xfs_inode.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_bmap.h"
  42. #include "xfs_error.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_quota.h"
  45. #include "xfs_filestream.h"
  46. #include "xfs_vnodeops.h"
  47. #include "xfs_trace.h"
  48. kmem_zone_t *xfs_ifork_zone;
  49. kmem_zone_t *xfs_inode_zone;
  50. /*
  51. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  52. * freed from a file in a single transaction.
  53. */
  54. #define XFS_ITRUNC_MAX_EXTENTS 2
  55. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  56. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  57. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  58. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  59. #ifdef DEBUG
  60. /*
  61. * Make sure that the extents in the given memory buffer
  62. * are valid.
  63. */
  64. STATIC void
  65. xfs_validate_extents(
  66. xfs_ifork_t *ifp,
  67. int nrecs,
  68. xfs_exntfmt_t fmt)
  69. {
  70. xfs_bmbt_irec_t irec;
  71. xfs_bmbt_rec_host_t rec;
  72. int i;
  73. for (i = 0; i < nrecs; i++) {
  74. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  75. rec.l0 = get_unaligned(&ep->l0);
  76. rec.l1 = get_unaligned(&ep->l1);
  77. xfs_bmbt_get_all(&rec, &irec);
  78. if (fmt == XFS_EXTFMT_NOSTATE)
  79. ASSERT(irec.br_state == XFS_EXT_NORM);
  80. }
  81. }
  82. #else /* DEBUG */
  83. #define xfs_validate_extents(ifp, nrecs, fmt)
  84. #endif /* DEBUG */
  85. /*
  86. * Check that none of the inode's in the buffer have a next
  87. * unlinked field of 0.
  88. */
  89. #if defined(DEBUG)
  90. void
  91. xfs_inobp_check(
  92. xfs_mount_t *mp,
  93. xfs_buf_t *bp)
  94. {
  95. int i;
  96. int j;
  97. xfs_dinode_t *dip;
  98. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  99. for (i = 0; i < j; i++) {
  100. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  101. i * mp->m_sb.sb_inodesize);
  102. if (!dip->di_next_unlinked) {
  103. xfs_alert(mp,
  104. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  105. bp);
  106. ASSERT(dip->di_next_unlinked);
  107. }
  108. }
  109. }
  110. #endif
  111. /*
  112. * Find the buffer associated with the given inode map
  113. * We do basic validation checks on the buffer once it has been
  114. * retrieved from disk.
  115. */
  116. STATIC int
  117. xfs_imap_to_bp(
  118. xfs_mount_t *mp,
  119. xfs_trans_t *tp,
  120. struct xfs_imap *imap,
  121. xfs_buf_t **bpp,
  122. uint buf_flags,
  123. uint iget_flags)
  124. {
  125. int error;
  126. int i;
  127. int ni;
  128. xfs_buf_t *bp;
  129. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  130. (int)imap->im_len, buf_flags, &bp);
  131. if (error) {
  132. if (error != EAGAIN) {
  133. xfs_warn(mp,
  134. "%s: xfs_trans_read_buf() returned error %d.",
  135. __func__, error);
  136. } else {
  137. ASSERT(buf_flags & XBF_TRYLOCK);
  138. }
  139. return error;
  140. }
  141. /*
  142. * Validate the magic number and version of every inode in the buffer
  143. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  144. */
  145. #ifdef DEBUG
  146. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  147. #else /* usual case */
  148. ni = 1;
  149. #endif
  150. for (i = 0; i < ni; i++) {
  151. int di_ok;
  152. xfs_dinode_t *dip;
  153. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  154. (i << mp->m_sb.sb_inodelog));
  155. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  156. XFS_DINODE_GOOD_VERSION(dip->di_version);
  157. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  158. XFS_ERRTAG_ITOBP_INOTOBP,
  159. XFS_RANDOM_ITOBP_INOTOBP))) {
  160. if (iget_flags & XFS_IGET_UNTRUSTED) {
  161. xfs_trans_brelse(tp, bp);
  162. return XFS_ERROR(EINVAL);
  163. }
  164. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  165. XFS_ERRLEVEL_HIGH, mp, dip);
  166. #ifdef DEBUG
  167. xfs_emerg(mp,
  168. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  169. (unsigned long long)imap->im_blkno, i,
  170. be16_to_cpu(dip->di_magic));
  171. ASSERT(0);
  172. #endif
  173. xfs_trans_brelse(tp, bp);
  174. return XFS_ERROR(EFSCORRUPTED);
  175. }
  176. }
  177. xfs_inobp_check(mp, bp);
  178. *bpp = bp;
  179. return 0;
  180. }
  181. /*
  182. * This routine is called to map an inode number within a file
  183. * system to the buffer containing the on-disk version of the
  184. * inode. It returns a pointer to the buffer containing the
  185. * on-disk inode in the bpp parameter, and in the dip parameter
  186. * it returns a pointer to the on-disk inode within that buffer.
  187. *
  188. * If a non-zero error is returned, then the contents of bpp and
  189. * dipp are undefined.
  190. *
  191. * Use xfs_imap() to determine the size and location of the
  192. * buffer to read from disk.
  193. */
  194. int
  195. xfs_inotobp(
  196. xfs_mount_t *mp,
  197. xfs_trans_t *tp,
  198. xfs_ino_t ino,
  199. xfs_dinode_t **dipp,
  200. xfs_buf_t **bpp,
  201. int *offset,
  202. uint imap_flags)
  203. {
  204. struct xfs_imap imap;
  205. xfs_buf_t *bp;
  206. int error;
  207. imap.im_blkno = 0;
  208. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  209. if (error)
  210. return error;
  211. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  212. if (error)
  213. return error;
  214. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  215. *bpp = bp;
  216. *offset = imap.im_boffset;
  217. return 0;
  218. }
  219. /*
  220. * This routine is called to map an inode to the buffer containing
  221. * the on-disk version of the inode. It returns a pointer to the
  222. * buffer containing the on-disk inode in the bpp parameter, and in
  223. * the dip parameter it returns a pointer to the on-disk inode within
  224. * that buffer.
  225. *
  226. * If a non-zero error is returned, then the contents of bpp and
  227. * dipp are undefined.
  228. *
  229. * The inode is expected to already been mapped to its buffer and read
  230. * in once, thus we can use the mapping information stored in the inode
  231. * rather than calling xfs_imap(). This allows us to avoid the overhead
  232. * of looking at the inode btree for small block file systems
  233. * (see xfs_imap()).
  234. */
  235. int
  236. xfs_itobp(
  237. xfs_mount_t *mp,
  238. xfs_trans_t *tp,
  239. xfs_inode_t *ip,
  240. xfs_dinode_t **dipp,
  241. xfs_buf_t **bpp,
  242. uint buf_flags)
  243. {
  244. xfs_buf_t *bp;
  245. int error;
  246. ASSERT(ip->i_imap.im_blkno != 0);
  247. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  248. if (error)
  249. return error;
  250. if (!bp) {
  251. ASSERT(buf_flags & XBF_TRYLOCK);
  252. ASSERT(tp == NULL);
  253. *bpp = NULL;
  254. return EAGAIN;
  255. }
  256. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  257. *bpp = bp;
  258. return 0;
  259. }
  260. /*
  261. * Move inode type and inode format specific information from the
  262. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  263. * this means set if_rdev to the proper value. For files, directories,
  264. * and symlinks this means to bring in the in-line data or extent
  265. * pointers. For a file in B-tree format, only the root is immediately
  266. * brought in-core. The rest will be in-lined in if_extents when it
  267. * is first referenced (see xfs_iread_extents()).
  268. */
  269. STATIC int
  270. xfs_iformat(
  271. xfs_inode_t *ip,
  272. xfs_dinode_t *dip)
  273. {
  274. xfs_attr_shortform_t *atp;
  275. int size;
  276. int error = 0;
  277. xfs_fsize_t di_size;
  278. if (unlikely(be32_to_cpu(dip->di_nextents) +
  279. be16_to_cpu(dip->di_anextents) >
  280. be64_to_cpu(dip->di_nblocks))) {
  281. xfs_warn(ip->i_mount,
  282. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  283. (unsigned long long)ip->i_ino,
  284. (int)(be32_to_cpu(dip->di_nextents) +
  285. be16_to_cpu(dip->di_anextents)),
  286. (unsigned long long)
  287. be64_to_cpu(dip->di_nblocks));
  288. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  289. ip->i_mount, dip);
  290. return XFS_ERROR(EFSCORRUPTED);
  291. }
  292. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  293. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  294. (unsigned long long)ip->i_ino,
  295. dip->di_forkoff);
  296. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  297. ip->i_mount, dip);
  298. return XFS_ERROR(EFSCORRUPTED);
  299. }
  300. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  301. !ip->i_mount->m_rtdev_targp)) {
  302. xfs_warn(ip->i_mount,
  303. "corrupt dinode %Lu, has realtime flag set.",
  304. ip->i_ino);
  305. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  306. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  307. return XFS_ERROR(EFSCORRUPTED);
  308. }
  309. switch (ip->i_d.di_mode & S_IFMT) {
  310. case S_IFIFO:
  311. case S_IFCHR:
  312. case S_IFBLK:
  313. case S_IFSOCK:
  314. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  315. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  316. ip->i_mount, dip);
  317. return XFS_ERROR(EFSCORRUPTED);
  318. }
  319. ip->i_d.di_size = 0;
  320. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  321. break;
  322. case S_IFREG:
  323. case S_IFLNK:
  324. case S_IFDIR:
  325. switch (dip->di_format) {
  326. case XFS_DINODE_FMT_LOCAL:
  327. /*
  328. * no local regular files yet
  329. */
  330. if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
  331. xfs_warn(ip->i_mount,
  332. "corrupt inode %Lu (local format for regular file).",
  333. (unsigned long long) ip->i_ino);
  334. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  335. XFS_ERRLEVEL_LOW,
  336. ip->i_mount, dip);
  337. return XFS_ERROR(EFSCORRUPTED);
  338. }
  339. di_size = be64_to_cpu(dip->di_size);
  340. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  341. xfs_warn(ip->i_mount,
  342. "corrupt inode %Lu (bad size %Ld for local inode).",
  343. (unsigned long long) ip->i_ino,
  344. (long long) di_size);
  345. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  346. XFS_ERRLEVEL_LOW,
  347. ip->i_mount, dip);
  348. return XFS_ERROR(EFSCORRUPTED);
  349. }
  350. size = (int)di_size;
  351. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  352. break;
  353. case XFS_DINODE_FMT_EXTENTS:
  354. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  355. break;
  356. case XFS_DINODE_FMT_BTREE:
  357. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  358. break;
  359. default:
  360. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  361. ip->i_mount);
  362. return XFS_ERROR(EFSCORRUPTED);
  363. }
  364. break;
  365. default:
  366. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  367. return XFS_ERROR(EFSCORRUPTED);
  368. }
  369. if (error) {
  370. return error;
  371. }
  372. if (!XFS_DFORK_Q(dip))
  373. return 0;
  374. ASSERT(ip->i_afp == NULL);
  375. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  376. switch (dip->di_aformat) {
  377. case XFS_DINODE_FMT_LOCAL:
  378. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  379. size = be16_to_cpu(atp->hdr.totsize);
  380. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  381. xfs_warn(ip->i_mount,
  382. "corrupt inode %Lu (bad attr fork size %Ld).",
  383. (unsigned long long) ip->i_ino,
  384. (long long) size);
  385. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  386. XFS_ERRLEVEL_LOW,
  387. ip->i_mount, dip);
  388. return XFS_ERROR(EFSCORRUPTED);
  389. }
  390. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  391. break;
  392. case XFS_DINODE_FMT_EXTENTS:
  393. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  394. break;
  395. case XFS_DINODE_FMT_BTREE:
  396. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  397. break;
  398. default:
  399. error = XFS_ERROR(EFSCORRUPTED);
  400. break;
  401. }
  402. if (error) {
  403. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  404. ip->i_afp = NULL;
  405. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  406. }
  407. return error;
  408. }
  409. /*
  410. * The file is in-lined in the on-disk inode.
  411. * If it fits into if_inline_data, then copy
  412. * it there, otherwise allocate a buffer for it
  413. * and copy the data there. Either way, set
  414. * if_data to point at the data.
  415. * If we allocate a buffer for the data, make
  416. * sure that its size is a multiple of 4 and
  417. * record the real size in i_real_bytes.
  418. */
  419. STATIC int
  420. xfs_iformat_local(
  421. xfs_inode_t *ip,
  422. xfs_dinode_t *dip,
  423. int whichfork,
  424. int size)
  425. {
  426. xfs_ifork_t *ifp;
  427. int real_size;
  428. /*
  429. * If the size is unreasonable, then something
  430. * is wrong and we just bail out rather than crash in
  431. * kmem_alloc() or memcpy() below.
  432. */
  433. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  434. xfs_warn(ip->i_mount,
  435. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  436. (unsigned long long) ip->i_ino, size,
  437. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  438. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. ifp = XFS_IFORK_PTR(ip, whichfork);
  443. real_size = 0;
  444. if (size == 0)
  445. ifp->if_u1.if_data = NULL;
  446. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  447. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  448. else {
  449. real_size = roundup(size, 4);
  450. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  451. }
  452. ifp->if_bytes = size;
  453. ifp->if_real_bytes = real_size;
  454. if (size)
  455. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  456. ifp->if_flags &= ~XFS_IFEXTENTS;
  457. ifp->if_flags |= XFS_IFINLINE;
  458. return 0;
  459. }
  460. /*
  461. * The file consists of a set of extents all
  462. * of which fit into the on-disk inode.
  463. * If there are few enough extents to fit into
  464. * the if_inline_ext, then copy them there.
  465. * Otherwise allocate a buffer for them and copy
  466. * them into it. Either way, set if_extents
  467. * to point at the extents.
  468. */
  469. STATIC int
  470. xfs_iformat_extents(
  471. xfs_inode_t *ip,
  472. xfs_dinode_t *dip,
  473. int whichfork)
  474. {
  475. xfs_bmbt_rec_t *dp;
  476. xfs_ifork_t *ifp;
  477. int nex;
  478. int size;
  479. int i;
  480. ifp = XFS_IFORK_PTR(ip, whichfork);
  481. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  482. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  483. /*
  484. * If the number of extents is unreasonable, then something
  485. * is wrong and we just bail out rather than crash in
  486. * kmem_alloc() or memcpy() below.
