIG:
  183. disposition = INPUT_PASS_TO_ALL;
  184. break;
  185. case SYN_REPORT:
  186. if (!dev->sync) {
  187. dev->sync = true;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. break;
  191. case SYN_MT_REPORT:
  192. dev->sync = false;
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. }
  196. break;
  197. case EV_KEY:
  198. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  199. !!test_bit(code, dev->key) != value) {
  200. if (value != 2) {
  201. __change_bit(code, dev->key);
  202. if (value)
  203. input_start_autorepeat(dev, code);
  204. else
  205. input_stop_autorepeat(dev);
  206. }
  207. disposition = INPUT_PASS_TO_HANDLERS;
  208. }
  209. break;
  210. case EV_SW:
  211. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  212. !!test_bit(code, dev->sw) != value) {
  213. __change_bit(code, dev->sw);
  214. disposition = INPUT_PASS_TO_HANDLERS;
  215. }
  216. break;
  217. case EV_ABS:
  218. if (is_event_supported(code, dev->absbit, ABS_MAX))
  219. disposition = input_handle_abs_event(dev, code, &value);
  220. break;
  221. case EV_REL:
  222. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  223. disposition = INPUT_PASS_TO_HANDLERS;
  224. break;
  225. case EV_MSC:
  226. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. case EV_LED:
  230. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  231. !!test_bit(code, dev->led) != value) {
  232. __change_bit(code, dev->led);
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_SND:
  237. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  238. if (!!test_bit(code, dev->snd) != !!value)
  239. __change_bit(code, dev->snd);
  240. disposition = INPUT_PASS_TO_ALL;
  241. }
  242. break;
  243. case EV_REP:
  244. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  245. dev->rep[code] = value;
  246. disposition = INPUT_PASS_TO_ALL;
  247. }
  248. break;
  249. case EV_FF:
  250. if (value >= 0)
  251. disposition = INPUT_PASS_TO_ALL;
  252. break;
  253. case EV_PWR:
  254. disposition = INPUT_PASS_TO_ALL;
  255. break;
  256. }
  257. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  258. dev->sync = false;
  259. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  260. dev->event(dev, type, code, value);
  261. if (disposition & INPUT_PASS_TO_HANDLERS)
  262. input_pass_event(dev, type, code, value);
  263. }
  264. /**
  265. * input_event() - report new input event
  266. * @dev: device that generated the event
  267. * @type: type of the event
  268. * @code: event code
  269. * @value: value of the event
  270. *
  271. * This function should be used by drivers implementing various input
  272. * devices to report input events. See also input_inject_event().
  273. *
  274. * NOTE: input_event() may be safely used right after input device was
  275. * allocated with input_allocate_device(), even before it is registered
  276. * with input_register_device(), but the event will not reach any of the
  277. * input handlers. Such early invocation of input_event() may be used
  278. * to 'seed' initial state of a switch or initial position of absolute
  279. * axis, etc.
  280. */
  281. void input_event(struct input_dev *dev,
  282. unsigned int type, unsigned int code, int value)
  283. {
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. add_input_randomness(type, code, value);
  288. input_handle_event(dev, type, code, value);
  289. spin_unlock_irqrestore(&dev->event_lock, flags);
  290. }
  291. }
  292. EXPORT_SYMBOL(input_event);
  293. /**
  294. * input_inject_event() - send input event from input handler
  295. * @handle: input handle to send event through
  296. * @type: type of the event
  297. * @code: event code
  298. * @value: value of the event
  299. *
  300. * Similar to input_event() but will ignore event if device is
  301. * "grabbed" and handle injecting event is not the one that owns
  302. * the device.
  303. */
  304. void input_inject_event(struct input_handle *handle,
  305. unsigned int type, unsigned int code, int value)
  306. {
  307. struct input_dev *dev = handle->dev;
  308. struct input_handle *grab;
  309. unsigned long flags;
  310. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  311. spin_lock_irqsave(&dev->event_lock, flags);
  312. rcu_read_lock();
  313. grab = rcu_dereference(dev->grab);
  314. if (!grab || grab == handle)
  315. input_handle_event(dev, type, code, value);
  316. rcu_read_unlock();
  317. spin_unlock_irqrestore(&dev->event_lock, flags);
  318. }
  319. }
  320. EXPORT_SYMBOL(input_inject_event);
  321. /**
  322. * input_alloc_absinfo - allocates array of input_absinfo structs
  323. * @dev: the input device emitting absolute events
  324. *
  325. * If the absinfo struct the caller asked for is already allocated, this
  326. * functions will not do anything.
  327. */
  328. void input_alloc_absinfo(struct input_dev *dev)
  329. {
  330. if (!dev->absinfo)
  331. dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
  332. GFP_KERNEL);
  333. WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
  334. }
  335. EXPORT_SYMBOL(input_alloc_absinfo);
  336. void input_set_abs_params(struct input_dev *dev, unsigned int axis,
  337. int min, int max, int fuzz, int flat)
  338. {
  339. struct input_absinfo *absinfo;
  340. input_alloc_absinfo(dev);
  341. if (!dev->absinfo)
  342. return;
  343. absinfo = &dev->absinfo[axis];
  344. absinfo->minimum = min;
  345. absinfo->maximum = max;
  346. absinfo->fuzz = fuzz;
  347. absinfo->flat = flat;
  348. dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
  349. }
  350. EXPORT_SYMBOL(input_set_abs_params);
  351. /**
  352. * input_grab_device - grabs device for exclusive use
  353. * @handle: input handle that wants to own the device
  354. *
  355. * When a device is grabbed by an input handle all events generated by
  356. * the device are delivered only to this handle. Also events injected
  357. * by other input handles are ignored while device is grabbed.
  358. */
  359. int input_grab_device(struct input_handle *handle)
  360. {
  361. struct input_dev *dev = handle->dev;
  362. int retval;
  363. retval = mutex_lock_interruptible(&dev->mutex);
  364. if (retval)
  365. return retval;
  366. if (dev->grab) {
  367. retval = -EBUSY;
  368. goto out;
  369. }
  370. rcu_assign_pointer(dev->grab, handle);
  371. synchronize_rcu();
  372. out:
  373. mutex_unlock(&dev->mutex);
  374. return retval;
  375. }
  376. EXPORT_SYMBOL(input_grab_device);
  377. static void __input_release_device(struct input_handle *handle)
  378. {
  379. struct input_dev *dev = handle->dev;
  380. if (dev->grab == handle) {
  381. rcu_assign_pointer(dev->grab, NULL);
  382. /* Make sure input_pass_event() notices that grab is gone */
  383. synchronize_rcu();
  384. list_for_each_entry(handle, &dev->h_list, d_node)
  385. if (handle->open && handle->handler->start)
  386. handle->handler->start(handle);
  387. }
  388. }
  389. /**
  390. * input_release_device - release previously grabbed device
  391. * @handle: input handle that owns the device
  392. *
  393. * Releases previously grabbed device so that other input handles can
  394. * start receiving input events. Upon release all handlers attached
  395. * to the device have their start() method called so they have a change
  396. * to synchronize device state with the rest of the system.
