hw.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30. #include "../wifi.h"
  31. #include "../efuse.h"
  32. #include "../base.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../usb.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "mac.h"
  40. #include "dm.h"
  41. #include "hw.h"
  42. #include "../rtl8192ce/hw.h"
  43. #include "trx.h"
  44. #include "led.h"
  45. #include "table.h"
  46. static void _rtl92cu_phy_param_tab_init(struct ieee80211_hw *hw)
  47. {
  48. struct rtl_priv *rtlpriv = rtl_priv(hw);
  49. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  50. struct rtl_efuse *rtlefuse = rtl_efuse(rtlpriv);
  51. rtlphy->hwparam_tables[MAC_REG].length = RTL8192CUMAC_2T_ARRAYLENGTH;
  52. rtlphy->hwparam_tables[MAC_REG].pdata = RTL8192CUMAC_2T_ARRAY;
  53. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  54. rtlphy->hwparam_tables[PHY_REG_PG].length =
  55. RTL8192CUPHY_REG_Array_PG_HPLength;
  56. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  57. RTL8192CUPHY_REG_Array_PG_HP;
  58. } else {
  59. rtlphy->hwparam_tables[PHY_REG_PG].length =
  60. RTL8192CUPHY_REG_ARRAY_PGLENGTH;
  61. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  62. RTL8192CUPHY_REG_ARRAY_PG;
  63. }
  64. /* 2T */
  65. rtlphy->hwparam_tables[PHY_REG_2T].length =
  66. RTL8192CUPHY_REG_2TARRAY_LENGTH;
  67. rtlphy->hwparam_tables[PHY_REG_2T].pdata =
  68. RTL8192CUPHY_REG_2TARRAY;
  69. rtlphy->hwparam_tables[RADIOA_2T].length =
  70. RTL8192CURADIOA_2TARRAYLENGTH;
  71. rtlphy->hwparam_tables[RADIOA_2T].pdata =
  72. RTL8192CURADIOA_2TARRAY;
  73. rtlphy->hwparam_tables[RADIOB_2T].length =
  74. RTL8192CURADIOB_2TARRAYLENGTH;
  75. rtlphy->hwparam_tables[RADIOB_2T].pdata =
  76. RTL8192CU_RADIOB_2TARRAY;
  77. rtlphy->hwparam_tables[AGCTAB_2T].length =
  78. RTL8192CUAGCTAB_2TARRAYLENGTH;
  79. rtlphy->hwparam_tables[AGCTAB_2T].pdata =
  80. RTL8192CUAGCTAB_2TARRAY;
  81. /* 1T */
  82. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  83. rtlphy->hwparam_tables[PHY_REG_1T].length =
  84. RTL8192CUPHY_REG_1T_HPArrayLength;
  85. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  86. RTL8192CUPHY_REG_1T_HPArray;
  87. rtlphy->hwparam_tables[RADIOA_1T].length =
  88. RTL8192CURadioA_1T_HPArrayLength;
  89. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  90. RTL8192CURadioA_1T_HPArray;
  91. rtlphy->hwparam_tables[RADIOB_1T].length =
  92. RTL8192CURADIOB_1TARRAYLENGTH;
  93. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  94. RTL8192CU_RADIOB_1TARRAY;
  95. rtlphy->hwparam_tables[AGCTAB_1T].length =
  96. RTL8192CUAGCTAB_1T_HPArrayLength;
  97. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  98. Rtl8192CUAGCTAB_1T_HPArray;
  99. } else {
  100. rtlphy->hwparam_tables[PHY_REG_1T].length =
  101. RTL8192CUPHY_REG_1TARRAY_LENGTH;
  102. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  103. RTL8192CUPHY_REG_1TARRAY;
  104. rtlphy->hwparam_tables[RADIOA_1T].length =
  105. RTL8192CURADIOA_1TARRAYLENGTH;
  106. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  107. RTL8192CU_RADIOA_1TARRAY;
  108. rtlphy->hwparam_tables[RADIOB_1T].length =
  109. RTL8192CURADIOB_1TARRAYLENGTH;
  110. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  111. RTL8192CU_RADIOB_1TARRAY;
  112. rtlphy->hwparam_tables[AGCTAB_1T].length =
  113. RTL8192CUAGCTAB_1TARRAYLENGTH;
  114. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  115. RTL8192CUAGCTAB_1TARRAY;
  116. }
  117. }
  118. static void _rtl92cu_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  119. bool autoload_fail,
  120. u8 *hwinfo)
  121. {
  122. struct rtl_priv *rtlpriv = rtl_priv(hw);
  123. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  124. u8 rf_path, index, tempval;
  125. u16 i;
  126. for (rf_path = 0; rf_path < 2; rf_path++) {
  127. for (i = 0; i < 3; i++) {
  128. if (!autoload_fail) {
  129. rtlefuse->
  130. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  131. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  132. rtlefuse->
  133. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  134. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  135. i];
  136. } else {
  137. rtlefuse->
  138. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  139. EEPROM_DEFAULT_TXPOWERLEVEL;
  140. rtlefuse->
  141. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  142. EEPROM_DEFAULT_TXPOWERLEVEL;
  143. }
  144. }
  145. }
  146. for (i = 0; i < 3; i++) {
  147. if (!autoload_fail)
  148. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  149. else
  150. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  151. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_A][i] =
  152. (tempval & 0xf);
  153. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_B][i] =
  154. ((tempval & 0xf0) >> 4);
  155. }
  156. for (rf_path = 0; rf_path < 2; rf_path++)
  157. for (i = 0; i < 3; i++)
  158. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  159. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  160. rf_path, i,
  161. rtlefuse->
  162. eeprom_chnlarea_txpwr_cck[rf_path][i]);
  163. for (rf_path = 0; rf_path < 2; rf_path++)
  164. for (i = 0; i < 3; i++)
  165. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  166. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  167. rf_path, i,
  168. rtlefuse->
  169. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
  170. for (rf_path = 0; rf_path < 2; rf_path++)
  171. for (i = 0; i < 3; i++)
  172. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  173. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  174. rf_path, i,
  175. rtlefuse->
  176. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][i]);
  177. for (rf_path = 0; rf_path < 2; rf_path++) {
  178. for (i = 0; i < 14; i++) {
  179. index = _rtl92c_get_chnl_group((u8) i);
  180. rtlefuse->txpwrlevel_cck[rf_path][i] =
  181. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  182. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  183. rtlefuse->
  184. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  185. if ((rtlefuse->
  186. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  187. rtlefuse->
  188. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][index])
  189. > 0) {
  190. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  191. rtlefuse->
  192. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  193. [index] - rtlefuse->
  194. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
  195. [index];
  196. } else {
  197. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  198. }
  199. }
  200. for (i = 0; i < 14; i++) {
  201. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  202. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", rf_path, i,
  203. rtlefuse->txpwrlevel_cck[rf_path][i],
  204. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  205. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  206. }
  207. }
  208. for (i = 0; i < 3; i++) {
  209. if (!autoload_fail) {
  210. rtlefuse->eeprom_pwrlimit_ht40[i] =
  211. hwinfo[EEPROM_TXPWR_GROUP + i];
  212. rtlefuse->eeprom_pwrlimit_ht20[i] =
  213. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  214. } else {
  215. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  216. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  217. }
  218. }
  219. for (rf_path = 0; rf_path < 2; rf_path++) {
  220. for (i = 0; i < 14; i++) {
  221. index = _rtl92c_get_chnl_group((u8) i);
  222. if (rf_path == RF90_PATH_A) {
  223. rtlefuse->pwrgroup_ht20[rf_path][i] =
  224. (rtlefuse->eeprom_pwrlimit_ht20[index]
  225. & 0xf);
  226. rtlefuse->pwrgroup_ht40[rf_path][i] =
  227. (rtlefuse->eeprom_pwrlimit_ht40[index]
  228. & 0xf);
  229. } else if (rf_path == RF90_PATH_B) {
  230. rtlefuse->pwrgroup_ht20[rf_path][i] =
  231. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  232. & 0xf0) >> 4);
  233. rtlefuse->pwrgroup_ht40[rf_path][i] =
  234. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  235. & 0xf0) >> 4);
  236. }
  237. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  238. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  239. rf_path, i,
  240. rtlefuse->pwrgroup_ht20[rf_path][i]);
  241. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  242. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  243. rf_path, i,
  244. rtlefuse->pwrgroup_ht40[rf_path][i]);
  245. }
  246. }
  247. for (i = 0; i < 14; i++) {
  248. index = _rtl92c_get_chnl_group((u8) i);
  249. if (!autoload_fail)
  250. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  251. else
  252. tempval = EEPROM_DEFAULT_HT20_DIFF;
  253. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  254. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  255. ((tempval >> 4) & 0xF);
  256. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  257. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  258. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  259. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  260. index = _rtl92c_get_chnl_group((u8) i);
  261. if (!autoload_fail)
  262. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  263. else
  264. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  265. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  266. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  267. ((tempval >> 4) & 0xF);
  268. }
  269. rtlefuse->legacy_ht_txpowerdiff =
  270. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  271. for (i = 0; i < 14; i++)
  272. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  273. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  274. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  275. for (i = 0; i < 14; i++)
  276. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  277. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  278. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  279. for (i = 0; i < 14; i++)
  280. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  281. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  282. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  283. for (i = 0; i < 14; i++)
  284. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  285. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  286. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  287. if (!autoload_fail)
  288. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  289. else
  290. rtlefuse->eeprom_regulatory = 0;
  291. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  292. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  293. if (!autoload_fail) {
  294. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  295. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  296. } else {