  487. */
  488. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  489. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  490. (unsigned long long) ip->i_ino, nex);
  491. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  492. ip->i_mount, dip);
  493. return XFS_ERROR(EFSCORRUPTED);
  494. }
  495. ifp->if_real_bytes = 0;
  496. if (nex == 0)
  497. ifp->if_u1.if_extents = NULL;
  498. else if (nex <= XFS_INLINE_EXTS)
  499. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  500. else
  501. xfs_iext_add(ifp, 0, nex);
  502. ifp->if_bytes = size;
  503. if (size) {
  504. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  505. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  506. for (i = 0; i < nex; i++, dp++) {
  507. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  508. ep->l0 = get_unaligned_be64(&dp->l0);
  509. ep->l1 = get_unaligned_be64(&dp->l1);
  510. }
  511. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  512. if (whichfork != XFS_DATA_FORK ||
  513. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  514. if (unlikely(xfs_check_nostate_extents(
  515. ifp, 0, nex))) {
  516. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  517. XFS_ERRLEVEL_LOW,
  518. ip->i_mount);
  519. return XFS_ERROR(EFSCORRUPTED);
  520. }
  521. }
  522. ifp->if_flags |= XFS_IFEXTENTS;
  523. return 0;
  524. }
  525. /*
  526. * The file has too many extents to fit into
  527. * the inode, so they are in B-tree format.
  528. * Allocate a buffer for the root of the B-tree
  529. * and copy the root into it. The i_extents
  530. * field will remain NULL until all of the
  531. * extents are read in (when they are needed).
  532. */
  533. STATIC int
  534. xfs_iformat_btree(
  535. xfs_inode_t *ip,
  536. xfs_dinode_t *dip,
  537. int whichfork)
  538. {
  539. xfs_bmdr_block_t *dfp;
  540. xfs_ifork_t *ifp;
  541. /* REFERENCED */
  542. int nrecs;
  543. int size;
  544. ifp = XFS_IFORK_PTR(ip, whichfork);
  545. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  546. size = XFS_BMAP_BROOT_SPACE(dfp);
  547. nrecs = be16_to_cpu(dfp->bb_numrecs);
  548. /*
  549. * blow out if -- fork has less extents than can fit in
  550. * fork (fork shouldn't be a btree format), root btree
  551. * block has more records than can fit into the fork,
  552. * or the number of extents is greater than the number of
  553. * blocks.
  554. */
  555. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
  556. XFS_IFORK_MAXEXT(ip, whichfork) ||
  557. XFS_BMDR_SPACE_CALC(nrecs) >
  558. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
  559. XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  560. xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
  561. (unsigned long long) ip->i_ino);
  562. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  563. ip->i_mount, dip);
  564. return XFS_ERROR(EFSCORRUPTED);
  565. }
  566. ifp->if_broot_bytes = size;
  567. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  568. ASSERT(ifp->if_broot != NULL);
  569. /*
  570. * Copy and convert from the on-disk structure
  571. * to the in-memory structure.
  572. */
  573. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  574. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  575. ifp->if_broot, size);
  576. ifp->if_flags &= ~XFS_IFEXTENTS;
  577. ifp->if_flags |= XFS_IFBROOT;
  578. return 0;
  579. }
  580. STATIC void
  581. xfs_dinode_from_disk(
  582. xfs_icdinode_t *to,
  583. xfs_dinode_t *from)
  584. {
  585. to->di_magic = be16_to_cpu(from->di_magic);
  586. to->di_mode = be16_to_cpu(from->di_mode);
  587. to->di_version = from ->di_version;
  588. to->di_format = from->di_format;
  589. to->di_onlink = be16_to_cpu(from->di_onlink);
  590. to->di_uid = be32_to_cpu(from->di_uid);
  591. to->di_gid = be32_to_cpu(from->di_gid);
  592. to->di_nlink = be32_to_cpu(from->di_nlink);
  593. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  594. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  595. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  596. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  597. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  598. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  599. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  600. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  601. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  602. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  603. to->di_size = be64_to_cpu(from->di_size);
  604. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  605. to->di_extsize = be32_to_cpu(from->di_extsize);
  606. to->di_nextents = be32_to_cpu(from->di_nextents);
  607. to->di_anextents = be16_to_cpu(from->di_anextents);
  608. to->di_forkoff = from->di_forkoff;
  609. to->di_aformat = from->di_aformat;
  610. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  611. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  612. to->di_flags = be16_to_cpu(from->di_flags);
  613. to->di_gen = be32_to_cpu(from->di_gen);
  614. }
  615. void
  616. xfs_dinode_to_disk(
  617. xfs_dinode_t *to,
  618. xfs_icdinode_t *from)
  619. {
  620. to->di_magic = cpu_to_be16(from->di_magic);
  621. to->di_mode = cpu_to_be16(from->di_mode);
  622. to->di_version = from ->di_version;
  623. to->di_format = from->di_format;
  624. to->di_onlink = cpu_to_be16(from->di_onlink);
  625. to->di_uid = cpu_to_be32(from->di_uid);
  626. to->di_gid = cpu_to_be32(from->di_gid);
  627. to->di_nlink = cpu_to_be32(from->di_nlink);
  628. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  629. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  630. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  631. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  632. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  633. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  634. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  635. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  636. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  637. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  638. to->di_size = cpu_to_be64(from->di_size);
  639. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  640. to->di_extsize = cpu_to_be32(from->di_extsize);
  641. to->di_nextents = cpu_to_be32(from->di_nextents);
  642. to->di_anextents = cpu_to_be16(from->di_anextents);
  643. to->di_forkoff = from->di_forkoff;
  644. to->di_aformat = from->di_aformat;
  645. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  646. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  647. to->di_flags = cpu_to_be16(from->di_flags);
  648. to->di_gen = cpu_to_be32(from->di_gen);
  649. }
  650. STATIC uint
  651. _xfs_dic2xflags(
  652. __uint16_t di_flags)
  653. {
  654. uint flags = 0;
  655. if (di_flags & XFS_DIFLAG_ANY) {
  656. if (di_flags & XFS_DIFLAG_REALTIME)
  657. flags |= XFS_XFLAG_REALTIME;
  658. if (di_flags & XFS_DIFLAG_PREALLOC)
  659. flags |= XFS_XFLAG_PREALLOC;
  660. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  661. flags |= XFS_XFLAG_IMMUTABLE;
  662. if (di_flags & XFS_DIFLAG_APPEND)
  663. flags |= XFS_XFLAG_APPEND;
  664. if (di_flags & XFS_DIFLAG_SYNC)
  665. flags |= XFS_XFLAG_SYNC;
  666. if (di_flags & XFS_DIFLAG_NOATIME)
  667. flags |= XFS_XFLAG_NOATIME;
  668. if (di_flags & XFS_DIFLAG_NODUMP)
  669. flags |= XFS_XFLAG_NODUMP;
  670. if (di_flags & XFS_DIFLAG_RTINHERIT)
  671. flags |= XFS_XFLAG_RTINHERIT;
  672. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  673. flags |= XFS_XFLAG_PROJINHERIT;
  674. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  675. flags |= XFS_XFLAG_NOSYMLINKS;
  676. if (di_flags & XFS_DIFLAG_EXTSIZE)
  677. flags |= XFS_XFLAG_EXTSIZE;
  678. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  679. flags |= XFS_XFLAG_EXTSZINHERIT;
  680. if (di_flags & XFS_DIFLAG_NODEFRAG)
  681. flags |= XFS_XFLAG_NODEFRAG;
  682. if (di_flags & XFS_DIFLAG_FILESTREAM)
  683. flags |= XFS_XFLAG_FILESTREAM;
  684. }
  685. return flags;
  686. }
  687. uint
  688. xfs_ip2xflags(
  689. xfs_inode_t *ip)
  690. {
  691. xfs_icdinode_t *dic = &ip->i_d;
  692. return _xfs_dic2xflags(dic->di_flags) |
  693. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  694. }
  695. uint
  696. xfs_dic2xflags(
  697. xfs_dinode_t *dip)
  698. {
  699. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  700. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  701. }
  702. /*
  703. * Read the disk inode attributes into the in-core inode structure.
  704. */
  705. int
  706. xfs_iread(
  707. xfs_mount_t *mp,
  708. xfs_trans_t *tp,
  709. xfs_inode_t *ip,
  710. uint iget_flags)
  711. {
  712. xfs_buf_t *bp;
  713. xfs_dinode_t *dip;
  714. int error;
  715. /*
  716. * Fill in the location information in the in-core inode.
  717. */
  718. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  719. if (error)
  720. return error;
  721. /*
  722. * Get pointers to the on-disk inode and the buffer containing it.
  723. */
  724. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  725. XBF_LOCK, iget_flags);
  726. if (error)
  727. return error;
  728. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  729. /*
  730. * If we got something that isn't an inode it means someone
  731. * (nfs or dmi) has a stale handle.
  732. */
  733. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
  734. #ifdef DEBUG
  735. xfs_alert(mp,
  736. "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
  737. __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
  738. #endif /* DEBUG */
  739. error = XFS_ERROR(EINVAL);
  740. goto out_brelse;
  741. }
  742. /*
  743. * If the on-disk inode is already linked to a directory
  744. * entry, copy all of the inode into the in-core inode.
  745. * xfs_iformat() handles copying in the inode format
  746. * specific information.
  747. * Otherwise, just get the truly permanent information.
  748. */
  749. if (dip->di_mode) {
  750. xfs_dinode_from_disk(&ip->i_d, dip);
  751. error = xfs_iformat(ip, dip);
  752. if (error) {
  753. #ifdef DEBUG
  754. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  755. __func__, error);
  756. #endif /* DEBUG */
  757. goto out_brelse;
  758. }
  759. } else {
  760. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  761. ip->i_d.di_version = dip->di_version;
  762. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  763. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  764. /*
  765. * Make sure to pull in the mode here as well in
  766. * case the inode is released without being used.
  767. * This ensures that xfs_inactive() will see that
  768. * the inode is already free and not try to mess
  769. * with the uninitialized part of it.
  770. */
  771. ip->i_d.di_mode = 0;
  772. }
  773. /*
  774. * The inode format changed when we moved the link count and
  775. * made it 32 bits long. If this is an old format inode,
  776. * convert it in memory to look like a new one. If it gets
  777. * flushed to disk we will convert back before flushing or
  778. * logging it. We zero out the new projid field and the old link
  779. * count field. We'll handle clearing the pad field (the remains
  780. * of the old uuid field) when we actually convert the inode to
  781. * the new format. We don't change the version number so that we
  782. * can distinguish this from a real new format inode.
  783. */
  784. if (ip->i_d.di_version == 1) {
  785. ip->i_d.di_nlink = ip->i_d.di_onlink;
  786. ip->i_d.di_onlink = 0;
  787. xfs_set_projid(ip, 0);
  788. }
  789. ip->i_delayed_blks = 0;
  790. /*
  791. * Mark the buffer containing the inode as something to keep
  792. * around for a while. This helps to keep recently accessed
  793. * meta-data in-core longer.
  794. */
  795. xfs_buf_set_ref(bp, XFS_INO_REF);
  796. /*
  797. * Use xfs_trans_brelse() to release the buffer containing the
  798. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  799. * in xfs_itobp() above. If tp is NULL, this is just a normal
  800. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  801. * will only release the buffer if it is not dirty within the
  802. * transaction. It will be OK to release the buffer in this case,
  803. * because inodes on disk are never destroyed and we will be
  804. * locking the new in-core inode before putting it in the hash
  805. * table where other processes can find it. Thus we don't have
  806. * to worry about the inode being changed just because we released
  807. * the buffer.
  808. */
  809. out_brelse:
  810. xfs_trans_brelse(tp, bp);
  811. return error;
  812. }
  813. /*
  814. * Read in extents from a btree-format inode.
  815. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  816. */
  817. int
  818. xfs_iread_extents(
  819. xfs_trans_t *tp,
  820. xfs_inode_t *ip,
  821. int whichfork)
  822. {
  823. int error;
  824. xfs_ifork_t *ifp;
  825. xfs_extnum_t nextents;
  826. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  827. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  828. ip->i_mount);
  829. return XFS_ERROR(EFSCORRUPTED);
  830. }
  831. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  832. ifp = XFS_IFORK_PTR(ip, whichfork);
  833. /*
  834. * We know that the size is valid (it's checked in iformat_btree)
  835. */
  836. ifp->if_bytes = ifp->if_real_bytes = 0;
  837. ifp->if_flags |= XFS_IFEXTENTS;
  838. xfs_iext_add(ifp, 0, nextents);
  839. error = xfs_bmap_read_extents(tp, ip, whichfork);
  840. if (error) {
  841. xfs_iext_destroy(ifp);
  842. ifp->if_flags &= ~XFS_IFEXTENTS;
  843. return error;
  844. }
  845. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  846. return 0;
  847. }
  848. /*
  849. * Allocate an inode on disk and return a copy of its in-core version.
  850. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  851. * appropriately within the inode. The uid and gid for the inode are
  852. * set according to the contents of the given cred structure.
  853. *
  854. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  855. * has a free inode available, call xfs_iget()
  856. * to obtain the in-core version of the allocated inode. Finally,
  857. * fill in the inode and log its initial contents. In this case,
  858. * ialloc_context would be set to NULL and call_again set to false.
  859. *
  860. * If xfs_dialloc() does not have an available inode,
  861. * it will replenish its supply by doing an allocation. Since we can
  862. * only do one allocation within a transaction without deadlocks, we
  863. * must commit the current transaction before returning the inode itself.
  864. * In this case, therefore, we will set call_again to true and return.
  865. * The caller should then commit the current transaction, start a new
  866. * transaction, and call xfs_ialloc() again to actually get the inode.
  867. *
  868. * To ensure that some other process does not grab the inode that
  869. * was allocated during the first call to xfs_ialloc(), this routine
  870. * also returns the [locked] bp pointing to the head of the freelist
  871. * as ialloc_context. The caller should hold this buffer across
  872. * the commit and pass it back into this routine on the second call.
  873. *
  874. * If we are allocating quota inodes, we do not have a parent inode
  875. * to attach to or associate with (i.e. pip == NULL) because they
  876. * are not linked into the directory structure - they are attached
  877. * directly to the superblock - and so have no parent.
  878. */
  879. int
  880. xfs_ialloc(
  881. xfs_trans_t *tp,
  882. xfs_inode_t *pip,
  883. umode_t mode,
  884. xfs_nlink_t nlink,
  885. xfs_dev_t rdev,
  886. prid_t prid,
  887. int okalloc,
  888. xfs_buf_t **ialloc_context,
  889. boolean_t *call_again,
  890. xfs_inode_t **ipp)
  891. {
  892. xfs_ino_t ino;
  893. xfs_inode_t *ip;
  894. uint flags;
  895. int error;
  896. timespec_t tv;
  897. int filestreams = 0;
  898. /*
  899. * Call the space management code to pick
  900. * the on-disk inode to be allocated.
  901. */
  902. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  903. ialloc_context, call_again, &ino);
  904. if (error)
  905. return error;
  906. if (*call_again || ino == NULLFSINO) {
  907. *ipp = NULL;
  908. return 0;
  909. }
  910. ASSERT(*ialloc_context == NULL);
  911. /*
  912. * Get the in-core inode with the lock held exclusively.
  913. * This is because we're setting fields here we need
  914. * to prevent others from looking at until we're done.
