intel_display.c 304 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  45. struct intel_crtc_config *pipe_config);
  46. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  47. struct intel_crtc_config *pipe_config);
  48. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  49. int x, int y, struct drm_framebuffer *old_fb);
  50. typedef struct {
  51. int min, max;
  52. } intel_range_t;
  53. typedef struct {
  54. int dot_limit;
  55. int p2_slow, p2_fast;
  56. } intel_p2_t;
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. int
  63. intel_pch_rawclk(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. WARN_ON(!HAS_PCH_SPLIT(dev));
  67. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  68. }
  69. static inline u32 /* units of 100MHz */
  70. intel_fdi_link_freq(struct drm_device *dev)
  71. {
  72. if (IS_GEN5(dev)) {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  75. } else
  76. return 27;
  77. }
  78. static const intel_limit_t intel_limits_i8xx_dac = {
  79. .dot = { .min = 25000, .max = 350000 },
  80. .vco = { .min = 930000, .max = 1400000 },
  81. .n = { .min = 3, .max = 16 },
  82. .m = { .min = 96, .max = 140 },
  83. .m1 = { .min = 18, .max = 26 },
  84. .m2 = { .min = 6, .max = 16 },
  85. .p = { .min = 4, .max = 128 },
  86. .p1 = { .min = 2, .max = 33 },
  87. .p2 = { .dot_limit = 165000,
  88. .p2_slow = 4, .p2_fast = 2 },
  89. };
  90. static const intel_limit_t intel_limits_i8xx_dvo = {
  91. .dot = { .min = 25000, .max = 350000 },
  92. .vco = { .min = 930000, .max = 1400000 },
  93. .n = { .min = 3, .max = 16 },
  94. .m = { .min = 96, .max = 140 },
  95. .m1 = { .min = 18, .max = 26 },
  96. .m2 = { .min = 6, .max = 16 },
  97. .p = { .min = 4, .max = 128 },
  98. .p1 = { .min = 2, .max = 33 },
  99. .p2 = { .dot_limit = 165000,
  100. .p2_slow = 4, .p2_fast = 4 },
  101. };
  102. static const intel_limit_t intel_limits_i8xx_lvds = {
  103. .dot = { .min = 25000, .max = 350000 },
  104. .vco = { .min = 930000, .max = 1400000 },
  105. .n = { .min = 3, .max = 16 },
  106. .m = { .min = 96, .max = 140 },
  107. .m1 = { .min = 18, .max = 26 },
  108. .m2 = { .min = 6, .max = 16 },
  109. .p = { .min = 4, .max = 128 },
  110. .p1 = { .min = 1, .max = 6 },
  111. .p2 = { .dot_limit = 165000,
  112. .p2_slow = 14, .p2_fast = 7 },
  113. };
  114. static const intel_limit_t intel_limits_i9xx_sdvo = {
  115. .dot = { .min = 20000, .max = 400000 },
  116. .vco = { .min = 1400000, .max = 2800000 },
  117. .n = { .min = 1, .max = 6 },
  118. .m = { .min = 70, .max = 120 },
  119. .m1 = { .min = 8, .max = 18 },
  120. .m2 = { .min = 3, .max = 7 },
  121. .p = { .min = 5, .max = 80 },
  122. .p1 = { .min = 1, .max = 8 },
  123. .p2 = { .dot_limit = 200000,
  124. .p2_slow = 10, .p2_fast = 5 },
  125. };
  126. static const intel_limit_t intel_limits_i9xx_lvds = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 8, .max = 18 },
  132. .m2 = { .min = 3, .max = 7 },
  133. .p = { .min = 7, .max = 98 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 112000,
  136. .p2_slow = 14, .p2_fast = 7 },
  137. };
  138. static const intel_limit_t intel_limits_g4x_sdvo = {
  139. .dot = { .min = 25000, .max = 270000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 17, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 10, .max = 30 },
  146. .p1 = { .min = 1, .max = 3},
  147. .p2 = { .dot_limit = 270000,
  148. .p2_slow = 10,
  149. .p2_fast = 10
  150. },
  151. };
  152. static const intel_limit_t intel_limits_g4x_hdmi = {
  153. .dot = { .min = 22000, .max = 400000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 16, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 5, .max = 80 },
  160. .p1 = { .min = 1, .max = 8},
  161. .p2 = { .dot_limit = 165000,
  162. .p2_slow = 10, .p2_fast = 5 },
  163. };
  164. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  165. .dot = { .min = 20000, .max = 115000 },
  166. .vco = { .min = 1750000, .max = 3500000 },
  167. .n = { .min = 1, .max = 3 },
  168. .m = { .min = 104, .max = 138 },
  169. .m1 = { .min = 17, .max = 23 },
  170. .m2 = { .min = 5, .max = 11 },
  171. .p = { .min = 28, .max = 112 },
  172. .p1 = { .min = 2, .max = 8 },
  173. .p2 = { .dot_limit = 0,
  174. .p2_slow = 14, .p2_fast = 14
  175. },
  176. };
  177. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  178. .dot = { .min = 80000, .max = 224000 },
  179. .vco = { .min = 1750000, .max = 3500000 },
  180. .n = { .min = 1, .max = 3 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 14, .max = 42 },
  185. .p1 = { .min = 2, .max = 6 },
  186. .p2 = { .dot_limit = 0,
  187. .p2_slow = 7, .p2_fast = 7
  188. },
  189. };
  190. static const intel_limit_t intel_limits_pineview_sdvo = {
  191. .dot = { .min = 20000, .max = 400000},
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. /* Pineview's Ncounter is a ring counter */
  194. .n = { .min = 3, .max = 6 },
  195. .m = { .min = 2, .max = 256 },
  196. /* Pineview only has one combined m divider, which we treat as m2. */
  197. .m1 = { .min = 0, .max = 0 },
  198. .m2 = { .min = 0, .max = 254 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8 },
  201. .p2 = { .dot_limit = 200000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. };
  204. static const intel_limit_t intel_limits_pineview_lvds = {
  205. .dot = { .min = 20000, .max = 400000 },
  206. .vco = { .min = 1700000, .max = 3500000 },
  207. .n = { .min = 3, .max = 6 },
  208. .m = { .min = 2, .max = 256 },
  209. .m1 = { .min = 0, .max = 0 },
  210. .m2 = { .min = 0, .max = 254 },
  211. .p = { .min = 7, .max = 112 },
  212. .p1 = { .min = 1, .max = 8 },
  213. .p2 = { .dot_limit = 112000,
  214. .p2_slow = 14, .p2_fast = 14 },
  215. };
  216. /* Ironlake / Sandybridge
  217. *
  218. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  219. * the range value for them is (actual_value - 2).
  220. */
  221. static const intel_limit_t intel_limits_ironlake_dac = {
  222. .dot = { .min = 25000, .max = 350000 },
  223. .vco = { .min = 1760000, .max = 3510000 },
  224. .n = { .min = 1, .max = 5 },
  225. .m = { .min = 79, .max = 127 },
  226. .m1 = { .min = 12, .max = 22 },
  227. .m2 = { .min = 5, .max = 9 },
  228. .p = { .min = 5, .max = 80 },
  229. .p1 = { .min = 1, .max = 8 },
  230. .p2 = { .dot_limit = 225000,
  231. .p2_slow = 10, .p2_fast = 5 },
  232. };
  233. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  234. .dot = { .min = 25000, .max = 350000 },
  235. .vco = { .min = 1760000, .max = 3510000 },
  236. .n = { .min = 1, .max = 3 },
  237. .m = { .min = 79, .max = 118 },
  238. .m1 = { .min = 12, .max = 22 },
  239. .m2 = { .min = 5, .max = 9 },
  240. .p = { .min = 28, .max = 112 },
  241. .p1 = { .min = 2, .max = 8 },
  242. .p2 = { .dot_limit = 225000,
  243. .p2_slow = 14, .p2_fast = 14 },
  244. };
  245. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  246. .dot = { .min = 25000, .max = 350000 },
  247. .vco = { .min = 1760000, .max = 3510000 },
  248. .n = { .min = 1, .max = 3 },
  249. .m = { .min = 79, .max = 127 },
  250. .m1 = { .min = 12, .max = 22 },
  251. .m2 = { .min = 5, .max = 9 },
  252. .p = { .min = 14, .max = 56 },
  253. .p1 = { .min = 2, .max = 8 },
  254. .p2 = { .dot_limit = 225000,
  255. .p2_slow = 7, .p2_fast = 7 },
  256. };
  257. /* LVDS 100mhz refclk limits. */
  258. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  259. .dot = { .min = 25000, .max = 350000 },
  260. .vco = { .min = 1760000, .max = 3510000 },
  261. .n = { .min = 1, .max = 2 },
  262. .m = { .min = 79, .max = 126 },
  263. .m1 = { .min = 12, .max = 22 },
  264. .m2 = { .min = 5, .max = 9 },
  265. .p = { .min = 28, .max = 112 },
  266. .p1 = { .min = 2, .max = 8 },
  267. .p2 = { .dot_limit = 225000,
  268. .p2_slow = 14, .p2_fast = 14 },
  269. };
  270. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 126 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 14, .max = 42 },
  278. .p1 = { .min = 2, .max = 6 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 7, .p2_fast = 7 },
  281. };
  282. static const intel_limit_t intel_limits_vlv = {
  283. /*
  284. * These are the data rate limits (measured in fast clocks)
  285. * since those are the strictest limits we have. The fast
  286. * clock and actual rate limits are more relaxed, so checking
  287. * them would make no difference.
  288. */
  289. .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  290. .vco = { .min = 4000000, .max = 6000000 },
  291. .n = { .min = 1, .max = 7 },
  292. .m1 = { .min = 2, .max = 3 },
  293. .m2 = { .min = 11, .max = 156 },
  294. .p1 = { .min = 2, .max = 3 },
  295. .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  296. };
  297. static void vlv_clock(int refclk, intel_clock_t *clock)
  298. {
  299. clock->m = clock->m1 * clock->m2;
  300. clock->p = clock->p1 * clock->p2;
  301. clock->vco = refclk * clock->m / clock->n;
  302. clock->dot = clock->vco / clock->p;
  303. }
  304. /**
  305. * Returns whether any output on the specified pipe is of the specified type
  306. */
  307. static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  308. {
  309. struct drm_device *dev = crtc->dev;
  310. struct intel_encoder *encoder;
  311. for_each_encoder_on_crtc(dev, crtc, encoder)
  312. if (encoder->type == type)
  313. return true;
  314. return false;
  315. }
  316. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  317. int refclk)
  318. {
  319. struct drm_device *dev = crtc->dev;
  320. const intel_limit_t *limit;
  321. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  322. if (intel_is_dual_link_lvds(dev)) {
  323. if (refclk == 100000)
  324. limit = &intel_limits_ironlake_dual_lvds_100m;
  325. else
  326. limit = &intel_limits_ironlake_dual_lvds;
  327. } else {
  328. if (refclk == 100000)
  329. limit = &intel_limits_ironlake_single_lvds_100m;
  330. else
  331. limit = &intel_limits_ironlake_single_lvds;
  332. }
  333. } else
  334. limit = &intel_limits_ironlake_dac;
  335. return limit;
  336. }
  337. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  338. {
  339. struct drm_device *dev = crtc->dev;
  340. const intel_limit_t *limit;
  341. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  342. if (intel_is_dual_link_lvds(dev))
  343. limit = &intel_limits_g4x_dual_channel_lvds;
  344. else
  345. limit = &intel_limits_g4x_single_channel_lvds;
  346. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  347. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  348. limit = &intel_limits_g4x_hdmi;
  349. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  350. limit = &intel_limits_g4x_sdvo;
  351. } else /* The option is for other outputs */
  352. limit = &intel_limits_i9xx_sdvo;
  353. return limit;
  354. }
  355. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. const intel_limit_t *limit;
  359. if (HAS_PCH_SPLIT(dev))
  360. limit = intel_ironlake_limit(crtc, refclk);
  361. else if (IS_G4X(dev)) {
  362. limit = intel_g4x_limit(crtc);
  363. } else if (IS_PINEVIEW(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_pineview_lvds;
  366. else
  367. limit = &intel_limits_pineview_sdvo;
  368. } else if (IS_VALLEYVIEW(dev)) {
  369. limit = &intel_limits_vlv;
  370. } else if (!IS_GEN2(dev)) {
  371. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  372. limit = &intel_limits_i9xx_lvds;
  373. else
  374. limit = &intel_limits_i9xx_sdvo;
  375. } else {
  376. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  377. limit = &intel_limits_i8xx_lvds;
  378. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  379. limit = &intel_limits_i8xx_dvo;
  380. else
  381. limit = &intel_limits_i8xx_dac;
  382. }
  383. return limit;
  384. }
  385. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  386. static void pineview_clock(int refclk, intel_clock_t *clock)
  387. {
  388. clock->m = clock->m2 + 2;
  389. clock->p = clock->p1 * clock->p2;
  390. clock->vco = refclk * clock->m / clock->n;
  391. clock->dot = clock->vco / clock->p;
  392. }
  393. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  394. {
  395. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  396. }
  397. static void i9xx_clock(int refclk, intel_clock_t *clock)
  398. {
  399. clock->m = i9xx_dpll_compute_m(clock);
  400. clock->p = clock->p1 * clock->p2;
  401. clock->vco = refclk * clock->m / (clock->n + 2);
  402. clock->dot = clock->vco / clock->p;
  403. }
  404. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  405. /**
  406. * Returns whether the given set of divisors are valid for a given refclk with
  407. * the given connectors.
  408. */
  409. static bool intel_PLL_is_valid(struct drm_device *dev,
  410. const intel_limit_t *limit,
  411. const intel_clock_t *clock)
  412. {
  413. if (clock->n < limit->n.min || limit->n.max < clock->n)
  414. INTELPllInvalid("n out of range\n");
  415. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  416. INTELPllInvalid("p1 out of range\n");
  417. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  418. INTELPllInvalid("m2 out of range\n");
  419. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  420. INTELPllInvalid("m1 out of range\n");
  421. if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
  422. if (clock->m1 <= clock->m2)
  423. INTELPllInvalid("m1 <= m2\n");
  424. if (!IS_VALLEYVIEW(dev)) {
  425. if (clock->p < limit->p.min || limit->p.max < clock->p)
  426. INTELPllInvalid("p out of range\n");
  427. if (clock->m < limit->m.min || limit->m.max < clock->m)
  428. INTELPllInvalid("m out of range\n");
  429. }
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. intel_clock_t clock;
  604. unsigned int bestppm = 1000000;
  605. /* min update 19.2 MHz */
  606. int max_n = min(limit->n.max, refclk / 19200);
  607. bool found = false;
  608. target *= 5; /* fast clock */
  609. memset(best_clock, 0, sizeof(*best_clock));
  610. /* based on hardware requirement, prefer smaller n to precision */
  611. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  612. for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  613. for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  614. clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  615. clock.p = clock.p1 * clock.p2;
  616. /* based on hardware requirement, prefer bigger m1,m2 values */
  617. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  618. unsigned int ppm, diff;
  619. clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  620. refclk * clock.m1);
  621. vlv_clock(refclk, &clock);
  622. if (!intel_PLL_is_valid(dev, limit,
  623. &clock))
  624. continue;
  625. diff = abs(clock.dot - target);
  626. ppm = div_u64(1000000ULL * diff, target);
  627. if (ppm < 100 && clock.p > best_clock->p) {
  628. bestppm = 0;
  629. *best_clock = clock;
  630. found = true;
  631. }
  632. if (bestppm >= 10 && ppm < bestppm - 10) {
  633. bestppm = ppm;
  634. *best_clock = clock;
  635. found = true;
  636. }
  637. }
  638. }
  639. }
  640. }
  641. return found;
  642. }
  643. bool intel_crtc_active(struct drm_crtc *crtc)
  644. {
  645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  646. /* Be paranoid as we can arrive here with only partial
  647. * state retrieved from the hardware during setup.
  648. *
  649. * We can ditch the adjusted_mode.crtc_clock check as soon
  650. * as Haswell has gained clock readout/fastboot support.
  651. *
  652. * We can ditch the crtc->fb check as soon as we can
  653. * properly reconstruct framebuffers.
  654. */
  655. return intel_crtc->active && crtc->fb &&
  656. intel_crtc->config.adjusted_mode.crtc_clock;
  657. }
  658. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  659. enum pipe pipe)
  660. {
  661. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  663. return intel_crtc->config.cpu_transcoder;
  664. }
  665. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. u32 frame, frame_reg = PIPEFRAME(pipe);
  669. frame = I915_READ(frame_reg);
  670. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  671. DRM_DEBUG_KMS("vblank wait timed out\n");
  672. }
  673. /**
  674. * intel_wait_for_vblank - wait for vblank on a given pipe
  675. * @dev: drm device
  676. * @pipe: pipe to wait for
  677. *
  678. * Wait for vblank to occur on a given pipe. Needed for various bits of
  679. * mode setting code.
  680. */
  681. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. int pipestat_reg = PIPESTAT(pipe);
  685. if (INTEL_INFO(dev)->gen >= 5) {
  686. ironlake_wait_for_vblank(dev, pipe);
  687. return;
  688. }
  689. /* Clear existing vblank status. Note this will clear any other
  690. * sticky status fields as well.
  691. *
  692. * This races with i915_driver_irq_handler() with the result
  693. * that either function could miss a vblank event. Here it is not
  694. * fatal, as we will either wait upon the next vblank interrupt or
  695. * timeout. Generally speaking intel_wait_for_vblank() is only
  696. * called during modeset at which time the GPU should be idle and
  697. * should *not* be performing page flips and thus not waiting on
  698. * vblanks...
  699. * Currently, the result of us stealing a vblank from the irq
  700. * handler is that a single frame will be skipped during swapbuffers.
  701. */
  702. I915_WRITE(pipestat_reg,
  703. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  704. /* Wait for vblank interrupt bit to set */
  705. if (wait_for(I915_READ(pipestat_reg) &
  706. PIPE_VBLANK_INTERRUPT_STATUS,
  707. 50))
  708. DRM_DEBUG_KMS("vblank wait timed out\n");
  709. }
  710. /*
  711. * intel_wait_for_pipe_off - wait for pipe to turn off
  712. * @dev: drm device
  713. * @pipe: pipe to wait for
  714. *
  715. * After disabling a pipe, we can't wait for vblank in the usual way,
  716. * spinning on the vblank interrupt status bit, since we won't actually
  717. * see an interrupt when the pipe is disabled.
  718. *
  719. * On Gen4 and above:
  720. * wait for the pipe register state bit to turn off
  721. *
  722. * Otherwise:
  723. * wait for the display line value to settle (it usually
  724. * ends up stopping at the start of the next frame).
  725. *
  726. */
  727. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  731. pipe);
  732. if (INTEL_INFO(dev)->gen >= 4) {
  733. int reg = PIPECONF(cpu_transcoder);
  734. /* Wait for the Pipe State to go off */
  735. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  736. 100))
  737. WARN(1, "pipe_off wait timed out\n");
  738. } else {
  739. u32 last_line, line_mask;
  740. int reg = PIPEDSL(pipe);
  741. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  742. if (IS_GEN2(dev))
  743. line_mask = DSL_LINEMASK_GEN2;
  744. else
  745. line_mask = DSL_LINEMASK_GEN3;
  746. /* Wait for the display line to settle */
  747. do {
  748. last_line = I915_READ(reg) & line_mask;
  749. mdelay(5);
  750. } while (((I915_READ(reg) & line_mask) != last_line) &&
  751. time_after(timeout, jiffies));
  752. if (time_after(jiffies, timeout))
  753. WARN(1, "pipe_off wait timed out\n");
  754. }
  755. }
  756. /*
  757. * ibx_digital_port_connected - is the specified port connected?
  758. * @dev_priv: i915 private structure
  759. * @port: the port to test
  760. *
  761. * Returns true if @port is connected, false otherwise.
  762. */
  763. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  764. struct intel_digital_port *port)
  765. {
  766. u32 bit;
  767. if (HAS_PCH_IBX(dev_priv->dev)) {
  768. switch(port->port) {
  769. case PORT_B:
  770. bit = SDE_PORTB_HOTPLUG;
  771. break;
  772. case PORT_C:
  773. bit = SDE_PORTC_HOTPLUG;
  774. break;
  775. case PORT_D:
  776. bit = SDE_PORTD_HOTPLUG;
  777. break;
  778. default:
  779. return true;
  780. }
  781. } else {
  782. switch(port->port) {
  783. case PORT_B:
  784. bit = SDE_PORTB_HOTPLUG_CPT;
  785. break;
  786. case PORT_C:
  787. bit = SDE_PORTC_HOTPLUG_CPT;
  788. break;
  789. case PORT_D:
  790. bit = SDE_PORTD_HOTPLUG_CPT;
  791. break;
  792. default:
  793. return true;
  794. }
  795. }
  796. return I915_READ(SDEISR) & bit;
  797. }
  798. static const char *state_string(bool enabled)
  799. {
  800. return enabled ? "on" : "off";
  801. }
  802. /* Only for pre-ILK configs */
  803. void assert_pll(struct drm_i915_private *dev_priv,
  804. enum pipe pipe, bool state)
  805. {
  806. int reg;
  807. u32 val;
  808. bool cur_state;
  809. reg = DPLL(pipe);
  810. val = I915_READ(reg);
  811. cur_state = !!(val & DPLL_VCO_ENABLE);
  812. WARN(cur_state != state,
  813. "PLL state assertion failure (expected %s, current %s)\n",
  814. state_string(state), state_string(cur_state));
  815. }
  816. /* XXX: the dsi pll is shared between MIPI DSI ports */
  817. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  818. {
  819. u32 val;
  820. bool cur_state;
  821. mutex_lock(&dev_priv->dpio_lock);
  822. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  823. mutex_unlock(&dev_priv->dpio_lock);
  824. cur_state = val & DSI_PLL_VCO_EN;
  825. WARN(cur_state != state,
  826. "DSI PLL state assertion failure (expected %s, current %s)\n",
  827. state_string(state), state_string(cur_state));
  828. }
  829. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  830. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  831. struct intel_shared_dpll *
  832. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  833. {
  834. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  835. if (crtc->config.shared_dpll < 0)
  836. return NULL;
  837. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  838. }
  839. /* For ILK+ */
  840. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  841. struct intel_shared_dpll *pll,
  842. bool state)
  843. {
  844. bool cur_state;
  845. struct intel_dpll_hw_state hw_state;
  846. if (HAS_PCH_LPT(dev_priv->dev)) {
  847. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  848. return;
  849. }
  850. if (WARN (!pll,
  851. "asserting DPLL %s with no DPLL\n", state_string(state)))
  852. return;
  853. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  854. WARN(cur_state != state,
  855. "%s assertion failure (expected %s, current %s)\n",
  856. pll->name, state_string(state), state_string(cur_state));
  857. }
  858. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  859. enum pipe pipe, bool state)
  860. {
  861. int reg;
  862. u32 val;
  863. bool cur_state;
  864. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  865. pipe);
  866. if (HAS_DDI(dev_priv->dev)) {
  867. /* DDI does not have a specific FDI_TX register */
  868. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  869. val = I915_READ(reg);
  870. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  871. } else {
  872. reg = FDI_TX_CTL(pipe);
  873. val = I915_READ(reg);
  874. cur_state = !!(val & FDI_TX_ENABLE);
  875. }
  876. WARN(cur_state != state,
  877. "FDI TX state assertion failure (expected %s, current %s)\n",
  878. state_string(state), state_string(cur_state));
  879. }
  880. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  881. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  882. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  883. enum pipe pipe, bool state)
  884. {
  885. int reg;
  886. u32 val;
  887. bool cur_state;
  888. reg = FDI_RX_CTL(pipe);
  889. val = I915_READ(reg);
  890. cur_state = !!(val & FDI_RX_ENABLE);
  891. WARN(cur_state != state,
  892. "FDI RX state assertion failure (expected %s, current %s)\n",
  893. state_string(state), state_string(cur_state));
  894. }
  895. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  896. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  897. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  898. enum pipe pipe)
  899. {
  900. int reg;
  901. u32 val;
  902. /* ILK FDI PLL is always enabled */
  903. if (dev_priv->info->gen == 5)
  904. return;
  905. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  906. if (HAS_DDI(dev_priv->dev))
  907. return;
  908. reg = FDI_TX_CTL(pipe);
  909. val = I915_READ(reg);
  910. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  911. }
  912. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  913. enum pipe pipe, bool state)
  914. {
  915. int reg;
  916. u32 val;
  917. bool cur_state;
  918. reg = FDI_RX_CTL(pipe);
  919. val = I915_READ(reg);
  920. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  921. WARN(cur_state != state,
  922. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  923. state_string(state), state_string(cur_state));
  924. }
  925. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  926. enum pipe pipe)
  927. {
  928. int pp_reg, lvds_reg;
  929. u32 val;
  930. enum pipe panel_pipe = PIPE_A;
  931. bool locked = true;
  932. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  933. pp_reg = PCH_PP_CONTROL;
  934. lvds_reg = PCH_LVDS;
  935. } else {
  936. pp_reg = PP_CONTROL;
  937. lvds_reg = LVDS;
  938. }
  939. val = I915_READ(pp_reg);
  940. if (!(val & PANEL_POWER_ON) ||
  941. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  942. locked = false;
  943. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  944. panel_pipe = PIPE_B;
  945. WARN(panel_pipe == pipe && locked,
  946. "panel assertion failure, pipe %c regs locked\n",
  947. pipe_name(pipe));
  948. }
  949. static void assert_cursor(struct drm_i915_private *dev_priv,
  950. enum pipe pipe, bool state)
  951. {
  952. struct drm_device *dev = dev_priv->dev;
  953. bool cur_state;
  954. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  955. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  956. else if (IS_845G(dev) || IS_I865G(dev))
  957. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  958. else
  959. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  960. WARN(cur_state != state,
  961. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  962. pipe_name(pipe), state_string(state), state_string(cur_state));
  963. }
  964. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  965. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  966. void assert_pipe(struct drm_i915_private *dev_priv,
  967. enum pipe pipe, bool state)
  968. {
  969. int reg;
  970. u32 val;
  971. bool cur_state;
  972. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  973. pipe);
  974. /* if we need the pipe A quirk it must be always on */
  975. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  976. state = true;
  977. if (!intel_display_power_enabled(dev_priv->dev,
  978. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  979. cur_state = false;
  980. } else {
  981. reg = PIPECONF(cpu_transcoder);
  982. val = I915_READ(reg);
  983. cur_state = !!(val & PIPECONF_ENABLE);
  984. }
  985. WARN(cur_state != state,
  986. "pipe %c assertion failure (expected %s, current %s)\n",
  987. pipe_name(pipe), state_string(state), state_string(cur_state));
  988. }
  989. static void assert_plane(struct drm_i915_private *dev_priv,
  990. enum plane plane, bool state)
  991. {
  992. int reg;
  993. u32 val;
  994. bool cur_state;
  995. reg = DSPCNTR(plane);
  996. val = I915_READ(reg);
  997. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  998. WARN(cur_state != state,
  999. "plane %c assertion failure (expected %s, current %s)\n",
  1000. plane_name(plane), state_string(state), state_string(cur_state));
  1001. }
  1002. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1003. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1004. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1005. enum pipe pipe)
  1006. {
  1007. struct drm_device *dev = dev_priv->dev;
  1008. int reg, i;
  1009. u32 val;
  1010. int cur_pipe;
  1011. /* Primary planes are fixed to pipes on gen4+ */
  1012. if (INTEL_INFO(dev)->gen >= 4) {
  1013. reg = DSPCNTR(pipe);
  1014. val = I915_READ(reg);
  1015. WARN((val & DISPLAY_PLANE_ENABLE),
  1016. "plane %c assertion failure, should be disabled but not\n",
  1017. plane_name(pipe));
  1018. return;
  1019. }
  1020. /* Need to check both planes against the pipe */
  1021. for_each_pipe(i) {
  1022. reg = DSPCNTR(i);
  1023. val = I915_READ(reg);
  1024. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1025. DISPPLANE_SEL_PIPE_SHIFT;
  1026. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1027. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1028. plane_name(i), pipe_name(pipe));
  1029. }
  1030. }
  1031. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1032. enum pipe pipe)
  1033. {
  1034. struct drm_device *dev = dev_priv->dev;
  1035. int reg, i;
  1036. u32 val;
  1037. if (IS_VALLEYVIEW(dev)) {
  1038. for (i = 0; i < dev_priv->num_plane; i++) {
  1039. reg = SPCNTR(pipe, i);
  1040. val = I915_READ(reg);
  1041. WARN((val & SP_ENABLE),
  1042. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1043. sprite_name(pipe, i), pipe_name(pipe));
  1044. }
  1045. } else if (INTEL_INFO(dev)->gen >= 7) {
  1046. reg = SPRCTL(pipe);
  1047. val = I915_READ(reg);
  1048. WARN((val & SPRITE_ENABLE),
  1049. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1050. plane_name(pipe), pipe_name(pipe));
  1051. } else if (INTEL_INFO(dev)->gen >= 5) {
  1052. reg = DVSCNTR(pipe);
  1053. val = I915_READ(reg);
  1054. WARN((val & DVS_ENABLE),
  1055. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1056. plane_name(pipe), pipe_name(pipe));
  1057. }
  1058. }
  1059. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1060. {
  1061. u32 val;
  1062. bool enabled;
  1063. if (HAS_PCH_LPT(dev_priv->dev)) {
  1064. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1065. return;
  1066. }
  1067. val = I915_READ(PCH_DREF_CONTROL);
  1068. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1069. DREF_SUPERSPREAD_SOURCE_MASK));
  1070. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1071. }
  1072. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1073. enum pipe pipe)
  1074. {
  1075. int reg;
  1076. u32 val;
  1077. bool enabled;
  1078. reg = PCH_TRANSCONF(pipe);
  1079. val = I915_READ(reg);
  1080. enabled = !!(val & TRANS_ENABLE);
  1081. WARN(enabled,
  1082. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1083. pipe_name(pipe));
  1084. }
  1085. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1086. enum pipe pipe, u32 port_sel, u32 val)
  1087. {
  1088. if ((val & DP_PORT_EN) == 0)
  1089. return false;
  1090. if (HAS_PCH_CPT(dev_priv->dev)) {
  1091. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1092. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1093. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1094. return false;
  1095. } else {
  1096. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1097. return false;
  1098. }
  1099. return true;
  1100. }
  1101. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1102. enum pipe pipe, u32 val)
  1103. {
  1104. if ((val & SDVO_ENABLE) == 0)
  1105. return false;
  1106. if (HAS_PCH_CPT(dev_priv->dev)) {
  1107. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1108. return false;
  1109. } else {
  1110. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1111. return false;
  1112. }
  1113. return true;
  1114. }
  1115. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1116. enum pipe pipe, u32 val)
  1117. {
  1118. if ((val & LVDS_PORT_EN) == 0)
  1119. return false;
  1120. if (HAS_PCH_CPT(dev_priv->dev)) {
  1121. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1122. return false;
  1123. } else {
  1124. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1125. return false;
  1126. }
  1127. return true;
  1128. }
  1129. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1130. enum pipe pipe, u32 val)
  1131. {
  1132. if ((val & ADPA_DAC_ENABLE) == 0)
  1133. return false;
  1134. if (HAS_PCH_CPT(dev_priv->dev)) {
  1135. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1136. return false;
  1137. } else {
  1138. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1139. return false;
  1140. }
  1141. return true;
  1142. }
  1143. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1144. enum pipe pipe, int reg, u32 port_sel)
  1145. {
  1146. u32 val = I915_READ(reg);
  1147. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1148. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1149. reg, pipe_name(pipe));
  1150. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1151. && (val & DP_PIPEB_SELECT),
  1152. "IBX PCH dp port still using transcoder B\n");
  1153. }
  1154. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1155. enum pipe pipe, int reg)
  1156. {
  1157. u32 val = I915_READ(reg);
  1158. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1159. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1160. reg, pipe_name(pipe));
  1161. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1162. && (val & SDVO_PIPE_B_SELECT),
  1163. "IBX PCH hdmi port still using transcoder B\n");
  1164. }
  1165. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1166. enum pipe pipe)
  1167. {
  1168. int reg;
  1169. u32 val;
  1170. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1171. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1172. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1173. reg = PCH_ADPA;
  1174. val = I915_READ(reg);
  1175. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1176. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1177. pipe_name(pipe));
  1178. reg = PCH_LVDS;
  1179. val = I915_READ(reg);
  1180. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1181. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1182. pipe_name(pipe));
  1183. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1184. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1185. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1186. }
  1187. static void intel_init_dpio(struct drm_device *dev)
  1188. {
  1189. struct drm_i915_private *dev_priv = dev->dev_private;
  1190. if (!IS_VALLEYVIEW(dev))
  1191. return;
  1192. /*
  1193. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  1194. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  1195. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  1196. * b. The other bits such as sfr settings / modesel may all be set
  1197. * to 0.
  1198. *
  1199. * This should only be done on init and resume from S3 with both
  1200. * PLLs disabled, or we risk losing DPIO and PLL synchronization.
  1201. */
  1202. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  1203. }
  1204. static void vlv_enable_pll(struct intel_crtc *crtc)
  1205. {
  1206. struct drm_device *dev = crtc->base.dev;
  1207. struct drm_i915_private *dev_priv = dev->dev_private;
  1208. int reg = DPLL(crtc->pipe);
  1209. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1210. assert_pipe_disabled(dev_priv, crtc->pipe);
  1211. /* No really, not for ILK+ */
  1212. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1213. /* PLL is protected by panel, make sure we can write it */
  1214. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1215. assert_panel_unlocked(dev_priv, crtc->pipe);
  1216. I915_WRITE(reg, dpll);
  1217. POSTING_READ(reg);
  1218. udelay(150);
  1219. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1220. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1221. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1222. POSTING_READ(DPLL_MD(crtc->pipe));
  1223. /* We do this three times for luck */
  1224. I915_WRITE(reg, dpll);
  1225. POSTING_READ(reg);
  1226. udelay(150); /* wait for warmup */
  1227. I915_WRITE(reg, dpll);
  1228. POSTING_READ(reg);
  1229. udelay(150); /* wait for warmup */
  1230. I915_WRITE(reg, dpll);
  1231. POSTING_READ(reg);
  1232. udelay(150); /* wait for warmup */
  1233. }
  1234. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1235. {
  1236. struct drm_device *dev = crtc->base.dev;
  1237. struct drm_i915_private *dev_priv = dev->dev_private;
  1238. int reg = DPLL(crtc->pipe);
  1239. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1240. assert_pipe_disabled(dev_priv, crtc->pipe);
  1241. /* No really, not for ILK+ */
  1242. BUG_ON(dev_priv->info->gen >= 5);
  1243. /* PLL is protected by panel, make sure we can write it */
  1244. if (IS_MOBILE(dev) && !IS_I830(dev))
  1245. assert_panel_unlocked(dev_priv, crtc->pipe);
  1246. I915_WRITE(reg, dpll);
  1247. /* Wait for the clocks to stabilize. */
  1248. POSTING_READ(reg);
  1249. udelay(150);
  1250. if (INTEL_INFO(dev)->gen >= 4) {
  1251. I915_WRITE(DPLL_MD(crtc->pipe),
  1252. crtc->config.dpll_hw_state.dpll_md);
  1253. } else {
  1254. /* The pixel multiplier can only be updated once the
  1255. * DPLL is enabled and the clocks are stable.
  1256. *
  1257. * So write it again.
  1258. */
  1259. I915_WRITE(reg, dpll);
  1260. }
  1261. /* We do this three times for luck */
  1262. I915_WRITE(reg, dpll);
  1263. POSTING_READ(reg);
  1264. udelay(150); /* wait for warmup */
  1265. I915_WRITE(reg, dpll);
  1266. POSTING_READ(reg);
  1267. udelay(150); /* wait for warmup */
  1268. I915_WRITE(reg, dpll);
  1269. POSTING_READ(reg);
  1270. udelay(150); /* wait for warmup */
  1271. }
  1272. /**
  1273. * i9xx_disable_pll - disable a PLL
  1274. * @dev_priv: i915 private structure
  1275. * @pipe: pipe PLL to disable
  1276. *
  1277. * Disable the PLL for @pipe, making sure the pipe is off first.
  1278. *
  1279. * Note! This is for pre-ILK only.
  1280. */
  1281. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1282. {
  1283. /* Don't disable pipe A or pipe A PLLs if needed */
  1284. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1285. return;
  1286. /* Make sure the pipe isn't still relying on us */
  1287. assert_pipe_disabled(dev_priv, pipe);
  1288. I915_WRITE(DPLL(pipe), 0);
  1289. POSTING_READ(DPLL(pipe));
  1290. }
  1291. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1292. {
  1293. u32 val = 0;
  1294. /* Make sure the pipe isn't still relying on us */
  1295. assert_pipe_disabled(dev_priv, pipe);
  1296. /* Leave integrated clock source enabled */
  1297. if (pipe == PIPE_B)
  1298. val = DPLL_INTEGRATED_CRI_CLK_VLV;
  1299. I915_WRITE(DPLL(pipe), val);
  1300. POSTING_READ(DPLL(pipe));
  1301. }
  1302. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1303. {
  1304. u32 port_mask;
  1305. if (!port)
  1306. port_mask = DPLL_PORTB_READY_MASK;
  1307. else
  1308. port_mask = DPLL_PORTC_READY_MASK;
  1309. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1310. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1311. 'B' + port, I915_READ(DPLL(0)));
  1312. }
  1313. /**
  1314. * ironlake_enable_shared_dpll - enable PCH PLL
  1315. * @dev_priv: i915 private structure
  1316. * @pipe: pipe PLL to enable
  1317. *
  1318. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1319. * drives the transcoder clock.
