init.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
  9. *
  10. * Derived from "arch/i386/mm/init.c"
  11. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  12. *
  13. * Dave Engebretsen <engebret@us.ibm.com>
  14. * Rework for PPC64 port.
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License
  18. * as published by the Free Software Foundation; either version
  19. * 2 of the License, or (at your option) any later version.
  20. *
  21. */
  22. #include <linux/config.h>
  23. #include <linux/signal.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/errno.h>
  27. #include <linux/string.h>
  28. #include <linux/types.h>
  29. #include <linux/mman.h>
  30. #include <linux/mm.h>
  31. #include <linux/swap.h>
  32. #include <linux/stddef.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include <linux/bootmem.h>
  37. #include <linux/highmem.h>
  38. #include <linux/idr.h>
  39. #include <linux/nodemask.h>
  40. #include <linux/module.h>
  41. #include <asm/pgalloc.h>
  42. #include <asm/page.h>
  43. #include <asm/abs_addr.h>
  44. #include <asm/prom.h>
  45. #include <asm/lmb.h>
  46. #include <asm/rtas.h>
  47. #include <asm/io.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/mmu.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/smp.h>
  53. #include <asm/machdep.h>
  54. #include <asm/tlb.h>
  55. #include <asm/eeh.h>
  56. #include <asm/processor.h>
  57. #include <asm/mmzone.h>
  58. #include <asm/cputable.h>
  59. #include <asm/ppcdebug.h>
  60. #include <asm/sections.h>
  61. #include <asm/system.h>
  62. #include <asm/iommu.h>
  63. #include <asm/abs_addr.h>
  64. #include <asm/vdso.h>
  65. #include <asm/imalloc.h>
  66. int mem_init_done;
  67. unsigned long ioremap_bot = IMALLOC_BASE;
  68. static unsigned long phbs_io_bot = PHBS_IO_BASE;
  69. extern pgd_t swapper_pg_dir[];
  70. extern struct task_struct *current_set[NR_CPUS];
  71. unsigned long klimit = (unsigned long)_end;
  72. unsigned long _SDR1=0;
  73. unsigned long _ASR=0;
  74. /* max amount of RAM to use */
  75. unsigned long __max_memory;
  76. /* info on what we think the IO hole is */
  77. unsigned long io_hole_start;
  78. unsigned long io_hole_size;
  79. void show_mem(void)
  80. {
  81. unsigned long total = 0, reserved = 0;
  82. unsigned long shared = 0, cached = 0;
  83. struct page *page;
  84. pg_data_t *pgdat;
  85. unsigned long i;
  86. printk("Mem-info:\n");
  87. show_free_areas();
  88. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  89. for_each_pgdat(pgdat) {
  90. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  91. page = pgdat_page_nr(pgdat, i);
  92. total++;
  93. if (PageReserved(page))
  94. reserved++;
  95. else if (PageSwapCache(page))
  96. cached++;
  97. else if (page_count(page))
  98. shared += page_count(page) - 1;
  99. }
  100. }
  101. printk("%ld pages of RAM\n", total);
  102. printk("%ld reserved pages\n", reserved);
  103. printk("%ld pages shared\n", shared);
  104. printk("%ld pages swap cached\n", cached);
  105. }
  106. #ifdef CONFIG_PPC_ISERIES
  107. void __iomem *ioremap(unsigned long addr, unsigned long size)
  108. {
  109. return (void __iomem *)addr;
  110. }
  111. extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
  112. unsigned long flags)
  113. {
  114. return (void __iomem *)addr;
  115. }
  116. void iounmap(volatile void __iomem *addr)
  117. {
  118. return;
  119. }
  120. #else
  121. /*
  122. * map_io_page currently only called by __ioremap
  123. * map_io_page adds an entry to the ioremap page table
  124. * and adds an entry to the HPT, possibly bolting it
  125. */
  126. static int map_io_page(unsigned long ea, unsigned long pa, int flags)
  127. {
  128. pgd_t *pgdp;
  129. pud_t *pudp;
  130. pmd_t *pmdp;
  131. pte_t *ptep;
  132. unsigned long vsid;
  133. if (mem_init_done) {
  134. spin_lock(&init_mm.page_table_lock);
  135. pgdp = pgd_offset_k(ea);
  136. pudp = pud_alloc(&init_mm, pgdp, ea);
  137. if (!pudp)
  138. return -ENOMEM;
  139. pmdp = pmd_alloc(&init_mm, pudp, ea);
  140. if (!pmdp)
  141. return -ENOMEM;
  142. ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
  143. if (!ptep)
  144. return -ENOMEM;
  145. pa = abs_to_phys(pa);
  146. set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
  147. __pgprot(flags)));
  148. spin_unlock(&init_mm.page_table_lock);
  149. } else {
  150. unsigned long va, vpn, hash, hpteg;
  151. /*
  152. * If the mm subsystem is not fully up, we cannot create a
  153. * linux page table entry for this mapping. Simply bolt an
  154. * entry in the hardware page table.