  915. */
  916. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  917. XFS_ILOCK_EXCL, &ip);
  918. if (error)
  919. return error;
  920. ASSERT(ip != NULL);
  921. ip->i_d.di_mode = mode;
  922. ip->i_d.di_onlink = 0;
  923. ip->i_d.di_nlink = nlink;
  924. ASSERT(ip->i_d.di_nlink == nlink);
  925. ip->i_d.di_uid = current_fsuid();
  926. ip->i_d.di_gid = current_fsgid();
  927. xfs_set_projid(ip, prid);
  928. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  929. /*
  930. * If the superblock version is up to where we support new format
  931. * inodes and this is currently an old format inode, then change
  932. * the inode version number now. This way we only do the conversion
  933. * here rather than here and in the flush/logging code.
  934. */
  935. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  936. ip->i_d.di_version == 1) {
  937. ip->i_d.di_version = 2;
  938. /*
  939. * We've already zeroed the old link count, the projid field,
  940. * and the pad field.
  941. */
  942. }
  943. /*
  944. * Project ids won't be stored on disk if we are using a version 1 inode.
  945. */
  946. if ((prid != 0) && (ip->i_d.di_version == 1))
  947. xfs_bump_ino_vers2(tp, ip);
  948. if (pip && XFS_INHERIT_GID(pip)) {
  949. ip->i_d.di_gid = pip->i_d.di_gid;
  950. if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
  951. ip->i_d.di_mode |= S_ISGID;
  952. }
  953. }
  954. /*
  955. * If the group ID of the new file does not match the effective group
  956. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  957. * (and only if the irix_sgid_inherit compatibility variable is set).
  958. */
  959. if ((irix_sgid_inherit) &&
  960. (ip->i_d.di_mode & S_ISGID) &&
  961. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  962. ip->i_d.di_mode &= ~S_ISGID;
  963. }
  964. ip->i_d.di_size = 0;
  965. ip->i_d.di_nextents = 0;
  966. ASSERT(ip->i_d.di_nblocks == 0);
  967. nanotime(&tv);
  968. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  969. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  970. ip->i_d.di_atime = ip->i_d.di_mtime;
  971. ip->i_d.di_ctime = ip->i_d.di_mtime;
  972. /*
  973. * di_gen will have been taken care of in xfs_iread.
  974. */
  975. ip->i_d.di_extsize = 0;
  976. ip->i_d.di_dmevmask = 0;
  977. ip->i_d.di_dmstate = 0;
  978. ip->i_d.di_flags = 0;
  979. flags = XFS_ILOG_CORE;
  980. switch (mode & S_IFMT) {
  981. case S_IFIFO:
  982. case S_IFCHR:
  983. case S_IFBLK:
  984. case S_IFSOCK:
  985. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  986. ip->i_df.if_u2.if_rdev = rdev;
  987. ip->i_df.if_flags = 0;
  988. flags |= XFS_ILOG_DEV;
  989. break;
  990. case S_IFREG:
  991. /*
  992. * we can't set up filestreams until after the VFS inode
  993. * is set up properly.
  994. */
  995. if (pip && xfs_inode_is_filestream(pip))
  996. filestreams = 1;
  997. /* fall through */
  998. case S_IFDIR:
  999. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1000. uint di_flags = 0;
  1001. if (S_ISDIR(mode)) {
  1002. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1003. di_flags |= XFS_DIFLAG_RTINHERIT;
  1004. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1005. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1006. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1007. }
  1008. } else if (S_ISREG(mode)) {
  1009. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1010. di_flags |= XFS_DIFLAG_REALTIME;
  1011. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1012. di_flags |= XFS_DIFLAG_EXTSIZE;
  1013. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1014. }
  1015. }
  1016. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1017. xfs_inherit_noatime)
  1018. di_flags |= XFS_DIFLAG_NOATIME;
  1019. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1020. xfs_inherit_nodump)
  1021. di_flags |= XFS_DIFLAG_NODUMP;
  1022. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1023. xfs_inherit_sync)
  1024. di_flags |= XFS_DIFLAG_SYNC;
  1025. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1026. xfs_inherit_nosymlinks)
  1027. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1028. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1029. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1030. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1031. xfs_inherit_nodefrag)
  1032. di_flags |= XFS_DIFLAG_NODEFRAG;
  1033. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1034. di_flags |= XFS_DIFLAG_FILESTREAM;
  1035. ip->i_d.di_flags |= di_flags;
  1036. }
  1037. /* FALLTHROUGH */
  1038. case S_IFLNK:
  1039. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1040. ip->i_df.if_flags = XFS_IFEXTENTS;
  1041. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1042. ip->i_df.if_u1.if_extents = NULL;
  1043. break;
  1044. default:
  1045. ASSERT(0);
  1046. }
  1047. /*
  1048. * Attribute fork settings for new inode.
  1049. */
  1050. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1051. ip->i_d.di_anextents = 0;
  1052. /*
  1053. * Log the new values stuffed into the inode.
  1054. */
  1055. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  1056. xfs_trans_log_inode(tp, ip, flags);
  1057. /* now that we have an i_mode we can setup inode ops and unlock */
  1058. xfs_setup_inode(ip);
  1059. /* now we have set up the vfs inode we can associate the filestream */
  1060. if (filestreams) {
  1061. error = xfs_filestream_associate(pip, ip);
  1062. if (error < 0)
  1063. return -error;
  1064. if (!error)
  1065. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1066. }
  1067. *ipp = ip;
  1068. return 0;
  1069. }
  1070. /*
  1071. * Free up the underlying blocks past new_size. The new size must be smaller
  1072. * than the current size. This routine can be used both for the attribute and
  1073. * data fork, and does not modify the inode size, which is left to the caller.
  1074. *
  1075. * The transaction passed to this routine must have made a permanent log
  1076. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1077. * given transaction and start new ones, so make sure everything involved in
  1078. * the transaction is tidy before calling here. Some transaction will be
  1079. * returned to the caller to be committed. The incoming transaction must
  1080. * already include the inode, and both inode locks must be held exclusively.
  1081. * The inode must also be "held" within the transaction. On return the inode
  1082. * will be "held" within the returned transaction. This routine does NOT
  1083. * require any disk space to be reserved for it within the transaction.
  1084. *
  1085. * If we get an error, we must return with the inode locked and linked into the
  1086. * current transaction. This keeps things simple for the higher level code,
  1087. * because it always knows that the inode is locked and held in the transaction
  1088. * that returns to it whether errors occur or not. We don't mark the inode
  1089. * dirty on error so that transactions can be easily aborted if possible.
  1090. */
  1091. int
  1092. xfs_itruncate_extents(
  1093. struct xfs_trans **tpp,
  1094. struct xfs_inode *ip,
  1095. int whichfork,
  1096. xfs_fsize_t new_size)
  1097. {
  1098. struct xfs_mount *mp = ip->i_mount;
  1099. struct xfs_trans *tp = *tpp;
  1100. struct xfs_trans *ntp;
  1101. xfs_bmap_free_t free_list;
  1102. xfs_fsblock_t first_block;
  1103. xfs_fileoff_t first_unmap_block;
  1104. xfs_fileoff_t last_block;
  1105. xfs_filblks_t unmap_len;
  1106. int committed;
  1107. int error = 0;
  1108. int done = 0;
  1109. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1110. ASSERT(new_size <= XFS_ISIZE(ip));
  1111. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1112. ASSERT(ip->i_itemp != NULL);
  1113. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1114. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1115. trace_xfs_itruncate_extents_start(ip, new_size);
  1116. /*
  1117. * Since it is possible for space to become allocated beyond
  1118. * the end of the file (in a crash where the space is allocated
  1119. * but the inode size is not yet updated), simply remove any
  1120. * blocks which show up between the new EOF and the maximum
  1121. * possible file size. If the first block to be removed is
  1122. * beyond the maximum file size (ie it is the same as last_block),
  1123. * then there is nothing to do.
  1124. */
  1125. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1126. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1127. if (first_unmap_block == last_block)
  1128. return 0;
  1129. ASSERT(first_unmap_block < last_block);
  1130. unmap_len = last_block - first_unmap_block + 1;
  1131. while (!done) {
  1132. xfs_bmap_init(&free_list, &first_block);
  1133. error = xfs_bunmapi(tp, ip,
  1134. first_unmap_block, unmap_len,
  1135. xfs_bmapi_aflag(whichfork),
  1136. XFS_ITRUNC_MAX_EXTENTS,
  1137. &first_block, &free_list,
  1138. &done);
  1139. if (error)
  1140. goto out_bmap_cancel;
  1141. /*
  1142. * Duplicate the transaction that has the permanent
  1143. * reservation and commit the old transaction.
  1144. */
  1145. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1146. if (committed)
  1147. xfs_trans_ijoin(tp, ip, 0);
  1148. if (error)
  1149. goto out_bmap_cancel;
  1150. if (committed) {
  1151. /*
  1152. * Mark the inode dirty so it will be logged and
  1153. * moved forward in the log as part of every commit.
  1154. */
  1155. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1156. }
  1157. ntp = xfs_trans_dup(tp);
  1158. error = xfs_trans_commit(tp, 0);
  1159. tp = ntp;
  1160. xfs_trans_ijoin(tp, ip, 0);
  1161. if (error)
  1162. goto out;
  1163. /*
  1164. * Transaction commit worked ok so we can drop the extra ticket
  1165. * reference that we gained in xfs_trans_dup()
  1166. */
  1167. xfs_log_ticket_put(tp->t_ticket);
  1168. error = xfs_trans_reserve(tp, 0,
  1169. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1170. XFS_TRANS_PERM_LOG_RES,
  1171. XFS_ITRUNCATE_LOG_COUNT);
  1172. if (error)
  1173. goto out;
  1174. }
  1175. /*
  1176. * Always re-log the inode so that our permanent transaction can keep
  1177. * on rolling it forward in the log.
  1178. */
  1179. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1180. trace_xfs_itruncate_extents_end(ip, new_size);
  1181. out:
  1182. *tpp = tp;
  1183. return error;
  1184. out_bmap_cancel:
  1185. /*
  1186. * If the bunmapi call encounters an error, return to the caller where
  1187. * the transaction can be properly aborted. We just need to make sure
  1188. * we're not holding any resources that we were not when we came in.
  1189. */
  1190. xfs_bmap_cancel(&free_list);
  1191. goto out;
  1192. }
  1193. /*
  1194. * This is called when the inode's link count goes to 0.
  1195. * We place the on-disk inode on a list in the AGI. It
  1196. * will be pulled from this list when the inode is freed.
  1197. */
  1198. int
  1199. xfs_iunlink(
  1200. xfs_trans_t *tp,
  1201. xfs_inode_t *ip)
  1202. {
  1203. xfs_mount_t *mp;
  1204. xfs_agi_t *agi;
  1205. xfs_dinode_t *dip;
  1206. xfs_buf_t *agibp;
  1207. xfs_buf_t *ibp;
  1208. xfs_agino_t agino;
  1209. short bucket_index;
  1210. int offset;
  1211. int error;
  1212. ASSERT(ip->i_d.di_nlink == 0);
  1213. ASSERT(ip->i_d.di_mode != 0);
  1214. mp = tp->t_mountp;
  1215. /*
  1216. * Get the agi buffer first. It ensures lock ordering
  1217. * on the list.
  1218. */
  1219. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1220. if (error)
  1221. return error;
  1222. agi = XFS_BUF_TO_AGI(agibp);
  1223. /*
  1224. * Get the index into the agi hash table for the
  1225. * list this inode will go on.
  1226. */
  1227. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1228. ASSERT(agino != 0);
  1229. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1230. ASSERT(agi->agi_unlinked[bucket_index]);
  1231. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1232. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1233. /*
  1234. * There is already another inode in the bucket we need
  1235. * to add ourselves to. Add us at the front of the list.
  1236. * Here we put the head pointer into our next pointer,
  1237. * and then we fall through to point the head at us.
  1238. */
  1239. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1240. if (error)
  1241. return error;
  1242. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1243. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1244. offset = ip->i_imap.im_boffset +
  1245. offsetof(xfs_dinode_t, di_next_unlinked);
  1246. xfs_trans_inode_buf(tp, ibp);
  1247. xfs_trans_log_buf(tp, ibp, offset,
  1248. (offset + sizeof(xfs_agino_t) - 1));
  1249. xfs_inobp_check(mp, ibp);
  1250. }
  1251. /*
  1252. * Point the bucket head pointer at the inode being inserted.
  1253. */
  1254. ASSERT(agino != 0);
  1255. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1256. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1257. (sizeof(xfs_agino_t) * bucket_index);
  1258. xfs_trans_log_buf(tp, agibp, offset,
  1259. (offset + sizeof(xfs_agino_t) - 1));
  1260. return 0;
  1261. }
  1262. /*
  1263. * Pull the on-disk inode from the AGI unlinked list.
  1264. */
  1265. STATIC int
  1266. xfs_iunlink_remove(
  1267. xfs_trans_t *tp,
  1268. xfs_inode_t *ip)
  1269. {
  1270. xfs_ino_t next_ino;
  1271. xfs_mount_t *mp;
  1272. xfs_agi_t *agi;
  1273. xfs_dinode_t *dip;
  1274. xfs_buf_t *agibp;
  1275. xfs_buf_t *ibp;
  1276. xfs_agnumber_t agno;
  1277. xfs_agino_t agino;
  1278. xfs_agino_t next_agino;
  1279. xfs_buf_t *last_ibp;
  1280. xfs_dinode_t *last_dip = NULL;
  1281. short bucket_index;
  1282. int offset, last_offset = 0;
  1283. int error;
  1284. mp = tp->t_mountp;
  1285. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1286. /*
  1287. * Get the agi buffer first. It ensures lock ordering
  1288. * on the list.
  1289. */
  1290. error = xfs_read_agi(mp, tp, agno, &agibp);
  1291. if (error)
  1292. return error;
  1293. agi = XFS_BUF_TO_AGI(agibp);
  1294. /*
  1295. * Get the index into the agi hash table for the
  1296. * list this inode will go on.
  1297. */
  1298. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1299. ASSERT(agino != 0);
  1300. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1301. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1302. ASSERT(agi->agi_unlinked[bucket_index]);
  1303. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1304. /*
  1305. * We're at the head of the list. Get the inode's
  1306. * on-disk buffer to see if there is anyone after us
  1307. * on the list. Only modify our next pointer if it
  1308. * is not already NULLAGINO. This saves us the overhead
  1309. * of dealing with the buffer when there is no need to
  1310. * change it.
  1311. */
  1312. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1313. if (error) {
  1314. xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
  1315. __func__, error);
  1316. return error;
  1317. }
  1318. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1319. ASSERT(next_agino != 0);
  1320. if (next_agino != NULLAGINO) {
  1321. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1322. offset = ip->i_imap.im_boffset +
  1323. offsetof(xfs_dinode_t, di_next_unlinked);
  1324. xfs_trans_inode_buf(tp, ibp);
  1325. xfs_trans_log_buf(tp, ibp, offset,
  1326. (offset + sizeof(xfs_agino_t) - 1));
  1327. xfs_inobp_check(mp, ibp);
  1328. } else {
  1329. xfs_trans_brelse(tp, ibp);
  1330. }
  1331. /*
  1332. * Point the bucket head pointer at the next inode.
