cfq-iosched.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  33. static const int cfq_hist_divisor = 4;
  34. /*
  35. * offset from end of service tree
  36. */
  37. #define CFQ_IDLE_DELAY (HZ / 5)
  38. /*
  39. * below this threshold, we consider thinktime immediate
  40. */
  41. #define CFQ_MIN_TT (2)
  42. #define CFQ_SLICE_SCALE (5)
  43. #define CFQ_HW_QUEUE_MIN (5)
  44. #define CFQ_SERVICE_SHIFT 12
  45. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  46. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  47. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  48. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  49. #define RQ_CIC(rq) \
  50. ((struct cfq_io_context *) (rq)->elevator_private)
  51. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  52. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  53. static struct kmem_cache *cfq_pool;
  54. static struct kmem_cache *cfq_ioc_pool;
  55. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  56. static struct completion *ioc_gone;
  57. static DEFINE_SPINLOCK(ioc_gone_lock);
  58. static DEFINE_SPINLOCK(cic_index_lock);
  59. static DEFINE_IDA(cic_index_ida);
  60. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  61. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  62. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  63. #define sample_valid(samples) ((samples) > 80)
  64. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  65. /*
  66. * Most of our rbtree usage is for sorting with min extraction, so
  67. * if we cache the leftmost node we don't have to walk down the tree
  68. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  69. * move this into the elevator for the rq sorting as well.
  70. */
  71. struct cfq_rb_root {
  72. struct rb_root rb;
  73. struct rb_node *left;
  74. unsigned count;
  75. unsigned total_weight;
  76. u64 min_vdisktime;
  77. struct rb_node *active;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. atomic_t ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. struct cfq_group *orig_cfqg;
  131. };
  132. /*
  133. * First index in the service_trees.
  134. * IDLE is handled separately, so it has negative index
  135. */
  136. enum wl_prio_t {
  137. BE_WORKLOAD = 0,
  138. RT_WORKLOAD = 1,
  139. IDLE_WORKLOAD = 2,
  140. };
  141. /*
  142. * Second index in the service_trees.
  143. */
  144. enum wl_type_t {
  145. ASYNC_WORKLOAD = 0,
  146. SYNC_NOIDLE_WORKLOAD = 1,
  147. SYNC_WORKLOAD = 2
  148. };
  149. /* This is per cgroup per device grouping structure */
  150. struct cfq_group {
  151. /* group service_tree member */
  152. struct rb_node rb_node;
  153. /* group service_tree key */
  154. u64 vdisktime;
  155. unsigned int weight;
  156. bool on_st;
  157. /* number of cfqq currently on this group */
  158. int nr_cfqq;
  159. /* Per group busy queus average. Useful for workload slice calc. */
  160. unsigned int busy_queues_avg[2];
  161. /*
  162. * rr lists of queues with requests, onle rr for each priority class.
  163. * Counts are embedded in the cfq_rb_root
  164. */
  165. struct cfq_rb_root service_trees[2][3];
  166. struct cfq_rb_root service_tree_idle;
  167. unsigned long saved_workload_slice;
  168. enum wl_type_t saved_workload;
  169. enum wl_prio_t saved_serving_prio;
  170. struct blkio_group blkg;
  171. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  172. struct hlist_node cfqd_node;
  173. atomic_t ref;
  174. #endif
  175. };
  176. /*
  177. * Per block device queue structure
  178. */
  179. struct cfq_data {
  180. struct request_queue *queue;
  181. /* Root service tree for cfq_groups */
  182. struct cfq_rb_root grp_service_tree;
  183. struct cfq_group root_group;
  184. /*
  185. * The priority currently being served
  186. */
  187. enum wl_prio_t serving_prio;
  188. enum wl_type_t serving_type;
  189. unsigned long workload_expires;
  190. struct cfq_group *serving_group;
  191. bool noidle_tree_requires_idle;
  192. /*
  193. * Each priority tree is sorted by next_request position. These
  194. * trees are used when determining if two or more queues are
  195. * interleaving requests (see cfq_close_cooperator).
  196. */
  197. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  198. unsigned int busy_queues;
  199. int rq_in_driver;
  200. int rq_in_flight[2];
  201. /*
  202. * queue-depth detection
  203. */
  204. int rq_queued;
  205. int hw_tag;
  206. /*
  207. * hw_tag can be
  208. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  209. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  210. * 0 => no NCQ
  211. */
  212. int hw_tag_est_depth;
  213. unsigned int hw_tag_samples;
  214. /*
  215. * idle window management
  216. */
  217. struct timer_list idle_slice_timer;
  218. struct work_struct unplug_work;
  219. struct cfq_queue *active_queue;
  220. struct cfq_io_context *active_cic;
  221. /*
  222. * async queue for each priority case
  223. */
  224. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  225. struct cfq_queue *async_idle_cfqq;
  226. sector_t last_position;
  227. /*
  228. * tunables, see top of file
  229. */
  230. unsigned int cfq_quantum;
  231. unsigned int cfq_fifo_expire[2];
  232. unsigned int cfq_back_penalty;
  233. unsigned int cfq_back_max;
  234. unsigned int cfq_slice[2];
  235. unsigned int cfq_slice_async_rq;
  236. unsigned int cfq_slice_idle;
  237. unsigned int cfq_latency;
  238. unsigned int cfq_group_isolation;
  239. unsigned int cic_index;
  240. struct list_head cic_list;
  241. /*
  242. * Fallback dummy cfqq for extreme OOM conditions
  243. */
  244. struct cfq_queue oom_cfqq;
  245. unsigned long last_delayed_sync;
  246. /* List of cfq groups being managed on this device*/
  247. struct hlist_head cfqg_list;
  248. struct rcu_head rcu;
  249. };
  250. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  251. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  252. enum wl_prio_t prio,
  253. enum wl_type_t type)
  254. {
  255. if (!cfqg)
  256. return NULL;
  257. if (prio == IDLE_WORKLOAD)
  258. return &cfqg->service_tree_idle;
  259. return &cfqg->service_trees[prio][type];
  260. }
  261. enum cfqq_state_flags {
  262. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  263. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  264. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  265. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  266. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  267. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  268. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  269. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  270. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  271. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  272. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  273. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  274. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  275. };
  276. #define CFQ_CFQQ_FNS(name) \
  277. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  278. { \
  279. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  280. } \
  281. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  282. { \
  283. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  284. } \
  285. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  286. { \
  287. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  288. }
  289. CFQ_CFQQ_FNS(on_rr);
  290. CFQ_CFQQ_FNS(wait_request);
  291. CFQ_CFQQ_FNS(must_dispatch);
  292. CFQ_CFQQ_FNS(must_alloc_slice);
  293. CFQ_CFQQ_FNS(fifo_expire);
  294. CFQ_CFQQ_FNS(idle_window);
  295. CFQ_CFQQ_FNS(prio_changed);
  296. CFQ_CFQQ_FNS(slice_new);
  297. CFQ_CFQQ_FNS(sync);
  298. CFQ_CFQQ_FNS(coop);
  299. CFQ_CFQQ_FNS(split_coop);
  300. CFQ_CFQQ_FNS(deep);
  301. CFQ_CFQQ_FNS(wait_busy);
  302. #undef CFQ_CFQQ_FNS
  303. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  304. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  305. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  306. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  307. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  308. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  309. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  310. blkg_path(&(cfqg)->blkg), ##args); \
  311. #else
  312. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  313. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  314. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  315. #endif
  316. #define cfq_log(cfqd, fmt, args...) \
  317. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  318. /* Traverses through cfq group service trees */
  319. #define for_each_cfqg_st(cfqg, i, j, st) \
  320. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  321. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  322. : &cfqg->service_tree_idle; \
  323. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  324. (i == IDLE_WORKLOAD && j == 0); \
  325. j++, st = i < IDLE_WORKLOAD ? \
  326. &cfqg->service_trees[i][j]: NULL) \
  327. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  328. {
  329. if (cfq_class_idle(cfqq))
  330. return IDLE_WORKLOAD;
  331. if (cfq_class_rt(cfqq))
  332. return RT_WORKLOAD;
  333. return BE_WORKLOAD;
  334. }
  335. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  336. {
  337. if (!cfq_cfqq_sync(cfqq))
  338. return ASYNC_WORKLOAD;
  339. if (!cfq_cfqq_idle_window(cfqq))
  340. return SYNC_NOIDLE_WORKLOAD;
  341. return SYNC_WORKLOAD;
  342. }
  343. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  344. struct cfq_data *cfqd,
  345. struct cfq_group *cfqg)
  346. {
  347. if (wl == IDLE_WORKLOAD)
  348. return cfqg->service_tree_idle.count;
  349. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  350. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  351. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  352. }
  353. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  354. struct cfq_group *cfqg)
  355. {
  356. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  357. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  358. }
  359. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  360. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  361. struct io_context *, gfp_t);
  362. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  363. struct io_context *);
  364. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  365. bool is_sync)
  366. {
  367. return cic->cfqq[is_sync];
  368. }
  369. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  370. struct cfq_queue *cfqq, bool is_sync)
  371. {
  372. cic->cfqq[is_sync] = cfqq;
  373. }
  374. #define CIC_DEAD_KEY 1ul
  375. #define CIC_DEAD_INDEX_SHIFT 1
  376. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  377. {
  378. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  379. }
  380. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  381. {
  382. struct cfq_data *cfqd = cic->key;
  383. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  384. return NULL;
  385. return cfqd;
  386. }
  387. /*
  388. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  389. * set (in which case it could also be direct WRITE).
  390. */
  391. static inline bool cfq_bio_sync(struct bio *bio)
  392. {
  393. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  394. }
  395. /*
  396. * scheduler run of queue, if there are requests pending and no one in the
  397. * driver that will restart queueing
  398. */
  399. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  400. {
  401. if (cfqd->busy_queues) {
  402. cfq_log(cfqd, "schedule dispatch");
  403. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  404. }
  405. }
  406. static int cfq_queue_empty(struct request_queue *q)
  407. {
  408. struct cfq_data *cfqd = q->elevator->elevator_data;
  409. return !cfqd->rq_queued;
  410. }
  411. /*
  412. * Scale schedule slice based on io priority. Use the sync time slice only
  413. * if a queue is marked sync and has sync io queued. A sync queue with async
  414. * io only, should not get full sync slice length.
  415. */
  416. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  417. unsigned short prio)
  418. {
  419. const int base_slice = cfqd->cfq_slice[sync];
  420. WARN_ON(prio >= IOPRIO_BE_NR);
  421. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  422. }
  423. static inline int
  424. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  425. {
  426. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  427. }
  428. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  429. {
  430. u64 d = delta << CFQ_SERVICE_SHIFT;
  431. d = d * BLKIO_WEIGHT_DEFAULT;
  432. do_div(d, cfqg->weight);
  433. return d;
  434. }
  435. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  436. {
  437. s64 delta = (s64)(vdisktime - min_vdisktime);
  438. if (delta > 0)
  439. min_vdisktime = vdisktime;
  440. return min_vdisktime;
  441. }
  442. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  443. {
  444. s64 delta = (s64)(vdisktime - min_vdisktime);
  445. if (delta < 0)
  446. min_vdisktime = vdisktime;
  447. return min_vdisktime;
  448. }
  449. static void update_min_vdisktime(struct cfq_rb_root *st)
  450. {
  451. u64 vdisktime = st->min_vdisktime;
  452. struct cfq_group *cfqg;
  453. if (st->active) {
  454. cfqg = rb_entry_cfqg(st->active);
  455. vdisktime = cfqg->vdisktime;
  456. }
  457. if (st->left) {
  458. cfqg = rb_entry_cfqg(st->left);
  459. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  460. }
  461. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  462. }
  463. /*
  464. * get averaged number of queues of RT/BE priority.
  465. * average is updated, with a formula that gives more weight to higher numbers,
  466. * to quickly follows sudden increases and decrease slowly
  467. */
  468. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  469. struct cfq_group *cfqg, bool rt)
  470. {
  471. unsigned min_q, max_q;
  472. unsigned mult = cfq_hist_divisor - 1;
  473. unsigned round = cfq_hist_divisor / 2;
  474. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  475. min_q = min(cfqg->busy_queues_avg[rt], busy);
  476. max_q = max(cfqg->busy_queues_avg[rt], busy);
  477. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  478. cfq_hist_divisor;
  479. return cfqg->busy_queues_avg[rt];
  480. }
  481. static inline unsigned
  482. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  483. {
  484. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  485. return cfq_target_latency * cfqg->weight / st->total_weight;
  486. }
  487. static inline void
  488. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  489. {
  490. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  491. if (cfqd->cfq_latency) {
  492. /*
  493. * interested queues (we consider only the ones with the same
  494. * priority class in the cfq group)
  495. */
  496. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  497. cfq_class_rt(cfqq));
  498. unsigned sync_slice = cfqd->cfq_slice[1];
  499. unsigned expect_latency = sync_slice * iq;
  500. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  501. if (expect_latency > group_slice) {
  502. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  503. /* scale low_slice according to IO priority
  504. * and sync vs async */
  505. unsigned low_slice =
  506. min(slice, base_low_slice * slice / sync_slice);
  507. /* the adapted slice value is scaled to fit all iqs
  508. * into the target latency */
  509. slice = max(slice * group_slice / expect_latency,
  510. low_slice);
  511. }
  512. }
  513. cfqq->slice_start = jiffies;
  514. cfqq->slice_end = jiffies + slice;
  515. cfqq->allocated_slice = slice;
  516. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  517. }
  518. /*
  519. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  520. * isn't valid until the first request from the dispatch is activated
  521. * and the slice time set.