  1320. */
  1321. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1322. {
  1323. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1324. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1325. /* PCH PLLs only available on ILK, SNB and IVB */
  1326. BUG_ON(dev_priv->info->gen < 5);
  1327. if (WARN_ON(pll == NULL))
  1328. return;
  1329. if (WARN_ON(pll->refcount == 0))
  1330. return;
  1331. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1332. pll->name, pll->active, pll->on,
  1333. crtc->base.base.id);
  1334. if (pll->active++) {
  1335. WARN_ON(!pll->on);
  1336. assert_shared_dpll_enabled(dev_priv, pll);
  1337. return;
  1338. }
  1339. WARN_ON(pll->on);
  1340. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1341. pll->enable(dev_priv, pll);
  1342. pll->on = true;
  1343. }
  1344. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1345. {
  1346. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1347. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1348. /* PCH only available on ILK+ */
  1349. BUG_ON(dev_priv->info->gen < 5);
  1350. if (WARN_ON(pll == NULL))
  1351. return;
  1352. if (WARN_ON(pll->refcount == 0))
  1353. return;
  1354. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1355. pll->name, pll->active, pll->on,
  1356. crtc->base.base.id);
  1357. if (WARN_ON(pll->active == 0)) {
  1358. assert_shared_dpll_disabled(dev_priv, pll);
  1359. return;
  1360. }
  1361. assert_shared_dpll_enabled(dev_priv, pll);
  1362. WARN_ON(!pll->on);
  1363. if (--pll->active)
  1364. return;
  1365. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1366. pll->disable(dev_priv, pll);
  1367. pll->on = false;
  1368. }
  1369. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1370. enum pipe pipe)
  1371. {
  1372. struct drm_device *dev = dev_priv->dev;
  1373. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1375. uint32_t reg, val, pipeconf_val;
  1376. /* PCH only available on ILK+ */
  1377. BUG_ON(dev_priv->info->gen < 5);
  1378. /* Make sure PCH DPLL is enabled */
  1379. assert_shared_dpll_enabled(dev_priv,
  1380. intel_crtc_to_shared_dpll(intel_crtc));
  1381. /* FDI must be feeding us bits for PCH ports */
  1382. assert_fdi_tx_enabled(dev_priv, pipe);
  1383. assert_fdi_rx_enabled(dev_priv, pipe);
  1384. if (HAS_PCH_CPT(dev)) {
  1385. /* Workaround: Set the timing override bit before enabling the
  1386. * pch transcoder. */
  1387. reg = TRANS_CHICKEN2(pipe);
  1388. val = I915_READ(reg);
  1389. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1390. I915_WRITE(reg, val);
  1391. }
  1392. reg = PCH_TRANSCONF(pipe);
  1393. val = I915_READ(reg);
  1394. pipeconf_val = I915_READ(PIPECONF(pipe));
  1395. if (HAS_PCH_IBX(dev_priv->dev)) {
  1396. /*
  1397. * make the BPC in transcoder be consistent with
  1398. * that in pipeconf reg.
  1399. */
  1400. val &= ~PIPECONF_BPC_MASK;
  1401. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1402. }
  1403. val &= ~TRANS_INTERLACE_MASK;
  1404. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1405. if (HAS_PCH_IBX(dev_priv->dev) &&
  1406. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1407. val |= TRANS_LEGACY_INTERLACED_ILK;
  1408. else
  1409. val |= TRANS_INTERLACED;
  1410. else
  1411. val |= TRANS_PROGRESSIVE;
  1412. I915_WRITE(reg, val | TRANS_ENABLE);
  1413. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1414. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1415. }
  1416. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1417. enum transcoder cpu_transcoder)
  1418. {
  1419. u32 val, pipeconf_val;
  1420. /* PCH only available on ILK+ */
  1421. BUG_ON(dev_priv->info->gen < 5);
  1422. /* FDI must be feeding us bits for PCH ports */
  1423. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1424. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1425. /* Workaround: set timing override bit. */
  1426. val = I915_READ(_TRANSA_CHICKEN2);
  1427. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1428. I915_WRITE(_TRANSA_CHICKEN2, val);
  1429. val = TRANS_ENABLE;
  1430. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1431. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1432. PIPECONF_INTERLACED_ILK)
  1433. val |= TRANS_INTERLACED;
  1434. else
  1435. val |= TRANS_PROGRESSIVE;
  1436. I915_WRITE(LPT_TRANSCONF, val);
  1437. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1438. DRM_ERROR("Failed to enable PCH transcoder\n");
  1439. }
  1440. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1441. enum pipe pipe)
  1442. {
  1443. struct drm_device *dev = dev_priv->dev;
  1444. uint32_t reg, val;
  1445. /* FDI relies on the transcoder */
  1446. assert_fdi_tx_disabled(dev_priv, pipe);
  1447. assert_fdi_rx_disabled(dev_priv, pipe);
  1448. /* Ports must be off as well */
  1449. assert_pch_ports_disabled(dev_priv, pipe);
  1450. reg = PCH_TRANSCONF(pipe);
  1451. val = I915_READ(reg);
  1452. val &= ~TRANS_ENABLE;
  1453. I915_WRITE(reg, val);
  1454. /* wait for PCH transcoder off, transcoder state */
  1455. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1456. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1457. if (!HAS_PCH_IBX(dev)) {
  1458. /* Workaround: Clear the timing override chicken bit again. */
  1459. reg = TRANS_CHICKEN2(pipe);
  1460. val = I915_READ(reg);
  1461. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1462. I915_WRITE(reg, val);
  1463. }
  1464. }
  1465. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1466. {
  1467. u32 val;
  1468. val = I915_READ(LPT_TRANSCONF);
  1469. val &= ~TRANS_ENABLE;
  1470. I915_WRITE(LPT_TRANSCONF, val);
  1471. /* wait for PCH transcoder off, transcoder state */
  1472. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1473. DRM_ERROR("Failed to disable PCH transcoder\n");
  1474. /* Workaround: clear timing override bit. */
  1475. val = I915_READ(_TRANSA_CHICKEN2);
  1476. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1477. I915_WRITE(_TRANSA_CHICKEN2, val);
  1478. }
  1479. /**
  1480. * intel_enable_pipe - enable a pipe, asserting requirements
  1481. * @dev_priv: i915 private structure
  1482. * @pipe: pipe to enable
  1483. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1484. *
  1485. * Enable @pipe, making sure that various hardware specific requirements
  1486. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1487. *
  1488. * @pipe should be %PIPE_A or %PIPE_B.
  1489. *
  1490. * Will wait until the pipe is actually running (i.e. first vblank) before
  1491. * returning.
  1492. */
  1493. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1494. bool pch_port, bool dsi)
  1495. {
  1496. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1497. pipe);
  1498. enum pipe pch_transcoder;
  1499. int reg;
  1500. u32 val;
  1501. assert_planes_disabled(dev_priv, pipe);
  1502. assert_cursor_disabled(dev_priv, pipe);
  1503. assert_sprites_disabled(dev_priv, pipe);
  1504. if (HAS_PCH_LPT(dev_priv->dev))
  1505. pch_transcoder = TRANSCODER_A;
  1506. else
  1507. pch_transcoder = pipe;
  1508. /*
  1509. * A pipe without a PLL won't actually be able to drive bits from
  1510. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1511. * need the check.
  1512. */
  1513. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1514. if (dsi)
  1515. assert_dsi_pll_enabled(dev_priv);
  1516. else
  1517. assert_pll_enabled(dev_priv, pipe);
  1518. else {
  1519. if (pch_port) {
  1520. /* if driving the PCH, we need FDI enabled */
  1521. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1522. assert_fdi_tx_pll_enabled(dev_priv,
  1523. (enum pipe) cpu_transcoder);
  1524. }
  1525. /* FIXME: assert CPU port conditions for SNB+ */
  1526. }
  1527. reg = PIPECONF(cpu_transcoder);
  1528. val = I915_READ(reg);
  1529. if (val & PIPECONF_ENABLE)
  1530. return;
  1531. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1532. intel_wait_for_vblank(dev_priv->dev, pipe);
  1533. }
  1534. /**
  1535. * intel_disable_pipe - disable a pipe, asserting requirements
  1536. * @dev_priv: i915 private structure
  1537. * @pipe: pipe to disable
  1538. *
  1539. * Disable @pipe, making sure that various hardware specific requirements
  1540. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1541. *
  1542. * @pipe should be %PIPE_A or %PIPE_B.
  1543. *
  1544. * Will wait until the pipe has shut down before returning.
  1545. */
  1546. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1547. enum pipe pipe)
  1548. {
  1549. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1550. pipe);
  1551. int reg;
  1552. u32 val;
  1553. /*
  1554. * Make sure planes won't keep trying to pump pixels to us,
  1555. * or we might hang the display.
  1556. */
  1557. assert_planes_disabled(dev_priv, pipe);
  1558. assert_cursor_disabled(dev_priv, pipe);
  1559. assert_sprites_disabled(dev_priv, pipe);
  1560. /* Don't disable pipe A or pipe A PLLs if needed */
  1561. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1562. return;
  1563. reg = PIPECONF(cpu_transcoder);
  1564. val = I915_READ(reg);
  1565. if ((val & PIPECONF_ENABLE) == 0)
  1566. return;
  1567. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1568. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1569. }
  1570. /*
  1571. * Plane regs are double buffered, going from enabled->disabled needs a
  1572. * trigger in order to latch. The display address reg provides this.
  1573. */
  1574. void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
  1575. enum plane plane)
  1576. {
  1577. u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
  1578. I915_WRITE(reg, I915_READ(reg));
  1579. POSTING_READ(reg);
  1580. }
  1581. /**
  1582. * intel_enable_primary_plane - enable the primary plane on a given pipe
  1583. * @dev_priv: i915 private structure
  1584. * @plane: plane to enable
  1585. * @pipe: pipe being fed
  1586. *
  1587. * Enable @plane on @pipe, making sure that @pipe is running first.
  1588. */
  1589. static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
  1590. enum plane plane, enum pipe pipe)
  1591. {
  1592. struct intel_crtc *intel_crtc =
  1593. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1594. int reg;
  1595. u32 val;
  1596. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1597. assert_pipe_enabled(dev_priv, pipe);
  1598. WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
  1599. intel_crtc->primary_enabled = true;
  1600. reg = DSPCNTR(plane);
  1601. val = I915_READ(reg);
  1602. if (val & DISPLAY_PLANE_ENABLE)
  1603. return;
  1604. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1605. intel_flush_primary_plane(dev_priv, plane);
  1606. intel_wait_for_vblank(dev_priv->dev, pipe);
  1607. }
  1608. /**
  1609. * intel_disable_primary_plane - disable the primary plane
  1610. * @dev_priv: i915 private structure
  1611. * @plane: plane to disable
  1612. * @pipe: pipe consuming the data
  1613. *
  1614. * Disable @plane; should be an independent operation.
  1615. */
  1616. static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
  1617. enum plane plane, enum pipe pipe)
  1618. {
  1619. struct intel_crtc *intel_crtc =
  1620. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1621. int reg;
  1622. u32 val;
  1623. WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
  1624. intel_crtc->primary_enabled = false;
  1625. reg = DSPCNTR(plane);
  1626. val = I915_READ(reg);
  1627. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1628. return;
  1629. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1630. intel_flush_primary_plane(dev_priv, plane);
  1631. intel_wait_for_vblank(dev_priv->dev, pipe);
  1632. }
  1633. static bool need_vtd_wa(struct drm_device *dev)
  1634. {
  1635. #ifdef CONFIG_INTEL_IOMMU
  1636. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1637. return true;
  1638. #endif
  1639. return false;
  1640. }
  1641. int
  1642. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1643. struct drm_i915_gem_object *obj,
  1644. struct intel_ring_buffer *pipelined)
  1645. {
  1646. struct drm_i915_private *dev_priv = dev->dev_private;
  1647. u32 alignment;
  1648. int ret;
  1649. switch (obj->tiling_mode) {
  1650. case I915_TILING_NONE:
  1651. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1652. alignment = 128 * 1024;
  1653. else if (INTEL_INFO(dev)->gen >= 4)
  1654. alignment = 4 * 1024;
  1655. else
  1656. alignment = 64 * 1024;
  1657. break;
  1658. case I915_TILING_X:
  1659. /* pin() will align the object as required by fence */
  1660. alignment = 0;
  1661. break;
  1662. case I915_TILING_Y:
  1663. /* Despite that we check this in framebuffer_init userspace can
  1664. * screw us over and change the tiling after the fact. Only
  1665. * pinned buffers can't change their tiling. */
  1666. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1667. return -EINVAL;
  1668. default:
  1669. BUG();
  1670. }
  1671. /* Note that the w/a also requires 64 PTE of padding following the
  1672. * bo. We currently fill all unused PTE with the shadow page and so
  1673. * we should always have valid PTE following the scanout preventing
  1674. * the VT-d warning.
  1675. */
  1676. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1677. alignment = 256 * 1024;
  1678. dev_priv->mm.interruptible = false;
  1679. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1680. if (ret)
  1681. goto err_interruptible;
  1682. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1683. * fence, whereas 965+ only requires a fence if using
  1684. * framebuffer compression. For simplicity, we always install
  1685. * a fence as the cost is not that onerous.
  1686. */
  1687. ret = i915_gem_object_get_fence(obj);
  1688. if (ret)
  1689. goto err_unpin;
  1690. i915_gem_object_pin_fence(obj);
  1691. dev_priv->mm.interruptible = true;
  1692. return 0;
  1693. err_unpin:
  1694. i915_gem_object_unpin_from_display_plane(obj);
  1695. err_interruptible:
  1696. dev_priv->mm.interruptible = true;
  1697. return ret;
  1698. }
  1699. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1700. {
  1701. i915_gem_object_unpin_fence(obj);
  1702. i915_gem_object_unpin_from_display_plane(obj);
  1703. }
  1704. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1705. * is assumed to be a power-of-two. */
  1706. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1707. unsigned int tiling_mode,
  1708. unsigned int cpp,
  1709. unsigned int pitch)
  1710. {
  1711. if (tiling_mode != I915_TILING_NONE) {
  1712. unsigned int tile_rows, tiles;
  1713. tile_rows = *y / 8;
  1714. *y %= 8;
  1715. tiles = *x / (512/cpp);
  1716. *x %= 512/cpp;
  1717. return tile_rows * pitch * 8 + tiles * 4096;
  1718. } else {
  1719. unsigned int offset;
  1720. offset = *y * pitch + *x * cpp;
  1721. *y = 0;
  1722. *x = (offset & 4095) / cpp;
  1723. return offset & -4096;
  1724. }
  1725. }
  1726. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1727. int x, int y)
  1728. {
  1729. struct drm_device *dev = crtc->dev;
  1730. struct drm_i915_private *dev_priv = dev->dev_private;
  1731. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1732. struct intel_framebuffer *intel_fb;
  1733. struct drm_i915_gem_object *obj;
  1734. int plane = intel_crtc->plane;
  1735. unsigned long linear_offset;
  1736. u32 dspcntr;
  1737. u32 reg;
  1738. switch (plane) {
  1739. case 0:
  1740. case 1:
  1741. break;
  1742. default:
  1743. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1744. return -EINVAL;
  1745. }
  1746. intel_fb = to_intel_framebuffer(fb);
  1747. obj = intel_fb->obj;
  1748. reg = DSPCNTR(plane);
  1749. dspcntr = I915_READ(reg);
  1750. /* Mask out pixel format bits in case we change it */
  1751. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1752. switch (fb->pixel_format) {
  1753. case DRM_FORMAT_C8:
  1754. dspcntr |= DISPPLANE_8BPP;
  1755. break;
  1756. case DRM_FORMAT_XRGB1555:
  1757. case DRM_FORMAT_ARGB1555:
  1758. dspcntr |= DISPPLANE_BGRX555;
  1759. break;
  1760. case DRM_FORMAT_RGB565:
  1761. dspcntr |= DISPPLANE_BGRX565;
  1762. break;
  1763. case DRM_FORMAT_XRGB8888:
  1764. case DRM_FORMAT_ARGB8888:
  1765. dspcntr |= DISPPLANE_BGRX888;
  1766. break;
  1767. case DRM_FORMAT_XBGR8888:
  1768. case DRM_FORMAT_ABGR8888:
  1769. dspcntr |= DISPPLANE_RGBX888;
  1770. break;
  1771. case DRM_FORMAT_XRGB2101010:
  1772. case DRM_FORMAT_ARGB2101010:
  1773. dspcntr |= DISPPLANE_BGRX101010;
  1774. break;
  1775. case DRM_FORMAT_XBGR2101010:
  1776. case DRM_FORMAT_ABGR2101010:
  1777. dspcntr |= DISPPLANE_RGBX101010;
  1778. break;
  1779. default:
  1780. BUG();
  1781. }
  1782. if (INTEL_INFO(dev)->gen >= 4) {
  1783. if (obj->tiling_mode != I915_TILING_NONE)
  1784. dspcntr |= DISPPLANE_TILED;
  1785. else
  1786. dspcntr &= ~DISPPLANE_TILED;
  1787. }
  1788. if (IS_G4X(dev))
  1789. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1790. I915_WRITE(reg, dspcntr);
  1791. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1792. if (INTEL_INFO(dev)->gen >= 4) {
  1793. intel_crtc->dspaddr_offset =
  1794. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1795. fb->bits_per_pixel / 8,
  1796. fb->pitches[0]);
  1797. linear_offset -= intel_crtc->dspaddr_offset;
  1798. } else {
  1799. intel_crtc->dspaddr_offset = linear_offset;
  1800. }
  1801. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1802. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1803. fb->pitches[0]);
  1804. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1805. if (INTEL_INFO(dev)->gen >= 4) {
  1806. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1807. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1808. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1809. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1810. } else
  1811. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1812. POSTING_READ(reg);
  1813. return 0;
  1814. }
  1815. static int ironlake_update_plane(struct drm_crtc *crtc,
  1816. struct drm_framebuffer *fb, int x, int y)
  1817. {
  1818. struct drm_device *dev = crtc->dev;
  1819. struct drm_i915_private *dev_priv = dev->dev_private;
  1820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1821. struct intel_framebuffer *intel_fb;
  1822. struct drm_i915_gem_object *obj;
  1823. int plane = intel_crtc->plane;
  1824. unsigned long linear_offset;
  1825. u32 dspcntr;
  1826. u32 reg;
  1827. switch (plane) {
  1828. case 0:
  1829. case 1:
  1830. case 2:
  1831. break;
  1832. default:
  1833. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1834. return -EINVAL;
  1835. }
  1836. intel_fb = to_intel_framebuffer(fb);
  1837. obj = intel_fb->obj;
  1838. reg = DSPCNTR(plane);
  1839. dspcntr = I915_READ(reg);
  1840. /* Mask out pixel format bits in case we change it */
  1841. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1842. switch (fb->pixel_format) {
  1843. case DRM_FORMAT_C8:
  1844. dspcntr |= DISPPLANE_8BPP;
  1845. break;
  1846. case DRM_FORMAT_RGB565:
  1847. dspcntr |= DISPPLANE_BGRX565;
  1848. break;
  1849. case DRM_FORMAT_XRGB8888:
  1850. case DRM_FORMAT_ARGB8888:
  1851. dspcntr |= DISPPLANE_BGRX888;
  1852. break;
  1853. case DRM_FORMAT_XBGR8888:
  1854. case DRM_FORMAT_ABGR8888:
  1855. dspcntr |= DISPPLANE_RGBX888;
  1856. break;
  1857. case DRM_FORMAT_XRGB2101010:
  1858. case DRM_FORMAT_ARGB2101010:
  1859. dspcntr |= DISPPLANE_BGRX101010;
  1860. break;
  1861. case DRM_FORMAT_XBGR2101010:
  1862. case DRM_FORMAT_ABGR2101010:
  1863. dspcntr |= DISPPLANE_RGBX101010;
  1864. break;
  1865. default:
  1866. BUG();
  1867. }
  1868. if (obj->tiling_mode != I915_TILING_NONE)
  1869. dspcntr |= DISPPLANE_TILED;
  1870. else
  1871. dspcntr &= ~DISPPLANE_TILED;
  1872. if (IS_HASWELL(dev))
  1873. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1874. else
  1875. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1876. I915_WRITE(reg, dspcntr);
  1877. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1878. intel_crtc->dspaddr_offset =
  1879. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1880. fb->bits_per_pixel / 8,
  1881. fb->pitches[0]);
  1882. linear_offset -= intel_crtc->dspaddr_offset;
  1883. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1884. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1885. fb->pitches[0]);
  1886. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1887. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1888. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1889. if (IS_HASWELL(dev)) {
  1890. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1891. } else {
  1892. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1893. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1894. }
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. if (dev_priv->display.disable_fbc)
  1906. dev_priv->display.disable_fbc(dev);
  1907. intel_increase_pllclock(crtc);
  1908. return dev_priv->display.update_plane(crtc, fb, x, y);
  1909. }
  1910. void intel_display_handle_reset(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct drm_crtc *crtc;
  1914. /*
  1915. * Flips in the rings have been nuked by the reset,
  1916. * so complete all pending flips so that user space
  1917. * will get its events and not get stuck.
  1918. *
  1919. * Also update the base address of all primary
  1920. * planes to the the last fb to make sure we're
  1921. * showing the correct fb after a reset.
  1922. *
  1923. * Need to make two loops over the crtcs so that we
  1924. * don't try to grab a crtc mutex before the
  1925. * pending_flip_queue really got woken up.
  1926. */
  1927. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1929. enum plane plane = intel_crtc->plane;
  1930. intel_prepare_page_flip(dev, plane);
  1931. intel_finish_page_flip_plane(dev, plane);
  1932. }
  1933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1935. mutex_lock(&crtc->mutex);
  1936. if (intel_crtc->active)
  1937. dev_priv->display.update_plane(crtc, crtc->fb,
  1938. crtc->x, crtc->y);
  1939. mutex_unlock(&crtc->mutex);
  1940. }
  1941. }
  1942. static int
  1943. intel_finish_fb(struct drm_framebuffer *old_fb)
  1944. {
  1945. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1946. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1947. bool was_interruptible = dev_priv->mm.interruptible;
  1948. int ret;
  1949. /* Big Hammer, we also need to ensure that any pending
  1950. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1951. * current scanout is retired before unpinning the old
  1952. * framebuffer.
  1953. *
  1954. * This should only fail upon a hung GPU, in which case we
  1955. * can safely continue.
  1956. */
  1957. dev_priv->mm.interruptible = false;
  1958. ret = i915_gem_object_finish_gpu(obj);
  1959. dev_priv->mm.interruptible = was_interruptible;
  1960. return ret;
  1961. }
  1962. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_master_private *master_priv;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. if (!dev->primary->master)
  1968. return;
  1969. master_priv = dev->primary->master->driver_priv;
  1970. if (!master_priv->sarea_priv)
  1971. return;
  1972. switch (intel_crtc->pipe) {
  1973. case 0:
  1974. master_priv->sarea_priv->pipeA_x = x;
  1975. master_priv->sarea_priv->pipeA_y = y;
  1976. break;
  1977. case 1:
  1978. master_priv->sarea_priv->pipeB_x = x;
  1979. master_priv->sarea_priv->pipeB_y = y;
  1980. break;
  1981. default:
  1982. break;
  1983. }
  1984. }
  1985. static int
  1986. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1987. struct drm_framebuffer *fb)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. struct drm_framebuffer *old_fb;
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2000. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2001. plane_name(intel_crtc->plane),
  2002. INTEL_INFO(dev)->num_pipes);
  2003. return -EINVAL;
  2004. }
  2005. mutex_lock(&dev->struct_mutex);
  2006. ret = intel_pin_and_fence_fb_obj(dev,
  2007. to_intel_framebuffer(fb)->obj,
  2008. NULL);
  2009. if (ret != 0) {
  2010. mutex_unlock(&dev->struct_mutex);
  2011. DRM_ERROR("pin & fence failed\n");
  2012. return ret;
  2013. }
  2014. /*
  2015. * Update pipe size and adjust fitter if needed: the reason for this is
  2016. * that in compute_mode_changes we check the native mode (not the pfit
  2017. * mode) to see if we can flip rather than do a full mode set. In the
  2018. * fastboot case, we'll flip, but if we don't update the pipesrc and
  2019. * pfit state, we'll end up with a big fb scanned out into the wrong
  2020. * sized surface.
  2021. *
  2022. * To fix this properly, we need to hoist the checks up into
  2023. * compute_mode_changes (or above), check the actual pfit state and
  2024. * whether the platform allows pfit disable with pipe active, and only
  2025. * then update the pipesrc and pfit state, even on the flip path.
  2026. */
  2027. if (i915_fastboot) {
  2028. const struct drm_display_mode *adjusted_mode =
  2029. &intel_crtc->config.adjusted_mode;
  2030. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2031. ((adjusted_mode->crtc_hdisplay - 1) << 16) |
  2032. (adjusted_mode->crtc_vdisplay - 1));
  2033. if (!intel_crtc->config.pch_pfit.enabled &&
  2034. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2035. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2036. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2037. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2038. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2039. }
  2040. }
  2041. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2042. if (ret) {
  2043. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2044. mutex_unlock(&dev->struct_mutex);
  2045. DRM_ERROR("failed to update base address\n");
  2046. return ret;
  2047. }
  2048. old_fb = crtc->fb;
  2049. crtc->fb = fb;
  2050. crtc->x = x;
  2051. crtc->y = y;
  2052. if (old_fb) {
  2053. if (intel_crtc->active && old_fb != fb)
  2054. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2055. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2056. }
  2057. intel_update_fbc(dev);
  2058. intel_edp_psr_update(dev);
  2059. mutex_unlock(&dev->struct_mutex);
  2060. intel_crtc_update_sarea_pos(crtc, x, y);
  2061. return 0;
  2062. }
  2063. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2064. {
  2065. struct drm_device *dev = crtc->dev;
  2066. struct drm_i915_private *dev_priv = dev->dev_private;
  2067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2068. int pipe = intel_crtc->pipe;
  2069. u32 reg, temp;
  2070. /* enable normal train */
  2071. reg = FDI_TX_CTL(pipe);
  2072. temp = I915_READ(reg);
  2073. if (IS_IVYBRIDGE(dev)) {
  2074. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2075. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2076. } else {
  2077. temp &= ~FDI_LINK_TRAIN_NONE;
  2078. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2079. }
  2080. I915_WRITE(reg, temp);
  2081. reg = FDI_RX_CTL(pipe);
  2082. temp = I915_READ(reg);
  2083. if (HAS_PCH_CPT(dev)) {
  2084. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2085. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2086. } else {
  2087. temp &= ~FDI_LINK_TRAIN_NONE;
  2088. temp |= FDI_LINK_TRAIN_NONE;
  2089. }
  2090. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2091. /* wait one idle pattern time */
  2092. POSTING_READ(reg);
  2093. udelay(1000);
  2094. /* IVB wants error correction enabled */
  2095. if (IS_IVYBRIDGE(dev))
  2096. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2097. FDI_FE_ERRC_ENABLE);
  2098. }
  2099. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2100. {
  2101. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2102. }
  2103. static void ivb_modeset_global_resources(struct drm_device *dev)
  2104. {
  2105. struct drm_i915_private *dev_priv = dev->dev_private;
  2106. struct intel_crtc *pipe_B_crtc =
  2107. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2108. struct intel_crtc *pipe_C_crtc =
  2109. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2110. uint32_t temp;
  2111. /*
  2112. * When everything is off disable fdi C so that we could enable fdi B
  2113. * with all lanes. Note that we don't care about enabled pipes without
  2114. * an enabled pch encoder.
  2115. */
  2116. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2117. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2118. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2119. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2120. temp = I915_READ(SOUTH_CHICKEN1);
  2121. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2122. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2123. I915_WRITE(SOUTH_CHICKEN1, temp);
  2124. }
  2125. }
  2126. /* The FDI link training functions for ILK/Ibexpeak. */
  2127. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2128. {
  2129. struct drm_device *dev = crtc->dev;
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2132. int pipe = intel_crtc->pipe;
  2133. int plane = intel_crtc->plane;
  2134. u32 reg, temp, tries;
  2135. /* FDI needs bits from pipe & plane first */
  2136. assert_pipe_enabled(dev_priv, pipe);
  2137. assert_plane_enabled(dev_priv, plane);
  2138. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2139. for train result */
  2140. reg = FDI_RX_IMR(pipe);
  2141. temp = I915_READ(reg);
  2142. temp &= ~FDI_RX_SYMBOL_LOCK;
  2143. temp &= ~FDI_RX_BIT_LOCK;
  2144. I915_WRITE(reg, temp);
  2145. I915_READ(reg);
  2146. udelay(150);
  2147. /* enable CPU FDI TX and PCH FDI RX */
  2148. reg = FDI_TX_CTL(pipe);
  2149. temp = I915_READ(reg);
  2150. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2151. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2154. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~FDI_LINK_TRAIN_NONE;
  2158. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2159. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2160. POSTING_READ(reg);
  2161. udelay(150);
  2162. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2163. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2164. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2165. FDI_RX_PHASE_SYNC_POINTER_EN);
  2166. reg = FDI_RX_IIR(pipe);
  2167. for (tries = 0; tries < 5; tries++) {
  2168. temp = I915_READ(reg);
  2169. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2170. if ((temp & FDI_RX_BIT_LOCK)) {
  2171. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2172. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2173. break;
  2174. }
  2175. }
  2176. if (tries == 5)
  2177. DRM_ERROR("FDI train 1 fail!\n");
  2178. /* Train 2 */
  2179. reg = FDI_TX_CTL(pipe);
  2180. temp = I915_READ(reg);
  2181. temp &= ~FDI_LINK_TRAIN_NONE;
  2182. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2183. I915_WRITE(reg, temp);
  2184. reg = FDI_RX_CTL(pipe);
  2185. temp = I915_READ(reg);
  2186. temp &= ~FDI_LINK_TRAIN_NONE;
  2187. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2188. I915_WRITE(reg, temp);
  2189. POSTING_READ(reg);
  2190. udelay(150);
  2191. reg = FDI_RX_IIR(pipe);
  2192. for (tries = 0; tries < 5; tries++) {
  2193. temp = I915_READ(reg);
  2194. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2195. if (temp & FDI_RX_SYMBOL_LOCK) {
  2196. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2197. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2198. break;
  2199. }
  2200. }
  2201. if (tries == 5)
  2202. DRM_ERROR("FDI train 2 fail!\n");
  2203. DRM_DEBUG_KMS("FDI train done\n");
  2204. }
  2205. static const int snb_b_fdi_train_param[] = {
  2206. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2207. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2208. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2209. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2210. };
  2211. /* The FDI link training functions for SNB/Cougarpoint. */
  2212. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2213. {
  2214. struct drm_device *dev = crtc->dev;
  2215. struct drm_i915_private *dev_priv = dev->dev_private;
  2216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2217. int pipe = intel_crtc->pipe;
  2218. u32 reg, temp, i, retry;
  2219. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2220. for train result */
  2221. reg = FDI_RX_IMR(pipe);
  2222. temp = I915_READ(reg);
  2223. temp &= ~FDI_RX_SYMBOL_LOCK;
  2224. temp &= ~FDI_RX_BIT_LOCK;
  2225. I915_WRITE(reg, temp);
  2226. POSTING_READ(reg);
  2227. udelay(150);
  2228. /* enable CPU FDI TX and PCH FDI RX */
  2229. reg = FDI_TX_CTL(pipe);
  2230. temp = I915_READ(reg);
  2231. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2232. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2233. temp &= ~FDI_LINK_TRAIN_NONE;
  2234. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2235. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2236. /* SNB-B */
  2237. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2238. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2239. I915_WRITE(FDI_RX_MISC(pipe),
  2240. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2241. reg = FDI_RX_CTL(pipe);
  2242. temp = I915_READ(reg);
  2243. if (HAS_PCH_CPT(dev)) {
  2244. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2245. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2246. } else {
  2247. temp &= ~FDI_LINK_TRAIN_NONE;
  2248. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2249. }
  2250. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2251. POSTING_READ(reg);
  2252. udelay(150);
  2253. for (i = 0; i < 4; i++) {
  2254. reg = FDI_TX_CTL(pipe);
  2255. temp = I915_READ(reg);
  2256. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2257. temp |= snb_b_fdi_train_param[i];
  2258. I915_WRITE(reg, temp);
  2259. POSTING_READ(reg);
  2260. udelay(500);
  2261. for (retry = 0; retry < 5; retry++) {
  2262. reg = FDI_RX_IIR(pipe);
  2263. temp = I915_READ(reg);
  2264. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2265. if (temp & FDI_RX_BIT_LOCK) {
  2266. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2267. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2268. break;
  2269. }
  2270. udelay(50);
  2271. }
  2272. if (retry < 5)
  2273. break;
  2274. }
  2275. if (i == 4)
  2276. DRM_ERROR("FDI train 1 fail!\n");
  2277. /* Train 2 */
  2278. reg = FDI_TX_CTL(pipe);
  2279. temp = I915_READ(reg);
  2280. temp &= ~FDI_LINK_TRAIN_NONE;
  2281. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2282. if (IS_GEN6(dev)) {
  2283. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2284. /* SNB-B */
  2285. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2286. }
  2287. I915_WRITE(reg, temp);
  2288. reg = FDI_RX_CTL(pipe);
  2289. temp = I915_READ(reg);
  2290. if (HAS_PCH_CPT(dev)) {
  2291. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2292. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2293. } else {
  2294. temp &= ~FDI_LINK_TRAIN_NONE;
  2295. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2296. }
  2297. I915_WRITE(reg, temp);
  2298. POSTING_READ(reg);
  2299. udelay(150);
  2300. for (i = 0; i < 4; i++) {
  2301. reg = FDI_TX_CTL(pipe);
  2302. temp = I915_READ(reg);
  2303. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2304. temp |= snb_b_fdi_train_param[i];
  2305. I915_WRITE(reg, temp);
  2306. POSTING_READ(reg);
  2307. udelay(500);
  2308. for (retry = 0; retry < 5; retry++) {
  2309. reg = FDI_RX_IIR(pipe);
  2310. temp = I915_READ(reg);
  2311. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2312. if (temp & FDI_RX_SYMBOL_LOCK) {
  2313. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2314. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2315. break;
  2316. }
  2317. udelay(50);
  2318. }
  2319. if (retry < 5)
  2320. break;
  2321. }
  2322. if (i == 4)
  2323. DRM_ERROR("FDI train 2 fail!\n");
  2324. DRM_DEBUG_KMS("FDI train done.\n");
  2325. }
  2326. /* Manual link training for Ivy Bridge A0 parts */
  2327. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2328. {
  2329. struct drm_device *dev = crtc->dev;
  2330. struct drm_i915_private *dev_priv = dev->dev_private;
  2331. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2332. int pipe = intel_crtc->pipe;
  2333. u32 reg, temp, i, j;
  2334. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2335. for train result */
  2336. reg = FDI_RX_IMR(pipe);
  2337. temp = I915_READ(reg);
  2338. temp &= ~FDI_RX_SYMBOL_LOCK;
  2339. temp &= ~FDI_RX_BIT_LOCK;
  2340. I915_WRITE(reg, temp);
  2341. POSTING_READ(reg);
  2342. udelay(150);
  2343. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2344. I915_READ(FDI_RX_IIR(pipe)));
  2345. /* Try each vswing and preemphasis setting twice before moving on */
  2346. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2347. /* disable first in case we need to retry */
  2348. reg = FDI_TX_CTL(pipe);
  2349. temp = I915_READ(reg);
  2350. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2351. temp &= ~FDI_TX_ENABLE;
  2352. I915_WRITE(reg, temp);
  2353. reg = FDI_RX_CTL(pipe);
  2354. temp = I915_READ(reg);
  2355. temp &= ~FDI_LINK_TRAIN_AUTO;
  2356. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2357. temp &= ~FDI_RX_ENABLE;
  2358. I915_WRITE(reg, temp);
  2359. /* enable CPU FDI TX and PCH FDI RX */
  2360. reg = FDI_TX_CTL(pipe);
  2361. temp = I915_READ(reg);
  2362. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2363. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2364. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2365. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2366. temp |= snb_b_fdi_train_param[j/2];
  2367. temp |= FDI_COMPOSITE_SYNC;
  2368. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2369. I915_WRITE(FDI_RX_MISC(pipe),
  2370. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2371. reg = FDI_RX_CTL(pipe);
  2372. temp = I915_READ(reg);
  2373. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2374. temp |= FDI_COMPOSITE_SYNC;
  2375. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2376. POSTING_READ(reg);
  2377. udelay(1); /* should be 0.5us */
  2378. for (i = 0; i < 4; i++) {
  2379. reg = FDI_RX_IIR(pipe);
  2380. temp = I915_READ(reg);
  2381. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2382. if (temp & FDI_RX_BIT_LOCK ||
  2383. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2384. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2385. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2386. i);
  2387. break;
  2388. }
  2389. udelay(1); /* should be 0.5us */
  2390. }
  2391. if (i == 4) {
  2392. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2393. continue;
  2394. }
  2395. /* Train 2 */
  2396. reg = FDI_TX_CTL(pipe);
  2397. temp = I915_READ(reg);
  2398. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2399. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2400. I915_WRITE(reg, temp);
  2401. reg = FDI_RX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2404. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2405. I915_WRITE(reg, temp);
  2406. POSTING_READ(reg);
  2407. udelay(2); /* should be 1.5us */
  2408. for (i = 0; i < 4; i++) {
  2409. reg = FDI_RX_IIR(pipe);
  2410. temp = I915_READ(reg);
  2411. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2412. if (temp & FDI_RX_SYMBOL_LOCK ||
  2413. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2414. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2415. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2416. i);
  2417. goto train_done;
  2418. }
  2419. udelay(2); /* should be 1.5us */
  2420. }
  2421. if (i == 4)
  2422. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2423. }
  2424. train_done:
  2425. DRM_DEBUG_KMS("FDI train done.\n");
  2426. }
  2427. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2428. {
  2429. struct drm_device *dev = intel_crtc->base.dev;
  2430. struct drm_i915_private *dev_priv = dev->dev_private;
  2431. int pipe = intel_crtc->pipe;
  2432. u32 reg, temp;
  2433. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2434. reg = FDI_RX_CTL(pipe);
  2435. temp = I915_READ(reg);
  2436. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2437. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2438. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2439. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2440. POSTING_READ(reg);
  2441. udelay(200);
  2442. /* Switch from Rawclk to PCDclk */
  2443. temp = I915_READ(reg);
  2444. I915_WRITE(reg, temp | FDI_PCDCLK);
  2445. POSTING_READ(reg);
  2446. udelay(200);
  2447. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2448. reg = FDI_TX_CTL(pipe);
  2449. temp = I915_READ(reg);
  2450. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2451. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2452. POSTING_READ(reg);
  2453. udelay(100);
  2454. }
  2455. }
  2456. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2457. {
  2458. struct drm_device *dev = intel_crtc->base.dev;
  2459. struct drm_i915_private *dev_priv = dev->dev_private;
  2460. int pipe = intel_crtc->pipe;
  2461. u32 reg, temp;
  2462. /* Switch from PCDclk to Rawclk */
  2463. reg = FDI_RX_CTL(pipe);
  2464. temp = I915_READ(reg);
  2465. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2466. /* Disable CPU FDI TX PLL */
  2467. reg = FDI_TX_CTL(pipe);
  2468. temp = I915_READ(reg);
  2469. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2470. POSTING_READ(reg);
  2471. udelay(100);
  2472. reg = FDI_RX_CTL(pipe);
  2473. temp = I915_READ(reg);
  2474. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2475. /* Wait for the clocks to turn off. */
  2476. POSTING_READ(reg);
  2477. udelay(100);
  2478. }
  2479. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2480. {
  2481. struct drm_device *dev = crtc->dev;
  2482. struct drm_i915_private *dev_priv = dev->dev_private;
  2483. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2484. int pipe = intel_crtc->pipe;
  2485. u32 reg, temp;
  2486. /* disable CPU FDI tx and PCH FDI rx */
  2487. reg = FDI_TX_CTL(pipe);
  2488. temp = I915_READ(reg);
  2489. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2490. POSTING_READ(reg);
  2491. reg = FDI_RX_CTL(pipe);
  2492. temp = I915_READ(reg);
  2493. temp &= ~(0x7 << 16);
  2494. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2495. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2496. POSTING_READ(reg);
  2497. udelay(100);
  2498. /* Ironlake workaround, disable clock pointer after downing FDI */
  2499. if (HAS_PCH_IBX(dev)) {
  2500. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2501. }
  2502. /* still set train pattern 1 */
  2503. reg = FDI_TX_CTL(pipe);
  2504. temp = I915_READ(reg);
  2505. temp &= ~FDI_LINK_TRAIN_NONE;
  2506. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2507. I915_WRITE(reg, temp);
  2508. reg = FDI_RX_CTL(pipe);
  2509. temp = I915_READ(reg);
  2510. if (HAS_PCH_CPT(dev)) {
  2511. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2512. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2513. } else {
  2514. temp &= ~FDI_LINK_TRAIN_NONE;
  2515. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2516. }
  2517. /* BPC in FDI rx is consistent with that in PIPECONF */
  2518. temp &= ~(0x07 << 16);
  2519. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2520. I915_WRITE(reg, temp);
  2521. POSTING_READ(reg);
  2522. udelay(100);
  2523. }
  2524. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2525. {
  2526. struct drm_device *dev = crtc->dev;
  2527. struct drm_i915_private *dev_priv = dev->dev_private;
  2528. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2529. unsigned long flags;
  2530. bool pending;
  2531. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2532. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2533. return false;
  2534. spin_lock_irqsave(&dev->event_lock, flags);
  2535. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2536. spin_unlock_irqrestore(&dev->event_lock, flags);
  2537. return pending;
  2538. }
  2539. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2540. {
  2541. struct drm_device *dev = crtc->dev;
  2542. struct drm_i915_private *dev_priv = dev->dev_private;
  2543. if (crtc->fb == NULL)
  2544. return;
  2545. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2546. wait_event(dev_priv->pending_flip_queue,
  2547. !intel_crtc_has_pending_flip(crtc));
  2548. mutex_lock(&dev->struct_mutex);
  2549. intel_finish_fb(crtc->fb);
  2550. mutex_unlock(&dev->struct_mutex);
  2551. }
  2552. /* Program iCLKIP clock to the desired frequency */
  2553. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2554. {
  2555. struct drm_device *dev = crtc->dev;
  2556. struct drm_i915_private *dev_priv = dev->dev_private;
  2557. int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2558. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2559. u32 temp;
  2560. mutex_lock(&dev_priv->dpio_lock);
  2561. /* It is necessary to ungate the pixclk gate prior to programming
  2562. * the divisors, and gate it back when it is done.