  397. */
  398. void input_release_device(struct input_handle *handle)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. mutex_lock(&dev->mutex);
  402. __input_release_device(handle);
  403. mutex_unlock(&dev->mutex);
  404. }
  405. EXPORT_SYMBOL(input_release_device);
  406. /**
  407. * input_open_device - open input device
  408. * @handle: handle through which device is being accessed
  409. *
  410. * This function should be called by input handlers when they
  411. * want to start receive events from given input device.
  412. */
  413. int input_open_device(struct input_handle *handle)
  414. {
  415. struct input_dev *dev = handle->dev;
  416. int retval;
  417. retval = mutex_lock_interruptible(&dev->mutex);
  418. if (retval)
  419. return retval;
  420. if (dev->going_away) {
  421. retval = -ENODEV;
  422. goto out;
  423. }
  424. handle->open++;
  425. if (!dev->users++ && dev->open)
  426. retval = dev->open(dev);
  427. if (retval) {
  428. dev->users--;
  429. if (!--handle->open) {
  430. /*
  431. * Make sure we are not delivering any more events
  432. * through this handle
  433. */
  434. synchronize_rcu();
  435. }
  436. }
  437. out:
  438. mutex_unlock(&dev->mutex);
  439. return retval;
  440. }
  441. EXPORT_SYMBOL(input_open_device);
  442. int input_flush_device(struct input_handle *handle, struct file *file)
  443. {
  444. struct input_dev *dev = handle->dev;
  445. int retval;
  446. retval = mutex_lock_interruptible(&dev->mutex);
  447. if (retval)
  448. return retval;
  449. if (dev->flush)
  450. retval = dev->flush(dev, file);
  451. mutex_unlock(&dev->mutex);
  452. return retval;
  453. }
  454. EXPORT_SYMBOL(input_flush_device);
  455. /**
  456. * input_close_device - close input device
  457. * @handle: handle through which device is being accessed
  458. *
  459. * This function should be called by input handlers when they
  460. * want to stop receive events from given input device.
  461. */
  462. void input_close_device(struct input_handle *handle)
  463. {
  464. struct input_dev *dev = handle->dev;
  465. mutex_lock(&dev->mutex);
  466. __input_release_device(handle);
  467. if (!--dev->users && dev->close)
  468. dev->close(dev);
  469. if (!--handle->open) {
  470. /*
  471. * synchronize_rcu() makes sure that input_pass_event()
  472. * completed and that no more input events are delivered
  473. * through this handle
  474. */
  475. synchronize_rcu();
  476. }
  477. mutex_unlock(&dev->mutex);
  478. }
  479. EXPORT_SYMBOL(input_close_device);
  480. /*
  481. * Simulate keyup events for all keys that are marked as pressed.
  482. * The function must be called with dev->event_lock held.
  483. */
  484. static void input_dev_release_keys(struct input_dev *dev)
  485. {
  486. int code;
  487. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  488. for (code = 0; code <= KEY_MAX; code++) {
  489. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  490. __test_and_clear_bit(code, dev->key)) {
  491. input_pass_event(dev, EV_KEY, code, 0);
  492. }
  493. }
  494. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  495. }
  496. }
  497. /*
  498. * Prepare device for unregistering
  499. */
  500. static void input_disconnect_device(struct input_dev *dev)
  501. {
  502. struct input_handle *handle;
  503. /*
  504. * Mark device as going away. Note that we take dev->mutex here
  505. * not to protect access to dev->going_away but rather to ensure
  506. * that there are no threads in the middle of input_open_device()
  507. */
  508. mutex_lock(&dev->mutex);
  509. dev->going_away = true;
  510. mutex_unlock(&dev->mutex);
  511. spin_lock_irq(&dev->event_lock);
  512. /*
  513. * Simulate keyup events for all pressed keys so that handlers
  514. * are not left with "stuck" keys. The driver may continue
  515. * generate events even after we done here but they will not
  516. * reach any handlers.
  517. */
  518. input_dev_release_keys(dev);
  519. list_for_each_entry(handle, &dev->h_list, d_node)
  520. handle->open = 0;
  521. spin_unlock_irq(&dev->event_lock);
  522. }
  523. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  524. {
  525. switch (dev->keycodesize) {
  526. case 1:
  527. return ((u8 *)dev->keycode)[scancode];
  528. case 2:
  529. return ((u16 *)dev->keycode)[scancode];
  530. default:
  531. return ((u32 *)dev->keycode)[scancode];
  532. }
  533. }
  534. static int input_default_getkeycode(struct input_dev *dev,
  535. unsigned int scancode,
  536. unsigned int *keycode)
  537. {
  538. if (!dev->keycodesize)
  539. return -EINVAL;
  540. if (scancode >= dev->keycodemax)
  541. return -EINVAL;
  542. *keycode = input_fetch_keycode(dev, scancode);
  543. return 0;
  544. }
  545. static int input_default_setkeycode(struct input_dev *dev,
  546. unsigned int scancode,
  547. unsigned int keycode)
  548. {
  549. int old_keycode;
  550. int i;
  551. if (scancode >= dev->keycodemax)
  552. return -EINVAL;
  553. if (!dev->keycodesize)
  554. return -EINVAL;
  555. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  556. return -EINVAL;
  557. switch (dev->keycodesize) {
  558. case 1: {
  559. u8 *k = (u8 *)dev->keycode;
  560. old_keycode = k[scancode];
  561. k[scancode] = keycode;
  562. break;
  563. }
  564. case 2: {
  565. u16 *k = (u16 *)dev->keycode;
  566. old_keycode = k[scancode];
  567. k[scancode] = keycode;
  568. break;
  569. }
  570. default: {
  571. u32 *k = (u32 *)dev->keycode;
  572. old_keycode = k[scancode];
  573. k[scancode] = keycode;
  574. break;
  575. }
  576. }
  577. __clear_bit(old_keycode, dev->keybit);
  578. __set_bit(keycode, dev->keybit);
  579. for (i = 0; i < dev->keycodemax; i++) {
  580. if (input_fetch_keycode(dev, i) == old_keycode) {
  581. __set_bit(old_keycode, dev->keybit);
  582. break; /* Setting the bit twice is useless, so break */
  583. }
  584. }
  585. return 0;
  586. }
  587. /**
  588. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  589. * @dev: input device which keymap is being queried
  590. * @scancode: scancode (or its equivalent for device in question) for which
  591. * keycode is needed
  592. * @keycode: result
  593. *
  594. * This function should be called by anyone interested in retrieving current
  595. * keymap. Presently keyboard and evdev handlers use it.