  1333. */
  1334. ASSERT(next_agino != 0);
  1335. ASSERT(next_agino != agino);
  1336. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1337. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1338. (sizeof(xfs_agino_t) * bucket_index);
  1339. xfs_trans_log_buf(tp, agibp, offset,
  1340. (offset + sizeof(xfs_agino_t) - 1));
  1341. } else {
  1342. /*
  1343. * We need to search the list for the inode being freed.
  1344. */
  1345. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1346. last_ibp = NULL;
  1347. while (next_agino != agino) {
  1348. /*
  1349. * If the last inode wasn't the one pointing to
  1350. * us, then release its buffer since we're not
  1351. * going to do anything with it.
  1352. */
  1353. if (last_ibp != NULL) {
  1354. xfs_trans_brelse(tp, last_ibp);
  1355. }
  1356. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1357. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1358. &last_ibp, &last_offset, 0);
  1359. if (error) {
  1360. xfs_warn(mp,
  1361. "%s: xfs_inotobp() returned error %d.",
  1362. __func__, error);
  1363. return error;
  1364. }
  1365. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1366. ASSERT(next_agino != NULLAGINO);
  1367. ASSERT(next_agino != 0);
  1368. }
  1369. /*
  1370. * Now last_ibp points to the buffer previous to us on
  1371. * the unlinked list. Pull us from the list.
  1372. */
  1373. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1374. if (error) {
  1375. xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
  1376. __func__, error);
  1377. return error;
  1378. }
  1379. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1380. ASSERT(next_agino != 0);
  1381. ASSERT(next_agino != agino);
  1382. if (next_agino != NULLAGINO) {
  1383. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1384. offset = ip->i_imap.im_boffset +
  1385. offsetof(xfs_dinode_t, di_next_unlinked);
  1386. xfs_trans_inode_buf(tp, ibp);
  1387. xfs_trans_log_buf(tp, ibp, offset,
  1388. (offset + sizeof(xfs_agino_t) - 1));
  1389. xfs_inobp_check(mp, ibp);
  1390. } else {
  1391. xfs_trans_brelse(tp, ibp);
  1392. }
  1393. /*
  1394. * Point the previous inode on the list to the next inode.
  1395. */
  1396. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1397. ASSERT(next_agino != 0);
  1398. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1399. xfs_trans_inode_buf(tp, last_ibp);
  1400. xfs_trans_log_buf(tp, last_ibp, offset,
  1401. (offset + sizeof(xfs_agino_t) - 1));
  1402. xfs_inobp_check(mp, last_ibp);
  1403. }
  1404. return 0;
  1405. }
  1406. /*
  1407. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1408. * inodes that are in memory - they all must be marked stale and attached to
  1409. * the cluster buffer.
  1410. */
  1411. STATIC int
  1412. xfs_ifree_cluster(
  1413. xfs_inode_t *free_ip,
  1414. xfs_trans_t *tp,
  1415. xfs_ino_t inum)
  1416. {
  1417. xfs_mount_t *mp = free_ip->i_mount;
  1418. int blks_per_cluster;
  1419. int nbufs;
  1420. int ninodes;
  1421. int i, j;
  1422. xfs_daddr_t blkno;
  1423. xfs_buf_t *bp;
  1424. xfs_inode_t *ip;
  1425. xfs_inode_log_item_t *iip;
  1426. xfs_log_item_t *lip;
  1427. struct xfs_perag *pag;
  1428. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1429. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1430. blks_per_cluster = 1;
  1431. ninodes = mp->m_sb.sb_inopblock;
  1432. nbufs = XFS_IALLOC_BLOCKS(mp);
  1433. } else {
  1434. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1435. mp->m_sb.sb_blocksize;
  1436. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1437. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1438. }
  1439. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1440. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1441. XFS_INO_TO_AGBNO(mp, inum));
  1442. /*
  1443. * We obtain and lock the backing buffer first in the process
  1444. * here, as we have to ensure that any dirty inode that we
  1445. * can't get the flush lock on is attached to the buffer.
  1446. * If we scan the in-memory inodes first, then buffer IO can
  1447. * complete before we get a lock on it, and hence we may fail
  1448. * to mark all the active inodes on the buffer stale.
  1449. */
  1450. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1451. mp->m_bsize * blks_per_cluster,
  1452. XBF_LOCK);
  1453. if (!bp)
  1454. return ENOMEM;
  1455. /*
  1456. * Walk the inodes already attached to the buffer and mark them
  1457. * stale. These will all have the flush locks held, so an
  1458. * in-memory inode walk can't lock them. By marking them all
  1459. * stale first, we will not attempt to lock them in the loop
  1460. * below as the XFS_ISTALE flag will be set.
  1461. */
  1462. lip = bp->b_fspriv;
  1463. while (lip) {
  1464. if (lip->li_type == XFS_LI_INODE) {
  1465. iip = (xfs_inode_log_item_t *)lip;
  1466. ASSERT(iip->ili_logged == 1);
  1467. lip->li_cb = xfs_istale_done;
  1468. xfs_trans_ail_copy_lsn(mp->m_ail,
  1469. &iip->ili_flush_lsn,
  1470. &iip->ili_item.li_lsn);
  1471. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1472. }
  1473. lip = lip->li_bio_list;
  1474. }
  1475. /*
  1476. * For each inode in memory attempt to add it to the inode
  1477. * buffer and set it up for being staled on buffer IO
  1478. * completion. This is safe as we've locked out tail pushing
  1479. * and flushing by locking the buffer.
  1480. *
  1481. * We have already marked every inode that was part of a
  1482. * transaction stale above, which means there is no point in
  1483. * even trying to lock them.
  1484. */
  1485. for (i = 0; i < ninodes; i++) {
  1486. retry:
  1487. rcu_read_lock();
  1488. ip = radix_tree_lookup(&pag->pag_ici_root,
  1489. XFS_INO_TO_AGINO(mp, (inum + i)));
  1490. /* Inode not in memory, nothing to do */
  1491. if (!ip) {
  1492. rcu_read_unlock();
  1493. continue;
  1494. }
  1495. /*
  1496. * because this is an RCU protected lookup, we could
  1497. * find a recently freed or even reallocated inode
  1498. * during the lookup. We need to check under the
  1499. * i_flags_lock for a valid inode here. Skip it if it
  1500. * is not valid, the wrong inode or stale.
  1501. */
  1502. spin_lock(&ip->i_flags_lock);
  1503. if (ip->i_ino != inum + i ||
  1504. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1505. spin_unlock(&ip->i_flags_lock);
  1506. rcu_read_unlock();
  1507. continue;
  1508. }
  1509. spin_unlock(&ip->i_flags_lock);
  1510. /*
  1511. * Don't try to lock/unlock the current inode, but we
  1512. * _cannot_ skip the other inodes that we did not find
  1513. * in the list attached to the buffer and are not
  1514. * already marked stale. If we can't lock it, back off
  1515. * and retry.
  1516. */
  1517. if (ip != free_ip &&
  1518. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1519. rcu_read_unlock();
  1520. delay(1);
  1521. goto retry;
  1522. }
  1523. rcu_read_unlock();
  1524. xfs_iflock(ip);
  1525. xfs_iflags_set(ip, XFS_ISTALE);
  1526. /*
  1527. * we don't need to attach clean inodes or those only
  1528. * with unlogged changes (which we throw away, anyway).
  1529. */
  1530. iip = ip->i_itemp;
  1531. if (!iip || xfs_inode_clean(ip)) {
  1532. ASSERT(ip != free_ip);
  1533. xfs_ifunlock(ip);
  1534. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1535. continue;
  1536. }
  1537. iip->ili_last_fields = iip->ili_fields;
  1538. iip->ili_fields = 0;
  1539. iip->ili_logged = 1;
  1540. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1541. &iip->ili_item.li_lsn);
  1542. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1543. &iip->ili_item);
  1544. if (ip != free_ip)
  1545. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1546. }
  1547. xfs_trans_stale_inode_buf(tp, bp);
  1548. xfs_trans_binval(tp, bp);
  1549. }
  1550. xfs_perag_put(pag);
  1551. return 0;
  1552. }
  1553. /*
  1554. * This is called to return an inode to the inode free list.
  1555. * The inode should already be truncated to 0 length and have
  1556. * no pages associated with it. This routine also assumes that
  1557. * the inode is already a part of the transaction.
  1558. *
  1559. * The on-disk copy of the inode will have been added to the list
  1560. * of unlinked inodes in the AGI. We need to remove the inode from
  1561. * that list atomically with respect to freeing it here.
  1562. */
  1563. int
  1564. xfs_ifree(
  1565. xfs_trans_t *tp,
  1566. xfs_inode_t *ip,
  1567. xfs_bmap_free_t *flist)
  1568. {
  1569. int error;
  1570. int delete;
  1571. xfs_ino_t first_ino;
  1572. xfs_dinode_t *dip;
  1573. xfs_buf_t *ibp;
  1574. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1575. ASSERT(ip->i_d.di_nlink == 0);
  1576. ASSERT(ip->i_d.di_nextents == 0);
  1577. ASSERT(ip->i_d.di_anextents == 0);
  1578. ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
  1579. ASSERT(ip->i_d.di_nblocks == 0);
  1580. /*
  1581. * Pull the on-disk inode from the AGI unlinked list.
  1582. */
  1583. error = xfs_iunlink_remove(tp, ip);
  1584. if (error != 0) {
  1585. return error;
  1586. }
  1587. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1588. if (error != 0) {
  1589. return error;
  1590. }
  1591. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1592. ip->i_d.di_flags = 0;
  1593. ip->i_d.di_dmevmask = 0;
  1594. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1595. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1596. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1597. /*
  1598. * Bump the generation count so no one will be confused
  1599. * by reincarnations of this inode.
  1600. */
  1601. ip->i_d.di_gen++;
  1602. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1603. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1604. if (error)
  1605. return error;
  1606. /*
  1607. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1608. * from picking up this inode when it is reclaimed (its incore state
  1609. * initialzed but not flushed to disk yet). The in-core di_mode is
  1610. * already cleared and a corresponding transaction logged.
  1611. * The hack here just synchronizes the in-core to on-disk
  1612. * di_mode value in advance before the actual inode sync to disk.
  1613. * This is OK because the inode is already unlinked and would never
  1614. * change its di_mode again for this inode generation.
  1615. * This is a temporary hack that would require a proper fix
  1616. * in the future.
  1617. */
  1618. dip->di_mode = 0;
  1619. if (delete) {
  1620. error = xfs_ifree_cluster(ip, tp, first_ino);
  1621. }
  1622. return error;
  1623. }
  1624. /*
  1625. * Reallocate the space for if_broot based on the number of records
  1626. * being added or deleted as indicated in rec_diff. Move the records
  1627. * and pointers in if_broot to fit the new size. When shrinking this
  1628. * will eliminate holes between the records and pointers created by
  1629. * the caller. When growing this will create holes to be filled in
  1630. * by the caller.
  1631. *
  1632. * The caller must not request to add more records than would fit in
  1633. * the on-disk inode root. If the if_broot is currently NULL, then
  1634. * if we adding records one will be allocated. The caller must also
  1635. * not request that the number of records go below zero, although
  1636. * it can go to zero.
  1637. *
  1638. * ip -- the inode whose if_broot area is changing
  1639. * ext_diff -- the change in the number of records, positive or negative,
  1640. * requested for the if_broot array.
  1641. */
  1642. void
  1643. xfs_iroot_realloc(
  1644. xfs_inode_t *ip,
  1645. int rec_diff,
  1646. int whichfork)
  1647. {
  1648. struct xfs_mount *mp = ip->i_mount;
  1649. int cur_max;
  1650. xfs_ifork_t *ifp;
  1651. struct xfs_btree_block *new_broot;
  1652. int new_max;
  1653. size_t new_size;
  1654. char *np;
  1655. char *op;
  1656. /*
  1657. * Handle the degenerate case quietly.
  1658. */
  1659. if (rec_diff == 0) {
  1660. return;
  1661. }
  1662. ifp = XFS_IFORK_PTR(ip, whichfork);
  1663. if (rec_diff > 0) {
  1664. /*
  1665. * If there wasn't any memory allocated before, just
  1666. * allocate it now and get out.
  1667. */
  1668. if (ifp->if_broot_bytes == 0) {
  1669. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  1670. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1671. ifp->if_broot_bytes = (int)new_size;
  1672. return;
  1673. }
  1674. /*
  1675. * If there is already an existing if_broot, then we need
  1676. * to realloc() it and shift the pointers to their new
  1677. * location. The records don't change location because
  1678. * they are kept butted up against the btree block header.
  1679. */
  1680. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1681. new_max = cur_max + rec_diff;
  1682. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1683. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1684. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  1685. KM_SLEEP | KM_NOFS);
  1686. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1687. ifp->if_broot_bytes);
  1688. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1689. (int)new_size);
  1690. ifp->if_broot_bytes = (int)new_size;
  1691. ASSERT(ifp->if_broot_bytes <=
  1692. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1693. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1694. return;
  1695. }
  1696. /*
  1697. * rec_diff is less than 0. In this case, we are shrinking the
  1698. * if_broot buffer. It must already exist. If we go to zero
  1699. * records, just get rid of the root and clear the status bit.
  1700. */
  1701. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1702. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1703. new_max = cur_max + rec_diff;
  1704. ASSERT(new_max >= 0);
  1705. if (new_max > 0)
  1706. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1707. else
  1708. new_size = 0;
  1709. if (new_size > 0) {
  1710. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1711. /*
  1712. * First copy over the btree block header.
  1713. */
  1714. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  1715. } else {
  1716. new_broot = NULL;
  1717. ifp->if_flags &= ~XFS_IFBROOT;
  1718. }
  1719. /*
  1720. * Only copy the records and pointers if there are any.
  1721. */
  1722. if (new_max > 0) {
  1723. /*
  1724. * First copy the records.
  1725. */
  1726. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  1727. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  1728. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  1729. /*
  1730. * Then copy the pointers.
  1731. */
  1732. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1733. ifp->if_broot_bytes);
  1734. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  1735. (int)new_size);
  1736. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  1737. }
  1738. kmem_free(ifp->if_broot);
  1739. ifp->if_broot = new_broot;
  1740. ifp->if_broot_bytes = (int)new_size;
  1741. ASSERT(ifp->if_broot_bytes <=
  1742. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1743. return;
  1744. }
  1745. /*
  1746. * This is called when the amount of space needed for if_data
  1747. * is increased or decreased. The change in size is indicated by
  1748. * the number of bytes that need to be added or deleted in the
  1749. * byte_diff parameter.
  1750. *
  1751. * If the amount of space needed has decreased below the size of the
  1752. * inline buffer, then switch to using the inline buffer. Otherwise,
  1753. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  1754. * to what is needed.
  1755. *
  1756. * ip -- the inode whose if_data area is changing
  1757. * byte_diff -- the change in the number of bytes, positive or negative,
  1758. * requested for the if_data array.