  297. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  298. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  299. }
  300. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  301. "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  302. rtlefuse->eeprom_tssi[RF90_PATH_A],
  303. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  304. if (!autoload_fail)
  305. tempval = hwinfo[EEPROM_THERMAL_METER];
  306. else
  307. tempval = EEPROM_DEFAULT_THERMALMETER;
  308. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  309. if (rtlefuse->eeprom_thermalmeter < 0x06 ||
  310. rtlefuse->eeprom_thermalmeter > 0x1c)
  311. rtlefuse->eeprom_thermalmeter = 0x12;
  312. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  313. rtlefuse->apk_thermalmeterignore = true;
  314. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  315. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  316. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  317. }
  318. static void _rtl92cu_read_board_type(struct ieee80211_hw *hw, u8 *contents)
  319. {
  320. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  321. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  322. u8 boardType;
  323. if (IS_NORMAL_CHIP(rtlhal->version)) {
  324. boardType = ((contents[EEPROM_RF_OPT1]) &
  325. BOARD_TYPE_NORMAL_MASK) >> 5; /*bit[7:5]*/
  326. } else {
  327. boardType = contents[EEPROM_RF_OPT4];
  328. boardType &= BOARD_TYPE_TEST_MASK;
  329. }
  330. rtlefuse->board_type = boardType;
  331. if (IS_HIGHT_PA(rtlefuse->board_type))
  332. rtlefuse->external_pa = 1;
  333. pr_info("Board Type %x\n", rtlefuse->board_type);
  334. #ifdef CONFIG_ANTENNA_DIVERSITY
  335. /* Antenna Diversity setting. */
  336. if (registry_par->antdiv_cfg == 2) /* 2: From Efuse */
  337. rtl_efuse->antenna_cfg = (contents[EEPROM_RF_OPT1]&0x18)>>3;
  338. else
  339. rtl_efuse->antenna_cfg = registry_par->antdiv_cfg; /* 0:OFF, */
  340. pr_info("Antenna Config %x\n", rtl_efuse->antenna_cfg);
  341. #endif
  342. }
  343. #ifdef CONFIG_BT_COEXIST
  344. static void _update_bt_param(_adapter *padapter)
  345. {
  346. struct btcoexist_priv *pbtpriv = &(padapter->halpriv.bt_coexist);
  347. struct registry_priv *registry_par = &padapter->registrypriv;
  348. if (2 != registry_par->bt_iso) {
  349. /* 0:Low, 1:High, 2:From Efuse */
  350. pbtpriv->BT_Ant_isolation = registry_par->bt_iso;
  351. }
  352. if (registry_par->bt_sco == 1) {
  353. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter, 4.Busy,
  354. * 5.OtherBusy */
  355. pbtpriv->BT_Service = BT_OtherAction;
  356. } else if (registry_par->bt_sco == 2) {
  357. pbtpriv->BT_Service = BT_SCO;
  358. } else if (registry_par->bt_sco == 4) {
  359. pbtpriv->BT_Service = BT_Busy;
  360. } else if (registry_par->bt_sco == 5) {
  361. pbtpriv->BT_Service = BT_OtherBusy;
  362. } else {
  363. pbtpriv->BT_Service = BT_Idle;
  364. }
  365. pbtpriv->BT_Ampdu = registry_par->bt_ampdu;
  366. pbtpriv->bCOBT = _TRUE;
  367. pbtpriv->BtEdcaUL = 0;
  368. pbtpriv->BtEdcaDL = 0;
  369. pbtpriv->BtRssiState = 0xff;
  370. pbtpriv->bInitSet = _FALSE;
  371. pbtpriv->bBTBusyTraffic = _FALSE;
  372. pbtpriv->bBTTrafficModeSet = _FALSE;
  373. pbtpriv->bBTNonTrafficModeSet = _FALSE;
  374. pbtpriv->CurrentState = 0;
  375. pbtpriv->PreviousState = 0;
  376. pr_info("BT Coexistance = %s\n",
  377. (pbtpriv->BT_Coexist == _TRUE) ? "enable" : "disable");
  378. if (pbtpriv->BT_Coexist) {
  379. if (pbtpriv->BT_Ant_Num == Ant_x2)
  380. pr_info("BlueTooth BT_Ant_Num = Antx2\n");
  381. else if (pbtpriv->BT_Ant_Num == Ant_x1)
  382. pr_info("BlueTooth BT_Ant_Num = Antx1\n");
  383. switch (pbtpriv->BT_CoexistType) {
  384. case BT_2Wire:
  385. pr_info("BlueTooth BT_CoexistType = BT_2Wire\n");
  386. break;
  387. case BT_ISSC_3Wire:
  388. pr_info("BlueTooth BT_CoexistType = BT_ISSC_3Wire\n");
  389. break;
  390. case BT_Accel:
  391. pr_info("BlueTooth BT_CoexistType = BT_Accel\n");
  392. break;
  393. case BT_CSR_BC4:
  394. pr_info("BlueTooth BT_CoexistType = BT_CSR_BC4\n");
  395. break;
  396. case BT_CSR_BC8:
  397. pr_info("BlueTooth BT_CoexistType = BT_CSR_BC8\n");
  398. break;
  399. case BT_RTL8756:
  400. pr_info("BlueTooth BT_CoexistType = BT_RTL8756\n");
  401. break;
  402. default:
  403. pr_info("BlueTooth BT_CoexistType = Unknown\n");
  404. break;
  405. }
  406. pr_info("BlueTooth BT_Ant_isolation = %d\n",
  407. pbtpriv->BT_Ant_isolation);
  408. switch (pbtpriv->BT_Service) {
  409. case BT_OtherAction:
  410. pr_info("BlueTooth BT_Service = BT_OtherAction\n");
  411. break;
  412. case BT_SCO:
  413. pr_info("BlueTooth BT_Service = BT_SCO\n");
  414. break;
  415. case BT_Busy:
  416. pr_info("BlueTooth BT_Service = BT_Busy\n");
  417. break;
  418. case BT_OtherBusy:
  419. pr_info("BlueTooth BT_Service = BT_OtherBusy\n");
  420. break;
  421. default:
  422. pr_info("BlueTooth BT_Service = BT_Idle\n");
  423. break;
  424. }
  425. pr_info("BT_RadioSharedType = 0x%x\n",
  426. pbtpriv->BT_RadioSharedType);
  427. }
  428. }
  429. #define GET_BT_COEXIST(priv) (&priv->bt_coexist)
  430. static void _rtl92cu_read_bluetooth_coexistInfo(struct ieee80211_hw *hw,
  431. u8 *contents,
  432. bool bautoloadfailed);
  433. {
  434. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
  435. bool isNormal = IS_NORMAL_CHIP(pHalData->VersionID);
  436. struct btcoexist_priv *pbtpriv = &pHalData->bt_coexist;
  437. u8 rf_opt4;
  438. _rtw_memset(pbtpriv, 0, sizeof(struct btcoexist_priv));
  439. if (AutoloadFail) {
  440. pbtpriv->BT_Coexist = _FALSE;
  441. pbtpriv->BT_CoexistType = BT_2Wire;
  442. pbtpriv->BT_Ant_Num = Ant_x2;
  443. pbtpriv->BT_Ant_isolation = 0;
  444. pbtpriv->BT_RadioSharedType = BT_Radio_Shared;
  445. return;
  446. }
  447. if (isNormal) {
  448. if (pHalData->BoardType == BOARD_USB_COMBO)
  449. pbtpriv->BT_Coexist = _TRUE;
  450. else
  451. pbtpriv->BT_Coexist = ((PROMContent[EEPROM_RF_OPT3] &
  452. 0x20) >> 5); /* bit[5] */
  453. rf_opt4 = PROMContent[EEPROM_RF_OPT4];
  454. pbtpriv->BT_CoexistType = ((rf_opt4&0xe)>>1); /* bit [3:1] */
  455. pbtpriv->BT_Ant_Num = (rf_opt4&0x1); /* bit [0] */
  456. pbtpriv->BT_Ant_isolation = ((rf_opt4&0x10)>>4); /* bit [4] */
  457. pbtpriv->BT_RadioSharedType = ((rf_opt4&0x20)>>5); /* bit [5] */
  458. } else {
  459. pbtpriv->BT_Coexist = (PROMContent[EEPROM_RF_OPT4] >> 4) ?
  460. _TRUE : _FALSE;
  461. }
  462. _update_bt_param(Adapter);
  463. }
  464. #endif
  465. static void _rtl92cu_read_adapter_info(struct ieee80211_hw *hw)
  466. {
  467. struct rtl_priv *rtlpriv = rtl_priv(hw);
  468. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  469. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  470. u16 i, usvalue;
  471. u8 hwinfo[HWSET_MAX_SIZE] = {0};
  472. u16 eeprom_id;
  473. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  474. rtl_efuse_shadow_map_update(hw);
  475. memcpy((void *)hwinfo,
  476. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  477. HWSET_MAX_SIZE);
  478. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  479. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  480. "RTL819X Not boot from eeprom, check it !!\n");
  481. }
  482. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, "MAP",
  483. hwinfo, HWSET_MAX_SIZE);
  484. eeprom_id = le16_to_cpu(*((__le16 *)&hwinfo[0]));
  485. if (eeprom_id != RTL8190_EEPROM_ID) {
  486. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  487. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  488. rtlefuse->autoload_failflag = true;
  489. } else {
  490. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  491. rtlefuse->autoload_failflag = false;
  492. }
  493. if (rtlefuse->autoload_failflag)
  494. return;
  495. for (i = 0; i < 6; i += 2) {
  496. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  497. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  498. }
  499. pr_info("MAC address: %pM\n", rtlefuse->dev_addr);
  500. _rtl92cu_read_txpower_info_from_hwpg(hw,
  501. rtlefuse->autoload_failflag, hwinfo);
  502. rtlefuse->eeprom_vid = le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_VID]);
  503. rtlefuse->eeprom_did = le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_DID]);
  504. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, " VID = 0x%02x PID = 0x%02x\n",
  505. rtlefuse->eeprom_vid, rtlefuse->eeprom_did);
  506. rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
  507. rtlefuse->eeprom_version =
  508. le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_VERSION]);
  509. rtlefuse->txpwr_fromeprom = true;
  510. rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
  511. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
  512. rtlefuse->eeprom_oemid);
  513. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  514. switch (rtlefuse->eeprom_oemid) {
  515. case EEPROM_CID_DEFAULT:
  516. if (rtlefuse->eeprom_did == 0x8176) {
  517. if ((rtlefuse->eeprom_svid == 0x103C &&
  518. rtlefuse->eeprom_smid == 0x1629))
  519. rtlhal->oem_id = RT_CID_819x_HP;
  520. else
  521. rtlhal->oem_id = RT_CID_DEFAULT;
  522. } else {
  523. rtlhal->oem_id = RT_CID_DEFAULT;
  524. }
  525. break;
  526. case EEPROM_CID_TOSHIBA:
  527. rtlhal->oem_id = RT_CID_TOSHIBA;
  528. break;
  529. case EEPROM_CID_QMI:
  530. rtlhal->oem_id = RT_CID_819x_QMI;
  531. break;
  532. case EEPROM_CID_WHQL:
  533. default:
  534. rtlhal->oem_id = RT_CID_DEFAULT;
  535. break;
  536. }
  537. }
  538. _rtl92cu_read_board_type(hw, hwinfo);
  539. #ifdef CONFIG_BT_COEXIST
  540. _rtl92cu_read_bluetooth_coexistInfo(hw, hwinfo,
  541. rtlefuse->autoload_failflag);
  542. #endif
  543. }
  544. static void _rtl92cu_hal_customized_behavior(struct ieee80211_hw *hw)
  545. {
  546. struct rtl_priv *rtlpriv = rtl_priv(hw);
  547. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  548. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  549. switch (rtlhal->oem_id) {
  550. case RT_CID_819x_HP:
  551. usb_priv->ledctl.led_opendrain = true;
  552. break;
  553. case RT_CID_819x_Lenovo:
  554. case RT_CID_DEFAULT:
  555. case RT_CID_TOSHIBA:
  556. case RT_CID_CCX:
  557. case RT_CID_819x_Acer:
  558. case RT_CID_WHQL:
  559. default:
  560. break;
  561. }
  562. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n",
  563. rtlhal->oem_id);
  564. }
  565. void rtl92cu_read_eeprom_info(struct ieee80211_hw *hw)
  566. {
  567. struct rtl_priv *rtlpriv = rtl_priv(hw);
  568. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  569. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  570. u8 tmp_u1b;
  571. if (!IS_NORMAL_CHIP(rtlhal->version))
  572. return;
  573. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  574. rtlefuse->epromtype = (tmp_u1b & BOOT_FROM_EEPROM) ?