  522. */
  523. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  524. {
  525. if (cfq_cfqq_slice_new(cfqq))
  526. return 0;
  527. if (time_before(jiffies, cfqq->slice_end))
  528. return 0;
  529. return 1;
  530. }
  531. /*
  532. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  533. * We choose the request that is closest to the head right now. Distance
  534. * behind the head is penalized and only allowed to a certain extent.
  535. */
  536. static struct request *
  537. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  538. {
  539. sector_t s1, s2, d1 = 0, d2 = 0;
  540. unsigned long back_max;
  541. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  542. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  543. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  544. if (rq1 == NULL || rq1 == rq2)
  545. return rq2;
  546. if (rq2 == NULL)
  547. return rq1;
  548. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  549. return rq1;
  550. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  551. return rq2;
  552. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  553. return rq1;
  554. else if ((rq2->cmd_flags & REQ_META) &&
  555. !(rq1->cmd_flags & REQ_META))
  556. return rq2;
  557. s1 = blk_rq_pos(rq1);
  558. s2 = blk_rq_pos(rq2);
  559. /*
  560. * by definition, 1KiB is 2 sectors
  561. */
  562. back_max = cfqd->cfq_back_max * 2;
  563. /*
  564. * Strict one way elevator _except_ in the case where we allow
  565. * short backward seeks which are biased as twice the cost of a
  566. * similar forward seek.
  567. */
  568. if (s1 >= last)
  569. d1 = s1 - last;
  570. else if (s1 + back_max >= last)
  571. d1 = (last - s1) * cfqd->cfq_back_penalty;
  572. else
  573. wrap |= CFQ_RQ1_WRAP;
  574. if (s2 >= last)
  575. d2 = s2 - last;
  576. else if (s2 + back_max >= last)
  577. d2 = (last - s2) * cfqd->cfq_back_penalty;
  578. else
  579. wrap |= CFQ_RQ2_WRAP;
  580. /* Found required data */
  581. /*
  582. * By doing switch() on the bit mask "wrap" we avoid having to
  583. * check two variables for all permutations: --> faster!
  584. */
  585. switch (wrap) {
  586. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  587. if (d1 < d2)
  588. return rq1;
  589. else if (d2 < d1)
  590. return rq2;
  591. else {
  592. if (s1 >= s2)
  593. return rq1;
  594. else
  595. return rq2;
  596. }
  597. case CFQ_RQ2_WRAP:
  598. return rq1;
  599. case CFQ_RQ1_WRAP:
  600. return rq2;
  601. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  602. default:
  603. /*
  604. * Since both rqs are wrapped,
  605. * start with the one that's further behind head
  606. * (--> only *one* back seek required),
  607. * since back seek takes more time than forward.
  608. */
  609. if (s1 <= s2)
  610. return rq1;
  611. else
  612. return rq2;
  613. }
  614. }
  615. /*
  616. * The below is leftmost cache rbtree addon
  617. */
  618. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  619. {
  620. /* Service tree is empty */
  621. if (!root->count)
  622. return NULL;
  623. if (!root->left)
  624. root->left = rb_first(&root->rb);
  625. if (root->left)
  626. return rb_entry(root->left, struct cfq_queue, rb_node);
  627. return NULL;
  628. }
  629. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  630. {
  631. if (!root->left)
  632. root->left = rb_first(&root->rb);
  633. if (root->left)
  634. return rb_entry_cfqg(root->left);
  635. return NULL;
  636. }
  637. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  638. {
  639. rb_erase(n, root);
  640. RB_CLEAR_NODE(n);
  641. }
  642. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  643. {
  644. if (root->left == n)
  645. root->left = NULL;
  646. rb_erase_init(n, &root->rb);
  647. --root->count;
  648. }
  649. /*
  650. * would be nice to take fifo expire time into account as well
  651. */
  652. static struct request *
  653. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  654. struct request *last)
  655. {
  656. struct rb_node *rbnext = rb_next(&last->rb_node);
  657. struct rb_node *rbprev = rb_prev(&last->rb_node);
  658. struct request *next = NULL, *prev = NULL;
  659. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  660. if (rbprev)
  661. prev = rb_entry_rq(rbprev);
  662. if (rbnext)
  663. next = rb_entry_rq(rbnext);
  664. else {
  665. rbnext = rb_first(&cfqq->sort_list);
  666. if (rbnext && rbnext != &last->rb_node)
  667. next = rb_entry_rq(rbnext);
  668. }
  669. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  670. }
  671. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  672. struct cfq_queue *cfqq)
  673. {
  674. /*
  675. * just an approximation, should be ok.
  676. */
  677. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  678. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  679. }
  680. static inline s64
  681. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  682. {
  683. return cfqg->vdisktime - st->min_vdisktime;
  684. }
  685. static void
  686. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  687. {
  688. struct rb_node **node = &st->rb.rb_node;
  689. struct rb_node *parent = NULL;
  690. struct cfq_group *__cfqg;
  691. s64 key = cfqg_key(st, cfqg);
  692. int left = 1;
  693. while (*node != NULL) {
  694. parent = *node;
  695. __cfqg = rb_entry_cfqg(parent);
  696. if (key < cfqg_key(st, __cfqg))
  697. node = &parent->rb_left;
  698. else {
  699. node = &parent->rb_right;
  700. left = 0;
  701. }
  702. }
  703. if (left)
  704. st->left = &cfqg->rb_node;
  705. rb_link_node(&cfqg->rb_node, parent, node);
  706. rb_insert_color(&cfqg->rb_node, &st->rb);
  707. }
  708. static void
  709. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  710. {
  711. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  712. struct cfq_group *__cfqg;
  713. struct rb_node *n;
  714. cfqg->nr_cfqq++;
  715. if (cfqg->on_st)
  716. return;
  717. /*
  718. * Currently put the group at the end. Later implement something
  719. * so that groups get lesser vtime based on their weights, so that
  720. * if group does not loose all if it was not continously backlogged.
  721. */
  722. n = rb_last(&st->rb);
  723. if (n) {
  724. __cfqg = rb_entry_cfqg(n);
  725. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  726. } else
  727. cfqg->vdisktime = st->min_vdisktime;
  728. __cfq_group_service_tree_add(st, cfqg);
  729. cfqg->on_st = true;
  730. st->total_weight += cfqg->weight;
  731. }
  732. static void
  733. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  734. {
  735. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  736. if (st->active == &cfqg->rb_node)
  737. st->active = NULL;
  738. BUG_ON(cfqg->nr_cfqq < 1);
  739. cfqg->nr_cfqq--;
  740. /* If there are other cfq queues under this group, don't delete it */
  741. if (cfqg->nr_cfqq)
  742. return;
  743. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  744. cfqg->on_st = false;
  745. st->total_weight -= cfqg->weight;
  746. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  747. cfq_rb_erase(&cfqg->rb_node, st);
  748. cfqg->saved_workload_slice = 0;
  749. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  750. }
  751. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  752. {
  753. unsigned int slice_used;
  754. /*
  755. * Queue got expired before even a single request completed or
  756. * got expired immediately after first request completion.
  757. */
  758. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  759. /*
  760. * Also charge the seek time incurred to the group, otherwise
  761. * if there are mutiple queues in the group, each can dispatch
  762. * a single request on seeky media and cause lots of seek time
  763. * and group will never know it.
  764. */
  765. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  766. 1);
  767. } else {
  768. slice_used = jiffies - cfqq->slice_start;
  769. if (slice_used > cfqq->allocated_slice)
  770. slice_used = cfqq->allocated_slice;
  771. }
  772. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
  773. return slice_used;
  774. }
  775. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  776. struct cfq_queue *cfqq)
  777. {
  778. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  779. unsigned int used_sl, charge_sl;
  780. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  781. - cfqg->service_tree_idle.count;
  782. BUG_ON(nr_sync < 0);
  783. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  784. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  785. charge_sl = cfqq->allocated_slice;
  786. /* Can't update vdisktime while group is on service tree */
  787. cfq_rb_erase(&cfqg->rb_node, st);
  788. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  789. __cfq_group_service_tree_add(st, cfqg);
  790. /* This group is being expired. Save the context */
  791. if (time_after(cfqd->workload_expires, jiffies)) {
  792. cfqg->saved_workload_slice = cfqd->workload_expires
  793. - jiffies;
  794. cfqg->saved_workload = cfqd->serving_type;
  795. cfqg->saved_serving_prio = cfqd->serving_prio;
  796. } else
  797. cfqg->saved_workload_slice = 0;
  798. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  799. st->min_vdisktime);
  800. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  801. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  802. }
  803. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  804. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  805. {
  806. if (blkg)
  807. return container_of(blkg, struct cfq_group, blkg);
  808. return NULL;
  809. }
  810. void
  811. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  812. {
  813. cfqg_of_blkg(blkg)->weight = weight;
  814. }
  815. static struct cfq_group *
  816. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  817. {
  818. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  819. struct cfq_group *cfqg = NULL;
  820. void *key = cfqd;
  821. int i, j;
  822. struct cfq_rb_root *st;
  823. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  824. unsigned int major, minor;
  825. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  826. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  827. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  828. cfqg->blkg.dev = MKDEV(major, minor);
  829. goto done;
  830. }
  831. if (cfqg || !create)
  832. goto done;
  833. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  834. if (!cfqg)
  835. goto done;
  836. for_each_cfqg_st(cfqg, i, j, st)
  837. *st = CFQ_RB_ROOT;
  838. RB_CLEAR_NODE(&cfqg->rb_node);
  839. /*
  840. * Take the initial reference that will be released on destroy
  841. * This can be thought of a joint reference by cgroup and
  842. * elevator which will be dropped by either elevator exit
  843. * or cgroup deletion path depending on who is exiting first.
  844. */
  845. atomic_set(&cfqg->ref, 1);
  846. /* Add group onto cgroup list */
  847. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  848. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  849. MKDEV(major, minor));
  850. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  851. /* Add group on cfqd list */
  852. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  853. done:
  854. return cfqg;
  855. }
  856. /*
  857. * Search for the cfq group current task belongs to. If create = 1, then also
  858. * create the cfq group if it does not exist. request_queue lock must be held.
  859. */
  860. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  861. {
  862. struct cgroup *cgroup;
  863. struct cfq_group *cfqg = NULL;
  864. rcu_read_lock();
  865. cgroup = task_cgroup(current, blkio_subsys_id);
  866. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  867. if (!cfqg && create)
  868. cfqg = &cfqd->root_group;
  869. rcu_read_unlock();
  870. return cfqg;
  871. }
  872. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  873. {
  874. atomic_inc(&cfqg->ref);
  875. return cfqg;
  876. }
  877. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  878. {
  879. /* Currently, all async queues are mapped to root group */
  880. if (!cfq_cfqq_sync(cfqq))
  881. cfqg = &cfqq->cfqd->root_group;
  882. cfqq->cfqg = cfqg;
  883. /* cfqq reference on cfqg */
  884. atomic_inc(&cfqq->cfqg->ref);
  885. }
  886. static void cfq_put_cfqg(struct cfq_group *cfqg)
  887. {
  888. struct cfq_rb_root *st;
  889. int i, j;
  890. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  891. if (!atomic_dec_and_test(&cfqg->ref))
  892. return;
  893. for_each_cfqg_st(cfqg, i, j, st)
  894. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  895. kfree(cfqg);
  896. }
  897. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  898. {
  899. /* Something wrong if we are trying to remove same group twice */
  900. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  901. hlist_del_init(&cfqg->cfqd_node);
  902. /*
  903. * Put the reference taken at the time of creation so that when all
  904. * queues are gone, group can be destroyed.
  905. */
  906. cfq_put_cfqg(cfqg);
  907. }
  908. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  909. {
  910. struct hlist_node *pos, *n;
  911. struct cfq_group *cfqg;
  912. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  913. /*
  914. * If cgroup removal path got to blk_group first and removed
  915. * it from cgroup list, then it will take care of destroying
  916. * cfqg also.
  917. */
  918. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  919. cfq_destroy_cfqg(cfqd, cfqg);
  920. }
  921. }
  922. /*
  923. * Blk cgroup controller notification saying that blkio_group object is being
  924. * delinked as associated cgroup object is going away. That also means that
  925. * no new IO will come in this group. So get rid of this group as soon as
  926. * any pending IO in the group is finished.
  927. *
  928. * This function is called under rcu_read_lock(). key is the rcu protected
  929. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  930. * read lock.
  931. *
  932. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  933. * it should not be NULL as even if elevator was exiting, cgroup deltion
  934. * path got to it first.
  935. */
  936. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  937. {
  938. unsigned long flags;
  939. struct cfq_data *cfqd = key;
  940. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  941. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  942. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  943. }
  944. #else /* GROUP_IOSCHED */
  945. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  946. {
  947. return &cfqd->root_group;
  948. }
  949. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  950. {
  951. return cfqg;
  952. }
  953. static inline void
  954. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  955. cfqq->cfqg = cfqg;
  956. }
  957. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  958. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  959. #endif /* GROUP_IOSCHED */
  960. /*
  961. * The cfqd->service_trees holds all pending cfq_queue's that have
  962. * requests waiting to be processed. It is sorted in the order that
  963. * we will service the queues.