  2563. */
  2564. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2565. /* Disable SSCCTL */
  2566. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2567. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2568. SBI_SSCCTL_DISABLE,
  2569. SBI_ICLK);
  2570. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2571. if (clock == 20000) {
  2572. auxdiv = 1;
  2573. divsel = 0x41;
  2574. phaseinc = 0x20;
  2575. } else {
  2576. /* The iCLK virtual clock root frequency is in MHz,
  2577. * but the adjusted_mode->crtc_clock in in KHz. To get the
  2578. * divisors, it is necessary to divide one by another, so we
  2579. * convert the virtual clock precision to KHz here for higher
  2580. * precision.
  2581. */
  2582. u32 iclk_virtual_root_freq = 172800 * 1000;
  2583. u32 iclk_pi_range = 64;
  2584. u32 desired_divisor, msb_divisor_value, pi_value;
  2585. desired_divisor = (iclk_virtual_root_freq / clock);
  2586. msb_divisor_value = desired_divisor / iclk_pi_range;
  2587. pi_value = desired_divisor % iclk_pi_range;
  2588. auxdiv = 0;
  2589. divsel = msb_divisor_value - 2;
  2590. phaseinc = pi_value;
  2591. }
  2592. /* This should not happen with any sane values */
  2593. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2594. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2595. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2596. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2597. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2598. clock,
  2599. auxdiv,
  2600. divsel,
  2601. phasedir,
  2602. phaseinc);
  2603. /* Program SSCDIVINTPHASE6 */
  2604. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2605. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2606. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2607. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2608. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2609. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2610. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2611. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2612. /* Program SSCAUXDIV */
  2613. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2614. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2615. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2616. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2617. /* Enable modulator and associated divider */
  2618. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2619. temp &= ~SBI_SSCCTL_DISABLE;
  2620. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2621. /* Wait for initialization time */
  2622. udelay(24);
  2623. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2624. mutex_unlock(&dev_priv->dpio_lock);
  2625. }
  2626. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2627. enum pipe pch_transcoder)
  2628. {
  2629. struct drm_device *dev = crtc->base.dev;
  2630. struct drm_i915_private *dev_priv = dev->dev_private;
  2631. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2632. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2633. I915_READ(HTOTAL(cpu_transcoder)));
  2634. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2635. I915_READ(HBLANK(cpu_transcoder)));
  2636. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2637. I915_READ(HSYNC(cpu_transcoder)));
  2638. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2639. I915_READ(VTOTAL(cpu_transcoder)));
  2640. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2641. I915_READ(VBLANK(cpu_transcoder)));
  2642. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2643. I915_READ(VSYNC(cpu_transcoder)));
  2644. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2645. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2646. }
  2647. /*
  2648. * Enable PCH resources required for PCH ports:
  2649. * - PCH PLLs
  2650. * - FDI training & RX/TX
  2651. * - update transcoder timings
  2652. * - DP transcoding bits
  2653. * - transcoder
  2654. */
  2655. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2656. {
  2657. struct drm_device *dev = crtc->dev;
  2658. struct drm_i915_private *dev_priv = dev->dev_private;
  2659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2660. int pipe = intel_crtc->pipe;
  2661. u32 reg, temp;
  2662. assert_pch_transcoder_disabled(dev_priv, pipe);
  2663. /* Write the TU size bits before fdi link training, so that error
  2664. * detection works. */
  2665. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2666. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2667. /* For PCH output, training FDI link */
  2668. dev_priv->display.fdi_link_train(crtc);
  2669. /* We need to program the right clock selection before writing the pixel
  2670. * mutliplier into the DPLL. */
  2671. if (HAS_PCH_CPT(dev)) {
  2672. u32 sel;
  2673. temp = I915_READ(PCH_DPLL_SEL);
  2674. temp |= TRANS_DPLL_ENABLE(pipe);
  2675. sel = TRANS_DPLLB_SEL(pipe);
  2676. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2677. temp |= sel;
  2678. else
  2679. temp &= ~sel;
  2680. I915_WRITE(PCH_DPLL_SEL, temp);
  2681. }
  2682. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2683. * transcoder, and we actually should do this to not upset any PCH
  2684. * transcoder that already use the clock when we share it.
  2685. *
  2686. * Note that enable_shared_dpll tries to do the right thing, but
  2687. * get_shared_dpll unconditionally resets the pll - we need that to have
  2688. * the right LVDS enable sequence. */
  2689. ironlake_enable_shared_dpll(intel_crtc);
  2690. /* set transcoder timing, panel must allow it */
  2691. assert_panel_unlocked(dev_priv, pipe);
  2692. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2693. intel_fdi_normal_train(crtc);
  2694. /* For PCH DP, enable TRANS_DP_CTL */
  2695. if (HAS_PCH_CPT(dev) &&
  2696. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2697. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2698. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2699. reg = TRANS_DP_CTL(pipe);
  2700. temp = I915_READ(reg);
  2701. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2702. TRANS_DP_SYNC_MASK |
  2703. TRANS_DP_BPC_MASK);
  2704. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2705. TRANS_DP_ENH_FRAMING);
  2706. temp |= bpc << 9; /* same format but at 11:9 */
  2707. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2708. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2709. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2710. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2711. switch (intel_trans_dp_port_sel(crtc)) {
  2712. case PCH_DP_B:
  2713. temp |= TRANS_DP_PORT_SEL_B;
  2714. break;
  2715. case PCH_DP_C:
  2716. temp |= TRANS_DP_PORT_SEL_C;
  2717. break;
  2718. case PCH_DP_D:
  2719. temp |= TRANS_DP_PORT_SEL_D;
  2720. break;
  2721. default:
  2722. BUG();
  2723. }
  2724. I915_WRITE(reg, temp);
  2725. }
  2726. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2727. }
  2728. static void lpt_pch_enable(struct drm_crtc *crtc)
  2729. {
  2730. struct drm_device *dev = crtc->dev;
  2731. struct drm_i915_private *dev_priv = dev->dev_private;
  2732. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2733. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2734. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2735. lpt_program_iclkip(crtc);
  2736. /* Set transcoder timing. */
  2737. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2738. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2739. }
  2740. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2741. {
  2742. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2743. if (pll == NULL)
  2744. return;
  2745. if (pll->refcount == 0) {
  2746. WARN(1, "bad %s refcount\n", pll->name);
  2747. return;
  2748. }
  2749. if (--pll->refcount == 0) {
  2750. WARN_ON(pll->on);
  2751. WARN_ON(pll->active);
  2752. }
  2753. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2754. }
  2755. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2756. {
  2757. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2758. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2759. enum intel_dpll_id i;
  2760. if (pll) {
  2761. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2762. crtc->base.base.id, pll->name);
  2763. intel_put_shared_dpll(crtc);
  2764. }
  2765. if (HAS_PCH_IBX(dev_priv->dev)) {
  2766. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2767. i = (enum intel_dpll_id) crtc->pipe;
  2768. pll = &dev_priv->shared_dplls[i];
  2769. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2770. crtc->base.base.id, pll->name);
  2771. goto found;
  2772. }
  2773. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2774. pll = &dev_priv->shared_dplls[i];
  2775. /* Only want to check enabled timings first */
  2776. if (pll->refcount == 0)
  2777. continue;
  2778. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2779. sizeof(pll->hw_state)) == 0) {
  2780. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2781. crtc->base.base.id,
  2782. pll->name, pll->refcount, pll->active);
  2783. goto found;
  2784. }
  2785. }
  2786. /* Ok no matching timings, maybe there's a free one? */
  2787. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2788. pll = &dev_priv->shared_dplls[i];
  2789. if (pll->refcount == 0) {
  2790. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2791. crtc->base.base.id, pll->name);
  2792. goto found;
  2793. }
  2794. }
  2795. return NULL;
  2796. found:
  2797. crtc->config.shared_dpll = i;
  2798. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2799. pipe_name(crtc->pipe));
  2800. if (pll->active == 0) {
  2801. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2802. sizeof(pll->hw_state));
  2803. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2804. WARN_ON(pll->on);
  2805. assert_shared_dpll_disabled(dev_priv, pll);
  2806. pll->mode_set(dev_priv, pll);
  2807. }
  2808. pll->refcount++;
  2809. return pll;
  2810. }
  2811. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2812. {
  2813. struct drm_i915_private *dev_priv = dev->dev_private;
  2814. int dslreg = PIPEDSL(pipe);
  2815. u32 temp;
  2816. temp = I915_READ(dslreg);
  2817. udelay(500);
  2818. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2819. if (wait_for(I915_READ(dslreg) != temp, 5))
  2820. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2821. }
  2822. }
  2823. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2824. {
  2825. struct drm_device *dev = crtc->base.dev;
  2826. struct drm_i915_private *dev_priv = dev->dev_private;
  2827. int pipe = crtc->pipe;
  2828. if (crtc->config.pch_pfit.enabled) {
  2829. /* Force use of hard-coded filter coefficients
  2830. * as some pre-programmed values are broken,
  2831. * e.g. x201.
  2832. */
  2833. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2834. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2835. PF_PIPE_SEL_IVB(pipe));
  2836. else
  2837. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2838. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2839. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2840. }
  2841. }
  2842. static void intel_enable_planes(struct drm_crtc *crtc)
  2843. {
  2844. struct drm_device *dev = crtc->dev;
  2845. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2846. struct intel_plane *intel_plane;
  2847. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2848. if (intel_plane->pipe == pipe)
  2849. intel_plane_restore(&intel_plane->base);
  2850. }
  2851. static void intel_disable_planes(struct drm_crtc *crtc)
  2852. {
  2853. struct drm_device *dev = crtc->dev;
  2854. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2855. struct intel_plane *intel_plane;
  2856. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2857. if (intel_plane->pipe == pipe)
  2858. intel_plane_disable(&intel_plane->base);
  2859. }
  2860. void hsw_enable_ips(struct intel_crtc *crtc)
  2861. {
  2862. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2863. if (!crtc->config.ips_enabled)
  2864. return;
  2865. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2866. * We guarantee that the plane is enabled by calling intel_enable_ips
  2867. * only after intel_enable_plane. And intel_enable_plane already waits
  2868. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2869. assert_plane_enabled(dev_priv, crtc->plane);
  2870. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2871. /* The bit only becomes 1 in the next vblank, so this wait here is
  2872. * essentially intel_wait_for_vblank. If we don't have this and don't
  2873. * wait for vblanks until the end of crtc_enable, then the HW state
  2874. * readout code will complain that the expected IPS_CTL value is not the
  2875. * one we read. */
  2876. if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
  2877. DRM_ERROR("Timed out waiting for IPS enable\n");
  2878. }
  2879. void hsw_disable_ips(struct intel_crtc *crtc)
  2880. {
  2881. struct drm_device *dev = crtc->base.dev;
  2882. struct drm_i915_private *dev_priv = dev->dev_private;
  2883. if (!crtc->config.ips_enabled)
  2884. return;
  2885. assert_plane_enabled(dev_priv, crtc->plane);
  2886. I915_WRITE(IPS_CTL, 0);
  2887. POSTING_READ(IPS_CTL);
  2888. /* We need to wait for a vblank before we can disable the plane. */
  2889. intel_wait_for_vblank(dev, crtc->pipe);
  2890. }
  2891. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2892. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  2893. {
  2894. struct drm_device *dev = crtc->dev;
  2895. struct drm_i915_private *dev_priv = dev->dev_private;
  2896. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2897. enum pipe pipe = intel_crtc->pipe;
  2898. int palreg = PALETTE(pipe);
  2899. int i;
  2900. bool reenable_ips = false;
  2901. /* The clocks have to be on to load the palette. */
  2902. if (!crtc->enabled || !intel_crtc->active)
  2903. return;
  2904. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  2905. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2906. assert_dsi_pll_enabled(dev_priv);
  2907. else
  2908. assert_pll_enabled(dev_priv, pipe);
  2909. }
  2910. /* use legacy palette for Ironlake */
  2911. if (HAS_PCH_SPLIT(dev))
  2912. palreg = LGC_PALETTE(pipe);
  2913. /* Workaround : Do not read or write the pipe palette/gamma data while
  2914. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  2915. */
  2916. if (intel_crtc->config.ips_enabled &&
  2917. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  2918. GAMMA_MODE_MODE_SPLIT)) {
  2919. hsw_disable_ips(intel_crtc);
  2920. reenable_ips = true;
  2921. }
  2922. for (i = 0; i < 256; i++) {
  2923. I915_WRITE(palreg + 4 * i,
  2924. (intel_crtc->lut_r[i] << 16) |
  2925. (intel_crtc->lut_g[i] << 8) |
  2926. intel_crtc->lut_b[i]);
  2927. }
  2928. if (reenable_ips)
  2929. hsw_enable_ips(intel_crtc);
  2930. }
  2931. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2932. {
  2933. struct drm_device *dev = crtc->dev;
  2934. struct drm_i915_private *dev_priv = dev->dev_private;
  2935. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2936. struct intel_encoder *encoder;
  2937. int pipe = intel_crtc->pipe;
  2938. int plane = intel_crtc->plane;
  2939. WARN_ON(!crtc->enabled);
  2940. if (intel_crtc->active)
  2941. return;
  2942. intel_crtc->active = true;
  2943. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2944. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2945. for_each_encoder_on_crtc(dev, crtc, encoder)
  2946. if (encoder->pre_enable)
  2947. encoder->pre_enable(encoder);
  2948. if (intel_crtc->config.has_pch_encoder) {
  2949. /* Note: FDI PLL enabling _must_ be done before we enable the
  2950. * cpu pipes, hence this is separate from all the other fdi/pch
  2951. * enabling. */
  2952. ironlake_fdi_pll_enable(intel_crtc);
  2953. } else {
  2954. assert_fdi_tx_disabled(dev_priv, pipe);
  2955. assert_fdi_rx_disabled(dev_priv, pipe);
  2956. }
  2957. ironlake_pfit_enable(intel_crtc);
  2958. /*
  2959. * On ILK+ LUT must be loaded before the pipe is running but with
  2960. * clocks enabled
  2961. */
  2962. intel_crtc_load_lut(crtc);
  2963. intel_update_watermarks(crtc);
  2964. intel_enable_pipe(dev_priv, pipe,
  2965. intel_crtc->config.has_pch_encoder, false);
  2966. intel_enable_primary_plane(dev_priv, plane, pipe);
  2967. intel_enable_planes(crtc);
  2968. intel_crtc_update_cursor(crtc, true);
  2969. if (intel_crtc->config.has_pch_encoder)
  2970. ironlake_pch_enable(crtc);
  2971. mutex_lock(&dev->struct_mutex);
  2972. intel_update_fbc(dev);
  2973. mutex_unlock(&dev->struct_mutex);
  2974. for_each_encoder_on_crtc(dev, crtc, encoder)
  2975. encoder->enable(encoder);
  2976. if (HAS_PCH_CPT(dev))
  2977. cpt_verify_modeset(dev, intel_crtc->pipe);
  2978. /*
  2979. * There seems to be a race in PCH platform hw (at least on some
  2980. * outputs) where an enabled pipe still completes any pageflip right
  2981. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2982. * as the first vblank happend, everything works as expected. Hence just
  2983. * wait for one vblank before returning to avoid strange things
  2984. * happening.
  2985. */
  2986. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2987. }
  2988. /* IPS only exists on ULT machines and is tied to pipe A. */
  2989. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2990. {
  2991. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2992. }
  2993. static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
  2994. {
  2995. struct drm_device *dev = crtc->dev;
  2996. struct drm_i915_private *dev_priv = dev->dev_private;
  2997. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2998. int pipe = intel_crtc->pipe;
  2999. int plane = intel_crtc->plane;
  3000. intel_enable_primary_plane(dev_priv, plane, pipe);
  3001. intel_enable_planes(crtc);
  3002. intel_crtc_update_cursor(crtc, true);
  3003. hsw_enable_ips(intel_crtc);
  3004. mutex_lock(&dev->struct_mutex);
  3005. intel_update_fbc(dev);
  3006. mutex_unlock(&dev->struct_mutex);
  3007. }
  3008. static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
  3009. {
  3010. struct drm_device *dev = crtc->dev;
  3011. struct drm_i915_private *dev_priv = dev->dev_private;
  3012. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3013. int pipe = intel_crtc->pipe;
  3014. int plane = intel_crtc->plane;
  3015. intel_crtc_wait_for_pending_flips(crtc);
  3016. drm_vblank_off(dev, pipe);
  3017. /* FBC must be disabled before disabling the plane on HSW. */
  3018. if (dev_priv->fbc.plane == plane)
  3019. intel_disable_fbc(dev);
  3020. hsw_disable_ips(intel_crtc);
  3021. intel_crtc_update_cursor(crtc, false);
  3022. intel_disable_planes(crtc);
  3023. intel_disable_primary_plane(dev_priv, plane, pipe);
  3024. }
  3025. /*
  3026. * This implements the workaround described in the "notes" section of the mode
  3027. * set sequence documentation. When going from no pipes or single pipe to
  3028. * multiple pipes, and planes are enabled after the pipe, we need to wait at
  3029. * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  3030. */
  3031. static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
  3032. {
  3033. struct drm_device *dev = crtc->base.dev;
  3034. struct intel_crtc *crtc_it, *other_active_crtc = NULL;
  3035. /* We want to get the other_active_crtc only if there's only 1 other
  3036. * active crtc. */
  3037. list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
  3038. if (!crtc_it->active || crtc_it == crtc)
  3039. continue;
  3040. if (other_active_crtc)
  3041. return;
  3042. other_active_crtc = crtc_it;
  3043. }
  3044. if (!other_active_crtc)
  3045. return;
  3046. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3047. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3048. }
  3049. static void haswell_crtc_enable(struct drm_crtc *crtc)
  3050. {
  3051. struct drm_device *dev = crtc->dev;
  3052. struct drm_i915_private *dev_priv = dev->dev_private;
  3053. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3054. struct intel_encoder *encoder;
  3055. int pipe = intel_crtc->pipe;
  3056. WARN_ON(!crtc->enabled);
  3057. if (intel_crtc->active)
  3058. return;
  3059. intel_crtc->active = true;
  3060. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  3061. if (intel_crtc->config.has_pch_encoder)
  3062. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3063. if (intel_crtc->config.has_pch_encoder)
  3064. dev_priv->display.fdi_link_train(crtc);
  3065. for_each_encoder_on_crtc(dev, crtc, encoder)
  3066. if (encoder->pre_enable)
  3067. encoder->pre_enable(encoder);
  3068. intel_ddi_enable_pipe_clock(intel_crtc);
  3069. ironlake_pfit_enable(intel_crtc);
  3070. /*
  3071. * On ILK+ LUT must be loaded before the pipe is running but with
  3072. * clocks enabled
  3073. */
  3074. intel_crtc_load_lut(crtc);
  3075. intel_ddi_set_pipe_settings(crtc);
  3076. intel_ddi_enable_transcoder_func(crtc);
  3077. intel_update_watermarks(crtc);
  3078. intel_enable_pipe(dev_priv, pipe,
  3079. intel_crtc->config.has_pch_encoder, false);
  3080. if (intel_crtc->config.has_pch_encoder)
  3081. lpt_pch_enable(crtc);
  3082. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3083. encoder->enable(encoder);
  3084. intel_opregion_notify_encoder(encoder, true);
  3085. }
  3086. /* If we change the relative order between pipe/planes enabling, we need
  3087. * to change the workaround. */
  3088. haswell_mode_set_planes_workaround(intel_crtc);
  3089. haswell_crtc_enable_planes(crtc);
  3090. /*
  3091. * There seems to be a race in PCH platform hw (at least on some
  3092. * outputs) where an enabled pipe still completes any pageflip right
  3093. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3094. * as the first vblank happend, everything works as expected. Hence just
  3095. * wait for one vblank before returning to avoid strange things
  3096. * happening.
  3097. */
  3098. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3099. }
  3100. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  3101. {
  3102. struct drm_device *dev = crtc->base.dev;
  3103. struct drm_i915_private *dev_priv = dev->dev_private;
  3104. int pipe = crtc->pipe;
  3105. /* To avoid upsetting the power well on haswell only disable the pfit if
  3106. * it's in use. The hw state code will make sure we get this right. */
  3107. if (crtc->config.pch_pfit.enabled) {
  3108. I915_WRITE(PF_CTL(pipe), 0);
  3109. I915_WRITE(PF_WIN_POS(pipe), 0);
  3110. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3111. }
  3112. }
  3113. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3114. {
  3115. struct drm_device *dev = crtc->dev;
  3116. struct drm_i915_private *dev_priv = dev->dev_private;
  3117. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3118. struct intel_encoder *encoder;
  3119. int pipe = intel_crtc->pipe;
  3120. int plane = intel_crtc->plane;
  3121. u32 reg, temp;
  3122. if (!intel_crtc->active)
  3123. return;
  3124. for_each_encoder_on_crtc(dev, crtc, encoder)
  3125. encoder->disable(encoder);
  3126. intel_crtc_wait_for_pending_flips(crtc);
  3127. drm_vblank_off(dev, pipe);
  3128. if (dev_priv->fbc.plane == plane)
  3129. intel_disable_fbc(dev);
  3130. intel_crtc_update_cursor(crtc, false);
  3131. intel_disable_planes(crtc);
  3132. intel_disable_primary_plane(dev_priv, plane, pipe);
  3133. if (intel_crtc->config.has_pch_encoder)
  3134. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3135. intel_disable_pipe(dev_priv, pipe);
  3136. ironlake_pfit_disable(intel_crtc);
  3137. for_each_encoder_on_crtc(dev, crtc, encoder)
  3138. if (encoder->post_disable)
  3139. encoder->post_disable(encoder);
  3140. if (intel_crtc->config.has_pch_encoder) {
  3141. ironlake_fdi_disable(crtc);
  3142. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3143. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3144. if (HAS_PCH_CPT(dev)) {
  3145. /* disable TRANS_DP_CTL */
  3146. reg = TRANS_DP_CTL(pipe);
  3147. temp = I915_READ(reg);
  3148. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3149. TRANS_DP_PORT_SEL_MASK);
  3150. temp |= TRANS_DP_PORT_SEL_NONE;
  3151. I915_WRITE(reg, temp);
  3152. /* disable DPLL_SEL */
  3153. temp = I915_READ(PCH_DPLL_SEL);
  3154. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3155. I915_WRITE(PCH_DPLL_SEL, temp);
  3156. }
  3157. /* disable PCH DPLL */
  3158. intel_disable_shared_dpll(intel_crtc);
  3159. ironlake_fdi_pll_disable(intel_crtc);
  3160. }
  3161. intel_crtc->active = false;
  3162. intel_update_watermarks(crtc);
  3163. mutex_lock(&dev->struct_mutex);
  3164. intel_update_fbc(dev);
  3165. mutex_unlock(&dev->struct_mutex);
  3166. }
  3167. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3168. {
  3169. struct drm_device *dev = crtc->dev;
  3170. struct drm_i915_private *dev_priv = dev->dev_private;
  3171. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3172. struct intel_encoder *encoder;
  3173. int pipe = intel_crtc->pipe;
  3174. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3175. if (!intel_crtc->active)
  3176. return;
  3177. haswell_crtc_disable_planes(crtc);
  3178. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3179. intel_opregion_notify_encoder(encoder, false);
  3180. encoder->disable(encoder);
  3181. }
  3182. if (intel_crtc->config.has_pch_encoder)
  3183. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3184. intel_disable_pipe(dev_priv, pipe);
  3185. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3186. ironlake_pfit_disable(intel_crtc);
  3187. intel_ddi_disable_pipe_clock(intel_crtc);
  3188. for_each_encoder_on_crtc(dev, crtc, encoder)
  3189. if (encoder->post_disable)
  3190. encoder->post_disable(encoder);
  3191. if (intel_crtc->config.has_pch_encoder) {
  3192. lpt_disable_pch_transcoder(dev_priv);
  3193. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3194. intel_ddi_fdi_disable(crtc);
  3195. }
  3196. intel_crtc->active = false;
  3197. intel_update_watermarks(crtc);
  3198. mutex_lock(&dev->struct_mutex);
  3199. intel_update_fbc(dev);
  3200. mutex_unlock(&dev->struct_mutex);
  3201. }
  3202. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3203. {
  3204. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3205. intel_put_shared_dpll(intel_crtc);
  3206. }
  3207. static void haswell_crtc_off(struct drm_crtc *crtc)
  3208. {
  3209. intel_ddi_put_crtc_pll(crtc);
  3210. }
  3211. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3212. {
  3213. if (!enable && intel_crtc->overlay) {
  3214. struct drm_device *dev = intel_crtc->base.dev;
  3215. struct drm_i915_private *dev_priv = dev->dev_private;
  3216. mutex_lock(&dev->struct_mutex);
  3217. dev_priv->mm.interruptible = false;
  3218. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3219. dev_priv->mm.interruptible = true;
  3220. mutex_unlock(&dev->struct_mutex);
  3221. }
  3222. /* Let userspace switch the overlay on again. In most cases userspace
  3223. * has to recompute where to put it anyway.
  3224. */
  3225. }
  3226. /**
  3227. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3228. * cursor plane briefly if not already running after enabling the display
  3229. * plane.
  3230. * This workaround avoids occasional blank screens when self refresh is
  3231. * enabled.
  3232. */
  3233. static void
  3234. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3235. {
  3236. u32 cntl = I915_READ(CURCNTR(pipe));
  3237. if ((cntl & CURSOR_MODE) == 0) {
  3238. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3239. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3240. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3241. intel_wait_for_vblank(dev_priv->dev, pipe);
  3242. I915_WRITE(CURCNTR(pipe), cntl);
  3243. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3244. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3245. }
  3246. }
  3247. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3248. {
  3249. struct drm_device *dev = crtc->base.dev;
  3250. struct drm_i915_private *dev_priv = dev->dev_private;
  3251. struct intel_crtc_config *pipe_config = &crtc->config;
  3252. if (!crtc->config.gmch_pfit.control)
  3253. return;
  3254. /*
  3255. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3256. * according to register description and PRM.
  3257. */
  3258. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3259. assert_pipe_disabled(dev_priv, crtc->pipe);
  3260. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3261. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3262. /* Border color in case we don't scale up to the full screen. Black by
  3263. * default, change to something else for debugging. */
  3264. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3265. }
  3266. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3267. {
  3268. struct drm_device *dev = crtc->dev;
  3269. struct drm_i915_private *dev_priv = dev->dev_private;
  3270. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3271. struct intel_encoder *encoder;
  3272. int pipe = intel_crtc->pipe;
  3273. int plane = intel_crtc->plane;
  3274. bool is_dsi;
  3275. WARN_ON(!crtc->enabled);
  3276. if (intel_crtc->active)
  3277. return;
  3278. intel_crtc->active = true;
  3279. for_each_encoder_on_crtc(dev, crtc, encoder)
  3280. if (encoder->pre_pll_enable)
  3281. encoder->pre_pll_enable(encoder);
  3282. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3283. if (!is_dsi)
  3284. vlv_enable_pll(intel_crtc);
  3285. for_each_encoder_on_crtc(dev, crtc, encoder)
  3286. if (encoder->pre_enable)
  3287. encoder->pre_enable(encoder);
  3288. i9xx_pfit_enable(intel_crtc);
  3289. intel_crtc_load_lut(crtc);
  3290. intel_update_watermarks(crtc);
  3291. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3292. intel_enable_primary_plane(dev_priv, plane, pipe);
  3293. intel_enable_planes(crtc);
  3294. intel_crtc_update_cursor(crtc, true);
  3295. intel_update_fbc(dev);
  3296. for_each_encoder_on_crtc(dev, crtc, encoder)
  3297. encoder->enable(encoder);
  3298. }
  3299. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3300. {
  3301. struct drm_device *dev = crtc->dev;
  3302. struct drm_i915_private *dev_priv = dev->dev_private;
  3303. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3304. struct intel_encoder *encoder;
  3305. int pipe = intel_crtc->pipe;
  3306. int plane = intel_crtc->plane;
  3307. WARN_ON(!crtc->enabled);
  3308. if (intel_crtc->active)
  3309. return;
  3310. intel_crtc->active = true;
  3311. for_each_encoder_on_crtc(dev, crtc, encoder)
  3312. if (encoder->pre_enable)
  3313. encoder->pre_enable(encoder);
  3314. i9xx_enable_pll(intel_crtc);
  3315. i9xx_pfit_enable(intel_crtc);
  3316. intel_crtc_load_lut(crtc);
  3317. intel_update_watermarks(crtc);
  3318. intel_enable_pipe(dev_priv, pipe, false, false);
  3319. intel_enable_primary_plane(dev_priv, plane, pipe);
  3320. intel_enable_planes(crtc);
  3321. /* The fixup needs to happen before cursor is enabled */
  3322. if (IS_G4X(dev))
  3323. g4x_fixup_plane(dev_priv, pipe);
  3324. intel_crtc_update_cursor(crtc, true);
  3325. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3326. intel_crtc_dpms_overlay(intel_crtc, true);
  3327. intel_update_fbc(dev);
  3328. for_each_encoder_on_crtc(dev, crtc, encoder)
  3329. encoder->enable(encoder);
  3330. }
  3331. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3332. {
  3333. struct drm_device *dev = crtc->base.dev;
  3334. struct drm_i915_private *dev_priv = dev->dev_private;
  3335. if (!crtc->config.gmch_pfit.control)
  3336. return;
  3337. assert_pipe_disabled(dev_priv, crtc->pipe);
  3338. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3339. I915_READ(PFIT_CONTROL));
  3340. I915_WRITE(PFIT_CONTROL, 0);
  3341. }
  3342. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3343. {
  3344. struct drm_device *dev = crtc->dev;
  3345. struct drm_i915_private *dev_priv = dev->dev_private;
  3346. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3347. struct intel_encoder *encoder;
  3348. int pipe = intel_crtc->pipe;
  3349. int plane = intel_crtc->plane;
  3350. if (!intel_crtc->active)
  3351. return;
  3352. for_each_encoder_on_crtc(dev, crtc, encoder)
  3353. encoder->disable(encoder);
  3354. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3355. intel_crtc_wait_for_pending_flips(crtc);
  3356. drm_vblank_off(dev, pipe);
  3357. if (dev_priv->fbc.plane == plane)
  3358. intel_disable_fbc(dev);
  3359. intel_crtc_dpms_overlay(intel_crtc, false);
  3360. intel_crtc_update_cursor(crtc, false);
  3361. intel_disable_planes(crtc);
  3362. intel_disable_primary_plane(dev_priv, plane, pipe);
  3363. intel_disable_pipe(dev_priv, pipe);
  3364. i9xx_pfit_disable(intel_crtc);
  3365. for_each_encoder_on_crtc(dev, crtc, encoder)
  3366. if (encoder->post_disable)
  3367. encoder->post_disable(encoder);
  3368. if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3369. vlv_disable_pll(dev_priv, pipe);
  3370. else if (!IS_VALLEYVIEW(dev))
  3371. i9xx_disable_pll(dev_priv, pipe);
  3372. intel_crtc->active = false;
  3373. intel_update_watermarks(crtc);
  3374. intel_update_fbc(dev);
  3375. }
  3376. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3377. {
  3378. }
  3379. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3380. bool enabled)
  3381. {
  3382. struct drm_device *dev = crtc->dev;
  3383. struct drm_i915_master_private *master_priv;
  3384. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3385. int pipe = intel_crtc->pipe;
  3386. if (!dev->primary->master)
  3387. return;
  3388. master_priv = dev->primary->master->driver_priv;
  3389. if (!master_priv->sarea_priv)
  3390. return;
  3391. switch (pipe) {
  3392. case 0:
  3393. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3394. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3395. break;
  3396. case 1:
  3397. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3398. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3399. break;
  3400. default:
  3401. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3402. break;
  3403. }
  3404. }
  3405. /**
  3406. * Sets the power management mode of the pipe and plane.