  575. EEPROM_93C46 : EEPROM_BOOT_EFUSE;
  576. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from %s\n",
  577. tmp_u1b & BOOT_FROM_EEPROM ? "EERROM" : "EFUSE");
  578. rtlefuse->autoload_failflag = (tmp_u1b & EEPROM_EN) ? false : true;
  579. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload %s\n",
  580. tmp_u1b & EEPROM_EN ? "OK!!" : "ERR!!");
  581. _rtl92cu_read_adapter_info(hw);
  582. _rtl92cu_hal_customized_behavior(hw);
  583. return;
  584. }
  585. static int _rtl92cu_init_power_on(struct ieee80211_hw *hw)
  586. {
  587. struct rtl_priv *rtlpriv = rtl_priv(hw);
  588. int status = 0;
  589. u16 value16;
  590. u8 value8;
  591. /* polling autoload done. */
  592. u32 pollingCount = 0;
  593. do {
  594. if (rtl_read_byte(rtlpriv, REG_APS_FSMCO) & PFM_ALDN) {
  595. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  596. "Autoload Done!\n");
  597. break;
  598. }
  599. if (pollingCount++ > 100) {
  600. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  601. "Failed to polling REG_APS_FSMCO[PFM_ALDN] done!\n");
  602. return -ENODEV;
  603. }
  604. } while (true);
  605. /* 0. RSV_CTRL 0x1C[7:0] = 0 unlock ISO/CLK/Power control register */
  606. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  607. /* Power on when re-enter from IPS/Radio off/card disable */
  608. /* enable SPS into PWM mode */
  609. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  610. udelay(100);
  611. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  612. if (0 == (value8 & LDV12_EN)) {
  613. value8 |= LDV12_EN;
  614. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  615. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  616. " power-on :REG_LDOV12D_CTRL Reg0x21:0x%02x\n",
  617. value8);
  618. udelay(100);
  619. value8 = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  620. value8 &= ~ISO_MD2PP;
  621. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, value8);
  622. }
  623. /* auto enable WLAN */
  624. pollingCount = 0;
  625. value16 = rtl_read_word(rtlpriv, REG_APS_FSMCO);
  626. value16 |= APFM_ONMAC;
  627. rtl_write_word(rtlpriv, REG_APS_FSMCO, value16);
  628. do {
  629. if (!(rtl_read_word(rtlpriv, REG_APS_FSMCO) & APFM_ONMAC)) {
  630. pr_info("MAC auto ON okay!\n");
  631. break;
  632. }
  633. if (pollingCount++ > 100) {
  634. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  635. "Failed to polling REG_APS_FSMCO[APFM_ONMAC] done!\n");
  636. return -ENODEV;
  637. }
  638. } while (true);
  639. /* Enable Radio ,GPIO ,and LED function */
  640. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x0812);
  641. /* release RF digital isolation */
  642. value16 = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  643. value16 &= ~ISO_DIOR;
  644. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, value16);
  645. /* Reconsider when to do this operation after asking HWSD. */
  646. pollingCount = 0;
  647. rtl_write_byte(rtlpriv, REG_APSD_CTRL, (rtl_read_byte(rtlpriv,
  648. REG_APSD_CTRL) & ~BIT(6)));
  649. do {
  650. pollingCount++;
  651. } while ((pollingCount < 200) &&
  652. (rtl_read_byte(rtlpriv, REG_APSD_CTRL) & BIT(7)));
  653. /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
  654. value16 = rtl_read_word(rtlpriv, REG_CR);
  655. value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN |
  656. PROTOCOL_EN | SCHEDULE_EN | MACTXEN | MACRXEN | ENSEC);
  657. rtl_write_word(rtlpriv, REG_CR, value16);
  658. return status;
  659. }
  660. static void _rtl92cu_init_queue_reserved_page(struct ieee80211_hw *hw,
  661. bool wmm_enable,
  662. u8 out_ep_num,
  663. u8 queue_sel)
  664. {
  665. struct rtl_priv *rtlpriv = rtl_priv(hw);
  666. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  667. bool isChipN = IS_NORMAL_CHIP(rtlhal->version);
  668. u32 outEPNum = (u32)out_ep_num;
  669. u32 numHQ = 0;
  670. u32 numLQ = 0;
  671. u32 numNQ = 0;
  672. u32 numPubQ;
  673. u32 value32;
  674. u8 value8;
  675. u32 txQPageNum, txQPageUnit, txQRemainPage;
  676. if (!wmm_enable) {
  677. numPubQ = (isChipN) ? CHIP_B_PAGE_NUM_PUBQ :
  678. CHIP_A_PAGE_NUM_PUBQ;
  679. txQPageNum = TX_TOTAL_PAGE_NUMBER - numPubQ;
  680. txQPageUnit = txQPageNum/outEPNum;
  681. txQRemainPage = txQPageNum % outEPNum;
  682. if (queue_sel & TX_SELE_HQ)
  683. numHQ = txQPageUnit;
  684. if (queue_sel & TX_SELE_LQ)
  685. numLQ = txQPageUnit;
  686. /* HIGH priority queue always present in the configuration of
  687. * 2 out-ep. Remainder pages have assigned to High queue */
  688. if ((outEPNum > 1) && (txQRemainPage))
  689. numHQ += txQRemainPage;
  690. /* NOTE: This step done before writting REG_RQPN. */
  691. if (isChipN) {
  692. if (queue_sel & TX_SELE_NQ)
  693. numNQ = txQPageUnit;
  694. value8 = (u8)_NPQ(numNQ);
  695. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  696. }
  697. } else {
  698. /* for WMM ,number of out-ep must more than or equal to 2! */
  699. numPubQ = isChipN ? WMM_CHIP_B_PAGE_NUM_PUBQ :
  700. WMM_CHIP_A_PAGE_NUM_PUBQ;
  701. if (queue_sel & TX_SELE_HQ) {
  702. numHQ = isChipN ? WMM_CHIP_B_PAGE_NUM_HPQ :
  703. WMM_CHIP_A_PAGE_NUM_HPQ;
  704. }
  705. if (queue_sel & TX_SELE_LQ) {
  706. numLQ = isChipN ? WMM_CHIP_B_PAGE_NUM_LPQ :
  707. WMM_CHIP_A_PAGE_NUM_LPQ;
  708. }
  709. /* NOTE: This step done before writting REG_RQPN. */
  710. if (isChipN) {
  711. if (queue_sel & TX_SELE_NQ)
  712. numNQ = WMM_CHIP_B_PAGE_NUM_NPQ;
  713. value8 = (u8)_NPQ(numNQ);
  714. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  715. }
  716. }
  717. /* TX DMA */
  718. value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
  719. rtl_write_dword(rtlpriv, REG_RQPN, value32);
  720. }
  721. static void _rtl92c_init_trx_buffer(struct ieee80211_hw *hw, bool wmm_enable)
  722. {
  723. struct rtl_priv *rtlpriv = rtl_priv(hw);
  724. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  725. u8 txpktbuf_bndy;
  726. u8 value8;
  727. if (!wmm_enable)
  728. txpktbuf_bndy = TX_PAGE_BOUNDARY;
  729. else /* for WMM */
  730. txpktbuf_bndy = (IS_NORMAL_CHIP(rtlhal->version))
  731. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  732. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  733. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  734. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  735. rtl_write_byte(rtlpriv, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
  736. rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy);
  737. rtl_write_byte(rtlpriv, REG_TDECTRL+1, txpktbuf_bndy);
  738. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  739. value8 = _PSRX(RX_PAGE_SIZE_REG_VALUE) | _PSTX(PBP_128);
  740. rtl_write_byte(rtlpriv, REG_PBP, value8);
  741. }
  742. static void _rtl92c_init_chipN_reg_priority(struct ieee80211_hw *hw, u16 beQ,
  743. u16 bkQ, u16 viQ, u16 voQ,
  744. u16 mgtQ, u16 hiQ)
  745. {
  746. struct rtl_priv *rtlpriv = rtl_priv(hw);
  747. u16 value16 = (rtl_read_word(rtlpriv, REG_TRXDMA_CTRL) & 0x7);
  748. value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
  749. _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
  750. _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
  751. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, value16);
  752. }
  753. static void _rtl92cu_init_chipN_one_out_ep_priority(struct ieee80211_hw *hw,
  754. bool wmm_enable,
  755. u8 queue_sel)
  756. {
  757. u16 uninitialized_var(value);
  758. switch (queue_sel) {
  759. case TX_SELE_HQ:
  760. value = QUEUE_HIGH;
  761. break;
  762. case TX_SELE_LQ:
  763. value = QUEUE_LOW;
  764. break;
  765. case TX_SELE_NQ:
  766. value = QUEUE_NORMAL;
  767. break;
  768. default:
  769. WARN_ON(1); /* Shall not reach here! */
  770. break;
  771. }
  772. _rtl92c_init_chipN_reg_priority(hw, value, value, value, value,
  773. value, value);
  774. pr_info("Tx queue select: 0x%02x\n", queue_sel);
  775. }
  776. static void _rtl92cu_init_chipN_two_out_ep_priority(struct ieee80211_hw *hw,
  777. bool wmm_enable,
  778. u8 queue_sel)
  779. {
  780. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  781. u16 uninitialized_var(valueHi);
  782. u16 uninitialized_var(valueLow);
  783. switch (queue_sel) {
  784. case (TX_SELE_HQ | TX_SELE_LQ):
  785. valueHi = QUEUE_HIGH;
  786. valueLow = QUEUE_LOW;
  787. break;
  788. case (TX_SELE_NQ | TX_SELE_LQ):
  789. valueHi = QUEUE_NORMAL;
  790. valueLow = QUEUE_LOW;
  791. break;
  792. case (TX_SELE_HQ | TX_SELE_NQ):
  793. valueHi = QUEUE_HIGH;
  794. valueLow = QUEUE_NORMAL;
  795. break;
  796. default:
  797. WARN_ON(1);
  798. break;
  799. }
  800. if (!wmm_enable) {
  801. beQ = valueLow;
  802. bkQ = valueLow;
  803. viQ = valueHi;
  804. voQ = valueHi;
  805. mgtQ = valueHi;
  806. hiQ = valueHi;
  807. } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
  808. beQ = valueHi;
  809. bkQ = valueLow;
  810. viQ = valueLow;
  811. voQ = valueHi;
  812. mgtQ = valueHi;
  813. hiQ = valueHi;
  814. }
  815. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  816. pr_info("Tx queue select: 0x%02x\n", queue_sel);
  817. }
  818. static void _rtl92cu_init_chipN_three_out_ep_priority(struct ieee80211_hw *hw,
  819. bool wmm_enable,
  820. u8 queue_sel)
  821. {
  822. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  823. struct rtl_priv *rtlpriv = rtl_priv(hw);
  824. if (!wmm_enable) { /* typical setting */
  825. beQ = QUEUE_LOW;
  826. bkQ = QUEUE_LOW;
  827. viQ = QUEUE_NORMAL;
  828. voQ = QUEUE_HIGH;
  829. mgtQ = QUEUE_HIGH;
  830. hiQ = QUEUE_HIGH;
  831. } else { /* for WMM */
  832. beQ = QUEUE_LOW;
  833. bkQ = QUEUE_NORMAL;
  834. viQ = QUEUE_NORMAL;
  835. voQ = QUEUE_HIGH;
  836. mgtQ = QUEUE_HIGH;
  837. hiQ = QUEUE_HIGH;
  838. }
  839. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  840. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Tx queue select :0x%02x..\n",
  841. queue_sel);
  842. }
  843. static void _rtl92cu_init_chipN_queue_priority(struct ieee80211_hw *hw,
  844. bool wmm_enable,
  845. u8 out_ep_num,
  846. u8 queue_sel)
  847. {
  848. switch (out_ep_num) {
  849. case 1:
  850. _rtl92cu_init_chipN_one_out_ep_priority(hw, wmm_enable,
  851. queue_sel);
  852. break;
  853. case 2:
  854. _rtl92cu_init_chipN_two_out_ep_priority(hw, wmm_enable,
  855. queue_sel);
  856. break;
  857. case 3:
  858. _rtl92cu_init_chipN_three_out_ep_priority(hw, wmm_enable,
  859. queue_sel);
  860. break;
  861. default:
  862. WARN_ON(1); /* Shall not reach here! */
  863. break;
  864. }
  865. }
  866. static void _rtl92cu_init_chipT_queue_priority(struct ieee80211_hw *hw,
  867. bool wmm_enable,
  868. u8 out_ep_num,
  869. u8 queue_sel)
  870. {
  871. u8 hq_sele = 0;
  872. struct rtl_priv *rtlpriv = rtl_priv(hw);
  873. switch (out_ep_num) {
  874. case 2: /* (TX_SELE_HQ|TX_SELE_LQ) */
  875. if (!wmm_enable) /* typical setting */
  876. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_MGTQ |
  877. HQSEL_HIQ;
  878. else /* for WMM */
  879. hq_sele = HQSEL_VOQ | HQSEL_BEQ | HQSEL_MGTQ |
  880. HQSEL_HIQ;
  881. break;
  882. case 1:
  883. if (TX_SELE_LQ == queue_sel) {
  884. /* map all endpoint to Low queue */
  885. hq_sele = 0;
  886. } else if (TX_SELE_HQ == queue_sel) {
  887. /* map all endpoint to High queue */
  888. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_BEQ |