  596. */
  597. int input_get_keycode(struct input_dev *dev,
  598. unsigned int scancode, unsigned int *keycode)
  599. {
  600. unsigned long flags;
  601. int retval;
  602. spin_lock_irqsave(&dev->event_lock, flags);
  603. retval = dev->getkeycode(dev, scancode, keycode);
  604. spin_unlock_irqrestore(&dev->event_lock, flags);
  605. return retval;
  606. }
  607. EXPORT_SYMBOL(input_get_keycode);
  608. /**
  609. * input_get_keycode - assign new keycode to a given scancode
  610. * @dev: input device which keymap is being updated
  611. * @scancode: scancode (or its equivalent for device in question)
  612. * @keycode: new keycode to be assigned to the scancode
  613. *
  614. * This function should be called by anyone needing to update current
  615. * keymap. Presently keyboard and evdev handlers use it.
  616. */
  617. int input_set_keycode(struct input_dev *dev,
  618. unsigned int scancode, unsigned int keycode)
  619. {
  620. unsigned long flags;
  621. unsigned int old_keycode;
  622. int retval;
  623. if (keycode > KEY_MAX)
  624. return -EINVAL;
  625. spin_lock_irqsave(&dev->event_lock, flags);
  626. retval = dev->getkeycode(dev, scancode, &old_keycode);
  627. if (retval)
  628. goto out;
  629. retval = dev->setkeycode(dev, scancode, keycode);
  630. if (retval)
  631. goto out;
  632. /* Make sure KEY_RESERVED did not get enabled. */
  633. __clear_bit(KEY_RESERVED, dev->keybit);
  634. /*
  635. * Simulate keyup event if keycode is not present
  636. * in the keymap anymore
  637. */
  638. if (test_bit(EV_KEY, dev->evbit) &&
  639. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  640. __test_and_clear_bit(old_keycode, dev->key)) {
  641. input_pass_event(dev, EV_KEY, old_keycode, 0);
  642. if (dev->sync)
  643. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  644. }
  645. out:
  646. spin_unlock_irqrestore(&dev->event_lock, flags);
  647. return retval;
  648. }
  649. EXPORT_SYMBOL(input_set_keycode);
  650. #define MATCH_BIT(bit, max) \
  651. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  652. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  653. break; \
  654. if (i != BITS_TO_LONGS(max)) \
  655. continue;
  656. static const struct input_device_id *input_match_device(struct input_handler *handler,
  657. struct input_dev *dev)
  658. {
  659. const struct input_device_id *id;
  660. int i;
  661. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  662. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  663. if (id->bustype != dev->id.bustype)
  664. continue;
  665. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  666. if (id->vendor != dev->id.vendor)
  667. continue;
  668. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  669. if (id->product != dev->id.product)
  670. continue;
  671. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  672. if (id->version != dev->id.version)
  673. continue;
  674. MATCH_BIT(evbit, EV_MAX);
  675. MATCH_BIT(keybit, KEY_MAX);
  676. MATCH_BIT(relbit, REL_MAX);
  677. MATCH_BIT(absbit, ABS_MAX);
  678. MATCH_BIT(mscbit, MSC_MAX);
  679. MATCH_BIT(ledbit, LED_MAX);
  680. MATCH_BIT(sndbit, SND_MAX);
  681. MATCH_BIT(ffbit, FF_MAX);
  682. MATCH_BIT(swbit, SW_MAX);
  683. if (!handler->match || handler->match(handler, dev))
  684. return id;
  685. }
  686. return NULL;
  687. }
  688. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  689. {
  690. const struct input_device_id *id;
  691. int error;
  692. id = input_match_device(handler, dev);
  693. if (!id)
  694. return -ENODEV;
  695. error = handler->connect(handler, dev, id);
  696. if (error && error != -ENODEV)
  697. printk(KERN_ERR
  698. "input: failed to attach handler %s to device %s, "
  699. "error: %d\n",
  700. handler->name, kobject_name(&dev->dev.kobj), error);
  701. return error;
  702. }
  703. #ifdef CONFIG_COMPAT
  704. static int input_bits_to_string(char *buf, int buf_size,
  705. unsigned long bits, bool skip_empty)
  706. {
  707. int len = 0;
  708. if (INPUT_COMPAT_TEST) {
  709. u32 dword = bits >> 32;
  710. if (dword || !skip_empty)
  711. len += snprintf(buf, buf_size, "%x ", dword);
  712. dword = bits & 0xffffffffUL;
  713. if (dword || !skip_empty || len)
  714. len += snprintf(buf + len, max(buf_size - len, 0),
  715. "%x", dword);
  716. } else {
  717. if (bits || !skip_empty)
  718. len += snprintf(buf, buf_size, "%lx", bits);
  719. }
  720. return len;
  721. }
  722. #else /* !CONFIG_COMPAT */
  723. static int input_bits_to_string(char *buf, int buf_size,
  724. unsigned long bits, bool skip_empty)
  725. {
  726. return bits || !skip_empty ?
  727. snprintf(buf, buf_size, "%lx", bits) : 0;
  728. }
  729. #endif
  730. #ifdef CONFIG_PROC_FS
  731. static struct proc_dir_entry *proc_bus_input_dir;
  732. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  733. static int input_devices_state;
  734. static inline void input_wakeup_procfs_readers(void)
  735. {
  736. input_devices_state++;
  737. wake_up(&input_devices_poll_wait);
  738. }
  739. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  740. {
  741. poll_wait(file, &input_devices_poll_wait, wait);
  742. if (file->f_version != input_devices_state) {
  743. file->f_version = input_devices_state;
  744. return POLLIN | POLLRDNORM;
  745. }
  746. return 0;
  747. }
  748. union input_seq_state {
  749. struct {
  750. unsigned short pos;
  751. bool mutex_acquired;
  752. };
  753. void *p;
  754. };
  755. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  756. {
  757. union input_seq_state *state = (union input_seq_state *)&seq->private;
  758. int error;
  759. /* We need to fit into seq->private pointer */
  760. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  761. error = mutex_lock_interruptible(&input_mutex);
  762. if (error) {
  763. state->mutex_acquired = false;
  764. return ERR_PTR(error);
  765. }
  766. state->mutex_acquired = true;
  767. return seq_list_start(&input_dev_list, *pos);
  768. }
  769. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  770. {
  771. return seq_list_next(v, &input_dev_list, pos);
  772. }
  773. static void input_seq_stop(struct seq_file *seq, void *v)
  774. {
  775. union input_seq_state *state = (union input_seq_state *)&seq->private;
  776. if (state->mutex_acquired)
  777. mutex_unlock(&input_mutex);
  778. }
  779. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  780. unsigned long *bitmap, int max)
  781. {
  782. int i;
  783. bool skip_empty = true;
  784. char buf[18];
  785. seq_printf(seq, "B: %s=", name);
  786. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  787. if (input_bits_to_string(buf, sizeof(buf),
  788. bitmap[i], skip_empty)) {
  789. skip_empty = false;
  790. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  791. }
  792. }
  793. /*
  794. * If no output was produced print a single 0.