  3407. */
  3408. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3409. {
  3410. struct drm_device *dev = crtc->dev;
  3411. struct drm_i915_private *dev_priv = dev->dev_private;
  3412. struct intel_encoder *intel_encoder;
  3413. bool enable = false;
  3414. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3415. enable |= intel_encoder->connectors_active;
  3416. if (enable)
  3417. dev_priv->display.crtc_enable(crtc);
  3418. else
  3419. dev_priv->display.crtc_disable(crtc);
  3420. intel_crtc_update_sarea(crtc, enable);
  3421. }
  3422. static void intel_crtc_disable(struct drm_crtc *crtc)
  3423. {
  3424. struct drm_device *dev = crtc->dev;
  3425. struct drm_connector *connector;
  3426. struct drm_i915_private *dev_priv = dev->dev_private;
  3427. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3428. /* crtc should still be enabled when we disable it. */
  3429. WARN_ON(!crtc->enabled);
  3430. dev_priv->display.crtc_disable(crtc);
  3431. intel_crtc->eld_vld = false;
  3432. intel_crtc_update_sarea(crtc, false);
  3433. dev_priv->display.off(crtc);
  3434. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3435. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3436. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3437. if (crtc->fb) {
  3438. mutex_lock(&dev->struct_mutex);
  3439. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3440. mutex_unlock(&dev->struct_mutex);
  3441. crtc->fb = NULL;
  3442. }
  3443. /* Update computed state. */
  3444. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3445. if (!connector->encoder || !connector->encoder->crtc)
  3446. continue;
  3447. if (connector->encoder->crtc != crtc)
  3448. continue;
  3449. connector->dpms = DRM_MODE_DPMS_OFF;
  3450. to_intel_encoder(connector->encoder)->connectors_active = false;
  3451. }
  3452. }
  3453. void intel_encoder_destroy(struct drm_encoder *encoder)
  3454. {
  3455. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3456. drm_encoder_cleanup(encoder);
  3457. kfree(intel_encoder);
  3458. }
  3459. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3460. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3461. * state of the entire output pipe. */
  3462. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3463. {
  3464. if (mode == DRM_MODE_DPMS_ON) {
  3465. encoder->connectors_active = true;
  3466. intel_crtc_update_dpms(encoder->base.crtc);
  3467. } else {
  3468. encoder->connectors_active = false;
  3469. intel_crtc_update_dpms(encoder->base.crtc);
  3470. }
  3471. }
  3472. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3473. * internal consistency). */
  3474. static void intel_connector_check_state(struct intel_connector *connector)
  3475. {
  3476. if (connector->get_hw_state(connector)) {
  3477. struct intel_encoder *encoder = connector->encoder;
  3478. struct drm_crtc *crtc;
  3479. bool encoder_enabled;
  3480. enum pipe pipe;
  3481. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3482. connector->base.base.id,
  3483. drm_get_connector_name(&connector->base));
  3484. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3485. "wrong connector dpms state\n");
  3486. WARN(connector->base.encoder != &encoder->base,
  3487. "active connector not linked to encoder\n");
  3488. WARN(!encoder->connectors_active,
  3489. "encoder->connectors_active not set\n");
  3490. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3491. WARN(!encoder_enabled, "encoder not enabled\n");
  3492. if (WARN_ON(!encoder->base.crtc))
  3493. return;
  3494. crtc = encoder->base.crtc;
  3495. WARN(!crtc->enabled, "crtc not enabled\n");
  3496. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3497. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3498. "encoder active on the wrong pipe\n");
  3499. }
  3500. }
  3501. /* Even simpler default implementation, if there's really no special case to
  3502. * consider. */
  3503. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3504. {
  3505. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3506. /* All the simple cases only support two dpms states. */
  3507. if (mode != DRM_MODE_DPMS_ON)
  3508. mode = DRM_MODE_DPMS_OFF;
  3509. if (mode == connector->dpms)
  3510. return;
  3511. connector->dpms = mode;
  3512. /* Only need to change hw state when actually enabled */
  3513. if (encoder->base.crtc)
  3514. intel_encoder_dpms(encoder, mode);
  3515. else
  3516. WARN_ON(encoder->connectors_active != false);
  3517. intel_modeset_check_state(connector->dev);
  3518. }
  3519. /* Simple connector->get_hw_state implementation for encoders that support only
  3520. * one connector and no cloning and hence the encoder state determines the state
  3521. * of the connector. */
  3522. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3523. {
  3524. enum pipe pipe = 0;
  3525. struct intel_encoder *encoder = connector->encoder;
  3526. return encoder->get_hw_state(encoder, &pipe);
  3527. }
  3528. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3529. struct intel_crtc_config *pipe_config)
  3530. {
  3531. struct drm_i915_private *dev_priv = dev->dev_private;
  3532. struct intel_crtc *pipe_B_crtc =
  3533. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3534. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3535. pipe_name(pipe), pipe_config->fdi_lanes);
  3536. if (pipe_config->fdi_lanes > 4) {
  3537. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3538. pipe_name(pipe), pipe_config->fdi_lanes);
  3539. return false;
  3540. }
  3541. if (IS_HASWELL(dev)) {
  3542. if (pipe_config->fdi_lanes > 2) {
  3543. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3544. pipe_config->fdi_lanes);
  3545. return false;
  3546. } else {
  3547. return true;
  3548. }
  3549. }
  3550. if (INTEL_INFO(dev)->num_pipes == 2)
  3551. return true;
  3552. /* Ivybridge 3 pipe is really complicated */
  3553. switch (pipe) {
  3554. case PIPE_A:
  3555. return true;
  3556. case PIPE_B:
  3557. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3558. pipe_config->fdi_lanes > 2) {
  3559. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3560. pipe_name(pipe), pipe_config->fdi_lanes);
  3561. return false;
  3562. }
  3563. return true;
  3564. case PIPE_C:
  3565. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3566. pipe_B_crtc->config.fdi_lanes <= 2) {
  3567. if (pipe_config->fdi_lanes > 2) {
  3568. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3569. pipe_name(pipe), pipe_config->fdi_lanes);
  3570. return false;
  3571. }
  3572. } else {
  3573. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3574. return false;
  3575. }
  3576. return true;
  3577. default:
  3578. BUG();
  3579. }
  3580. }
  3581. #define RETRY 1
  3582. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3583. struct intel_crtc_config *pipe_config)
  3584. {
  3585. struct drm_device *dev = intel_crtc->base.dev;
  3586. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3587. int lane, link_bw, fdi_dotclock;
  3588. bool setup_ok, needs_recompute = false;
  3589. retry:
  3590. /* FDI is a binary signal running at ~2.7GHz, encoding
  3591. * each output octet as 10 bits. The actual frequency
  3592. * is stored as a divider into a 100MHz clock, and the
  3593. * mode pixel clock is stored in units of 1KHz.
  3594. * Hence the bw of each lane in terms of the mode signal
  3595. * is:
  3596. */
  3597. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3598. fdi_dotclock = adjusted_mode->crtc_clock;
  3599. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3600. pipe_config->pipe_bpp);
  3601. pipe_config->fdi_lanes = lane;
  3602. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3603. link_bw, &pipe_config->fdi_m_n);
  3604. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3605. intel_crtc->pipe, pipe_config);
  3606. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3607. pipe_config->pipe_bpp -= 2*3;
  3608. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3609. pipe_config->pipe_bpp);
  3610. needs_recompute = true;
  3611. pipe_config->bw_constrained = true;
  3612. goto retry;
  3613. }
  3614. if (needs_recompute)
  3615. return RETRY;
  3616. return setup_ok ? 0 : -EINVAL;
  3617. }
  3618. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3619. struct intel_crtc_config *pipe_config)
  3620. {
  3621. pipe_config->ips_enabled = i915_enable_ips &&
  3622. hsw_crtc_supports_ips(crtc) &&
  3623. pipe_config->pipe_bpp <= 24;
  3624. }
  3625. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3626. struct intel_crtc_config *pipe_config)
  3627. {
  3628. struct drm_device *dev = crtc->base.dev;
  3629. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3630. /* FIXME should check pixel clock limits on all platforms */
  3631. if (INTEL_INFO(dev)->gen < 4) {
  3632. struct drm_i915_private *dev_priv = dev->dev_private;
  3633. int clock_limit =
  3634. dev_priv->display.get_display_clock_speed(dev);
  3635. /*
  3636. * Enable pixel doubling when the dot clock
  3637. * is > 90% of the (display) core speed.
  3638. *
  3639. * GDG double wide on either pipe,
  3640. * otherwise pipe A only.
  3641. */
  3642. if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  3643. adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
  3644. clock_limit *= 2;
  3645. pipe_config->double_wide = true;
  3646. }
  3647. if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
  3648. return -EINVAL;
  3649. }
  3650. /*
  3651. * Pipe horizontal size must be even in:
  3652. * - DVO ganged mode
  3653. * - LVDS dual channel mode
  3654. * - Double wide pipe
  3655. */
  3656. if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3657. intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  3658. pipe_config->pipe_src_w &= ~1;
  3659. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3660. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3661. */
  3662. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3663. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3664. return -EINVAL;
  3665. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3666. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3667. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3668. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3669. * for lvds. */
  3670. pipe_config->pipe_bpp = 8*3;
  3671. }
  3672. if (HAS_IPS(dev))
  3673. hsw_compute_ips_config(crtc, pipe_config);
  3674. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3675. * clock survives for now. */
  3676. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3677. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3678. if (pipe_config->has_pch_encoder)
  3679. return ironlake_fdi_compute_config(crtc, pipe_config);
  3680. return 0;
  3681. }
  3682. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3683. {
  3684. return 400000; /* FIXME */
  3685. }
  3686. static int i945_get_display_clock_speed(struct drm_device *dev)
  3687. {
  3688. return 400000;
  3689. }
  3690. static int i915_get_display_clock_speed(struct drm_device *dev)
  3691. {
  3692. return 333000;
  3693. }
  3694. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3695. {
  3696. return 200000;
  3697. }
  3698. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3699. {
  3700. u16 gcfgc = 0;
  3701. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3702. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3703. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3704. return 267000;
  3705. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3706. return 333000;
  3707. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3708. return 444000;
  3709. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3710. return 200000;
  3711. default:
  3712. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3713. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3714. return 133000;
  3715. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3716. return 167000;
  3717. }
  3718. }
  3719. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3720. {
  3721. u16 gcfgc = 0;
  3722. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3723. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3724. return 133000;
  3725. else {
  3726. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3727. case GC_DISPLAY_CLOCK_333_MHZ:
  3728. return 333000;
  3729. default:
  3730. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3731. return 190000;
  3732. }
  3733. }
  3734. }
  3735. static int i865_get_display_clock_speed(struct drm_device *dev)
  3736. {
  3737. return 266000;
  3738. }
  3739. static int i855_get_display_clock_speed(struct drm_device *dev)
  3740. {
  3741. u16 hpllcc = 0;
  3742. /* Assume that the hardware is in the high speed state. This
  3743. * should be the default.
  3744. */
  3745. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3746. case GC_CLOCK_133_200:
  3747. case GC_CLOCK_100_200:
  3748. return 200000;
  3749. case GC_CLOCK_166_250:
  3750. return 250000;
  3751. case GC_CLOCK_100_133:
  3752. return 133000;
  3753. }
  3754. /* Shouldn't happen */
  3755. return 0;
  3756. }
  3757. static int i830_get_display_clock_speed(struct drm_device *dev)
  3758. {
  3759. return 133000;
  3760. }
  3761. static void
  3762. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3763. {
  3764. while (*num > DATA_LINK_M_N_MASK ||
  3765. *den > DATA_LINK_M_N_MASK) {
  3766. *num >>= 1;
  3767. *den >>= 1;
  3768. }
  3769. }
  3770. static void compute_m_n(unsigned int m, unsigned int n,
  3771. uint32_t *ret_m, uint32_t *ret_n)
  3772. {
  3773. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3774. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3775. intel_reduce_m_n_ratio(ret_m, ret_n);
  3776. }
  3777. void
  3778. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3779. int pixel_clock, int link_clock,
  3780. struct intel_link_m_n *m_n)
  3781. {
  3782. m_n->tu = 64;
  3783. compute_m_n(bits_per_pixel * pixel_clock,
  3784. link_clock * nlanes * 8,
  3785. &m_n->gmch_m, &m_n->gmch_n);
  3786. compute_m_n(pixel_clock, link_clock,
  3787. &m_n->link_m, &m_n->link_n);
  3788. }
  3789. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3790. {
  3791. if (i915_panel_use_ssc >= 0)
  3792. return i915_panel_use_ssc != 0;
  3793. return dev_priv->vbt.lvds_use_ssc
  3794. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3795. }
  3796. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3797. {
  3798. struct drm_device *dev = crtc->dev;
  3799. struct drm_i915_private *dev_priv = dev->dev_private;
  3800. int refclk;
  3801. if (IS_VALLEYVIEW(dev)) {
  3802. refclk = 100000;
  3803. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3804. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3805. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3806. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3807. refclk / 1000);
  3808. } else if (!IS_GEN2(dev)) {
  3809. refclk = 96000;
  3810. } else {
  3811. refclk = 48000;
  3812. }
  3813. return refclk;
  3814. }
  3815. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3816. {
  3817. return (1 << dpll->n) << 16 | dpll->m2;
  3818. }
  3819. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3820. {
  3821. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3822. }
  3823. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3824. intel_clock_t *reduced_clock)
  3825. {
  3826. struct drm_device *dev = crtc->base.dev;
  3827. struct drm_i915_private *dev_priv = dev->dev_private;
  3828. int pipe = crtc->pipe;
  3829. u32 fp, fp2 = 0;
  3830. if (IS_PINEVIEW(dev)) {
  3831. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3832. if (reduced_clock)
  3833. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3834. } else {
  3835. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3836. if (reduced_clock)
  3837. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3838. }
  3839. I915_WRITE(FP0(pipe), fp);
  3840. crtc->config.dpll_hw_state.fp0 = fp;
  3841. crtc->lowfreq_avail = false;
  3842. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3843. reduced_clock && i915_powersave) {
  3844. I915_WRITE(FP1(pipe), fp2);
  3845. crtc->config.dpll_hw_state.fp1 = fp2;
  3846. crtc->lowfreq_avail = true;
  3847. } else {
  3848. I915_WRITE(FP1(pipe), fp);
  3849. crtc->config.dpll_hw_state.fp1 = fp;
  3850. }
  3851. }
  3852. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3853. pipe)
  3854. {
  3855. u32 reg_val;
  3856. /*
  3857. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3858. * and set it to a reasonable value instead.
  3859. */
  3860. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3861. reg_val &= 0xffffff00;
  3862. reg_val |= 0x00000030;
  3863. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3864. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3865. reg_val &= 0x8cffffff;
  3866. reg_val = 0x8c000000;
  3867. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3868. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3869. reg_val &= 0xffffff00;
  3870. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3871. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3872. reg_val &= 0x00ffffff;
  3873. reg_val |= 0xb0000000;
  3874. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3875. }
  3876. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3877. struct intel_link_m_n *m_n)
  3878. {
  3879. struct drm_device *dev = crtc->base.dev;
  3880. struct drm_i915_private *dev_priv = dev->dev_private;
  3881. int pipe = crtc->pipe;
  3882. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3883. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3884. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3885. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3886. }
  3887. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3888. struct intel_link_m_n *m_n)
  3889. {
  3890. struct drm_device *dev = crtc->base.dev;
  3891. struct drm_i915_private *dev_priv = dev->dev_private;
  3892. int pipe = crtc->pipe;
  3893. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3894. if (INTEL_INFO(dev)->gen >= 5) {
  3895. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3896. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3897. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3898. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3899. } else {
  3900. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3901. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3902. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3903. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3904. }
  3905. }
  3906. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3907. {
  3908. if (crtc->config.has_pch_encoder)
  3909. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3910. else
  3911. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3912. }
  3913. static void vlv_update_pll(struct intel_crtc *crtc)
  3914. {
  3915. struct drm_device *dev = crtc->base.dev;
  3916. struct drm_i915_private *dev_priv = dev->dev_private;
  3917. int pipe = crtc->pipe;
  3918. u32 dpll, mdiv;
  3919. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3920. u32 coreclk, reg_val, dpll_md;
  3921. mutex_lock(&dev_priv->dpio_lock);
  3922. bestn = crtc->config.dpll.n;
  3923. bestm1 = crtc->config.dpll.m1;
  3924. bestm2 = crtc->config.dpll.m2;
  3925. bestp1 = crtc->config.dpll.p1;
  3926. bestp2 = crtc->config.dpll.p2;
  3927. /* See eDP HDMI DPIO driver vbios notes doc */
  3928. /* PLL B needs special handling */
  3929. if (pipe)
  3930. vlv_pllb_recal_opamp(dev_priv, pipe);
  3931. /* Set up Tx target for periodic Rcomp update */
  3932. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3933. /* Disable target IRef on PLL */
  3934. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3935. reg_val &= 0x00ffffff;
  3936. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3937. /* Disable fast lock */
  3938. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3939. /* Set idtafcrecal before PLL is enabled */
  3940. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3941. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3942. mdiv |= ((bestn << DPIO_N_SHIFT));
  3943. mdiv |= (1 << DPIO_K_SHIFT);
  3944. /*
  3945. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3946. * but we don't support that).
  3947. * Note: don't use the DAC post divider as it seems unstable.
  3948. */
  3949. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3950. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3951. mdiv |= DPIO_ENABLE_CALIBRATION;
  3952. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3953. /* Set HBR and RBR LPF coefficients */
  3954. if (crtc->config.port_clock == 162000 ||
  3955. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3956. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3957. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3958. 0x009f0003);
  3959. else
  3960. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3961. 0x00d0000f);
  3962. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3963. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3964. /* Use SSC source */
  3965. if (!pipe)
  3966. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3967. 0x0df40000);
  3968. else
  3969. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3970. 0x0df70000);
  3971. } else { /* HDMI or VGA */
  3972. /* Use bend source */
  3973. if (!pipe)
  3974. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3975. 0x0df70000);
  3976. else
  3977. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3978. 0x0df40000);
  3979. }
  3980. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3981. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3982. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3983. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3984. coreclk |= 0x01000000;
  3985. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3986. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3987. /* Enable DPIO clock input */
  3988. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3989. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3990. /* We should never disable this, set it here for state tracking */
  3991. if (pipe == PIPE_B)
  3992. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3993. dpll |= DPLL_VCO_ENABLE;
  3994. crtc->config.dpll_hw_state.dpll = dpll;
  3995. dpll_md = (crtc->config.pixel_multiplier - 1)
  3996. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3997. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3998. if (crtc->config.has_dp_encoder)
  3999. intel_dp_set_m_n(crtc);
  4000. mutex_unlock(&dev_priv->dpio_lock);
  4001. }
  4002. static void i9xx_update_pll(struct intel_crtc *crtc,
  4003. intel_clock_t *reduced_clock,
  4004. int num_connectors)
  4005. {
  4006. struct drm_device *dev = crtc->base.dev;
  4007. struct drm_i915_private *dev_priv = dev->dev_private;
  4008. u32 dpll;
  4009. bool is_sdvo;
  4010. struct dpll *clock = &crtc->config.dpll;
  4011. i9xx_update_pll_dividers(crtc, reduced_clock);
  4012. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  4013. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  4014. dpll = DPLL_VGA_MODE_DIS;
  4015. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  4016. dpll |= DPLLB_MODE_LVDS;
  4017. else
  4018. dpll |= DPLLB_MODE_DAC_SERIAL;
  4019. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4020. dpll |= (crtc->config.pixel_multiplier - 1)
  4021. << SDVO_MULTIPLIER_SHIFT_HIRES;
  4022. }
  4023. if (is_sdvo)
  4024. dpll |= DPLL_SDVO_HIGH_SPEED;
  4025. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  4026. dpll |= DPLL_SDVO_HIGH_SPEED;
  4027. /* compute bitmask from p1 value */
  4028. if (IS_PINEVIEW(dev))
  4029. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4030. else {
  4031. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4032. if (IS_G4X(dev) && reduced_clock)
  4033. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4034. }
  4035. switch (clock->p2) {
  4036. case 5:
  4037. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4038. break;
  4039. case 7:
  4040. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4041. break;
  4042. case 10:
  4043. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4044. break;
  4045. case 14:
  4046. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4047. break;
  4048. }
  4049. if (INTEL_INFO(dev)->gen >= 4)
  4050. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4051. if (crtc->config.sdvo_tv_clock)
  4052. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4053. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4054. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4055. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4056. else
  4057. dpll |= PLL_REF_INPUT_DREFCLK;
  4058. dpll |= DPLL_VCO_ENABLE;
  4059. crtc->config.dpll_hw_state.dpll = dpll;
  4060. if (INTEL_INFO(dev)->gen >= 4) {
  4061. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  4062. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4063. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4064. }
  4065. if (crtc->config.has_dp_encoder)
  4066. intel_dp_set_m_n(crtc);
  4067. }
  4068. static void i8xx_update_pll(struct intel_crtc *crtc,
  4069. intel_clock_t *reduced_clock,
  4070. int num_connectors)
  4071. {
  4072. struct drm_device *dev = crtc->base.dev;
  4073. struct drm_i915_private *dev_priv = dev->dev_private;
  4074. u32 dpll;
  4075. struct dpll *clock = &crtc->config.dpll;
  4076. i9xx_update_pll_dividers(crtc, reduced_clock);
  4077. dpll = DPLL_VGA_MODE_DIS;
  4078. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  4079. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4080. } else {
  4081. if (clock->p1 == 2)
  4082. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4083. else
  4084. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4085. if (clock->p2 == 4)
  4086. dpll |= PLL_P2_DIVIDE_BY_4;
  4087. }
  4088. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  4089. dpll |= DPLL_DVO_2X_MODE;
  4090. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4091. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4092. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4093. else
  4094. dpll |= PLL_REF_INPUT_DREFCLK;
  4095. dpll |= DPLL_VCO_ENABLE;
  4096. crtc->config.dpll_hw_state.dpll = dpll;
  4097. }
  4098. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  4099. {
  4100. struct drm_device *dev = intel_crtc->base.dev;
  4101. struct drm_i915_private *dev_priv = dev->dev_private;
  4102. enum pipe pipe = intel_crtc->pipe;
  4103. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4104. struct drm_display_mode *adjusted_mode =
  4105. &intel_crtc->config.adjusted_mode;
  4106. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4107. /* We need to be careful not to changed the adjusted mode, for otherwise
  4108. * the hw state checker will get angry at the mismatch. */
  4109. crtc_vtotal = adjusted_mode->crtc_vtotal;
  4110. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4111. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4112. /* the chip adds 2 halflines automatically */
  4113. crtc_vtotal -= 1;
  4114. crtc_vblank_end -= 1;
  4115. vsyncshift = adjusted_mode->crtc_hsync_start
  4116. - adjusted_mode->crtc_htotal / 2;
  4117. } else {
  4118. vsyncshift = 0;
  4119. }
  4120. if (INTEL_INFO(dev)->gen > 3)
  4121. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4122. I915_WRITE(HTOTAL(cpu_transcoder),
  4123. (adjusted_mode->crtc_hdisplay - 1) |
  4124. ((adjusted_mode->crtc_htotal - 1) << 16));
  4125. I915_WRITE(HBLANK(cpu_transcoder),
  4126. (adjusted_mode->crtc_hblank_start - 1) |
  4127. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4128. I915_WRITE(HSYNC(cpu_transcoder),
  4129. (adjusted_mode->crtc_hsync_start - 1) |
  4130. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4131. I915_WRITE(VTOTAL(cpu_transcoder),
  4132. (adjusted_mode->crtc_vdisplay - 1) |
  4133. ((crtc_vtotal - 1) << 16));
  4134. I915_WRITE(VBLANK(cpu_transcoder),
  4135. (adjusted_mode->crtc_vblank_start - 1) |
  4136. ((crtc_vblank_end - 1) << 16));
  4137. I915_WRITE(VSYNC(cpu_transcoder),
  4138. (adjusted_mode->crtc_vsync_start - 1) |
  4139. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4140. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4141. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4142. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4143. * bits. */
  4144. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4145. (pipe == PIPE_B || pipe == PIPE_C))
  4146. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4147. /* pipesrc controls the size that is scaled from, which should
  4148. * always be the user's requested size.
  4149. */
  4150. I915_WRITE(PIPESRC(pipe),
  4151. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4152. (intel_crtc->config.pipe_src_h - 1));
  4153. }
  4154. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4155. struct intel_crtc_config *pipe_config)
  4156. {
  4157. struct drm_device *dev = crtc->base.dev;
  4158. struct drm_i915_private *dev_priv = dev->dev_private;
  4159. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4160. uint32_t tmp;
  4161. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4162. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4163. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4164. tmp = I915_READ(HBLANK(cpu_transcoder));
  4165. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4166. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4167. tmp = I915_READ(HSYNC(cpu_transcoder));
  4168. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4169. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4170. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4171. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4172. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4173. tmp = I915_READ(VBLANK(cpu_transcoder));
  4174. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4175. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4176. tmp = I915_READ(VSYNC(cpu_transcoder));
  4177. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4178. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4179. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4180. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4181. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4182. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4183. }
  4184. tmp = I915_READ(PIPESRC(crtc->pipe));
  4185. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4186. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4187. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4188. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4189. }
  4190. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4191. struct intel_crtc_config *pipe_config)
  4192. {
  4193. struct drm_crtc *crtc = &intel_crtc->base;
  4194. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4195. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4196. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4197. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4198. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4199. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4200. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4201. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4202. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4203. crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
  4204. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4205. }
  4206. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4207. {
  4208. struct drm_device *dev = intel_crtc->base.dev;
  4209. struct drm_i915_private *dev_priv = dev->dev_private;
  4210. uint32_t pipeconf;
  4211. pipeconf = 0;
  4212. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4213. I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4214. pipeconf |= PIPECONF_ENABLE;
  4215. if (intel_crtc->config.double_wide)
  4216. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4217. /* only g4x and later have fancy bpc/dither controls */
  4218. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4219. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4220. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4221. pipeconf |= PIPECONF_DITHER_EN |
  4222. PIPECONF_DITHER_TYPE_SP;
  4223. switch (intel_crtc->config.pipe_bpp) {
  4224. case 18:
  4225. pipeconf |= PIPECONF_6BPC;
  4226. break;
  4227. case 24:
  4228. pipeconf |= PIPECONF_8BPC;
  4229. break;
  4230. case 30:
  4231. pipeconf |= PIPECONF_10BPC;
  4232. break;
  4233. default:
  4234. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4235. BUG();
  4236. }
  4237. }
  4238. if (HAS_PIPE_CXSR(dev)) {
  4239. if (intel_crtc->lowfreq_avail) {
  4240. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4241. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4242. } else {
  4243. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4244. }
  4245. }
  4246. if (!IS_GEN2(dev) &&
  4247. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4248. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4249. else
  4250. pipeconf |= PIPECONF_PROGRESSIVE;
  4251. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4252. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4253. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4254. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4255. }
  4256. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4257. int x, int y,
  4258. struct drm_framebuffer *fb)
  4259. {
  4260. struct drm_device *dev = crtc->dev;
  4261. struct drm_i915_private *dev_priv = dev->dev_private;
  4262. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4263. int pipe = intel_crtc->pipe;
  4264. int plane = intel_crtc->plane;
  4265. int refclk, num_connectors = 0;
  4266. intel_clock_t clock, reduced_clock;
  4267. u32 dspcntr;
  4268. bool ok, has_reduced_clock = false;
  4269. bool is_lvds = false, is_dsi = false;
  4270. struct intel_encoder *encoder;
  4271. const intel_limit_t *limit;
  4272. int ret;
  4273. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4274. switch (encoder->type) {
  4275. case INTEL_OUTPUT_LVDS:
  4276. is_lvds = true;
  4277. break;
  4278. case INTEL_OUTPUT_DSI:
  4279. is_dsi = true;
  4280. break;
  4281. }
  4282. num_connectors++;
  4283. }
  4284. if (is_dsi)
  4285. goto skip_dpll;
  4286. if (!intel_crtc->config.clock_set) {
  4287. refclk = i9xx_get_refclk(crtc, num_connectors);
  4288. /*
  4289. * Returns a set of divisors for the desired target clock with
  4290. * the given refclk, or FALSE. The returned values represent
  4291. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4292. * 2) / p1 / p2.
  4293. */
  4294. limit = intel_limit(crtc, refclk);
  4295. ok = dev_priv->display.find_dpll(limit, crtc,
  4296. intel_crtc->config.port_clock,
  4297. refclk, NULL, &clock);
  4298. if (!ok) {
  4299. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4300. return -EINVAL;
  4301. }
  4302. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4303. /*
  4304. * Ensure we match the reduced clock's P to the target
  4305. * clock. If the clocks don't match, we can't switch
  4306. * the display clock by using the FP0/FP1. In such case
  4307. * we will disable the LVDS downclock feature.
  4308. */
  4309. has_reduced_clock =
  4310. dev_priv->display.find_dpll(limit, crtc,
  4311. dev_priv->lvds_downclock,
  4312. refclk, &clock,
  4313. &reduced_clock);
  4314. }
  4315. /* Compat-code for transition, will disappear. */
  4316. intel_crtc->config.dpll.n = clock.n;
  4317. intel_crtc->config.dpll.m1 = clock.m1;
  4318. intel_crtc->config.dpll.m2 = clock.m2;
  4319. intel_crtc->config.dpll.p1 = clock.p1;
  4320. intel_crtc->config.dpll.p2 = clock.p2;
  4321. }
  4322. if (IS_GEN2(dev)) {
  4323. i8xx_update_pll(intel_crtc,
  4324. has_reduced_clock ? &reduced_clock : NULL,
  4325. num_connectors);
  4326. } else if (IS_VALLEYVIEW(dev)) {
  4327. vlv_update_pll(intel_crtc);
  4328. } else {
  4329. i9xx_update_pll(intel_crtc,
  4330. has_reduced_clock ? &reduced_clock : NULL,
  4331. num_connectors);
  4332. }
  4333. skip_dpll:
  4334. /* Set up the display plane register */
  4335. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4336. if (!IS_VALLEYVIEW(dev)) {
  4337. if (pipe == 0)
  4338. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4339. else
  4340. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4341. }
  4342. intel_set_pipe_timings(intel_crtc);
  4343. /* pipesrc and dspsize control the size that is scaled from,
  4344. * which should always be the user's requested size.
  4345. */
  4346. I915_WRITE(DSPSIZE(plane),
  4347. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4348. (intel_crtc->config.pipe_src_w - 1));
  4349. I915_WRITE(DSPPOS(plane), 0);
  4350. i9xx_set_pipeconf(intel_crtc);
  4351. I915_WRITE(DSPCNTR(plane), dspcntr);
  4352. POSTING_READ(DSPCNTR(plane));
  4353. ret = intel_pipe_set_base(crtc, x, y, fb);
  4354. return ret;
  4355. }
  4356. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4357. struct intel_crtc_config *pipe_config)
  4358. {
  4359. struct drm_device *dev = crtc->base.dev;
  4360. struct drm_i915_private *dev_priv = dev->dev_private;
  4361. uint32_t tmp;
  4362. tmp = I915_READ(PFIT_CONTROL);
  4363. if (!(tmp & PFIT_ENABLE))
  4364. return;
  4365. /* Check whether the pfit is attached to our pipe. */
  4366. if (INTEL_INFO(dev)->gen < 4) {
  4367. if (crtc->pipe != PIPE_B)
  4368. return;
  4369. } else {
  4370. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4371. return;
  4372. }
  4373. pipe_config->gmch_pfit.control = tmp;
  4374. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4375. if (INTEL_INFO(dev)->gen < 5)
  4376. pipe_config->gmch_pfit.lvds_border_bits =
  4377. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4378. }
  4379. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  4380. struct intel_crtc_config *pipe_config)
  4381. {
  4382. struct drm_device *dev = crtc->base.dev;
  4383. struct drm_i915_private *dev_priv = dev->dev_private;
  4384. int pipe = pipe_config->cpu_transcoder;
  4385. intel_clock_t clock;
  4386. u32 mdiv;
  4387. int refclk = 100000;
  4388. mutex_lock(&dev_priv->dpio_lock);
  4389. mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
  4390. mutex_unlock(&dev_priv->dpio_lock);
  4391. clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  4392. clock.m2 = mdiv & DPIO_M2DIV_MASK;
  4393. clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  4394. clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  4395. clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  4396. clock.vco = refclk * clock.m1 * clock.m2 / clock.n;
  4397. clock.dot = 2 * clock.vco / (clock.p1 * clock.p2);
  4398. pipe_config->port_clock = clock.dot / 10;
  4399. }
  4400. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4401. struct intel_crtc_config *pipe_config)
  4402. {
  4403. struct drm_device *dev = crtc->base.dev;
  4404. struct drm_i915_private *dev_priv = dev->dev_private;
  4405. uint32_t tmp;
  4406. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4407. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4408. tmp = I915_READ(PIPECONF(crtc->pipe));
  4409. if (!(tmp & PIPECONF_ENABLE))
  4410. return false;
  4411. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4412. switch (tmp & PIPECONF_BPC_MASK) {
  4413. case PIPECONF_6BPC:
  4414. pipe_config->pipe_bpp = 18;
  4415. break;
  4416. case PIPECONF_8BPC:
  4417. pipe_config->pipe_bpp = 24;
  4418. break;
  4419. case PIPECONF_10BPC:
  4420. pipe_config->pipe_bpp = 30;
  4421. break;
  4422. default:
  4423. break;
  4424. }
  4425. }
  4426. if (INTEL_INFO(dev)->gen < 4)
  4427. pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  4428. intel_get_pipe_timings(crtc, pipe_config);
  4429. i9xx_get_pfit_config(crtc, pipe_config);
  4430. if (INTEL_INFO(dev)->gen >= 4) {
  4431. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4432. pipe_config->pixel_multiplier =
  4433. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4434. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4435. pipe_config->dpll_hw_state.dpll_md = tmp;
  4436. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4437. tmp = I915_READ(DPLL(crtc->pipe));
  4438. pipe_config->pixel_multiplier =
  4439. ((tmp & SDVO_MULTIPLIER_MASK)
  4440. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4441. } else {
  4442. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4443. * port and will be fixed up in the encoder->get_config
  4444. * function. */
  4445. pipe_config->pixel_multiplier = 1;
  4446. }
  4447. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4448. if (!IS_VALLEYVIEW(dev)) {
  4449. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4450. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4451. } else {
  4452. /* Mask out read-only status bits. */
  4453. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4454. DPLL_PORTC_READY_MASK |
  4455. DPLL_PORTB_READY_MASK);
  4456. }
  4457. if (IS_VALLEYVIEW(dev))
  4458. vlv_crtc_clock_get(crtc, pipe_config);
  4459. else
  4460. i9xx_crtc_clock_get(crtc, pipe_config);
  4461. return true;
  4462. }
  4463. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4464. {
  4465. struct drm_i915_private *dev_priv = dev->dev_private;
  4466. struct drm_mode_config *mode_config = &dev->mode_config;
  4467. struct intel_encoder *encoder;
  4468. u32 val, final;
  4469. bool has_lvds = false;
  4470. bool has_cpu_edp = false;
  4471. bool has_panel = false;
  4472. bool has_ck505 = false;
  4473. bool can_ssc = false;
  4474. /* We need to take the global config into account */
  4475. list_for_each_entry(encoder, &mode_config->encoder_list,
  4476. base.head) {
  4477. switch (encoder->type) {
  4478. case INTEL_OUTPUT_LVDS:
  4479. has_panel = true;
  4480. has_lvds = true;
  4481. break;
  4482. case INTEL_OUTPUT_EDP:
  4483. has_panel = true;
  4484. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4485. has_cpu_edp = true;
  4486. break;
  4487. }
  4488. }
  4489. if (HAS_PCH_IBX(dev)) {
  4490. has_ck505 = dev_priv->vbt.display_clock_mode;
  4491. can_ssc = has_ck505;
  4492. } else {
  4493. has_ck505 = false;
  4494. can_ssc = true;
  4495. }
  4496. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4497. has_panel, has_lvds, has_ck505);
  4498. /* Ironlake: try to setup display ref clock before DPLL
  4499. * enabling. This is only under driver's control after
  4500. * PCH B stepping, previous chipset stepping should be
  4501. * ignoring this setting.
  4502. */
  4503. val = I915_READ(PCH_DREF_CONTROL);
  4504. /* As we must carefully and slowly disable/enable each source in turn,
  4505. * compute the final state we want first and check if we need to
  4506. * make any changes at all.