  1759. */
  1760. void
  1761. xfs_idata_realloc(
  1762. xfs_inode_t *ip,
  1763. int byte_diff,
  1764. int whichfork)
  1765. {
  1766. xfs_ifork_t *ifp;
  1767. int new_size;
  1768. int real_size;
  1769. if (byte_diff == 0) {
  1770. return;
  1771. }
  1772. ifp = XFS_IFORK_PTR(ip, whichfork);
  1773. new_size = (int)ifp->if_bytes + byte_diff;
  1774. ASSERT(new_size >= 0);
  1775. if (new_size == 0) {
  1776. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1777. kmem_free(ifp->if_u1.if_data);
  1778. }
  1779. ifp->if_u1.if_data = NULL;
  1780. real_size = 0;
  1781. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  1782. /*
  1783. * If the valid extents/data can fit in if_inline_ext/data,
  1784. * copy them from the malloc'd vector and free it.
  1785. */
  1786. if (ifp->if_u1.if_data == NULL) {
  1787. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1788. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1789. ASSERT(ifp->if_real_bytes != 0);
  1790. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  1791. new_size);
  1792. kmem_free(ifp->if_u1.if_data);
  1793. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1794. }
  1795. real_size = 0;
  1796. } else {
  1797. /*
  1798. * Stuck with malloc/realloc.
  1799. * For inline data, the underlying buffer must be
  1800. * a multiple of 4 bytes in size so that it can be
  1801. * logged and stay on word boundaries. We enforce
  1802. * that here.
  1803. */
  1804. real_size = roundup(new_size, 4);
  1805. if (ifp->if_u1.if_data == NULL) {
  1806. ASSERT(ifp->if_real_bytes == 0);
  1807. ifp->if_u1.if_data = kmem_alloc(real_size,
  1808. KM_SLEEP | KM_NOFS);
  1809. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1810. /*
  1811. * Only do the realloc if the underlying size
  1812. * is really changing.
  1813. */
  1814. if (ifp->if_real_bytes != real_size) {
  1815. ifp->if_u1.if_data =
  1816. kmem_realloc(ifp->if_u1.if_data,
  1817. real_size,
  1818. ifp->if_real_bytes,
  1819. KM_SLEEP | KM_NOFS);
  1820. }
  1821. } else {
  1822. ASSERT(ifp->if_real_bytes == 0);
  1823. ifp->if_u1.if_data = kmem_alloc(real_size,
  1824. KM_SLEEP | KM_NOFS);
  1825. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  1826. ifp->if_bytes);
  1827. }
  1828. }
  1829. ifp->if_real_bytes = real_size;
  1830. ifp->if_bytes = new_size;
  1831. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  1832. }
  1833. void
  1834. xfs_idestroy_fork(
  1835. xfs_inode_t *ip,
  1836. int whichfork)
  1837. {
  1838. xfs_ifork_t *ifp;
  1839. ifp = XFS_IFORK_PTR(ip, whichfork);
  1840. if (ifp->if_broot != NULL) {
  1841. kmem_free(ifp->if_broot);
  1842. ifp->if_broot = NULL;
  1843. }
  1844. /*
  1845. * If the format is local, then we can't have an extents
  1846. * array so just look for an inline data array. If we're
  1847. * not local then we may or may not have an extents list,
  1848. * so check and free it up if we do.
  1849. */
  1850. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  1851. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  1852. (ifp->if_u1.if_data != NULL)) {
  1853. ASSERT(ifp->if_real_bytes != 0);
  1854. kmem_free(ifp->if_u1.if_data);
  1855. ifp->if_u1.if_data = NULL;
  1856. ifp->if_real_bytes = 0;
  1857. }
  1858. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  1859. ((ifp->if_flags & XFS_IFEXTIREC) ||
  1860. ((ifp->if_u1.if_extents != NULL) &&
  1861. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  1862. ASSERT(ifp->if_real_bytes != 0);
  1863. xfs_iext_destroy(ifp);
  1864. }
  1865. ASSERT(ifp->if_u1.if_extents == NULL ||
  1866. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  1867. ASSERT(ifp->if_real_bytes == 0);
  1868. if (whichfork == XFS_ATTR_FORK) {
  1869. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  1870. ip->i_afp = NULL;
  1871. }
  1872. }
  1873. /*
  1874. * This is called to unpin an inode. The caller must have the inode locked
  1875. * in at least shared mode so that the buffer cannot be subsequently pinned
  1876. * once someone is waiting for it to be unpinned.
  1877. */
  1878. static void
  1879. xfs_iunpin(
  1880. struct xfs_inode *ip)
  1881. {
  1882. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1883. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  1884. /* Give the log a push to start the unpinning I/O */
  1885. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  1886. }
  1887. static void
  1888. __xfs_iunpin_wait(
  1889. struct xfs_inode *ip)
  1890. {
  1891. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
  1892. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
  1893. xfs_iunpin(ip);
  1894. do {
  1895. prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
  1896. if (xfs_ipincount(ip))
  1897. io_schedule();
  1898. } while (xfs_ipincount(ip));
  1899. finish_wait(wq, &wait.wait);
  1900. }
  1901. void
  1902. xfs_iunpin_wait(
  1903. struct xfs_inode *ip)
  1904. {
  1905. if (xfs_ipincount(ip))
  1906. __xfs_iunpin_wait(ip);
  1907. }
  1908. /*
  1909. * xfs_iextents_copy()
  1910. *
  1911. * This is called to copy the REAL extents (as opposed to the delayed
  1912. * allocation extents) from the inode into the given buffer. It
  1913. * returns the number of bytes copied into the buffer.
  1914. *
  1915. * If there are no delayed allocation extents, then we can just
  1916. * memcpy() the extents into the buffer. Otherwise, we need to
  1917. * examine each extent in turn and skip those which are delayed.
  1918. */
  1919. int
  1920. xfs_iextents_copy(
  1921. xfs_inode_t *ip,
  1922. xfs_bmbt_rec_t *dp,
  1923. int whichfork)
  1924. {
  1925. int copied;
  1926. int i;
  1927. xfs_ifork_t *ifp;
  1928. int nrecs;
  1929. xfs_fsblock_t start_block;
  1930. ifp = XFS_IFORK_PTR(ip, whichfork);
  1931. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1932. ASSERT(ifp->if_bytes > 0);
  1933. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  1934. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  1935. ASSERT(nrecs > 0);
  1936. /*
  1937. * There are some delayed allocation extents in the
  1938. * inode, so copy the extents one at a time and skip
  1939. * the delayed ones. There must be at least one
  1940. * non-delayed extent.
  1941. */
  1942. copied = 0;
  1943. for (i = 0; i < nrecs; i++) {
  1944. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  1945. start_block = xfs_bmbt_get_startblock(ep);
  1946. if (isnullstartblock(start_block)) {
  1947. /*
  1948. * It's a delayed allocation extent, so skip it.
  1949. */
  1950. continue;
  1951. }
  1952. /* Translate to on disk format */
  1953. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  1954. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  1955. dp++;
  1956. copied++;
  1957. }
  1958. ASSERT(copied != 0);
  1959. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  1960. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  1961. }
  1962. /*
  1963. * Each of the following cases stores data into the same region
  1964. * of the on-disk inode, so only one of them can be valid at
  1965. * any given time. While it is possible to have conflicting formats
  1966. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  1967. * in EXTENTS format, this can only happen when the fork has
  1968. * changed formats after being modified but before being flushed.
  1969. * In these cases, the format always takes precedence, because the
  1970. * format indicates the current state of the fork.
  1971. */
  1972. /*ARGSUSED*/
  1973. STATIC void
  1974. xfs_iflush_fork(
  1975. xfs_inode_t *ip,
  1976. xfs_dinode_t *dip,
  1977. xfs_inode_log_item_t *iip,
  1978. int whichfork,
  1979. xfs_buf_t *bp)
  1980. {
  1981. char *cp;
  1982. xfs_ifork_t *ifp;
  1983. xfs_mount_t *mp;
  1984. #ifdef XFS_TRANS_DEBUG
  1985. int first;
  1986. #endif
  1987. static const short brootflag[2] =
  1988. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  1989. static const short dataflag[2] =
  1990. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  1991. static const short extflag[2] =
  1992. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  1993. if (!iip)
  1994. return;
  1995. ifp = XFS_IFORK_PTR(ip, whichfork);
  1996. /*
  1997. * This can happen if we gave up in iformat in an error path,
  1998. * for the attribute fork.
  1999. */
  2000. if (!ifp) {
  2001. ASSERT(whichfork == XFS_ATTR_FORK);
  2002. return;
  2003. }
  2004. cp = XFS_DFORK_PTR(dip, whichfork);
  2005. mp = ip->i_mount;
  2006. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2007. case XFS_DINODE_FMT_LOCAL:
  2008. if ((iip->ili_fields & dataflag[whichfork]) &&
  2009. (ifp->if_bytes > 0)) {
  2010. ASSERT(ifp->if_u1.if_data != NULL);
  2011. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2012. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2013. }
  2014. break;
  2015. case XFS_DINODE_FMT_EXTENTS:
  2016. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2017. !(iip->ili_fields & extflag[whichfork]));
  2018. if ((iip->ili_fields & extflag[whichfork]) &&
  2019. (ifp->if_bytes > 0)) {
  2020. ASSERT(xfs_iext_get_ext(ifp, 0));
  2021. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2022. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2023. whichfork);
  2024. }
  2025. break;
  2026. case XFS_DINODE_FMT_BTREE:
  2027. if ((iip->ili_fields & brootflag[whichfork]) &&
  2028. (ifp->if_broot_bytes > 0)) {
  2029. ASSERT(ifp->if_broot != NULL);
  2030. ASSERT(ifp->if_broot_bytes <=
  2031. (XFS_IFORK_SIZE(ip, whichfork) +
  2032. XFS_BROOT_SIZE_ADJ));
  2033. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2034. (xfs_bmdr_block_t *)cp,
  2035. XFS_DFORK_SIZE(dip, mp, whichfork));
  2036. }
  2037. break;
  2038. case XFS_DINODE_FMT_DEV:
  2039. if (iip->ili_fields & XFS_ILOG_DEV) {
  2040. ASSERT(whichfork == XFS_DATA_FORK);
  2041. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2042. }
  2043. break;
  2044. case XFS_DINODE_FMT_UUID:
  2045. if (iip->ili_fields & XFS_ILOG_UUID) {
  2046. ASSERT(whichfork == XFS_DATA_FORK);
  2047. memcpy(XFS_DFORK_DPTR(dip),
  2048. &ip->i_df.if_u2.if_uuid,
  2049. sizeof(uuid_t));
  2050. }
  2051. break;
  2052. default:
  2053. ASSERT(0);
  2054. break;
  2055. }
  2056. }
  2057. STATIC int
  2058. xfs_iflush_cluster(
  2059. xfs_inode_t *ip,
  2060. xfs_buf_t *bp)
  2061. {
  2062. xfs_mount_t *mp = ip->i_mount;
  2063. struct xfs_perag *pag;
  2064. unsigned long first_index, mask;
  2065. unsigned long inodes_per_cluster;
  2066. int ilist_size;
  2067. xfs_inode_t **ilist;
  2068. xfs_inode_t *iq;
  2069. int nr_found;
  2070. int clcount = 0;
  2071. int bufwasdelwri;
  2072. int i;
  2073. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2074. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2075. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2076. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2077. if (!ilist)
  2078. goto out_put;
  2079. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2080. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2081. rcu_read_lock();
  2082. /* really need a gang lookup range call here */
  2083. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2084. first_index, inodes_per_cluster);
  2085. if (nr_found == 0)
  2086. goto out_free;
  2087. for (i = 0; i < nr_found; i++) {
  2088. iq = ilist[i];
  2089. if (iq == ip)
  2090. continue;
  2091. /*
  2092. * because this is an RCU protected lookup, we could find a
  2093. * recently freed or even reallocated inode during the lookup.
  2094. * We need to check under the i_flags_lock for a valid inode
  2095. * here. Skip it if it is not valid or the wrong inode.
  2096. */
  2097. spin_lock(&ip->i_flags_lock);
  2098. if (!ip->i_ino ||
  2099. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2100. spin_unlock(&ip->i_flags_lock);
  2101. continue;
  2102. }
  2103. spin_unlock(&ip->i_flags_lock);
  2104. /*
  2105. * Do an un-protected check to see if the inode is dirty and
  2106. * is a candidate for flushing. These checks will be repeated
  2107. * later after the appropriate locks are acquired.
  2108. */
  2109. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2110. continue;
  2111. /*
  2112. * Try to get locks. If any are unavailable or it is pinned,
  2113. * then this inode cannot be flushed and is skipped.
  2114. */
  2115. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2116. continue;
  2117. if (!xfs_iflock_nowait(iq)) {
  2118. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2119. continue;
  2120. }
  2121. if (xfs_ipincount(iq)) {
  2122. xfs_ifunlock(iq);
  2123. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2124. continue;
  2125. }
  2126. /*
  2127. * arriving here means that this inode can be flushed. First
  2128. * re-check that it's dirty before flushing.
  2129. */
  2130. if (!xfs_inode_clean(iq)) {
  2131. int error;
  2132. error = xfs_iflush_int(iq, bp);
  2133. if (error) {
  2134. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2135. goto cluster_corrupt_out;
  2136. }
  2137. clcount++;
  2138. } else {
  2139. xfs_ifunlock(iq);
  2140. }
  2141. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2142. }
  2143. if (clcount) {
  2144. XFS_STATS_INC(xs_icluster_flushcnt);
  2145. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2146. }
  2147. out_free:
  2148. rcu_read_unlock();
  2149. kmem_free(ilist);
  2150. out_put:
  2151. xfs_perag_put(pag);
  2152. return 0;
  2153. cluster_corrupt_out:
  2154. /*
  2155. * Corruption detected in the clustering loop. Invalidate the
  2156. * inode buffer and shut down the filesystem.
  2157. */
  2158. rcu_read_unlock();
  2159. /*
  2160. * Clean up the buffer. If it was B_DELWRI, just release it --
  2161. * brelse can handle it with no problems. If not, shut down the
  2162. * filesystem before releasing the buffer.
  2163. */
  2164. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2165. if (bufwasdelwri)
  2166. xfs_buf_relse(bp);
  2167. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2168. if (!bufwasdelwri) {
  2169. /*
  2170. * Just like incore_relse: if we have b_iodone functions,
  2171. * mark the buffer as an error and call them. Otherwise
  2172. * mark it as stale and brelse.
  2173. */
  2174. if (bp->b_iodone) {
  2175. XFS_BUF_UNDONE(bp);
  2176. xfs_buf_stale(bp);
  2177. xfs_buf_ioerror(bp, EIO);
  2178. xfs_buf_ioend(bp, 0);
  2179. } else {
  2180. xfs_buf_stale(bp);
  2181. xfs_buf_relse(bp);
  2182. }
  2183. }
  2184. /*
  2185. * Unlocks the flush lock
  2186. */
  2187. xfs_iflush_abort(iq);
  2188. kmem_free(ilist);
  2189. xfs_perag_put(pag);
  2190. return XFS_ERROR(EFSCORRUPTED);
  2191. }
  2192. /*
  2193. * Flush dirty inode metadata into the backing buffer.
