hw.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30. #include "../wifi.h"
  31. #include "../efuse.h"
  32. #include "../base.h"
  33. #include "../regd.h"
  34. #include "../cam.h"
  35. #include "../ps.h"
  36. #include "../pci.h"
  37. #include "reg.h"
  38. #include "def.h"
  39. #include "phy.h"
  40. #include "dm.h"
  41. #include "fw.h"
  42. #include "led.h"
  43. #include "hw.h"
  44. void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  45. {
  46. struct rtl_priv *rtlpriv = rtl_priv(hw);
  47. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  48. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  49. switch (variable) {
  50. case HW_VAR_RCR: {
  51. *((u32 *) (val)) = rtlpci->receive_config;
  52. break;
  53. }
  54. case HW_VAR_RF_STATE: {
  55. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  56. break;
  57. }
  58. case HW_VAR_FW_PSMODE_STATUS: {
  59. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  60. break;
  61. }
  62. case HW_VAR_CORRECT_TSF: {
  63. u64 tsf;
  64. u32 *ptsf_low = (u32 *)&tsf;
  65. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  66. *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
  67. *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
  68. *((u64 *) (val)) = tsf;
  69. break;
  70. }
  71. case HW_VAR_MRC: {
  72. *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
  73. break;
  74. }
  75. default: {
  76. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  77. "switch case not processed\n");
  78. break;
  79. }
  80. }
  81. }
  82. void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  83. {
  84. struct rtl_priv *rtlpriv = rtl_priv(hw);
  85. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  86. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  87. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  88. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  89. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  90. switch (variable) {
  91. case HW_VAR_ETHER_ADDR:{
  92. rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
  93. rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
  94. break;
  95. }
  96. case HW_VAR_BASIC_RATE:{
  97. u16 rate_cfg = ((u16 *) val)[0];
  98. u8 rate_index = 0;
  99. if (rtlhal->version == VERSION_8192S_ACUT)
  100. rate_cfg = rate_cfg & 0x150;
  101. else
  102. rate_cfg = rate_cfg & 0x15f;
  103. rate_cfg |= 0x01;
  104. rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
  105. rtl_write_byte(rtlpriv, RRSR + 1,
  106. (rate_cfg >> 8) & 0xff);
  107. while (rate_cfg > 0x1) {
  108. rate_cfg = (rate_cfg >> 1);
  109. rate_index++;
  110. }
  111. rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
  112. break;
  113. }
  114. case HW_VAR_BSSID:{
  115. rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
  116. rtl_write_word(rtlpriv, BSSIDR + 4,
  117. ((u16 *)(val + 4))[0]);
  118. break;
  119. }
  120. case HW_VAR_SIFS:{
  121. rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
  122. rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
  123. break;
  124. }
  125. case HW_VAR_SLOT_TIME:{
  126. u8 e_aci;
  127. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  128. "HW_VAR_SLOT_TIME %x\n", val[0]);
  129. rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
  130. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  131. rtlpriv->cfg->ops->set_hw_reg(hw,
  132. HW_VAR_AC_PARAM,
  133. (u8 *)(&e_aci));
  134. }
  135. break;
  136. }
  137. case HW_VAR_ACK_PREAMBLE:{
  138. u8 reg_tmp;
  139. u8 short_preamble = (bool) (*(u8 *) val);
  140. reg_tmp = (mac->cur_40_prime_sc) << 5;
  141. if (short_preamble)
  142. reg_tmp |= 0x80;
  143. rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
  144. break;
  145. }
  146. case HW_VAR_AMPDU_MIN_SPACE:{
  147. u8 min_spacing_to_set;
  148. u8 sec_min_space;
  149. min_spacing_to_set = *((u8 *)val);
  150. if (min_spacing_to_set <= 7) {
  151. if (rtlpriv->sec.pairwise_enc_algorithm ==
  152. NO_ENCRYPTION)
  153. sec_min_space = 0;
  154. else
  155. sec_min_space = 1;
  156. if (min_spacing_to_set < sec_min_space)
  157. min_spacing_to_set = sec_min_space;
  158. if (min_spacing_to_set > 5)
  159. min_spacing_to_set = 5;
  160. mac->min_space_cfg =
  161. ((mac->min_space_cfg & 0xf8) |
  162. min_spacing_to_set);
  163. *val = min_spacing_to_set;
  164. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  165. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  166. mac->min_space_cfg);
  167. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  168. mac->min_space_cfg);
  169. }
  170. break;
  171. }
  172. case HW_VAR_SHORTGI_DENSITY:{
  173. u8 density_to_set;
  174. density_to_set = *((u8 *) val);
  175. mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
  176. mac->min_space_cfg |= (density_to_set << 3);
  177. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  178. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  179. mac->min_space_cfg);
  180. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  181. mac->min_space_cfg);
  182. break;
  183. }
  184. case HW_VAR_AMPDU_FACTOR:{
  185. u8 factor_toset;
  186. u8 regtoset;
  187. u8 factorlevel[18] = {
  188. 2, 4, 4, 7, 7, 13, 13,
  189. 13, 2, 7, 7, 13, 13,
  190. 15, 15, 15, 15, 0};
  191. u8 index = 0;
  192. factor_toset = *((u8 *) val);
  193. if (factor_toset <= 3) {
  194. factor_toset = (1 << (factor_toset + 2));
  195. if (factor_toset > 0xf)
  196. factor_toset = 0xf;
  197. for (index = 0; index < 17; index++) {
  198. if (factorlevel[index] > factor_toset)
  199. factorlevel[index] =
  200. factor_toset;
  201. }
  202. for (index = 0; index < 8; index++) {
  203. regtoset = ((factorlevel[index * 2]) |
  204. (factorlevel[index *
  205. 2 + 1] << 4));
  206. rtl_write_byte(rtlpriv,
  207. AGGLEN_LMT_L + index,
  208. regtoset);
  209. }
  210. regtoset = ((factorlevel[16]) |
  211. (factorlevel[17] << 4));
  212. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
  213. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  214. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  215. factor_toset);
  216. }
  217. break;
  218. }
  219. case HW_VAR_AC_PARAM:{
  220. u8 e_aci = *((u8 *) val);
  221. rtl92s_dm_init_edca_turbo(hw);
  222. if (rtlpci->acm_method != eAcmWay2_SW)
  223. rtlpriv->cfg->ops->set_hw_reg(hw,
  224. HW_VAR_ACM_CTRL,
  225. (u8 *)(&e_aci));
  226. break;
  227. }
  228. case HW_VAR_ACM_CTRL:{
  229. u8 e_aci = *((u8 *) val);
  230. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
  231. mac->ac[0].aifs));
  232. u8 acm = p_aci_aifsn->f.acm;
  233. u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
  234. acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
  235. 0x0 : 0x1);
  236. if (acm) {
  237. switch (e_aci) {
  238. case AC0_BE:
  239. acm_ctrl |= AcmHw_BeqEn;
  240. break;
  241. case AC2_VI:
  242. acm_ctrl |= AcmHw_ViqEn;
  243. break;
  244. case AC3_VO:
  245. acm_ctrl |= AcmHw_VoqEn;
  246. break;
  247. default:
  248. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  249. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  250. acm);
  251. break;
  252. }
  253. } else {
  254. switch (e_aci) {
  255. case AC0_BE:
  256. acm_ctrl &= (~AcmHw_BeqEn);
  257. break;
  258. case AC2_VI:
  259. acm_ctrl &= (~AcmHw_ViqEn);
  260. break;
  261. case AC3_VO:
  262. acm_ctrl &= (~AcmHw_BeqEn);
  263. break;
  264. default:
  265. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  266. "switch case not processed\n");
  267. break;
  268. }
  269. }
  270. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  271. "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
  272. rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
  273. break;
  274. }
  275. case HW_VAR_RCR:{
  276. rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
  277. rtlpci->receive_config = ((u32 *) (val))[0];
  278. break;
  279. }
  280. case HW_VAR_RETRY_LIMIT:{
  281. u8 retry_limit = ((u8 *) (val))[0];
  282. rtl_write_word(rtlpriv, RETRY_LIMIT,
  283. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  284. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  285. break;
  286. }
  287. case HW_VAR_DUAL_TSF_RST: {
  288. break;
  289. }
  290. case HW_VAR_EFUSE_BYTES: {
  291. rtlefuse->efuse_usedbytes = *((u16 *) val);
  292. break;
  293. }
  294. case HW_VAR_EFUSE_USAGE: {
  295. rtlefuse->efuse_usedpercentage = *((u8 *) val);
  296. break;
  297. }
  298. case HW_VAR_IO_CMD: {
  299. break;
  300. }
  301. case HW_VAR_WPA_CONFIG: {
  302. rtl_write_byte(rtlpriv, REG_SECR, *((u8 *) val));
  303. break;
  304. }
  305. case HW_VAR_SET_RPWM:{
  306. break;
  307. }
  308. case HW_VAR_H2C_FW_PWRMODE:{
  309. break;
  310. }
  311. case HW_VAR_FW_PSMODE_STATUS: {
  312. ppsc->fw_current_inpsmode = *((bool *) val);
  313. break;
  314. }
  315. case HW_VAR_H2C_FW_JOINBSSRPT:{
  316. break;
  317. }
  318. case HW_VAR_AID:{
  319. break;
  320. }
  321. case HW_VAR_CORRECT_TSF:{
  322. break;
  323. }
  324. case HW_VAR_MRC: {
  325. bool bmrc_toset = *((bool *)val);
  326. u8 u1bdata = 0;
  327. if (bmrc_toset) {
  328. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  329. MASKBYTE0, 0x33);
  330. u1bdata = (u8)rtl_get_bbreg(hw,
  331. ROFDM1_TRXPATHENABLE,
  332. MASKBYTE0);
  333. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  334. MASKBYTE0,
  335. ((u1bdata & 0xf0) | 0x03));
  336. u1bdata = (u8)rtl_get_bbreg(hw,
  337. ROFDM0_TRXPATHENABLE,
  338. MASKBYTE1);
  339. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  340. MASKBYTE1,
  341. (u1bdata | 0x04));
  342. /* Update current settings. */
  343. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  344. } else {
  345. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  346. MASKBYTE0, 0x13);
  347. u1bdata = (u8)rtl_get_bbreg(hw,
  348. ROFDM1_TRXPATHENABLE,
  349. MASKBYTE0);
  350. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  351. MASKBYTE0,
  352. ((u1bdata & 0xf0) | 0x01));
  353. u1bdata = (u8)rtl_get_bbreg(hw,
  354. ROFDM0_TRXPATHENABLE,
  355. MASKBYTE1);
  356. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  357. MASKBYTE1, (u1bdata & 0xfb));
  358. /* Update current settings. */
  359. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  360. }
  361. break;
  362. }
  363. default:
  364. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  365. "switch case not processed\n");
  366. break;
  367. }
  368. }
  369. void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
  370. {
  371. struct rtl_priv *rtlpriv = rtl_priv(hw);
  372. u8 sec_reg_value = 0x0;
  373. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  374. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  375. rtlpriv->sec.pairwise_enc_algorithm,
  376. rtlpriv->sec.group_enc_algorithm);
  377. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  378. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  379. "not open hw encryption\n");
  380. return;
  381. }
  382. sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
  383. if (rtlpriv->sec.use_defaultkey) {
  384. sec_reg_value |= SCR_TXUSEDK;
  385. sec_reg_value |= SCR_RXUSEDK;
  386. }
  387. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
  388. sec_reg_value);