  964. */
  965. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  966. bool add_front)
  967. {
  968. struct rb_node **p, *parent;
  969. struct cfq_queue *__cfqq;
  970. unsigned long rb_key;
  971. struct cfq_rb_root *service_tree;
  972. int left;
  973. int new_cfqq = 1;
  974. int group_changed = 0;
  975. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  976. if (!cfqd->cfq_group_isolation
  977. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  978. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  979. /* Move this cfq to root group */
  980. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  981. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  982. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  983. cfqq->orig_cfqg = cfqq->cfqg;
  984. cfqq->cfqg = &cfqd->root_group;
  985. atomic_inc(&cfqd->root_group.ref);
  986. group_changed = 1;
  987. } else if (!cfqd->cfq_group_isolation
  988. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  989. /* cfqq is sequential now needs to go to its original group */
  990. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  991. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  992. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  993. cfq_put_cfqg(cfqq->cfqg);
  994. cfqq->cfqg = cfqq->orig_cfqg;
  995. cfqq->orig_cfqg = NULL;
  996. group_changed = 1;
  997. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  998. }
  999. #endif
  1000. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1001. cfqq_type(cfqq));
  1002. if (cfq_class_idle(cfqq)) {
  1003. rb_key = CFQ_IDLE_DELAY;
  1004. parent = rb_last(&service_tree->rb);
  1005. if (parent && parent != &cfqq->rb_node) {
  1006. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1007. rb_key += __cfqq->rb_key;
  1008. } else
  1009. rb_key += jiffies;
  1010. } else if (!add_front) {
  1011. /*
  1012. * Get our rb key offset. Subtract any residual slice
  1013. * value carried from last service. A negative resid
  1014. * count indicates slice overrun, and this should position
  1015. * the next service time further away in the tree.
  1016. */
  1017. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1018. rb_key -= cfqq->slice_resid;
  1019. cfqq->slice_resid = 0;
  1020. } else {
  1021. rb_key = -HZ;
  1022. __cfqq = cfq_rb_first(service_tree);
  1023. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1024. }
  1025. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1026. new_cfqq = 0;
  1027. /*
  1028. * same position, nothing more to do
  1029. */
  1030. if (rb_key == cfqq->rb_key &&
  1031. cfqq->service_tree == service_tree)
  1032. return;
  1033. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1034. cfqq->service_tree = NULL;
  1035. }
  1036. left = 1;
  1037. parent = NULL;
  1038. cfqq->service_tree = service_tree;
  1039. p = &service_tree->rb.rb_node;
  1040. while (*p) {
  1041. struct rb_node **n;
  1042. parent = *p;
  1043. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1044. /*
  1045. * sort by key, that represents service time.
  1046. */
  1047. if (time_before(rb_key, __cfqq->rb_key))
  1048. n = &(*p)->rb_left;
  1049. else {
  1050. n = &(*p)->rb_right;
  1051. left = 0;
  1052. }
  1053. p = n;
  1054. }
  1055. if (left)
  1056. service_tree->left = &cfqq->rb_node;
  1057. cfqq->rb_key = rb_key;
  1058. rb_link_node(&cfqq->rb_node, parent, p);
  1059. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1060. service_tree->count++;
  1061. if ((add_front || !new_cfqq) && !group_changed)
  1062. return;
  1063. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1064. }
  1065. static struct cfq_queue *
  1066. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1067. sector_t sector, struct rb_node **ret_parent,
  1068. struct rb_node ***rb_link)
  1069. {
  1070. struct rb_node **p, *parent;
  1071. struct cfq_queue *cfqq = NULL;
  1072. parent = NULL;
  1073. p = &root->rb_node;
  1074. while (*p) {
  1075. struct rb_node **n;
  1076. parent = *p;
  1077. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1078. /*
  1079. * Sort strictly based on sector. Smallest to the left,
  1080. * largest to the right.
  1081. */
  1082. if (sector > blk_rq_pos(cfqq->next_rq))
  1083. n = &(*p)->rb_right;
  1084. else if (sector < blk_rq_pos(cfqq->next_rq))
  1085. n = &(*p)->rb_left;
  1086. else
  1087. break;
  1088. p = n;
  1089. cfqq = NULL;
  1090. }
  1091. *ret_parent = parent;
  1092. if (rb_link)
  1093. *rb_link = p;
  1094. return cfqq;
  1095. }
  1096. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1097. {
  1098. struct rb_node **p, *parent;
  1099. struct cfq_queue *__cfqq;
  1100. if (cfqq->p_root) {
  1101. rb_erase(&cfqq->p_node, cfqq->p_root);
  1102. cfqq->p_root = NULL;
  1103. }
  1104. if (cfq_class_idle(cfqq))
  1105. return;
  1106. if (!cfqq->next_rq)
  1107. return;
  1108. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1109. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1110. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1111. if (!__cfqq) {
  1112. rb_link_node(&cfqq->p_node, parent, p);
  1113. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1114. } else
  1115. cfqq->p_root = NULL;
  1116. }
  1117. /*
  1118. * Update cfqq's position in the service tree.
  1119. */
  1120. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1121. {
  1122. /*
  1123. * Resorting requires the cfqq to be on the RR list already.
  1124. */
  1125. if (cfq_cfqq_on_rr(cfqq)) {
  1126. cfq_service_tree_add(cfqd, cfqq, 0);
  1127. cfq_prio_tree_add(cfqd, cfqq);
  1128. }
  1129. }
  1130. /*
  1131. * add to busy list of queues for service, trying to be fair in ordering
  1132. * the pending list according to last request service
  1133. */
  1134. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1135. {
  1136. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1137. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1138. cfq_mark_cfqq_on_rr(cfqq);
  1139. cfqd->busy_queues++;
  1140. cfq_resort_rr_list(cfqd, cfqq);
  1141. }
  1142. /*
  1143. * Called when the cfqq no longer has requests pending, remove it from
  1144. * the service tree.
  1145. */
  1146. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1147. {
  1148. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1149. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1150. cfq_clear_cfqq_on_rr(cfqq);
  1151. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1152. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1153. cfqq->service_tree = NULL;
  1154. }
  1155. if (cfqq->p_root) {
  1156. rb_erase(&cfqq->p_node, cfqq->p_root);
  1157. cfqq->p_root = NULL;
  1158. }
  1159. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1160. BUG_ON(!cfqd->busy_queues);
  1161. cfqd->busy_queues--;
  1162. }
  1163. /*
  1164. * rb tree support functions
  1165. */
  1166. static void cfq_del_rq_rb(struct request *rq)
  1167. {
  1168. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1169. const int sync = rq_is_sync(rq);
  1170. BUG_ON(!cfqq->queued[sync]);
  1171. cfqq->queued[sync]--;
  1172. elv_rb_del(&cfqq->sort_list, rq);
  1173. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1174. /*
  1175. * Queue will be deleted from service tree when we actually
  1176. * expire it later. Right now just remove it from prio tree
  1177. * as it is empty.
  1178. */
  1179. if (cfqq->p_root) {
  1180. rb_erase(&cfqq->p_node, cfqq->p_root);
  1181. cfqq->p_root = NULL;
  1182. }
  1183. }
  1184. }
  1185. static void cfq_add_rq_rb(struct request *rq)
  1186. {
  1187. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1188. struct cfq_data *cfqd = cfqq->cfqd;
  1189. struct request *__alias, *prev;
  1190. cfqq->queued[rq_is_sync(rq)]++;
  1191. /*
  1192. * looks a little odd, but the first insert might return an alias.
  1193. * if that happens, put the alias on the dispatch list
  1194. */
  1195. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1196. cfq_dispatch_insert(cfqd->queue, __alias);
  1197. if (!cfq_cfqq_on_rr(cfqq))
  1198. cfq_add_cfqq_rr(cfqd, cfqq);
  1199. /*
  1200. * check if this request is a better next-serve candidate
  1201. */
  1202. prev = cfqq->next_rq;
  1203. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1204. /*
  1205. * adjust priority tree position, if ->next_rq changes
  1206. */
  1207. if (prev != cfqq->next_rq)
  1208. cfq_prio_tree_add(cfqd, cfqq);
  1209. BUG_ON(!cfqq->next_rq);
  1210. }
  1211. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1212. {
  1213. elv_rb_del(&cfqq->sort_list, rq);
  1214. cfqq->queued[rq_is_sync(rq)]--;
  1215. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1216. rq_data_dir(rq), rq_is_sync(rq));
  1217. cfq_add_rq_rb(rq);
  1218. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1219. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1220. rq_is_sync(rq));
  1221. }
  1222. static struct request *
  1223. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1224. {
  1225. struct task_struct *tsk = current;
  1226. struct cfq_io_context *cic;
  1227. struct cfq_queue *cfqq;
  1228. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1229. if (!cic)
  1230. return NULL;
  1231. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1232. if (cfqq) {
  1233. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1234. return elv_rb_find(&cfqq->sort_list, sector);
  1235. }
  1236. return NULL;
  1237. }
  1238. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1239. {
  1240. struct cfq_data *cfqd = q->elevator->elevator_data;
  1241. cfqd->rq_in_driver++;
  1242. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1243. cfqd->rq_in_driver);
  1244. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1245. }
  1246. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1247. {
  1248. struct cfq_data *cfqd = q->elevator->elevator_data;
  1249. WARN_ON(!cfqd->rq_in_driver);
  1250. cfqd->rq_in_driver--;
  1251. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1252. cfqd->rq_in_driver);
  1253. }
  1254. static void cfq_remove_request(struct request *rq)
  1255. {
  1256. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1257. if (cfqq->next_rq == rq)
  1258. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1259. list_del_init(&rq->queuelist);
  1260. cfq_del_rq_rb(rq);
  1261. cfqq->cfqd->rq_queued--;
  1262. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1263. rq_data_dir(rq), rq_is_sync(rq));
  1264. if (rq->cmd_flags & REQ_META) {
  1265. WARN_ON(!cfqq->meta_pending);
  1266. cfqq->meta_pending--;
  1267. }
  1268. }
  1269. static int cfq_merge(struct request_queue *q, struct request **req,
  1270. struct bio *bio)
  1271. {
  1272. struct cfq_data *cfqd = q->elevator->elevator_data;
  1273. struct request *__rq;
  1274. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1275. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1276. *req = __rq;
  1277. return ELEVATOR_FRONT_MERGE;
  1278. }
  1279. return ELEVATOR_NO_MERGE;
  1280. }
  1281. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1282. int type)
  1283. {
  1284. if (type == ELEVATOR_FRONT_MERGE) {
  1285. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1286. cfq_reposition_rq_rb(cfqq, req);
  1287. }
  1288. }
  1289. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1290. struct bio *bio)
  1291. {
  1292. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1293. bio_data_dir(bio), cfq_bio_sync(bio));
  1294. }
  1295. static void
  1296. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1297. struct request *next)
  1298. {
  1299. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1300. /*
  1301. * reposition in fifo if next is older than rq
  1302. */
  1303. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1304. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1305. list_move(&rq->queuelist, &next->queuelist);
  1306. rq_set_fifo_time(rq, rq_fifo_time(next));
  1307. }
  1308. if (cfqq->next_rq == next)
  1309. cfqq->next_rq = rq;
  1310. cfq_remove_request(next);
  1311. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1312. rq_data_dir(next), rq_is_sync(next));
  1313. }
  1314. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1315. struct bio *bio)
  1316. {
  1317. struct cfq_data *cfqd = q->elevator->elevator_data;
  1318. struct cfq_io_context *cic;
  1319. struct cfq_queue *cfqq;
  1320. /*
  1321. * Disallow merge of a sync bio into an async request.
  1322. */
  1323. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1324. return false;
  1325. /*
  1326. * Lookup the cfqq that this bio will be queued with. Allow
  1327. * merge only if rq is queued there.
  1328. */
  1329. cic = cfq_cic_lookup(cfqd, current->io_context);
  1330. if (!cic)
  1331. return false;
  1332. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1333. return cfqq == RQ_CFQQ(rq);
  1334. }
  1335. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1336. {
  1337. del_timer(&cfqd->idle_slice_timer);
  1338. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1339. }
  1340. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1341. struct cfq_queue *cfqq)
  1342. {
  1343. if (cfqq) {
  1344. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1345. cfqd->serving_prio, cfqd->serving_type);
  1346. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1347. cfqq->slice_start = 0;
  1348. cfqq->dispatch_start = jiffies;
  1349. cfqq->allocated_slice = 0;
  1350. cfqq->slice_end = 0;
  1351. cfqq->slice_dispatch = 0;
  1352. cfq_clear_cfqq_wait_request(cfqq);
  1353. cfq_clear_cfqq_must_dispatch(cfqq);
  1354. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1355. cfq_clear_cfqq_fifo_expire(cfqq);
  1356. cfq_mark_cfqq_slice_new(cfqq);
  1357. cfq_del_timer(cfqd, cfqq);
  1358. }
  1359. cfqd->active_queue = cfqq;
  1360. }
  1361. /*
  1362. * current cfqq expired its slice (or was too idle), select new one
  1363. */
  1364. static void
  1365. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1366. bool timed_out)
  1367. {
  1368. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1369. if (cfq_cfqq_wait_request(cfqq))
  1370. cfq_del_timer(cfqd, cfqq);
  1371. cfq_clear_cfqq_wait_request(cfqq);
  1372. cfq_clear_cfqq_wait_busy(cfqq);
  1373. /*
  1374. * If this cfqq is shared between multiple processes, check to
  1375. * make sure that those processes are still issuing I/Os within
  1376. * the mean seek distance. If not, it may be time to break the
  1377. * queues apart again.
  1378. */
  1379. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1380. cfq_mark_cfqq_split_coop(cfqq);
  1381. /*
  1382. * store what was left of this slice, if the queue idled/timed out
  1383. */
  1384. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1385. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1386. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1387. }
  1388. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1389. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1390. cfq_del_cfqq_rr(cfqd, cfqq);
  1391. cfq_resort_rr_list(cfqd, cfqq);
  1392. if (cfqq == cfqd->active_queue)
  1393. cfqd->active_queue = NULL;
  1394. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1395. cfqd->grp_service_tree.active = NULL;
  1396. if (cfqd->active_cic) {
  1397. put_io_context(cfqd->active_cic->ioc);
  1398. cfqd->active_cic = NULL;
  1399. }
  1400. }
  1401. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1402. {
  1403. struct cfq_queue *cfqq = cfqd->active_queue;
  1404. if (cfqq)
  1405. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1406. }
  1407. /*
  1408. * Get next queue for service. Unless we have a queue preemption,
  1409. * we'll simply select the first cfqq in the service tree.