  4507. */
  4508. final = val;
  4509. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4510. if (has_ck505)
  4511. final |= DREF_NONSPREAD_CK505_ENABLE;
  4512. else
  4513. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4514. final &= ~DREF_SSC_SOURCE_MASK;
  4515. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4516. final &= ~DREF_SSC1_ENABLE;
  4517. if (has_panel) {
  4518. final |= DREF_SSC_SOURCE_ENABLE;
  4519. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4520. final |= DREF_SSC1_ENABLE;
  4521. if (has_cpu_edp) {
  4522. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4523. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4524. else
  4525. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4526. } else
  4527. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4528. } else {
  4529. final |= DREF_SSC_SOURCE_DISABLE;
  4530. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4531. }
  4532. if (final == val)
  4533. return;
  4534. /* Always enable nonspread source */
  4535. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4536. if (has_ck505)
  4537. val |= DREF_NONSPREAD_CK505_ENABLE;
  4538. else
  4539. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4540. if (has_panel) {
  4541. val &= ~DREF_SSC_SOURCE_MASK;
  4542. val |= DREF_SSC_SOURCE_ENABLE;
  4543. /* SSC must be turned on before enabling the CPU output */
  4544. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4545. DRM_DEBUG_KMS("Using SSC on panel\n");
  4546. val |= DREF_SSC1_ENABLE;
  4547. } else
  4548. val &= ~DREF_SSC1_ENABLE;
  4549. /* Get SSC going before enabling the outputs */
  4550. I915_WRITE(PCH_DREF_CONTROL, val);
  4551. POSTING_READ(PCH_DREF_CONTROL);
  4552. udelay(200);
  4553. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4554. /* Enable CPU source on CPU attached eDP */
  4555. if (has_cpu_edp) {
  4556. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4557. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4558. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4559. }
  4560. else
  4561. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4562. } else
  4563. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4564. I915_WRITE(PCH_DREF_CONTROL, val);
  4565. POSTING_READ(PCH_DREF_CONTROL);
  4566. udelay(200);
  4567. } else {
  4568. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4569. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4570. /* Turn off CPU output */
  4571. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4572. I915_WRITE(PCH_DREF_CONTROL, val);
  4573. POSTING_READ(PCH_DREF_CONTROL);
  4574. udelay(200);
  4575. /* Turn off the SSC source */
  4576. val &= ~DREF_SSC_SOURCE_MASK;
  4577. val |= DREF_SSC_SOURCE_DISABLE;
  4578. /* Turn off SSC1 */
  4579. val &= ~DREF_SSC1_ENABLE;
  4580. I915_WRITE(PCH_DREF_CONTROL, val);
  4581. POSTING_READ(PCH_DREF_CONTROL);
  4582. udelay(200);
  4583. }
  4584. BUG_ON(val != final);
  4585. }
  4586. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4587. {
  4588. uint32_t tmp;
  4589. tmp = I915_READ(SOUTH_CHICKEN2);
  4590. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4591. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4592. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4593. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4594. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4595. tmp = I915_READ(SOUTH_CHICKEN2);
  4596. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4597. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4598. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4599. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4600. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4601. }
  4602. /* WaMPhyProgramming:hsw */
  4603. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4604. {
  4605. uint32_t tmp;
  4606. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4607. tmp &= ~(0xFF << 24);
  4608. tmp |= (0x12 << 24);
  4609. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4610. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4611. tmp |= (1 << 11);
  4612. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4613. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4614. tmp |= (1 << 11);
  4615. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4616. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4617. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4618. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4619. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4620. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4621. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4622. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4623. tmp &= ~(7 << 13);
  4624. tmp |= (5 << 13);
  4625. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4626. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4627. tmp &= ~(7 << 13);
  4628. tmp |= (5 << 13);
  4629. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4630. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4631. tmp &= ~0xFF;
  4632. tmp |= 0x1C;
  4633. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4634. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4635. tmp &= ~0xFF;
  4636. tmp |= 0x1C;
  4637. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4638. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4639. tmp &= ~(0xFF << 16);
  4640. tmp |= (0x1C << 16);
  4641. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4642. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4643. tmp &= ~(0xFF << 16);
  4644. tmp |= (0x1C << 16);
  4645. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4646. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4647. tmp |= (1 << 27);
  4648. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4649. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4650. tmp |= (1 << 27);
  4651. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4652. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4653. tmp &= ~(0xF << 28);
  4654. tmp |= (4 << 28);
  4655. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4656. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4657. tmp &= ~(0xF << 28);
  4658. tmp |= (4 << 28);
  4659. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4660. }
  4661. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4662. * Programming" based on the parameters passed:
  4663. * - Sequence to enable CLKOUT_DP
  4664. * - Sequence to enable CLKOUT_DP without spread
  4665. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4666. */
  4667. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4668. bool with_fdi)
  4669. {
  4670. struct drm_i915_private *dev_priv = dev->dev_private;
  4671. uint32_t reg, tmp;
  4672. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4673. with_spread = true;
  4674. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4675. with_fdi, "LP PCH doesn't have FDI\n"))
  4676. with_fdi = false;
  4677. mutex_lock(&dev_priv->dpio_lock);
  4678. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4679. tmp &= ~SBI_SSCCTL_DISABLE;
  4680. tmp |= SBI_SSCCTL_PATHALT;
  4681. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4682. udelay(24);
  4683. if (with_spread) {
  4684. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4685. tmp &= ~SBI_SSCCTL_PATHALT;
  4686. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4687. if (with_fdi) {
  4688. lpt_reset_fdi_mphy(dev_priv);
  4689. lpt_program_fdi_mphy(dev_priv);
  4690. }
  4691. }
  4692. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4693. SBI_GEN0 : SBI_DBUFF0;
  4694. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4695. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4696. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4697. mutex_unlock(&dev_priv->dpio_lock);
  4698. }
  4699. /* Sequence to disable CLKOUT_DP */
  4700. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4701. {
  4702. struct drm_i915_private *dev_priv = dev->dev_private;
  4703. uint32_t reg, tmp;
  4704. mutex_lock(&dev_priv->dpio_lock);
  4705. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4706. SBI_GEN0 : SBI_DBUFF0;
  4707. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4708. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4709. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4710. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4711. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4712. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4713. tmp |= SBI_SSCCTL_PATHALT;
  4714. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4715. udelay(32);
  4716. }
  4717. tmp |= SBI_SSCCTL_DISABLE;
  4718. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4719. }
  4720. mutex_unlock(&dev_priv->dpio_lock);
  4721. }
  4722. static void lpt_init_pch_refclk(struct drm_device *dev)
  4723. {
  4724. struct drm_mode_config *mode_config = &dev->mode_config;
  4725. struct intel_encoder *encoder;
  4726. bool has_vga = false;
  4727. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4728. switch (encoder->type) {
  4729. case INTEL_OUTPUT_ANALOG:
  4730. has_vga = true;
  4731. break;
  4732. }
  4733. }
  4734. if (has_vga)
  4735. lpt_enable_clkout_dp(dev, true, true);
  4736. else
  4737. lpt_disable_clkout_dp(dev);
  4738. }
  4739. /*
  4740. * Initialize reference clocks when the driver loads
  4741. */
  4742. void intel_init_pch_refclk(struct drm_device *dev)
  4743. {
  4744. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4745. ironlake_init_pch_refclk(dev);
  4746. else if (HAS_PCH_LPT(dev))
  4747. lpt_init_pch_refclk(dev);
  4748. }
  4749. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4750. {
  4751. struct drm_device *dev = crtc->dev;
  4752. struct drm_i915_private *dev_priv = dev->dev_private;
  4753. struct intel_encoder *encoder;
  4754. int num_connectors = 0;
  4755. bool is_lvds = false;
  4756. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4757. switch (encoder->type) {
  4758. case INTEL_OUTPUT_LVDS:
  4759. is_lvds = true;
  4760. break;
  4761. }
  4762. num_connectors++;
  4763. }
  4764. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4765. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4766. dev_priv->vbt.lvds_ssc_freq);
  4767. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4768. }
  4769. return 120000;
  4770. }
  4771. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4772. {
  4773. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4774. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4775. int pipe = intel_crtc->pipe;
  4776. uint32_t val;
  4777. val = 0;
  4778. switch (intel_crtc->config.pipe_bpp) {
  4779. case 18:
  4780. val |= PIPECONF_6BPC;
  4781. break;
  4782. case 24:
  4783. val |= PIPECONF_8BPC;
  4784. break;
  4785. case 30:
  4786. val |= PIPECONF_10BPC;
  4787. break;
  4788. case 36:
  4789. val |= PIPECONF_12BPC;
  4790. break;
  4791. default:
  4792. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4793. BUG();
  4794. }
  4795. if (intel_crtc->config.dither)
  4796. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4797. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4798. val |= PIPECONF_INTERLACED_ILK;
  4799. else
  4800. val |= PIPECONF_PROGRESSIVE;
  4801. if (intel_crtc->config.limited_color_range)
  4802. val |= PIPECONF_COLOR_RANGE_SELECT;
  4803. I915_WRITE(PIPECONF(pipe), val);
  4804. POSTING_READ(PIPECONF(pipe));
  4805. }
  4806. /*
  4807. * Set up the pipe CSC unit.
  4808. *
  4809. * Currently only full range RGB to limited range RGB conversion
  4810. * is supported, but eventually this should handle various
  4811. * RGB<->YCbCr scenarios as well.
  4812. */
  4813. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4814. {
  4815. struct drm_device *dev = crtc->dev;
  4816. struct drm_i915_private *dev_priv = dev->dev_private;
  4817. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4818. int pipe = intel_crtc->pipe;
  4819. uint16_t coeff = 0x7800; /* 1.0 */
  4820. /*
  4821. * TODO: Check what kind of values actually come out of the pipe
  4822. * with these coeff/postoff values and adjust to get the best
  4823. * accuracy. Perhaps we even need to take the bpc value into
  4824. * consideration.
  4825. */
  4826. if (intel_crtc->config.limited_color_range)
  4827. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4828. /*
  4829. * GY/GU and RY/RU should be the other way around according
  4830. * to BSpec, but reality doesn't agree. Just set them up in
  4831. * a way that results in the correct picture.
  4832. */
  4833. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4834. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4835. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4836. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4837. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4838. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4839. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4840. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4841. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4842. if (INTEL_INFO(dev)->gen > 6) {
  4843. uint16_t postoff = 0;
  4844. if (intel_crtc->config.limited_color_range)
  4845. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4846. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4847. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4848. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4849. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4850. } else {
  4851. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4852. if (intel_crtc->config.limited_color_range)
  4853. mode |= CSC_BLACK_SCREEN_OFFSET;
  4854. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4855. }
  4856. }
  4857. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4858. {
  4859. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4860. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4861. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4862. uint32_t val;
  4863. val = 0;
  4864. if (intel_crtc->config.dither)
  4865. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4866. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4867. val |= PIPECONF_INTERLACED_ILK;
  4868. else
  4869. val |= PIPECONF_PROGRESSIVE;
  4870. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4871. POSTING_READ(PIPECONF(cpu_transcoder));
  4872. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4873. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4874. }
  4875. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4876. intel_clock_t *clock,
  4877. bool *has_reduced_clock,
  4878. intel_clock_t *reduced_clock)
  4879. {
  4880. struct drm_device *dev = crtc->dev;
  4881. struct drm_i915_private *dev_priv = dev->dev_private;
  4882. struct intel_encoder *intel_encoder;
  4883. int refclk;
  4884. const intel_limit_t *limit;
  4885. bool ret, is_lvds = false;
  4886. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4887. switch (intel_encoder->type) {
  4888. case INTEL_OUTPUT_LVDS:
  4889. is_lvds = true;
  4890. break;
  4891. }
  4892. }
  4893. refclk = ironlake_get_refclk(crtc);
  4894. /*
  4895. * Returns a set of divisors for the desired target clock with the given
  4896. * refclk, or FALSE. The returned values represent the clock equation:
  4897. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4898. */
  4899. limit = intel_limit(crtc, refclk);
  4900. ret = dev_priv->display.find_dpll(limit, crtc,
  4901. to_intel_crtc(crtc)->config.port_clock,
  4902. refclk, NULL, clock);
  4903. if (!ret)
  4904. return false;
  4905. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4906. /*
  4907. * Ensure we match the reduced clock's P to the target clock.
  4908. * If the clocks don't match, we can't switch the display clock
  4909. * by using the FP0/FP1. In such case we will disable the LVDS
  4910. * downclock feature.
  4911. */
  4912. *has_reduced_clock =
  4913. dev_priv->display.find_dpll(limit, crtc,
  4914. dev_priv->lvds_downclock,
  4915. refclk, clock,
  4916. reduced_clock);
  4917. }
  4918. return true;
  4919. }
  4920. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4921. {
  4922. struct drm_i915_private *dev_priv = dev->dev_private;
  4923. uint32_t temp;
  4924. temp = I915_READ(SOUTH_CHICKEN1);
  4925. if (temp & FDI_BC_BIFURCATION_SELECT)
  4926. return;
  4927. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4928. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4929. temp |= FDI_BC_BIFURCATION_SELECT;
  4930. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4931. I915_WRITE(SOUTH_CHICKEN1, temp);
  4932. POSTING_READ(SOUTH_CHICKEN1);
  4933. }
  4934. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4935. {
  4936. struct drm_device *dev = intel_crtc->base.dev;
  4937. struct drm_i915_private *dev_priv = dev->dev_private;
  4938. switch (intel_crtc->pipe) {
  4939. case PIPE_A:
  4940. break;
  4941. case PIPE_B:
  4942. if (intel_crtc->config.fdi_lanes > 2)
  4943. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4944. else
  4945. cpt_enable_fdi_bc_bifurcation(dev);
  4946. break;
  4947. case PIPE_C:
  4948. cpt_enable_fdi_bc_bifurcation(dev);
  4949. break;
  4950. default:
  4951. BUG();
  4952. }
  4953. }
  4954. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4955. {
  4956. /*
  4957. * Account for spread spectrum to avoid
  4958. * oversubscribing the link. Max center spread
  4959. * is 2.5%; use 5% for safety's sake.
  4960. */
  4961. u32 bps = target_clock * bpp * 21 / 20;
  4962. return bps / (link_bw * 8) + 1;
  4963. }
  4964. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4965. {
  4966. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4967. }
  4968. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4969. u32 *fp,
  4970. intel_clock_t *reduced_clock, u32 *fp2)
  4971. {
  4972. struct drm_crtc *crtc = &intel_crtc->base;
  4973. struct drm_device *dev = crtc->dev;
  4974. struct drm_i915_private *dev_priv = dev->dev_private;
  4975. struct intel_encoder *intel_encoder;
  4976. uint32_t dpll;
  4977. int factor, num_connectors = 0;
  4978. bool is_lvds = false, is_sdvo = false;
  4979. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4980. switch (intel_encoder->type) {
  4981. case INTEL_OUTPUT_LVDS:
  4982. is_lvds = true;
  4983. break;
  4984. case INTEL_OUTPUT_SDVO:
  4985. case INTEL_OUTPUT_HDMI:
  4986. is_sdvo = true;
  4987. break;
  4988. }
  4989. num_connectors++;
  4990. }
  4991. /* Enable autotuning of the PLL clock (if permissible) */
  4992. factor = 21;
  4993. if (is_lvds) {
  4994. if ((intel_panel_use_ssc(dev_priv) &&
  4995. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4996. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4997. factor = 25;
  4998. } else if (intel_crtc->config.sdvo_tv_clock)
  4999. factor = 20;
  5000. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  5001. *fp |= FP_CB_TUNE;
  5002. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  5003. *fp2 |= FP_CB_TUNE;
  5004. dpll = 0;
  5005. if (is_lvds)
  5006. dpll |= DPLLB_MODE_LVDS;
  5007. else
  5008. dpll |= DPLLB_MODE_DAC_SERIAL;
  5009. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  5010. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5011. if (is_sdvo)
  5012. dpll |= DPLL_SDVO_HIGH_SPEED;
  5013. if (intel_crtc->config.has_dp_encoder)
  5014. dpll |= DPLL_SDVO_HIGH_SPEED;
  5015. /* compute bitmask from p1 value */
  5016. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5017. /* also FPA1 */
  5018. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5019. switch (intel_crtc->config.dpll.p2) {
  5020. case 5:
  5021. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5022. break;
  5023. case 7:
  5024. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5025. break;
  5026. case 10:
  5027. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5028. break;
  5029. case 14:
  5030. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5031. break;
  5032. }
  5033. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5034. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5035. else
  5036. dpll |= PLL_REF_INPUT_DREFCLK;
  5037. return dpll | DPLL_VCO_ENABLE;
  5038. }
  5039. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5040. int x, int y,
  5041. struct drm_framebuffer *fb)
  5042. {
  5043. struct drm_device *dev = crtc->dev;
  5044. struct drm_i915_private *dev_priv = dev->dev_private;
  5045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5046. int pipe = intel_crtc->pipe;
  5047. int plane = intel_crtc->plane;
  5048. int num_connectors = 0;
  5049. intel_clock_t clock, reduced_clock;
  5050. u32 dpll = 0, fp = 0, fp2 = 0;
  5051. bool ok, has_reduced_clock = false;
  5052. bool is_lvds = false;
  5053. struct intel_encoder *encoder;
  5054. struct intel_shared_dpll *pll;
  5055. int ret;
  5056. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5057. switch (encoder->type) {
  5058. case INTEL_OUTPUT_LVDS:
  5059. is_lvds = true;
  5060. break;
  5061. }
  5062. num_connectors++;
  5063. }
  5064. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  5065. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  5066. ok = ironlake_compute_clocks(crtc, &clock,
  5067. &has_reduced_clock, &reduced_clock);
  5068. if (!ok && !intel_crtc->config.clock_set) {
  5069. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5070. return -EINVAL;
  5071. }
  5072. /* Compat-code for transition, will disappear. */
  5073. if (!intel_crtc->config.clock_set) {
  5074. intel_crtc->config.dpll.n = clock.n;
  5075. intel_crtc->config.dpll.m1 = clock.m1;
  5076. intel_crtc->config.dpll.m2 = clock.m2;
  5077. intel_crtc->config.dpll.p1 = clock.p1;
  5078. intel_crtc->config.dpll.p2 = clock.p2;
  5079. }
  5080. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  5081. if (intel_crtc->config.has_pch_encoder) {
  5082. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  5083. if (has_reduced_clock)
  5084. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  5085. dpll = ironlake_compute_dpll(intel_crtc,
  5086. &fp, &reduced_clock,
  5087. has_reduced_clock ? &fp2 : NULL);
  5088. intel_crtc->config.dpll_hw_state.dpll = dpll;
  5089. intel_crtc->config.dpll_hw_state.fp0 = fp;
  5090. if (has_reduced_clock)
  5091. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  5092. else
  5093. intel_crtc->config.dpll_hw_state.fp1 = fp;
  5094. pll = intel_get_shared_dpll(intel_crtc);
  5095. if (pll == NULL) {
  5096. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  5097. pipe_name(pipe));
  5098. return -EINVAL;
  5099. }
  5100. } else
  5101. intel_put_shared_dpll(intel_crtc);
  5102. if (intel_crtc->config.has_dp_encoder)
  5103. intel_dp_set_m_n(intel_crtc);
  5104. if (is_lvds && has_reduced_clock && i915_powersave)
  5105. intel_crtc->lowfreq_avail = true;
  5106. else
  5107. intel_crtc->lowfreq_avail = false;
  5108. if (intel_crtc->config.has_pch_encoder) {
  5109. pll = intel_crtc_to_shared_dpll(intel_crtc);
  5110. }
  5111. intel_set_pipe_timings(intel_crtc);
  5112. if (intel_crtc->config.has_pch_encoder) {
  5113. intel_cpu_transcoder_set_m_n(intel_crtc,
  5114. &intel_crtc->config.fdi_m_n);
  5115. }
  5116. if (IS_IVYBRIDGE(dev))
  5117. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  5118. ironlake_set_pipeconf(crtc);
  5119. /* Set up the display plane register */
  5120. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5121. POSTING_READ(DSPCNTR(plane));
  5122. ret = intel_pipe_set_base(crtc, x, y, fb);
  5123. return ret;
  5124. }
  5125. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  5126. struct intel_link_m_n *m_n)
  5127. {
  5128. struct drm_device *dev = crtc->base.dev;
  5129. struct drm_i915_private *dev_priv = dev->dev_private;
  5130. enum pipe pipe = crtc->pipe;
  5131. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  5132. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  5133. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  5134. & ~TU_SIZE_MASK;
  5135. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  5136. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  5137. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5138. }
  5139. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  5140. enum transcoder transcoder,
  5141. struct intel_link_m_n *m_n)
  5142. {
  5143. struct drm_device *dev = crtc->base.dev;
  5144. struct drm_i915_private *dev_priv = dev->dev_private;
  5145. enum pipe pipe = crtc->pipe;
  5146. if (INTEL_INFO(dev)->gen >= 5) {
  5147. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5148. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5149. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5150. & ~TU_SIZE_MASK;
  5151. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5152. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5153. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5154. } else {
  5155. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  5156. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  5157. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  5158. & ~TU_SIZE_MASK;
  5159. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  5160. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  5161. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5162. }
  5163. }
  5164. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5165. struct intel_crtc_config *pipe_config)
  5166. {
  5167. if (crtc->config.has_pch_encoder)
  5168. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5169. else
  5170. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5171. &pipe_config->dp_m_n);
  5172. }
  5173. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5174. struct intel_crtc_config *pipe_config)
  5175. {
  5176. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5177. &pipe_config->fdi_m_n);
  5178. }
  5179. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5180. struct intel_crtc_config *pipe_config)
  5181. {
  5182. struct drm_device *dev = crtc->base.dev;
  5183. struct drm_i915_private *dev_priv = dev->dev_private;
  5184. uint32_t tmp;
  5185. tmp = I915_READ(PF_CTL(crtc->pipe));
  5186. if (tmp & PF_ENABLE) {
  5187. pipe_config->pch_pfit.enabled = true;
  5188. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5189. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5190. /* We currently do not free assignements of panel fitters on
  5191. * ivb/hsw (since we don't use the higher upscaling modes which
  5192. * differentiates them) so just WARN about this case for now. */
  5193. if (IS_GEN7(dev)) {
  5194. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5195. PF_PIPE_SEL_IVB(crtc->pipe));
  5196. }
  5197. }
  5198. }
  5199. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5200. struct intel_crtc_config *pipe_config)
  5201. {
  5202. struct drm_device *dev = crtc->base.dev;
  5203. struct drm_i915_private *dev_priv = dev->dev_private;
  5204. uint32_t tmp;
  5205. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5206. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5207. tmp = I915_READ(PIPECONF(crtc->pipe));
  5208. if (!(tmp & PIPECONF_ENABLE))
  5209. return false;
  5210. switch (tmp & PIPECONF_BPC_MASK) {
  5211. case PIPECONF_6BPC:
  5212. pipe_config->pipe_bpp = 18;
  5213. break;
  5214. case PIPECONF_8BPC:
  5215. pipe_config->pipe_bpp = 24;
  5216. break;
  5217. case PIPECONF_10BPC:
  5218. pipe_config->pipe_bpp = 30;
  5219. break;
  5220. case PIPECONF_12BPC:
  5221. pipe_config->pipe_bpp = 36;
  5222. break;
  5223. default:
  5224. break;
  5225. }
  5226. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5227. struct intel_shared_dpll *pll;
  5228. pipe_config->has_pch_encoder = true;
  5229. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5230. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5231. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5232. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5233. if (HAS_PCH_IBX(dev_priv->dev)) {
  5234. pipe_config->shared_dpll =
  5235. (enum intel_dpll_id) crtc->pipe;
  5236. } else {
  5237. tmp = I915_READ(PCH_DPLL_SEL);
  5238. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5239. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5240. else
  5241. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5242. }
  5243. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5244. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5245. &pipe_config->dpll_hw_state));
  5246. tmp = pipe_config->dpll_hw_state.dpll;
  5247. pipe_config->pixel_multiplier =
  5248. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5249. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5250. ironlake_pch_clock_get(crtc, pipe_config);
  5251. } else {
  5252. pipe_config->pixel_multiplier = 1;
  5253. }
  5254. intel_get_pipe_timings(crtc, pipe_config);
  5255. ironlake_get_pfit_config(crtc, pipe_config);
  5256. return true;
  5257. }
  5258. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5259. {
  5260. struct drm_device *dev = dev_priv->dev;
  5261. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5262. struct intel_crtc *crtc;
  5263. unsigned long irqflags;
  5264. uint32_t val;
  5265. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5266. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5267. pipe_name(crtc->pipe));
  5268. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5269. WARN(plls->spll_refcount, "SPLL enabled\n");
  5270. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5271. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5272. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5273. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5274. "CPU PWM1 enabled\n");
  5275. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5276. "CPU PWM2 enabled\n");
  5277. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5278. "PCH PWM1 enabled\n");
  5279. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5280. "Utility pin enabled\n");
  5281. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5282. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5283. val = I915_READ(DEIMR);
  5284. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5285. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5286. val = I915_READ(SDEIMR);
  5287. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5288. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5289. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5290. }
  5291. /*
  5292. * This function implements pieces of two sequences from BSpec:
  5293. * - Sequence for display software to disable LCPLL
  5294. * - Sequence for display software to allow package C8+
  5295. * The steps implemented here are just the steps that actually touch the LCPLL
  5296. * register. Callers should take care of disabling all the display engine
  5297. * functions, doing the mode unset, fixing interrupts, etc.
  5298. */
  5299. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5300. bool switch_to_fclk, bool allow_power_down)
  5301. {
  5302. uint32_t val;
  5303. assert_can_disable_lcpll(dev_priv);
  5304. val = I915_READ(LCPLL_CTL);
  5305. if (switch_to_fclk) {
  5306. val |= LCPLL_CD_SOURCE_FCLK;
  5307. I915_WRITE(LCPLL_CTL, val);
  5308. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5309. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5310. DRM_ERROR("Switching to FCLK failed\n");
  5311. val = I915_READ(LCPLL_CTL);
  5312. }
  5313. val |= LCPLL_PLL_DISABLE;
  5314. I915_WRITE(LCPLL_CTL, val);
  5315. POSTING_READ(LCPLL_CTL);
  5316. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5317. DRM_ERROR("LCPLL still locked\n");
  5318. val = I915_READ(D_COMP);
  5319. val |= D_COMP_COMP_DISABLE;
  5320. mutex_lock(&dev_priv->rps.hw_lock);
  5321. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5322. DRM_ERROR("Failed to disable D_COMP\n");
  5323. mutex_unlock(&dev_priv->rps.hw_lock);
  5324. POSTING_READ(D_COMP);
  5325. ndelay(100);
  5326. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5327. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5328. if (allow_power_down) {
  5329. val = I915_READ(LCPLL_CTL);
  5330. val |= LCPLL_POWER_DOWN_ALLOW;
  5331. I915_WRITE(LCPLL_CTL, val);
  5332. POSTING_READ(LCPLL_CTL);
  5333. }
  5334. }
  5335. /*
  5336. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5337. * source.
  5338. */
  5339. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5340. {
  5341. uint32_t val;
  5342. val = I915_READ(LCPLL_CTL);
  5343. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5344. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5345. return;
  5346. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5347. * we'll hang the machine! */
  5348. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5349. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5350. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5351. I915_WRITE(LCPLL_CTL, val);
  5352. POSTING_READ(LCPLL_CTL);
  5353. }
  5354. val = I915_READ(D_COMP);
  5355. val |= D_COMP_COMP_FORCE;
  5356. val &= ~D_COMP_COMP_DISABLE;
  5357. mutex_lock(&dev_priv->rps.hw_lock);
  5358. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5359. DRM_ERROR("Failed to enable D_COMP\n");
  5360. mutex_unlock(&dev_priv->rps.hw_lock);
  5361. POSTING_READ(D_COMP);
  5362. val = I915_READ(LCPLL_CTL);
  5363. val &= ~LCPLL_PLL_DISABLE;
  5364. I915_WRITE(LCPLL_CTL, val);
  5365. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5366. DRM_ERROR("LCPLL not locked yet\n");
  5367. if (val & LCPLL_CD_SOURCE_FCLK) {
  5368. val = I915_READ(LCPLL_CTL);
  5369. val &= ~LCPLL_CD_SOURCE_FCLK;
  5370. I915_WRITE(LCPLL_CTL, val);
  5371. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5372. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5373. DRM_ERROR("Switching back to LCPLL failed\n");
  5374. }
  5375. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5376. }
  5377. void hsw_enable_pc8_work(struct work_struct *__work)
  5378. {
  5379. struct drm_i915_private *dev_priv =
  5380. container_of(to_delayed_work(__work), struct drm_i915_private,
  5381. pc8.enable_work);
  5382. struct drm_device *dev = dev_priv->dev;
  5383. uint32_t val;
  5384. if (dev_priv->pc8.enabled)
  5385. return;
  5386. DRM_DEBUG_KMS("Enabling package C8+\n");
  5387. dev_priv->pc8.enabled = true;
  5388. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5389. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5390. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5391. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5392. }
  5393. lpt_disable_clkout_dp(dev);
  5394. hsw_pc8_disable_interrupts(dev);
  5395. hsw_disable_lcpll(dev_priv, true, true);
  5396. }
  5397. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5398. {
  5399. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5400. WARN(dev_priv->pc8.disable_count < 1,
  5401. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5402. dev_priv->pc8.disable_count--;
  5403. if (dev_priv->pc8.disable_count != 0)
  5404. return;
  5405. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5406. msecs_to_jiffies(i915_pc8_timeout));
  5407. }
  5408. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5409. {
  5410. struct drm_device *dev = dev_priv->dev;
  5411. uint32_t val;
  5412. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5413. WARN(dev_priv->pc8.disable_count < 0,
  5414. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5415. dev_priv->pc8.disable_count++;
  5416. if (dev_priv->pc8.disable_count != 1)
  5417. return;
  5418. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5419. if (!dev_priv->pc8.enabled)
  5420. return;
  5421. DRM_DEBUG_KMS("Disabling package C8+\n");
  5422. hsw_restore_lcpll(dev_priv);
  5423. hsw_pc8_restore_interrupts(dev);
  5424. lpt_init_pch_refclk(dev);
  5425. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5426. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5427. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5428. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5429. }
  5430. intel_prepare_ddi(dev);
  5431. i915_gem_init_swizzling(dev);
  5432. mutex_lock(&dev_priv->rps.hw_lock);
  5433. gen6_update_ring_freq(dev);
  5434. mutex_unlock(&dev_priv->rps.hw_lock);
  5435. dev_priv->pc8.enabled = false;
  5436. }
  5437. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5438. {
  5439. mutex_lock(&dev_priv->pc8.lock);
  5440. __hsw_enable_package_c8(dev_priv);
  5441. mutex_unlock(&dev_priv->pc8.lock);
  5442. }
  5443. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5444. {
  5445. mutex_lock(&dev_priv->pc8.lock);
  5446. __hsw_disable_package_c8(dev_priv);
  5447. mutex_unlock(&dev_priv->pc8.lock);
  5448. }
  5449. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5450. {
  5451. struct drm_device *dev = dev_priv->dev;
  5452. struct intel_crtc *crtc;
  5453. uint32_t val;
  5454. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5455. if (crtc->base.enabled)
  5456. return false;
  5457. /* This case is still possible since we have the i915.disable_power_well
  5458. * parameter and also the KVMr or something else might be requesting the
  5459. * power well. */
  5460. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5461. if (val != 0) {
  5462. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5463. return false;
  5464. }
  5465. return true;
  5466. }
  5467. /* Since we're called from modeset_global_resources there's no way to
  5468. * symmetrically increase and decrease the refcount, so we use
  5469. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5470. * or not.
  5471. */
  5472. static void hsw_update_package_c8(struct drm_device *dev)
  5473. {
  5474. struct drm_i915_private *dev_priv = dev->dev_private;
  5475. bool allow;
  5476. if (!i915_enable_pc8)
  5477. return;
  5478. mutex_lock(&dev_priv->pc8.lock);
  5479. allow = hsw_can_enable_package_c8(dev_priv);
  5480. if (allow == dev_priv->pc8.requirements_met)
  5481. goto done;
  5482. dev_priv->pc8.requirements_met = allow;
  5483. if (allow)
  5484. __hsw_enable_package_c8(dev_priv);
  5485. else
  5486. __hsw_disable_package_c8(dev_priv);
  5487. done:
  5488. mutex_unlock(&dev_priv->pc8.lock);
  5489. }
  5490. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5491. {
  5492. if (!dev_priv->pc8.gpu_idle) {
  5493. dev_priv->pc8.gpu_idle = true;
  5494. hsw_enable_package_c8(dev_priv);
  5495. }
  5496. }
  5497. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5498. {
  5499. if (dev_priv->pc8.gpu_idle) {
  5500. dev_priv->pc8.gpu_idle = false;
  5501. hsw_disable_package_c8(dev_priv);
  5502. }
  5503. }
  5504. static void haswell_modeset_global_resources(struct drm_device *dev)
  5505. {
  5506. bool enable = false;
  5507. struct intel_crtc *crtc;
  5508. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5509. if (!crtc->base.enabled)
  5510. continue;
  5511. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
  5512. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5513. enable = true;
  5514. }
  5515. intel_set_power_well(dev, enable);
  5516. hsw_update_package_c8(dev);
  5517. }
  5518. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5519. int x, int y,
  5520. struct drm_framebuffer *fb)
  5521. {
  5522. struct drm_device *dev = crtc->dev;
  5523. struct drm_i915_private *dev_priv = dev->dev_private;
  5524. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5525. int plane = intel_crtc->plane;
  5526. int ret;
  5527. if (!intel_ddi_pll_mode_set(crtc))
  5528. return -EINVAL;
  5529. if (intel_crtc->config.has_dp_encoder)
  5530. intel_dp_set_m_n(intel_crtc);
  5531. intel_crtc->lowfreq_avail = false;
  5532. intel_set_pipe_timings(intel_crtc);
  5533. if (intel_crtc->config.has_pch_encoder) {
  5534. intel_cpu_transcoder_set_m_n(intel_crtc,
  5535. &intel_crtc->config.fdi_m_n);
  5536. }
  5537. haswell_set_pipeconf(crtc);
  5538. intel_set_pipe_csc(crtc);
  5539. /* Set up the display plane register */
  5540. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5541. POSTING_READ(DSPCNTR(plane));
  5542. ret = intel_pipe_set_base(crtc, x, y, fb);
  5543. return ret;
  5544. }
  5545. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5546. struct intel_crtc_config *pipe_config)
  5547. {
  5548. struct drm_device *dev = crtc->base.dev;
  5549. struct drm_i915_private *dev_priv = dev->dev_private;
  5550. enum intel_display_power_domain pfit_domain;
  5551. uint32_t tmp;
  5552. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5553. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5554. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5555. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5556. enum pipe trans_edp_pipe;
  5557. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5558. default:
  5559. WARN(1, "unknown pipe linked to edp transcoder\n");
  5560. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5561. case TRANS_DDI_EDP_INPUT_A_ON:
  5562. trans_edp_pipe = PIPE_A;
  5563. break;
  5564. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5565. trans_edp_pipe = PIPE_B;
  5566. break;
  5567. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5568. trans_edp_pipe = PIPE_C;
  5569. break;
  5570. }
  5571. if (trans_edp_pipe == crtc->pipe)
  5572. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5573. }
  5574. if (!intel_display_power_enabled(dev,
  5575. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5576. return false;
  5577. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5578. if (!(tmp & PIPECONF_ENABLE))
  5579. return false;
  5580. /*
  5581. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5582. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5583. * the PCH transcoder is on.
  5584. */
  5585. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5586. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5587. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5588. pipe_config->has_pch_encoder = true;
  5589. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5590. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5591. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5592. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5593. }
  5594. intel_get_pipe_timings(crtc, pipe_config);
  5595. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5596. if (intel_display_power_enabled(dev, pfit_domain))
  5597. ironlake_get_pfit_config(crtc, pipe_config);
  5598. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5599. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5600. pipe_config->pixel_multiplier = 1;
  5601. return true;
  5602. }
  5603. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5604. int x, int y,
  5605. struct drm_framebuffer *fb)
  5606. {
  5607. struct drm_device *dev = crtc->dev;
  5608. struct drm_i915_private *dev_priv = dev->dev_private;
  5609. struct intel_encoder *encoder;
  5610. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5611. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5612. int pipe = intel_crtc->pipe;
  5613. int ret;
  5614. drm_vblank_pre_modeset(dev, pipe);
  5615. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5616. drm_vblank_post_modeset(dev, pipe);
  5617. if (ret != 0)
  5618. return ret;
  5619. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5620. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5621. encoder->base.base.id,
  5622. drm_get_encoder_name(&encoder->base),
  5623. mode->base.id, mode->name);
  5624. encoder->mode_set(encoder);
  5625. }
  5626. return 0;
  5627. }
  5628. static bool intel_eld_uptodate(struct drm_connector *connector,
  5629. int reg_eldv, uint32_t bits_eldv,
  5630. int reg_elda, uint32_t bits_elda,
  5631. int reg_edid)
  5632. {
  5633. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5634. uint8_t *eld = connector->eld;
  5635. uint32_t i;
  5636. i = I915_READ(reg_eldv);
  5637. i &= bits_eldv;
  5638. if (!eld[0])
  5639. return !i;
  5640. if (!i)
  5641. return false;
  5642. i = I915_READ(reg_elda);
  5643. i &= ~bits_elda;
  5644. I915_WRITE(reg_elda, i);
  5645. for (i = 0; i < eld[2]; i++)
  5646. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5647. return false;
  5648. return true;
  5649. }
  5650. static void g4x_write_eld(struct drm_connector *connector,
  5651. struct drm_crtc *crtc)
  5652. {
  5653. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5654. uint8_t *eld = connector->eld;
  5655. uint32_t eldv;
  5656. uint32_t len;
  5657. uint32_t i;
  5658. i = I915_READ(G4X_AUD_VID_DID);
  5659. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5660. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5661. else
  5662. eldv = G4X_ELDV_DEVCTG;
  5663. if (intel_eld_uptodate(connector,
  5664. G4X_AUD_CNTL_ST, eldv,
  5665. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5666. G4X_HDMIW_HDMIEDID))
  5667. return;
  5668. i = I915_READ(G4X_AUD_CNTL_ST);
  5669. i &= ~(eldv | G4X_ELD_ADDR);
  5670. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5671. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5672. if (!eld[0])
  5673. return;
  5674. len = min_t(uint8_t, eld[2], len);
  5675. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5676. for (i = 0; i < len; i++)
  5677. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5678. i = I915_READ(G4X_AUD_CNTL_ST);
  5679. i |= eldv;
  5680. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5681. }
  5682. static void haswell_write_eld(struct drm_connector *connector,
  5683. struct drm_crtc *crtc)
  5684. {
  5685. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5686. uint8_t *eld = connector->eld;
  5687. struct drm_device *dev = crtc->dev;
  5688. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5689. uint32_t eldv;
  5690. uint32_t i;
  5691. int len;
  5692. int pipe = to_intel_crtc(crtc)->pipe;
  5693. int tmp;
  5694. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5695. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5696. int aud_config = HSW_AUD_CFG(pipe);
  5697. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5698. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5699. /* Audio output enable */
  5700. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5701. tmp = I915_READ(aud_cntrl_st2);
  5702. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5703. I915_WRITE(aud_cntrl_st2, tmp);
  5704. /* Wait for 1 vertical blank */
  5705. intel_wait_for_vblank(dev, pipe);
  5706. /* Set ELD valid state */
  5707. tmp = I915_READ(aud_cntrl_st2);
  5708. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5709. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5710. I915_WRITE(aud_cntrl_st2, tmp);
  5711. tmp = I915_READ(aud_cntrl_st2);
  5712. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5713. /* Enable HDMI mode */
  5714. tmp = I915_READ(aud_config);
  5715. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5716. /* clear N_programing_enable and N_value_index */
  5717. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5718. I915_WRITE(aud_config, tmp);
  5719. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5720. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5721. intel_crtc->eld_vld = true;
  5722. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5723. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5724. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5725. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5726. } else
  5727. I915_WRITE(aud_config, 0);
  5728. if (intel_eld_uptodate(connector,
  5729. aud_cntrl_st2, eldv,
  5730. aud_cntl_st, IBX_ELD_ADDRESS,
  5731. hdmiw_hdmiedid))
  5732. return;
  5733. i = I915_READ(aud_cntrl_st2);
  5734. i &= ~eldv;
  5735. I915_WRITE(aud_cntrl_st2, i);
  5736. if (!eld[0])
  5737. return;
  5738. i = I915_READ(aud_cntl_st);
  5739. i &= ~IBX_ELD_ADDRESS;
  5740. I915_WRITE(aud_cntl_st, i);
  5741. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5742. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5743. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5744. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5745. for (i = 0; i < len; i++)
  5746. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5747. i = I915_READ(aud_cntrl_st2);
  5748. i |= eldv;
  5749. I915_WRITE(aud_cntrl_st2, i);
  5750. }
  5751. static void ironlake_write_eld(struct drm_connector *connector,
  5752. struct drm_crtc *crtc)
  5753. {
  5754. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5755. uint8_t *eld = connector->eld;
  5756. uint32_t eldv;
  5757. uint32_t i;
  5758. int len;
  5759. int hdmiw_hdmiedid;
  5760. int aud_config;
  5761. int aud_cntl_st;
  5762. int aud_cntrl_st2;
  5763. int pipe = to_intel_crtc(crtc)->pipe;
  5764. if (HAS_PCH_IBX(connector->dev)) {
  5765. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5766. aud_config = IBX_AUD_CFG(pipe);
  5767. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5768. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5769. } else {
  5770. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5771. aud_config = CPT_AUD_CFG(pipe);
  5772. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5773. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5774. }
  5775. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5776. i = I915_READ(aud_cntl_st);
  5777. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5778. if (!i) {
  5779. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5780. /* operate blindly on all ports */
  5781. eldv = IBX_ELD_VALIDB;
  5782. eldv |= IBX_ELD_VALIDB << 4;
  5783. eldv |= IBX_ELD_VALIDB << 8;
  5784. } else {
  5785. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5786. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5787. }
  5788. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5789. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5790. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5791. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5792. } else
  5793. I915_WRITE(aud_config, 0);
  5794. if (intel_eld_uptodate(connector,
  5795. aud_cntrl_st2, eldv,
  5796. aud_cntl_st, IBX_ELD_ADDRESS,
  5797. hdmiw_hdmiedid))
  5798. return;
  5799. i = I915_READ(aud_cntrl_st2);
  5800. i &= ~eldv;
  5801. I915_WRITE(aud_cntrl_st2, i);
  5802. if (!eld[0])
  5803. return;
  5804. i = I915_READ(aud_cntl_st);
  5805. i &= ~IBX_ELD_ADDRESS;
  5806. I915_WRITE(aud_cntl_st, i);
  5807. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5808. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5809. for (i = 0; i < len; i++)
  5810. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5811. i = I915_READ(aud_cntrl_st2);
  5812. i |= eldv;
  5813. I915_WRITE(aud_cntrl_st2, i);
  5814. }
  5815. void intel_write_eld(struct drm_encoder *encoder,
  5816. struct drm_display_mode *mode)
  5817. {
  5818. struct drm_crtc *crtc = encoder->crtc;
  5819. struct drm_connector *connector;
  5820. struct drm_device *dev = encoder->dev;
  5821. struct drm_i915_private *dev_priv = dev->dev_private;
  5822. connector = drm_select_eld(encoder, mode);
  5823. if (!connector)
  5824. return;
  5825. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5826. connector->base.id,
  5827. drm_get_connector_name(connector),
  5828. connector->encoder->base.id,
  5829. drm_get_encoder_name(connector->encoder));
  5830. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5831. if (dev_priv->display.write_eld)
  5832. dev_priv->display.write_eld(connector, crtc);
  5833. }
  5834. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5835. {
  5836. struct drm_device *dev = crtc->dev;
  5837. struct drm_i915_private *dev_priv = dev->dev_private;
  5838. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5839. bool visible = base != 0;
  5840. u32 cntl;
  5841. if (intel_crtc->cursor_visible == visible)
  5842. return;
  5843. cntl = I915_READ(_CURACNTR);
  5844. if (visible) {
  5845. /* On these chipsets we can only modify the base whilst
  5846. * the cursor is disabled.