  389. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  390. }
  391. static u8 _rtl92ce_halset_sysclk(struct ieee80211_hw *hw, u8 data)
  392. {
  393. struct rtl_priv *rtlpriv = rtl_priv(hw);
  394. u8 waitcount = 100;
  395. bool bresult = false;
  396. u8 tmpvalue;
  397. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  398. /* Wait the MAC synchronized. */
  399. udelay(400);
  400. /* Check if it is set ready. */
  401. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  402. bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
  403. if ((data & (BIT(6) | BIT(7))) == false) {
  404. waitcount = 100;
  405. tmpvalue = 0;
  406. while (1) {
  407. waitcount--;
  408. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  409. if ((tmpvalue & BIT(6)))
  410. break;
  411. pr_err("wait for BIT(6) return value %x\n", tmpvalue);
  412. if (waitcount == 0)
  413. break;
  414. udelay(10);
  415. }
  416. if (waitcount == 0)
  417. bresult = false;
  418. else
  419. bresult = true;
  420. }
  421. return bresult;
  422. }
  423. void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
  424. {
  425. struct rtl_priv *rtlpriv = rtl_priv(hw);
  426. u8 u1tmp;
  427. /* The following config GPIO function */
  428. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  429. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  430. /* config GPIO3 to input */
  431. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  432. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  433. }
  434. static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
  435. {
  436. struct rtl_priv *rtlpriv = rtl_priv(hw);
  437. u8 u1tmp;
  438. u8 retval = ERFON;
  439. /* The following config GPIO function */
  440. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  441. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  442. /* config GPIO3 to input */
  443. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  444. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  445. /* On some of the platform, driver cannot read correct
  446. * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
  447. mdelay(10);
  448. /* check GPIO3 */
  449. u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
  450. retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
  451. return retval;
  452. }
  453. static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
  454. {
  455. struct rtl_priv *rtlpriv = rtl_priv(hw);
  456. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  457. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  458. u8 i;
  459. u8 tmpu1b;
  460. u16 tmpu2b;
  461. u8 pollingcnt = 20;
  462. if (rtlpci->first_init) {
  463. /* Reset PCIE Digital */
  464. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  465. tmpu1b &= 0xFE;
  466. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  467. udelay(1);
  468. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
  469. }
  470. /* Switch to SW IO control */
  471. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  472. if (tmpu1b & BIT(7)) {
  473. tmpu1b &= ~(BIT(6) | BIT(7));
  474. /* Set failed, return to prevent hang. */
  475. if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
  476. return;
  477. }
  478. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  479. udelay(50);
  480. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  481. udelay(50);
  482. /* Clear FW RPWM for FW control LPS.*/
  483. rtl_write_byte(rtlpriv, RPWM, 0x0);
  484. /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
  485. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  486. tmpu1b &= 0x73;
  487. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  488. /* wait for BIT 10/11/15 to pull high automatically!! */
  489. mdelay(1);
  490. rtl_write_byte(rtlpriv, CMDR, 0);
  491. rtl_write_byte(rtlpriv, TCR, 0);
  492. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  493. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  494. tmpu1b |= 0x08;
  495. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  496. tmpu1b &= ~(BIT(3));
  497. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  498. /* Enable AFE clock source */
  499. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  500. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  501. /* Delay 1.5ms */
  502. mdelay(2);
  503. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  504. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  505. /* Enable AFE Macro Block's Bandgap */
  506. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  507. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  508. mdelay(1);
  509. /* Enable AFE Mbias */
  510. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  511. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  512. mdelay(1);
  513. /* Enable LDOA15 block */
  514. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  515. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  516. /* Set Digital Vdd to Retention isolation Path. */
  517. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  518. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  519. /* For warm reboot NIC disappera bug. */
  520. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  521. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
  522. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
  523. /* Enable AFE PLL Macro Block */
  524. /* We need to delay 100u before enabling PLL. */
  525. udelay(200);
  526. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  527. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  528. /* for divider reset */
  529. udelay(100);
  530. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
  531. BIT(4) | BIT(6)));
  532. udelay(10);
  533. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  534. udelay(10);
  535. /* Enable MAC 80MHZ clock */
  536. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  537. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  538. mdelay(1);
  539. /* Release isolation AFE PLL & MD */
  540. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
  541. /* Enable MAC clock */
  542. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  543. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  544. /* Enable Core digital and enable IOREG R/W */
  545. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  546. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
  547. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  548. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
  549. /* enable REG_EN */
  550. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  551. /* Switch the control path. */
  552. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  553. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  554. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  555. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  556. if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
  557. return; /* Set failed, return to prevent hang. */
  558. rtl_write_word(rtlpriv, CMDR, 0x07FC);
  559. /* MH We must enable the section of code to prevent load IMEM fail. */
  560. /* Load MAC register from WMAc temporarily We simulate macreg. */
  561. /* txt HW will provide MAC txt later */
  562. rtl_write_byte(rtlpriv, 0x6, 0x30);
  563. rtl_write_byte(rtlpriv, 0x49, 0xf0);
  564. rtl_write_byte(rtlpriv, 0x4b, 0x81);
  565. rtl_write_byte(rtlpriv, 0xb5, 0x21);
  566. rtl_write_byte(rtlpriv, 0xdc, 0xff);
  567. rtl_write_byte(rtlpriv, 0xdd, 0xff);
  568. rtl_write_byte(rtlpriv, 0xde, 0xff);
  569. rtl_write_byte(rtlpriv, 0xdf, 0xff);
  570. rtl_write_byte(rtlpriv, 0x11a, 0x00);
  571. rtl_write_byte(rtlpriv, 0x11b, 0x00);
  572. for (i = 0; i < 32; i++)
  573. rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
  574. rtl_write_byte(rtlpriv, 0x236, 0xff);
  575. rtl_write_byte(rtlpriv, 0x503, 0x22);
  576. if (ppsc->support_aspm && !ppsc->support_backdoor)
  577. rtl_write_byte(rtlpriv, 0x560, 0x40);
  578. else
  579. rtl_write_byte(rtlpriv, 0x560, 0x00);
  580. rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
  581. /* Set RX Desc Address */
  582. rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
  583. rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
  584. /* Set TX Desc Address */
  585. rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
  586. rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
  587. rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
  588. rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
  589. rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
  590. rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
  591. rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
  592. rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
  593. rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
  594. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  595. /* To make sure that TxDMA can ready to download FW. */
  596. /* We should reset TxDMA if IMEM RPT was not ready. */
  597. do {
  598. tmpu1b = rtl_read_byte(rtlpriv, TCR);
  599. if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
  600. break;
  601. udelay(5);
  602. } while (pollingcnt--);
  603. if (pollingcnt <= 0) {
  604. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  605. "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
  606. tmpu1b);
  607. tmpu1b = rtl_read_byte(rtlpriv, CMDR);
  608. rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
  609. udelay(2);
  610. /* Reset TxDMA */
  611. rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
  612. }
  613. /* After MACIO reset,we must refresh LED state. */
  614. if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
  615. (ppsc->rfoff_reason == 0)) {
  616. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  617. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  618. enum rf_pwrstate rfpwr_state_toset;
  619. rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
  620. if (rfpwr_state_toset == ERFON)
  621. rtl92se_sw_led_on(hw, pLed0);
  622. }
  623. }
  624. static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
  625. {
  626. struct rtl_priv *rtlpriv = rtl_priv(hw);
  627. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  628. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  629. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  630. u8 i;
  631. u16 tmpu2b;
  632. /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
  633. /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
  634. /* Turn on 0x40 Command register */
  635. rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
  636. SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
  637. RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
  638. /* Set TCR TX DMA pre 2 FULL enable bit */
  639. rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
  640. TXDMAPRE2FULL);
  641. /* Set RCR */
  642. rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
  643. /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
  644. /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
  645. /* Set CCK/OFDM SIFS */
  646. /* CCK SIFS shall always be 10us. */
  647. rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