  795. */
  796. if (skip_empty)
  797. seq_puts(seq, "0");
  798. seq_putc(seq, '\n');
  799. }
  800. static int input_devices_seq_show(struct seq_file *seq, void *v)
  801. {
  802. struct input_dev *dev = container_of(v, struct input_dev, node);
  803. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  804. struct input_handle *handle;
  805. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  806. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  807. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  808. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  809. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  810. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  811. seq_printf(seq, "H: Handlers=");
  812. list_for_each_entry(handle, &dev->h_list, d_node)
  813. seq_printf(seq, "%s ", handle->name);
  814. seq_putc(seq, '\n');
  815. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  816. if (test_bit(EV_KEY, dev->evbit))
  817. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  818. if (test_bit(EV_REL, dev->evbit))
  819. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  820. if (test_bit(EV_ABS, dev->evbit))
  821. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  822. if (test_bit(EV_MSC, dev->evbit))
  823. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  824. if (test_bit(EV_LED, dev->evbit))
  825. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  826. if (test_bit(EV_SND, dev->evbit))
  827. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  828. if (test_bit(EV_FF, dev->evbit))
  829. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  830. if (test_bit(EV_SW, dev->evbit))
  831. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  832. seq_putc(seq, '\n');
  833. kfree(path);
  834. return 0;
  835. }
  836. static const struct seq_operations input_devices_seq_ops = {
  837. .start = input_devices_seq_start,
  838. .next = input_devices_seq_next,
  839. .stop = input_seq_stop,
  840. .show = input_devices_seq_show,
  841. };
  842. static int input_proc_devices_open(struct inode *inode, struct file *file)
  843. {
  844. return seq_open(file, &input_devices_seq_ops);
  845. }
  846. static const struct file_operations input_devices_fileops = {
  847. .owner = THIS_MODULE,
  848. .open = input_proc_devices_open,
  849. .poll = input_proc_devices_poll,
  850. .read = seq_read,
  851. .llseek = seq_lseek,
  852. .release = seq_release,
  853. };
  854. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  855. {
  856. union input_seq_state *state = (union input_seq_state *)&seq->private;
  857. int error;
  858. /* We need to fit into seq->private pointer */
  859. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  860. error = mutex_lock_interruptible(&input_mutex);
  861. if (error) {
  862. state->mutex_acquired = false;
  863. return ERR_PTR(error);
  864. }
  865. state->mutex_acquired = true;
  866. state->pos = *pos;
  867. return seq_list_start(&input_handler_list, *pos);
  868. }
  869. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  870. {
  871. union input_seq_state *state = (union input_seq_state *)&seq->private;
  872. state->pos = *pos + 1;
  873. return seq_list_next(v, &input_handler_list, pos);
  874. }
  875. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  876. {
  877. struct input_handler *handler = container_of(v, struct input_handler, node);
  878. union input_seq_state *state = (union input_seq_state *)&seq->private;
  879. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  880. if (handler->filter)
  881. seq_puts(seq, " (filter)");
  882. if (handler->fops)
  883. seq_printf(seq, " Minor=%d", handler->minor);
  884. seq_putc(seq, '\n');
  885. return 0;
  886. }
  887. static const struct seq_operations input_handlers_seq_ops = {
  888. .start = input_handlers_seq_start,
  889. .next = input_handlers_seq_next,
  890. .stop = input_seq_stop,
  891. .show = input_handlers_seq_show,
  892. };
  893. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  894. {
  895. return seq_open(file, &input_handlers_seq_ops);
  896. }
  897. static const struct file_operations input_handlers_fileops = {
  898. .owner = THIS_MODULE,
  899. .open = input_proc_handlers_open,
  900. .read = seq_read,
  901. .llseek = seq_lseek,
  902. .release = seq_release,
  903. };
  904. static int __init input_proc_init(void)
  905. {
  906. struct proc_dir_entry *entry;
  907. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  908. if (!proc_bus_input_dir)
  909. return -ENOMEM;
  910. entry = proc_create("devices", 0, proc_bus_input_dir,
  911. &input_devices_fileops);
  912. if (!entry)
  913. goto fail1;
  914. entry = proc_create("handlers", 0, proc_bus_input_dir,
  915. &input_handlers_fileops);
  916. if (!entry)
  917. goto fail2;
  918. return 0;
  919. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  920. fail1: remove_proc_entry("bus/input", NULL);
  921. return -ENOMEM;
  922. }
  923. static void input_proc_exit(void)
  924. {
  925. remove_proc_entry("devices", proc_bus_input_dir);
  926. remove_proc_entry("handlers", proc_bus_input_dir);
  927. remove_proc_entry("bus/input", NULL);
  928. }
  929. #else /* !CONFIG_PROC_FS */
  930. static inline void input_wakeup_procfs_readers(void) { }
  931. static inline int input_proc_init(void) { return 0; }
  932. static inline void input_proc_exit(void) { }
  933. #endif
  934. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  935. static ssize_t input_dev_show_##name(struct device *dev, \
  936. struct device_attribute *attr, \
  937. char *buf) \
  938. { \
  939. struct input_dev *input_dev = to_input_dev(dev); \
  940. \
  941. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  942. input_dev->name ? input_dev->name : ""); \
  943. } \
  944. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  945. INPUT_DEV_STRING_ATTR_SHOW(name);
  946. INPUT_DEV_STRING_ATTR_SHOW(phys);