  5847. */
  5848. I915_WRITE(_CURABASE, base);
  5849. cntl &= ~(CURSOR_FORMAT_MASK);
  5850. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5851. cntl |= CURSOR_ENABLE |
  5852. CURSOR_GAMMA_ENABLE |
  5853. CURSOR_FORMAT_ARGB;
  5854. } else
  5855. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5856. I915_WRITE(_CURACNTR, cntl);
  5857. intel_crtc->cursor_visible = visible;
  5858. }
  5859. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5860. {
  5861. struct drm_device *dev = crtc->dev;
  5862. struct drm_i915_private *dev_priv = dev->dev_private;
  5863. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5864. int pipe = intel_crtc->pipe;
  5865. bool visible = base != 0;
  5866. if (intel_crtc->cursor_visible != visible) {
  5867. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5868. if (base) {
  5869. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5870. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5871. cntl |= pipe << 28; /* Connect to correct pipe */
  5872. } else {
  5873. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5874. cntl |= CURSOR_MODE_DISABLE;
  5875. }
  5876. I915_WRITE(CURCNTR(pipe), cntl);
  5877. intel_crtc->cursor_visible = visible;
  5878. }
  5879. /* and commit changes on next vblank */
  5880. I915_WRITE(CURBASE(pipe), base);
  5881. }
  5882. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5883. {
  5884. struct drm_device *dev = crtc->dev;
  5885. struct drm_i915_private *dev_priv = dev->dev_private;
  5886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5887. int pipe = intel_crtc->pipe;
  5888. bool visible = base != 0;
  5889. if (intel_crtc->cursor_visible != visible) {
  5890. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5891. if (base) {
  5892. cntl &= ~CURSOR_MODE;
  5893. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5894. } else {
  5895. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5896. cntl |= CURSOR_MODE_DISABLE;
  5897. }
  5898. if (IS_HASWELL(dev)) {
  5899. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5900. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5901. }
  5902. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5903. intel_crtc->cursor_visible = visible;
  5904. }
  5905. /* and commit changes on next vblank */
  5906. I915_WRITE(CURBASE_IVB(pipe), base);
  5907. }
  5908. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5909. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5910. bool on)
  5911. {
  5912. struct drm_device *dev = crtc->dev;
  5913. struct drm_i915_private *dev_priv = dev->dev_private;
  5914. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5915. int pipe = intel_crtc->pipe;
  5916. int x = intel_crtc->cursor_x;
  5917. int y = intel_crtc->cursor_y;
  5918. u32 base = 0, pos = 0;
  5919. bool visible;
  5920. if (on)
  5921. base = intel_crtc->cursor_addr;
  5922. if (x >= intel_crtc->config.pipe_src_w)
  5923. base = 0;
  5924. if (y >= intel_crtc->config.pipe_src_h)
  5925. base = 0;
  5926. if (x < 0) {
  5927. if (x + intel_crtc->cursor_width <= 0)
  5928. base = 0;
  5929. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5930. x = -x;
  5931. }
  5932. pos |= x << CURSOR_X_SHIFT;
  5933. if (y < 0) {
  5934. if (y + intel_crtc->cursor_height <= 0)
  5935. base = 0;
  5936. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5937. y = -y;
  5938. }
  5939. pos |= y << CURSOR_Y_SHIFT;
  5940. visible = base != 0;
  5941. if (!visible && !intel_crtc->cursor_visible)
  5942. return;
  5943. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5944. I915_WRITE(CURPOS_IVB(pipe), pos);
  5945. ivb_update_cursor(crtc, base);
  5946. } else {
  5947. I915_WRITE(CURPOS(pipe), pos);
  5948. if (IS_845G(dev) || IS_I865G(dev))
  5949. i845_update_cursor(crtc, base);
  5950. else
  5951. i9xx_update_cursor(crtc, base);
  5952. }
  5953. }
  5954. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5955. struct drm_file *file,
  5956. uint32_t handle,
  5957. uint32_t width, uint32_t height)
  5958. {
  5959. struct drm_device *dev = crtc->dev;
  5960. struct drm_i915_private *dev_priv = dev->dev_private;
  5961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5962. struct drm_i915_gem_object *obj;
  5963. uint32_t addr;
  5964. int ret;
  5965. /* if we want to turn off the cursor ignore width and height */
  5966. if (!handle) {
  5967. DRM_DEBUG_KMS("cursor off\n");
  5968. addr = 0;
  5969. obj = NULL;
  5970. mutex_lock(&dev->struct_mutex);
  5971. goto finish;
  5972. }
  5973. /* Currently we only support 64x64 cursors */
  5974. if (width != 64 || height != 64) {
  5975. DRM_ERROR("we currently only support 64x64 cursors\n");
  5976. return -EINVAL;
  5977. }
  5978. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5979. if (&obj->base == NULL)
  5980. return -ENOENT;
  5981. if (obj->base.size < width * height * 4) {
  5982. DRM_ERROR("buffer is to small\n");
  5983. ret = -ENOMEM;
  5984. goto fail;
  5985. }
  5986. /* we only need to pin inside GTT if cursor is non-phy */
  5987. mutex_lock(&dev->struct_mutex);
  5988. if (!dev_priv->info->cursor_needs_physical) {
  5989. unsigned alignment;
  5990. if (obj->tiling_mode) {
  5991. DRM_ERROR("cursor cannot be tiled\n");
  5992. ret = -EINVAL;
  5993. goto fail_locked;
  5994. }
  5995. /* Note that the w/a also requires 2 PTE of padding following
  5996. * the bo. We currently fill all unused PTE with the shadow
  5997. * page and so we should always have valid PTE following the
  5998. * cursor preventing the VT-d warning.
  5999. */
  6000. alignment = 0;
  6001. if (need_vtd_wa(dev))
  6002. alignment = 64*1024;
  6003. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  6004. if (ret) {
  6005. DRM_ERROR("failed to move cursor bo into the GTT\n");
  6006. goto fail_locked;
  6007. }
  6008. ret = i915_gem_object_put_fence(obj);
  6009. if (ret) {
  6010. DRM_ERROR("failed to release fence for cursor");
  6011. goto fail_unpin;
  6012. }
  6013. addr = i915_gem_obj_ggtt_offset(obj);
  6014. } else {
  6015. int align = IS_I830(dev) ? 16 * 1024 : 256;
  6016. ret = i915_gem_attach_phys_object(dev, obj,
  6017. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  6018. align);
  6019. if (ret) {
  6020. DRM_ERROR("failed to attach phys object\n");
  6021. goto fail_locked;
  6022. }
  6023. addr = obj->phys_obj->handle->busaddr;
  6024. }
  6025. if (IS_GEN2(dev))
  6026. I915_WRITE(CURSIZE, (height << 12) | width);
  6027. finish:
  6028. if (intel_crtc->cursor_bo) {
  6029. if (dev_priv->info->cursor_needs_physical) {
  6030. if (intel_crtc->cursor_bo != obj)
  6031. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  6032. } else
  6033. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  6034. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  6035. }
  6036. mutex_unlock(&dev->struct_mutex);
  6037. intel_crtc->cursor_addr = addr;
  6038. intel_crtc->cursor_bo = obj;
  6039. intel_crtc->cursor_width = width;
  6040. intel_crtc->cursor_height = height;
  6041. if (intel_crtc->active)
  6042. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6043. return 0;
  6044. fail_unpin:
  6045. i915_gem_object_unpin_from_display_plane(obj);
  6046. fail_locked:
  6047. mutex_unlock(&dev->struct_mutex);
  6048. fail:
  6049. drm_gem_object_unreference_unlocked(&obj->base);
  6050. return ret;
  6051. }
  6052. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  6053. {
  6054. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6055. intel_crtc->cursor_x = x;
  6056. intel_crtc->cursor_y = y;
  6057. if (intel_crtc->active)
  6058. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6059. return 0;
  6060. }
  6061. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  6062. u16 *blue, uint32_t start, uint32_t size)
  6063. {
  6064. int end = (start + size > 256) ? 256 : start + size, i;
  6065. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6066. for (i = start; i < end; i++) {
  6067. intel_crtc->lut_r[i] = red[i] >> 8;
  6068. intel_crtc->lut_g[i] = green[i] >> 8;
  6069. intel_crtc->lut_b[i] = blue[i] >> 8;
  6070. }
  6071. intel_crtc_load_lut(crtc);
  6072. }
  6073. /* VESA 640x480x72Hz mode to set on the pipe */
  6074. static struct drm_display_mode load_detect_mode = {
  6075. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  6076. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  6077. };
  6078. static struct drm_framebuffer *
  6079. intel_framebuffer_create(struct drm_device *dev,
  6080. struct drm_mode_fb_cmd2 *mode_cmd,
  6081. struct drm_i915_gem_object *obj)
  6082. {
  6083. struct intel_framebuffer *intel_fb;
  6084. int ret;
  6085. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  6086. if (!intel_fb) {
  6087. drm_gem_object_unreference_unlocked(&obj->base);
  6088. return ERR_PTR(-ENOMEM);
  6089. }
  6090. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  6091. if (ret) {
  6092. drm_gem_object_unreference_unlocked(&obj->base);
  6093. kfree(intel_fb);
  6094. return ERR_PTR(ret);
  6095. }
  6096. return &intel_fb->base;
  6097. }
  6098. static u32
  6099. intel_framebuffer_pitch_for_width(int width, int bpp)
  6100. {
  6101. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6102. return ALIGN(pitch, 64);
  6103. }
  6104. static u32
  6105. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6106. {
  6107. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6108. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6109. }
  6110. static struct drm_framebuffer *
  6111. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6112. struct drm_display_mode *mode,
  6113. int depth, int bpp)
  6114. {
  6115. struct drm_i915_gem_object *obj;
  6116. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6117. obj = i915_gem_alloc_object(dev,
  6118. intel_framebuffer_size_for_mode(mode, bpp));
  6119. if (obj == NULL)
  6120. return ERR_PTR(-ENOMEM);
  6121. mode_cmd.width = mode->hdisplay;
  6122. mode_cmd.height = mode->vdisplay;
  6123. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6124. bpp);
  6125. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6126. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6127. }
  6128. static struct drm_framebuffer *
  6129. mode_fits_in_fbdev(struct drm_device *dev,
  6130. struct drm_display_mode *mode)
  6131. {
  6132. struct drm_i915_private *dev_priv = dev->dev_private;
  6133. struct drm_i915_gem_object *obj;
  6134. struct drm_framebuffer *fb;
  6135. if (dev_priv->fbdev == NULL)
  6136. return NULL;
  6137. obj = dev_priv->fbdev->ifb.obj;
  6138. if (obj == NULL)
  6139. return NULL;
  6140. fb = &dev_priv->fbdev->ifb.base;
  6141. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6142. fb->bits_per_pixel))
  6143. return NULL;
  6144. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6145. return NULL;
  6146. return fb;
  6147. }
  6148. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6149. struct drm_display_mode *mode,
  6150. struct intel_load_detect_pipe *old)
  6151. {
  6152. struct intel_crtc *intel_crtc;
  6153. struct intel_encoder *intel_encoder =
  6154. intel_attached_encoder(connector);
  6155. struct drm_crtc *possible_crtc;
  6156. struct drm_encoder *encoder = &intel_encoder->base;
  6157. struct drm_crtc *crtc = NULL;
  6158. struct drm_device *dev = encoder->dev;
  6159. struct drm_framebuffer *fb;
  6160. int i = -1;
  6161. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6162. connector->base.id, drm_get_connector_name(connector),
  6163. encoder->base.id, drm_get_encoder_name(encoder));
  6164. /*
  6165. * Algorithm gets a little messy:
  6166. *
  6167. * - if the connector already has an assigned crtc, use it (but make
  6168. * sure it's on first)
  6169. *
  6170. * - try to find the first unused crtc that can drive this connector,
  6171. * and use that if we find one
  6172. */
  6173. /* See if we already have a CRTC for this connector */
  6174. if (encoder->crtc) {
  6175. crtc = encoder->crtc;
  6176. mutex_lock(&crtc->mutex);
  6177. old->dpms_mode = connector->dpms;
  6178. old->load_detect_temp = false;
  6179. /* Make sure the crtc and connector are running */
  6180. if (connector->dpms != DRM_MODE_DPMS_ON)
  6181. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6182. return true;
  6183. }
  6184. /* Find an unused one (if possible) */
  6185. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6186. i++;
  6187. if (!(encoder->possible_crtcs & (1 << i)))
  6188. continue;
  6189. if (!possible_crtc->enabled) {
  6190. crtc = possible_crtc;
  6191. break;
  6192. }
  6193. }
  6194. /*
  6195. * If we didn't find an unused CRTC, don't use any.
  6196. */
  6197. if (!crtc) {
  6198. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6199. return false;
  6200. }
  6201. mutex_lock(&crtc->mutex);
  6202. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6203. to_intel_connector(connector)->new_encoder = intel_encoder;
  6204. intel_crtc = to_intel_crtc(crtc);
  6205. old->dpms_mode = connector->dpms;
  6206. old->load_detect_temp = true;
  6207. old->release_fb = NULL;
  6208. if (!mode)
  6209. mode = &load_detect_mode;
  6210. /* We need a framebuffer large enough to accommodate all accesses
  6211. * that the plane may generate whilst we perform load detection.
  6212. * We can not rely on the fbcon either being present (we get called
  6213. * during its initialisation to detect all boot displays, or it may
  6214. * not even exist) or that it is large enough to satisfy the
  6215. * requested mode.
  6216. */
  6217. fb = mode_fits_in_fbdev(dev, mode);
  6218. if (fb == NULL) {
  6219. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6220. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6221. old->release_fb = fb;
  6222. } else
  6223. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6224. if (IS_ERR(fb)) {
  6225. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6226. mutex_unlock(&crtc->mutex);
  6227. return false;
  6228. }
  6229. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6230. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6231. if (old->release_fb)
  6232. old->release_fb->funcs->destroy(old->release_fb);
  6233. mutex_unlock(&crtc->mutex);
  6234. return false;
  6235. }
  6236. /* let the connector get through one full cycle before testing */
  6237. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6238. return true;
  6239. }
  6240. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6241. struct intel_load_detect_pipe *old)
  6242. {
  6243. struct intel_encoder *intel_encoder =
  6244. intel_attached_encoder(connector);
  6245. struct drm_encoder *encoder = &intel_encoder->base;
  6246. struct drm_crtc *crtc = encoder->crtc;
  6247. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6248. connector->base.id, drm_get_connector_name(connector),
  6249. encoder->base.id, drm_get_encoder_name(encoder));
  6250. if (old->load_detect_temp) {
  6251. to_intel_connector(connector)->new_encoder = NULL;
  6252. intel_encoder->new_crtc = NULL;
  6253. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6254. if (old->release_fb) {
  6255. drm_framebuffer_unregister_private(old->release_fb);
  6256. drm_framebuffer_unreference(old->release_fb);
  6257. }
  6258. mutex_unlock(&crtc->mutex);
  6259. return;
  6260. }
  6261. /* Switch crtc and encoder back off if necessary */
  6262. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6263. connector->funcs->dpms(connector, old->dpms_mode);
  6264. mutex_unlock(&crtc->mutex);
  6265. }
  6266. static int i9xx_pll_refclk(struct drm_device *dev,
  6267. const struct intel_crtc_config *pipe_config)
  6268. {
  6269. struct drm_i915_private *dev_priv = dev->dev_private;
  6270. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6271. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6272. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6273. else if (HAS_PCH_SPLIT(dev))
  6274. return 120000;
  6275. else if (!IS_GEN2(dev))
  6276. return 96000;
  6277. else
  6278. return 48000;
  6279. }
  6280. /* Returns the clock of the currently programmed mode of the given pipe. */
  6281. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6282. struct intel_crtc_config *pipe_config)
  6283. {
  6284. struct drm_device *dev = crtc->base.dev;
  6285. struct drm_i915_private *dev_priv = dev->dev_private;
  6286. int pipe = pipe_config->cpu_transcoder;
  6287. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6288. u32 fp;
  6289. intel_clock_t clock;
  6290. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6291. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6292. fp = pipe_config->dpll_hw_state.fp0;
  6293. else
  6294. fp = pipe_config->dpll_hw_state.fp1;
  6295. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6296. if (IS_PINEVIEW(dev)) {
  6297. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6298. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6299. } else {
  6300. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6301. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6302. }
  6303. if (!IS_GEN2(dev)) {
  6304. if (IS_PINEVIEW(dev))
  6305. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6306. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6307. else
  6308. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6309. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6310. switch (dpll & DPLL_MODE_MASK) {
  6311. case DPLLB_MODE_DAC_SERIAL:
  6312. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6313. 5 : 10;
  6314. break;
  6315. case DPLLB_MODE_LVDS:
  6316. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6317. 7 : 14;
  6318. break;
  6319. default:
  6320. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6321. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6322. return;
  6323. }
  6324. if (IS_PINEVIEW(dev))
  6325. pineview_clock(refclk, &clock);
  6326. else
  6327. i9xx_clock(refclk, &clock);
  6328. } else {
  6329. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6330. if (is_lvds) {
  6331. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6332. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6333. clock.p2 = 14;
  6334. } else {
  6335. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6336. clock.p1 = 2;
  6337. else {
  6338. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6339. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6340. }
  6341. if (dpll & PLL_P2_DIVIDE_BY_4)
  6342. clock.p2 = 4;
  6343. else
  6344. clock.p2 = 2;
  6345. }
  6346. i9xx_clock(refclk, &clock);
  6347. }
  6348. /*
  6349. * This value includes pixel_multiplier. We will use
  6350. * port_clock to compute adjusted_mode.crtc_clock in the
  6351. * encoder's get_config() function.
  6352. */
  6353. pipe_config->port_clock = clock.dot;
  6354. }
  6355. int intel_dotclock_calculate(int link_freq,
  6356. const struct intel_link_m_n *m_n)
  6357. {
  6358. /*
  6359. * The calculation for the data clock is:
  6360. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6361. * But we want to avoid losing precison if possible, so:
  6362. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6363. *
  6364. * and the link clock is simpler:
  6365. * link_clock = (m * link_clock) / n
  6366. */
  6367. if (!m_n->link_n)
  6368. return 0;
  6369. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6370. }
  6371. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6372. struct intel_crtc_config *pipe_config)
  6373. {
  6374. struct drm_device *dev = crtc->base.dev;
  6375. /* read out port_clock from the DPLL */
  6376. i9xx_crtc_clock_get(crtc, pipe_config);
  6377. /*
  6378. * This value does not include pixel_multiplier.
  6379. * We will check that port_clock and adjusted_mode.crtc_clock
  6380. * agree once we know their relationship in the encoder's
  6381. * get_config() function.
  6382. */
  6383. pipe_config->adjusted_mode.crtc_clock =
  6384. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6385. &pipe_config->fdi_m_n);
  6386. }
  6387. /** Returns the currently programmed mode of the given pipe. */
  6388. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6389. struct drm_crtc *crtc)
  6390. {
  6391. struct drm_i915_private *dev_priv = dev->dev_private;
  6392. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6393. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6394. struct drm_display_mode *mode;
  6395. struct intel_crtc_config pipe_config;
  6396. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6397. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6398. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6399. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6400. enum pipe pipe = intel_crtc->pipe;
  6401. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6402. if (!mode)
  6403. return NULL;
  6404. /*
  6405. * Construct a pipe_config sufficient for getting the clock info
  6406. * back out of crtc_clock_get.
  6407. *
  6408. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6409. * to use a real value here instead.
  6410. */
  6411. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6412. pipe_config.pixel_multiplier = 1;
  6413. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6414. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6415. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6416. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6417. mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  6418. mode->hdisplay = (htot & 0xffff) + 1;
  6419. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6420. mode->hsync_start = (hsync & 0xffff) + 1;
  6421. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6422. mode->vdisplay = (vtot & 0xffff) + 1;
  6423. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6424. mode->vsync_start = (vsync & 0xffff) + 1;
  6425. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6426. drm_mode_set_name(mode);
  6427. return mode;
  6428. }
  6429. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6430. {
  6431. struct drm_device *dev = crtc->dev;
  6432. drm_i915_private_t *dev_priv = dev->dev_private;
  6433. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6434. int pipe = intel_crtc->pipe;
  6435. int dpll_reg = DPLL(pipe);
  6436. int dpll;
  6437. if (HAS_PCH_SPLIT(dev))
  6438. return;
  6439. if (!dev_priv->lvds_downclock_avail)
  6440. return;
  6441. dpll = I915_READ(dpll_reg);
  6442. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6443. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6444. assert_panel_unlocked(dev_priv, pipe);
  6445. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6446. I915_WRITE(dpll_reg, dpll);
  6447. intel_wait_for_vblank(dev, pipe);
  6448. dpll = I915_READ(dpll_reg);
  6449. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6450. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6451. }
  6452. }
  6453. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6454. {
  6455. struct drm_device *dev = crtc->dev;
  6456. drm_i915_private_t *dev_priv = dev->dev_private;
  6457. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6458. if (HAS_PCH_SPLIT(dev))
  6459. return;
  6460. if (!dev_priv->lvds_downclock_avail)
  6461. return;
  6462. /*
  6463. * Since this is called by a timer, we should never get here in
  6464. * the manual case.
  6465. */
  6466. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6467. int pipe = intel_crtc->pipe;
  6468. int dpll_reg = DPLL(pipe);
  6469. int dpll;
  6470. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6471. assert_panel_unlocked(dev_priv, pipe);
  6472. dpll = I915_READ(dpll_reg);
  6473. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6474. I915_WRITE(dpll_reg, dpll);
  6475. intel_wait_for_vblank(dev, pipe);
  6476. dpll = I915_READ(dpll_reg);
  6477. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6478. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6479. }
  6480. }
  6481. void intel_mark_busy(struct drm_device *dev)
  6482. {
  6483. struct drm_i915_private *dev_priv = dev->dev_private;
  6484. hsw_package_c8_gpu_busy(dev_priv);
  6485. i915_update_gfx_val(dev_priv);
  6486. }
  6487. void intel_mark_idle(struct drm_device *dev)
  6488. {
  6489. struct drm_i915_private *dev_priv = dev->dev_private;
  6490. struct drm_crtc *crtc;
  6491. hsw_package_c8_gpu_idle(dev_priv);
  6492. if (!i915_powersave)
  6493. return;
  6494. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6495. if (!crtc->fb)
  6496. continue;
  6497. intel_decrease_pllclock(crtc);
  6498. }
  6499. if (dev_priv->info->gen >= 6)
  6500. gen6_rps_idle(dev->dev_private);
  6501. }
  6502. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6503. struct intel_ring_buffer *ring)
  6504. {
  6505. struct drm_device *dev = obj->base.dev;
  6506. struct drm_crtc *crtc;
  6507. if (!i915_powersave)
  6508. return;
  6509. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6510. if (!crtc->fb)
  6511. continue;
  6512. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6513. continue;
  6514. intel_increase_pllclock(crtc);
  6515. if (ring && intel_fbc_enabled(dev))
  6516. ring->fbc_dirty = true;
  6517. }
  6518. }
  6519. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6520. {
  6521. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6522. struct drm_device *dev = crtc->dev;
  6523. struct intel_unpin_work *work;
  6524. unsigned long flags;
  6525. spin_lock_irqsave(&dev->event_lock, flags);
  6526. work = intel_crtc->unpin_work;
  6527. intel_crtc->unpin_work = NULL;
  6528. spin_unlock_irqrestore(&dev->event_lock, flags);
  6529. if (work) {
  6530. cancel_work_sync(&work->work);
  6531. kfree(work);
  6532. }
  6533. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6534. drm_crtc_cleanup(crtc);
  6535. kfree(intel_crtc);
  6536. }
  6537. static void intel_unpin_work_fn(struct work_struct *__work)
  6538. {
  6539. struct intel_unpin_work *work =
  6540. container_of(__work, struct intel_unpin_work, work);
  6541. struct drm_device *dev = work->crtc->dev;
  6542. mutex_lock(&dev->struct_mutex);
  6543. intel_unpin_fb_obj(work->old_fb_obj);
  6544. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6545. drm_gem_object_unreference(&work->old_fb_obj->base);
  6546. intel_update_fbc(dev);
  6547. mutex_unlock(&dev->struct_mutex);
  6548. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6549. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6550. kfree(work);
  6551. }
  6552. static void do_intel_finish_page_flip(struct drm_device *dev,
  6553. struct drm_crtc *crtc)
  6554. {
  6555. drm_i915_private_t *dev_priv = dev->dev_private;
  6556. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6557. struct intel_unpin_work *work;
  6558. unsigned long flags;
  6559. /* Ignore early vblank irqs */
  6560. if (intel_crtc == NULL)
  6561. return;
  6562. spin_lock_irqsave(&dev->event_lock, flags);
  6563. work = intel_crtc->unpin_work;
  6564. /* Ensure we don't miss a work->pending update ... */
  6565. smp_rmb();
  6566. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6567. spin_unlock_irqrestore(&dev->event_lock, flags);
  6568. return;
  6569. }
  6570. /* and that the unpin work is consistent wrt ->pending. */
  6571. smp_rmb();
  6572. intel_crtc->unpin_work = NULL;
  6573. if (work->event)
  6574. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6575. drm_vblank_put(dev, intel_crtc->pipe);
  6576. spin_unlock_irqrestore(&dev->event_lock, flags);
  6577. wake_up_all(&dev_priv->pending_flip_queue);
  6578. queue_work(dev_priv->wq, &work->work);
  6579. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6580. }
  6581. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6582. {
  6583. drm_i915_private_t *dev_priv = dev->dev_private;
  6584. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6585. do_intel_finish_page_flip(dev, crtc);
  6586. }
  6587. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6588. {
  6589. drm_i915_private_t *dev_priv = dev->dev_private;
  6590. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6591. do_intel_finish_page_flip(dev, crtc);
  6592. }
  6593. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6594. {
  6595. drm_i915_private_t *dev_priv = dev->dev_private;
  6596. struct intel_crtc *intel_crtc =
  6597. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6598. unsigned long flags;
  6599. /* NB: An MMIO update of the plane base pointer will also
  6600. * generate a page-flip completion irq, i.e. every modeset
  6601. * is also accompanied by a spurious intel_prepare_page_flip().
  6602. */
  6603. spin_lock_irqsave(&dev->event_lock, flags);
  6604. if (intel_crtc->unpin_work)
  6605. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6606. spin_unlock_irqrestore(&dev->event_lock, flags);
  6607. }
  6608. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6609. {
  6610. /* Ensure that the work item is consistent when activating it ... */
  6611. smp_wmb();
  6612. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6613. /* and that it is marked active as soon as the irq could fire. */
  6614. smp_wmb();
  6615. }
  6616. static int intel_gen2_queue_flip(struct drm_device *dev,
  6617. struct drm_crtc *crtc,
  6618. struct drm_framebuffer *fb,
  6619. struct drm_i915_gem_object *obj,
  6620. uint32_t flags)
  6621. {
  6622. struct drm_i915_private *dev_priv = dev->dev_private;
  6623. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6624. u32 flip_mask;
  6625. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6626. int ret;
  6627. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6628. if (ret)
  6629. goto err;
  6630. ret = intel_ring_begin(ring, 6);
  6631. if (ret)
  6632. goto err_unpin;
  6633. /* Can't queue multiple flips, so wait for the previous
  6634. * one to finish before executing the next.
  6635. */
  6636. if (intel_crtc->plane)
  6637. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6638. else
  6639. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6640. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6641. intel_ring_emit(ring, MI_NOOP);
  6642. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6643. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6644. intel_ring_emit(ring, fb->pitches[0]);
  6645. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6646. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6647. intel_mark_page_flip_active(intel_crtc);
  6648. __intel_ring_advance(ring);
  6649. return 0;
  6650. err_unpin:
  6651. intel_unpin_fb_obj(obj);
  6652. err:
  6653. return ret;
  6654. }
  6655. static int intel_gen3_queue_flip(struct drm_device *dev,
  6656. struct drm_crtc *crtc,
  6657. struct drm_framebuffer *fb,
  6658. struct drm_i915_gem_object *obj,
  6659. uint32_t flags)
  6660. {
  6661. struct drm_i915_private *dev_priv = dev->dev_private;
  6662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6663. u32 flip_mask;
  6664. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6665. int ret;
  6666. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6667. if (ret)
  6668. goto err;
  6669. ret = intel_ring_begin(ring, 6);
  6670. if (ret)
  6671. goto err_unpin;
  6672. if (intel_crtc->plane)
  6673. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6674. else
  6675. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6676. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6677. intel_ring_emit(ring, MI_NOOP);
  6678. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6679. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6680. intel_ring_emit(ring, fb->pitches[0]);
  6681. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6682. intel_ring_emit(ring, MI_NOOP);
  6683. intel_mark_page_flip_active(intel_crtc);
  6684. __intel_ring_advance(ring);
  6685. return 0;
  6686. err_unpin:
  6687. intel_unpin_fb_obj(obj);
  6688. err:
  6689. return ret;
  6690. }
  6691. static int intel_gen4_queue_flip(struct drm_device *dev,
  6692. struct drm_crtc *crtc,
  6693. struct drm_framebuffer *fb,
  6694. struct drm_i915_gem_object *obj,
  6695. uint32_t flags)
  6696. {
  6697. struct drm_i915_private *dev_priv = dev->dev_private;
  6698. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6699. uint32_t pf, pipesrc;
  6700. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6701. int ret;
  6702. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6703. if (ret)
  6704. goto err;
  6705. ret = intel_ring_begin(ring, 4);
  6706. if (ret)
  6707. goto err_unpin;
  6708. /* i965+ uses the linear or tiled offsets from the
  6709. * Display Registers (which do not change across a page-flip)
  6710. * so we need only reprogram the base address.
  6711. */
  6712. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6713. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6714. intel_ring_emit(ring, fb->pitches[0]);
  6715. intel_ring_emit(ring,
  6716. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6717. obj->tiling_mode);
  6718. /* XXX Enabling the panel-fitter across page-flip is so far
  6719. * untested on non-native modes, so ignore it for now.
  6720. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6721. */
  6722. pf = 0;
  6723. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6724. intel_ring_emit(ring, pf | pipesrc);
  6725. intel_mark_page_flip_active(intel_crtc);
  6726. __intel_ring_advance(ring);
  6727. return 0;
  6728. err_unpin:
  6729. intel_unpin_fb_obj(obj);
  6730. err:
  6731. return ret;
  6732. }
  6733. static int intel_gen6_queue_flip(struct drm_device *dev,
  6734. struct drm_crtc *crtc,
  6735. struct drm_framebuffer *fb,
  6736. struct drm_i915_gem_object *obj,
  6737. uint32_t flags)
  6738. {
  6739. struct drm_i915_private *dev_priv = dev->dev_private;
  6740. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6741. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6742. uint32_t pf, pipesrc;
  6743. int ret;
  6744. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6745. if (ret)
  6746. goto err;
  6747. ret = intel_ring_begin(ring, 4);
  6748. if (ret)
  6749. goto err_unpin;
  6750. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6751. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6752. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6753. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6754. /* Contrary to the suggestions in the documentation,
  6755. * "Enable Panel Fitter" does not seem to be required when page
  6756. * flipping with a non-native mode, and worse causes a normal
  6757. * modeset to fail.
  6758. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6759. */
  6760. pf = 0;
  6761. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6762. intel_ring_emit(ring, pf | pipesrc);
  6763. intel_mark_page_flip_active(intel_crtc);
  6764. __intel_ring_advance(ring);
  6765. return 0;
  6766. err_unpin:
  6767. intel_unpin_fb_obj(obj);
  6768. err:
  6769. return ret;
  6770. }
  6771. static int intel_gen7_queue_flip(struct drm_device *dev,
  6772. struct drm_crtc *crtc,
  6773. struct drm_framebuffer *fb,
  6774. struct drm_i915_gem_object *obj,
  6775. uint32_t flags)
  6776. {
  6777. struct drm_i915_private *dev_priv = dev->dev_private;
  6778. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6779. struct intel_ring_buffer *ring;
  6780. uint32_t plane_bit = 0;
  6781. int len, ret;
  6782. ring = obj->ring;
  6783. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6784. ring = &dev_priv->ring[BCS];
  6785. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6786. if (ret)
  6787. goto err;
  6788. switch(intel_crtc->plane) {
  6789. case PLANE_A:
  6790. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6791. break;
  6792. case PLANE_B:
  6793. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6794. break;
  6795. case PLANE_C:
  6796. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6797. break;
  6798. default:
  6799. WARN_ONCE(1, "unknown plane in flip command\n");
  6800. ret = -ENODEV;
  6801. goto err_unpin;
  6802. }
  6803. len = 4;
  6804. if (ring->id == RCS)
  6805. len += 6;
  6806. ret = intel_ring_begin(ring, len);
  6807. if (ret)
  6808. goto err_unpin;
  6809. /* Unmask the flip-done completion message. Note that the bspec says that
  6810. * we should do this for both the BCS and RCS, and that we must not unmask
  6811. * more than one flip event at any time (or ensure that one flip message
  6812. * can be sent by waiting for flip-done prior to queueing new flips).
  6813. * Experimentation says that BCS works despite DERRMR masking all
  6814. * flip-done completion events and that unmasking all planes at once
  6815. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6816. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6817. */
  6818. if (ring->id == RCS) {
  6819. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6820. intel_ring_emit(ring, DERRMR);
  6821. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6822. DERRMR_PIPEB_PRI_FLIP_DONE |
  6823. DERRMR_PIPEC_PRI_FLIP_DONE));
  6824. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6825. intel_ring_emit(ring, DERRMR);
  6826. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6827. }
  6828. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6829. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6830. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6831. intel_ring_emit(ring, (MI_NOOP));
  6832. intel_mark_page_flip_active(intel_crtc);
  6833. __intel_ring_advance(ring);
  6834. return 0;
  6835. err_unpin:
  6836. intel_unpin_fb_obj(obj);
  6837. err:
  6838. return ret;
  6839. }
  6840. static int intel_default_queue_flip(struct drm_device *dev,
  6841. struct drm_crtc *crtc,
  6842. struct drm_framebuffer *fb,
  6843. struct drm_i915_gem_object *obj,
  6844. uint32_t flags)
  6845. {
  6846. return -ENODEV;
  6847. }
  6848. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6849. struct drm_framebuffer *fb,
  6850. struct drm_pending_vblank_event *event,
  6851. uint32_t page_flip_flags)
  6852. {
  6853. struct drm_device *dev = crtc->dev;
  6854. struct drm_i915_private *dev_priv = dev->dev_private;
  6855. struct drm_framebuffer *old_fb = crtc->fb;
  6856. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6857. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6858. struct intel_unpin_work *work;
  6859. unsigned long flags;
  6860. int ret;
  6861. /* Can't change pixel format via MI display flips. */
  6862. if (fb->pixel_format != crtc->fb->pixel_format)
  6863. return -EINVAL;
  6864. /*
  6865. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6866. * Note that pitch changes could also affect these register.