  648. rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
  649. /* Set AckTimeout */
  650. rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
  651. /* Beacon related */
  652. rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
  653. rtl_write_word(rtlpriv, ATIMWND, 2);
  654. /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
  655. /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
  656. /* Firmware allocate now, associate with FW internal setting.!!! */
  657. /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
  658. /* 5.3 Set driver info, we only accept PHY status now. */
  659. /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
  660. rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
  661. /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
  662. /* Set RRSR to all legacy rate and HT rate
  663. * CCK rate is supported by default.
  664. * CCK rate will be filtered out only when associated
  665. * AP does not support it.
  666. * Only enable ACK rate to OFDM 24M
  667. * Disable RRSR for CCK rate in A-Cut */
  668. if (rtlhal->version == VERSION_8192S_ACUT)
  669. rtl_write_byte(rtlpriv, RRSR, 0xf0);
  670. else if (rtlhal->version == VERSION_8192S_BCUT)
  671. rtl_write_byte(rtlpriv, RRSR, 0xff);
  672. rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
  673. rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
  674. /* A-Cut IC do not support CCK rate. We forbid ARFR to */
  675. /* fallback to CCK rate */
  676. for (i = 0; i < 8; i++) {
  677. /*Disable RRSR for CCK rate in A-Cut */
  678. if (rtlhal->version == VERSION_8192S_ACUT)
  679. rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
  680. }
  681. /* Different rate use different AMPDU size */
  682. /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
  683. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
  684. /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
  685. rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
  686. /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
  687. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
  688. /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
  689. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
  690. /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
  691. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
  692. /* Set Data / Response auto rate fallack retry count */
  693. rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
  694. rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
  695. rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
  696. rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
  697. /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
  698. /* Set all rate to support SG */
  699. rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
  700. /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
  701. /* Set NAV protection length */
  702. rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
  703. /* CF-END Threshold */
  704. rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
  705. /* Set AMPDU minimum space */
  706. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
  707. /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
  708. rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
  709. /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
  710. /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
  711. /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
  712. /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
  713. /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
  714. /* 14. Set driver info, we only accept PHY status now. */
  715. rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
  716. /* 15. For EEPROM R/W Workaround */
  717. /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
  718. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
  719. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
  720. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  721. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
  722. /* 17. For EFUSE */
  723. /* We may R/W EFUSE in EEPROM mode */
  724. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  725. u8 tempval;
  726. tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
  727. tempval &= 0xFE;
  728. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
  729. /* Change Program timing */
  730. rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
  731. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
  732. }
  733. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
  734. }
  735. static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
  736. {
  737. struct rtl_priv *rtlpriv = rtl_priv(hw);
  738. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  739. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  740. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  741. u8 reg_bw_opmode = 0;
  742. u32 reg_rrsr = 0;
  743. u8 regtmp = 0;
  744. reg_bw_opmode = BW_OPMODE_20MHZ;
  745. reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  746. regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
  747. reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
  748. rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
  749. rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
  750. /* Set Retry Limit here */
  751. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
  752. (u8 *)(&rtlpci->shortretry_limit));
  753. rtl_write_byte(rtlpriv, MLT, 0x8f);
  754. /* For Min Spacing configuration. */
  755. switch (rtlphy->rf_type) {
  756. case RF_1T2R:
  757. case RF_1T1R:
  758. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
  759. break;
  760. case RF_2T2R:
  761. case RF_2T2R_GREEN:
  762. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
  763. break;
  764. }
  765. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
  766. }
  767. int rtl92se_hw_init(struct ieee80211_hw *hw)
  768. {
  769. struct rtl_priv *rtlpriv = rtl_priv(hw);
  770. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  771. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  772. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  773. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  774. u8 tmp_byte = 0;
  775. bool rtstatus = true;
  776. u8 tmp_u1b;
  777. int err = false;
  778. u8 i;
  779. int wdcapra_add[] = {
  780. EDCAPARA_BE, EDCAPARA_BK,
  781. EDCAPARA_VI, EDCAPARA_VO};
  782. u8 secr_value = 0x0;
  783. rtlpci->being_init_adapter = true;
  784. rtlpriv->intf_ops->disable_aspm(hw);
  785. /* 1. MAC Initialize */
  786. /* Before FW download, we have to set some MAC register */
  787. _rtl92se_macconfig_before_fwdownload(hw);
  788. rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
  789. PMC_FSM) >> 16) & 0xF);
  790. rtl8192se_gpiobit3_cfg_inputmode(hw);
  791. /* 2. download firmware */
  792. rtstatus = rtl92s_download_fw(hw);
  793. if (!rtstatus) {
  794. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  795. "Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n");
  796. rtlhal->fw_ready = false;
  797. } else {
  798. rtlhal->fw_ready = true;
  799. }
  800. /* After FW download, we have to reset MAC register */
  801. _rtl92se_macconfig_after_fwdownload(hw);
  802. /*Retrieve default FW Cmd IO map. */
  803. rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
  804. rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
  805. /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
  806. if (rtl92s_phy_mac_config(hw) != true) {
  807. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
  808. return rtstatus;
  809. }
  810. /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
  811. /* We must set flag avoid BB/RF config period later!! */
  812. rtl_write_dword(rtlpriv, CMDR, 0x37FC);
  813. /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
  814. if (rtl92s_phy_bb_config(hw) != true) {
  815. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
  816. return rtstatus;
  817. }
  818. /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
  819. /* Before initalizing RF. We can not use FW to do RF-R/W. */
  820. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  821. /* RF Power Save */
  822. #if 0
  823. /* H/W or S/W RF OFF before sleep. */
  824. if (rtlpriv->psc.rfoff_reason > RF_CHANGE_BY_PS) {
  825. u32 rfoffreason = rtlpriv->psc.rfoff_reason;
  826. rtlpriv->psc.rfoff_reason = RF_CHANGE_BY_INIT;
  827. rtlpriv->psc.rfpwr_state = ERFON;
  828. /* FIXME: check spinlocks if this block is uncommented */
  829. rtl_ps_set_rf_state(hw, ERFOFF, rfoffreason);
  830. } else {
  831. /* gpio radio on/off is out of adapter start */
  832. if (rtlpriv->psc.hwradiooff == false) {
  833. rtlpriv->psc.rfpwr_state = ERFON;
  834. rtlpriv->psc.rfoff_reason = 0;
  835. }
  836. }
  837. #endif
  838. /* Before RF-R/W we must execute the IO from Scott's suggestion. */
  839. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
  840. if (rtlhal->version == VERSION_8192S_ACUT)
  841. rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
  842. else
  843. rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
  844. if (rtl92s_phy_rf_config(hw) != true) {
  845. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
  846. return rtstatus;
  847. }
  848. /* After read predefined TXT, we must set BB/MAC/RF
  849. * register as our requirement */
  850. rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
  851. (enum radio_path)0,
  852. RF_CHNLBW,
  853. RFREG_OFFSET_MASK);
  854. rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
  855. (enum radio_path)1,
  856. RF_CHNLBW,
  857. RFREG_OFFSET_MASK);
  858. /*---- Set CCK and OFDM Block "ON"----*/
  859. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  860. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  861. /*3 Set Hardware(Do nothing now) */
  862. _rtl92se_hw_configure(hw);
  863. /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
  864. /* TX power index for different rate set. */
  865. /* Get original hw reg values */
  866. rtl92s_phy_get_hw_reg_originalvalue(hw);
  867. /* Write correct tx power index */
  868. rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
  869. /* We must set MAC address after firmware download. */
  870. for (i = 0; i < 6; i++)
  871. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  872. /* EEPROM R/W workaround */
  873. tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
  874. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
  875. rtl_write_byte(rtlpriv, 0x4d, 0x0);
  876. if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
  877. tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
  878. tmp_byte = tmp_byte | BIT(5);
  879. rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
  880. rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
  881. }
  882. /* We enable high power and RA related mechanism after NIC
  883. * initialized. */
  884. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
  885. /* Add to prevent ASPM bug. */
  886. /* Always enable hst and NIC clock request. */
  887. rtl92s_phy_switch_ephy_parameter(hw);
  888. /* Security related
  889. * 1. Clear all H/W keys.