  1410. */
  1411. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1412. {
  1413. struct cfq_rb_root *service_tree =
  1414. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1415. cfqd->serving_type);
  1416. if (!cfqd->rq_queued)
  1417. return NULL;
  1418. /* There is nothing to dispatch */
  1419. if (!service_tree)
  1420. return NULL;
  1421. if (RB_EMPTY_ROOT(&service_tree->rb))
  1422. return NULL;
  1423. return cfq_rb_first(service_tree);
  1424. }
  1425. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1426. {
  1427. struct cfq_group *cfqg;
  1428. struct cfq_queue *cfqq;
  1429. int i, j;
  1430. struct cfq_rb_root *st;
  1431. if (!cfqd->rq_queued)
  1432. return NULL;
  1433. cfqg = cfq_get_next_cfqg(cfqd);
  1434. if (!cfqg)
  1435. return NULL;
  1436. for_each_cfqg_st(cfqg, i, j, st)
  1437. if ((cfqq = cfq_rb_first(st)) != NULL)
  1438. return cfqq;
  1439. return NULL;
  1440. }
  1441. /*
  1442. * Get and set a new active queue for service.
  1443. */
  1444. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1445. struct cfq_queue *cfqq)
  1446. {
  1447. if (!cfqq)
  1448. cfqq = cfq_get_next_queue(cfqd);
  1449. __cfq_set_active_queue(cfqd, cfqq);
  1450. return cfqq;
  1451. }
  1452. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1453. struct request *rq)
  1454. {
  1455. if (blk_rq_pos(rq) >= cfqd->last_position)
  1456. return blk_rq_pos(rq) - cfqd->last_position;
  1457. else
  1458. return cfqd->last_position - blk_rq_pos(rq);
  1459. }
  1460. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1461. struct request *rq)
  1462. {
  1463. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1464. }
  1465. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1466. struct cfq_queue *cur_cfqq)
  1467. {
  1468. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1469. struct rb_node *parent, *node;
  1470. struct cfq_queue *__cfqq;
  1471. sector_t sector = cfqd->last_position;
  1472. if (RB_EMPTY_ROOT(root))
  1473. return NULL;
  1474. /*
  1475. * First, if we find a request starting at the end of the last
  1476. * request, choose it.
  1477. */
  1478. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1479. if (__cfqq)
  1480. return __cfqq;
  1481. /*
  1482. * If the exact sector wasn't found, the parent of the NULL leaf
  1483. * will contain the closest sector.
  1484. */
  1485. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1486. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1487. return __cfqq;
  1488. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1489. node = rb_next(&__cfqq->p_node);
  1490. else
  1491. node = rb_prev(&__cfqq->p_node);
  1492. if (!node)
  1493. return NULL;
  1494. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1495. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1496. return __cfqq;
  1497. return NULL;
  1498. }
  1499. /*
  1500. * cfqd - obvious
  1501. * cur_cfqq - passed in so that we don't decide that the current queue is
  1502. * closely cooperating with itself.
  1503. *
  1504. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1505. * one request, and that cfqd->last_position reflects a position on the disk
  1506. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1507. * assumption.
  1508. */
  1509. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1510. struct cfq_queue *cur_cfqq)
  1511. {
  1512. struct cfq_queue *cfqq;
  1513. if (cfq_class_idle(cur_cfqq))
  1514. return NULL;
  1515. if (!cfq_cfqq_sync(cur_cfqq))
  1516. return NULL;
  1517. if (CFQQ_SEEKY(cur_cfqq))
  1518. return NULL;
  1519. /*
  1520. * Don't search priority tree if it's the only queue in the group.
  1521. */
  1522. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1523. return NULL;
  1524. /*
  1525. * We should notice if some of the queues are cooperating, eg
  1526. * working closely on the same area of the disk. In that case,
  1527. * we can group them together and don't waste time idling.
  1528. */
  1529. cfqq = cfqq_close(cfqd, cur_cfqq);
  1530. if (!cfqq)
  1531. return NULL;
  1532. /* If new queue belongs to different cfq_group, don't choose it */
  1533. if (cur_cfqq->cfqg != cfqq->cfqg)
  1534. return NULL;
  1535. /*
  1536. * It only makes sense to merge sync queues.
  1537. */
  1538. if (!cfq_cfqq_sync(cfqq))
  1539. return NULL;
  1540. if (CFQQ_SEEKY(cfqq))
  1541. return NULL;
  1542. /*
  1543. * Do not merge queues of different priority classes
  1544. */
  1545. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1546. return NULL;
  1547. return cfqq;
  1548. }
  1549. /*
  1550. * Determine whether we should enforce idle window for this queue.
  1551. */
  1552. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1553. {
  1554. enum wl_prio_t prio = cfqq_prio(cfqq);
  1555. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1556. BUG_ON(!service_tree);
  1557. BUG_ON(!service_tree->count);
  1558. /* We never do for idle class queues. */
  1559. if (prio == IDLE_WORKLOAD)
  1560. return false;
  1561. /* We do for queues that were marked with idle window flag. */
  1562. if (cfq_cfqq_idle_window(cfqq) &&
  1563. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1564. return true;
  1565. /*
  1566. * Otherwise, we do only if they are the last ones
  1567. * in their service tree.
  1568. */
  1569. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1570. return 1;
  1571. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1572. service_tree->count);
  1573. return 0;
  1574. }
  1575. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1576. {
  1577. struct cfq_queue *cfqq = cfqd->active_queue;
  1578. struct cfq_io_context *cic;
  1579. unsigned long sl;
  1580. /*
  1581. * SSD device without seek penalty, disable idling. But only do so
  1582. * for devices that support queuing, otherwise we still have a problem
  1583. * with sync vs async workloads.
  1584. */
  1585. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1586. return;
  1587. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1588. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1589. /*
  1590. * idle is disabled, either manually or by past process history
  1591. */
  1592. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1593. return;
  1594. /*
  1595. * still active requests from this queue, don't idle
  1596. */
  1597. if (cfqq->dispatched)
  1598. return;
  1599. /*
  1600. * task has exited, don't wait
  1601. */
  1602. cic = cfqd->active_cic;
  1603. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1604. return;
  1605. /*
  1606. * If our average think time is larger than the remaining time
  1607. * slice, then don't idle. This avoids overrunning the allotted
  1608. * time slice.
  1609. */
  1610. if (sample_valid(cic->ttime_samples) &&
  1611. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1612. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1613. cic->ttime_mean);
  1614. return;
  1615. }
  1616. cfq_mark_cfqq_wait_request(cfqq);
  1617. sl = cfqd->cfq_slice_idle;
  1618. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1619. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1620. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1621. }
  1622. /*
  1623. * Move request from internal lists to the request queue dispatch list.
  1624. */
  1625. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1626. {
  1627. struct cfq_data *cfqd = q->elevator->elevator_data;
  1628. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1629. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1630. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1631. cfq_remove_request(rq);
  1632. cfqq->dispatched++;
  1633. elv_dispatch_sort(q, rq);
  1634. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1635. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1636. rq_data_dir(rq), rq_is_sync(rq));
  1637. }
  1638. /*
  1639. * return expired entry, or NULL to just start from scratch in rbtree
  1640. */
  1641. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1642. {
  1643. struct request *rq = NULL;
  1644. if (cfq_cfqq_fifo_expire(cfqq))
  1645. return NULL;
  1646. cfq_mark_cfqq_fifo_expire(cfqq);
  1647. if (list_empty(&cfqq->fifo))
  1648. return NULL;
  1649. rq = rq_entry_fifo(cfqq->fifo.next);
  1650. if (time_before(jiffies, rq_fifo_time(rq)))
  1651. rq = NULL;
  1652. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1653. return rq;
  1654. }
  1655. static inline int
  1656. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1657. {
  1658. const int base_rq = cfqd->cfq_slice_async_rq;
  1659. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1660. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1661. }
  1662. /*
  1663. * Must be called with the queue_lock held.
  1664. */
  1665. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1666. {
  1667. int process_refs, io_refs;
  1668. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1669. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1670. BUG_ON(process_refs < 0);
  1671. return process_refs;
  1672. }
  1673. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1674. {
  1675. int process_refs, new_process_refs;
  1676. struct cfq_queue *__cfqq;
  1677. /*
  1678. * If there are no process references on the new_cfqq, then it is
  1679. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1680. * chain may have dropped their last reference (not just their
  1681. * last process reference).
  1682. */
  1683. if (!cfqq_process_refs(new_cfqq))
  1684. return;
  1685. /* Avoid a circular list and skip interim queue merges */
  1686. while ((__cfqq = new_cfqq->new_cfqq)) {
  1687. if (__cfqq == cfqq)
  1688. return;
  1689. new_cfqq = __cfqq;
  1690. }
  1691. process_refs = cfqq_process_refs(cfqq);
  1692. new_process_refs = cfqq_process_refs(new_cfqq);
  1693. /*
  1694. * If the process for the cfqq has gone away, there is no
  1695. * sense in merging the queues.
  1696. */
  1697. if (process_refs == 0 || new_process_refs == 0)
  1698. return;
  1699. /*
  1700. * Merge in the direction of the lesser amount of work.
  1701. */
  1702. if (new_process_refs >= process_refs) {
  1703. cfqq->new_cfqq = new_cfqq;
  1704. atomic_add(process_refs, &new_cfqq->ref);
  1705. } else {
  1706. new_cfqq->new_cfqq = cfqq;
  1707. atomic_add(new_process_refs, &cfqq->ref);
  1708. }
  1709. }
  1710. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1711. struct cfq_group *cfqg, enum wl_prio_t prio)
  1712. {
  1713. struct cfq_queue *queue;
  1714. int i;
  1715. bool key_valid = false;
  1716. unsigned long lowest_key = 0;
  1717. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1718. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1719. /* select the one with lowest rb_key */
  1720. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1721. if (queue &&
  1722. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1723. lowest_key = queue->rb_key;
  1724. cur_best = i;
  1725. key_valid = true;
  1726. }
  1727. }
  1728. return cur_best;
  1729. }
  1730. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1731. {
  1732. unsigned slice;
  1733. unsigned count;
  1734. struct cfq_rb_root *st;
  1735. unsigned group_slice;
  1736. if (!cfqg) {
  1737. cfqd->serving_prio = IDLE_WORKLOAD;
  1738. cfqd->workload_expires = jiffies + 1;
  1739. return;
  1740. }
  1741. /* Choose next priority. RT > BE > IDLE */
  1742. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1743. cfqd->serving_prio = RT_WORKLOAD;
  1744. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1745. cfqd->serving_prio = BE_WORKLOAD;
  1746. else {
  1747. cfqd->serving_prio = IDLE_WORKLOAD;
  1748. cfqd->workload_expires = jiffies + 1;
  1749. return;
  1750. }
  1751. /*
  1752. * For RT and BE, we have to choose also the type
  1753. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1754. * expiration time
  1755. */
  1756. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1757. count = st->count;
  1758. /*
  1759. * check workload expiration, and that we still have other queues ready
  1760. */
  1761. if (count && !time_after(jiffies, cfqd->workload_expires))
  1762. return;
  1763. /* otherwise select new workload type */
  1764. cfqd->serving_type =
  1765. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1766. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1767. count = st->count;
  1768. /*
  1769. * the workload slice is computed as a fraction of target latency
  1770. * proportional to the number of queues in that workload, over
  1771. * all the queues in the same priority class
  1772. */
  1773. group_slice = cfq_group_slice(cfqd, cfqg);
  1774. slice = group_slice * count /
  1775. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1776. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1777. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1778. unsigned int tmp;
  1779. /*
  1780. * Async queues are currently system wide. Just taking
  1781. * proportion of queues with-in same group will lead to higher
  1782. * async ratio system wide as generally root group is going
  1783. * to have higher weight. A more accurate thing would be to
  1784. * calculate system wide asnc/sync ratio.
  1785. */
  1786. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1787. tmp = tmp/cfqd->busy_queues;
  1788. slice = min_t(unsigned, slice, tmp);
  1789. /* async workload slice is scaled down according to
  1790. * the sync/async slice ratio. */
  1791. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1792. } else
  1793. /* sync workload slice is at least 2 * cfq_slice_idle */
  1794. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1795. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1796. cfq_log(cfqd, "workload slice:%d", slice);
  1797. cfqd->workload_expires = jiffies + slice;
  1798. cfqd->noidle_tree_requires_idle = false;
  1799. }
  1800. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1801. {
  1802. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1803. struct cfq_group *cfqg;
  1804. if (RB_EMPTY_ROOT(&st->rb))
  1805. return NULL;
  1806. cfqg = cfq_rb_first_group(st);
  1807. st->active = &cfqg->rb_node;
  1808. update_min_vdisktime(st);
  1809. return cfqg;
  1810. }
  1811. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1812. {
  1813. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1814. cfqd->serving_group = cfqg;
  1815. /* Restore the workload type data */
  1816. if (cfqg->saved_workload_slice) {
  1817. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1818. cfqd->serving_type = cfqg->saved_workload;
  1819. cfqd->serving_prio = cfqg->saved_serving_prio;
  1820. } else
  1821. cfqd->workload_expires = jiffies - 1;
  1822. choose_service_tree(cfqd, cfqg);
  1823. }
  1824. /*
  1825. * Select a queue for service. If we have a current active queue,
  1826. * check whether to continue servicing it, or retrieve and set a new one.