  889. HQSEL_BKQ | HQSEL_MGTQ | HQSEL_HIQ;
  890. }
  891. break;
  892. default:
  893. WARN_ON(1); /* Shall not reach here! */
  894. break;
  895. }
  896. rtl_write_byte(rtlpriv, (REG_TRXDMA_CTRL+1), hq_sele);
  897. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Tx queue select :0x%02x..\n",
  898. hq_sele);
  899. }
  900. static void _rtl92cu_init_queue_priority(struct ieee80211_hw *hw,
  901. bool wmm_enable,
  902. u8 out_ep_num,
  903. u8 queue_sel)
  904. {
  905. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  906. if (IS_NORMAL_CHIP(rtlhal->version))
  907. _rtl92cu_init_chipN_queue_priority(hw, wmm_enable, out_ep_num,
  908. queue_sel);
  909. else
  910. _rtl92cu_init_chipT_queue_priority(hw, wmm_enable, out_ep_num,
  911. queue_sel);
  912. }
  913. static void _rtl92cu_init_usb_aggregation(struct ieee80211_hw *hw)
  914. {
  915. }
  916. static void _rtl92cu_init_wmac_setting(struct ieee80211_hw *hw)
  917. {
  918. u16 value16;
  919. struct rtl_priv *rtlpriv = rtl_priv(hw);
  920. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  921. mac->rx_conf = (RCR_APM | RCR_AM | RCR_ADF | RCR_AB | RCR_APPFCS |
  922. RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
  923. RCR_APP_MIC | RCR_APP_PHYSTS | RCR_ACRC32);
  924. rtl_write_dword(rtlpriv, REG_RCR, mac->rx_conf);
  925. /* Accept all multicast address */
  926. rtl_write_dword(rtlpriv, REG_MAR, 0xFFFFFFFF);
  927. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xFFFFFFFF);
  928. /* Accept all management frames */
  929. value16 = 0xFFFF;
  930. rtl92c_set_mgt_filter(hw, value16);
  931. /* Reject all control frame - default value is 0 */
  932. rtl92c_set_ctrl_filter(hw, 0x0);
  933. /* Accept all data frames */
  934. value16 = 0xFFFF;
  935. rtl92c_set_data_filter(hw, value16);
  936. }
  937. static int _rtl92cu_init_mac(struct ieee80211_hw *hw)
  938. {
  939. struct rtl_priv *rtlpriv = rtl_priv(hw);
  940. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  941. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  942. struct rtl_usb *rtlusb = rtl_usbdev(usb_priv);
  943. int err = 0;
  944. u32 boundary = 0;
  945. u8 wmm_enable = false; /* TODO */
  946. u8 out_ep_nums = rtlusb->out_ep_nums;
  947. u8 queue_sel = rtlusb->out_queue_sel;
  948. err = _rtl92cu_init_power_on(hw);
  949. if (err) {
  950. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  951. "Failed to init power on!\n");
  952. return err;
  953. }
  954. if (!wmm_enable) {
  955. boundary = TX_PAGE_BOUNDARY;
  956. } else { /* for WMM */
  957. boundary = (IS_NORMAL_CHIP(rtlhal->version))
  958. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  959. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  960. }
  961. if (false == rtl92c_init_llt_table(hw, boundary)) {
  962. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  963. "Failed to init LLT Table!\n");
  964. return -EINVAL;
  965. }
  966. _rtl92cu_init_queue_reserved_page(hw, wmm_enable, out_ep_nums,
  967. queue_sel);
  968. _rtl92c_init_trx_buffer(hw, wmm_enable);
  969. _rtl92cu_init_queue_priority(hw, wmm_enable, out_ep_nums,
  970. queue_sel);
  971. /* Get Rx PHY status in order to report RSSI and others. */
  972. rtl92c_init_driver_info_size(hw, RTL92C_DRIVER_INFO_SIZE);
  973. rtl92c_init_interrupt(hw);
  974. rtl92c_init_network_type(hw);
  975. _rtl92cu_init_wmac_setting(hw);
  976. rtl92c_init_adaptive_ctrl(hw);
  977. rtl92c_init_edca(hw);
  978. rtl92c_init_rate_fallback(hw);
  979. rtl92c_init_retry_function(hw);
  980. _rtl92cu_init_usb_aggregation(hw);
  981. rtlpriv->cfg->ops->set_bw_mode(hw, NL80211_CHAN_HT20);
  982. rtl92c_set_min_space(hw, IS_92C_SERIAL(rtlhal->version));
  983. rtl92c_init_beacon_parameters(hw, rtlhal->version);
  984. rtl92c_init_ampdu_aggregation(hw);
  985. rtl92c_init_beacon_max_error(hw, true);
  986. return err;
  987. }
  988. void rtl92cu_enable_hw_security_config(struct ieee80211_hw *hw)
  989. {
  990. struct rtl_priv *rtlpriv = rtl_priv(hw);
  991. u8 sec_reg_value = 0x0;
  992. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  993. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  994. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  995. rtlpriv->sec.pairwise_enc_algorithm,
  996. rtlpriv->sec.group_enc_algorithm);
  997. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  998. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  999. "not open sw encryption\n");
  1000. return;
  1001. }
  1002. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  1003. if (rtlpriv->sec.use_defaultkey) {
  1004. sec_reg_value |= SCR_TxUseDK;
  1005. sec_reg_value |= SCR_RxUseDK;
  1006. }
  1007. if (IS_NORMAL_CHIP(rtlhal->version))
  1008. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  1009. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  1010. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
  1011. sec_reg_value);
  1012. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  1013. }
  1014. static void _rtl92cu_hw_configure(struct ieee80211_hw *hw)
  1015. {
  1016. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1017. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1018. /* To Fix MAC loopback mode fail. */
  1019. rtl_write_byte(rtlpriv, REG_LDOHCI12_CTRL, 0x0f);
  1020. rtl_write_byte(rtlpriv, 0x15, 0xe9);
  1021. /* HW SEQ CTRL */
  1022. /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
  1023. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  1024. /* fixed USB interface interference issue */
  1025. rtl_write_byte(rtlpriv, 0xfe40, 0xe0);
  1026. rtl_write_byte(rtlpriv, 0xfe41, 0x8d);
  1027. rtl_write_byte(rtlpriv, 0xfe42, 0x80);
  1028. rtlusb->reg_bcn_ctrl_val = 0x18;
  1029. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val);
  1030. }
  1031. static void _InitPABias(struct ieee80211_hw *hw)
  1032. {
  1033. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1034. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1035. u8 pa_setting;
  1036. /* FIXED PA current issue */
  1037. pa_setting = efuse_read_1byte(hw, 0x1FA);
  1038. if (!(pa_setting & BIT(0))) {
  1039. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
  1040. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
  1041. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
  1042. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
  1043. }
  1044. if (!(pa_setting & BIT(1)) && IS_NORMAL_CHIP(rtlhal->version) &&
  1045. IS_92C_SERIAL(rtlhal->version)) {
  1046. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
  1047. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
  1048. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
  1049. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
  1050. }
  1051. if (!(pa_setting & BIT(4))) {
  1052. pa_setting = rtl_read_byte(rtlpriv, 0x16);
  1053. pa_setting &= 0x0F;
  1054. rtl_write_byte(rtlpriv, 0x16, pa_setting | 0x90);
  1055. }
  1056. }
  1057. static void _InitAntenna_Selection(struct ieee80211_hw *hw)
  1058. {
  1059. #ifdef CONFIG_ANTENNA_DIVERSITY
  1060. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1061. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1062. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1063. if (pHalData->AntDivCfg == 0)
  1064. return;
  1065. if (rtlphy->rf_type == RF_1T1R) {
  1066. rtl_write_dword(rtlpriv, REG_LEDCFG0,
  1067. rtl_read_dword(rtlpriv,
  1068. REG_LEDCFG0)|BIT(23));
  1069. rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
  1070. if (rtl_get_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, 0x300) ==
  1071. Antenna_A)
  1072. pHalData->CurAntenna = Antenna_A;
  1073. else
  1074. pHalData->CurAntenna = Antenna_B;
  1075. }
  1076. #endif
  1077. }
  1078. static void _dump_registers(struct ieee80211_hw *hw)
  1079. {
  1080. }
  1081. static void _update_mac_setting(struct ieee80211_hw *hw)
  1082. {
  1083. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1084. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1085. mac->rx_conf = rtl_read_dword(rtlpriv, REG_RCR);
  1086. mac->rx_mgt_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1087. mac->rx_ctrl_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1088. mac->rx_data_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1089. }
  1090. int rtl92cu_hw_init(struct ieee80211_hw *hw)
  1091. {
  1092. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1093. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1094. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1095. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1096. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1097. int err = 0;
  1098. static bool iqk_initialized;
  1099. rtlhal->hw_type = HARDWARE_TYPE_RTL8192CU;
  1100. err = _rtl92cu_init_mac(hw);
  1101. if (err) {
  1102. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "init mac failed!\n");
  1103. return err;
  1104. }
  1105. err = rtl92c_download_fw(hw);
  1106. if (err) {
  1107. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1108. "Failed to download FW. Init HW without FW now..\n");
  1109. err = 1;
  1110. rtlhal->fw_ready = false;
  1111. return err;
  1112. } else {
  1113. rtlhal->fw_ready = true;
  1114. }
  1115. rtlhal->last_hmeboxnum = 0; /* h2c */
  1116. _rtl92cu_phy_param_tab_init(hw);
  1117. rtl92cu_phy_mac_config(hw);
  1118. rtl92cu_phy_bb_config(hw);
  1119. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  1120. rtl92c_phy_rf_config(hw);
  1121. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  1122. !IS_92C_SERIAL(rtlhal->version)) {
  1123. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  1124. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  1125. }
  1126. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  1127. RF_CHNLBW, RFREG_OFFSET_MASK);
  1128. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  1129. RF_CHNLBW, RFREG_OFFSET_MASK);
  1130. rtl92cu_bb_block_on(hw);
  1131. rtl_cam_reset_all_entry(hw);
  1132. rtl92cu_enable_hw_security_config(hw);
  1133. ppsc->rfpwr_state = ERFON;
  1134. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  1135. if (ppsc->rfpwr_state == ERFON) {
  1136. rtl92c_phy_set_rfpath_switch(hw, 1);
  1137. if (iqk_initialized) {
  1138. rtl92c_phy_iq_calibrate(hw, false);
  1139. } else {
  1140. rtl92c_phy_iq_calibrate(hw, false);
  1141. iqk_initialized = true;
  1142. }
  1143. rtl92c_dm_check_txpower_tracking(hw);
  1144. rtl92c_phy_lc_calibrate(hw);
  1145. }
  1146. _rtl92cu_hw_configure(hw);
  1147. _InitPABias(hw);
  1148. _InitAntenna_Selection(hw);
  1149. _update_mac_setting(hw);
  1150. rtl92c_dm_init(hw);
  1151. _dump_registers(hw);
  1152. return err;
  1153. }
  1154. static void _DisableRFAFEAndResetBB(struct ieee80211_hw *hw)
  1155. {
  1156. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1157. /**************************************
  1158. a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue
  1159. b. RF path 0 offset 0x00 = 0x00 disable RF
  1160. c. APSD_CTRL 0x600[7:0] = 0x40
  1161. d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine
  1162. e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine
  1163. ***************************************/
  1164. u8 eRFPath = 0, value8 = 0;
  1165. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1166. rtl_set_rfreg(hw, (enum radio_path)eRFPath, 0x0, MASKBYTE0, 0x0);