  155. */
  156. vsid = get_kernel_vsid(ea);
  157. va = (vsid << 28) | (ea & 0xFFFFFFF);
  158. vpn = va >> PAGE_SHIFT;
  159. hash = hpt_hash(vpn, 0);
  160. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  161. /* Panic if a pte grpup is full */
  162. if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT,
  163. HPTE_V_BOLTED,
  164. _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX)
  165. == -1) {
  166. panic("map_io_page: could not insert mapping");
  167. }
  168. }
  169. return 0;
  170. }
  171. static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
  172. unsigned long ea, unsigned long size,
  173. unsigned long flags)
  174. {
  175. unsigned long i;
  176. if ((flags & _PAGE_PRESENT) == 0)
  177. flags |= pgprot_val(PAGE_KERNEL);
  178. for (i = 0; i < size; i += PAGE_SIZE)
  179. if (map_io_page(ea+i, pa+i, flags))
  180. return NULL;
  181. return (void __iomem *) (ea + (addr & ~PAGE_MASK));
  182. }
  183. void __iomem *
  184. ioremap(unsigned long addr, unsigned long size)
  185. {
  186. return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
  187. }
  188. void __iomem * __ioremap(unsigned long addr, unsigned long size,
  189. unsigned long flags)
  190. {
  191. unsigned long pa, ea;
  192. void __iomem *ret;
  193. /*
  194. * Choose an address to map it to.
  195. * Once the imalloc system is running, we use it.
  196. * Before that, we map using addresses going
  197. * up from ioremap_bot. imalloc will use
  198. * the addresses from ioremap_bot through
  199. * IMALLOC_END (0xE000001fffffffff)
  200. *
  201. */
  202. pa = addr & PAGE_MASK;
  203. size = PAGE_ALIGN(addr + size) - pa;
  204. if (size == 0)
  205. return NULL;
  206. if (mem_init_done) {
  207. struct vm_struct *area;
  208. area = im_get_free_area(size);
  209. if (area == NULL)
  210. return NULL;
  211. ea = (unsigned long)(area->addr);
  212. ret = __ioremap_com(addr, pa, ea, size, flags);
  213. if (!ret)
  214. im_free(area->addr);
  215. } else {
  216. ea = ioremap_bot;
  217. ret = __ioremap_com(addr, pa, ea, size, flags);
  218. if (ret)
  219. ioremap_bot += size;
  220. }
  221. return ret;
  222. }
  223. #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
  224. int __ioremap_explicit(unsigned long pa, unsigned long ea,
  225. unsigned long size, unsigned long flags)
  226. {
  227. struct vm_struct *area;
  228. void __iomem *ret;
  229. /* For now, require page-aligned values for pa, ea, and size */
  230. if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
  231. !IS_PAGE_ALIGNED(size)) {
  232. printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
  233. return 1;
  234. }
  235. if (!mem_init_done) {
  236. /* Two things to consider in this case:
  237. * 1) No records will be kept (imalloc, etc) that the region
  238. * has been remapped
  239. * 2) It won't be easy to iounmap() the region later (because
  240. * of 1)
  241. */
  242. ;
  243. } else {
  244. area = im_get_area(ea, size,
  245. IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
  246. if (area == NULL) {
  247. /* Expected when PHB-dlpar is in play */
  248. return 1;
  249. }
  250. if (ea != (unsigned long) area->addr) {
  251. printk(KERN_ERR "unexpected addr return from "
  252. "im_get_area\n");
  253. return 1;
  254. }
  255. }
  256. ret = __ioremap_com(pa, pa, ea, size, flags);
  257. if (ret == NULL) {
  258. printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
  259. return 1;
  260. }
  261. if (ret != (void *) ea) {
  262. printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
  263. return 1;
  264. }
  265. return 0;
  266. }
  267. /*
  268. * Unmap an IO region and remove it from imalloc'd list.