  1827. */
  1828. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1829. {
  1830. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1831. cfqq = cfqd->active_queue;
  1832. if (!cfqq)
  1833. goto new_queue;
  1834. if (!cfqd->rq_queued)
  1835. return NULL;
  1836. /*
  1837. * We were waiting for group to get backlogged. Expire the queue
  1838. */
  1839. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1840. goto expire;
  1841. /*
  1842. * The active queue has run out of time, expire it and select new.
  1843. */
  1844. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1845. /*
  1846. * If slice had not expired at the completion of last request
  1847. * we might not have turned on wait_busy flag. Don't expire
  1848. * the queue yet. Allow the group to get backlogged.
  1849. *
  1850. * The very fact that we have used the slice, that means we
  1851. * have been idling all along on this queue and it should be
  1852. * ok to wait for this request to complete.
  1853. */
  1854. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1855. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1856. cfqq = NULL;
  1857. goto keep_queue;
  1858. } else
  1859. goto expire;
  1860. }
  1861. /*
  1862. * The active queue has requests and isn't expired, allow it to
  1863. * dispatch.
  1864. */
  1865. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1866. goto keep_queue;
  1867. /*
  1868. * If another queue has a request waiting within our mean seek
  1869. * distance, let it run. The expire code will check for close
  1870. * cooperators and put the close queue at the front of the service
  1871. * tree. If possible, merge the expiring queue with the new cfqq.
  1872. */
  1873. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1874. if (new_cfqq) {
  1875. if (!cfqq->new_cfqq)
  1876. cfq_setup_merge(cfqq, new_cfqq);
  1877. goto expire;
  1878. }
  1879. /*
  1880. * No requests pending. If the active queue still has requests in
  1881. * flight or is idling for a new request, allow either of these
  1882. * conditions to happen (or time out) before selecting a new queue.
  1883. */
  1884. if (timer_pending(&cfqd->idle_slice_timer) ||
  1885. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1886. cfqq = NULL;
  1887. goto keep_queue;
  1888. }
  1889. expire:
  1890. cfq_slice_expired(cfqd, 0);
  1891. new_queue:
  1892. /*
  1893. * Current queue expired. Check if we have to switch to a new
  1894. * service tree
  1895. */
  1896. if (!new_cfqq)
  1897. cfq_choose_cfqg(cfqd);
  1898. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1899. keep_queue:
  1900. return cfqq;
  1901. }
  1902. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1903. {
  1904. int dispatched = 0;
  1905. while (cfqq->next_rq) {
  1906. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1907. dispatched++;
  1908. }
  1909. BUG_ON(!list_empty(&cfqq->fifo));
  1910. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1911. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1912. return dispatched;
  1913. }
  1914. /*
  1915. * Drain our current requests. Used for barriers and when switching
  1916. * io schedulers on-the-fly.
  1917. */
  1918. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1919. {
  1920. struct cfq_queue *cfqq;
  1921. int dispatched = 0;
  1922. /* Expire the timeslice of the current active queue first */
  1923. cfq_slice_expired(cfqd, 0);
  1924. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1925. __cfq_set_active_queue(cfqd, cfqq);
  1926. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1927. }
  1928. BUG_ON(cfqd->busy_queues);
  1929. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1930. return dispatched;
  1931. }
  1932. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1933. struct cfq_queue *cfqq)
  1934. {
  1935. /* the queue hasn't finished any request, can't estimate */
  1936. if (cfq_cfqq_slice_new(cfqq))
  1937. return 1;
  1938. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1939. cfqq->slice_end))
  1940. return 1;
  1941. return 0;
  1942. }
  1943. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1944. {
  1945. unsigned int max_dispatch;
  1946. /*
  1947. * Drain async requests before we start sync IO
  1948. */
  1949. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1950. return false;
  1951. /*
  1952. * If this is an async queue and we have sync IO in flight, let it wait
  1953. */
  1954. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1955. return false;
  1956. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1957. if (cfq_class_idle(cfqq))
  1958. max_dispatch = 1;
  1959. /*
  1960. * Does this cfqq already have too much IO in flight?
  1961. */
  1962. if (cfqq->dispatched >= max_dispatch) {
  1963. /*
  1964. * idle queue must always only have a single IO in flight
  1965. */
  1966. if (cfq_class_idle(cfqq))
  1967. return false;
  1968. /*
  1969. * We have other queues, don't allow more IO from this one
  1970. */
  1971. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  1972. return false;
  1973. /*
  1974. * Sole queue user, no limit
  1975. */
  1976. if (cfqd->busy_queues == 1)
  1977. max_dispatch = -1;
  1978. else
  1979. /*
  1980. * Normally we start throttling cfqq when cfq_quantum/2
  1981. * requests have been dispatched. But we can drive
  1982. * deeper queue depths at the beginning of slice
  1983. * subjected to upper limit of cfq_quantum.
  1984. * */
  1985. max_dispatch = cfqd->cfq_quantum;
  1986. }
  1987. /*
  1988. * Async queues must wait a bit before being allowed dispatch.
  1989. * We also ramp up the dispatch depth gradually for async IO,
  1990. * based on the last sync IO we serviced
  1991. */
  1992. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1993. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  1994. unsigned int depth;
  1995. depth = last_sync / cfqd->cfq_slice[1];
  1996. if (!depth && !cfqq->dispatched)
  1997. depth = 1;
  1998. if (depth < max_dispatch)
  1999. max_dispatch = depth;
  2000. }
  2001. /*
  2002. * If we're below the current max, allow a dispatch
  2003. */
  2004. return cfqq->dispatched < max_dispatch;
  2005. }
  2006. /*
  2007. * Dispatch a request from cfqq, moving them to the request queue
  2008. * dispatch list.
  2009. */
  2010. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2011. {
  2012. struct request *rq;
  2013. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2014. if (!cfq_may_dispatch(cfqd, cfqq))
  2015. return false;
  2016. /*
  2017. * follow expired path, else get first next available
  2018. */
  2019. rq = cfq_check_fifo(cfqq);
  2020. if (!rq)
  2021. rq = cfqq->next_rq;
  2022. /*
  2023. * insert request into driver dispatch list
  2024. */
  2025. cfq_dispatch_insert(cfqd->queue, rq);
  2026. if (!cfqd->active_cic) {
  2027. struct cfq_io_context *cic = RQ_CIC(rq);
  2028. atomic_long_inc(&cic->ioc->refcount);
  2029. cfqd->active_cic = cic;
  2030. }
  2031. return true;
  2032. }
  2033. /*
  2034. * Find the cfqq that we need to service and move a request from that to the
  2035. * dispatch list
  2036. */
  2037. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2038. {
  2039. struct cfq_data *cfqd = q->elevator->elevator_data;
  2040. struct cfq_queue *cfqq;
  2041. if (!cfqd->busy_queues)
  2042. return 0;
  2043. if (unlikely(force))
  2044. return cfq_forced_dispatch(cfqd);
  2045. cfqq = cfq_select_queue(cfqd);
  2046. if (!cfqq)
  2047. return 0;
  2048. /*
  2049. * Dispatch a request from this cfqq, if it is allowed
  2050. */
  2051. if (!cfq_dispatch_request(cfqd, cfqq))
  2052. return 0;
  2053. cfqq->slice_dispatch++;
  2054. cfq_clear_cfqq_must_dispatch(cfqq);
  2055. /*
  2056. * expire an async queue immediately if it has used up its slice. idle
  2057. * queue always expire after 1 dispatch round.
  2058. */
  2059. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2060. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2061. cfq_class_idle(cfqq))) {
  2062. cfqq->slice_end = jiffies + 1;
  2063. cfq_slice_expired(cfqd, 0);
  2064. }
  2065. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2066. return 1;
  2067. }
  2068. /*
  2069. * task holds one reference to the queue, dropped when task exits. each rq
  2070. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2071. *
  2072. * Each cfq queue took a reference on the parent group. Drop it now.
  2073. * queue lock must be held here.
  2074. */
  2075. static void cfq_put_queue(struct cfq_queue *cfqq)
  2076. {
  2077. struct cfq_data *cfqd = cfqq->cfqd;
  2078. struct cfq_group *cfqg, *orig_cfqg;
  2079. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2080. if (!atomic_dec_and_test(&cfqq->ref))
  2081. return;
  2082. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2083. BUG_ON(rb_first(&cfqq->sort_list));
  2084. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2085. cfqg = cfqq->cfqg;
  2086. orig_cfqg = cfqq->orig_cfqg;
  2087. if (unlikely(cfqd->active_queue == cfqq)) {
  2088. __cfq_slice_expired(cfqd, cfqq, 0);
  2089. cfq_schedule_dispatch(cfqd);
  2090. }
  2091. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2092. kmem_cache_free(cfq_pool, cfqq);
  2093. cfq_put_cfqg(cfqg);
  2094. if (orig_cfqg)
  2095. cfq_put_cfqg(orig_cfqg);
  2096. }
  2097. /*
  2098. * Must always be called with the rcu_read_lock() held
  2099. */
  2100. static void
  2101. __call_for_each_cic(struct io_context *ioc,
  2102. void (*func)(struct io_context *, struct cfq_io_context *))
  2103. {
  2104. struct cfq_io_context *cic;
  2105. struct hlist_node *n;
  2106. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2107. func(ioc, cic);
  2108. }
  2109. /*
  2110. * Call func for each cic attached to this ioc.
  2111. */
  2112. static void
  2113. call_for_each_cic(struct io_context *ioc,
  2114. void (*func)(struct io_context *, struct cfq_io_context *))
  2115. {
  2116. rcu_read_lock();
  2117. __call_for_each_cic(ioc, func);
  2118. rcu_read_unlock();
  2119. }
  2120. static void cfq_cic_free_rcu(struct rcu_head *head)
  2121. {
  2122. struct cfq_io_context *cic;
  2123. cic = container_of(head, struct cfq_io_context, rcu_head);
  2124. kmem_cache_free(cfq_ioc_pool, cic);
  2125. elv_ioc_count_dec(cfq_ioc_count);
  2126. if (ioc_gone) {
  2127. /*
  2128. * CFQ scheduler is exiting, grab exit lock and check
  2129. * the pending io context count. If it hits zero,
  2130. * complete ioc_gone and set it back to NULL
  2131. */
  2132. spin_lock(&ioc_gone_lock);
  2133. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2134. complete(ioc_gone);
  2135. ioc_gone = NULL;
  2136. }
  2137. spin_unlock(&ioc_gone_lock);
  2138. }
  2139. }
  2140. static void cfq_cic_free(struct cfq_io_context *cic)
  2141. {
  2142. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2143. }
  2144. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2145. {
  2146. unsigned long flags;
  2147. unsigned long dead_key = (unsigned long) cic->key;
  2148. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2149. spin_lock_irqsave(&ioc->lock, flags);
  2150. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2151. hlist_del_rcu(&cic->cic_list);
  2152. spin_unlock_irqrestore(&ioc->lock, flags);
  2153. cfq_cic_free(cic);
  2154. }
  2155. /*
  2156. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2157. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2158. * and ->trim() which is called with the task lock held
  2159. */
  2160. static void cfq_free_io_context(struct io_context *ioc)
  2161. {
  2162. /*
  2163. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2164. * so no more cic's are allowed to be linked into this ioc. So it
  2165. * should be ok to iterate over the known list, we will see all cic's
  2166. * since no new ones are added.
  2167. */
  2168. __call_for_each_cic(ioc, cic_free_func);
  2169. }
  2170. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2171. {
  2172. struct cfq_queue *__cfqq, *next;
  2173. /*
  2174. * If this queue was scheduled to merge with another queue, be
  2175. * sure to drop the reference taken on that queue (and others in
  2176. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2177. */
  2178. __cfqq = cfqq->new_cfqq;
  2179. while (__cfqq) {
  2180. if (__cfqq == cfqq) {
  2181. WARN(1, "cfqq->new_cfqq loop detected\n");
  2182. break;
  2183. }
  2184. next = __cfqq->new_cfqq;
  2185. cfq_put_queue(__cfqq);
  2186. __cfqq = next;
  2187. }
  2188. }
  2189. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2190. {
  2191. if (unlikely(cfqq == cfqd->active_queue)) {
  2192. __cfq_slice_expired(cfqd, cfqq, 0);
  2193. cfq_schedule_dispatch(cfqd);
  2194. }
  2195. cfq_put_cooperator(cfqq);
  2196. cfq_put_queue(cfqq);
  2197. }
  2198. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2199. struct cfq_io_context *cic)
  2200. {
  2201. struct io_context *ioc = cic->ioc;
  2202. list_del_init(&cic->queue_list);
  2203. /*
  2204. * Make sure dead mark is seen for dead queues
  2205. */
  2206. smp_wmb();
  2207. cic->key = cfqd_dead_key(cfqd);
  2208. if (ioc->ioc_data == cic)
  2209. rcu_assign_pointer(ioc->ioc_data, NULL);
  2210. if (cic->cfqq[BLK_RW_ASYNC]) {
  2211. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2212. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2213. }
  2214. if (cic->cfqq[BLK_RW_SYNC]) {
  2215. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2216. cic->cfqq[BLK_RW_SYNC] = NULL;
  2217. }
  2218. }
  2219. static void cfq_exit_single_io_context(struct io_context *ioc,
  2220. struct cfq_io_context *cic)
  2221. {
  2222. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2223. if (cfqd) {
  2224. struct request_queue *q = cfqd->queue;
  2225. unsigned long flags;
  2226. spin_lock_irqsave(q->queue_lock, flags);
  2227. /*
  2228. * Ensure we get a fresh copy of the ->key to prevent
  2229. * race between exiting task and queue
  2230. */
  2231. smp_read_barrier_depends();
  2232. if (cic->key == cfqd)
  2233. __cfq_exit_single_io_context(cfqd, cic);
  2234. spin_unlock_irqrestore(q->queue_lock, flags);
  2235. }
  2236. }
  2237. /*
  2238. * The process that ioc belongs to has exited, we need to clean up
  2239. * and put the internal structures we have that belongs to that process.