  1167. value8 |= APSDOFF;
  1168. rtl_write_byte(rtlpriv, REG_APSD_CTRL, value8); /*0x40*/
  1169. value8 = 0;
  1170. value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
  1171. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8);/*0x16*/
  1172. value8 &= (~FEN_BB_GLB_RSTn);
  1173. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8); /*0x14*/
  1174. }
  1175. static void _ResetDigitalProcedure1(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1176. {
  1177. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1178. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1179. if (rtlhal->fw_version <= 0x20) {
  1180. /*****************************
  1181. f. MCUFWDL 0x80[7:0]=0 reset MCU ready status
  1182. g. SYS_FUNC_EN 0x02[10]= 0 reset MCU reg, (8051 reset)
  1183. h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC reg, DCORE
  1184. i. SYS_FUNC_EN 0x02[10]= 1 enable MCU reg, (8051 enable)
  1185. ******************************/
  1186. u16 valu16 = 0;
  1187. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1188. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1189. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 &
  1190. (~FEN_CPUEN))); /* reset MCU ,8051 */
  1191. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN)&0x0FFF;
  1192. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1193. (FEN_HWPDN|FEN_ELDR))); /* reset MAC */
  1194. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1195. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1196. FEN_CPUEN)); /* enable MCU ,8051 */
  1197. } else {
  1198. u8 retry_cnts = 0;
  1199. /* IF fw in RAM code, do reset */
  1200. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(1)) {
  1201. /* reset MCU ready status */
  1202. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1203. if (rtlhal->fw_ready) {
  1204. /* 8051 reset by self */
  1205. rtl_write_byte(rtlpriv, REG_HMETFR+3, 0x20);
  1206. while ((retry_cnts++ < 100) &&
  1207. (FEN_CPUEN & rtl_read_word(rtlpriv,
  1208. REG_SYS_FUNC_EN))) {
  1209. udelay(50);
  1210. }
  1211. if (retry_cnts >= 100) {
  1212. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1213. "#####=> 8051 reset failed!.........................\n");
  1214. /* if 8051 reset fail, reset MAC. */
  1215. rtl_write_byte(rtlpriv,
  1216. REG_SYS_FUNC_EN + 1,
  1217. 0x50);
  1218. udelay(100);
  1219. }
  1220. }
  1221. }
  1222. /* Reset MAC and Enable 8051 */
  1223. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x54);
  1224. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1225. }
  1226. if (bWithoutHWSM) {
  1227. /*****************************
  1228. Without HW auto state machine
  1229. g.SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock
  1230. h.AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL
  1231. i.AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK
  1232. j.SYS_ISu_CTRL 0x00[7:0] = 0xF9 isolated digital to PON
  1233. ******************************/
  1234. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1235. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1236. rtl_write_word(rtlpriv, REG_AFE_XTAL_CTRL, 0x880F);
  1237. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xF9);
  1238. }
  1239. }
  1240. static void _ResetDigitalProcedure2(struct ieee80211_hw *hw)
  1241. {
  1242. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1243. /*****************************
  1244. k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction
  1245. l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock
  1246. m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON
  1247. ******************************/
  1248. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1249. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL+1, 0x82);
  1250. }
  1251. static void _DisableGPIO(struct ieee80211_hw *hw)
  1252. {
  1253. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1254. /***************************************
  1255. j. GPIO_PIN_CTRL 0x44[31:0]=0x000
  1256. k. Value = GPIO_PIN_CTRL[7:0]
  1257. l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write ext PIN level
  1258. m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
  1259. n. LEDCFG 0x4C[15:0] = 0x8080
  1260. ***************************************/
  1261. u8 value8;
  1262. u16 value16;
  1263. u32 value32;
  1264. /* 1. Disable GPIO[7:0] */
  1265. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, 0x0000);
  1266. value32 = rtl_read_dword(rtlpriv, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
  1267. value8 = (u8) (value32&0x000000FF);
  1268. value32 |= ((value8<<8) | 0x00FF0000);
  1269. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, value32);
  1270. /* 2. Disable GPIO[10:8] */
  1271. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+3, 0x00);
  1272. value16 = rtl_read_word(rtlpriv, REG_GPIO_MUXCFG+2) & 0xFF0F;
  1273. value8 = (u8) (value16&0x000F);
  1274. value16 |= ((value8<<4) | 0x0780);
  1275. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, value16);
  1276. /* 3. Disable LED0 & 1 */
  1277. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1278. }
  1279. static void _DisableAnalog(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1280. {
  1281. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1282. u16 value16 = 0;
  1283. u8 value8 = 0;
  1284. if (bWithoutHWSM) {
  1285. /*****************************
  1286. n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power
  1287. o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power
  1288. r. When driver call disable, the ASIC will turn off remaining
  1289. clock automatically
  1290. ******************************/
  1291. rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
  1292. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  1293. value8 &= (~LDV12_EN);
  1294. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  1295. }
  1296. /*****************************
  1297. h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode
  1298. i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend
  1299. ******************************/
  1300. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1301. value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
  1302. rtl_write_word(rtlpriv, REG_APS_FSMCO, (u16)value16);
  1303. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
  1304. }
  1305. static void _CardDisableHWSM(struct ieee80211_hw *hw)
  1306. {
  1307. /* ==== RF Off Sequence ==== */
  1308. _DisableRFAFEAndResetBB(hw);
  1309. /* ==== Reset digital sequence ====== */
  1310. _ResetDigitalProcedure1(hw, false);
  1311. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1312. _DisableGPIO(hw);
  1313. /* ==== Disable analog sequence === */
  1314. _DisableAnalog(hw, false);
  1315. }
  1316. static void _CardDisableWithoutHWSM(struct ieee80211_hw *hw)
  1317. {
  1318. /*==== RF Off Sequence ==== */
  1319. _DisableRFAFEAndResetBB(hw);
  1320. /* ==== Reset digital sequence ====== */
  1321. _ResetDigitalProcedure1(hw, true);
  1322. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1323. _DisableGPIO(hw);
  1324. /* ==== Reset digital sequence ====== */
  1325. _ResetDigitalProcedure2(hw);
  1326. /* ==== Disable analog sequence === */
  1327. _DisableAnalog(hw, true);
  1328. }
  1329. static void _rtl92cu_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  1330. u8 set_bits, u8 clear_bits)
  1331. {
  1332. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1333. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1334. rtlusb->reg_bcn_ctrl_val |= set_bits;
  1335. rtlusb->reg_bcn_ctrl_val &= ~clear_bits;
  1336. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlusb->reg_bcn_ctrl_val);
  1337. }
  1338. static void _rtl92cu_stop_tx_beacon(struct ieee80211_hw *hw)
  1339. {
  1340. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1341. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1342. u8 tmp1byte = 0;
  1343. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1344. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1345. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1346. tmp1byte & (~BIT(6)));
  1347. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  1348. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1349. tmp1byte &= ~(BIT(0));
  1350. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1351. } else {
  1352. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1353. rtl_read_byte(rtlpriv, REG_TXPAUSE) | BIT(6));
  1354. }
  1355. }
  1356. static void _rtl92cu_resume_tx_beacon(struct ieee80211_hw *hw)
  1357. {
  1358. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1359. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1360. u8 tmp1byte = 0;
  1361. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1362. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1363. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1364. tmp1byte | BIT(6));
  1365. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  1366. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1367. tmp1byte |= BIT(0);
  1368. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1369. } else {
  1370. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1371. rtl_read_byte(rtlpriv, REG_TXPAUSE) & (~BIT(6)));
  1372. }
  1373. }
  1374. static void _rtl92cu_enable_bcn_sub_func(struct ieee80211_hw *hw)
  1375. {
  1376. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1377. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1378. if (IS_NORMAL_CHIP(rtlhal->version))
  1379. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(1));
  1380. else
  1381. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1382. }
  1383. static void _rtl92cu_disable_bcn_sub_func(struct ieee80211_hw *hw)
  1384. {
  1385. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1386. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1387. if (IS_NORMAL_CHIP(rtlhal->version))
  1388. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(1), 0);
  1389. else
  1390. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1391. }
  1392. static int _rtl92cu_set_media_status(struct ieee80211_hw *hw,
  1393. enum nl80211_iftype type)
  1394. {
  1395. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1396. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  1397. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1398. bt_msr &= 0xfc;
  1399. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF);
  1400. if (type == NL80211_IFTYPE_UNSPECIFIED || type ==
  1401. NL80211_IFTYPE_STATION) {
  1402. _rtl92cu_stop_tx_beacon(hw);
  1403. _rtl92cu_enable_bcn_sub_func(hw);
  1404. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
  1405. _rtl92cu_resume_tx_beacon(hw);
  1406. _rtl92cu_disable_bcn_sub_func(hw);
  1407. } else {
  1408. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1409. "Set HW_VAR_MEDIA_STATUS:No such media status(%x)\n",
  1410. type);
  1411. }
  1412. switch (type) {
  1413. case NL80211_IFTYPE_UNSPECIFIED:
  1414. bt_msr |= MSR_NOLINK;
  1415. ledaction = LED_CTL_LINK;
  1416. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1417. "Set Network type to NO LINK!\n");
  1418. break;
  1419. case NL80211_IFTYPE_ADHOC:
  1420. bt_msr |= MSR_ADHOC;