  269. * Access to IO memory should be serialized by driver.
  270. * This code is modeled after vmalloc code - unmap_vm_area()
  271. *
  272. * XXX what about calls before mem_init_done (ie python_countermeasures())
  273. */
  274. void iounmap(volatile void __iomem *token)
  275. {
  276. void *addr;
  277. if (!mem_init_done)
  278. return;
  279. addr = (void *) ((unsigned long __force) token & PAGE_MASK);
  280. im_free(addr);
  281. }
  282. static int iounmap_subset_regions(unsigned long addr, unsigned long size)
  283. {
  284. struct vm_struct *area;
  285. /* Check whether subsets of this region exist */
  286. area = im_get_area(addr, size, IM_REGION_SUPERSET);
  287. if (area == NULL)
  288. return 1;
  289. while (area) {
  290. iounmap((void __iomem *) area->addr);
  291. area = im_get_area(addr, size,
  292. IM_REGION_SUPERSET);
  293. }
  294. return 0;
  295. }
  296. int iounmap_explicit(volatile void __iomem *start, unsigned long size)
  297. {
  298. struct vm_struct *area;
  299. unsigned long addr;
  300. int rc;
  301. addr = (unsigned long __force) start & PAGE_MASK;
  302. /* Verify that the region either exists or is a subset of an existing
  303. * region. In the latter case, split the parent region to create
  304. * the exact region
  305. */
  306. area = im_get_area(addr, size,
  307. IM_REGION_EXISTS | IM_REGION_SUBSET);
  308. if (area == NULL) {
  309. /* Determine whether subset regions exist. If so, unmap */
  310. rc = iounmap_subset_regions(addr, size);
  311. if (rc) {
  312. printk(KERN_ERR
  313. "%s() cannot unmap nonexistent range 0x%lx\n",
  314. __FUNCTION__, addr);
  315. return 1;
  316. }
  317. } else {
  318. iounmap((void __iomem *) area->addr);
  319. }
  320. /*
  321. * FIXME! This can't be right:
  322. iounmap(area->addr);
  323. * Maybe it should be "iounmap(area);"
  324. */
  325. return 0;
  326. }
  327. #endif
  328. EXPORT_SYMBOL(ioremap);
  329. EXPORT_SYMBOL(__ioremap);
  330. EXPORT_SYMBOL(iounmap);
  331. void free_initmem(void)
  332. {
  333. unsigned long addr;
  334. addr = (unsigned long)__init_begin;
  335. for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
  336. ClearPageReserved(virt_to_page(addr));
  337. set_page_count(virt_to_page(addr), 1);
  338. free_page(addr);
  339. totalram_pages++;
  340. }
  341. printk ("Freeing unused kernel memory: %luk freed\n",
  342. ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
  343. }
  344. #ifdef CONFIG_BLK_DEV_INITRD
  345. void free_initrd_mem(unsigned long start, unsigned long end)
  346. {
  347. if (start < end)
  348. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  349. for (; start < end; start += PAGE_SIZE) {
  350. ClearPageReserved(virt_to_page(start));
  351. set_page_count(virt_to_page(start), 1);
  352. free_page(start);
  353. totalram_pages++;
  354. }
  355. }
  356. #endif
  357. static DEFINE_SPINLOCK(mmu_context_lock);
  358. static DEFINE_IDR(mmu_context_idr);
  359. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  360. {
  361. int index;
  362. int err;
  363. #ifdef CONFIG_HUGETLB_PAGE
  364. /* We leave htlb_segs as it was, but for a fork, we need to
  365. * clear the huge_pgdir. */
  366. mm->context.huge_pgdir = NULL;
  367. #endif
  368. again:
  369. if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
  370. return -ENOMEM;
  371. spin_lock(&mmu_context_lock);
  372. err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
  373. spin_unlock(&mmu_context_lock);
  374. if (err == -EAGAIN)
  375. goto again;
  376. else if (err)
  377. return err;
  378. if (index > MAX_CONTEXT) {
  379. idr_remove(&mmu_context_idr, index);
  380. return -ENOMEM;
  381. }
  382. mm->context.id = index;
  383. return 0;
  384. }
  385. void destroy_context(struct mm_struct *mm)
  386. {
  387. spin_lock(&mmu_context_lock);
  388. idr_remove(&mmu_context_idr, mm->context.id);
  389. spin_unlock(&mmu_context_lock);
  390. mm->context.id = NO_CONTEXT;
  391. hugetlb_mm_free_pgd(mm);
  392. }
  393. /*
  394. * Do very early mm setup.