  890. * 2. Enable H/W encryption/decryption. */
  891. rtl_cam_reset_all_entry(hw);
  892. secr_value |= SCR_TXENCENABLE;
  893. secr_value |= SCR_RXENCENABLE;
  894. secr_value |= SCR_NOSKMC;
  895. rtl_write_byte(rtlpriv, REG_SECR, secr_value);
  896. for (i = 0; i < 4; i++)
  897. rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
  898. if (rtlphy->rf_type == RF_1T2R) {
  899. bool mrc2set = true;
  900. /* Turn on B-Path */
  901. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
  902. }
  903. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
  904. rtl92s_dm_init(hw);
  905. rtlpci->being_init_adapter = false;
  906. return err;
  907. }
  908. void rtl92se_set_mac_addr(struct rtl_io *io, const u8 * addr)
  909. {
  910. }
  911. void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  912. {
  913. struct rtl_priv *rtlpriv = rtl_priv(hw);
  914. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  915. u32 reg_rcr = rtlpci->receive_config;
  916. if (rtlpriv->psc.rfpwr_state != ERFON)
  917. return;
  918. if (check_bssid) {
  919. reg_rcr |= (RCR_CBSSID);
  920. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  921. } else if (check_bssid == false) {
  922. reg_rcr &= (~RCR_CBSSID);
  923. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  924. }
  925. }
  926. static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
  927. enum nl80211_iftype type)
  928. {
  929. struct rtl_priv *rtlpriv = rtl_priv(hw);
  930. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  931. u32 temp;
  932. bt_msr &= ~MSR_LINK_MASK;
  933. switch (type) {
  934. case NL80211_IFTYPE_UNSPECIFIED:
  935. bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
  936. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  937. "Set Network type to NO LINK!\n");
  938. break;
  939. case NL80211_IFTYPE_ADHOC:
  940. bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
  941. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  942. "Set Network type to Ad Hoc!\n");
  943. break;
  944. case NL80211_IFTYPE_STATION:
  945. bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
  946. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  947. "Set Network type to STA!\n");
  948. break;
  949. case NL80211_IFTYPE_AP:
  950. bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
  951. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  952. "Set Network type to AP!\n");
  953. break;
  954. default:
  955. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  956. "Network type %d not supported!\n", type);
  957. return 1;
  958. break;
  959. }
  960. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  961. temp = rtl_read_dword(rtlpriv, TCR);
  962. rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
  963. rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
  964. return 0;
  965. }
  966. /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
  967. int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  968. {
  969. struct rtl_priv *rtlpriv = rtl_priv(hw);
  970. if (_rtl92se_set_media_status(hw, type))
  971. return -EOPNOTSUPP;
  972. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  973. if (type != NL80211_IFTYPE_AP)
  974. rtl92se_set_check_bssid(hw, true);
  975. } else {
  976. rtl92se_set_check_bssid(hw, false);
  977. }
  978. return 0;
  979. }
  980. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  981. void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
  982. {
  983. struct rtl_priv *rtlpriv = rtl_priv(hw);
  984. rtl92s_dm_init_edca_turbo(hw);
  985. switch (aci) {
  986. case AC1_BK:
  987. rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
  988. break;
  989. case AC0_BE:
  990. /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
  991. break;
  992. case AC2_VI:
  993. rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
  994. break;
  995. case AC3_VO:
  996. rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
  997. break;
  998. default:
  999. RT_ASSERT(false, ("invalid aci: %d !\n", aci));
  1000. break;
  1001. }
  1002. }
  1003. void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
  1004. {
  1005. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1006. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1007. rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
  1008. /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
  1009. rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
  1010. }
  1011. void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
  1012. {
  1013. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1014. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1015. rtl_write_dword(rtlpriv, INTA_MASK, 0);
  1016. rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
  1017. synchronize_irq(rtlpci->pdev->irq);
  1018. }
  1019. static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
  1020. {
  1021. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1022. u8 waitcnt = 100;
  1023. bool result = false;
  1024. u8 tmp;
  1025. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  1026. /* Wait the MAC synchronized. */
  1027. udelay(400);
  1028. /* Check if it is set ready. */
  1029. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1030. result = ((tmp & BIT(7)) == (data & BIT(7)));
  1031. if ((data & (BIT(6) | BIT(7))) == false) {
  1032. waitcnt = 100;
  1033. tmp = 0;
  1034. while (1) {
  1035. waitcnt--;
  1036. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1037. if ((tmp & BIT(6)))
  1038. break;
  1039. pr_err("wait for BIT(6) return value %x\n", tmp);
  1040. if (waitcnt == 0)
  1041. break;
  1042. udelay(10);
  1043. }
  1044. if (waitcnt == 0)
  1045. result = false;
  1046. else
  1047. result = true;
  1048. }
  1049. return result;
  1050. }
  1051. static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
  1052. {
  1053. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1054. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1055. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1056. u8 u1btmp;
  1057. if (rtlhal->driver_going2unload)
  1058. rtl_write_byte(rtlpriv, 0x560, 0x0);
  1059. /* Power save for BB/RF */
  1060. u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
  1061. u1btmp |= BIT(0);
  1062. rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
  1063. rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
  1064. rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
  1065. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1066. udelay(100);
  1067. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1068. rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
  1069. udelay(10);
  1070. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1071. udelay(10);
  1072. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1073. udelay(10);
  1074. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1075. rtl_write_word(rtlpriv, CMDR, 0x0000);
  1076. if (rtlhal->driver_going2unload) {
  1077. u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
  1078. u1btmp &= ~(BIT(0));
  1079. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
  1080. }
  1081. u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1082. /* Add description. After switch control path. register
  1083. * after page1 will be invisible. We can not do any IO
  1084. * for register>0x40. After resume&MACIO reset, we need
  1085. * to remember previous reg content. */
  1086. if (u1btmp & BIT(7)) {
  1087. u1btmp &= ~(BIT(6) | BIT(7));
  1088. if (!_rtl92s_set_sysclk(hw, u1btmp)) {
  1089. pr_err("Switch ctrl path fail\n");
  1090. return;
  1091. }
  1092. }
  1093. /* Power save for MAC */
  1094. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
  1095. !rtlhal->driver_going2unload) {
  1096. /* enable LED function */
  1097. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1098. /* SW/HW radio off or halt adapter!! For example S3/S4 */
  1099. } else {
  1100. /* LED function disable. Power range is about 8mA now. */
  1101. /* if write 0xF1 disconnet_pci power
  1102. * ifconfig wlan0 down power are both high 35:70 */
  1103. /* if write oxF9 disconnet_pci power
  1104. * ifconfig wlan0 down power are both low 12:45*/
  1105. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1106. }
  1107. rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
  1108. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
  1109. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
  1110. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1111. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
  1112. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1113. }
  1114. static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
  1115. {
  1116. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1117. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1118. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1119. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  1120. if (rtlpci->up_first_time == 1)
  1121. return;
  1122. if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
  1123. rtl92se_sw_led_on(hw, pLed0);
  1124. else
  1125. rtl92se_sw_led_off(hw, pLed0);
  1126. }
  1127. static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
  1128. {
  1129. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1130. u16 tmpu2b;
  1131. u8 tmpu1b;
  1132. rtlpriv->psc.pwrdomain_protect = true;
  1133. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1134. if (tmpu1b & BIT(7)) {
  1135. tmpu1b &= ~(BIT(6) | BIT(7));
  1136. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1137. rtlpriv->psc.pwrdomain_protect = false;
  1138. return;
  1139. }
  1140. }
  1141. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  1142. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1143. /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
  1144. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  1145. /* If IPS we need to turn LED on. So we not
  1146. * not disable BIT 3/7 of reg3. */
  1147. if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