  947. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  948. static int input_print_modalias_bits(char *buf, int size,
  949. char name, unsigned long *bm,
  950. unsigned int min_bit, unsigned int max_bit)
  951. {
  952. int len = 0, i;
  953. len += snprintf(buf, max(size, 0), "%c", name);
  954. for (i = min_bit; i < max_bit; i++)
  955. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  956. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  957. return len;
  958. }
  959. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  960. int add_cr)
  961. {
  962. int len;
  963. len = snprintf(buf, max(size, 0),
  964. "input:b%04Xv%04Xp%04Xe%04X-",
  965. id->id.bustype, id->id.vendor,
  966. id->id.product, id->id.version);
  967. len += input_print_modalias_bits(buf + len, size - len,
  968. 'e', id->evbit, 0, EV_MAX);
  969. len += input_print_modalias_bits(buf + len, size - len,
  970. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  971. len += input_print_modalias_bits(buf + len, size - len,
  972. 'r', id->relbit, 0, REL_MAX);
  973. len += input_print_modalias_bits(buf + len, size - len,
  974. 'a', id->absbit, 0, ABS_MAX);
  975. len += input_print_modalias_bits(buf + len, size - len,
  976. 'm', id->mscbit, 0, MSC_MAX);
  977. len += input_print_modalias_bits(buf + len, size - len,
  978. 'l', id->ledbit, 0, LED_MAX);
  979. len += input_print_modalias_bits(buf + len, size - len,
  980. 's', id->sndbit, 0, SND_MAX);
  981. len += input_print_modalias_bits(buf + len, size - len,
  982. 'f', id->ffbit, 0, FF_MAX);
  983. len += input_print_modalias_bits(buf + len, size - len,
  984. 'w', id->swbit, 0, SW_MAX);
  985. if (add_cr)
  986. len += snprintf(buf + len, max(size - len, 0), "\n");
  987. return len;
  988. }
  989. static ssize_t input_dev_show_modalias(struct device *dev,
  990. struct device_attribute *attr,
  991. char *buf)
  992. {
  993. struct input_dev *id = to_input_dev(dev);
  994. ssize_t len;
  995. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  996. return min_t(int, len, PAGE_SIZE);
  997. }
  998. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  999. static struct attribute *input_dev_attrs[] = {
  1000. &dev_attr_name.attr,
  1001. &dev_attr_phys.attr,
  1002. &dev_attr_uniq.attr,
  1003. &dev_attr_modalias.attr,
  1004. NULL
  1005. };
  1006. static struct attribute_group input_dev_attr_group = {
  1007. .attrs = input_dev_attrs,
  1008. };
  1009. #define INPUT_DEV_ID_ATTR(name) \
  1010. static ssize_t input_dev_show_id_##name(struct device *dev, \
  1011. struct device_attribute *attr, \
  1012. char *buf) \
  1013. { \
  1014. struct input_dev *input_dev = to_input_dev(dev); \
  1015. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  1016. } \
  1017. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  1018. INPUT_DEV_ID_ATTR(bustype);
  1019. INPUT_DEV_ID_ATTR(vendor);
  1020. INPUT_DEV_ID_ATTR(product);
  1021. INPUT_DEV_ID_ATTR(version);
  1022. static struct attribute *input_dev_id_attrs[] = {
  1023. &dev_attr_bustype.attr,
  1024. &dev_attr_vendor.attr,
  1025. &dev_attr_product.attr,
  1026. &dev_attr_version.attr,
  1027. NULL
  1028. };
  1029. static struct attribute_group input_dev_id_attr_group = {
  1030. .name = "id",
  1031. .attrs = input_dev_id_attrs,
  1032. };
  1033. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1034. int max, int add_cr)
  1035. {
  1036. int i;
  1037. int len = 0;
  1038. bool skip_empty = true;
  1039. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  1040. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  1041. bitmap[i], skip_empty);
  1042. if (len) {
  1043. skip_empty = false;
  1044. if (i > 0)
  1045. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1046. }
  1047. }
  1048. /*
  1049. * If no output was produced print a single 0.
  1050. */
  1051. if (len == 0)
  1052. len = snprintf(buf, buf_size, "%d", 0);
  1053. if (add_cr)
  1054. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1055. return len;
  1056. }
  1057. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1058. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1059. struct device_attribute *attr, \
  1060. char *buf) \
  1061. { \
  1062. struct input_dev *input_dev = to_input_dev(dev); \
  1063. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1064. input_dev->bm##bit, ev##_MAX, \
  1065. true); \
  1066. return min_t(int, len, PAGE_SIZE); \
  1067. } \
  1068. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1069. INPUT_DEV_CAP_ATTR(EV, ev);
  1070. INPUT_DEV_CAP_ATTR(KEY, key);
  1071. INPUT_DEV_CAP_ATTR(REL, rel);
  1072. INPUT_DEV_CAP_ATTR(ABS, abs);
  1073. INPUT_DEV_CAP_ATTR(MSC, msc);
  1074. INPUT_DEV_CAP_ATTR(LED, led);
  1075. INPUT_DEV_CAP_ATTR(SND, snd);
  1076. INPUT_DEV_CAP_ATTR(FF, ff);
  1077. INPUT_DEV_CAP_ATTR(SW, sw);
  1078. static struct attribute *input_dev_caps_attrs[] = {
  1079. &dev_attr_ev.attr,
  1080. &dev_attr_key.attr,
  1081. &dev_attr_rel.attr,
  1082. &dev_attr_abs.attr,
  1083. &dev_attr_msc.attr,
  1084. &dev_attr_led.attr,
  1085. &dev_attr_snd.attr,
  1086. &dev_attr_ff.attr,
  1087. &dev_attr_sw.attr,
  1088. NULL
  1089. };
  1090. static struct attribute_group input_dev_caps_attr_group = {
  1091. .name = "capabilities",
  1092. .attrs = input_dev_caps_attrs,
  1093. };
  1094. static const struct attribute_group *input_dev_attr_groups[] = {
  1095. &input_dev_attr_group,
  1096. &input_dev_id_attr_group,
  1097. &input_dev_caps_attr_group,
  1098. NULL
  1099. };
  1100. static void input_dev_release(struct device *device)
  1101. {
  1102. struct input_dev *dev = to_input_dev(device);
  1103. input_ff_destroy(dev);
  1104. input_mt_destroy_slots(dev);
  1105. kfree(dev->absinfo);
  1106. kfree(dev);
  1107. module_put(THIS_MODULE);
  1108. }
  1109. /*
  1110. * Input uevent interface - loading event handlers based on
  1111. * device bitfields.