  2240. */
  2241. static void cfq_exit_io_context(struct io_context *ioc)
  2242. {
  2243. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2244. }
  2245. static struct cfq_io_context *
  2246. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2247. {
  2248. struct cfq_io_context *cic;
  2249. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2250. cfqd->queue->node);
  2251. if (cic) {
  2252. cic->last_end_request = jiffies;
  2253. INIT_LIST_HEAD(&cic->queue_list);
  2254. INIT_HLIST_NODE(&cic->cic_list);
  2255. cic->dtor = cfq_free_io_context;
  2256. cic->exit = cfq_exit_io_context;
  2257. elv_ioc_count_inc(cfq_ioc_count);
  2258. }
  2259. return cic;
  2260. }
  2261. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2262. {
  2263. struct task_struct *tsk = current;
  2264. int ioprio_class;
  2265. if (!cfq_cfqq_prio_changed(cfqq))
  2266. return;
  2267. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2268. switch (ioprio_class) {
  2269. default:
  2270. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2271. case IOPRIO_CLASS_NONE:
  2272. /*
  2273. * no prio set, inherit CPU scheduling settings
  2274. */
  2275. cfqq->ioprio = task_nice_ioprio(tsk);
  2276. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2277. break;
  2278. case IOPRIO_CLASS_RT:
  2279. cfqq->ioprio = task_ioprio(ioc);
  2280. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2281. break;
  2282. case IOPRIO_CLASS_BE:
  2283. cfqq->ioprio = task_ioprio(ioc);
  2284. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2285. break;
  2286. case IOPRIO_CLASS_IDLE:
  2287. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2288. cfqq->ioprio = 7;
  2289. cfq_clear_cfqq_idle_window(cfqq);
  2290. break;
  2291. }
  2292. /*
  2293. * keep track of original prio settings in case we have to temporarily
  2294. * elevate the priority of this queue
  2295. */
  2296. cfqq->org_ioprio = cfqq->ioprio;
  2297. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2298. cfq_clear_cfqq_prio_changed(cfqq);
  2299. }
  2300. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2301. {
  2302. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2303. struct cfq_queue *cfqq;
  2304. unsigned long flags;
  2305. if (unlikely(!cfqd))
  2306. return;
  2307. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2308. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2309. if (cfqq) {
  2310. struct cfq_queue *new_cfqq;
  2311. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2312. GFP_ATOMIC);
  2313. if (new_cfqq) {
  2314. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2315. cfq_put_queue(cfqq);
  2316. }
  2317. }
  2318. cfqq = cic->cfqq[BLK_RW_SYNC];
  2319. if (cfqq)
  2320. cfq_mark_cfqq_prio_changed(cfqq);
  2321. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2322. }
  2323. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2324. {
  2325. call_for_each_cic(ioc, changed_ioprio);
  2326. ioc->ioprio_changed = 0;
  2327. }
  2328. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2329. pid_t pid, bool is_sync)
  2330. {
  2331. RB_CLEAR_NODE(&cfqq->rb_node);
  2332. RB_CLEAR_NODE(&cfqq->p_node);
  2333. INIT_LIST_HEAD(&cfqq->fifo);
  2334. atomic_set(&cfqq->ref, 0);
  2335. cfqq->cfqd = cfqd;
  2336. cfq_mark_cfqq_prio_changed(cfqq);
  2337. if (is_sync) {
  2338. if (!cfq_class_idle(cfqq))
  2339. cfq_mark_cfqq_idle_window(cfqq);
  2340. cfq_mark_cfqq_sync(cfqq);
  2341. }
  2342. cfqq->pid = pid;
  2343. }
  2344. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2345. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2346. {
  2347. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2348. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2349. unsigned long flags;
  2350. struct request_queue *q;
  2351. if (unlikely(!cfqd))
  2352. return;
  2353. q = cfqd->queue;
  2354. spin_lock_irqsave(q->queue_lock, flags);
  2355. if (sync_cfqq) {
  2356. /*
  2357. * Drop reference to sync queue. A new sync queue will be
  2358. * assigned in new group upon arrival of a fresh request.
  2359. */
  2360. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2361. cic_set_cfqq(cic, NULL, 1);
  2362. cfq_put_queue(sync_cfqq);
  2363. }
  2364. spin_unlock_irqrestore(q->queue_lock, flags);
  2365. }
  2366. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2367. {
  2368. call_for_each_cic(ioc, changed_cgroup);
  2369. ioc->cgroup_changed = 0;
  2370. }
  2371. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2372. static struct cfq_queue *
  2373. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2374. struct io_context *ioc, gfp_t gfp_mask)
  2375. {
  2376. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2377. struct cfq_io_context *cic;
  2378. struct cfq_group *cfqg;
  2379. retry:
  2380. cfqg = cfq_get_cfqg(cfqd, 1);
  2381. cic = cfq_cic_lookup(cfqd, ioc);
  2382. /* cic always exists here */
  2383. cfqq = cic_to_cfqq(cic, is_sync);
  2384. /*
  2385. * Always try a new alloc if we fell back to the OOM cfqq
  2386. * originally, since it should just be a temporary situation.
  2387. */
  2388. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2389. cfqq = NULL;
  2390. if (new_cfqq) {
  2391. cfqq = new_cfqq;
  2392. new_cfqq = NULL;
  2393. } else if (gfp_mask & __GFP_WAIT) {
  2394. spin_unlock_irq(cfqd->queue->queue_lock);
  2395. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2396. gfp_mask | __GFP_ZERO,
  2397. cfqd->queue->node);
  2398. spin_lock_irq(cfqd->queue->queue_lock);
  2399. if (new_cfqq)
  2400. goto retry;
  2401. } else {
  2402. cfqq = kmem_cache_alloc_node(cfq_pool,
  2403. gfp_mask | __GFP_ZERO,
  2404. cfqd->queue->node);
  2405. }
  2406. if (cfqq) {
  2407. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2408. cfq_init_prio_data(cfqq, ioc);
  2409. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2410. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2411. } else
  2412. cfqq = &cfqd->oom_cfqq;
  2413. }
  2414. if (new_cfqq)
  2415. kmem_cache_free(cfq_pool, new_cfqq);
  2416. return cfqq;
  2417. }
  2418. static struct cfq_queue **
  2419. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2420. {
  2421. switch (ioprio_class) {
  2422. case IOPRIO_CLASS_RT:
  2423. return &cfqd->async_cfqq[0][ioprio];
  2424. case IOPRIO_CLASS_BE:
  2425. return &cfqd->async_cfqq[1][ioprio];
  2426. case IOPRIO_CLASS_IDLE:
  2427. return &cfqd->async_idle_cfqq;
  2428. default:
  2429. BUG();
  2430. }
  2431. }
  2432. static struct cfq_queue *
  2433. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2434. gfp_t gfp_mask)
  2435. {
  2436. const int ioprio = task_ioprio(ioc);
  2437. const int ioprio_class = task_ioprio_class(ioc);
  2438. struct cfq_queue **async_cfqq = NULL;
  2439. struct cfq_queue *cfqq = NULL;
  2440. if (!is_sync) {
  2441. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2442. cfqq = *async_cfqq;
  2443. }
  2444. if (!cfqq)
  2445. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2446. /*
  2447. * pin the queue now that it's allocated, scheduler exit will prune it
  2448. */
  2449. if (!is_sync && !(*async_cfqq)) {
  2450. atomic_inc(&cfqq->ref);
  2451. *async_cfqq = cfqq;
  2452. }
  2453. atomic_inc(&cfqq->ref);
  2454. return cfqq;
  2455. }
  2456. /*
  2457. * We drop cfq io contexts lazily, so we may find a dead one.
  2458. */
  2459. static void
  2460. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2461. struct cfq_io_context *cic)
  2462. {
  2463. unsigned long flags;
  2464. WARN_ON(!list_empty(&cic->queue_list));
  2465. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2466. spin_lock_irqsave(&ioc->lock, flags);
  2467. BUG_ON(ioc->ioc_data == cic);
  2468. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2469. hlist_del_rcu(&cic->cic_list);
  2470. spin_unlock_irqrestore(&ioc->lock, flags);
  2471. cfq_cic_free(cic);
  2472. }
  2473. static struct cfq_io_context *
  2474. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2475. {
  2476. struct cfq_io_context *cic;
  2477. unsigned long flags;
  2478. if (unlikely(!ioc))
  2479. return NULL;
  2480. rcu_read_lock();
  2481. /*
  2482. * we maintain a last-hit cache, to avoid browsing over the tree
  2483. */
  2484. cic = rcu_dereference(ioc->ioc_data);
  2485. if (cic && cic->key == cfqd) {
  2486. rcu_read_unlock();
  2487. return cic;
  2488. }
  2489. do {
  2490. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2491. rcu_read_unlock();
  2492. if (!cic)
  2493. break;
  2494. if (unlikely(cic->key != cfqd)) {
  2495. cfq_drop_dead_cic(cfqd, ioc, cic);
  2496. rcu_read_lock();
  2497. continue;
  2498. }
  2499. spin_lock_irqsave(&ioc->lock, flags);
  2500. rcu_assign_pointer(ioc->ioc_data, cic);
  2501. spin_unlock_irqrestore(&ioc->lock, flags);
  2502. break;
  2503. } while (1);
  2504. return cic;
  2505. }
  2506. /*
  2507. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2508. * the process specific cfq io context when entered from the block layer.
  2509. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2510. */
  2511. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2512. struct cfq_io_context *cic, gfp_t gfp_mask)
  2513. {
  2514. unsigned long flags;
  2515. int ret;
  2516. ret = radix_tree_preload(gfp_mask);
  2517. if (!ret) {
  2518. cic->ioc = ioc;
  2519. cic->key = cfqd;
  2520. spin_lock_irqsave(&ioc->lock, flags);
  2521. ret = radix_tree_insert(&ioc->radix_root,
  2522. cfqd->cic_index, cic);
  2523. if (!ret)
  2524. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2525. spin_unlock_irqrestore(&ioc->lock, flags);
  2526. radix_tree_preload_end();
  2527. if (!ret) {
  2528. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2529. list_add(&cic->queue_list, &cfqd->cic_list);
  2530. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2531. }
  2532. }
  2533. if (ret)
  2534. printk(KERN_ERR "cfq: cic link failed!\n");
  2535. return ret;
  2536. }
  2537. /*
  2538. * Setup general io context and cfq io context. There can be several cfq
  2539. * io contexts per general io context, if this process is doing io to more
  2540. * than one device managed by cfq.
  2541. */
  2542. static struct cfq_io_context *
  2543. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2544. {
  2545. struct io_context *ioc = NULL;
  2546. struct cfq_io_context *cic;
  2547. might_sleep_if(gfp_mask & __GFP_WAIT);
  2548. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2549. if (!ioc)
  2550. return NULL;
  2551. cic = cfq_cic_lookup(cfqd, ioc);
  2552. if (cic)
  2553. goto out;
  2554. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2555. if (cic == NULL)
  2556. goto err;
  2557. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2558. goto err_free;
  2559. out:
  2560. smp_read_barrier_depends();
  2561. if (unlikely(ioc->ioprio_changed))
  2562. cfq_ioc_set_ioprio(ioc);
  2563. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2564. if (unlikely(ioc->cgroup_changed))
  2565. cfq_ioc_set_cgroup(ioc);
  2566. #endif
  2567. return cic;
  2568. err_free:
  2569. cfq_cic_free(cic);
  2570. err:
  2571. put_io_context(ioc);
  2572. return NULL;
  2573. }
  2574. static void
  2575. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2576. {
  2577. unsigned long elapsed = jiffies - cic->last_end_request;
  2578. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2579. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2580. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2581. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2582. }
  2583. static void
  2584. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2585. struct request *rq)
  2586. {
  2587. sector_t sdist = 0;
  2588. sector_t n_sec = blk_rq_sectors(rq);
  2589. if (cfqq->last_request_pos) {
  2590. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2591. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2592. else
  2593. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2594. }
  2595. cfqq->seek_history <<= 1;
  2596. if (blk_queue_nonrot(cfqd->queue))
  2597. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2598. else
  2599. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2600. }
  2601. /*
  2602. * Disable idle window if the process thinks too long or seeks so much that
  2603. * it doesn't matter
  2604. */
  2605. static void
  2606. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2607. struct cfq_io_context *cic)
  2608. {
  2609. int old_idle, enable_idle;
  2610. /*
  2611. * Don't idle for async or idle io prio class
  2612. */
  2613. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2614. return;
  2615. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2616. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2617. cfq_mark_cfqq_deep(cfqq);
  2618. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2619. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2620. enable_idle = 0;
  2621. else if (sample_valid(cic->ttime_samples)) {
  2622. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2623. enable_idle = 0;
  2624. else
  2625. enable_idle = 1;
  2626. }
  2627. if (old_idle != enable_idle) {
  2628. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2629. if (enable_idle)
  2630. cfq_mark_cfqq_idle_window(cfqq);
  2631. else
  2632. cfq_clear_cfqq_idle_window(cfqq);
  2633. }
  2634. }
  2635. /*
  2636. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2637. * no or if we aren't sure, a 1 will cause a preempt.