  1421. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1422. "Set Network type to Ad Hoc!\n");
  1423. break;
  1424. case NL80211_IFTYPE_STATION:
  1425. bt_msr |= MSR_INFRA;
  1426. ledaction = LED_CTL_LINK;
  1427. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1428. "Set Network type to STA!\n");
  1429. break;
  1430. case NL80211_IFTYPE_AP:
  1431. bt_msr |= MSR_AP;
  1432. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1433. "Set Network type to AP!\n");
  1434. break;
  1435. default:
  1436. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1437. "Network type %d not supported!\n", type);
  1438. goto error_out;
  1439. }
  1440. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1441. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1442. if ((bt_msr & 0xfc) == MSR_AP)
  1443. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1444. else
  1445. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1446. return 0;
  1447. error_out:
  1448. return 1;
  1449. }
  1450. void rtl92cu_card_disable(struct ieee80211_hw *hw)
  1451. {
  1452. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1453. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1454. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1455. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1456. enum nl80211_iftype opmode;
  1457. mac->link_state = MAC80211_NOLINK;
  1458. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1459. _rtl92cu_set_media_status(hw, opmode);
  1460. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1461. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1462. if (rtlusb->disableHWSM)
  1463. _CardDisableHWSM(hw);
  1464. else
  1465. _CardDisableWithoutHWSM(hw);
  1466. }
  1467. void rtl92cu_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1468. {
  1469. /* dummy routine needed for callback from rtl_op_configure_filter() */
  1470. }
  1471. /*========================================================================== */
  1472. static void _rtl92cu_set_check_bssid(struct ieee80211_hw *hw,
  1473. enum nl80211_iftype type)
  1474. {
  1475. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1476. u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1477. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1478. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1479. u8 filterout_non_associated_bssid = false;
  1480. switch (type) {
  1481. case NL80211_IFTYPE_ADHOC:
  1482. case NL80211_IFTYPE_STATION:
  1483. filterout_non_associated_bssid = true;
  1484. break;
  1485. case NL80211_IFTYPE_UNSPECIFIED:
  1486. case NL80211_IFTYPE_AP:
  1487. default:
  1488. break;
  1489. }
  1490. if (filterout_non_associated_bssid) {
  1491. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1492. switch (rtlphy->current_io_type) {
  1493. case IO_CMD_RESUME_DM_BY_SCAN:
  1494. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1495. rtlpriv->cfg->ops->set_hw_reg(hw,
  1496. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1497. /* enable update TSF */
  1498. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1499. break;
  1500. case IO_CMD_PAUSE_DM_BY_SCAN:
  1501. reg_rcr &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1502. rtlpriv->cfg->ops->set_hw_reg(hw,
  1503. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1504. /* disable update TSF */
  1505. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1506. break;
  1507. }
  1508. } else {
  1509. reg_rcr |= (RCR_CBSSID);
  1510. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1511. (u8 *)(&reg_rcr));
  1512. _rtl92cu_set_bcn_ctrl_reg(hw, 0, (BIT(4)|BIT(5)));
  1513. }
  1514. } else if (filterout_non_associated_bssid == false) {
  1515. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1516. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1517. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1518. (u8 *)(&reg_rcr));
  1519. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1520. } else {
  1521. reg_rcr &= (~RCR_CBSSID);
  1522. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1523. (u8 *)(&reg_rcr));
  1524. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4)|BIT(5)), 0);
  1525. }
  1526. }
  1527. }
  1528. int rtl92cu_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1529. {
  1530. if (_rtl92cu_set_media_status(hw, type))
  1531. return -EOPNOTSUPP;
  1532. _rtl92cu_set_check_bssid(hw, type);
  1533. return 0;
  1534. }
  1535. static void _InitBeaconParameters(struct ieee80211_hw *hw)
  1536. {
  1537. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1538. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1539. rtl_write_word(rtlpriv, REG_BCN_CTRL, 0x1010);
  1540. /* TODO: Remove these magic number */
  1541. rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404);
  1542. rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
  1543. rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
  1544. /* Change beacon AIFS to the largest number
  1545. * beacause test chip does not contension before sending beacon. */
  1546. if (IS_NORMAL_CHIP(rtlhal->version))
  1547. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F);
  1548. else
  1549. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF);
  1550. }
  1551. static void _beacon_function_enable(struct ieee80211_hw *hw, bool Enable,
  1552. bool Linked)
  1553. {
  1554. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1555. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4) | BIT(3) | BIT(1)), 0x00);
  1556. rtl_write_byte(rtlpriv, REG_RD_CTRL+1, 0x6F);
  1557. }
  1558. void rtl92cu_set_beacon_related_registers(struct ieee80211_hw *hw)
  1559. {
  1560. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1561. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1562. u16 bcn_interval, atim_window;
  1563. u32 value32;
  1564. bcn_interval = mac->beacon_interval;
  1565. atim_window = 2; /*FIX MERGE */
  1566. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1567. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1568. _InitBeaconParameters(hw);
  1569. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  1570. /*
  1571. * Force beacon frame transmission even after receiving beacon frame
  1572. * from other ad hoc STA
  1573. *
  1574. *
  1575. * Reset TSF Timer to zero, added by Roger. 2008.06.24
  1576. */
  1577. value32 = rtl_read_dword(rtlpriv, REG_TCR);
  1578. value32 &= ~TSFRST;
  1579. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1580. value32 |= TSFRST;
  1581. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1582. RT_TRACE(rtlpriv, COMP_INIT|COMP_BEACON, DBG_LOUD,
  1583. "SetBeaconRelatedRegisters8192CUsb(): Set TCR(%x)\n",
  1584. value32);
  1585. /* TODO: Modify later (Find the right parameters)
  1586. * NOTE: Fix test chip's bug (about contention windows's randomness) */
  1587. if ((mac->opmode == NL80211_IFTYPE_ADHOC) ||
  1588. (mac->opmode == NL80211_IFTYPE_AP)) {
  1589. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x50);
  1590. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x50);
  1591. }
  1592. _beacon_function_enable(hw, true, true);
  1593. }
  1594. void rtl92cu_set_beacon_interval(struct ieee80211_hw *hw)
  1595. {
  1596. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1597. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1598. u16 bcn_interval = mac->beacon_interval;
  1599. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n",
  1600. bcn_interval);
  1601. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1602. }
  1603. void rtl92cu_update_interrupt_mask(struct ieee80211_hw *hw,
  1604. u32 add_msr, u32 rm_msr)
  1605. {
  1606. }
  1607. void rtl92cu_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1608. {
  1609. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1610. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1611. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1612. switch (variable) {
  1613. case HW_VAR_RCR:
  1614. *((u32 *)(val)) = mac->rx_conf;
  1615. break;
  1616. case HW_VAR_RF_STATE:
  1617. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  1618. break;
  1619. case HW_VAR_FWLPS_RF_ON:{
  1620. enum rf_pwrstate rfState;
  1621. u32 val_rcr;
  1622. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  1623. (u8 *)(&rfState));
  1624. if (rfState == ERFOFF) {
  1625. *((bool *) (val)) = true;
  1626. } else {
  1627. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1628. val_rcr &= 0x00070000;
  1629. if (val_rcr)
  1630. *((bool *) (val)) = false;
  1631. else
  1632. *((bool *) (val)) = true;
  1633. }
  1634. break;
  1635. }
  1636. case HW_VAR_FW_PSMODE_STATUS:
  1637. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  1638. break;
  1639. case HW_VAR_CORRECT_TSF:{
  1640. u64 tsf;
  1641. u32 *ptsf_low = (u32 *)&tsf;
  1642. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  1643. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  1644. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  1645. *((u64 *)(val)) = tsf;
  1646. break;
  1647. }
  1648. case HW_VAR_MGT_FILTER:
  1649. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1650. break;
  1651. case HW_VAR_CTRL_FILTER:
  1652. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1653. break;
  1654. case HW_VAR_DATA_FILTER:
  1655. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1656. break;
  1657. default:
  1658. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1659. "switch case not processed\n");
  1660. break;
  1661. }
  1662. }
  1663. void rtl92cu_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1664. {
  1665. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1666. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1667. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1668. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1669. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1670. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1671. enum wireless_mode wirelessmode = mac->mode;
  1672. u8 idx = 0;
  1673. switch (variable) {
  1674. case HW_VAR_ETHER_ADDR:{
  1675. for (idx = 0; idx < ETH_ALEN; idx++) {
  1676. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  1677. val[idx]);
  1678. }
  1679. break;
  1680. }
  1681. case HW_VAR_BASIC_RATE:{
  1682. u16 rate_cfg = ((u16 *) val)[0];
  1683. u8 rate_index = 0;
  1684. rate_cfg &= 0x15f;
  1685. /* TODO */
  1686. /* if (mac->current_network.vender == HT_IOT_PEER_CISCO
  1687. * && ((rate_cfg & 0x150) == 0)) {
  1688. * rate_cfg |= 0x010;
  1689. * } */
  1690. rate_cfg |= 0x01;
  1691. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  1692. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  1693. (rate_cfg >> 8) & 0xff);
  1694. while (rate_cfg > 0x1) {
  1695. rate_cfg >>= 1;
  1696. rate_index++;
  1697. }
  1698. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  1699. rate_index);
  1700. break;
  1701. }
  1702. case HW_VAR_BSSID:{
  1703. for (idx = 0; idx < ETH_ALEN; idx++) {
  1704. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  1705. val[idx]);
  1706. }
  1707. break;
  1708. }
  1709. case HW_VAR_SIFS:{
  1710. rtl_write_byte(rtlpriv, REG_SIFS_CCK + 1, val[0]);
  1711. rtl_write_byte(rtlpriv, REG_SIFS_OFDM + 1, val[1]);
  1712. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  1713. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  1714. rtl_write_byte(rtlpriv, REG_R2T_SIFS+1, val[0]);