  2194. *
  2195. * The caller must have the inode lock and the inode flush lock held. The
  2196. * inode lock will still be held upon return to the caller, and the inode
  2197. * flush lock will be released after the inode has reached the disk.
  2198. *
  2199. * The caller must write out the buffer returned in *bpp and release it.
  2200. */
  2201. int
  2202. xfs_iflush(
  2203. struct xfs_inode *ip,
  2204. struct xfs_buf **bpp)
  2205. {
  2206. struct xfs_mount *mp = ip->i_mount;
  2207. struct xfs_buf *bp;
  2208. struct xfs_dinode *dip;
  2209. int error;
  2210. XFS_STATS_INC(xs_iflush_count);
  2211. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2212. ASSERT(xfs_isiflocked(ip));
  2213. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2214. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2215. *bpp = NULL;
  2216. xfs_iunpin_wait(ip);
  2217. /*
  2218. * For stale inodes we cannot rely on the backing buffer remaining
  2219. * stale in cache for the remaining life of the stale inode and so
  2220. * xfs_itobp() below may give us a buffer that no longer contains
  2221. * inodes below. We have to check this after ensuring the inode is
  2222. * unpinned so that it is safe to reclaim the stale inode after the
  2223. * flush call.
  2224. */
  2225. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2226. xfs_ifunlock(ip);
  2227. return 0;
  2228. }
  2229. /*
  2230. * This may have been unpinned because the filesystem is shutting
  2231. * down forcibly. If that's the case we must not write this inode
  2232. * to disk, because the log record didn't make it to disk.
  2233. *
  2234. * We also have to remove the log item from the AIL in this case,
  2235. * as we wait for an empty AIL as part of the unmount process.
  2236. */
  2237. if (XFS_FORCED_SHUTDOWN(mp)) {
  2238. error = XFS_ERROR(EIO);
  2239. goto abort_out;
  2240. }
  2241. /*
  2242. * Get the buffer containing the on-disk inode.
  2243. */
  2244. error = xfs_itobp(mp, NULL, ip, &dip, &bp, XBF_TRYLOCK);
  2245. if (error || !bp) {
  2246. xfs_ifunlock(ip);
  2247. return error;
  2248. }
  2249. /*
  2250. * First flush out the inode that xfs_iflush was called with.
  2251. */
  2252. error = xfs_iflush_int(ip, bp);
  2253. if (error)
  2254. goto corrupt_out;
  2255. /*
  2256. * If the buffer is pinned then push on the log now so we won't
  2257. * get stuck waiting in the write for too long.
  2258. */
  2259. if (xfs_buf_ispinned(bp))
  2260. xfs_log_force(mp, 0);
  2261. /*
  2262. * inode clustering:
  2263. * see if other inodes can be gathered into this write
  2264. */
  2265. error = xfs_iflush_cluster(ip, bp);
  2266. if (error)
  2267. goto cluster_corrupt_out;
  2268. *bpp = bp;
  2269. return 0;
  2270. corrupt_out:
  2271. xfs_buf_relse(bp);
  2272. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2273. cluster_corrupt_out:
  2274. error = XFS_ERROR(EFSCORRUPTED);
  2275. abort_out:
  2276. /*
  2277. * Unlocks the flush lock
  2278. */
  2279. xfs_iflush_abort(ip);
  2280. return error;
  2281. }
  2282. STATIC int
  2283. xfs_iflush_int(
  2284. xfs_inode_t *ip,
  2285. xfs_buf_t *bp)
  2286. {
  2287. xfs_inode_log_item_t *iip;
  2288. xfs_dinode_t *dip;
  2289. xfs_mount_t *mp;
  2290. #ifdef XFS_TRANS_DEBUG
  2291. int first;
  2292. #endif
  2293. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2294. ASSERT(xfs_isiflocked(ip));
  2295. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2296. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2297. iip = ip->i_itemp;
  2298. mp = ip->i_mount;
  2299. /* set *dip = inode's place in the buffer */
  2300. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2301. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2302. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2303. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2304. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2305. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2306. goto corrupt_out;
  2307. }
  2308. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2309. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2310. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2311. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2312. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2313. goto corrupt_out;
  2314. }
  2315. if (S_ISREG(ip->i_d.di_mode)) {
  2316. if (XFS_TEST_ERROR(
  2317. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2318. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2319. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2320. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2321. "%s: Bad regular inode %Lu, ptr 0x%p",
  2322. __func__, ip->i_ino, ip);
  2323. goto corrupt_out;
  2324. }
  2325. } else if (S_ISDIR(ip->i_d.di_mode)) {
  2326. if (XFS_TEST_ERROR(
  2327. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2328. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2329. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2330. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2331. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2332. "%s: Bad directory inode %Lu, ptr 0x%p",
  2333. __func__, ip->i_ino, ip);
  2334. goto corrupt_out;
  2335. }
  2336. }
  2337. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2338. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2339. XFS_RANDOM_IFLUSH_5)) {
  2340. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2341. "%s: detected corrupt incore inode %Lu, "
  2342. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2343. __func__, ip->i_ino,
  2344. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2345. ip->i_d.di_nblocks, ip);
  2346. goto corrupt_out;
  2347. }
  2348. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2349. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2350. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2351. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2352. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2353. goto corrupt_out;
  2354. }
  2355. /*
  2356. * bump the flush iteration count, used to detect flushes which
  2357. * postdate a log record during recovery.
  2358. */
  2359. ip->i_d.di_flushiter++;
  2360. /*
  2361. * Copy the dirty parts of the inode into the on-disk
  2362. * inode. We always copy out the core of the inode,
  2363. * because if the inode is dirty at all the core must
  2364. * be.
  2365. */
  2366. xfs_dinode_to_disk(dip, &ip->i_d);
  2367. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2368. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2369. ip->i_d.di_flushiter = 0;
  2370. /*
  2371. * If this is really an old format inode and the superblock version
  2372. * has not been updated to support only new format inodes, then
  2373. * convert back to the old inode format. If the superblock version
  2374. * has been updated, then make the conversion permanent.
  2375. */
  2376. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2377. if (ip->i_d.di_version == 1) {
  2378. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2379. /*
  2380. * Convert it back.
  2381. */
  2382. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2383. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2384. } else {
  2385. /*
  2386. * The superblock version has already been bumped,
  2387. * so just make the conversion to the new inode
  2388. * format permanent.
  2389. */
  2390. ip->i_d.di_version = 2;
  2391. dip->di_version = 2;
  2392. ip->i_d.di_onlink = 0;
  2393. dip->di_onlink = 0;
  2394. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2395. memset(&(dip->di_pad[0]), 0,
  2396. sizeof(dip->di_pad));
  2397. ASSERT(xfs_get_projid(ip) == 0);
  2398. }
  2399. }
  2400. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2401. if (XFS_IFORK_Q(ip))
  2402. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2403. xfs_inobp_check(mp, bp);
  2404. /*
  2405. * We've recorded everything logged in the inode, so we'd like to clear
  2406. * the ili_fields bits so we don't log and flush things unnecessarily.
  2407. * However, we can't stop logging all this information until the data
  2408. * we've copied into the disk buffer is written to disk. If we did we
  2409. * might overwrite the copy of the inode in the log with all the data
  2410. * after re-logging only part of it, and in the face of a crash we
  2411. * wouldn't have all the data we need to recover.
  2412. *
  2413. * What we do is move the bits to the ili_last_fields field. When
  2414. * logging the inode, these bits are moved back to the ili_fields field.
  2415. * In the xfs_iflush_done() routine we clear ili_last_fields, since we
  2416. * know that the information those bits represent is permanently on
  2417. * disk. As long as the flush completes before the inode is logged
  2418. * again, then both ili_fields and ili_last_fields will be cleared.
  2419. *
  2420. * We can play with the ili_fields bits here, because the inode lock
  2421. * must be held exclusively in order to set bits there and the flush
  2422. * lock protects the ili_last_fields bits. Set ili_logged so the flush
  2423. * done routine can tell whether or not to look in the AIL. Also, store
  2424. * the current LSN of the inode so that we can tell whether the item has
  2425. * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
  2426. * need the AIL lock, because it is a 64 bit value that cannot be read
  2427. * atomically.
  2428. */
  2429. if (iip != NULL && iip->ili_fields != 0) {
  2430. iip->ili_last_fields = iip->ili_fields;
  2431. iip->ili_fields = 0;
  2432. iip->ili_logged = 1;
  2433. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2434. &iip->ili_item.li_lsn);
  2435. /*
  2436. * Attach the function xfs_iflush_done to the inode's
  2437. * buffer. This will remove the inode from the AIL
  2438. * and unlock the inode's flush lock when the inode is
  2439. * completely written to disk.
  2440. */
  2441. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2442. ASSERT(bp->b_fspriv != NULL);
  2443. ASSERT(bp->b_iodone != NULL);
  2444. } else {
  2445. /*
  2446. * We're flushing an inode which is not in the AIL and has
  2447. * not been logged. For this case we can immediately drop
  2448. * the inode flush lock because we can avoid the whole
  2449. * AIL state thing. It's OK to drop the flush lock now,
  2450. * because we've already locked the buffer and to do anything
  2451. * you really need both.
  2452. */
  2453. if (iip != NULL) {
  2454. ASSERT(iip->ili_logged == 0);
  2455. ASSERT(iip->ili_last_fields == 0);
  2456. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2457. }
  2458. xfs_ifunlock(ip);
  2459. }
  2460. return 0;
  2461. corrupt_out:
  2462. return XFS_ERROR(EFSCORRUPTED);
  2463. }
  2464. void
  2465. xfs_promote_inode(
  2466. struct xfs_inode *ip)
  2467. {
  2468. struct xfs_buf *bp;
  2469. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2470. bp = xfs_incore(ip->i_mount->m_ddev_targp, ip->i_imap.im_blkno,
  2471. ip->i_imap.im_len, XBF_TRYLOCK);
  2472. if (!bp)
  2473. return;
  2474. if (XFS_BUF_ISDELAYWRITE(bp)) {
  2475. xfs_buf_delwri_promote(bp);
  2476. wake_up_process(ip->i_mount->m_ddev_targp->bt_task);
  2477. }
  2478. xfs_buf_relse(bp);
  2479. }
  2480. /*
  2481. * Return a pointer to the extent record at file index idx.
  2482. */
  2483. xfs_bmbt_rec_host_t *
  2484. xfs_iext_get_ext(
  2485. xfs_ifork_t *ifp, /* inode fork pointer */
  2486. xfs_extnum_t idx) /* index of target extent */
  2487. {
  2488. ASSERT(idx >= 0);
  2489. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2490. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2491. return ifp->if_u1.if_ext_irec->er_extbuf;
  2492. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2493. xfs_ext_irec_t *erp; /* irec pointer */
  2494. int erp_idx = 0; /* irec index */
  2495. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2496. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2497. return &erp->er_extbuf[page_idx];
  2498. } else if (ifp->if_bytes) {
  2499. return &ifp->if_u1.if_extents[idx];
  2500. } else {
  2501. return NULL;
  2502. }
  2503. }
  2504. /*
  2505. * Insert new item(s) into the extent records for incore inode
  2506. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2507. */
  2508. void
  2509. xfs_iext_insert(
  2510. xfs_inode_t *ip, /* incore inode pointer */
  2511. xfs_extnum_t idx, /* starting index of new items */
  2512. xfs_extnum_t count, /* number of inserted items */
  2513. xfs_bmbt_irec_t *new, /* items to insert */
  2514. int state) /* type of extent conversion */
  2515. {
  2516. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2517. xfs_extnum_t i; /* extent record index */
  2518. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2519. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2520. xfs_iext_add(ifp, idx, count);
  2521. for (i = idx; i < idx + count; i++, new++)
  2522. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2523. }
  2524. /*
  2525. * This is called when the amount of space required for incore file
  2526. * extents needs to be increased. The ext_diff parameter stores the
  2527. * number of new extents being added and the idx parameter contains
  2528. * the extent index where the new extents will be added. If the new
  2529. * extents are being appended, then we just need to (re)allocate and
  2530. * initialize the space. Otherwise, if the new extents are being
  2531. * inserted into the middle of the existing entries, a bit more work
  2532. * is required to make room for the new extents to be inserted. The
  2533. * caller is responsible for filling in the new extent entries upon
  2534. * return.
  2535. */
  2536. void
  2537. xfs_iext_add(
  2538. xfs_ifork_t *ifp, /* inode fork pointer */
  2539. xfs_extnum_t idx, /* index to begin adding exts */
  2540. int ext_diff) /* number of extents to add */
  2541. {
  2542. int byte_diff; /* new bytes being added */
  2543. int new_size; /* size of extents after adding */
  2544. xfs_extnum_t nextents; /* number of extents in file */
  2545. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2546. ASSERT((idx >= 0) && (idx <= nextents));
  2547. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2548. new_size = ifp->if_bytes + byte_diff;
  2549. /*
  2550. * If the new number of extents (nextents + ext_diff)
  2551. * fits inside the inode, then continue to use the inline
  2552. * extent buffer.
  2553. */
  2554. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2555. if (idx < nextents) {
  2556. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2557. &ifp->if_u2.if_inline_ext[idx],
  2558. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2559. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2560. }
  2561. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2562. ifp->if_real_bytes = 0;
  2563. }
  2564. /*
  2565. * Otherwise use a linear (direct) extent list.
  2566. * If the extents are currently inside the inode,
  2567. * xfs_iext_realloc_direct will switch us from
  2568. * inline to direct extent allocation mode.
  2569. */
  2570. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2571. xfs_iext_realloc_direct(ifp, new_size);
  2572. if (idx < nextents) {
  2573. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2574. &ifp->if_u1.if_extents[idx],
  2575. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2576. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2577. }
  2578. }
  2579. /* Indirection array */
  2580. else {
  2581. xfs_ext_irec_t *erp;
  2582. int erp_idx = 0;
  2583. int page_idx = idx;
  2584. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2585. if (ifp->if_flags & XFS_IFEXTIREC) {
  2586. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2587. } else {
  2588. xfs_iext_irec_init(ifp);
  2589. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2590. erp = ifp->if_u1.if_ext_irec;
  2591. }
  2592. /* Extents fit in target extent page */
  2593. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2594. if (page_idx < erp->er_extcount) {
  2595. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2596. &erp->er_extbuf[page_idx],
  2597. (erp->er_extcount - page_idx) *
  2598. sizeof(xfs_bmbt_rec_t));
  2599. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2600. }
  2601. erp->er_extcount += ext_diff;
  2602. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2603. }
  2604. /* Insert a new extent page */
  2605. else if (erp) {
  2606. xfs_iext_add_indirect_multi(ifp,
  2607. erp_idx, page_idx, ext_diff);
  2608. }
  2609. /*
  2610. * If extent(s) are being appended to the last page in
  2611. * the indirection array and the new extent(s) don't fit
  2612. * in the page, then erp is NULL and erp_idx is set to
  2613. * the next index needed in the indirection array.