  1112. */
  1113. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1114. const char *name, unsigned long *bitmap, int max)
  1115. {
  1116. int len;
  1117. if (add_uevent_var(env, "%s=", name))
  1118. return -ENOMEM;
  1119. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1120. sizeof(env->buf) - env->buflen,
  1121. bitmap, max, false);
  1122. if (len >= (sizeof(env->buf) - env->buflen))
  1123. return -ENOMEM;
  1124. env->buflen += len;
  1125. return 0;
  1126. }
  1127. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1128. struct input_dev *dev)
  1129. {
  1130. int len;
  1131. if (add_uevent_var(env, "MODALIAS="))
  1132. return -ENOMEM;
  1133. len = input_print_modalias(&env->buf[env->buflen - 1],
  1134. sizeof(env->buf) - env->buflen,
  1135. dev, 0);
  1136. if (len >= (sizeof(env->buf) - env->buflen))
  1137. return -ENOMEM;
  1138. env->buflen += len;
  1139. return 0;
  1140. }
  1141. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1142. do { \
  1143. int err = add_uevent_var(env, fmt, val); \
  1144. if (err) \
  1145. return err; \
  1146. } while (0)
  1147. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1148. do { \
  1149. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1150. if (err) \
  1151. return err; \
  1152. } while (0)
  1153. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1154. do { \
  1155. int err = input_add_uevent_modalias_var(env, dev); \
  1156. if (err) \
  1157. return err; \
  1158. } while (0)
  1159. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1160. {
  1161. struct input_dev *dev = to_input_dev(device);
  1162. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1163. dev->id.bustype, dev->id.vendor,
  1164. dev->id.product, dev->id.version);
  1165. if (dev->name)
  1166. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1167. if (dev->phys)
  1168. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1169. if (dev->uniq)
  1170. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1171. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1172. if (test_bit(EV_KEY, dev->evbit))
  1173. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1174. if (test_bit(EV_REL, dev->evbit))
  1175. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1176. if (test_bit(EV_ABS, dev->evbit))
  1177. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1178. if (test_bit(EV_MSC, dev->evbit))
  1179. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1180. if (test_bit(EV_LED, dev->evbit))
  1181. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1182. if (test_bit(EV_SND, dev->evbit))
  1183. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1184. if (test_bit(EV_FF, dev->evbit))
  1185. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1186. if (test_bit(EV_SW, dev->evbit))
  1187. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1188. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1189. return 0;
  1190. }
  1191. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1192. do { \
  1193. int i; \
  1194. bool active; \
  1195. \
  1196. if (!test_bit(EV_##type, dev->evbit)) \
  1197. break; \
  1198. \
  1199. for (i = 0; i < type##_MAX; i++) { \
  1200. if (!test_bit(i, dev->bits##bit)) \
  1201. continue; \
  1202. \
  1203. active = test_bit(i, dev->bits); \
  1204. if (!active && !on) \
  1205. continue; \
  1206. \
  1207. dev->event(dev, EV_##type, i, on ? active : 0); \
  1208. } \
  1209. } while (0)
  1210. #ifdef CONFIG_PM
  1211. static void input_dev_reset(struct input_dev *dev, bool activate)
  1212. {
  1213. if (!dev->event)
  1214. return;
  1215. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1216. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1217. if (activate && test_bit(EV_REP, dev->evbit)) {
  1218. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1219. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1220. }
  1221. }
  1222. static int input_dev_suspend(struct device *dev)
  1223. {
  1224. struct input_dev *input_dev = to_input_dev(dev);
  1225. mutex_lock(&input_dev->mutex);
  1226. input_dev_reset(input_dev, false);
  1227. mutex_unlock(&input_dev->mutex);
  1228. return 0;
  1229. }
  1230. static int input_dev_resume(struct device *dev)
  1231. {
  1232. struct input_dev *input_dev = to_input_dev(dev);
  1233. mutex_lock(&input_dev->mutex);
  1234. input_dev_reset(input_dev, true);
  1235. /*
  1236. * Keys that have been pressed at suspend time are unlikely
  1237. * to be still pressed when we resume.
  1238. */
  1239. spin_lock_irq(&input_dev->event_lock);
  1240. input_dev_release_keys(input_dev);
  1241. spin_unlock_irq(&input_dev->event_lock);
  1242. mutex_unlock(&input_dev->mutex);
  1243. return 0;
  1244. }
  1245. static const struct dev_pm_ops input_dev_pm_ops = {
  1246. .suspend = input_dev_suspend,
  1247. .resume = input_dev_resume,
  1248. .poweroff = input_dev_suspend,
  1249. .restore = input_dev_resume,
  1250. };
  1251. #endif /* CONFIG_PM */
  1252. static struct device_type input_dev_type = {
  1253. .groups = input_dev_attr_groups,
  1254. .release = input_dev_release,
  1255. .uevent = input_dev_uevent,
  1256. #ifdef CONFIG_PM
  1257. .pm = &input_dev_pm_ops,
  1258. #endif
  1259. };
  1260. static char *input_devnode(struct device *dev, mode_t *mode)
  1261. {
  1262. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1263. }
  1264. struct class input_class = {
  1265. .name = "input",
  1266. .devnode = input_devnode,
  1267. };
  1268. EXPORT_SYMBOL_GPL(input_class);
  1269. /**
  1270. * input_allocate_device - allocate memory for new input device
  1271. *
  1272. * Returns prepared struct input_dev or NULL.
  1273. *
  1274. * NOTE: Use input_free_device() to free devices that have not been
  1275. * registered; input_unregister_device() should be used for already
  1276. * registered devices.
  1277. */
  1278. struct input_dev *input_allocate_device(void)
  1279. {
  1280. struct input_dev *dev;
  1281. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1282. if (dev) {
  1283. dev->dev.type = &input_dev_type;
  1284. dev->dev.class = &input_class;
  1285. device_initialize(&dev->dev);
  1286. mutex_init(&dev->mutex);
  1287. spin_lock_init(&dev->event_lock);
  1288. INIT_LIST_HEAD(&dev->h_list);
  1289. INIT_LIST_HEAD(&dev->node);
  1290. __module_get(THIS_MODULE);
  1291. }
  1292. return dev;
  1293. }
  1294. EXPORT_SYMBOL(input_allocate_device);
  1295. /**
  1296. * input_free_device - free memory occupied by input_dev structure
  1297. * @dev: input device to free
  1298. *
  1299. * This function should only be used if input_register_device()
  1300. * was not called yet or if it failed. Once device was registered
  1301. * use input_unregister_device() and memory will be freed once last
  1302. * reference to the device is dropped.
  1303. *
  1304. * Device should be allocated by input_allocate_device().
  1305. *
  1306. * NOTE: If there are references to the input device then memory
  1307. * will not be freed until last reference is dropped.
  1308. */
  1309. void input_free_device(struct input_dev *dev)
  1310. {
  1311. if (dev)
  1312. input_put_device(dev);
  1313. }
  1314. EXPORT_SYMBOL(input_free_device);
  1315. /**
  1316. * input_mt_create_slots() - create MT input slots
  1317. * @dev: input device supporting MT events and finger tracking
  1318. * @num_slots: number of slots used by the device
  1319. *
  1320. * This function allocates all necessary memory for MT slot handling
  1321. * in the input device, and adds ABS_MT_SLOT to the device capabilities.
  1322. */
  1323. int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
  1324. {
  1325. if (!num_slots)
  1326. return 0;
  1327. dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
  1328. if (!dev->mt)
  1329. return -ENOMEM;
  1330. dev->mtsize = num_slots;
  1331. input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
  1332. return 0;
  1333. }
  1334. EXPORT_SYMBOL(input_mt_create_slots);
  1335. /**
  1336. * input_mt_destroy_slots() - frees the MT slots of the input device
  1337. * @dev: input device with allocated MT slots
  1338. *
  1339. * This function is only needed in error path as the input core will
  1340. * automatically free the MT slots when the device is destroyed.