  1715. rtl_write_byte(rtlpriv, REG_T2T_SIFS+1, val[0]);
  1716. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SIFS\n");
  1717. break;
  1718. }
  1719. case HW_VAR_SLOT_TIME:{
  1720. u8 e_aci;
  1721. u8 QOS_MODE = 1;
  1722. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  1723. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1724. "HW_VAR_SLOT_TIME %x\n", val[0]);
  1725. if (QOS_MODE) {
  1726. for (e_aci = 0; e_aci < AC_MAX; e_aci++)
  1727. rtlpriv->cfg->ops->set_hw_reg(hw,
  1728. HW_VAR_AC_PARAM,
  1729. (u8 *)(&e_aci));
  1730. } else {
  1731. u8 sifstime = 0;
  1732. u8 u1bAIFS;
  1733. if (IS_WIRELESS_MODE_A(wirelessmode) ||
  1734. IS_WIRELESS_MODE_N_24G(wirelessmode) ||
  1735. IS_WIRELESS_MODE_N_5G(wirelessmode))
  1736. sifstime = 16;
  1737. else
  1738. sifstime = 10;
  1739. u1bAIFS = sifstime + (2 * val[0]);
  1740. rtl_write_byte(rtlpriv, REG_EDCA_VO_PARAM,
  1741. u1bAIFS);
  1742. rtl_write_byte(rtlpriv, REG_EDCA_VI_PARAM,
  1743. u1bAIFS);
  1744. rtl_write_byte(rtlpriv, REG_EDCA_BE_PARAM,
  1745. u1bAIFS);
  1746. rtl_write_byte(rtlpriv, REG_EDCA_BK_PARAM,
  1747. u1bAIFS);
  1748. }
  1749. break;
  1750. }
  1751. case HW_VAR_ACK_PREAMBLE:{
  1752. u8 reg_tmp;
  1753. u8 short_preamble = (bool) (*(u8 *) val);
  1754. reg_tmp = 0;
  1755. if (short_preamble)
  1756. reg_tmp |= 0x80;
  1757. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  1758. break;
  1759. }
  1760. case HW_VAR_AMPDU_MIN_SPACE:{
  1761. u8 min_spacing_to_set;
  1762. u8 sec_min_space;
  1763. min_spacing_to_set = *((u8 *) val);
  1764. if (min_spacing_to_set <= 7) {
  1765. switch (rtlpriv->sec.pairwise_enc_algorithm) {
  1766. case NO_ENCRYPTION:
  1767. case AESCCMP_ENCRYPTION:
  1768. sec_min_space = 0;
  1769. break;
  1770. case WEP40_ENCRYPTION:
  1771. case WEP104_ENCRYPTION:
  1772. case TKIP_ENCRYPTION:
  1773. sec_min_space = 6;
  1774. break;
  1775. default:
  1776. sec_min_space = 7;
  1777. break;
  1778. }
  1779. if (min_spacing_to_set < sec_min_space)
  1780. min_spacing_to_set = sec_min_space;
  1781. mac->min_space_cfg = ((mac->min_space_cfg &
  1782. 0xf8) |
  1783. min_spacing_to_set);
  1784. *val = min_spacing_to_set;
  1785. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1786. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  1787. mac->min_space_cfg);
  1788. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1789. mac->min_space_cfg);
  1790. }
  1791. break;
  1792. }
  1793. case HW_VAR_SHORTGI_DENSITY:{
  1794. u8 density_to_set;
  1795. density_to_set = *((u8 *) val);
  1796. density_to_set &= 0x1f;
  1797. mac->min_space_cfg &= 0x07;
  1798. mac->min_space_cfg |= (density_to_set << 3);
  1799. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1800. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  1801. mac->min_space_cfg);
  1802. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1803. mac->min_space_cfg);
  1804. break;
  1805. }
  1806. case HW_VAR_AMPDU_FACTOR:{
  1807. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  1808. u8 factor_toset;
  1809. u8 *p_regtoset = NULL;
  1810. u8 index = 0;
  1811. p_regtoset = regtoset_normal;
  1812. factor_toset = *((u8 *) val);
  1813. if (factor_toset <= 3) {
  1814. factor_toset = (1 << (factor_toset + 2));
  1815. if (factor_toset > 0xf)
  1816. factor_toset = 0xf;
  1817. for (index = 0; index < 4; index++) {
  1818. if ((p_regtoset[index] & 0xf0) >
  1819. (factor_toset << 4))
  1820. p_regtoset[index] =
  1821. (p_regtoset[index] & 0x0f)
  1822. | (factor_toset << 4);
  1823. if ((p_regtoset[index] & 0x0f) >
  1824. factor_toset)
  1825. p_regtoset[index] =
  1826. (p_regtoset[index] & 0xf0)
  1827. | (factor_toset);
  1828. rtl_write_byte(rtlpriv,
  1829. (REG_AGGLEN_LMT + index),
  1830. p_regtoset[index]);
  1831. }
  1832. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1833. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  1834. factor_toset);
  1835. }
  1836. break;
  1837. }
  1838. case HW_VAR_AC_PARAM:{
  1839. u8 e_aci = *((u8 *) val);
  1840. u32 u4b_ac_param;
  1841. u16 cw_min = le16_to_cpu(mac->ac[e_aci].cw_min);
  1842. u16 cw_max = le16_to_cpu(mac->ac[e_aci].cw_max);
  1843. u16 tx_op = le16_to_cpu(mac->ac[e_aci].tx_op);
  1844. u4b_ac_param = (u32) mac->ac[e_aci].aifs;
  1845. u4b_ac_param |= (u32) ((cw_min & 0xF) <<
  1846. AC_PARAM_ECW_MIN_OFFSET);
  1847. u4b_ac_param |= (u32) ((cw_max & 0xF) <<
  1848. AC_PARAM_ECW_MAX_OFFSET);
  1849. u4b_ac_param |= (u32) tx_op << AC_PARAM_TXOP_OFFSET;
  1850. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1851. "queue:%x, ac_param:%x\n",
  1852. e_aci, u4b_ac_param);
  1853. switch (e_aci) {
  1854. case AC1_BK:
  1855. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM,
  1856. u4b_ac_param);
  1857. break;
  1858. case AC0_BE:
  1859. rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM,
  1860. u4b_ac_param);
  1861. break;
  1862. case AC2_VI:
  1863. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM,
  1864. u4b_ac_param);
  1865. break;
  1866. case AC3_VO:
  1867. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM,
  1868. u4b_ac_param);
  1869. break;
  1870. default:
  1871. RT_ASSERT(false, ("SetHwReg8185(): invalid"
  1872. " aci: %d !\n", e_aci));
  1873. break;
  1874. }
  1875. if (rtlusb->acm_method != eAcmWay2_SW)
  1876. rtlpriv->cfg->ops->set_hw_reg(hw,
  1877. HW_VAR_ACM_CTRL, (u8 *)(&e_aci));
  1878. break;
  1879. }
  1880. case HW_VAR_ACM_CTRL:{
  1881. u8 e_aci = *((u8 *) val);
  1882. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)
  1883. (&(mac->ac[0].aifs));
  1884. u8 acm = p_aci_aifsn->f.acm;
  1885. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  1886. acm_ctrl =
  1887. acm_ctrl | ((rtlusb->acm_method == 2) ? 0x0 : 0x1);
  1888. if (acm) {
  1889. switch (e_aci) {
  1890. case AC0_BE:
  1891. acm_ctrl |= AcmHw_BeqEn;
  1892. break;
  1893. case AC2_VI:
  1894. acm_ctrl |= AcmHw_ViqEn;
  1895. break;
  1896. case AC3_VO:
  1897. acm_ctrl |= AcmHw_VoqEn;
  1898. break;
  1899. default:
  1900. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1901. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  1902. acm);
  1903. break;
  1904. }
  1905. } else {
  1906. switch (e_aci) {
  1907. case AC0_BE:
  1908. acm_ctrl &= (~AcmHw_BeqEn);
  1909. break;
  1910. case AC2_VI:
  1911. acm_ctrl &= (~AcmHw_ViqEn);
  1912. break;
  1913. case AC3_VO:
  1914. acm_ctrl &= (~AcmHw_BeqEn);
  1915. break;
  1916. default:
  1917. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1918. "switch case not processed\n");
  1919. break;
  1920. }
  1921. }
  1922. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  1923. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  1924. acm_ctrl);
  1925. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  1926. break;
  1927. }
  1928. case HW_VAR_RCR:{
  1929. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  1930. mac->rx_conf = ((u32 *) (val))[0];
  1931. RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
  1932. "### Set RCR(0x%08x) ###\n", mac->rx_conf);
  1933. break;
  1934. }
  1935. case HW_VAR_RETRY_LIMIT:{
  1936. u8 retry_limit = ((u8 *) (val))[0];
  1937. rtl_write_word(rtlpriv, REG_RL,
  1938. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  1939. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  1940. RT_TRACE(rtlpriv, COMP_MLME, DBG_DMESG,
  1941. "Set HW_VAR_RETRY_LIMIT(0x%08x)\n",
  1942. retry_limit);
  1943. break;
  1944. }
  1945. case HW_VAR_DUAL_TSF_RST:
  1946. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  1947. break;
  1948. case HW_VAR_EFUSE_BYTES:
  1949. rtlefuse->efuse_usedbytes = *((u16 *) val);
  1950. break;
  1951. case HW_VAR_EFUSE_USAGE:
  1952. rtlefuse->efuse_usedpercentage = *((u8 *) val);
  1953. break;
  1954. case HW_VAR_IO_CMD:
  1955. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  1956. break;
  1957. case HW_VAR_WPA_CONFIG:
  1958. rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
  1959. break;
  1960. case HW_VAR_SET_RPWM:{
  1961. u8 rpwm_val = rtl_read_byte(rtlpriv, REG_USB_HRPWM);
  1962. if (rpwm_val & BIT(7))
  1963. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1964. (*(u8 *)val));
  1965. else
  1966. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1967. ((*(u8 *)val) | BIT(7)));
  1968. break;
  1969. }
  1970. case HW_VAR_H2C_FW_PWRMODE:{
  1971. u8 psmode = (*(u8 *) val);
  1972. if ((psmode != FW_PS_ACTIVE_MODE) &&
  1973. (!IS_92C_SERIAL(rtlhal->version)))
  1974. rtl92c_dm_rf_saving(hw, true);
  1975. rtl92c_set_fw_pwrmode_cmd(hw, (*(u8 *) val));
  1976. break;
  1977. }
  1978. case HW_VAR_FW_PSMODE_STATUS:
  1979. ppsc->fw_current_inpsmode = *((bool *) val);
  1980. break;
  1981. case HW_VAR_H2C_FW_JOINBSSRPT:{
  1982. u8 mstatus = (*(u8 *) val);
  1983. u8 tmp_reg422;
  1984. bool recover = false;
  1985. if (mstatus == RT_MEDIA_CONNECT) {
  1986. rtlpriv->cfg->ops->set_hw_reg(hw,
  1987. HW_VAR_AID, NULL);
  1988. rtl_write_byte(rtlpriv, REG_CR + 1, 0x03);
  1989. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  1990. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1991. tmp_reg422 = rtl_read_byte(rtlpriv,
  1992. REG_FWHW_TXQ_CTRL + 2);
  1993. if (tmp_reg422 & BIT(6))
  1994. recover = true;
  1995. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1996. tmp_reg422 & (~BIT(6)));
  1997. rtl92c_set_fw_rsvdpagepkt(hw, 0);
  1998. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  1999. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  2000. if (recover)
  2001. rtl_write_byte(rtlpriv,
  2002. REG_FWHW_TXQ_CTRL + 2,
  2003. tmp_reg422 | BIT(6));
  2004. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  2005. }
  2006. rtl92c_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
  2007. break;
  2008. }
  2009. case HW_VAR_AID:{
  2010. u16 u2btmp;
  2011. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  2012. u2btmp &= 0xC000;
  2013. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
  2014. (u2btmp | mac->assoc_id));
  2015. break;
  2016. }
  2017. case HW_VAR_CORRECT_TSF:{
  2018. u8 btype_ibss = ((u8 *) (val))[0];
  2019. if (btype_ibss)
  2020. _rtl92cu_stop_tx_beacon(hw);
  2021. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  2022. rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf &
  2023. 0xffffffff));
  2024. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  2025. (u32)((mac->tsf >> 32) & 0xffffffff));
  2026. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2027. if (btype_ibss)
  2028. _rtl92cu_resume_tx_beacon(hw);
  2029. break;
  2030. }
  2031. case HW_VAR_MGT_FILTER:
  2032. rtl_write_word(rtlpriv, REG_RXFLTMAP0, *(u16 *)val);
  2033. break;
  2034. case HW_VAR_CTRL_FILTER:
  2035. rtl_write_word(rtlpriv, REG_RXFLTMAP1, *(u16 *)val);
  2036. break;
  2037. case HW_VAR_DATA_FILTER:
  2038. rtl_write_word(rtlpriv, REG_RXFLTMAP2, *(u16 *)val);
  2039. break;
  2040. default:
  2041. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2042. "switch case not processed\n");
  2043. break;
  2044. }
  2045. }
  2046. void rtl92cu_update_hal_rate_table(struct ieee80211_hw *hw,
  2047. struct ieee80211_sta *sta,
  2048. u8 rssi_level)
  2049. {