  1148. tmpu1b &= 0xFB;
  1149. else
  1150. tmpu1b &= 0x73;
  1151. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  1152. /* wait for BIT 10/11/15 to pull high automatically!! */
  1153. mdelay(1);
  1154. rtl_write_byte(rtlpriv, CMDR, 0);
  1155. rtl_write_byte(rtlpriv, TCR, 0);
  1156. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  1157. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  1158. tmpu1b |= 0x08;
  1159. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1160. tmpu1b &= ~(BIT(3));
  1161. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1162. /* Enable AFE clock source */
  1163. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  1164. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  1165. /* Delay 1.5ms */
  1166. udelay(1500);
  1167. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  1168. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  1169. /* Enable AFE Macro Block's Bandgap */
  1170. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1171. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  1172. mdelay(1);
  1173. /* Enable AFE Mbias */
  1174. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1175. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  1176. mdelay(1);
  1177. /* Enable LDOA15 block */
  1178. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  1179. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  1180. /* Set Digital Vdd to Retention isolation Path. */
  1181. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  1182. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  1183. /* For warm reboot NIC disappera bug. */
  1184. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1185. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
  1186. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
  1187. /* Enable AFE PLL Macro Block */
  1188. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  1189. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  1190. /* Enable MAC 80MHZ clock */
  1191. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  1192. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  1193. mdelay(1);
  1194. /* Release isolation AFE PLL & MD */
  1195. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
  1196. /* Enable MAC clock */
  1197. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1198. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  1199. /* Enable Core digital and enable IOREG R/W */
  1200. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1201. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
  1202. /* enable REG_EN */
  1203. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  1204. /* Switch the control path. */
  1205. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1206. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  1207. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1208. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  1209. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1210. rtlpriv->psc.pwrdomain_protect = false;
  1211. return;
  1212. }
  1213. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1214. /* After MACIO reset,we must refresh LED state. */
  1215. _rtl92se_gen_refreshledstate(hw);
  1216. rtlpriv->psc.pwrdomain_protect = false;
  1217. }
  1218. void rtl92se_card_disable(struct ieee80211_hw *hw)
  1219. {
  1220. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1221. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1222. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1223. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1224. enum nl80211_iftype opmode;
  1225. u8 wait = 30;
  1226. rtlpriv->intf_ops->enable_aspm(hw);
  1227. if (rtlpci->driver_is_goingto_unload ||
  1228. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1229. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1230. /* we should chnge GPIO to input mode
  1231. * this will drop away current about 25mA*/
  1232. rtl8192se_gpiobit3_cfg_inputmode(hw);
  1233. /* this is very important for ips power save */
  1234. while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
  1235. if (rtlpriv->psc.pwrdomain_protect)
  1236. mdelay(20);
  1237. else
  1238. break;
  1239. }
  1240. mac->link_state = MAC80211_NOLINK;
  1241. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1242. _rtl92se_set_media_status(hw, opmode);
  1243. _rtl92s_phy_set_rfhalt(hw);
  1244. udelay(100);
  1245. }
  1246. void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
  1247. u32 *p_intb)
  1248. {
  1249. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1250. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1251. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1252. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1253. *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
  1254. rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1255. }
  1256. void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
  1257. {
  1258. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1259. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1260. u16 bcntime_cfg = 0;
  1261. u16 bcn_cw = 6, bcn_ifs = 0xf;
  1262. u16 atim_window = 2;
  1263. /* ATIM Window (in unit of TU). */
  1264. rtl_write_word(rtlpriv, ATIMWND, atim_window);
  1265. /* Beacon interval (in unit of TU). */
  1266. rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
  1267. /* DrvErlyInt (in unit of TU). (Time to send
  1268. * interrupt to notify driver to change
  1269. * beacon content) */
  1270. rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
  1271. /* BcnDMATIM(in unit of us). Indicates the
  1272. * time before TBTT to perform beacon queue DMA */
  1273. rtl_write_word(rtlpriv, BCN_DMATIME, 256);
  1274. /* Force beacon frame transmission even
  1275. * after receiving beacon frame from
  1276. * other ad hoc STA */
  1277. rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
  1278. /* Beacon Time Configuration */
  1279. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1280. bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
  1281. /* TODO: bcn_ifs may required to be changed on ASIC */
  1282. bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
  1283. /*for beacon changed */
  1284. rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
  1285. }
  1286. void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
  1287. {
  1288. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1289. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1290. u16 bcn_interval = mac->beacon_interval;
  1291. /* Beacon interval (in unit of TU). */
  1292. rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
  1293. /* 2008.10.24 added by tynli for beacon changed. */
  1294. rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
  1295. }
  1296. void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
  1297. u32 add_msr, u32 rm_msr)
  1298. {
  1299. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1300. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1301. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1302. add_msr, rm_msr);
  1303. if (add_msr)
  1304. rtlpci->irq_mask[0] |= add_msr;
  1305. if (rm_msr)
  1306. rtlpci->irq_mask[0] &= (~rm_msr);
  1307. rtl92se_disable_interrupt(hw);
  1308. rtl92se_enable_interrupt(hw);
  1309. }
  1310. static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
  1311. {
  1312. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1313. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1314. u8 efuse_id;
  1315. rtlhal->ic_class = IC_INFERIORITY_A;
  1316. /* Only retrieving while using EFUSE. */
  1317. if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
  1318. !rtlefuse->autoload_failflag) {
  1319. efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
  1320. if (efuse_id == 0xfe)
  1321. rtlhal->ic_class = IC_INFERIORITY_B;
  1322. }
  1323. }
  1324. static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
  1325. {
  1326. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1327. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1328. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1329. u16 i, usvalue;
  1330. u16 eeprom_id;
  1331. u8 tempval;
  1332. u8 hwinfo[HWSET_MAX_SIZE_92S];
  1333. u8 rf_path, index;
  1334. if (rtlefuse->epromtype == EEPROM_93C46) {
  1335. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1336. "RTL819X Not boot from eeprom, check it !!\n");
  1337. } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1338. rtl_efuse_shadow_map_update(hw);
  1339. memcpy((void *)hwinfo, (void *)
  1340. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1341. HWSET_MAX_SIZE_92S);
  1342. }
  1343. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1344. hwinfo, HWSET_MAX_SIZE_92S);
  1345. eeprom_id = *((u16 *)&hwinfo[0]);
  1346. if (eeprom_id != RTL8190_EEPROM_ID) {
  1347. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1348. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1349. rtlefuse->autoload_failflag = true;
  1350. } else {
  1351. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1352. rtlefuse->autoload_failflag = false;
  1353. }
  1354. if (rtlefuse->autoload_failflag)
  1355. return;
  1356. _rtl8192se_get_IC_Inferiority(hw);
  1357. /* Read IC Version && Channel Plan */
  1358. /* VID, DID SE 0xA-D */
  1359. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1360. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1361. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1362. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1363. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1364. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1365. "EEPROMId = 0x%4x\n", eeprom_id);
  1366. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1367. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1368. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1369. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1370. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1371. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1372. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1373. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1374. for (i = 0; i < 6; i += 2) {