  2638. */
  2639. static bool
  2640. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2641. struct request *rq)
  2642. {
  2643. struct cfq_queue *cfqq;
  2644. cfqq = cfqd->active_queue;
  2645. if (!cfqq)
  2646. return false;
  2647. if (cfq_class_idle(new_cfqq))
  2648. return false;
  2649. if (cfq_class_idle(cfqq))
  2650. return true;
  2651. /*
  2652. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2653. */
  2654. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2655. return false;
  2656. /*
  2657. * if the new request is sync, but the currently running queue is
  2658. * not, let the sync request have priority.
  2659. */
  2660. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2661. return true;
  2662. if (new_cfqq->cfqg != cfqq->cfqg)
  2663. return false;
  2664. if (cfq_slice_used(cfqq))
  2665. return true;
  2666. /* Allow preemption only if we are idling on sync-noidle tree */
  2667. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2668. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2669. new_cfqq->service_tree->count == 2 &&
  2670. RB_EMPTY_ROOT(&cfqq->sort_list))
  2671. return true;
  2672. /*
  2673. * So both queues are sync. Let the new request get disk time if
  2674. * it's a metadata request and the current queue is doing regular IO.
  2675. */
  2676. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2677. return true;
  2678. /*
  2679. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2680. */
  2681. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2682. return true;
  2683. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2684. return false;
  2685. /*
  2686. * if this request is as-good as one we would expect from the
  2687. * current cfqq, let it preempt
  2688. */
  2689. if (cfq_rq_close(cfqd, cfqq, rq))
  2690. return true;
  2691. return false;
  2692. }
  2693. /*
  2694. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2695. * let it have half of its nominal slice.
  2696. */
  2697. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2698. {
  2699. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2700. cfq_slice_expired(cfqd, 1);
  2701. /*
  2702. * Put the new queue at the front of the of the current list,
  2703. * so we know that it will be selected next.
  2704. */
  2705. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2706. cfq_service_tree_add(cfqd, cfqq, 1);
  2707. cfqq->slice_end = 0;
  2708. cfq_mark_cfqq_slice_new(cfqq);
  2709. }
  2710. /*
  2711. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2712. * something we should do about it
  2713. */
  2714. static void
  2715. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2716. struct request *rq)
  2717. {
  2718. struct cfq_io_context *cic = RQ_CIC(rq);
  2719. cfqd->rq_queued++;
  2720. if (rq->cmd_flags & REQ_META)
  2721. cfqq->meta_pending++;
  2722. cfq_update_io_thinktime(cfqd, cic);
  2723. cfq_update_io_seektime(cfqd, cfqq, rq);
  2724. cfq_update_idle_window(cfqd, cfqq, cic);
  2725. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2726. if (cfqq == cfqd->active_queue) {
  2727. /*
  2728. * Remember that we saw a request from this process, but
  2729. * don't start queuing just yet. Otherwise we risk seeing lots
  2730. * of tiny requests, because we disrupt the normal plugging
  2731. * and merging. If the request is already larger than a single
  2732. * page, let it rip immediately. For that case we assume that
  2733. * merging is already done. Ditto for a busy system that
  2734. * has other work pending, don't risk delaying until the
  2735. * idle timer unplug to continue working.
  2736. */
  2737. if (cfq_cfqq_wait_request(cfqq)) {
  2738. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2739. cfqd->busy_queues > 1) {
  2740. cfq_del_timer(cfqd, cfqq);
  2741. cfq_clear_cfqq_wait_request(cfqq);
  2742. __blk_run_queue(cfqd->queue);
  2743. } else {
  2744. cfq_blkiocg_update_idle_time_stats(
  2745. &cfqq->cfqg->blkg);
  2746. cfq_mark_cfqq_must_dispatch(cfqq);
  2747. }
  2748. }
  2749. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2750. /*
  2751. * not the active queue - expire current slice if it is
  2752. * idle and has expired it's mean thinktime or this new queue
  2753. * has some old slice time left and is of higher priority or
  2754. * this new queue is RT and the current one is BE
  2755. */
  2756. cfq_preempt_queue(cfqd, cfqq);
  2757. __blk_run_queue(cfqd->queue);
  2758. }
  2759. }
  2760. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2761. {
  2762. struct cfq_data *cfqd = q->elevator->elevator_data;
  2763. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2764. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2765. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2766. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2767. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2768. cfq_add_rq_rb(rq);
  2769. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2770. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2771. rq_is_sync(rq));
  2772. cfq_rq_enqueued(cfqd, cfqq, rq);
  2773. }
  2774. /*
  2775. * Update hw_tag based on peak queue depth over 50 samples under
  2776. * sufficient load.
  2777. */
  2778. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2779. {
  2780. struct cfq_queue *cfqq = cfqd->active_queue;
  2781. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2782. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2783. if (cfqd->hw_tag == 1)
  2784. return;
  2785. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2786. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2787. return;
  2788. /*
  2789. * If active queue hasn't enough requests and can idle, cfq might not
  2790. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2791. * case
  2792. */
  2793. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2794. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2795. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2796. return;
  2797. if (cfqd->hw_tag_samples++ < 50)
  2798. return;
  2799. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2800. cfqd->hw_tag = 1;
  2801. else
  2802. cfqd->hw_tag = 0;
  2803. }
  2804. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2805. {
  2806. struct cfq_io_context *cic = cfqd->active_cic;
  2807. /* If there are other queues in the group, don't wait */
  2808. if (cfqq->cfqg->nr_cfqq > 1)
  2809. return false;
  2810. if (cfq_slice_used(cfqq))
  2811. return true;
  2812. /* if slice left is less than think time, wait busy */
  2813. if (cic && sample_valid(cic->ttime_samples)
  2814. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2815. return true;
  2816. /*
  2817. * If think times is less than a jiffy than ttime_mean=0 and above
  2818. * will not be true. It might happen that slice has not expired yet
  2819. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2820. * case where think time is less than a jiffy, mark the queue wait
  2821. * busy if only 1 jiffy is left in the slice.
  2822. */
  2823. if (cfqq->slice_end - jiffies == 1)
  2824. return true;
  2825. return false;
  2826. }
  2827. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2828. {
  2829. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2830. struct cfq_data *cfqd = cfqq->cfqd;
  2831. const int sync = rq_is_sync(rq);
  2832. unsigned long now;
  2833. now = jiffies;
  2834. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2835. !!(rq->cmd_flags & REQ_NOIDLE));
  2836. cfq_update_hw_tag(cfqd);
  2837. WARN_ON(!cfqd->rq_in_driver);
  2838. WARN_ON(!cfqq->dispatched);
  2839. cfqd->rq_in_driver--;
  2840. cfqq->dispatched--;
  2841. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2842. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2843. rq_data_dir(rq), rq_is_sync(rq));
  2844. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2845. if (sync) {
  2846. RQ_CIC(rq)->last_end_request = now;
  2847. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2848. cfqd->last_delayed_sync = now;
  2849. }
  2850. /*
  2851. * If this is the active queue, check if it needs to be expired,
  2852. * or if we want to idle in case it has no pending requests.
  2853. */
  2854. if (cfqd->active_queue == cfqq) {
  2855. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2856. if (cfq_cfqq_slice_new(cfqq)) {
  2857. cfq_set_prio_slice(cfqd, cfqq);
  2858. cfq_clear_cfqq_slice_new(cfqq);
  2859. }
  2860. /*
  2861. * Should we wait for next request to come in before we expire
  2862. * the queue.
  2863. */
  2864. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2865. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2866. cfq_mark_cfqq_wait_busy(cfqq);
  2867. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2868. }
  2869. /*
  2870. * Idling is not enabled on:
  2871. * - expired queues
  2872. * - idle-priority queues
  2873. * - async queues
  2874. * - queues with still some requests queued
  2875. * - when there is a close cooperator
  2876. */
  2877. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2878. cfq_slice_expired(cfqd, 1);
  2879. else if (sync && cfqq_empty &&
  2880. !cfq_close_cooperator(cfqd, cfqq)) {
  2881. cfqd->noidle_tree_requires_idle |=
  2882. !(rq->cmd_flags & REQ_NOIDLE);
  2883. /*
  2884. * Idling is enabled for SYNC_WORKLOAD.
  2885. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2886. * only if we processed at least one !REQ_NOIDLE request
  2887. */
  2888. if (cfqd->serving_type == SYNC_WORKLOAD
  2889. || cfqd->noidle_tree_requires_idle
  2890. || cfqq->cfqg->nr_cfqq == 1)
  2891. cfq_arm_slice_timer(cfqd);
  2892. }
  2893. }
  2894. if (!cfqd->rq_in_driver)
  2895. cfq_schedule_dispatch(cfqd);
  2896. }
  2897. /*
  2898. * we temporarily boost lower priority queues if they are holding fs exclusive
  2899. * resources. they are boosted to normal prio (CLASS_BE/4)
  2900. */
  2901. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2902. {
  2903. if (has_fs_excl()) {
  2904. /*
  2905. * boost idle prio on transactions that would lock out other
  2906. * users of the filesystem
  2907. */
  2908. if (cfq_class_idle(cfqq))
  2909. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2910. if (cfqq->ioprio > IOPRIO_NORM)
  2911. cfqq->ioprio = IOPRIO_NORM;
  2912. } else {
  2913. /*
  2914. * unboost the queue (if needed)
  2915. */
  2916. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2917. cfqq->ioprio = cfqq->org_ioprio;
  2918. }
  2919. }
  2920. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2921. {
  2922. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2923. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2924. return ELV_MQUEUE_MUST;
  2925. }
  2926. return ELV_MQUEUE_MAY;
  2927. }
  2928. static int cfq_may_queue(struct request_queue *q, int rw)
  2929. {
  2930. struct cfq_data *cfqd = q->elevator->elevator_data;
  2931. struct task_struct *tsk = current;
  2932. struct cfq_io_context *cic;
  2933. struct cfq_queue *cfqq;
  2934. /*
  2935. * don't force setup of a queue from here, as a call to may_queue
  2936. * does not necessarily imply that a request actually will be queued.
  2937. * so just lookup a possibly existing queue, or return 'may queue'
  2938. * if that fails
  2939. */
  2940. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2941. if (!cic)
  2942. return ELV_MQUEUE_MAY;
  2943. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2944. if (cfqq) {
  2945. cfq_init_prio_data(cfqq, cic->ioc);
  2946. cfq_prio_boost(cfqq);
  2947. return __cfq_may_queue(cfqq);
  2948. }
  2949. return ELV_MQUEUE_MAY;
  2950. }
  2951. /*
  2952. * queue lock held here
  2953. */
  2954. static void cfq_put_request(struct request *rq)
  2955. {
  2956. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2957. if (cfqq) {
  2958. const int rw = rq_data_dir(rq);
  2959. BUG_ON(!cfqq->allocated[rw]);
  2960. cfqq->allocated[rw]--;
  2961. put_io_context(RQ_CIC(rq)->ioc);
  2962. rq->elevator_private = NULL;
  2963. rq->elevator_private2 = NULL;
  2964. /* Put down rq reference on cfqg */
  2965. cfq_put_cfqg(RQ_CFQG(rq));
  2966. rq->elevator_private3 = NULL;
  2967. cfq_put_queue(cfqq);
  2968. }
  2969. }
  2970. static struct cfq_queue *
  2971. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2972. struct cfq_queue *cfqq)
  2973. {
  2974. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2975. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2976. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2977. cfq_put_queue(cfqq);
  2978. return cic_to_cfqq(cic, 1);
  2979. }
  2980. /*
  2981. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2982. * was the last process referring to said cfqq.
  2983. */
  2984. static struct cfq_queue *
  2985. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2986. {
  2987. if (cfqq_process_refs(cfqq) == 1) {
  2988. cfqq->pid = current->pid;
  2989. cfq_clear_cfqq_coop(cfqq);
  2990. cfq_clear_cfqq_split_coop(cfqq);
  2991. return cfqq;
  2992. }
  2993. cic_set_cfqq(cic, NULL, 1);
  2994. cfq_put_cooperator(cfqq);
  2995. cfq_put_queue(cfqq);
  2996. return NULL;
  2997. }
  2998. /*
  2999. * Allocate cfq data structures associated with this request.
  3000. */
  3001. static int
  3002. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3003. {
  3004. struct cfq_data *cfqd = q->elevator->elevator_data;
  3005. struct cfq_io_context *cic;
  3006. const int rw = rq_data_dir(rq);
  3007. const bool is_sync = rq_is_sync(rq);
  3008. struct cfq_queue *cfqq;
  3009. unsigned long flags;
  3010. might_sleep_if(gfp_mask & __GFP_WAIT);
  3011. cic = cfq_get_io_context(cfqd, gfp_mask);
  3012. spin_lock_irqsave(q->queue_lock, flags);
  3013. if (!cic)
  3014. goto queue_fail;
  3015. new_queue:
  3016. cfqq = cic_to_cfqq(cic, is_sync);
  3017. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3018. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3019. cic_set_cfqq(cic, cfqq, is_sync);
  3020. } else {
  3021. /*
  3022. * If the queue was seeky for too long, break it apart.
  3023. */
  3024. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3025. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3026. cfqq = split_cfqq(cic, cfqq);
  3027. if (!cfqq)
  3028. goto new_queue;
  3029. }
  3030. /*
  3031. * Check to see if this queue is scheduled to merge with
  3032. * another, closely cooperating queue. The merging of
  3033. * queues happens here as it must be done in process context.
  3034. * The reference on new_cfqq was taken in merge_cfqqs.