  2614. */
  2615. else {
  2616. int count = ext_diff;
  2617. while (count) {
  2618. erp = xfs_iext_irec_new(ifp, erp_idx);
  2619. erp->er_extcount = count;
  2620. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2621. if (count) {
  2622. erp_idx++;
  2623. }
  2624. }
  2625. }
  2626. }
  2627. ifp->if_bytes = new_size;
  2628. }
  2629. /*
  2630. * This is called when incore extents are being added to the indirection
  2631. * array and the new extents do not fit in the target extent list. The
  2632. * erp_idx parameter contains the irec index for the target extent list
  2633. * in the indirection array, and the idx parameter contains the extent
  2634. * index within the list. The number of extents being added is stored
  2635. * in the count parameter.
  2636. *
  2637. * |-------| |-------|
  2638. * | | | | idx - number of extents before idx
  2639. * | idx | | count |
  2640. * | | | | count - number of extents being inserted at idx
  2641. * |-------| |-------|
  2642. * | count | | nex2 | nex2 - number of extents after idx + count
  2643. * |-------| |-------|
  2644. */
  2645. void
  2646. xfs_iext_add_indirect_multi(
  2647. xfs_ifork_t *ifp, /* inode fork pointer */
  2648. int erp_idx, /* target extent irec index */
  2649. xfs_extnum_t idx, /* index within target list */
  2650. int count) /* new extents being added */
  2651. {
  2652. int byte_diff; /* new bytes being added */
  2653. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2654. xfs_extnum_t ext_diff; /* number of extents to add */
  2655. xfs_extnum_t ext_cnt; /* new extents still needed */
  2656. xfs_extnum_t nex2; /* extents after idx + count */
  2657. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2658. int nlists; /* number of irec's (lists) */
  2659. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2660. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2661. nex2 = erp->er_extcount - idx;
  2662. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2663. /*
  2664. * Save second part of target extent list
  2665. * (all extents past */
  2666. if (nex2) {
  2667. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2668. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2669. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2670. erp->er_extcount -= nex2;
  2671. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2672. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2673. }
  2674. /*
  2675. * Add the new extents to the end of the target
  2676. * list, then allocate new irec record(s) and
  2677. * extent buffer(s) as needed to store the rest
  2678. * of the new extents.
  2679. */
  2680. ext_cnt = count;
  2681. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2682. if (ext_diff) {
  2683. erp->er_extcount += ext_diff;
  2684. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2685. ext_cnt -= ext_diff;
  2686. }
  2687. while (ext_cnt) {
  2688. erp_idx++;
  2689. erp = xfs_iext_irec_new(ifp, erp_idx);
  2690. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2691. erp->er_extcount = ext_diff;
  2692. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2693. ext_cnt -= ext_diff;
  2694. }
  2695. /* Add nex2 extents back to indirection array */
  2696. if (nex2) {
  2697. xfs_extnum_t ext_avail;
  2698. int i;
  2699. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2700. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2701. i = 0;
  2702. /*
  2703. * If nex2 extents fit in the current page, append
  2704. * nex2_ep after the new extents.
  2705. */
  2706. if (nex2 <= ext_avail) {
  2707. i = erp->er_extcount;
  2708. }
  2709. /*
  2710. * Otherwise, check if space is available in the
  2711. * next page.
  2712. */
  2713. else if ((erp_idx < nlists - 1) &&
  2714. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2715. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2716. erp_idx++;
  2717. erp++;
  2718. /* Create a hole for nex2 extents */
  2719. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2720. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2721. }
  2722. /*
  2723. * Final choice, create a new extent page for
  2724. * nex2 extents.
  2725. */
  2726. else {
  2727. erp_idx++;
  2728. erp = xfs_iext_irec_new(ifp, erp_idx);
  2729. }
  2730. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2731. kmem_free(nex2_ep);
  2732. erp->er_extcount += nex2;
  2733. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2734. }
  2735. }
  2736. /*
  2737. * This is called when the amount of space required for incore file
  2738. * extents needs to be decreased. The ext_diff parameter stores the
  2739. * number of extents to be removed and the idx parameter contains
  2740. * the extent index where the extents will be removed from.
  2741. *
  2742. * If the amount of space needed has decreased below the linear
  2743. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2744. * extent array. Otherwise, use kmem_realloc() to adjust the
  2745. * size to what is needed.
  2746. */
  2747. void
  2748. xfs_iext_remove(
  2749. xfs_inode_t *ip, /* incore inode pointer */
  2750. xfs_extnum_t idx, /* index to begin removing exts */
  2751. int ext_diff, /* number of extents to remove */
  2752. int state) /* type of extent conversion */
  2753. {
  2754. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2755. xfs_extnum_t nextents; /* number of extents in file */
  2756. int new_size; /* size of extents after removal */
  2757. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  2758. ASSERT(ext_diff > 0);
  2759. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2760. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  2761. if (new_size == 0) {
  2762. xfs_iext_destroy(ifp);
  2763. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2764. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  2765. } else if (ifp->if_real_bytes) {
  2766. xfs_iext_remove_direct(ifp, idx, ext_diff);
  2767. } else {
  2768. xfs_iext_remove_inline(ifp, idx, ext_diff);
  2769. }
  2770. ifp->if_bytes = new_size;
  2771. }
  2772. /*
  2773. * This removes ext_diff extents from the inline buffer, beginning
  2774. * at extent index idx.
  2775. */
  2776. void
  2777. xfs_iext_remove_inline(
  2778. xfs_ifork_t *ifp, /* inode fork pointer */
  2779. xfs_extnum_t idx, /* index to begin removing exts */
  2780. int ext_diff) /* number of extents to remove */
  2781. {
  2782. int nextents; /* number of extents in file */
  2783. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2784. ASSERT(idx < XFS_INLINE_EXTS);
  2785. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2786. ASSERT(((nextents - ext_diff) > 0) &&
  2787. (nextents - ext_diff) < XFS_INLINE_EXTS);
  2788. if (idx + ext_diff < nextents) {
  2789. memmove(&ifp->if_u2.if_inline_ext[idx],
  2790. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  2791. (nextents - (idx + ext_diff)) *
  2792. sizeof(xfs_bmbt_rec_t));
  2793. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  2794. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2795. } else {
  2796. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  2797. ext_diff * sizeof(xfs_bmbt_rec_t));
  2798. }
  2799. }
  2800. /*
  2801. * This removes ext_diff extents from a linear (direct) extent list,
  2802. * beginning at extent index idx. If the extents are being removed
  2803. * from the end of the list (ie. truncate) then we just need to re-
  2804. * allocate the list to remove the extra space. Otherwise, if the
  2805. * extents are being removed from the middle of the existing extent
  2806. * entries, then we first need to move the extent records beginning
  2807. * at idx + ext_diff up in the list to overwrite the records being
  2808. * removed, then remove the extra space via kmem_realloc.
  2809. */
  2810. void
  2811. xfs_iext_remove_direct(
  2812. xfs_ifork_t *ifp, /* inode fork pointer */
  2813. xfs_extnum_t idx, /* index to begin removing exts */
  2814. int ext_diff) /* number of extents to remove */
  2815. {
  2816. xfs_extnum_t nextents; /* number of extents in file */
  2817. int new_size; /* size of extents after removal */
  2818. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2819. new_size = ifp->if_bytes -
  2820. (ext_diff * sizeof(xfs_bmbt_rec_t));
  2821. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2822. if (new_size == 0) {
  2823. xfs_iext_destroy(ifp);
  2824. return;
  2825. }
  2826. /* Move extents up in the list (if needed) */
  2827. if (idx + ext_diff < nextents) {
  2828. memmove(&ifp->if_u1.if_extents[idx],
  2829. &ifp->if_u1.if_extents[idx + ext_diff],
  2830. (nextents - (idx + ext_diff)) *
  2831. sizeof(xfs_bmbt_rec_t));
  2832. }
  2833. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  2834. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2835. /*
  2836. * Reallocate the direct extent list. If the extents
  2837. * will fit inside the inode then xfs_iext_realloc_direct
  2838. * will switch from direct to inline extent allocation
  2839. * mode for us.
  2840. */
  2841. xfs_iext_realloc_direct(ifp, new_size);
  2842. ifp->if_bytes = new_size;
  2843. }
  2844. /*
  2845. * This is called when incore extents are being removed from the
  2846. * indirection array and the extents being removed span multiple extent
  2847. * buffers. The idx parameter contains the file extent index where we
  2848. * want to begin removing extents, and the count parameter contains
  2849. * how many extents need to be removed.
  2850. *
  2851. * |-------| |-------|
  2852. * | nex1 | | | nex1 - number of extents before idx
  2853. * |-------| | count |
  2854. * | | | | count - number of extents being removed at idx
  2855. * | count | |-------|
  2856. * | | | nex2 | nex2 - number of extents after idx + count
  2857. * |-------| |-------|
  2858. */
  2859. void
  2860. xfs_iext_remove_indirect(
  2861. xfs_ifork_t *ifp, /* inode fork pointer */
  2862. xfs_extnum_t idx, /* index to begin removing extents */
  2863. int count) /* number of extents to remove */
  2864. {
  2865. xfs_ext_irec_t *erp; /* indirection array pointer */
  2866. int erp_idx = 0; /* indirection array index */
  2867. xfs_extnum_t ext_cnt; /* extents left to remove */
  2868. xfs_extnum_t ext_diff; /* extents to remove in current list */
  2869. xfs_extnum_t nex1; /* number of extents before idx */
  2870. xfs_extnum_t nex2; /* extents after idx + count */
  2871. int page_idx = idx; /* index in target extent list */
  2872. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2873. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2874. ASSERT(erp != NULL);
  2875. nex1 = page_idx;
  2876. ext_cnt = count;
  2877. while (ext_cnt) {
  2878. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  2879. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  2880. /*
  2881. * Check for deletion of entire list;
  2882. * xfs_iext_irec_remove() updates extent offsets.
  2883. */
  2884. if (ext_diff == erp->er_extcount) {
  2885. xfs_iext_irec_remove(ifp, erp_idx);
  2886. ext_cnt -= ext_diff;
  2887. nex1 = 0;
  2888. if (ext_cnt) {
  2889. ASSERT(erp_idx < ifp->if_real_bytes /
  2890. XFS_IEXT_BUFSZ);
  2891. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2892. nex1 = 0;
  2893. continue;
  2894. } else {
  2895. break;
  2896. }
  2897. }
  2898. /* Move extents up (if needed) */
  2899. if (nex2) {
  2900. memmove(&erp->er_extbuf[nex1],
  2901. &erp->er_extbuf[nex1 + ext_diff],
  2902. nex2 * sizeof(xfs_bmbt_rec_t));
  2903. }
  2904. /* Zero out rest of page */
  2905. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  2906. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  2907. /* Update remaining counters */
  2908. erp->er_extcount -= ext_diff;
  2909. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  2910. ext_cnt -= ext_diff;
  2911. nex1 = 0;
  2912. erp_idx++;
  2913. erp++;
  2914. }
  2915. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  2916. xfs_iext_irec_compact(ifp);
  2917. }
  2918. /*
  2919. * Create, destroy, or resize a linear (direct) block of extents.
  2920. */
  2921. void
  2922. xfs_iext_realloc_direct(
  2923. xfs_ifork_t *ifp, /* inode fork pointer */
  2924. int new_size) /* new size of extents */
  2925. {
  2926. int rnew_size; /* real new size of extents */
  2927. rnew_size = new_size;
  2928. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  2929. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  2930. (new_size != ifp->if_real_bytes)));
  2931. /* Free extent records */
  2932. if (new_size == 0) {
  2933. xfs_iext_destroy(ifp);
  2934. }
  2935. /* Resize direct extent list and zero any new bytes */
  2936. else if (ifp->if_real_bytes) {
  2937. /* Check if extents will fit inside the inode */
  2938. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  2939. xfs_iext_direct_to_inline(ifp, new_size /
  2940. (uint)sizeof(xfs_bmbt_rec_t));
  2941. ifp->if_bytes = new_size;
  2942. return;
  2943. }
  2944. if (!is_power_of_2(new_size)){
  2945. rnew_size = roundup_pow_of_two(new_size);
  2946. }
  2947. if (rnew_size != ifp->if_real_bytes) {
  2948. ifp->if_u1.if_extents =
  2949. kmem_realloc(ifp->if_u1.if_extents,
  2950. rnew_size,
  2951. ifp->if_real_bytes, KM_NOFS);
  2952. }
  2953. if (rnew_size > ifp->if_real_bytes) {
  2954. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  2955. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  2956. rnew_size - ifp->if_real_bytes);
  2957. }
  2958. }
  2959. /*
  2960. * Switch from the inline extent buffer to a direct
  2961. * extent list. Be sure to include the inline extent
  2962. * bytes in new_size.
  2963. */
  2964. else {
  2965. new_size += ifp->if_bytes;
  2966. if (!is_power_of_2(new_size)) {
  2967. rnew_size = roundup_pow_of_two(new_size);
  2968. }
  2969. xfs_iext_inline_to_direct(ifp, rnew_size);
  2970. }
  2971. ifp->if_real_bytes = rnew_size;
  2972. ifp->if_bytes = new_size;
  2973. }
  2974. /*
  2975. * Switch from linear (direct) extent records to inline buffer.
  2976. */
  2977. void
  2978. xfs_iext_direct_to_inline(
  2979. xfs_ifork_t *ifp, /* inode fork pointer */
  2980. xfs_extnum_t nextents) /* number of extents in file */
  2981. {
  2982. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2983. ASSERT(nextents <= XFS_INLINE_EXTS);
  2984. /*
  2985. * The inline buffer was zeroed when we switched
  2986. * from inline to direct extent allocation mode,
  2987. * so we don't need to clear it here.
  2988. */
  2989. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  2990. nextents * sizeof(xfs_bmbt_rec_t));
  2991. kmem_free(ifp->if_u1.if_extents);
  2992. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2993. ifp->if_real_bytes = 0;
  2994. }
  2995. /*
  2996. * Switch from inline buffer to linear (direct) extent records.
  2997. * new_size should already be rounded up to the next power of 2
  2998. * by the caller (when appropriate), so use new_size as it is.
  2999. * However, since new_size may be rounded up, we can't update
  3000. * if_bytes here. It is the caller's responsibility to update
  3001. * if_bytes upon return.
  3002. */
  3003. void
  3004. xfs_iext_inline_to_direct(
  3005. xfs_ifork_t *ifp, /* inode fork pointer */
  3006. int new_size) /* number of extents in file */
  3007. {
  3008. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3009. memset(ifp->if_u1.if_extents, 0, new_size);
  3010. if (ifp->if_bytes) {
  3011. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3012. ifp->if_bytes);
  3013. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3014. sizeof(xfs_bmbt_rec_t));
  3015. }
  3016. ifp->if_real_bytes = new_size;
  3017. }
  3018. /*
  3019. * Resize an extent indirection array to new_size bytes.