  1341. */
  1342. void input_mt_destroy_slots(struct input_dev *dev)
  1343. {
  1344. kfree(dev->mt);
  1345. dev->mt = NULL;
  1346. dev->mtsize = 0;
  1347. }
  1348. EXPORT_SYMBOL(input_mt_destroy_slots);
  1349. /**
  1350. * input_set_capability - mark device as capable of a certain event
  1351. * @dev: device that is capable of emitting or accepting event
  1352. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1353. * @code: event code
  1354. *
  1355. * In addition to setting up corresponding bit in appropriate capability
  1356. * bitmap the function also adjusts dev->evbit.
  1357. */
  1358. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1359. {
  1360. switch (type) {
  1361. case EV_KEY:
  1362. __set_bit(code, dev->keybit);
  1363. break;
  1364. case EV_REL:
  1365. __set_bit(code, dev->relbit);
  1366. break;
  1367. case EV_ABS:
  1368. __set_bit(code, dev->absbit);
  1369. break;
  1370. case EV_MSC:
  1371. __set_bit(code, dev->mscbit);
  1372. break;
  1373. case EV_SW:
  1374. __set_bit(code, dev->swbit);
  1375. break;
  1376. case EV_LED:
  1377. __set_bit(code, dev->ledbit);
  1378. break;
  1379. case EV_SND:
  1380. __set_bit(code, dev->sndbit);
  1381. break;
  1382. case EV_FF:
  1383. __set_bit(code, dev->ffbit);
  1384. break;
  1385. case EV_PWR:
  1386. /* do nothing */
  1387. break;
  1388. default:
  1389. printk(KERN_ERR
  1390. "input_set_capability: unknown type %u (code %u)\n",
  1391. type, code);
  1392. dump_stack();
  1393. return;
  1394. }
  1395. __set_bit(type, dev->evbit);
  1396. }
  1397. EXPORT_SYMBOL(input_set_capability);
  1398. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1399. do { \
  1400. if (!test_bit(EV_##type, dev->evbit)) \
  1401. memset(dev->bits##bit, 0, \
  1402. sizeof(dev->bits##bit)); \
  1403. } while (0)
  1404. static void input_cleanse_bitmasks(struct input_dev *dev)
  1405. {
  1406. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1407. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1408. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1409. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1410. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1411. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1412. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1413. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1414. }
  1415. /**
  1416. * input_register_device - register device with input core
  1417. * @dev: device to be registered
  1418. *
  1419. * This function registers device with input core. The device must be
  1420. * allocated with input_allocate_device() and all it's capabilities
  1421. * set up before registering.
  1422. * If function fails the device must be freed with input_free_device().
  1423. * Once device has been successfully registered it can be unregistered
  1424. * with input_unregister_device(); input_free_device() should not be
  1425. * called in this case.
  1426. */
  1427. int input_register_device(struct input_dev *dev)
  1428. {
  1429. static atomic_t input_no = ATOMIC_INIT(0);
  1430. struct input_handler *handler;
  1431. const char *path;
  1432. int error;
  1433. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1434. __set_bit(EV_SYN, dev->evbit);
  1435. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1436. __clear_bit(KEY_RESERVED, dev->keybit);
  1437. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1438. input_cleanse_bitmasks(dev);
  1439. /*
  1440. * If delay and period are pre-set by the driver, then autorepeating
  1441. * is handled by the driver itself and we don't do it in input.c.
  1442. */
  1443. init_timer(&dev->timer);
  1444. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1445. dev->timer.data = (long) dev;
  1446. dev->timer.function = input_repeat_key;
  1447. dev->rep[REP_DELAY] = 250;
  1448. dev->rep[REP_PERIOD] = 33;
  1449. }
  1450. if (!dev->getkeycode)
  1451. dev->getkeycode = input_default_getkeycode;
  1452. if (!dev->setkeycode)
  1453. dev->setkeycode = input_default_setkeycode;
  1454. dev_set_name(&dev->dev, "input%ld",
  1455. (unsigned long) atomic_inc_return(&input_no) - 1);
  1456. error = device_add(&dev->dev);
  1457. if (error)
  1458. return error;
  1459. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1460. printk(KERN_INFO "input: %s as %s\n",
  1461. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1462. kfree(path);
  1463. error = mutex_lock_interruptible(&input_mutex);
  1464. if (error) {
  1465. device_del(&dev->dev);
  1466. return error;
  1467. }
  1468. list_add_tail(&dev->node, &input_dev_list);
  1469. list_for_each_entry(handler, &input_handler_list, node)
  1470. input_attach_handler(dev, handler);
  1471. input_wakeup_procfs_readers();
  1472. mutex_unlock(&input_mutex);
  1473. return 0;
  1474. }
  1475. EXPORT_SYMBOL(input_register_device);
  1476. /**
  1477. * input_unregister_device - unregister previously registered device
  1478. * @dev: device to be unregistered
  1479. *
  1480. * This function unregisters an input device. Once device is unregistered
  1481. * the caller should not try to access it as it may get freed at any moment.
  1482. */
  1483. void input_unregister_device(struct input_dev *dev)
  1484. {
  1485. struct input_handle *handle, *next;
  1486. input_disconnect_device(dev);
  1487. mutex_lock(&input_mutex);
  1488. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1489. handle->handler->disconnect(handle);
  1490. WARN_ON(!list_empty(&dev->h_list));
  1491. del_timer_sync(&dev->timer);
  1492. list_del_init(&dev->node);
  1493. input_wakeup_procfs_readers();
  1494. mutex_unlock(&input_mutex);
  1495. device_unregister(&dev->dev);
  1496. }
  1497. EXPORT_SYMBOL(input_unregister_device);
  1498. /**
  1499. * input_register_handler - register a new input handler
  1500. * @handler: handler to be registered
  1501. *
  1502. * This function registers a new input handler (interface) for input
  1503. * devices in the system and attaches it to all input devices that
  1504. * are compatible with the handler.