  3035. */
  3036. if (cfqq->new_cfqq)
  3037. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3038. }
  3039. cfqq->allocated[rw]++;
  3040. atomic_inc(&cfqq->ref);
  3041. spin_unlock_irqrestore(q->queue_lock, flags);
  3042. rq->elevator_private = cic;
  3043. rq->elevator_private2 = cfqq;
  3044. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3045. return 0;
  3046. queue_fail:
  3047. if (cic)
  3048. put_io_context(cic->ioc);
  3049. cfq_schedule_dispatch(cfqd);
  3050. spin_unlock_irqrestore(q->queue_lock, flags);
  3051. cfq_log(cfqd, "set_request fail");
  3052. return 1;
  3053. }
  3054. static void cfq_kick_queue(struct work_struct *work)
  3055. {
  3056. struct cfq_data *cfqd =
  3057. container_of(work, struct cfq_data, unplug_work);
  3058. struct request_queue *q = cfqd->queue;
  3059. spin_lock_irq(q->queue_lock);
  3060. __blk_run_queue(cfqd->queue);
  3061. spin_unlock_irq(q->queue_lock);
  3062. }
  3063. /*
  3064. * Timer running if the active_queue is currently idling inside its time slice
  3065. */
  3066. static void cfq_idle_slice_timer(unsigned long data)
  3067. {
  3068. struct cfq_data *cfqd = (struct cfq_data *) data;
  3069. struct cfq_queue *cfqq;
  3070. unsigned long flags;
  3071. int timed_out = 1;
  3072. cfq_log(cfqd, "idle timer fired");
  3073. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3074. cfqq = cfqd->active_queue;
  3075. if (cfqq) {
  3076. timed_out = 0;
  3077. /*
  3078. * We saw a request before the queue expired, let it through
  3079. */
  3080. if (cfq_cfqq_must_dispatch(cfqq))
  3081. goto out_kick;
  3082. /*
  3083. * expired
  3084. */
  3085. if (cfq_slice_used(cfqq))
  3086. goto expire;
  3087. /*
  3088. * only expire and reinvoke request handler, if there are
  3089. * other queues with pending requests
  3090. */
  3091. if (!cfqd->busy_queues)
  3092. goto out_cont;
  3093. /*
  3094. * not expired and it has a request pending, let it dispatch
  3095. */
  3096. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3097. goto out_kick;
  3098. /*
  3099. * Queue depth flag is reset only when the idle didn't succeed
  3100. */
  3101. cfq_clear_cfqq_deep(cfqq);
  3102. }
  3103. expire:
  3104. cfq_slice_expired(cfqd, timed_out);
  3105. out_kick:
  3106. cfq_schedule_dispatch(cfqd);
  3107. out_cont:
  3108. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3109. }
  3110. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3111. {
  3112. del_timer_sync(&cfqd->idle_slice_timer);
  3113. cancel_work_sync(&cfqd->unplug_work);
  3114. }
  3115. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3116. {
  3117. int i;
  3118. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3119. if (cfqd->async_cfqq[0][i])
  3120. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3121. if (cfqd->async_cfqq[1][i])
  3122. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3123. }
  3124. if (cfqd->async_idle_cfqq)
  3125. cfq_put_queue(cfqd->async_idle_cfqq);
  3126. }
  3127. static void cfq_cfqd_free(struct rcu_head *head)
  3128. {
  3129. kfree(container_of(head, struct cfq_data, rcu));
  3130. }
  3131. static void cfq_exit_queue(struct elevator_queue *e)
  3132. {
  3133. struct cfq_data *cfqd = e->elevator_data;
  3134. struct request_queue *q = cfqd->queue;
  3135. cfq_shutdown_timer_wq(cfqd);
  3136. spin_lock_irq(q->queue_lock);
  3137. if (cfqd->active_queue)
  3138. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3139. while (!list_empty(&cfqd->cic_list)) {
  3140. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3141. struct cfq_io_context,
  3142. queue_list);
  3143. __cfq_exit_single_io_context(cfqd, cic);
  3144. }
  3145. cfq_put_async_queues(cfqd);
  3146. cfq_release_cfq_groups(cfqd);
  3147. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3148. spin_unlock_irq(q->queue_lock);
  3149. cfq_shutdown_timer_wq(cfqd);
  3150. spin_lock(&cic_index_lock);
  3151. ida_remove(&cic_index_ida, cfqd->cic_index);
  3152. spin_unlock(&cic_index_lock);
  3153. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3154. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3155. }
  3156. static int cfq_alloc_cic_index(void)
  3157. {
  3158. int index, error;
  3159. do {
  3160. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3161. return -ENOMEM;
  3162. spin_lock(&cic_index_lock);
  3163. error = ida_get_new(&cic_index_ida, &index);
  3164. spin_unlock(&cic_index_lock);
  3165. if (error && error != -EAGAIN)
  3166. return error;
  3167. } while (error);
  3168. return index;
  3169. }
  3170. static void *cfq_init_queue(struct request_queue *q)
  3171. {
  3172. struct cfq_data *cfqd;
  3173. int i, j;
  3174. struct cfq_group *cfqg;
  3175. struct cfq_rb_root *st;
  3176. i = cfq_alloc_cic_index();
  3177. if (i < 0)
  3178. return NULL;
  3179. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3180. if (!cfqd)
  3181. return NULL;
  3182. cfqd->cic_index = i;
  3183. /* Init root service tree */
  3184. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3185. /* Init root group */
  3186. cfqg = &cfqd->root_group;
  3187. for_each_cfqg_st(cfqg, i, j, st)
  3188. *st = CFQ_RB_ROOT;
  3189. RB_CLEAR_NODE(&cfqg->rb_node);
  3190. /* Give preference to root group over other groups */
  3191. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3192. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3193. /*
  3194. * Take a reference to root group which we never drop. This is just
  3195. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3196. */
  3197. atomic_set(&cfqg->ref, 1);
  3198. rcu_read_lock();
  3199. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3200. (void *)cfqd, 0);
  3201. rcu_read_unlock();
  3202. #endif
  3203. /*
  3204. * Not strictly needed (since RB_ROOT just clears the node and we
  3205. * zeroed cfqd on alloc), but better be safe in case someone decides
  3206. * to add magic to the rb code
  3207. */
  3208. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3209. cfqd->prio_trees[i] = RB_ROOT;
  3210. /*
  3211. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3212. * Grab a permanent reference to it, so that the normal code flow
  3213. * will not attempt to free it.
  3214. */
  3215. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3216. atomic_inc(&cfqd->oom_cfqq.ref);
  3217. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3218. INIT_LIST_HEAD(&cfqd->cic_list);
  3219. cfqd->queue = q;
  3220. init_timer(&cfqd->idle_slice_timer);
  3221. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3222. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3223. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3224. cfqd->cfq_quantum = cfq_quantum;
  3225. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3226. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3227. cfqd->cfq_back_max = cfq_back_max;
  3228. cfqd->cfq_back_penalty = cfq_back_penalty;
  3229. cfqd->cfq_slice[0] = cfq_slice_async;
  3230. cfqd->cfq_slice[1] = cfq_slice_sync;
  3231. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3232. cfqd->cfq_slice_idle = cfq_slice_idle;
  3233. cfqd->cfq_latency = 1;
  3234. cfqd->cfq_group_isolation = 0;
  3235. cfqd->hw_tag = -1;
  3236. /*
  3237. * we optimistically start assuming sync ops weren't delayed in last
  3238. * second, in order to have larger depth for async operations.
  3239. */
  3240. cfqd->last_delayed_sync = jiffies - HZ;
  3241. return cfqd;
  3242. }
  3243. static void cfq_slab_kill(void)
  3244. {
  3245. /*
  3246. * Caller already ensured that pending RCU callbacks are completed,
  3247. * so we should have no busy allocations at this point.
  3248. */
  3249. if (cfq_pool)
  3250. kmem_cache_destroy(cfq_pool);
  3251. if (cfq_ioc_pool)
  3252. kmem_cache_destroy(cfq_ioc_pool);
  3253. }
  3254. static int __init cfq_slab_setup(void)
  3255. {
  3256. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3257. if (!cfq_pool)
  3258. goto fail;
  3259. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3260. if (!cfq_ioc_pool)
  3261. goto fail;
  3262. return 0;
  3263. fail:
  3264. cfq_slab_kill();
  3265. return -ENOMEM;
  3266. }
  3267. /*
  3268. * sysfs parts below -->
  3269. */
  3270. static ssize_t
  3271. cfq_var_show(unsigned int var, char *page)
  3272. {
  3273. return sprintf(page, "%d\n", var);
  3274. }
  3275. static ssize_t
  3276. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3277. {
  3278. char *p = (char *) page;
  3279. *var = simple_strtoul(p, &p, 10);
  3280. return count;
  3281. }
  3282. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3283. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3284. { \
  3285. struct cfq_data *cfqd = e->elevator_data; \
  3286. unsigned int __data = __VAR; \
  3287. if (__CONV) \
  3288. __data = jiffies_to_msecs(__data); \
  3289. return cfq_var_show(__data, (page)); \
  3290. }
  3291. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3292. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3293. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3294. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3295. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3296. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3297. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3298. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3299. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3300. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3301. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3302. #undef SHOW_FUNCTION
  3303. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3304. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3305. { \
  3306. struct cfq_data *cfqd = e->elevator_data; \
  3307. unsigned int __data; \
  3308. int ret = cfq_var_store(&__data, (page), count); \
  3309. if (__data < (MIN)) \
  3310. __data = (MIN); \
  3311. else if (__data > (MAX)) \
  3312. __data = (MAX); \
  3313. if (__CONV) \
  3314. *(__PTR) = msecs_to_jiffies(__data); \
  3315. else \
  3316. *(__PTR) = __data; \
  3317. return ret; \
  3318. }
  3319. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3320. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3321. UINT_MAX, 1);
  3322. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3323. UINT_MAX, 1);
  3324. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3325. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3326. UINT_MAX, 0);
  3327. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3328. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3329. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3330. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3331. UINT_MAX, 0);
  3332. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3333. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3334. #undef STORE_FUNCTION
  3335. #define CFQ_ATTR(name) \
  3336. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3337. static struct elv_fs_entry cfq_attrs[] = {
  3338. CFQ_ATTR(quantum),
  3339. CFQ_ATTR(fifo_expire_sync),
  3340. CFQ_ATTR(fifo_expire_async),
  3341. CFQ_ATTR(back_seek_max),
  3342. CFQ_ATTR(back_seek_penalty),
  3343. CFQ_ATTR(slice_sync),
  3344. CFQ_ATTR(slice_async),
  3345. CFQ_ATTR(slice_async_rq),
  3346. CFQ_ATTR(slice_idle),
  3347. CFQ_ATTR(low_latency),
  3348. CFQ_ATTR(group_isolation),
  3349. __ATTR_NULL
  3350. };
  3351. static struct elevator_type iosched_cfq = {
  3352. .ops = {
  3353. .elevator_merge_fn = cfq_merge,
  3354. .elevator_merged_fn = cfq_merged_request,
  3355. .elevator_merge_req_fn = cfq_merged_requests,
  3356. .elevator_allow_merge_fn = cfq_allow_merge,
  3357. .elevator_bio_merged_fn = cfq_bio_merged,
  3358. .elevator_dispatch_fn = cfq_dispatch_requests,
  3359. .elevator_add_req_fn = cfq_insert_request,
  3360. .elevator_activate_req_fn = cfq_activate_request,
  3361. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3362. .elevator_queue_empty_fn = cfq_queue_empty,
  3363. .elevator_completed_req_fn = cfq_completed_request,
  3364. .elevator_former_req_fn = elv_rb_former_request,
  3365. .elevator_latter_req_fn = elv_rb_latter_request,
  3366. .elevator_set_req_fn = cfq_set_request,
  3367. .elevator_put_req_fn = cfq_put_request,
  3368. .elevator_may_queue_fn = cfq_may_queue,
  3369. .elevator_init_fn = cfq_init_queue,
  3370. .elevator_exit_fn = cfq_exit_queue,
  3371. .trim = cfq_free_io_context,
  3372. },
  3373. .elevator_attrs = cfq_attrs,
  3374. .elevator_name = "cfq",
  3375. .elevator_owner = THIS_MODULE,
  3376. };
  3377. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3378. static struct blkio_policy_type blkio_policy_cfq = {
  3379. .ops = {
  3380. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3381. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3382. },
  3383. };
  3384. #else
  3385. static struct blkio_policy_type blkio_policy_cfq;
  3386. #endif
  3387. static int __init cfq_init(void)
  3388. {
  3389. /*
  3390. * could be 0 on HZ < 1000 setups
  3391. */
  3392. if (!cfq_slice_async)
  3393. cfq_slice_async = 1;
  3394. if (!cfq_slice_idle)
  3395. cfq_slice_idle = 1;
  3396. if (cfq_slab_setup())
  3397. return -ENOMEM;
  3398. elv_register(&iosched_cfq);
  3399. blkio_policy_register(&blkio_policy_cfq);
  3400. return 0;
  3401. }
  3402. static void __exit cfq_exit(void)
  3403. {
  3404. DECLARE_COMPLETION_ONSTACK(all_gone);
  3405. blkio_policy_unregister(&blkio_policy_cfq);
  3406. elv_unregister(&iosched_cfq);
  3407. ioc_gone = &all_gone;
  3408. /* ioc_gone's update must be visible before reading ioc_count */
  3409. smp_wmb();
  3410. /*
  3411. * this also protects us from entering cfq_slab_kill() with
  3412. * pending RCU callbacks
  3413. */
  3414. if (elv_ioc_count_read(cfq_ioc_count))
  3415. wait_for_completion(&all_gone);
  3416. ida_destroy(&cic_index_ida);
  3417. cfq_slab_kill();
  3418. }
  3419. module_init(cfq_init);
  3420. module_exit(cfq_exit);
  3421. MODULE_AUTHOR("Jens Axboe");
  3422. MODULE_LICENSE("GPL");
  3423. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");