  1375. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1376. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1377. }
  1378. for (i = 0; i < 6; i++)
  1379. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  1380. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1381. /* Get Tx Power Level by Channel */
  1382. /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
  1383. /* 92S suupport RF A & B */
  1384. for (rf_path = 0; rf_path < 2; rf_path++) {
  1385. for (i = 0; i < 3; i++) {
  1386. /* Read CCK RF A & B Tx power */
  1387. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1388. hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
  1389. /* Read OFDM RF A & B Tx power for 1T */
  1390. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1391. hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
  1392. /* Read OFDM RF A & B Tx power for 2T */
  1393. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][i]
  1394. = hwinfo[EEPROM_TXPOWERBASE + 12 +
  1395. rf_path * 3 + i];
  1396. }
  1397. }
  1398. for (rf_path = 0; rf_path < 2; rf_path++)
  1399. for (i = 0; i < 3; i++)
  1400. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1401. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1402. rf_path, i,
  1403. rtlefuse->eeprom_chnlarea_txpwr_cck
  1404. [rf_path][i]);
  1405. for (rf_path = 0; rf_path < 2; rf_path++)
  1406. for (i = 0; i < 3; i++)
  1407. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1408. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1409. rf_path, i,
  1410. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1411. [rf_path][i]);
  1412. for (rf_path = 0; rf_path < 2; rf_path++)
  1413. for (i = 0; i < 3; i++)
  1414. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1415. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1416. rf_path, i,
  1417. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
  1418. [rf_path][i]);
  1419. for (rf_path = 0; rf_path < 2; rf_path++) {
  1420. /* Assign dedicated channel tx power */
  1421. for (i = 0; i < 14; i++) {
  1422. /* channel 1~3 use the same Tx Power Level. */
  1423. if (i < 3)
  1424. index = 0;
  1425. /* Channel 4-8 */
  1426. else if (i < 8)
  1427. index = 1;
  1428. /* Channel 9-14 */
  1429. else
  1430. index = 2;
  1431. /* Record A & B CCK /OFDM - 1T/2T Channel area
  1432. * tx power */
  1433. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1434. rtlefuse->eeprom_chnlarea_txpwr_cck
  1435. [rf_path][index];
  1436. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1437. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1438. [rf_path][index];
  1439. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1440. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
  1441. [rf_path][index];
  1442. }
  1443. for (i = 0; i < 14; i++) {
  1444. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1445. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1446. rf_path, i,
  1447. rtlefuse->txpwrlevel_cck[rf_path][i],
  1448. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1449. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1450. }
  1451. }
  1452. for (rf_path = 0; rf_path < 2; rf_path++) {
  1453. for (i = 0; i < 3; i++) {
  1454. /* Read Power diff limit. */
  1455. rtlefuse->eeprom_pwrgroup[rf_path][i] =
  1456. hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
  1457. }
  1458. }
  1459. for (rf_path = 0; rf_path < 2; rf_path++) {
  1460. /* Fill Pwr group */
  1461. for (i = 0; i < 14; i++) {
  1462. /* Chanel 1-3 */
  1463. if (i < 3)
  1464. index = 0;
  1465. /* Channel 4-8 */
  1466. else if (i < 8)
  1467. index = 1;
  1468. /* Channel 9-13 */
  1469. else
  1470. index = 2;
  1471. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1472. (rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1473. 0xf);
  1474. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1475. ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1476. 0xf0) >> 4);
  1477. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1478. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1479. rf_path, i,
  1480. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1481. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1482. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1483. rf_path, i,
  1484. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1485. }
  1486. }
  1487. for (i = 0; i < 14; i++) {
  1488. /* Read tx power difference between HT OFDM 20/40 MHZ */
  1489. /* channel 1-3 */
  1490. if (i < 3)
  1491. index = 0;
  1492. /* Channel 4-8 */
  1493. else if (i < 8)
  1494. index = 1;
  1495. /* Channel 9-14 */
  1496. else
  1497. index = 2;
  1498. tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_HT20_DIFF +
  1499. index]) & 0xff;
  1500. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1501. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1502. ((tempval >> 4) & 0xF);
  1503. /* Read OFDM<->HT tx power diff */
  1504. /* Channel 1-3 */
  1505. if (i < 3)
  1506. index = 0;
  1507. /* Channel 4-8 */
  1508. else if (i < 8)
  1509. index = 0x11;
  1510. /* Channel 9-14 */
  1511. else
  1512. index = 1;
  1513. tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index])
  1514. & 0xff;
  1515. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
  1516. (tempval & 0xF);
  1517. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1518. ((tempval >> 4) & 0xF);
  1519. tempval = (*(u8 *)&hwinfo[TX_PWR_SAFETY_CHK]);
  1520. rtlefuse->txpwr_safetyflag = (tempval & 0x01);
  1521. }
  1522. rtlefuse->eeprom_regulatory = 0;
  1523. if (rtlefuse->eeprom_version >= 2) {
  1524. /* BIT(0)~2 */
  1525. if (rtlefuse->eeprom_version >= 4)
  1526. rtlefuse->eeprom_regulatory =
  1527. (hwinfo[EEPROM_REGULATORY] & 0x7);
  1528. else /* BIT(0) */
  1529. rtlefuse->eeprom_regulatory =
  1530. (hwinfo[EEPROM_REGULATORY] & 0x1);
  1531. }
  1532. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1533. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1534. for (i = 0; i < 14; i++)
  1535. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1536. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1537. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1538. for (i = 0; i < 14; i++)
  1539. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1540. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1541. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1542. for (i = 0; i < 14; i++)
  1543. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1544. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1545. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1546. for (i = 0; i < 14; i++)
  1547. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1548. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1549. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1550. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1551. "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
  1552. /* Read RF-indication and Tx Power gain
  1553. * index diff of legacy to HT OFDM rate. */
  1554. tempval = (*(u8 *)&hwinfo[EEPROM_RFIND_POWERDIFF]) & 0xff;
  1555. rtlefuse->eeprom_txpowerdiff = tempval;
  1556. rtlefuse->legacy_httxpowerdiff =
  1557. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
  1558. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1559. "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
  1560. /* Get TSSI value for each path. */
  1561. usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
  1562. rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
  1563. usvalue = *(u8 *)&hwinfo[EEPROM_TSSI_B];
  1564. rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
  1565. RTPRINT(rtlpriv, FINIT, INIT_TxPower, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1566. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1567. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1568. /* Read antenna tx power offset of B/C/D to A from EEPROM */
  1569. /* and read ThermalMeter from EEPROM */
  1570. tempval = *(u8 *)&hwinfo[EEPROM_THERMALMETER];
  1571. rtlefuse->eeprom_thermalmeter = tempval;
  1572. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1573. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1574. /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
  1575. rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
  1576. rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
  1577. /* Read CrystalCap from EEPROM */
  1578. tempval = (*(u8 *)&hwinfo[EEPROM_CRYSTALCAP]) >> 4;
  1579. rtlefuse->eeprom_crystalcap = tempval;
  1580. /* CrystalCap, BIT(12)~15 */
  1581. rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
  1582. /* Read IC Version && Channel Plan */
  1583. /* Version ID, Channel plan */
  1584. rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
  1585. rtlefuse->txpwr_fromeprom = true;
  1586. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1587. "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
  1588. /* Read Customer ID or Board Type!!! */
  1589. tempval = *(u8 *)&hwinfo[EEPROM_BOARDTYPE];
  1590. /* Change RF type definition */
  1591. if (tempval == 0)
  1592. rtlphy->rf_type = RF_2T2R;
  1593. else if (tempval == 1)
  1594. rtlphy->rf_type = RF_1T2R;
  1595. else if (tempval == 2)
  1596. rtlphy->rf_type = RF_1T2R;
  1597. else if (tempval == 3)
  1598. rtlphy->rf_type = RF_1T1R;
  1599. /* 1T2R but 1SS (1x1 receive combining) */
  1600. rtlefuse->b1x1_recvcombine = false;
  1601. if (rtlphy->rf_type == RF_1T2R) {
  1602. tempval = rtl_read_byte(rtlpriv, 0x07);
  1603. if (!(tempval & BIT(0))) {
  1604. rtlefuse->b1x1_recvcombine = true;
  1605. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1606. "RF_TYPE=1T2R but only 1SS\n");
  1607. }
  1608. }
  1609. rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
  1610. rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMID];