  395. */
  396. void __init mm_init_ppc64(void)
  397. {
  398. #ifndef CONFIG_PPC_ISERIES
  399. unsigned long i;
  400. #endif
  401. ppc64_boot_msg(0x100, "MM Init");
  402. /* This is the story of the IO hole... please, keep seated,
  403. * unfortunately, we are out of oxygen masks at the moment.
  404. * So we need some rough way to tell where your big IO hole
  405. * is. On pmac, it's between 2G and 4G, on POWER3, it's around
  406. * that area as well, on POWER4 we don't have one, etc...
  407. * We need that as a "hint" when sizing the TCE table on POWER3
  408. * So far, the simplest way that seem work well enough for us it
  409. * to just assume that the first discontinuity in our physical
  410. * RAM layout is the IO hole. That may not be correct in the future
  411. * (and isn't on iSeries but then we don't care ;)
  412. */
  413. #ifndef CONFIG_PPC_ISERIES
  414. for (i = 1; i < lmb.memory.cnt; i++) {
  415. unsigned long base, prevbase, prevsize;
  416. prevbase = lmb.memory.region[i-1].physbase;
  417. prevsize = lmb.memory.region[i-1].size;
  418. base = lmb.memory.region[i].physbase;
  419. if (base > (prevbase + prevsize)) {
  420. io_hole_start = prevbase + prevsize;
  421. io_hole_size = base - (prevbase + prevsize);
  422. break;
  423. }
  424. }
  425. #endif /* CONFIG_PPC_ISERIES */
  426. if (io_hole_start)
  427. printk("IO Hole assumed to be %lx -> %lx\n",
  428. io_hole_start, io_hole_start + io_hole_size - 1);
  429. ppc64_boot_msg(0x100, "MM Init Done");
  430. }
  431. /*
  432. * This is called by /dev/mem to know if a given address has to
  433. * be mapped non-cacheable or not
  434. */
  435. int page_is_ram(unsigned long pfn)
  436. {
  437. int i;
  438. unsigned long paddr = (pfn << PAGE_SHIFT);
  439. for (i=0; i < lmb.memory.cnt; i++) {
  440. unsigned long base;
  441. #ifdef CONFIG_MSCHUNKS
  442. base = lmb.memory.region[i].physbase;
  443. #else
  444. base = lmb.memory.region[i].base;
  445. #endif
  446. if ((paddr >= base) &&
  447. (paddr < (base + lmb.memory.region[i].size))) {
  448. return 1;
  449. }
  450. }
  451. return 0;
  452. }
  453. EXPORT_SYMBOL(page_is_ram);
  454. /*
  455. * Initialize the bootmem system and give it all the memory we
  456. * have available.
  457. */
  458. #ifndef CONFIG_NEED_MULTIPLE_NODES
  459. void __init do_init_bootmem(void)
  460. {
  461. unsigned long i;
  462. unsigned long start, bootmap_pages;
  463. unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
  464. int boot_mapsize;
  465. /*
  466. * Find an area to use for the bootmem bitmap. Calculate the size of
  467. * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
  468. * Add 1 additional page in case the address isn't page-aligned.
  469. */
  470. bootmap_pages = bootmem_bootmap_pages(total_pages);
  471. start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
  472. BUG_ON(!start);
  473. boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
  474. max_pfn = max_low_pfn;
  475. /* Add all physical memory to the bootmem map, mark each area
  476. * present.
  477. */
  478. for (i=0; i < lmb.memory.cnt; i++) {
  479. unsigned long physbase, size;
  480. unsigned long start_pfn, end_pfn;
  481. physbase = lmb.memory.region[i].physbase;
  482. size = lmb.memory.region[i].size;
  483. start_pfn = physbase >> PAGE_SHIFT;
  484. end_pfn = start_pfn + (size >> PAGE_SHIFT);
  485. memory_present(0, start_pfn, end_pfn);
  486. free_bootmem(physbase, size);
  487. }
  488. /* reserve the sections we're already using */
  489. for (i=0; i < lmb.reserved.cnt; i++) {
  490. unsigned long physbase = lmb.reserved.region[i].physbase;
  491. unsigned long size = lmb.reserved.region[i].size;
  492. reserve_bootmem(physbase, size);
  493. }
  494. }
  495. /*
  496. * paging_init() sets up the page tables - in fact we've already done this.