  6867. */
  6868. if (INTEL_INFO(dev)->gen > 3 &&
  6869. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6870. fb->pitches[0] != crtc->fb->pitches[0]))
  6871. return -EINVAL;
  6872. work = kzalloc(sizeof(*work), GFP_KERNEL);
  6873. if (work == NULL)
  6874. return -ENOMEM;
  6875. work->event = event;
  6876. work->crtc = crtc;
  6877. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6878. INIT_WORK(&work->work, intel_unpin_work_fn);
  6879. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6880. if (ret)
  6881. goto free_work;
  6882. /* We borrow the event spin lock for protecting unpin_work */
  6883. spin_lock_irqsave(&dev->event_lock, flags);
  6884. if (intel_crtc->unpin_work) {
  6885. spin_unlock_irqrestore(&dev->event_lock, flags);
  6886. kfree(work);
  6887. drm_vblank_put(dev, intel_crtc->pipe);
  6888. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6889. return -EBUSY;
  6890. }
  6891. intel_crtc->unpin_work = work;
  6892. spin_unlock_irqrestore(&dev->event_lock, flags);
  6893. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6894. flush_workqueue(dev_priv->wq);
  6895. ret = i915_mutex_lock_interruptible(dev);
  6896. if (ret)
  6897. goto cleanup;
  6898. /* Reference the objects for the scheduled work. */
  6899. drm_gem_object_reference(&work->old_fb_obj->base);
  6900. drm_gem_object_reference(&obj->base);
  6901. crtc->fb = fb;
  6902. work->pending_flip_obj = obj;
  6903. work->enable_stall_check = true;
  6904. atomic_inc(&intel_crtc->unpin_work_count);
  6905. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6906. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6907. if (ret)
  6908. goto cleanup_pending;
  6909. intel_disable_fbc(dev);
  6910. intel_mark_fb_busy(obj, NULL);
  6911. mutex_unlock(&dev->struct_mutex);
  6912. trace_i915_flip_request(intel_crtc->plane, obj);
  6913. return 0;
  6914. cleanup_pending:
  6915. atomic_dec(&intel_crtc->unpin_work_count);
  6916. crtc->fb = old_fb;
  6917. drm_gem_object_unreference(&work->old_fb_obj->base);
  6918. drm_gem_object_unreference(&obj->base);
  6919. mutex_unlock(&dev->struct_mutex);
  6920. cleanup:
  6921. spin_lock_irqsave(&dev->event_lock, flags);
  6922. intel_crtc->unpin_work = NULL;
  6923. spin_unlock_irqrestore(&dev->event_lock, flags);
  6924. drm_vblank_put(dev, intel_crtc->pipe);
  6925. free_work:
  6926. kfree(work);
  6927. return ret;
  6928. }
  6929. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6930. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6931. .load_lut = intel_crtc_load_lut,
  6932. };
  6933. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6934. struct drm_crtc *crtc)
  6935. {
  6936. struct drm_device *dev;
  6937. struct drm_crtc *tmp;
  6938. int crtc_mask = 1;
  6939. WARN(!crtc, "checking null crtc?\n");
  6940. dev = crtc->dev;
  6941. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6942. if (tmp == crtc)
  6943. break;
  6944. crtc_mask <<= 1;
  6945. }
  6946. if (encoder->possible_crtcs & crtc_mask)
  6947. return true;
  6948. return false;
  6949. }
  6950. /**
  6951. * intel_modeset_update_staged_output_state
  6952. *
  6953. * Updates the staged output configuration state, e.g. after we've read out the
  6954. * current hw state.
  6955. */
  6956. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6957. {
  6958. struct intel_encoder *encoder;
  6959. struct intel_connector *connector;
  6960. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6961. base.head) {
  6962. connector->new_encoder =
  6963. to_intel_encoder(connector->base.encoder);
  6964. }
  6965. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6966. base.head) {
  6967. encoder->new_crtc =
  6968. to_intel_crtc(encoder->base.crtc);
  6969. }
  6970. }
  6971. /**
  6972. * intel_modeset_commit_output_state
  6973. *
  6974. * This function copies the stage display pipe configuration to the real one.
  6975. */
  6976. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6977. {
  6978. struct intel_encoder *encoder;
  6979. struct intel_connector *connector;
  6980. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6981. base.head) {
  6982. connector->base.encoder = &connector->new_encoder->base;
  6983. }
  6984. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6985. base.head) {
  6986. encoder->base.crtc = &encoder->new_crtc->base;
  6987. }
  6988. }
  6989. static void
  6990. connected_sink_compute_bpp(struct intel_connector * connector,
  6991. struct intel_crtc_config *pipe_config)
  6992. {
  6993. int bpp = pipe_config->pipe_bpp;
  6994. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6995. connector->base.base.id,
  6996. drm_get_connector_name(&connector->base));
  6997. /* Don't use an invalid EDID bpc value */
  6998. if (connector->base.display_info.bpc &&
  6999. connector->base.display_info.bpc * 3 < bpp) {
  7000. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  7001. bpp, connector->base.display_info.bpc*3);
  7002. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  7003. }
  7004. /* Clamp bpp to 8 on screens without EDID 1.4 */
  7005. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  7006. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  7007. bpp);
  7008. pipe_config->pipe_bpp = 24;
  7009. }
  7010. }
  7011. static int
  7012. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  7013. struct drm_framebuffer *fb,
  7014. struct intel_crtc_config *pipe_config)
  7015. {
  7016. struct drm_device *dev = crtc->base.dev;
  7017. struct intel_connector *connector;
  7018. int bpp;
  7019. switch (fb->pixel_format) {
  7020. case DRM_FORMAT_C8:
  7021. bpp = 8*3; /* since we go through a colormap */
  7022. break;
  7023. case DRM_FORMAT_XRGB1555:
  7024. case DRM_FORMAT_ARGB1555:
  7025. /* checked in intel_framebuffer_init already */
  7026. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  7027. return -EINVAL;
  7028. case DRM_FORMAT_RGB565:
  7029. bpp = 6*3; /* min is 18bpp */
  7030. break;
  7031. case DRM_FORMAT_XBGR8888:
  7032. case DRM_FORMAT_ABGR8888:
  7033. /* checked in intel_framebuffer_init already */
  7034. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7035. return -EINVAL;
  7036. case DRM_FORMAT_XRGB8888:
  7037. case DRM_FORMAT_ARGB8888:
  7038. bpp = 8*3;
  7039. break;
  7040. case DRM_FORMAT_XRGB2101010:
  7041. case DRM_FORMAT_ARGB2101010:
  7042. case DRM_FORMAT_XBGR2101010:
  7043. case DRM_FORMAT_ABGR2101010:
  7044. /* checked in intel_framebuffer_init already */
  7045. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7046. return -EINVAL;
  7047. bpp = 10*3;
  7048. break;
  7049. /* TODO: gen4+ supports 16 bpc floating point, too. */
  7050. default:
  7051. DRM_DEBUG_KMS("unsupported depth\n");
  7052. return -EINVAL;
  7053. }
  7054. pipe_config->pipe_bpp = bpp;
  7055. /* Clamp display bpp to EDID value */
  7056. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7057. base.head) {
  7058. if (!connector->new_encoder ||
  7059. connector->new_encoder->new_crtc != crtc)
  7060. continue;
  7061. connected_sink_compute_bpp(connector, pipe_config);
  7062. }
  7063. return bpp;
  7064. }
  7065. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  7066. {
  7067. DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  7068. "type: 0x%x flags: 0x%x\n",
  7069. mode->crtc_clock,
  7070. mode->crtc_hdisplay, mode->crtc_hsync_start,
  7071. mode->crtc_hsync_end, mode->crtc_htotal,
  7072. mode->crtc_vdisplay, mode->crtc_vsync_start,
  7073. mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  7074. }
  7075. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  7076. struct intel_crtc_config *pipe_config,
  7077. const char *context)
  7078. {
  7079. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  7080. context, pipe_name(crtc->pipe));
  7081. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  7082. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  7083. pipe_config->pipe_bpp, pipe_config->dither);
  7084. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7085. pipe_config->has_pch_encoder,
  7086. pipe_config->fdi_lanes,
  7087. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  7088. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  7089. pipe_config->fdi_m_n.tu);
  7090. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7091. pipe_config->has_dp_encoder,
  7092. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  7093. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  7094. pipe_config->dp_m_n.tu);
  7095. DRM_DEBUG_KMS("requested mode:\n");
  7096. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  7097. DRM_DEBUG_KMS("adjusted mode:\n");
  7098. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  7099. intel_dump_crtc_timings(&pipe_config->adjusted_mode);
  7100. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  7101. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  7102. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  7103. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  7104. pipe_config->gmch_pfit.control,
  7105. pipe_config->gmch_pfit.pgm_ratios,
  7106. pipe_config->gmch_pfit.lvds_border_bits);
  7107. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  7108. pipe_config->pch_pfit.pos,
  7109. pipe_config->pch_pfit.size,
  7110. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  7111. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  7112. DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  7113. }
  7114. static bool check_encoder_cloning(struct drm_crtc *crtc)
  7115. {
  7116. int num_encoders = 0;
  7117. bool uncloneable_encoders = false;
  7118. struct intel_encoder *encoder;
  7119. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  7120. base.head) {
  7121. if (&encoder->new_crtc->base != crtc)
  7122. continue;
  7123. num_encoders++;
  7124. if (!encoder->cloneable)
  7125. uncloneable_encoders = true;
  7126. }
  7127. return !(num_encoders > 1 && uncloneable_encoders);
  7128. }
  7129. static struct intel_crtc_config *
  7130. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7131. struct drm_framebuffer *fb,
  7132. struct drm_display_mode *mode)
  7133. {
  7134. struct drm_device *dev = crtc->dev;
  7135. struct intel_encoder *encoder;
  7136. struct intel_crtc_config *pipe_config;
  7137. int plane_bpp, ret = -EINVAL;
  7138. bool retry = true;
  7139. if (!check_encoder_cloning(crtc)) {
  7140. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7141. return ERR_PTR(-EINVAL);
  7142. }
  7143. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7144. if (!pipe_config)
  7145. return ERR_PTR(-ENOMEM);
  7146. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7147. drm_mode_copy(&pipe_config->requested_mode, mode);
  7148. pipe_config->cpu_transcoder =
  7149. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7150. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7151. /*
  7152. * Sanitize sync polarity flags based on requested ones. If neither
  7153. * positive or negative polarity is requested, treat this as meaning
  7154. * negative polarity.
  7155. */
  7156. if (!(pipe_config->adjusted_mode.flags &
  7157. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7158. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7159. if (!(pipe_config->adjusted_mode.flags &
  7160. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7161. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7162. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7163. * plane pixel format and any sink constraints into account. Returns the
  7164. * source plane bpp so that dithering can be selected on mismatches
  7165. * after encoders and crtc also have had their say. */
  7166. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7167. fb, pipe_config);
  7168. if (plane_bpp < 0)
  7169. goto fail;
  7170. /*
  7171. * Determine the real pipe dimensions. Note that stereo modes can
  7172. * increase the actual pipe size due to the frame doubling and
  7173. * insertion of additional space for blanks between the frame. This
  7174. * is stored in the crtc timings. We use the requested mode to do this
  7175. * computation to clearly distinguish it from the adjusted mode, which
  7176. * can be changed by the connectors in the below retry loop.
  7177. */
  7178. drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
  7179. pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
  7180. pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
  7181. encoder_retry:
  7182. /* Ensure the port clock defaults are reset when retrying. */
  7183. pipe_config->port_clock = 0;
  7184. pipe_config->pixel_multiplier = 1;
  7185. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7186. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
  7187. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7188. * adjust it according to limitations or connector properties, and also
  7189. * a chance to reject the mode entirely.
  7190. */
  7191. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7192. base.head) {
  7193. if (&encoder->new_crtc->base != crtc)
  7194. continue;
  7195. if (!(encoder->compute_config(encoder, pipe_config))) {
  7196. DRM_DEBUG_KMS("Encoder config failure\n");
  7197. goto fail;
  7198. }
  7199. }
  7200. /* Set default port clock if not overwritten by the encoder. Needs to be
  7201. * done afterwards in case the encoder adjusts the mode. */
  7202. if (!pipe_config->port_clock)
  7203. pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
  7204. * pipe_config->pixel_multiplier;
  7205. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7206. if (ret < 0) {
  7207. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7208. goto fail;
  7209. }
  7210. if (ret == RETRY) {
  7211. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7212. ret = -EINVAL;
  7213. goto fail;
  7214. }
  7215. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7216. retry = false;
  7217. goto encoder_retry;
  7218. }
  7219. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7220. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7221. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7222. return pipe_config;
  7223. fail:
  7224. kfree(pipe_config);
  7225. return ERR_PTR(ret);
  7226. }
  7227. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7228. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7229. static void
  7230. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7231. unsigned *prepare_pipes, unsigned *disable_pipes)
  7232. {
  7233. struct intel_crtc *intel_crtc;
  7234. struct drm_device *dev = crtc->dev;
  7235. struct intel_encoder *encoder;
  7236. struct intel_connector *connector;
  7237. struct drm_crtc *tmp_crtc;
  7238. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7239. /* Check which crtcs have changed outputs connected to them, these need
  7240. * to be part of the prepare_pipes mask. We don't (yet) support global
  7241. * modeset across multiple crtcs, so modeset_pipes will only have one
  7242. * bit set at most. */
  7243. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7244. base.head) {
  7245. if (connector->base.encoder == &connector->new_encoder->base)
  7246. continue;
  7247. if (connector->base.encoder) {
  7248. tmp_crtc = connector->base.encoder->crtc;
  7249. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7250. }
  7251. if (connector->new_encoder)
  7252. *prepare_pipes |=
  7253. 1 << connector->new_encoder->new_crtc->pipe;
  7254. }
  7255. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7256. base.head) {
  7257. if (encoder->base.crtc == &encoder->new_crtc->base)
  7258. continue;
  7259. if (encoder->base.crtc) {
  7260. tmp_crtc = encoder->base.crtc;
  7261. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7262. }
  7263. if (encoder->new_crtc)
  7264. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7265. }
  7266. /* Check for any pipes that will be fully disabled ... */
  7267. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7268. base.head) {
  7269. bool used = false;
  7270. /* Don't try to disable disabled crtcs. */
  7271. if (!intel_crtc->base.enabled)
  7272. continue;
  7273. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7274. base.head) {
  7275. if (encoder->new_crtc == intel_crtc)
  7276. used = true;
  7277. }
  7278. if (!used)
  7279. *disable_pipes |= 1 << intel_crtc->pipe;
  7280. }
  7281. /* set_mode is also used to update properties on life display pipes. */
  7282. intel_crtc = to_intel_crtc(crtc);
  7283. if (crtc->enabled)
  7284. *prepare_pipes |= 1 << intel_crtc->pipe;
  7285. /*
  7286. * For simplicity do a full modeset on any pipe where the output routing
  7287. * changed. We could be more clever, but that would require us to be
  7288. * more careful with calling the relevant encoder->mode_set functions.
  7289. */
  7290. if (*prepare_pipes)
  7291. *modeset_pipes = *prepare_pipes;
  7292. /* ... and mask these out. */
  7293. *modeset_pipes &= ~(*disable_pipes);
  7294. *prepare_pipes &= ~(*disable_pipes);
  7295. /*
  7296. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7297. * obies this rule, but the modeset restore mode of
  7298. * intel_modeset_setup_hw_state does not.
  7299. */
  7300. *modeset_pipes &= 1 << intel_crtc->pipe;
  7301. *prepare_pipes &= 1 << intel_crtc->pipe;
  7302. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7303. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7304. }
  7305. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7306. {
  7307. struct drm_encoder *encoder;
  7308. struct drm_device *dev = crtc->dev;
  7309. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7310. if (encoder->crtc == crtc)
  7311. return true;
  7312. return false;
  7313. }
  7314. static void
  7315. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7316. {
  7317. struct intel_encoder *intel_encoder;
  7318. struct intel_crtc *intel_crtc;
  7319. struct drm_connector *connector;
  7320. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7321. base.head) {
  7322. if (!intel_encoder->base.crtc)
  7323. continue;
  7324. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7325. if (prepare_pipes & (1 << intel_crtc->pipe))
  7326. intel_encoder->connectors_active = false;
  7327. }
  7328. intel_modeset_commit_output_state(dev);
  7329. /* Update computed state. */
  7330. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7331. base.head) {
  7332. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7333. }
  7334. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7335. if (!connector->encoder || !connector->encoder->crtc)
  7336. continue;
  7337. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7338. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7339. struct drm_property *dpms_property =
  7340. dev->mode_config.dpms_property;
  7341. connector->dpms = DRM_MODE_DPMS_ON;
  7342. drm_object_property_set_value(&connector->base,
  7343. dpms_property,
  7344. DRM_MODE_DPMS_ON);
  7345. intel_encoder = to_intel_encoder(connector->encoder);
  7346. intel_encoder->connectors_active = true;
  7347. }
  7348. }
  7349. }
  7350. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7351. {
  7352. int diff;
  7353. if (clock1 == clock2)
  7354. return true;
  7355. if (!clock1 || !clock2)
  7356. return false;
  7357. diff = abs(clock1 - clock2);
  7358. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7359. return true;
  7360. return false;
  7361. }
  7362. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7363. list_for_each_entry((intel_crtc), \
  7364. &(dev)->mode_config.crtc_list, \
  7365. base.head) \
  7366. if (mask & (1 <<(intel_crtc)->pipe))
  7367. static bool
  7368. intel_pipe_config_compare(struct drm_device *dev,
  7369. struct intel_crtc_config *current_config,
  7370. struct intel_crtc_config *pipe_config)
  7371. {
  7372. #define PIPE_CONF_CHECK_X(name) \
  7373. if (current_config->name != pipe_config->name) { \
  7374. DRM_ERROR("mismatch in " #name " " \
  7375. "(expected 0x%08x, found 0x%08x)\n", \
  7376. current_config->name, \
  7377. pipe_config->name); \
  7378. return false; \
  7379. }
  7380. #define PIPE_CONF_CHECK_I(name) \
  7381. if (current_config->name != pipe_config->name) { \
  7382. DRM_ERROR("mismatch in " #name " " \
  7383. "(expected %i, found %i)\n", \
  7384. current_config->name, \
  7385. pipe_config->name); \
  7386. return false; \
  7387. }
  7388. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7389. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7390. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7391. "(expected %i, found %i)\n", \
  7392. current_config->name & (mask), \
  7393. pipe_config->name & (mask)); \
  7394. return false; \
  7395. }
  7396. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7397. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7398. DRM_ERROR("mismatch in " #name " " \
  7399. "(expected %i, found %i)\n", \
  7400. current_config->name, \
  7401. pipe_config->name); \
  7402. return false; \
  7403. }
  7404. #define PIPE_CONF_QUIRK(quirk) \
  7405. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7406. PIPE_CONF_CHECK_I(cpu_transcoder);
  7407. PIPE_CONF_CHECK_I(has_pch_encoder);
  7408. PIPE_CONF_CHECK_I(fdi_lanes);
  7409. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7410. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7411. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7412. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7413. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7414. PIPE_CONF_CHECK_I(has_dp_encoder);
  7415. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7416. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7417. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7418. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7419. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7420. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7421. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7422. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7423. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7424. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7425. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7426. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7427. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7428. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7429. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7430. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7431. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7432. PIPE_CONF_CHECK_I(pixel_multiplier);
  7433. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7434. DRM_MODE_FLAG_INTERLACE);
  7435. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7436. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7437. DRM_MODE_FLAG_PHSYNC);
  7438. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7439. DRM_MODE_FLAG_NHSYNC);
  7440. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7441. DRM_MODE_FLAG_PVSYNC);
  7442. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7443. DRM_MODE_FLAG_NVSYNC);
  7444. }
  7445. PIPE_CONF_CHECK_I(pipe_src_w);
  7446. PIPE_CONF_CHECK_I(pipe_src_h);
  7447. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7448. /* pfit ratios are autocomputed by the hw on gen4+ */
  7449. if (INTEL_INFO(dev)->gen < 4)
  7450. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7451. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7452. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7453. if (current_config->pch_pfit.enabled) {
  7454. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7455. PIPE_CONF_CHECK_I(pch_pfit.size);
  7456. }
  7457. PIPE_CONF_CHECK_I(ips_enabled);
  7458. PIPE_CONF_CHECK_I(double_wide);
  7459. PIPE_CONF_CHECK_I(shared_dpll);
  7460. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7461. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7462. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7463. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7464. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7465. PIPE_CONF_CHECK_I(pipe_bpp);
  7466. if (!IS_HASWELL(dev)) {
  7467. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
  7468. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7469. }
  7470. #undef PIPE_CONF_CHECK_X
  7471. #undef PIPE_CONF_CHECK_I
  7472. #undef PIPE_CONF_CHECK_FLAGS
  7473. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7474. #undef PIPE_CONF_QUIRK
  7475. return true;
  7476. }
  7477. static void
  7478. check_connector_state(struct drm_device *dev)
  7479. {
  7480. struct intel_connector *connector;
  7481. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7482. base.head) {
  7483. /* This also checks the encoder/connector hw state with the
  7484. * ->get_hw_state callbacks. */
  7485. intel_connector_check_state(connector);
  7486. WARN(&connector->new_encoder->base != connector->base.encoder,
  7487. "connector's staged encoder doesn't match current encoder\n");
  7488. }
  7489. }
  7490. static void
  7491. check_encoder_state(struct drm_device *dev)
  7492. {
  7493. struct intel_encoder *encoder;
  7494. struct intel_connector *connector;
  7495. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7496. base.head) {
  7497. bool enabled = false;
  7498. bool active = false;
  7499. enum pipe pipe, tracked_pipe;
  7500. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7501. encoder->base.base.id,
  7502. drm_get_encoder_name(&encoder->base));
  7503. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7504. "encoder's stage crtc doesn't match current crtc\n");
  7505. WARN(encoder->connectors_active && !encoder->base.crtc,
  7506. "encoder's active_connectors set, but no crtc\n");
  7507. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7508. base.head) {
  7509. if (connector->base.encoder != &encoder->base)
  7510. continue;
  7511. enabled = true;
  7512. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7513. active = true;
  7514. }
  7515. WARN(!!encoder->base.crtc != enabled,
  7516. "encoder's enabled state mismatch "
  7517. "(expected %i, found %i)\n",
  7518. !!encoder->base.crtc, enabled);
  7519. WARN(active && !encoder->base.crtc,
  7520. "active encoder with no crtc\n");
  7521. WARN(encoder->connectors_active != active,
  7522. "encoder's computed active state doesn't match tracked active state "
  7523. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7524. active = encoder->get_hw_state(encoder, &pipe);
  7525. WARN(active != encoder->connectors_active,
  7526. "encoder's hw state doesn't match sw tracking "
  7527. "(expected %i, found %i)\n",
  7528. encoder->connectors_active, active);
  7529. if (!encoder->base.crtc)
  7530. continue;
  7531. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7532. WARN(active && pipe != tracked_pipe,
  7533. "active encoder's pipe doesn't match"
  7534. "(expected %i, found %i)\n",
  7535. tracked_pipe, pipe);
  7536. }
  7537. }
  7538. static void
  7539. check_crtc_state(struct drm_device *dev)
  7540. {
  7541. drm_i915_private_t *dev_priv = dev->dev_private;
  7542. struct intel_crtc *crtc;
  7543. struct intel_encoder *encoder;
  7544. struct intel_crtc_config pipe_config;
  7545. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7546. base.head) {
  7547. bool enabled = false;
  7548. bool active = false;
  7549. memset(&pipe_config, 0, sizeof(pipe_config));
  7550. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7551. crtc->base.base.id);
  7552. WARN(crtc->active && !crtc->base.enabled,
  7553. "active crtc, but not enabled in sw tracking\n");
  7554. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7555. base.head) {
  7556. if (encoder->base.crtc != &crtc->base)
  7557. continue;
  7558. enabled = true;
  7559. if (encoder->connectors_active)
  7560. active = true;
  7561. }
  7562. WARN(active != crtc->active,
  7563. "crtc's computed active state doesn't match tracked active state "
  7564. "(expected %i, found %i)\n", active, crtc->active);
  7565. WARN(enabled != crtc->base.enabled,
  7566. "crtc's computed enabled state doesn't match tracked enabled state "
  7567. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7568. active = dev_priv->display.get_pipe_config(crtc,
  7569. &pipe_config);
  7570. /* hw state is inconsistent with the pipe A quirk */
  7571. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7572. active = crtc->active;
  7573. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7574. base.head) {
  7575. enum pipe pipe;
  7576. if (encoder->base.crtc != &crtc->base)
  7577. continue;
  7578. if (encoder->get_config &&
  7579. encoder->get_hw_state(encoder, &pipe))
  7580. encoder->get_config(encoder, &pipe_config);
  7581. }
  7582. WARN(crtc->active != active,
  7583. "crtc active state doesn't match with hw state "
  7584. "(expected %i, found %i)\n", crtc->active, active);
  7585. if (active &&
  7586. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7587. WARN(1, "pipe state doesn't match!\n");
  7588. intel_dump_pipe_config(crtc, &pipe_config,
  7589. "[hw state]");
  7590. intel_dump_pipe_config(crtc, &crtc->config,
  7591. "[sw state]");
  7592. }
  7593. }
  7594. }
  7595. static void
  7596. check_shared_dpll_state(struct drm_device *dev)
  7597. {
  7598. drm_i915_private_t *dev_priv = dev->dev_private;
  7599. struct intel_crtc *crtc;
  7600. struct intel_dpll_hw_state dpll_hw_state;
  7601. int i;
  7602. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7603. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7604. int enabled_crtcs = 0, active_crtcs = 0;
  7605. bool active;
  7606. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7607. DRM_DEBUG_KMS("%s\n", pll->name);
  7608. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7609. WARN(pll->active > pll->refcount,
  7610. "more active pll users than references: %i vs %i\n",
  7611. pll->active, pll->refcount);
  7612. WARN(pll->active && !pll->on,
  7613. "pll in active use but not on in sw tracking\n");
  7614. WARN(pll->on && !pll->active,
  7615. "pll in on but not on in use in sw tracking\n");
  7616. WARN(pll->on != active,
  7617. "pll on state mismatch (expected %i, found %i)\n",
  7618. pll->on, active);
  7619. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7620. base.head) {
  7621. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7622. enabled_crtcs++;
  7623. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7624. active_crtcs++;
  7625. }
  7626. WARN(pll->active != active_crtcs,
  7627. "pll active crtcs mismatch (expected %i, found %i)\n",
  7628. pll->active, active_crtcs);
  7629. WARN(pll->refcount != enabled_crtcs,
  7630. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7631. pll->refcount, enabled_crtcs);
  7632. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7633. sizeof(dpll_hw_state)),
  7634. "pll hw state mismatch\n");
  7635. }
  7636. }
  7637. void
  7638. intel_modeset_check_state(struct drm_device *dev)
  7639. {
  7640. check_connector_state(dev);
  7641. check_encoder_state(dev);
  7642. check_crtc_state(dev);
  7643. check_shared_dpll_state(dev);
  7644. }
  7645. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7646. int dotclock)
  7647. {
  7648. /*
  7649. * FDI already provided one idea for the dotclock.
  7650. * Yell if the encoder disagrees.
  7651. */
  7652. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
  7653. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7654. pipe_config->adjusted_mode.crtc_clock, dotclock);
  7655. }
  7656. static int __intel_set_mode(struct drm_crtc *crtc,
  7657. struct drm_display_mode *mode,
  7658. int x, int y, struct drm_framebuffer *fb)
  7659. {
  7660. struct drm_device *dev = crtc->dev;
  7661. drm_i915_private_t *dev_priv = dev->dev_private;
  7662. struct drm_display_mode *saved_mode, *saved_hwmode;
  7663. struct intel_crtc_config *pipe_config = NULL;
  7664. struct intel_crtc *intel_crtc;
  7665. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7666. int ret = 0;
  7667. saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
  7668. if (!saved_mode)
  7669. return -ENOMEM;
  7670. saved_hwmode = saved_mode + 1;
  7671. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7672. &prepare_pipes, &disable_pipes);
  7673. *saved_hwmode = crtc->hwmode;
  7674. *saved_mode = crtc->mode;
  7675. /* Hack: Because we don't (yet) support global modeset on multiple
  7676. * crtcs, we don't keep track of the new mode for more than one crtc.
  7677. * Hence simply check whether any bit is set in modeset_pipes in all the
  7678. * pieces of code that are not yet converted to deal with mutliple crtcs
  7679. * changing their mode at the same time. */
  7680. if (modeset_pipes) {
  7681. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7682. if (IS_ERR(pipe_config)) {
  7683. ret = PTR_ERR(pipe_config);
  7684. pipe_config = NULL;
  7685. goto out;
  7686. }
  7687. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7688. "[modeset]");
  7689. }
  7690. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7691. intel_crtc_disable(&intel_crtc->base);
  7692. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7693. if (intel_crtc->base.enabled)
  7694. dev_priv->display.crtc_disable(&intel_crtc->base);
  7695. }
  7696. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7697. * to set it here already despite that we pass it down the callchain.
  7698. */
  7699. if (modeset_pipes) {
  7700. crtc->mode = *mode;
  7701. /* mode_set/enable/disable functions rely on a correct pipe
  7702. * config. */
  7703. to_intel_crtc(crtc)->config = *pipe_config;
  7704. }
  7705. /* Only after disabling all output pipelines that will be changed can we
  7706. * update the the output configuration. */
  7707. intel_modeset_update_state(dev, prepare_pipes);
  7708. if (dev_priv->display.modeset_global_resources)
  7709. dev_priv->display.modeset_global_resources(dev);
  7710. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7711. * on the DPLL.
  7712. */
  7713. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7714. ret = intel_crtc_mode_set(&intel_crtc->base,
  7715. x, y, fb);
  7716. if (ret)
  7717. goto done;
  7718. }
  7719. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7720. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7721. dev_priv->display.crtc_enable(&intel_crtc->base);
  7722. if (modeset_pipes) {
  7723. /* Store real post-adjustment hardware mode. */
  7724. crtc->hwmode = pipe_config->adjusted_mode;
  7725. /* Calculate and store various constants which
  7726. * are later needed by vblank and swap-completion
  7727. * timestamping. They are derived from true hwmode.
  7728. */
  7729. drm_calc_timestamping_constants(crtc);
  7730. }
  7731. /* FIXME: add subpixel order */
  7732. done:
  7733. if (ret && crtc->enabled) {
  7734. crtc->hwmode = *saved_hwmode;
  7735. crtc->mode = *saved_mode;
  7736. }
  7737. out:
  7738. kfree(pipe_config);
  7739. kfree(saved_mode);
  7740. return ret;
  7741. }
  7742. static int intel_set_mode(struct drm_crtc *crtc,
  7743. struct drm_display_mode *mode,
  7744. int x, int y, struct drm_framebuffer *fb)
  7745. {
  7746. int ret;
  7747. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7748. if (ret == 0)
  7749. intel_modeset_check_state(crtc->dev);
  7750. return ret;
  7751. }
  7752. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7753. {
  7754. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7755. }
  7756. #undef for_each_intel_crtc_masked
  7757. static void intel_set_config_free(struct intel_set_config *config)
  7758. {
  7759. if (!config)
  7760. return;
  7761. kfree(config->save_connector_encoders);
  7762. kfree(config->save_encoder_crtcs);
  7763. kfree(config);
  7764. }
  7765. static int intel_set_config_save_state(struct drm_device *dev,
  7766. struct intel_set_config *config)
  7767. {
  7768. struct drm_encoder *encoder;
  7769. struct drm_connector *connector;
  7770. int count;
  7771. config->save_encoder_crtcs =
  7772. kcalloc(dev->mode_config.num_encoder,
  7773. sizeof(struct drm_crtc *), GFP_KERNEL);
  7774. if (!config->save_encoder_crtcs)
  7775. return -ENOMEM;
  7776. config->save_connector_encoders =
  7777. kcalloc(dev->mode_config.num_connector,
  7778. sizeof(struct drm_encoder *), GFP_KERNEL);
  7779. if (!config->save_connector_encoders)
  7780. return -ENOMEM;
  7781. /* Copy data. Note that driver private data is not affected.
  7782. * Should anything bad happen only the expected state is
  7783. * restored, not the drivers personal bookkeeping.
  7784. */
  7785. count = 0;
  7786. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7787. config->save_encoder_crtcs[count++] = encoder->crtc;
  7788. }
  7789. count = 0;
  7790. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7791. config->save_connector_encoders[count++] = connector->encoder;
  7792. }
  7793. return 0;
  7794. }
  7795. static void intel_set_config_restore_state(struct drm_device *dev,
  7796. struct intel_set_config *config)
  7797. {
  7798. struct intel_encoder *encoder;
  7799. struct intel_connector *connector;
  7800. int count;
  7801. count = 0;
  7802. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7803. encoder->new_crtc =
  7804. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7805. }
  7806. count = 0;
  7807. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7808. connector->new_encoder =
  7809. to_intel_encoder(config->save_connector_encoders[count++]);
  7810. }
  7811. }
  7812. static bool
  7813. is_crtc_connector_off(struct drm_mode_set *set)
  7814. {
  7815. int i;
  7816. if (set->num_connectors == 0)
  7817. return false;
  7818. if (WARN_ON(set->connectors == NULL))
  7819. return false;
  7820. for (i = 0; i < set->num_connectors; i++)
  7821. if (set->connectors[i]->encoder &&
  7822. set->connectors[i]->encoder->crtc == set->crtc &&
  7823. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7824. return true;
  7825. return false;
  7826. }
  7827. static void
  7828. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7829. struct intel_set_config *config)
  7830. {
  7831. /* We should be able to check here if the fb has the same properties
  7832. * and then just flip_or_move it */
  7833. if (is_crtc_connector_off(set)) {
  7834. config->mode_changed = true;
  7835. } else if (set->crtc->fb != set->fb) {
  7836. /* If we have no fb then treat it as a full mode set */
  7837. if (set->crtc->fb == NULL) {
  7838. struct intel_crtc *intel_crtc =
  7839. to_intel_crtc(set->crtc);
  7840. if (intel_crtc->active && i915_fastboot) {
  7841. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7842. config->fb_changed = true;
  7843. } else {
  7844. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7845. config->mode_changed = true;
  7846. }
  7847. } else if (set->fb == NULL) {
  7848. config->mode_changed = true;
  7849. } else if (set->fb->pixel_format !=
  7850. set->crtc->fb->pixel_format) {
  7851. config->mode_changed = true;
  7852. } else {
  7853. config->fb_changed = true;
  7854. }
  7855. }
  7856. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7857. config->fb_changed = true;
  7858. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7859. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7860. drm_mode_debug_printmodeline(&set->crtc->mode);
  7861. drm_mode_debug_printmodeline(set->mode);
  7862. config->mode_changed = true;
  7863. }
  7864. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7865. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7866. }
  7867. static int
  7868. intel_modeset_stage_output_state(struct drm_device *dev,
  7869. struct drm_mode_set *set,
  7870. struct intel_set_config *config)
  7871. {
  7872. struct drm_crtc *new_crtc;
  7873. struct intel_connector *connector;
  7874. struct intel_encoder *encoder;
  7875. int ro;
  7876. /* The upper layers ensure that we either disable a crtc or have a list
  7877. * of connectors. For paranoia, double-check this. */
  7878. WARN_ON(!set->fb && (set->num_connectors != 0));
  7879. WARN_ON(set->fb && (set->num_connectors == 0));
  7880. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7881. base.head) {
  7882. /* Otherwise traverse passed in connector list and get encoders
  7883. * for them. */
  7884. for (ro = 0; ro < set->num_connectors; ro++) {
  7885. if (set->connectors[ro] == &connector->base) {
  7886. connector->new_encoder = connector->encoder;
  7887. break;
  7888. }
  7889. }
  7890. /* If we disable the crtc, disable all its connectors. Also, if
  7891. * the connector is on the changing crtc but not on the new
  7892. * connector list, disable it. */
  7893. if ((!set->fb || ro == set->num_connectors) &&
  7894. connector->base.encoder &&
  7895. connector->base.encoder->crtc == set->crtc) {
  7896. connector->new_encoder = NULL;
  7897. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7898. connector->base.base.id,
  7899. drm_get_connector_name(&connector->base));
  7900. }
  7901. if (&connector->new_encoder->base != connector->base.encoder) {
  7902. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7903. config->mode_changed = true;
  7904. }
  7905. }
  7906. /* connector->new_encoder is now updated for all connectors. */
  7907. /* Update crtc of enabled connectors. */
  7908. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7909. base.head) {
  7910. if (!connector->new_encoder)
  7911. continue;
  7912. new_crtc = connector->new_encoder->base.crtc;
  7913. for (ro = 0; ro < set->num_connectors; ro++) {
  7914. if (set->connectors[ro] == &connector->base)
  7915. new_crtc = set->crtc;
  7916. }
  7917. /* Make sure the new CRTC will work with the encoder */
  7918. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7919. new_crtc)) {
  7920. return -EINVAL;
  7921. }
  7922. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7923. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7924. connector->base.base.id,
  7925. drm_get_connector_name(&connector->base),
  7926. new_crtc->base.id);
  7927. }
  7928. /* Check for any encoders that needs to be disabled. */
  7929. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7930. base.head) {
  7931. list_for_each_entry(connector,
  7932. &dev->mode_config.connector_list,
  7933. base.head) {
  7934. if (connector->new_encoder == encoder) {
  7935. WARN_ON(!connector->new_encoder->new_crtc);
  7936. goto next_encoder;
  7937. }
  7938. }
  7939. encoder->new_crtc = NULL;
  7940. next_encoder:
  7941. /* Only now check for crtc changes so we don't miss encoders
  7942. * that will be disabled. */
  7943. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7944. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7945. config->mode_changed = true;
  7946. }
  7947. }
  7948. /* Now we've also updated encoder->new_crtc for all encoders. */
  7949. return 0;
  7950. }
  7951. static int intel_crtc_set_config(struct drm_mode_set *set)
  7952. {
  7953. struct drm_device *dev;
  7954. struct drm_mode_set save_set;
  7955. struct intel_set_config *config;
  7956. int ret;
  7957. BUG_ON(!set);
  7958. BUG_ON(!set->crtc);
  7959. BUG_ON(!set->crtc->helper_private);
  7960. /* Enforce sane interface api - has been abused by the fb helper. */
  7961. BUG_ON(!set->mode && set->fb);
  7962. BUG_ON(set->fb && set->num_connectors == 0);
  7963. if (set->fb) {
  7964. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7965. set->crtc->base.id, set->fb->base.id,
  7966. (int)set->num_connectors, set->x, set->y);
  7967. } else {
  7968. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7969. }
  7970. dev = set->crtc->dev;
  7971. ret = -ENOMEM;
  7972. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7973. if (!config)
  7974. goto out_config;
  7975. ret = intel_set_config_save_state(dev, config);
  7976. if (ret)
  7977. goto out_config;
  7978. save_set.crtc = set->crtc;
  7979. save_set.mode = &set->crtc->mode;
  7980. save_set.x = set->crtc->x;
  7981. save_set.y = set->crtc->y;
  7982. save_set.fb = set->crtc->fb;
  7983. /* Compute whether we need a full modeset, only an fb base update or no
  7984. * change at all. In the future we might also check whether only the
  7985. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7986. * such cases. */
  7987. intel_set_config_compute_mode_changes(set, config);
  7988. ret = intel_modeset_stage_output_state(dev, set, config);
  7989. if (ret)
  7990. goto fail;
  7991. if (config->mode_changed) {
  7992. ret = intel_set_mode(set->crtc, set->mode,
  7993. set->x, set->y, set->fb);
  7994. } else if (config->fb_changed) {
  7995. intel_crtc_wait_for_pending_flips(set->crtc);
  7996. ret = intel_pipe_set_base(set->crtc,
  7997. set->x, set->y, set->fb);
  7998. }
  7999. if (ret) {
  8000. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  8001. set->crtc->base.id, ret);
  8002. fail:
  8003. intel_set_config_restore_state(dev, config);
  8004. /* Try to restore the config */
  8005. if (config->mode_changed &&
  8006. intel_set_mode(save_set.crtc, save_set.mode,
  8007. save_set.x, save_set.y, save_set.fb))
  8008. DRM_ERROR("failed to restore config after modeset failure\n");
  8009. }
  8010. out_config:
  8011. intel_set_config_free(config);
  8012. return ret;
  8013. }
  8014. static const struct drm_crtc_funcs intel_crtc_funcs = {
  8015. .cursor_set = intel_crtc_cursor_set,
  8016. .cursor_move = intel_crtc_cursor_move,
  8017. .gamma_set = intel_crtc_gamma_set,
  8018. .set_config = intel_crtc_set_config,
  8019. .destroy = intel_crtc_destroy,
  8020. .page_flip = intel_crtc_page_flip,
  8021. };
  8022. static void intel_cpu_pll_init(struct drm_device *dev)
  8023. {
  8024. if (HAS_DDI(dev))
  8025. intel_ddi_pll_init(dev);
  8026. }
  8027. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  8028. struct intel_shared_dpll *pll,
  8029. struct intel_dpll_hw_state *hw_state)
  8030. {
  8031. uint32_t val;
  8032. val = I915_READ(PCH_DPLL(pll->id));
  8033. hw_state->dpll = val;
  8034. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  8035. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  8036. return val & DPLL_VCO_ENABLE;
  8037. }
  8038. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  8039. struct intel_shared_dpll *pll)
  8040. {
  8041. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  8042. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  8043. }
  8044. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  8045. struct intel_shared_dpll *pll)
  8046. {
  8047. /* PCH refclock must be enabled first */
  8048. assert_pch_refclk_enabled(dev_priv);
  8049. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8050. /* Wait for the clocks to stabilize. */
  8051. POSTING_READ(PCH_DPLL(pll->id));
  8052. udelay(150);
  8053. /* The pixel multiplier can only be updated once the
  8054. * DPLL is enabled and the clocks are stable.