  1611. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
  1612. rtlefuse->eeprom_oemid);
  1613. /* set channel paln to world wide 13 */
  1614. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1615. }
  1616. void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
  1617. {
  1618. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1619. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1620. u8 tmp_u1b = 0;
  1621. tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
  1622. if (tmp_u1b & BIT(4)) {
  1623. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1624. rtlefuse->epromtype = EEPROM_93C46;
  1625. } else {
  1626. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1627. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1628. }
  1629. if (tmp_u1b & BIT(5)) {
  1630. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1631. rtlefuse->autoload_failflag = false;
  1632. _rtl92se_read_adapter_info(hw);
  1633. } else {
  1634. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1635. rtlefuse->autoload_failflag = true;
  1636. }
  1637. }
  1638. static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
  1639. struct ieee80211_sta *sta)
  1640. {
  1641. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1642. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1643. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1644. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1645. u32 ratr_value;
  1646. u8 ratr_index = 0;
  1647. u8 nmode = mac->ht_enable;
  1648. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1649. u16 shortgi_rate = 0;
  1650. u32 tmp_ratr_value = 0;
  1651. u8 curtxbw_40mhz = mac->bw_40;
  1652. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1653. 1 : 0;
  1654. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1655. 1 : 0;
  1656. enum wireless_mode wirelessmode = mac->mode;
  1657. if (rtlhal->current_bandtype == BAND_ON_5G)
  1658. ratr_value = sta->supp_rates[1] << 4;
  1659. else
  1660. ratr_value = sta->supp_rates[0];
  1661. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1662. sta->ht_cap.mcs.rx_mask[0] << 12);
  1663. switch (wirelessmode) {
  1664. case WIRELESS_MODE_B:
  1665. ratr_value &= 0x0000000D;
  1666. break;
  1667. case WIRELESS_MODE_G:
  1668. ratr_value &= 0x00000FF5;
  1669. break;
  1670. case WIRELESS_MODE_N_24G:
  1671. case WIRELESS_MODE_N_5G:
  1672. nmode = 1;
  1673. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1674. ratr_value &= 0x0007F005;
  1675. } else {
  1676. u32 ratr_mask;
  1677. if (get_rf_type(rtlphy) == RF_1T2R ||
  1678. get_rf_type(rtlphy) == RF_1T1R) {
  1679. if (curtxbw_40mhz)
  1680. ratr_mask = 0x000ff015;
  1681. else
  1682. ratr_mask = 0x000ff005;
  1683. } else {
  1684. if (curtxbw_40mhz)
  1685. ratr_mask = 0x0f0ff015;
  1686. else
  1687. ratr_mask = 0x0f0ff005;
  1688. }
  1689. ratr_value &= ratr_mask;
  1690. }
  1691. break;
  1692. default:
  1693. if (rtlphy->rf_type == RF_1T2R)
  1694. ratr_value &= 0x000ff0ff;
  1695. else
  1696. ratr_value &= 0x0f0ff0ff;
  1697. break;
  1698. }
  1699. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1700. ratr_value &= 0x0FFFFFFF;
  1701. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1702. ratr_value &= 0x0FFFFFF0;
  1703. if (nmode && ((curtxbw_40mhz &&
  1704. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1705. curshortgi_20mhz))) {
  1706. ratr_value |= 0x10000000;
  1707. tmp_ratr_value = (ratr_value >> 12);
  1708. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1709. if ((1 << shortgi_rate) & tmp_ratr_value)
  1710. break;
  1711. }
  1712. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1713. (shortgi_rate << 4) | (shortgi_rate);
  1714. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1715. }
  1716. rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
  1717. if (ratr_value & 0xfffff000)
  1718. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
  1719. else
  1720. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
  1721. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1722. rtl_read_dword(rtlpriv, ARFR0));
  1723. }
  1724. static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
  1725. struct ieee80211_sta *sta,
  1726. u8 rssi_level)
  1727. {
  1728. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1729. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1730. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1731. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1732. struct rtl_sta_info *sta_entry = NULL;
  1733. u32 ratr_bitmap;
  1734. u8 ratr_index = 0;
  1735. u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
  1736. ? 1 : 0;
  1737. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1738. 1 : 0;
  1739. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1740. 1 : 0;
  1741. enum wireless_mode wirelessmode = 0;
  1742. bool shortgi = false;
  1743. u32 ratr_value = 0;
  1744. u8 shortgi_rate = 0;
  1745. u32 mask = 0;
  1746. u32 band = 0;
  1747. bool bmulticast = false;
  1748. u8 macid = 0;
  1749. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1750. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1751. wirelessmode = sta_entry->wireless_mode;
  1752. if (mac->opmode == NL80211_IFTYPE_STATION)
  1753. curtxbw_40mhz = mac->bw_40;
  1754. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1755. mac->opmode == NL80211_IFTYPE_ADHOC)
  1756. macid = sta->aid + 1;
  1757. if (rtlhal->current_bandtype == BAND_ON_5G)
  1758. ratr_bitmap = sta->supp_rates[1] << 4;
  1759. else
  1760. ratr_bitmap = sta->supp_rates[0];
  1761. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1762. sta->ht_cap.mcs.rx_mask[0] << 12);
  1763. switch (wirelessmode) {
  1764. case WIRELESS_MODE_B:
  1765. band |= WIRELESS_11B;
  1766. ratr_index = RATR_INX_WIRELESS_B;
  1767. if (ratr_bitmap & 0x0000000c)
  1768. ratr_bitmap &= 0x0000000d;
  1769. else
  1770. ratr_bitmap &= 0x0000000f;
  1771. break;
  1772. case WIRELESS_MODE_G:
  1773. band |= (WIRELESS_11G | WIRELESS_11B);
  1774. ratr_index = RATR_INX_WIRELESS_GB;
  1775. if (rssi_level == 1)
  1776. ratr_bitmap &= 0x00000f00;
  1777. else if (rssi_level == 2)
  1778. ratr_bitmap &= 0x00000ff0;
  1779. else
  1780. ratr_bitmap &= 0x00000ff5;
  1781. break;
  1782. case WIRELESS_MODE_A:
  1783. band |= WIRELESS_11A;
  1784. ratr_index = RATR_INX_WIRELESS_A;
  1785. ratr_bitmap &= 0x00000ff0;
  1786. break;
  1787. case WIRELESS_MODE_N_24G:
  1788. case WIRELESS_MODE_N_5G:
  1789. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1790. ratr_index = RATR_INX_WIRELESS_NGB;
  1791. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1792. if (rssi_level == 1)
  1793. ratr_bitmap &= 0x00070000;
  1794. else if (rssi_level == 2)
  1795. ratr_bitmap &= 0x0007f000;
  1796. else
  1797. ratr_bitmap &= 0x0007f005;
  1798. } else {
  1799. if (rtlphy->rf_type == RF_1T2R ||
  1800. rtlphy->rf_type == RF_1T1R) {
  1801. if (rssi_level == 1) {
  1802. ratr_bitmap &= 0x000f0000;
  1803. } else if (rssi_level == 3) {
  1804. ratr_bitmap &= 0x000fc000;
  1805. } else if (rssi_level == 5) {
  1806. ratr_bitmap &= 0x000ff000;
  1807. } else {
  1808. if (curtxbw_40mhz)
  1809. ratr_bitmap &= 0x000ff015;
  1810. else
  1811. ratr_bitmap &= 0x000ff005;
  1812. }
  1813. } else {
  1814. if (rssi_level == 1) {
  1815. ratr_bitmap &= 0x0f8f0000;
  1816. } else if (rssi_level == 3) {
  1817. ratr_bitmap &= 0x0f8fc000;
  1818. } else if (rssi_level == 5) {
  1819. ratr_bitmap &= 0x0f8ff000;
  1820. } else {
  1821. if (curtxbw_40mhz)
  1822. ratr_bitmap &= 0x0f8ff015;
  1823. else
  1824. ratr_bitmap &= 0x0f8ff005;
  1825. }
  1826. }
  1827. }
  1828. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1829. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1830. if (macid == 0)
  1831. shortgi = true;
  1832. else if (macid == 1)
  1833. shortgi = false;
  1834. }
  1835. break;
  1836. default:
  1837. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1838. ratr_index = RATR_INX_WIRELESS_NGB;
  1839. if (rtlphy->rf_type == RF_1T2R)
  1840. ratr_bitmap &= 0x000ff0ff;
  1841. else
  1842. ratr_bitmap &= 0x0f8ff0ff;
  1843. break;
  1844. }
  1845. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1846. ratr_bitmap &= 0x0FFFFFFF;
  1847. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1848. ratr_bitmap &= 0x0FFFFFF0;
  1849. if (shortgi) {
  1850. ratr_bitmap |= 0x10000000;
  1851. /* Get MAX MCS available. */
  1852. ratr_value = (ratr_bitmap >> 12);
  1853. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1854. if ((1 << shortgi_rate) & ratr_value)
  1855. break;
  1856. }
  1857. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1858. (shortgi_rate << 4) | (shortgi_rate);
  1859. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1860. }
  1861. mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
  1862. RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
  1863. mask, ratr_bitmap);
  1864. rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
  1865. rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
  1866. if (macid != 0)
  1867. sta_entry->ratr_index = ratr_index;
  1868. }
  1869. void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1870. struct ieee80211_sta *sta, u8 rssi_level)
  1871. {
  1872. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1873. if (rtlpriv->dm.useramask)
  1874. rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
  1875. else
  1876. rtl92se_update_hal_rate_table(hw, sta);
  1877. }
  1878. void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
  1879. {
  1880. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1881. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1882. u16 sifs_timer;
  1883. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1884. (u8 *)&mac->slot_time);
  1885. sifs_timer = 0x0e0e;
  1886. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1887. }
  1888. /* this ifunction is for RFKILL, it's different with windows,
  1889. * because UI will disable wireless when GPIO Radio Off.