  1505. */
  1506. int input_register_handler(struct input_handler *handler)
  1507. {
  1508. struct input_dev *dev;
  1509. int retval;
  1510. retval = mutex_lock_interruptible(&input_mutex);
  1511. if (retval)
  1512. return retval;
  1513. INIT_LIST_HEAD(&handler->h_list);
  1514. if (handler->fops != NULL) {
  1515. if (input_table[handler->minor >> 5]) {
  1516. retval = -EBUSY;
  1517. goto out;
  1518. }
  1519. input_table[handler->minor >> 5] = handler;
  1520. }
  1521. list_add_tail(&handler->node, &input_handler_list);
  1522. list_for_each_entry(dev, &input_dev_list, node)
  1523. input_attach_handler(dev, handler);
  1524. input_wakeup_procfs_readers();
  1525. out:
  1526. mutex_unlock(&input_mutex);
  1527. return retval;
  1528. }
  1529. EXPORT_SYMBOL(input_register_handler);
  1530. /**
  1531. * input_unregister_handler - unregisters an input handler
  1532. * @handler: handler to be unregistered
  1533. *
  1534. * This function disconnects a handler from its input devices and
  1535. * removes it from lists of known handlers.
  1536. */
  1537. void input_unregister_handler(struct input_handler *handler)
  1538. {
  1539. struct input_handle *handle, *next;
  1540. mutex_lock(&input_mutex);
  1541. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1542. handler->disconnect(handle);
  1543. WARN_ON(!list_empty(&handler->h_list));
  1544. list_del_init(&handler->node);
  1545. if (handler->fops != NULL)
  1546. input_table[handler->minor >> 5] = NULL;
  1547. input_wakeup_procfs_readers();
  1548. mutex_unlock(&input_mutex);
  1549. }
  1550. EXPORT_SYMBOL(input_unregister_handler);
  1551. /**
  1552. * input_handler_for_each_handle - handle iterator
  1553. * @handler: input handler to iterate
  1554. * @data: data for the callback
  1555. * @fn: function to be called for each handle
  1556. *
  1557. * Iterate over @bus's list of devices, and call @fn for each, passing
  1558. * it @data and stop when @fn returns a non-zero value. The function is
  1559. * using RCU to traverse the list and therefore may be usind in atonic
  1560. * contexts. The @fn callback is invoked from RCU critical section and
  1561. * thus must not sleep.
  1562. */
  1563. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1564. int (*fn)(struct input_handle *, void *))
  1565. {
  1566. struct input_handle *handle;
  1567. int retval = 0;
  1568. rcu_read_lock();
  1569. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1570. retval = fn(handle, data);
  1571. if (retval)
  1572. break;
  1573. }
  1574. rcu_read_unlock();
  1575. return retval;
  1576. }
  1577. EXPORT_SYMBOL(input_handler_for_each_handle);
  1578. /**
  1579. * input_register_handle - register a new input handle
  1580. * @handle: handle to register
  1581. *
  1582. * This function puts a new input handle onto device's
  1583. * and handler's lists so that events can flow through
  1584. * it once it is opened using input_open_device().
  1585. *
  1586. * This function is supposed to be called from handler's
  1587. * connect() method.
  1588. */
  1589. int input_register_handle(struct input_handle *handle)
  1590. {
  1591. struct input_handler *handler = handle->handler;
  1592. struct input_dev *dev = handle->dev;
  1593. int error;
  1594. /*
  1595. * We take dev->mutex here to prevent race with
  1596. * input_release_device().
  1597. */
  1598. error = mutex_lock_interruptible(&dev->mutex);
  1599. if (error)
  1600. return error;
  1601. /*
  1602. * Filters go to the head of the list, normal handlers
  1603. * to the tail.
  1604. */
  1605. if (handler->filter)
  1606. list_add_rcu(&handle->d_node, &dev->h_list);
  1607. else
  1608. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1609. mutex_unlock(&dev->mutex);
  1610. /*
  1611. * Since we are supposed to be called from ->connect()
  1612. * which is mutually exclusive with ->disconnect()
  1613. * we can't be racing with input_unregister_handle()
  1614. * and so separate lock is not needed here.
  1615. */
  1616. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1617. if (handler->start)
  1618. handler->start(handle);
  1619. return 0;
  1620. }
  1621. EXPORT_SYMBOL(input_register_handle);
  1622. /**
  1623. * input_unregister_handle - unregister an input handle
  1624. * @handle: handle to unregister
  1625. *
  1626. * This function removes input handle from device's
  1627. * and handler's lists.
  1628. *
  1629. * This function is supposed to be called from handler's
  1630. * disconnect() method.
  1631. */
  1632. void input_unregister_handle(struct input_handle *handle)
  1633. {
  1634. struct input_dev *dev = handle->dev;
  1635. list_del_rcu(&handle->h_node);
  1636. /*
  1637. * Take dev->mutex to prevent race with input_release_device().
  1638. */
  1639. mutex_lock(&dev->mutex);
  1640. list_del_rcu(&handle->d_node);
  1641. mutex_unlock(&dev->mutex);
  1642. synchronize_rcu();
  1643. }
  1644. EXPORT_SYMBOL(input_unregister_handle);
  1645. static int input_open_file(struct inode *inode, struct file *file)
  1646. {
  1647. struct input_handler *handler;
  1648. const struct file_operations *old_fops, *new_fops = NULL;
  1649. int err;
  1650. err = mutex_lock_interruptible(&input_mutex);
  1651. if (err)
  1652. return err;
  1653. /* No load-on-demand here? */
  1654. handler = input_table[iminor(inode) >> 5];
  1655. if (handler)
  1656. new_fops = fops_get(handler->fops);
  1657. mutex_unlock(&input_mutex);
  1658. /*
  1659. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1660. * not "no device". Oh, well...
  1661. */
  1662. if (!new_fops || !new_fops->open) {
  1663. fops_put(new_fops);
  1664. err = -ENODEV;
  1665. goto out;
  1666. }
  1667. old_fops = file->f_op;
  1668. file->f_op = new_fops;
  1669. err = new_fops->open(inode, file);
  1670. if (err) {
  1671. fops_put(file->f_op);
  1672. file->f_op = fops_get(old_fops);
  1673. }
  1674. fops_put(old_fops);
  1675. out:
  1676. return err;
  1677. }
  1678. static const struct file_operations input_fops = {
  1679. .owner = THIS_MODULE,
  1680. .open = input_open_file,
  1681. };
  1682. static int __init input_init(void)
  1683. {
  1684. int err;
  1685. err = class_register(&input_class);
  1686. if (err) {
  1687. printk(KERN_ERR "input: unable to register input_dev class\n");
  1688. return err;
  1689. }
  1690. err = input_proc_init();
  1691. if (err)
  1692. goto fail1;
  1693. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1694. if (err) {
  1695. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1696. goto fail2;
  1697. }
  1698. return 0;
  1699. fail2: input_proc_exit();
  1700. fail1: class_unregister(&input_class);
  1701. return err;
  1702. }
  1703. static void __exit input_exit(void)
  1704. {
  1705. input_proc_exit();
  1706. unregister_chrdev(INPUT_MAJOR, "input");
  1707. class_unregister(&input_class);
  1708. }
  1709. subsys_initcall(input_init);
  1710. module_exit(input_exit);