  2050. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2051. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2052. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2053. u32 ratr_value = (u32) mac->basic_rates;
  2054. u8 *mcsrate = mac->mcs;
  2055. u8 ratr_index = 0;
  2056. u8 nmode = mac->ht_enable;
  2057. u8 mimo_ps = 1;
  2058. u16 shortgi_rate = 0;
  2059. u32 tmp_ratr_value = 0;
  2060. u8 curtxbw_40mhz = mac->bw_40;
  2061. u8 curshortgi_40mhz = mac->sgi_40;
  2062. u8 curshortgi_20mhz = mac->sgi_20;
  2063. enum wireless_mode wirelessmode = mac->mode;
  2064. ratr_value |= ((*(u16 *) (mcsrate))) << 12;
  2065. switch (wirelessmode) {
  2066. case WIRELESS_MODE_B:
  2067. if (ratr_value & 0x0000000c)
  2068. ratr_value &= 0x0000000d;
  2069. else
  2070. ratr_value &= 0x0000000f;
  2071. break;
  2072. case WIRELESS_MODE_G:
  2073. ratr_value &= 0x00000FF5;
  2074. break;
  2075. case WIRELESS_MODE_N_24G:
  2076. case WIRELESS_MODE_N_5G:
  2077. nmode = 1;
  2078. if (mimo_ps == 0) {
  2079. ratr_value &= 0x0007F005;
  2080. } else {
  2081. u32 ratr_mask;
  2082. if (get_rf_type(rtlphy) == RF_1T2R ||
  2083. get_rf_type(rtlphy) == RF_1T1R)
  2084. ratr_mask = 0x000ff005;
  2085. else
  2086. ratr_mask = 0x0f0ff005;
  2087. if (curtxbw_40mhz)
  2088. ratr_mask |= 0x00000010;
  2089. ratr_value &= ratr_mask;
  2090. }
  2091. break;
  2092. default:
  2093. if (rtlphy->rf_type == RF_1T2R)
  2094. ratr_value &= 0x000ff0ff;
  2095. else
  2096. ratr_value &= 0x0f0ff0ff;
  2097. break;
  2098. }
  2099. ratr_value &= 0x0FFFFFFF;
  2100. if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
  2101. (!curtxbw_40mhz && curshortgi_20mhz))) {
  2102. ratr_value |= 0x10000000;
  2103. tmp_ratr_value = (ratr_value >> 12);
  2104. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  2105. if ((1 << shortgi_rate) & tmp_ratr_value)
  2106. break;
  2107. }
  2108. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  2109. (shortgi_rate << 4) | (shortgi_rate);
  2110. }
  2111. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  2112. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  2113. rtl_read_dword(rtlpriv, REG_ARFR0));
  2114. }
  2115. void rtl92cu_update_hal_rate_mask(struct ieee80211_hw *hw, u8 rssi_level)
  2116. {
  2117. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2118. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2119. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2120. u32 ratr_bitmap = (u32) mac->basic_rates;
  2121. u8 *p_mcsrate = mac->mcs;
  2122. u8 ratr_index = 0;
  2123. u8 curtxbw_40mhz = mac->bw_40;
  2124. u8 curshortgi_40mhz = mac->sgi_40;
  2125. u8 curshortgi_20mhz = mac->sgi_20;
  2126. enum wireless_mode wirelessmode = mac->mode;
  2127. bool shortgi = false;
  2128. u8 rate_mask[5];
  2129. u8 macid = 0;
  2130. u8 mimops = 1;
  2131. ratr_bitmap |= (p_mcsrate[1] << 20) | (p_mcsrate[0] << 12);
  2132. switch (wirelessmode) {
  2133. case WIRELESS_MODE_B:
  2134. ratr_index = RATR_INX_WIRELESS_B;
  2135. if (ratr_bitmap & 0x0000000c)
  2136. ratr_bitmap &= 0x0000000d;
  2137. else
  2138. ratr_bitmap &= 0x0000000f;
  2139. break;
  2140. case WIRELESS_MODE_G:
  2141. ratr_index = RATR_INX_WIRELESS_GB;
  2142. if (rssi_level == 1)
  2143. ratr_bitmap &= 0x00000f00;
  2144. else if (rssi_level == 2)
  2145. ratr_bitmap &= 0x00000ff0;
  2146. else
  2147. ratr_bitmap &= 0x00000ff5;
  2148. break;
  2149. case WIRELESS_MODE_A:
  2150. ratr_index = RATR_INX_WIRELESS_A;
  2151. ratr_bitmap &= 0x00000ff0;
  2152. break;
  2153. case WIRELESS_MODE_N_24G:
  2154. case WIRELESS_MODE_N_5G:
  2155. ratr_index = RATR_INX_WIRELESS_NGB;
  2156. if (mimops == 0) {
  2157. if (rssi_level == 1)
  2158. ratr_bitmap &= 0x00070000;
  2159. else if (rssi_level == 2)
  2160. ratr_bitmap &= 0x0007f000;
  2161. else
  2162. ratr_bitmap &= 0x0007f005;
  2163. } else {
  2164. if (rtlphy->rf_type == RF_1T2R ||
  2165. rtlphy->rf_type == RF_1T1R) {
  2166. if (curtxbw_40mhz) {
  2167. if (rssi_level == 1)
  2168. ratr_bitmap &= 0x000f0000;
  2169. else if (rssi_level == 2)
  2170. ratr_bitmap &= 0x000ff000;
  2171. else
  2172. ratr_bitmap &= 0x000ff015;
  2173. } else {
  2174. if (rssi_level == 1)
  2175. ratr_bitmap &= 0x000f0000;
  2176. else if (rssi_level == 2)
  2177. ratr_bitmap &= 0x000ff000;
  2178. else
  2179. ratr_bitmap &= 0x000ff005;
  2180. }
  2181. } else {
  2182. if (curtxbw_40mhz) {
  2183. if (rssi_level == 1)
  2184. ratr_bitmap &= 0x0f0f0000;
  2185. else if (rssi_level == 2)
  2186. ratr_bitmap &= 0x0f0ff000;
  2187. else
  2188. ratr_bitmap &= 0x0f0ff015;
  2189. } else {
  2190. if (rssi_level == 1)
  2191. ratr_bitmap &= 0x0f0f0000;
  2192. else if (rssi_level == 2)
  2193. ratr_bitmap &= 0x0f0ff000;
  2194. else
  2195. ratr_bitmap &= 0x0f0ff005;
  2196. }
  2197. }
  2198. }
  2199. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  2200. (!curtxbw_40mhz && curshortgi_20mhz)) {
  2201. if (macid == 0)
  2202. shortgi = true;
  2203. else if (macid == 1)
  2204. shortgi = false;
  2205. }
  2206. break;
  2207. default:
  2208. ratr_index = RATR_INX_WIRELESS_NGB;
  2209. if (rtlphy->rf_type == RF_1T2R)
  2210. ratr_bitmap &= 0x000ff0ff;
  2211. else
  2212. ratr_bitmap &= 0x0f0ff0ff;
  2213. break;
  2214. }
  2215. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x\n",
  2216. ratr_bitmap);
  2217. *(u32 *)&rate_mask = ((ratr_bitmap & 0x0fffffff) |
  2218. ratr_index << 28);
  2219. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  2220. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  2221. "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n",
  2222. ratr_index, ratr_bitmap,
  2223. rate_mask[0], rate_mask[1], rate_mask[2], rate_mask[3],
  2224. rate_mask[4]);
  2225. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  2226. }
  2227. void rtl92cu_update_channel_access_setting(struct ieee80211_hw *hw)
  2228. {
  2229. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2230. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2231. u16 sifs_timer;
  2232. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  2233. (u8 *)&mac->slot_time);
  2234. if (!mac->ht_enable)
  2235. sifs_timer = 0x0a0a;
  2236. else
  2237. sifs_timer = 0x0e0e;
  2238. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  2239. }
  2240. bool rtl92cu_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 * valid)
  2241. {
  2242. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2243. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2244. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2245. enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
  2246. u8 u1tmp = 0;
  2247. bool actuallyset = false;
  2248. unsigned long flag = 0;
  2249. /* to do - usb autosuspend */
  2250. u8 usb_autosuspend = 0;
  2251. if (ppsc->swrf_processing)
  2252. return false;
  2253. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2254. if (ppsc->rfchange_inprogress) {
  2255. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2256. return false;
  2257. } else {
  2258. ppsc->rfchange_inprogress = true;
  2259. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2260. }
  2261. cur_rfstate = ppsc->rfpwr_state;
  2262. if (usb_autosuspend) {
  2263. /* to do................... */
  2264. } else {
  2265. if (ppsc->pwrdown_mode) {
  2266. u1tmp = rtl_read_byte(rtlpriv, REG_HSISR);
  2267. e_rfpowerstate_toset = (u1tmp & BIT(7)) ?
  2268. ERFOFF : ERFON;
  2269. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2270. "pwrdown, 0x5c(BIT7)=%02x\n", u1tmp);
  2271. } else {
  2272. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG,
  2273. rtl_read_byte(rtlpriv,
  2274. REG_MAC_PINMUX_CFG) & ~(BIT(3)));
  2275. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  2276. e_rfpowerstate_toset = (u1tmp & BIT(3)) ?
  2277. ERFON : ERFOFF;
  2278. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2279. "GPIO_IN=%02x\n", u1tmp);
  2280. }
  2281. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "N-SS RF =%x\n",
  2282. e_rfpowerstate_toset);
  2283. }
  2284. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  2285. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2286. "GPIOChangeRF - HW Radio ON, RF ON\n");
  2287. ppsc->hwradiooff = false;
  2288. actuallyset = true;
  2289. } else if ((!ppsc->hwradiooff) && (e_rfpowerstate_toset ==
  2290. ERFOFF)) {
  2291. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2292. "GPIOChangeRF - HW Radio OFF\n");
  2293. ppsc->hwradiooff = true;
  2294. actuallyset = true;
  2295. } else {
  2296. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2297. "pHalData->bHwRadioOff and eRfPowerStateToSet do not match: pHalData->bHwRadioOff %x, eRfPowerStateToSet %x\n",
  2298. ppsc->hwradiooff, e_rfpowerstate_toset);
  2299. }
  2300. if (actuallyset) {
  2301. ppsc->hwradiooff = true;
  2302. if (e_rfpowerstate_toset == ERFON) {
  2303. if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) &&
  2304. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM))
  2305. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2306. else if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2307. && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3))
  2308. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2309. }
  2310. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2311. ppsc->rfchange_inprogress = false;
  2312. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2313. /* For power down module, we need to enable register block
  2314. * contrl reg at 0x1c. Then enable power down control bit
  2315. * of register 0x04 BIT4 and BIT15 as 1.
  2316. */
  2317. if (ppsc->pwrdown_mode && e_rfpowerstate_toset == ERFOFF) {
  2318. /* Enable register area 0x0-0xc. */
  2319. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  2320. if (IS_HARDWARE_TYPE_8723U(rtlhal)) {
  2321. /*
  2322. * We should configure HW PDn source for WiFi
  2323. * ONLY, and then our HW will be set in
  2324. * power-down mode if PDn source from all
  2325. * functions are configured.
  2326. */
  2327. u1tmp = rtl_read_byte(rtlpriv,
  2328. REG_MULTI_FUNC_CTRL);
  2329. rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL,
  2330. (u1tmp|WL_HWPDN_EN));
  2331. } else {
  2332. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x8812);
  2333. }
  2334. }
  2335. if (e_rfpowerstate_toset == ERFOFF) {
  2336. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2337. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2338. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2339. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2340. }
  2341. } else if (e_rfpowerstate_toset == ERFOFF || cur_rfstate == ERFOFF) {
  2342. /* Enter D3 or ASPM after GPIO had been done. */
  2343. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2344. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2345. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2346. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2347. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2348. ppsc->rfchange_inprogress = false;
  2349. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2350. } else {
  2351. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2352. ppsc->rfchange_inprogress = false;
  2353. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2354. }
  2355. *valid = 1;
  2356. return !ppsc->hwradiooff;
  2357. }