  497. */
  498. void __init paging_init(void)
  499. {
  500. unsigned long zones_size[MAX_NR_ZONES];
  501. unsigned long zholes_size[MAX_NR_ZONES];
  502. unsigned long total_ram = lmb_phys_mem_size();
  503. unsigned long top_of_ram = lmb_end_of_DRAM();
  504. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  505. top_of_ram, total_ram);
  506. printk(KERN_INFO "Memory hole size: %ldMB\n",
  507. (top_of_ram - total_ram) >> 20);
  508. /*
  509. * All pages are DMA-able so we put them all in the DMA zone.
  510. */
  511. memset(zones_size, 0, sizeof(zones_size));
  512. memset(zholes_size, 0, sizeof(zholes_size));
  513. zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
  514. zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
  515. free_area_init_node(0, NODE_DATA(0), zones_size,
  516. __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
  517. }
  518. #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
  519. static struct kcore_list kcore_vmem;
  520. static int __init setup_kcore(void)
  521. {
  522. int i;
  523. for (i=0; i < lmb.memory.cnt; i++) {
  524. unsigned long physbase, size;
  525. struct kcore_list *kcore_mem;
  526. physbase = lmb.memory.region[i].physbase;
  527. size = lmb.memory.region[i].size;
  528. /* GFP_ATOMIC to avoid might_sleep warnings during boot */
  529. kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
  530. if (!kcore_mem)
  531. panic("mem_init: kmalloc failed\n");
  532. kclist_add(kcore_mem, __va(physbase), size);
  533. }
  534. kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
  535. return 0;
  536. }
  537. module_init(setup_kcore);
  538. void __init mem_init(void)
  539. {
  540. #ifdef CONFIG_NEED_MULTIPLE_NODES
  541. int nid;
  542. #endif
  543. pg_data_t *pgdat;
  544. unsigned long i;
  545. struct page *page;
  546. unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
  547. num_physpages = max_low_pfn; /* RAM is assumed contiguous */
  548. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
  549. #ifdef CONFIG_NEED_MULTIPLE_NODES
  550. for_each_online_node(nid) {
  551. if (NODE_DATA(nid)->node_spanned_pages != 0) {
  552. printk("freeing bootmem node %x\n", nid);
  553. totalram_pages +=
  554. free_all_bootmem_node(NODE_DATA(nid));
  555. }
  556. }
  557. #else
  558. max_mapnr = num_physpages;
  559. totalram_pages += free_all_bootmem();
  560. #endif
  561. for_each_pgdat(pgdat) {
  562. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  563. page = pgdat_page_nr(pgdat, i);
  564. if (PageReserved(page))
  565. reservedpages++;
  566. }
  567. }
  568. codesize = (unsigned long)&_etext - (unsigned long)&_stext;
  569. initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
  570. datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
  571. bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
  572. printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
  573. "%luk reserved, %luk data, %luk bss, %luk init)\n",
  574. (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
  575. num_physpages << (PAGE_SHIFT-10),
  576. codesize >> 10,
  577. reservedpages << (PAGE_SHIFT-10),
  578. datasize >> 10,
  579. bsssize >> 10,
  580. initsize >> 10);
  581. mem_init_done = 1;
  582. #ifdef CONFIG_PPC_ISERIES
  583. iommu_vio_init();
  584. #endif
  585. /* Initialize the vDSO */
  586. vdso_init();
  587. }
  588. /*
  589. * This is called when a page has been modified by the kernel.
  590. * It just marks the page as not i-cache clean. We do the i-cache
  591. * flush later when the page is given to a user process, if necessary.