  1890. * And here we not check or Disable/Enable ASPM like windows*/
  1891. bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1892. {
  1893. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1894. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1895. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1896. enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
  1897. unsigned long flag = 0;
  1898. bool actuallyset = false;
  1899. bool turnonbypowerdomain = false;
  1900. /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
  1901. if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
  1902. return false;
  1903. if (ppsc->swrf_processing)
  1904. return false;
  1905. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1906. if (ppsc->rfchange_inprogress) {
  1907. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1908. return false;
  1909. } else {
  1910. ppsc->rfchange_inprogress = true;
  1911. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1912. }
  1913. /* cur_rfstate = ppsc->rfpwr_state;*/
  1914. /* because after _rtl92s_phy_set_rfhalt, all power
  1915. * closed, so we must open some power for GPIO check,
  1916. * or we will always check GPIO RFOFF here,
  1917. * And we should close power after GPIO check */
  1918. if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  1919. _rtl92se_power_domain_init(hw);
  1920. turnonbypowerdomain = true;
  1921. }
  1922. rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
  1923. if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
  1924. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1925. "RFKILL-HW Radio ON, RF ON\n");
  1926. rfpwr_toset = ERFON;
  1927. ppsc->hwradiooff = false;
  1928. actuallyset = true;
  1929. } else if ((ppsc->hwradiooff == false) && (rfpwr_toset == ERFOFF)) {
  1930. RT_TRACE(rtlpriv, COMP_RF,
  1931. DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
  1932. rfpwr_toset = ERFOFF;
  1933. ppsc->hwradiooff = true;
  1934. actuallyset = true;
  1935. }
  1936. if (actuallyset) {
  1937. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1938. ppsc->rfchange_inprogress = false;
  1939. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1940. /* this not include ifconfig wlan0 down case */
  1941. /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
  1942. } else {
  1943. /* because power_domain_init may be happen when
  1944. * _rtl92s_phy_set_rfhalt, this will open some powers
  1945. * and cause current increasing about 40 mA for ips,
  1946. * rfoff and ifconfig down, so we set
  1947. * _rtl92s_phy_set_rfhalt again here */
  1948. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
  1949. turnonbypowerdomain) {
  1950. _rtl92s_phy_set_rfhalt(hw);
  1951. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1952. }
  1953. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1954. ppsc->rfchange_inprogress = false;
  1955. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1956. }
  1957. *valid = 1;
  1958. return !ppsc->hwradiooff;
  1959. }
  1960. /* Is_wepkey just used for WEP used as group & pairwise key
  1961. * if pairwise is AES ang group is WEP Is_wepkey == false.*/
  1962. void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
  1963. bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
  1964. {
  1965. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1966. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1967. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1968. u8 *macaddr = p_macaddr;
  1969. u32 entry_id = 0;
  1970. bool is_pairwise = false;
  1971. static u8 cam_const_addr[4][6] = {
  1972. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1973. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1974. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1975. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1976. };
  1977. static u8 cam_const_broad[] = {
  1978. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1979. };
  1980. if (clear_all) {
  1981. u8 idx = 0;
  1982. u8 cam_offset = 0;
  1983. u8 clear_number = 5;
  1984. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  1985. for (idx = 0; idx < clear_number; idx++) {
  1986. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1987. rtl_cam_empty_entry(hw, cam_offset + idx);
  1988. if (idx < 5) {
  1989. memset(rtlpriv->sec.key_buf[idx], 0,
  1990. MAX_KEY_LEN);
  1991. rtlpriv->sec.key_len[idx] = 0;
  1992. }
  1993. }
  1994. } else {
  1995. switch (enc_algo) {
  1996. case WEP40_ENCRYPTION:
  1997. enc_algo = CAM_WEP40;
  1998. break;
  1999. case WEP104_ENCRYPTION:
  2000. enc_algo = CAM_WEP104;
  2001. break;
  2002. case TKIP_ENCRYPTION:
  2003. enc_algo = CAM_TKIP;
  2004. break;
  2005. case AESCCMP_ENCRYPTION:
  2006. enc_algo = CAM_AES;
  2007. break;
  2008. default:
  2009. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2010. "switch case not processed\n");
  2011. enc_algo = CAM_TKIP;
  2012. break;
  2013. }
  2014. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2015. macaddr = cam_const_addr[key_index];
  2016. entry_id = key_index;
  2017. } else {
  2018. if (is_group) {
  2019. macaddr = cam_const_broad;
  2020. entry_id = key_index;
  2021. } else {
  2022. if (mac->opmode == NL80211_IFTYPE_AP) {
  2023. entry_id = rtl_cam_get_free_entry(hw,
  2024. p_macaddr);
  2025. if (entry_id >= TOTAL_CAM_ENTRY) {
  2026. RT_TRACE(rtlpriv,
  2027. COMP_SEC, DBG_EMERG,
  2028. "Can not find free hw security cam entry\n");
  2029. return;
  2030. }
  2031. } else {
  2032. entry_id = CAM_PAIRWISE_KEY_POSITION;
  2033. }
  2034. key_index = PAIRWISE_KEYIDX;
  2035. is_pairwise = true;
  2036. }
  2037. }
  2038. if (rtlpriv->sec.key_len[key_index] == 0) {
  2039. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2040. "delete one entry, entry_id is %d\n",
  2041. entry_id);
  2042. if (mac->opmode == NL80211_IFTYPE_AP)
  2043. rtl_cam_del_entry(hw, p_macaddr);
  2044. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  2045. } else {
  2046. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  2047. "The insert KEY length is %d\n",
  2048. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  2049. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  2050. "The insert KEY is %x %x\n",
  2051. rtlpriv->sec.key_buf[0][0],
  2052. rtlpriv->sec.key_buf[0][1]);
  2053. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2054. "add one entry\n");
  2055. if (is_pairwise) {
  2056. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  2057. "Pairwise Key content",
  2058. rtlpriv->sec.pairwise_key,
  2059. rtlpriv->sec.
  2060. key_len[PAIRWISE_KEYIDX]);
  2061. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2062. "set Pairwise key\n");
  2063. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2064. entry_id, enc_algo,
  2065. CAM_CONFIG_NO_USEDK,
  2066. rtlpriv->sec.key_buf[key_index]);
  2067. } else {
  2068. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2069. "set group key\n");
  2070. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2071. rtl_cam_add_one_entry(hw,
  2072. rtlefuse->dev_addr,
  2073. PAIRWISE_KEYIDX,
  2074. CAM_PAIRWISE_KEY_POSITION,
  2075. enc_algo, CAM_CONFIG_NO_USEDK,
  2076. rtlpriv->sec.key_buf[entry_id]);
  2077. }
  2078. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2079. entry_id, enc_algo,
  2080. CAM_CONFIG_NO_USEDK,
  2081. rtlpriv->sec.key_buf[entry_id]);
  2082. }
  2083. }
  2084. }
  2085. }
  2086. void rtl92se_suspend(struct ieee80211_hw *hw)
  2087. {
  2088. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2089. rtlpci->up_first_time = true;
  2090. }
  2091. void rtl92se_resume(struct ieee80211_hw *hw)
  2092. {
  2093. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2094. u32 val;
  2095. pci_read_config_dword(rtlpci->pdev, 0x40, &val);
  2096. if ((val & 0x0000ff00) != 0)
  2097. pci_write_config_dword(rtlpci->pdev, 0x40,
  2098. val & 0xffff00ff);
  2099. }