  3020. */
  3021. STATIC void
  3022. xfs_iext_realloc_indirect(
  3023. xfs_ifork_t *ifp, /* inode fork pointer */
  3024. int new_size) /* new indirection array size */
  3025. {
  3026. int nlists; /* number of irec's (ex lists) */
  3027. int size; /* current indirection array size */
  3028. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3029. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3030. size = nlists * sizeof(xfs_ext_irec_t);
  3031. ASSERT(ifp->if_real_bytes);
  3032. ASSERT((new_size >= 0) && (new_size != size));
  3033. if (new_size == 0) {
  3034. xfs_iext_destroy(ifp);
  3035. } else {
  3036. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3037. kmem_realloc(ifp->if_u1.if_ext_irec,
  3038. new_size, size, KM_NOFS);
  3039. }
  3040. }
  3041. /*
  3042. * Switch from indirection array to linear (direct) extent allocations.
  3043. */
  3044. STATIC void
  3045. xfs_iext_indirect_to_direct(
  3046. xfs_ifork_t *ifp) /* inode fork pointer */
  3047. {
  3048. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3049. xfs_extnum_t nextents; /* number of extents in file */
  3050. int size; /* size of file extents */
  3051. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3052. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3053. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3054. size = nextents * sizeof(xfs_bmbt_rec_t);
  3055. xfs_iext_irec_compact_pages(ifp);
  3056. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3057. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3058. kmem_free(ifp->if_u1.if_ext_irec);
  3059. ifp->if_flags &= ~XFS_IFEXTIREC;
  3060. ifp->if_u1.if_extents = ep;
  3061. ifp->if_bytes = size;
  3062. if (nextents < XFS_LINEAR_EXTS) {
  3063. xfs_iext_realloc_direct(ifp, size);
  3064. }
  3065. }
  3066. /*
  3067. * Free incore file extents.
  3068. */
  3069. void
  3070. xfs_iext_destroy(
  3071. xfs_ifork_t *ifp) /* inode fork pointer */
  3072. {
  3073. if (ifp->if_flags & XFS_IFEXTIREC) {
  3074. int erp_idx;
  3075. int nlists;
  3076. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3077. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3078. xfs_iext_irec_remove(ifp, erp_idx);
  3079. }
  3080. ifp->if_flags &= ~XFS_IFEXTIREC;
  3081. } else if (ifp->if_real_bytes) {
  3082. kmem_free(ifp->if_u1.if_extents);
  3083. } else if (ifp->if_bytes) {
  3084. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3085. sizeof(xfs_bmbt_rec_t));
  3086. }
  3087. ifp->if_u1.if_extents = NULL;
  3088. ifp->if_real_bytes = 0;
  3089. ifp->if_bytes = 0;
  3090. }
  3091. /*
  3092. * Return a pointer to the extent record for file system block bno.
  3093. */
  3094. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3095. xfs_iext_bno_to_ext(
  3096. xfs_ifork_t *ifp, /* inode fork pointer */
  3097. xfs_fileoff_t bno, /* block number to search for */
  3098. xfs_extnum_t *idxp) /* index of target extent */
  3099. {
  3100. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3101. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3102. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3103. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3104. int high; /* upper boundary in search */
  3105. xfs_extnum_t idx = 0; /* index of target extent */
  3106. int low; /* lower boundary in search */
  3107. xfs_extnum_t nextents; /* number of file extents */
  3108. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3109. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3110. if (nextents == 0) {
  3111. *idxp = 0;
  3112. return NULL;
  3113. }
  3114. low = 0;
  3115. if (ifp->if_flags & XFS_IFEXTIREC) {
  3116. /* Find target extent list */
  3117. int erp_idx = 0;
  3118. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3119. base = erp->er_extbuf;
  3120. high = erp->er_extcount - 1;
  3121. } else {
  3122. base = ifp->if_u1.if_extents;
  3123. high = nextents - 1;
  3124. }
  3125. /* Binary search extent records */
  3126. while (low <= high) {
  3127. idx = (low + high) >> 1;
  3128. ep = base + idx;
  3129. startoff = xfs_bmbt_get_startoff(ep);
  3130. blockcount = xfs_bmbt_get_blockcount(ep);
  3131. if (bno < startoff) {
  3132. high = idx - 1;
  3133. } else if (bno >= startoff + blockcount) {
  3134. low = idx + 1;
  3135. } else {
  3136. /* Convert back to file-based extent index */
  3137. if (ifp->if_flags & XFS_IFEXTIREC) {
  3138. idx += erp->er_extoff;
  3139. }
  3140. *idxp = idx;
  3141. return ep;
  3142. }
  3143. }
  3144. /* Convert back to file-based extent index */
  3145. if (ifp->if_flags & XFS_IFEXTIREC) {
  3146. idx += erp->er_extoff;
  3147. }
  3148. if (bno >= startoff + blockcount) {
  3149. if (++idx == nextents) {
  3150. ep = NULL;
  3151. } else {
  3152. ep = xfs_iext_get_ext(ifp, idx);
  3153. }
  3154. }
  3155. *idxp = idx;
  3156. return ep;
  3157. }
  3158. /*
  3159. * Return a pointer to the indirection array entry containing the
  3160. * extent record for filesystem block bno. Store the index of the
  3161. * target irec in *erp_idxp.
  3162. */
  3163. xfs_ext_irec_t * /* pointer to found extent record */
  3164. xfs_iext_bno_to_irec(
  3165. xfs_ifork_t *ifp, /* inode fork pointer */
  3166. xfs_fileoff_t bno, /* block number to search for */
  3167. int *erp_idxp) /* irec index of target ext list */
  3168. {
  3169. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3170. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3171. int erp_idx; /* indirection array index */
  3172. int nlists; /* number of extent irec's (lists) */
  3173. int high; /* binary search upper limit */
  3174. int low; /* binary search lower limit */
  3175. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3176. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3177. erp_idx = 0;
  3178. low = 0;
  3179. high = nlists - 1;
  3180. while (low <= high) {
  3181. erp_idx = (low + high) >> 1;
  3182. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3183. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3184. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3185. high = erp_idx - 1;
  3186. } else if (erp_next && bno >=
  3187. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3188. low = erp_idx + 1;
  3189. } else {
  3190. break;
  3191. }
  3192. }
  3193. *erp_idxp = erp_idx;
  3194. return erp;
  3195. }
  3196. /*
  3197. * Return a pointer to the indirection array entry containing the
  3198. * extent record at file extent index *idxp. Store the index of the
  3199. * target irec in *erp_idxp and store the page index of the target
  3200. * extent record in *idxp.
  3201. */
  3202. xfs_ext_irec_t *
  3203. xfs_iext_idx_to_irec(
  3204. xfs_ifork_t *ifp, /* inode fork pointer */
  3205. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3206. int *erp_idxp, /* pointer to target irec */
  3207. int realloc) /* new bytes were just added */
  3208. {
  3209. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3210. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3211. int erp_idx; /* indirection array index */
  3212. int nlists; /* number of irec's (ex lists) */
  3213. int high; /* binary search upper limit */
  3214. int low; /* binary search lower limit */
  3215. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3216. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3217. ASSERT(page_idx >= 0);
  3218. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3219. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3220. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3221. erp_idx = 0;
  3222. low = 0;
  3223. high = nlists - 1;
  3224. /* Binary search extent irec's */
  3225. while (low <= high) {
  3226. erp_idx = (low + high) >> 1;
  3227. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3228. prev = erp_idx > 0 ? erp - 1 : NULL;
  3229. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3230. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3231. high = erp_idx - 1;
  3232. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3233. (page_idx == erp->er_extoff + erp->er_extcount &&
  3234. !realloc)) {
  3235. low = erp_idx + 1;
  3236. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3237. erp->er_extcount == XFS_LINEAR_EXTS) {
  3238. ASSERT(realloc);
  3239. page_idx = 0;
  3240. erp_idx++;
  3241. erp = erp_idx < nlists ? erp + 1 : NULL;
  3242. break;
  3243. } else {
  3244. page_idx -= erp->er_extoff;
  3245. break;
  3246. }
  3247. }
  3248. *idxp = page_idx;
  3249. *erp_idxp = erp_idx;
  3250. return(erp);
  3251. }
  3252. /*
  3253. * Allocate and initialize an indirection array once the space needed
  3254. * for incore extents increases above XFS_IEXT_BUFSZ.
  3255. */
  3256. void
  3257. xfs_iext_irec_init(
  3258. xfs_ifork_t *ifp) /* inode fork pointer */
  3259. {
  3260. xfs_ext_irec_t *erp; /* indirection array pointer */
  3261. xfs_extnum_t nextents; /* number of extents in file */
  3262. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3263. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3264. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3265. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3266. if (nextents == 0) {
  3267. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3268. } else if (!ifp->if_real_bytes) {
  3269. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3270. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3271. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3272. }
  3273. erp->er_extbuf = ifp->if_u1.if_extents;
  3274. erp->er_extcount = nextents;
  3275. erp->er_extoff = 0;
  3276. ifp->if_flags |= XFS_IFEXTIREC;
  3277. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3278. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3279. ifp->if_u1.if_ext_irec = erp;
  3280. return;
  3281. }
  3282. /*
  3283. * Allocate and initialize a new entry in the indirection array.
  3284. */
  3285. xfs_ext_irec_t *
  3286. xfs_iext_irec_new(
  3287. xfs_ifork_t *ifp, /* inode fork pointer */
  3288. int erp_idx) /* index for new irec */
  3289. {
  3290. xfs_ext_irec_t *erp; /* indirection array pointer */
  3291. int i; /* loop counter */
  3292. int nlists; /* number of irec's (ex lists) */
  3293. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3294. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3295. /* Resize indirection array */
  3296. xfs_iext_realloc_indirect(ifp, ++nlists *
  3297. sizeof(xfs_ext_irec_t));
  3298. /*
  3299. * Move records down in the array so the
  3300. * new page can use erp_idx.
  3301. */
  3302. erp = ifp->if_u1.if_ext_irec;
  3303. for (i = nlists - 1; i > erp_idx; i--) {
  3304. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3305. }
  3306. ASSERT(i == erp_idx);
  3307. /* Initialize new extent record */
  3308. erp = ifp->if_u1.if_ext_irec;
  3309. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3310. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3311. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3312. erp[erp_idx].er_extcount = 0;
  3313. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3314. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3315. return (&erp[erp_idx]);
  3316. }
  3317. /*
  3318. * Remove a record from the indirection array.
  3319. */
  3320. void
  3321. xfs_iext_irec_remove(
  3322. xfs_ifork_t *ifp, /* inode fork pointer */
  3323. int erp_idx) /* irec index to remove */
  3324. {
  3325. xfs_ext_irec_t *erp; /* indirection array pointer */
  3326. int i; /* loop counter */
  3327. int nlists; /* number of irec's (ex lists) */
  3328. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3329. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3330. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3331. if (erp->er_extbuf) {
  3332. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3333. -erp->er_extcount);
  3334. kmem_free(erp->er_extbuf);
  3335. }
  3336. /* Compact extent records */
  3337. erp = ifp->if_u1.if_ext_irec;
  3338. for (i = erp_idx; i < nlists - 1; i++) {
  3339. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3340. }
  3341. /*
  3342. * Manually free the last extent record from the indirection
  3343. * array. A call to xfs_iext_realloc_indirect() with a size
  3344. * of zero would result in a call to xfs_iext_destroy() which
  3345. * would in turn call this function again, creating a nasty
  3346. * infinite loop.
  3347. */
  3348. if (--nlists) {
  3349. xfs_iext_realloc_indirect(ifp,
  3350. nlists * sizeof(xfs_ext_irec_t));
  3351. } else {
  3352. kmem_free(ifp->if_u1.if_ext_irec);
  3353. }
  3354. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3355. }
  3356. /*
  3357. * This is called to clean up large amounts of unused memory allocated
  3358. * by the indirection array. Before compacting anything though, verify
  3359. * that the indirection array is still needed and switch back to the
  3360. * linear extent list (or even the inline buffer) if possible. The
  3361. * compaction policy is as follows:
  3362. *
  3363. * Full Compaction: Extents fit into a single page (or inline buffer)
  3364. * Partial Compaction: Extents occupy less than 50% of allocated space
  3365. * No Compaction: Extents occupy at least 50% of allocated space
  3366. */
  3367. void
  3368. xfs_iext_irec_compact(
  3369. xfs_ifork_t *ifp) /* inode fork pointer */
  3370. {
  3371. xfs_extnum_t nextents; /* number of extents in file */
  3372. int nlists; /* number of irec's (ex lists) */
  3373. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3374. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3375. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3376. if (nextents == 0) {
  3377. xfs_iext_destroy(ifp);
  3378. } else if (nextents <= XFS_INLINE_EXTS) {
  3379. xfs_iext_indirect_to_direct(ifp);
  3380. xfs_iext_direct_to_inline(ifp, nextents);
  3381. } else if (nextents <= XFS_LINEAR_EXTS) {
  3382. xfs_iext_indirect_to_direct(ifp);
  3383. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3384. xfs_iext_irec_compact_pages(ifp);
  3385. }
  3386. }
  3387. /*
  3388. * Combine extents from neighboring extent pages.
  3389. */
  3390. void
  3391. xfs_iext_irec_compact_pages(
  3392. xfs_ifork_t *ifp) /* inode fork pointer */
  3393. {
  3394. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3395. int erp_idx = 0; /* indirection array index */
  3396. int nlists; /* number of irec's (ex lists) */
  3397. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3398. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3399. while (erp_idx < nlists - 1) {
  3400. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3401. erp_next = erp + 1;
  3402. if (erp_next->er_extcount <=
  3403. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3404. memcpy(&erp->er_extbuf[erp->er_extcount],
  3405. erp_next->er_extbuf, erp_next->er_extcount *
  3406. sizeof(xfs_bmbt_rec_t));
  3407. erp->er_extcount += erp_next->er_extcount;
  3408. /*
  3409. * Free page before removing extent record
  3410. * so er_extoffs don't get modified in
  3411. * xfs_iext_irec_remove.
  3412. */
  3413. kmem_free(erp_next->er_extbuf);
  3414. erp_next->er_extbuf = NULL;
  3415. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3416. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3417. } else {
  3418. erp_idx++;
  3419. }
  3420. }
  3421. }
  3422. /*
  3423. * This is called to update the er_extoff field in the indirection
  3424. * array when extents have been added or removed from one of the
  3425. * extent lists. erp_idx contains the irec index to begin updating
  3426. * at and ext_diff contains the number of extents that were added
  3427. * or removed.
  3428. */
  3429. void
  3430. xfs_iext_irec_update_extoffs(
  3431. xfs_ifork_t *ifp, /* inode fork pointer */
  3432. int erp_idx, /* irec index to update */
  3433. int ext_diff) /* number of new extents */
  3434. {
  3435. int i; /* loop counter */
  3436. int nlists; /* number of irec's (ex lists */
  3437. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3438. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3439. for (i = erp_idx; i < nlists; i++) {
  3440. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3441. }
  3442. }