  592. */
  593. void flush_dcache_page(struct page *page)
  594. {
  595. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  596. return;
  597. /* avoid an atomic op if possible */
  598. if (test_bit(PG_arch_1, &page->flags))
  599. clear_bit(PG_arch_1, &page->flags);
  600. }
  601. EXPORT_SYMBOL(flush_dcache_page);
  602. void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
  603. {
  604. clear_page(page);
  605. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  606. return;
  607. /*
  608. * We shouldnt have to do this, but some versions of glibc
  609. * require it (ld.so assumes zero filled pages are icache clean)
  610. * - Anton
  611. */
  612. /* avoid an atomic op if possible */
  613. if (test_bit(PG_arch_1, &pg->flags))
  614. clear_bit(PG_arch_1, &pg->flags);
  615. }
  616. EXPORT_SYMBOL(clear_user_page);
  617. void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
  618. struct page *pg)
  619. {
  620. copy_page(vto, vfrom);
  621. /*
  622. * We should be able to use the following optimisation, however
  623. * there are two problems.
  624. * Firstly a bug in some versions of binutils meant PLT sections
  625. * were not marked executable.
  626. * Secondly the first word in the GOT section is blrl, used
  627. * to establish the GOT address. Until recently the GOT was
  628. * not marked executable.
  629. * - Anton
  630. */
  631. #if 0
  632. if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
  633. return;
  634. #endif
  635. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  636. return;
  637. /* avoid an atomic op if possible */
  638. if (test_bit(PG_arch_1, &pg->flags))
  639. clear_bit(PG_arch_1, &pg->flags);
  640. }
  641. void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
  642. unsigned long addr, int len)
  643. {
  644. unsigned long maddr;
  645. maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
  646. flush_icache_range(maddr, maddr + len);
  647. }
  648. EXPORT_SYMBOL(flush_icache_user_range);
  649. /*
  650. * This is called at the end of handling a user page fault, when the
  651. * fault has been handled by updating a PTE in the linux page tables.
  652. * We use it to preload an HPTE into the hash table corresponding to
  653. * the updated linux PTE.
  654. *
  655. * This must always be called with the mm->page_table_lock held
  656. */
  657. void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
  658. pte_t pte)
  659. {
  660. unsigned long vsid;
  661. void *pgdir;
  662. pte_t *ptep;
  663. int local = 0;
  664. cpumask_t tmp;
  665. unsigned long flags;
  666. /* handle i-cache coherency */
  667. if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
  668. !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
  669. unsigned long pfn = pte_pfn(pte);
  670. if (pfn_valid(pfn)) {
  671. struct page *page = pfn_to_page(pfn);
  672. if (!PageReserved(page)
  673. && !test_bit(PG_arch_1, &page->flags)) {
  674. __flush_dcache_icache(page_address(page));
  675. set_bit(PG_arch_1, &page->flags);
  676. }
  677. }
  678. }
  679. /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
  680. if (!pte_young(pte))
  681. return;
  682. pgdir = vma->vm_mm->pgd;
  683. if (pgdir == NULL)
  684. return;
  685. ptep = find_linux_pte(pgdir, ea);
  686. if (!ptep)
  687. return;
  688. vsid = get_vsid(vma->vm_mm->context.id, ea);
  689. local_irq_save(flags);
  690. tmp = cpumask_of_cpu(smp_processor_id());
  691. if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
  692. local = 1;
  693. __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
  694. 0x300, local);
  695. local_irq_restore(flags);
  696. }
  697. void __iomem * reserve_phb_iospace(unsigned long size)
  698. {
  699. void __iomem *virt_addr;
  700. if (phbs_io_bot >= IMALLOC_BASE)
  701. panic("reserve_phb_iospace(): phb io space overflow\n");
  702. virt_addr = (void __iomem *) phbs_io_bot;
  703. phbs_io_bot += size;
  704. return virt_addr;
  705. }
  706. kmem_cache_t *zero_cache;
  707. static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
  708. {
  709. memset(pte, 0, PAGE_SIZE);
  710. }
  711. void pgtable_cache_init(void)
  712. {
  713. zero_cache = kmem_cache_create("zero",
  714. PAGE_SIZE,
  715. 0,
  716. SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
  717. zero_ctor,
  718. NULL);
  719. if (!zero_cache)
  720. panic("pgtable_cache_init(): could not create zero_cache!\n");
  721. }
  722. pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
  723. unsigned long size, pgprot_t vma_prot)
  724. {
  725. if (ppc_md.phys_mem_access_prot)
  726. return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
  727. if (!page_is_ram(addr >> PAGE_SHIFT))
  728. vma_prot = __pgprot(pgprot_val(vma_prot)
  729. | _PAGE_GUARDED | _PAGE_NO_CACHE);
  730. return vma_prot;
  731. }
  732. EXPORT_SYMBOL(phys_mem_access_prot);