  8055. *
  8056. * So write it again.
  8057. */
  8058. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8059. POSTING_READ(PCH_DPLL(pll->id));
  8060. udelay(200);
  8061. }
  8062. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  8063. struct intel_shared_dpll *pll)
  8064. {
  8065. struct drm_device *dev = dev_priv->dev;
  8066. struct intel_crtc *crtc;
  8067. /* Make sure no transcoder isn't still depending on us. */
  8068. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  8069. if (intel_crtc_to_shared_dpll(crtc) == pll)
  8070. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  8071. }
  8072. I915_WRITE(PCH_DPLL(pll->id), 0);
  8073. POSTING_READ(PCH_DPLL(pll->id));
  8074. udelay(200);
  8075. }
  8076. static char *ibx_pch_dpll_names[] = {
  8077. "PCH DPLL A",
  8078. "PCH DPLL B",
  8079. };
  8080. static void ibx_pch_dpll_init(struct drm_device *dev)
  8081. {
  8082. struct drm_i915_private *dev_priv = dev->dev_private;
  8083. int i;
  8084. dev_priv->num_shared_dpll = 2;
  8085. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8086. dev_priv->shared_dplls[i].id = i;
  8087. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  8088. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  8089. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  8090. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  8091. dev_priv->shared_dplls[i].get_hw_state =
  8092. ibx_pch_dpll_get_hw_state;
  8093. }
  8094. }
  8095. static void intel_shared_dpll_init(struct drm_device *dev)
  8096. {
  8097. struct drm_i915_private *dev_priv = dev->dev_private;
  8098. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8099. ibx_pch_dpll_init(dev);
  8100. else
  8101. dev_priv->num_shared_dpll = 0;
  8102. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  8103. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  8104. dev_priv->num_shared_dpll);
  8105. }
  8106. static void intel_crtc_init(struct drm_device *dev, int pipe)
  8107. {
  8108. drm_i915_private_t *dev_priv = dev->dev_private;
  8109. struct intel_crtc *intel_crtc;
  8110. int i;
  8111. intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  8112. if (intel_crtc == NULL)
  8113. return;
  8114. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  8115. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  8116. for (i = 0; i < 256; i++) {
  8117. intel_crtc->lut_r[i] = i;
  8118. intel_crtc->lut_g[i] = i;
  8119. intel_crtc->lut_b[i] = i;
  8120. }
  8121. /* Swap pipes & planes for FBC on pre-965 */
  8122. intel_crtc->pipe = pipe;
  8123. intel_crtc->plane = pipe;
  8124. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  8125. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  8126. intel_crtc->plane = !pipe;
  8127. }
  8128. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  8129. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  8130. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  8131. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  8132. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  8133. }
  8134. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  8135. struct drm_file *file)
  8136. {
  8137. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  8138. struct drm_mode_object *drmmode_obj;
  8139. struct intel_crtc *crtc;
  8140. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  8141. return -ENODEV;
  8142. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  8143. DRM_MODE_OBJECT_CRTC);
  8144. if (!drmmode_obj) {
  8145. DRM_ERROR("no such CRTC id\n");
  8146. return -EINVAL;
  8147. }
  8148. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8149. pipe_from_crtc_id->pipe = crtc->pipe;
  8150. return 0;
  8151. }
  8152. static int intel_encoder_clones(struct intel_encoder *encoder)
  8153. {
  8154. struct drm_device *dev = encoder->base.dev;
  8155. struct intel_encoder *source_encoder;
  8156. int index_mask = 0;
  8157. int entry = 0;
  8158. list_for_each_entry(source_encoder,
  8159. &dev->mode_config.encoder_list, base.head) {
  8160. if (encoder == source_encoder)
  8161. index_mask |= (1 << entry);
  8162. /* Intel hw has only one MUX where enocoders could be cloned. */
  8163. if (encoder->cloneable && source_encoder->cloneable)
  8164. index_mask |= (1 << entry);
  8165. entry++;
  8166. }
  8167. return index_mask;
  8168. }
  8169. static bool has_edp_a(struct drm_device *dev)
  8170. {
  8171. struct drm_i915_private *dev_priv = dev->dev_private;
  8172. if (!IS_MOBILE(dev))
  8173. return false;
  8174. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8175. return false;
  8176. if (IS_GEN5(dev) &&
  8177. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8178. return false;
  8179. return true;
  8180. }
  8181. static void intel_setup_outputs(struct drm_device *dev)
  8182. {
  8183. struct drm_i915_private *dev_priv = dev->dev_private;
  8184. struct intel_encoder *encoder;
  8185. bool dpd_is_edp = false;
  8186. intel_lvds_init(dev);
  8187. if (!IS_ULT(dev))
  8188. intel_crt_init(dev);
  8189. if (HAS_DDI(dev)) {
  8190. int found;
  8191. /* Haswell uses DDI functions to detect digital outputs */
  8192. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8193. /* DDI A only supports eDP */
  8194. if (found)
  8195. intel_ddi_init(dev, PORT_A);
  8196. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8197. * register */
  8198. found = I915_READ(SFUSE_STRAP);
  8199. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8200. intel_ddi_init(dev, PORT_B);
  8201. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8202. intel_ddi_init(dev, PORT_C);
  8203. if (found & SFUSE_STRAP_DDID_DETECTED)
  8204. intel_ddi_init(dev, PORT_D);
  8205. } else if (HAS_PCH_SPLIT(dev)) {
  8206. int found;
  8207. dpd_is_edp = intel_dpd_is_edp(dev);
  8208. if (has_edp_a(dev))
  8209. intel_dp_init(dev, DP_A, PORT_A);
  8210. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8211. /* PCH SDVOB multiplex with HDMIB */
  8212. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8213. if (!found)
  8214. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8215. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8216. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8217. }
  8218. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8219. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8220. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8221. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8222. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8223. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8224. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8225. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8226. } else if (IS_VALLEYVIEW(dev)) {
  8227. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8228. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8229. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8230. PORT_C);
  8231. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8232. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8233. PORT_C);
  8234. }
  8235. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8236. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8237. PORT_B);
  8238. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8239. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8240. }
  8241. intel_dsi_init(dev);
  8242. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8243. bool found = false;
  8244. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8245. DRM_DEBUG_KMS("probing SDVOB\n");
  8246. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8247. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8248. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8249. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8250. }
  8251. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8252. intel_dp_init(dev, DP_B, PORT_B);
  8253. }
  8254. /* Before G4X SDVOC doesn't have its own detect register */
  8255. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8256. DRM_DEBUG_KMS("probing SDVOC\n");
  8257. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8258. }
  8259. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8260. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8261. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8262. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8263. }
  8264. if (SUPPORTS_INTEGRATED_DP(dev))
  8265. intel_dp_init(dev, DP_C, PORT_C);
  8266. }
  8267. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8268. (I915_READ(DP_D) & DP_DETECTED))
  8269. intel_dp_init(dev, DP_D, PORT_D);
  8270. } else if (IS_GEN2(dev))
  8271. intel_dvo_init(dev);
  8272. if (SUPPORTS_TV(dev))
  8273. intel_tv_init(dev);
  8274. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8275. encoder->base.possible_crtcs = encoder->crtc_mask;
  8276. encoder->base.possible_clones =
  8277. intel_encoder_clones(encoder);
  8278. }
  8279. intel_init_pch_refclk(dev);
  8280. drm_helper_move_panel_connectors_to_head(dev);
  8281. }
  8282. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8283. {
  8284. drm_framebuffer_cleanup(&fb->base);
  8285. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8286. }
  8287. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8288. {
  8289. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8290. intel_framebuffer_fini(intel_fb);
  8291. kfree(intel_fb);
  8292. }
  8293. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8294. struct drm_file *file,
  8295. unsigned int *handle)
  8296. {
  8297. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8298. struct drm_i915_gem_object *obj = intel_fb->obj;
  8299. return drm_gem_handle_create(file, &obj->base, handle);
  8300. }
  8301. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8302. .destroy = intel_user_framebuffer_destroy,
  8303. .create_handle = intel_user_framebuffer_create_handle,
  8304. };
  8305. int intel_framebuffer_init(struct drm_device *dev,
  8306. struct intel_framebuffer *intel_fb,
  8307. struct drm_mode_fb_cmd2 *mode_cmd,
  8308. struct drm_i915_gem_object *obj)
  8309. {
  8310. int pitch_limit;
  8311. int ret;
  8312. if (obj->tiling_mode == I915_TILING_Y) {
  8313. DRM_DEBUG("hardware does not support tiling Y\n");
  8314. return -EINVAL;
  8315. }
  8316. if (mode_cmd->pitches[0] & 63) {
  8317. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8318. mode_cmd->pitches[0]);
  8319. return -EINVAL;
  8320. }
  8321. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8322. pitch_limit = 32*1024;
  8323. } else if (INTEL_INFO(dev)->gen >= 4) {
  8324. if (obj->tiling_mode)
  8325. pitch_limit = 16*1024;
  8326. else
  8327. pitch_limit = 32*1024;
  8328. } else if (INTEL_INFO(dev)->gen >= 3) {
  8329. if (obj->tiling_mode)
  8330. pitch_limit = 8*1024;
  8331. else
  8332. pitch_limit = 16*1024;
  8333. } else
  8334. /* XXX DSPC is limited to 4k tiled */
  8335. pitch_limit = 8*1024;
  8336. if (mode_cmd->pitches[0] > pitch_limit) {
  8337. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8338. obj->tiling_mode ? "tiled" : "linear",
  8339. mode_cmd->pitches[0], pitch_limit);
  8340. return -EINVAL;
  8341. }
  8342. if (obj->tiling_mode != I915_TILING_NONE &&
  8343. mode_cmd->pitches[0] != obj->stride) {
  8344. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8345. mode_cmd->pitches[0], obj->stride);
  8346. return -EINVAL;
  8347. }
  8348. /* Reject formats not supported by any plane early. */
  8349. switch (mode_cmd->pixel_format) {
  8350. case DRM_FORMAT_C8:
  8351. case DRM_FORMAT_RGB565:
  8352. case DRM_FORMAT_XRGB8888:
  8353. case DRM_FORMAT_ARGB8888:
  8354. break;
  8355. case DRM_FORMAT_XRGB1555:
  8356. case DRM_FORMAT_ARGB1555:
  8357. if (INTEL_INFO(dev)->gen > 3) {
  8358. DRM_DEBUG("unsupported pixel format: %s\n",
  8359. drm_get_format_name(mode_cmd->pixel_format));
  8360. return -EINVAL;
  8361. }
  8362. break;
  8363. case DRM_FORMAT_XBGR8888:
  8364. case DRM_FORMAT_ABGR8888:
  8365. case DRM_FORMAT_XRGB2101010:
  8366. case DRM_FORMAT_ARGB2101010:
  8367. case DRM_FORMAT_XBGR2101010:
  8368. case DRM_FORMAT_ABGR2101010:
  8369. if (INTEL_INFO(dev)->gen < 4) {
  8370. DRM_DEBUG("unsupported pixel format: %s\n",
  8371. drm_get_format_name(mode_cmd->pixel_format));
  8372. return -EINVAL;
  8373. }
  8374. break;
  8375. case DRM_FORMAT_YUYV:
  8376. case DRM_FORMAT_UYVY:
  8377. case DRM_FORMAT_YVYU:
  8378. case DRM_FORMAT_VYUY:
  8379. if (INTEL_INFO(dev)->gen < 5) {
  8380. DRM_DEBUG("unsupported pixel format: %s\n",
  8381. drm_get_format_name(mode_cmd->pixel_format));
  8382. return -EINVAL;
  8383. }
  8384. break;
  8385. default:
  8386. DRM_DEBUG("unsupported pixel format: %s\n",
  8387. drm_get_format_name(mode_cmd->pixel_format));
  8388. return -EINVAL;
  8389. }
  8390. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8391. if (mode_cmd->offsets[0] != 0)
  8392. return -EINVAL;
  8393. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8394. intel_fb->obj = obj;
  8395. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8396. if (ret) {
  8397. DRM_ERROR("framebuffer init failed %d\n", ret);
  8398. return ret;
  8399. }
  8400. return 0;
  8401. }
  8402. static struct drm_framebuffer *
  8403. intel_user_framebuffer_create(struct drm_device *dev,
  8404. struct drm_file *filp,
  8405. struct drm_mode_fb_cmd2 *mode_cmd)
  8406. {
  8407. struct drm_i915_gem_object *obj;
  8408. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8409. mode_cmd->handles[0]));
  8410. if (&obj->base == NULL)
  8411. return ERR_PTR(-ENOENT);
  8412. return intel_framebuffer_create(dev, mode_cmd, obj);
  8413. }
  8414. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8415. .fb_create = intel_user_framebuffer_create,
  8416. .output_poll_changed = intel_fb_output_poll_changed,
  8417. };
  8418. /* Set up chip specific display functions */
  8419. static void intel_init_display(struct drm_device *dev)
  8420. {
  8421. struct drm_i915_private *dev_priv = dev->dev_private;
  8422. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8423. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8424. else if (IS_VALLEYVIEW(dev))
  8425. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8426. else if (IS_PINEVIEW(dev))
  8427. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8428. else
  8429. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8430. if (HAS_DDI(dev)) {
  8431. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8432. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8433. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8434. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8435. dev_priv->display.off = haswell_crtc_off;
  8436. dev_priv->display.update_plane = ironlake_update_plane;
  8437. } else if (HAS_PCH_SPLIT(dev)) {
  8438. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8439. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8440. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8441. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8442. dev_priv->display.off = ironlake_crtc_off;
  8443. dev_priv->display.update_plane = ironlake_update_plane;
  8444. } else if (IS_VALLEYVIEW(dev)) {
  8445. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8446. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8447. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8448. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8449. dev_priv->display.off = i9xx_crtc_off;
  8450. dev_priv->display.update_plane = i9xx_update_plane;
  8451. } else {
  8452. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8453. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8454. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8455. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8456. dev_priv->display.off = i9xx_crtc_off;
  8457. dev_priv->display.update_plane = i9xx_update_plane;
  8458. }
  8459. /* Returns the core display clock speed */
  8460. if (IS_VALLEYVIEW(dev))
  8461. dev_priv->display.get_display_clock_speed =
  8462. valleyview_get_display_clock_speed;
  8463. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8464. dev_priv->display.get_display_clock_speed =
  8465. i945_get_display_clock_speed;
  8466. else if (IS_I915G(dev))
  8467. dev_priv->display.get_display_clock_speed =
  8468. i915_get_display_clock_speed;
  8469. else if (IS_I945GM(dev) || IS_845G(dev))
  8470. dev_priv->display.get_display_clock_speed =
  8471. i9xx_misc_get_display_clock_speed;
  8472. else if (IS_PINEVIEW(dev))
  8473. dev_priv->display.get_display_clock_speed =
  8474. pnv_get_display_clock_speed;
  8475. else if (IS_I915GM(dev))
  8476. dev_priv->display.get_display_clock_speed =
  8477. i915gm_get_display_clock_speed;
  8478. else if (IS_I865G(dev))
  8479. dev_priv->display.get_display_clock_speed =
  8480. i865_get_display_clock_speed;
  8481. else if (IS_I85X(dev))
  8482. dev_priv->display.get_display_clock_speed =
  8483. i855_get_display_clock_speed;
  8484. else /* 852, 830 */
  8485. dev_priv->display.get_display_clock_speed =
  8486. i830_get_display_clock_speed;
  8487. if (HAS_PCH_SPLIT(dev)) {
  8488. if (IS_GEN5(dev)) {
  8489. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8490. dev_priv->display.write_eld = ironlake_write_eld;
  8491. } else if (IS_GEN6(dev)) {
  8492. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8493. dev_priv->display.write_eld = ironlake_write_eld;
  8494. } else if (IS_IVYBRIDGE(dev)) {
  8495. /* FIXME: detect B0+ stepping and use auto training */
  8496. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8497. dev_priv->display.write_eld = ironlake_write_eld;
  8498. dev_priv->display.modeset_global_resources =
  8499. ivb_modeset_global_resources;
  8500. } else if (IS_HASWELL(dev)) {
  8501. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8502. dev_priv->display.write_eld = haswell_write_eld;
  8503. dev_priv->display.modeset_global_resources =
  8504. haswell_modeset_global_resources;
  8505. }
  8506. } else if (IS_G4X(dev)) {
  8507. dev_priv->display.write_eld = g4x_write_eld;
  8508. }
  8509. /* Default just returns -ENODEV to indicate unsupported */
  8510. dev_priv->display.queue_flip = intel_default_queue_flip;
  8511. switch (INTEL_INFO(dev)->gen) {
  8512. case 2:
  8513. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8514. break;
  8515. case 3:
  8516. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8517. break;
  8518. case 4:
  8519. case 5:
  8520. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8521. break;
  8522. case 6:
  8523. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8524. break;
  8525. case 7:
  8526. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8527. break;
  8528. }
  8529. }
  8530. /*
  8531. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8532. * resume, or other times. This quirk makes sure that's the case for
  8533. * affected systems.
  8534. */
  8535. static void quirk_pipea_force(struct drm_device *dev)
  8536. {
  8537. struct drm_i915_private *dev_priv = dev->dev_private;
  8538. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8539. DRM_INFO("applying pipe a force quirk\n");
  8540. }
  8541. /*
  8542. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8543. */
  8544. static void quirk_ssc_force_disable(struct drm_device *dev)
  8545. {
  8546. struct drm_i915_private *dev_priv = dev->dev_private;
  8547. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8548. DRM_INFO("applying lvds SSC disable quirk\n");
  8549. }
  8550. /*
  8551. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8552. * brightness value
  8553. */
  8554. static void quirk_invert_brightness(struct drm_device *dev)
  8555. {
  8556. struct drm_i915_private *dev_priv = dev->dev_private;
  8557. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8558. DRM_INFO("applying inverted panel brightness quirk\n");
  8559. }
  8560. /*
  8561. * Some machines (Dell XPS13) suffer broken backlight controls if
  8562. * BLM_PCH_PWM_ENABLE is set.
  8563. */
  8564. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8565. {
  8566. struct drm_i915_private *dev_priv = dev->dev_private;
  8567. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8568. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8569. }
  8570. struct intel_quirk {
  8571. int device;
  8572. int subsystem_vendor;
  8573. int subsystem_device;
  8574. void (*hook)(struct drm_device *dev);
  8575. };
  8576. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8577. struct intel_dmi_quirk {
  8578. void (*hook)(struct drm_device *dev);
  8579. const struct dmi_system_id (*dmi_id_list)[];
  8580. };
  8581. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8582. {
  8583. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8584. return 1;
  8585. }
  8586. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8587. {
  8588. .dmi_id_list = &(const struct dmi_system_id[]) {
  8589. {
  8590. .callback = intel_dmi_reverse_brightness,
  8591. .ident = "NCR Corporation",
  8592. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8593. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8594. },
  8595. },
  8596. { } /* terminating entry */
  8597. },
  8598. .hook = quirk_invert_brightness,
  8599. },
  8600. };
  8601. static struct intel_quirk intel_quirks[] = {
  8602. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8603. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8604. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8605. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8606. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8607. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8608. /* 830 needs to leave pipe A & dpll A up */
  8609. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8610. /* Lenovo U160 cannot use SSC on LVDS */
  8611. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8612. /* Sony Vaio Y cannot use SSC on LVDS */
  8613. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8614. /*
  8615. * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
  8616. * seem to use inverted backlight PWM.
  8617. */
  8618. { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
  8619. /* Dell XPS13 HD Sandy Bridge */
  8620. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8621. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8622. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8623. };
  8624. static void intel_init_quirks(struct drm_device *dev)
  8625. {
  8626. struct pci_dev *d = dev->pdev;
  8627. int i;
  8628. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8629. struct intel_quirk *q = &intel_quirks[i];
  8630. if (d->device == q->device &&
  8631. (d->subsystem_vendor == q->subsystem_vendor ||
  8632. q->subsystem_vendor == PCI_ANY_ID) &&
  8633. (d->subsystem_device == q->subsystem_device ||
  8634. q->subsystem_device == PCI_ANY_ID))
  8635. q->hook(dev);
  8636. }
  8637. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8638. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8639. intel_dmi_quirks[i].hook(dev);
  8640. }
  8641. }
  8642. /* Disable the VGA plane that we never use */
  8643. static void i915_disable_vga(struct drm_device *dev)
  8644. {
  8645. struct drm_i915_private *dev_priv = dev->dev_private;
  8646. u8 sr1;
  8647. u32 vga_reg = i915_vgacntrl_reg(dev);
  8648. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8649. outb(SR01, VGA_SR_INDEX);
  8650. sr1 = inb(VGA_SR_DATA);
  8651. outb(sr1 | 1<<5, VGA_SR_DATA);
  8652. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8653. udelay(300);
  8654. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8655. POSTING_READ(vga_reg);
  8656. }
  8657. static void i915_enable_vga_mem(struct drm_device *dev)
  8658. {
  8659. /* Enable VGA memory on Intel HD */
  8660. if (HAS_PCH_SPLIT(dev)) {
  8661. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8662. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8663. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8664. VGA_RSRC_LEGACY_MEM |
  8665. VGA_RSRC_NORMAL_IO |
  8666. VGA_RSRC_NORMAL_MEM);
  8667. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8668. }
  8669. }
  8670. void i915_disable_vga_mem(struct drm_device *dev)
  8671. {
  8672. /* Disable VGA memory on Intel HD */
  8673. if (HAS_PCH_SPLIT(dev)) {
  8674. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8675. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8676. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8677. VGA_RSRC_NORMAL_IO |
  8678. VGA_RSRC_NORMAL_MEM);
  8679. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8680. }
  8681. }
  8682. void intel_modeset_init_hw(struct drm_device *dev)
  8683. {
  8684. struct drm_i915_private *dev_priv = dev->dev_private;
  8685. intel_prepare_ddi(dev);
  8686. intel_init_clock_gating(dev);
  8687. /* Enable the CRI clock source so we can get at the display */
  8688. if (IS_VALLEYVIEW(dev))
  8689. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  8690. DPLL_INTEGRATED_CRI_CLK_VLV);
  8691. intel_init_dpio(dev);
  8692. mutex_lock(&dev->struct_mutex);
  8693. intel_enable_gt_powersave(dev);
  8694. mutex_unlock(&dev->struct_mutex);
  8695. }
  8696. void intel_modeset_suspend_hw(struct drm_device *dev)
  8697. {
  8698. intel_suspend_hw(dev);
  8699. }
  8700. void intel_modeset_init(struct drm_device *dev)
  8701. {
  8702. struct drm_i915_private *dev_priv = dev->dev_private;
  8703. int i, j, ret;
  8704. drm_mode_config_init(dev);
  8705. dev->mode_config.min_width = 0;
  8706. dev->mode_config.min_height = 0;
  8707. dev->mode_config.preferred_depth = 24;
  8708. dev->mode_config.prefer_shadow = 1;
  8709. dev->mode_config.funcs = &intel_mode_funcs;
  8710. intel_init_quirks(dev);
  8711. intel_init_pm(dev);
  8712. if (INTEL_INFO(dev)->num_pipes == 0)
  8713. return;
  8714. intel_init_display(dev);
  8715. if (IS_GEN2(dev)) {
  8716. dev->mode_config.max_width = 2048;
  8717. dev->mode_config.max_height = 2048;
  8718. } else if (IS_GEN3(dev)) {
  8719. dev->mode_config.max_width = 4096;
  8720. dev->mode_config.max_height = 4096;
  8721. } else {
  8722. dev->mode_config.max_width = 8192;
  8723. dev->mode_config.max_height = 8192;
  8724. }
  8725. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8726. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8727. INTEL_INFO(dev)->num_pipes,
  8728. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8729. for_each_pipe(i) {
  8730. intel_crtc_init(dev, i);
  8731. for (j = 0; j < dev_priv->num_plane; j++) {
  8732. ret = intel_plane_init(dev, i, j);
  8733. if (ret)
  8734. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8735. pipe_name(i), sprite_name(i, j), ret);
  8736. }
  8737. }
  8738. intel_cpu_pll_init(dev);
  8739. intel_shared_dpll_init(dev);
  8740. /* Just disable it once at startup */
  8741. i915_disable_vga(dev);
  8742. intel_setup_outputs(dev);
  8743. /* Just in case the BIOS is doing something questionable. */
  8744. intel_disable_fbc(dev);
  8745. }
  8746. static void
  8747. intel_connector_break_all_links(struct intel_connector *connector)
  8748. {
  8749. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8750. connector->base.encoder = NULL;
  8751. connector->encoder->connectors_active = false;
  8752. connector->encoder->base.crtc = NULL;
  8753. }
  8754. static void intel_enable_pipe_a(struct drm_device *dev)
  8755. {
  8756. struct intel_connector *connector;
  8757. struct drm_connector *crt = NULL;
  8758. struct intel_load_detect_pipe load_detect_temp;
  8759. /* We can't just switch on the pipe A, we need to set things up with a
  8760. * proper mode and output configuration. As a gross hack, enable pipe A
  8761. * by enabling the load detect pipe once. */
  8762. list_for_each_entry(connector,
  8763. &dev->mode_config.connector_list,
  8764. base.head) {
  8765. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8766. crt = &connector->base;
  8767. break;
  8768. }
  8769. }
  8770. if (!crt)
  8771. return;
  8772. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8773. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8774. }
  8775. static bool
  8776. intel_check_plane_mapping(struct intel_crtc *crtc)
  8777. {
  8778. struct drm_device *dev = crtc->base.dev;
  8779. struct drm_i915_private *dev_priv = dev->dev_private;
  8780. u32 reg, val;
  8781. if (INTEL_INFO(dev)->num_pipes == 1)
  8782. return true;
  8783. reg = DSPCNTR(!crtc->plane);
  8784. val = I915_READ(reg);
  8785. if ((val & DISPLAY_PLANE_ENABLE) &&
  8786. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8787. return false;
  8788. return true;
  8789. }
  8790. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8791. {
  8792. struct drm_device *dev = crtc->base.dev;
  8793. struct drm_i915_private *dev_priv = dev->dev_private;
  8794. u32 reg;
  8795. /* Clear any frame start delays used for debugging left by the BIOS */
  8796. reg = PIPECONF(crtc->config.cpu_transcoder);
  8797. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8798. /* We need to sanitize the plane -> pipe mapping first because this will
  8799. * disable the crtc (and hence change the state) if it is wrong. Note
  8800. * that gen4+ has a fixed plane -> pipe mapping. */
  8801. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8802. struct intel_connector *connector;
  8803. bool plane;
  8804. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8805. crtc->base.base.id);
  8806. /* Pipe has the wrong plane attached and the plane is active.
  8807. * Temporarily change the plane mapping and disable everything
  8808. * ... */
  8809. plane = crtc->plane;
  8810. crtc->plane = !plane;
  8811. dev_priv->display.crtc_disable(&crtc->base);
  8812. crtc->plane = plane;
  8813. /* ... and break all links. */
  8814. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8815. base.head) {
  8816. if (connector->encoder->base.crtc != &crtc->base)
  8817. continue;
  8818. intel_connector_break_all_links(connector);
  8819. }
  8820. WARN_ON(crtc->active);
  8821. crtc->base.enabled = false;
  8822. }
  8823. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8824. crtc->pipe == PIPE_A && !crtc->active) {
  8825. /* BIOS forgot to enable pipe A, this mostly happens after
  8826. * resume. Force-enable the pipe to fix this, the update_dpms
  8827. * call below we restore the pipe to the right state, but leave
  8828. * the required bits on. */
  8829. intel_enable_pipe_a(dev);
  8830. }
  8831. /* Adjust the state of the output pipe according to whether we
  8832. * have active connectors/encoders. */
  8833. intel_crtc_update_dpms(&crtc->base);
  8834. if (crtc->active != crtc->base.enabled) {
  8835. struct intel_encoder *encoder;
  8836. /* This can happen either due to bugs in the get_hw_state
  8837. * functions or because the pipe is force-enabled due to the
  8838. * pipe A quirk. */
  8839. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8840. crtc->base.base.id,
  8841. crtc->base.enabled ? "enabled" : "disabled",
  8842. crtc->active ? "enabled" : "disabled");
  8843. crtc->base.enabled = crtc->active;
  8844. /* Because we only establish the connector -> encoder ->
  8845. * crtc links if something is active, this means the
  8846. * crtc is now deactivated. Break the links. connector
  8847. * -> encoder links are only establish when things are
  8848. * actually up, hence no need to break them. */
  8849. WARN_ON(crtc->active);
  8850. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8851. WARN_ON(encoder->connectors_active);
  8852. encoder->base.crtc = NULL;
  8853. }
  8854. }
  8855. }
  8856. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8857. {
  8858. struct intel_connector *connector;
  8859. struct drm_device *dev = encoder->base.dev;
  8860. /* We need to check both for a crtc link (meaning that the
  8861. * encoder is active and trying to read from a pipe) and the
  8862. * pipe itself being active. */
  8863. bool has_active_crtc = encoder->base.crtc &&
  8864. to_intel_crtc(encoder->base.crtc)->active;
  8865. if (encoder->connectors_active && !has_active_crtc) {
  8866. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8867. encoder->base.base.id,
  8868. drm_get_encoder_name(&encoder->base));
  8869. /* Connector is active, but has no active pipe. This is
  8870. * fallout from our resume register restoring. Disable
  8871. * the encoder manually again. */
  8872. if (encoder->base.crtc) {
  8873. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8874. encoder->base.base.id,
  8875. drm_get_encoder_name(&encoder->base));
  8876. encoder->disable(encoder);
  8877. }
  8878. /* Inconsistent output/port/pipe state happens presumably due to
  8879. * a bug in one of the get_hw_state functions. Or someplace else
  8880. * in our code, like the register restore mess on resume. Clamp
  8881. * things to off as a safer default. */
  8882. list_for_each_entry(connector,
  8883. &dev->mode_config.connector_list,
  8884. base.head) {
  8885. if (connector->encoder != encoder)
  8886. continue;
  8887. intel_connector_break_all_links(connector);
  8888. }
  8889. }
  8890. /* Enabled encoders without active connectors will be fixed in
  8891. * the crtc fixup. */
  8892. }
  8893. void i915_redisable_vga(struct drm_device *dev)
  8894. {
  8895. struct drm_i915_private *dev_priv = dev->dev_private;
  8896. u32 vga_reg = i915_vgacntrl_reg(dev);
  8897. /* This function can be called both from intel_modeset_setup_hw_state or
  8898. * at a very early point in our resume sequence, where the power well
  8899. * structures are not yet restored. Since this function is at a very
  8900. * paranoid "someone might have enabled VGA while we were not looking"
  8901. * level, just check if the power well is enabled instead of trying to
  8902. * follow the "don't touch the power well if we don't need it" policy
  8903. * the rest of the driver uses. */
  8904. if (HAS_POWER_WELL(dev) &&
  8905. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8906. return;
  8907. if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  8908. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8909. i915_disable_vga(dev);
  8910. i915_disable_vga_mem(dev);
  8911. }
  8912. }
  8913. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8914. {
  8915. struct drm_i915_private *dev_priv = dev->dev_private;
  8916. enum pipe pipe;
  8917. struct intel_crtc *crtc;
  8918. struct intel_encoder *encoder;
  8919. struct intel_connector *connector;
  8920. int i;
  8921. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8922. base.head) {
  8923. memset(&crtc->config, 0, sizeof(crtc->config));
  8924. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8925. &crtc->config);
  8926. crtc->base.enabled = crtc->active;
  8927. crtc->primary_enabled = crtc->active;
  8928. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8929. crtc->base.base.id,
  8930. crtc->active ? "enabled" : "disabled");
  8931. }
  8932. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8933. if (HAS_DDI(dev))
  8934. intel_ddi_setup_hw_pll_state(dev);
  8935. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8936. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8937. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8938. pll->active = 0;
  8939. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8940. base.head) {
  8941. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8942. pll->active++;
  8943. }
  8944. pll->refcount = pll->active;
  8945. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8946. pll->name, pll->refcount, pll->on);
  8947. }
  8948. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8949. base.head) {
  8950. pipe = 0;
  8951. if (encoder->get_hw_state(encoder, &pipe)) {
  8952. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8953. encoder->base.crtc = &crtc->base;
  8954. if (encoder->get_config)
  8955. encoder->get_config(encoder, &crtc->config);
  8956. } else {
  8957. encoder->base.crtc = NULL;
  8958. }
  8959. encoder->connectors_active = false;
  8960. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8961. encoder->base.base.id,
  8962. drm_get_encoder_name(&encoder->base),
  8963. encoder->base.crtc ? "enabled" : "disabled",
  8964. pipe);
  8965. }
  8966. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8967. base.head) {
  8968. if (connector->get_hw_state(connector)) {
  8969. connector->base.dpms = DRM_MODE_DPMS_ON;
  8970. connector->encoder->connectors_active = true;
  8971. connector->base.encoder = &connector->encoder->base;
  8972. } else {
  8973. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8974. connector->base.encoder = NULL;
  8975. }
  8976. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8977. connector->base.base.id,
  8978. drm_get_connector_name(&connector->base),
  8979. connector->base.encoder ? "enabled" : "disabled");
  8980. }
  8981. }
  8982. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8983. * and i915 state tracking structures. */
  8984. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8985. bool force_restore)
  8986. {
  8987. struct drm_i915_private *dev_priv = dev->dev_private;
  8988. enum pipe pipe;
  8989. struct intel_crtc *crtc;
  8990. struct intel_encoder *encoder;
  8991. int i;
  8992. intel_modeset_readout_hw_state(dev);
  8993. /*
  8994. * Now that we have the config, copy it to each CRTC struct
  8995. * Note that this could go away if we move to using crtc_config
  8996. * checking everywhere.
  8997. */
  8998. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8999. base.head) {
  9000. if (crtc->active && i915_fastboot) {
  9001. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  9002. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  9003. crtc->base.base.id);
  9004. drm_mode_debug_printmodeline(&crtc->base.mode);
  9005. }
  9006. }
  9007. /* HW state is read out, now we need to sanitize this mess. */
  9008. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  9009. base.head) {
  9010. intel_sanitize_encoder(encoder);
  9011. }
  9012. for_each_pipe(pipe) {
  9013. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  9014. intel_sanitize_crtc(crtc);
  9015. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  9016. }
  9017. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  9018. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  9019. if (!pll->on || pll->active)
  9020. continue;
  9021. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  9022. pll->disable(dev_priv, pll);
  9023. pll->on = false;
  9024. }
  9025. if (force_restore) {
  9026. i915_redisable_vga(dev);
  9027. /*
  9028. * We need to use raw interfaces for restoring state to avoid
  9029. * checking (bogus) intermediate states.
  9030. */
  9031. for_each_pipe(pipe) {
  9032. struct drm_crtc *crtc =
  9033. dev_priv->pipe_to_crtc_mapping[pipe];
  9034. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  9035. crtc->fb);
  9036. }
  9037. } else {
  9038. intel_modeset_update_staged_output_state(dev);
  9039. }
  9040. intel_modeset_check_state(dev);
  9041. drm_mode_config_reset(dev);
  9042. }
  9043. void intel_modeset_gem_init(struct drm_device *dev)
  9044. {
  9045. intel_modeset_init_hw(dev);
  9046. intel_setup_overlay(dev);
  9047. intel_modeset_setup_hw_state(dev, false);
  9048. }
  9049. void intel_modeset_cleanup(struct drm_device *dev)
  9050. {
  9051. struct drm_i915_private *dev_priv = dev->dev_private;
  9052. struct drm_crtc *crtc;
  9053. struct drm_connector *connector;
  9054. /*
  9055. * Interrupts and polling as the first thing to avoid creating havoc.
  9056. * Too much stuff here (turning of rps, connectors, ...) would
  9057. * experience fancy races otherwise.
  9058. */
  9059. drm_irq_uninstall(dev);
  9060. cancel_work_sync(&dev_priv->hotplug_work);
  9061. /*
  9062. * Due to the hpd irq storm handling the hotplug work can re-arm the
  9063. * poll handlers. Hence disable polling after hpd handling is shut down.
  9064. */
  9065. drm_kms_helper_poll_fini(dev);
  9066. mutex_lock(&dev->struct_mutex);
  9067. intel_unregister_dsm_handler();
  9068. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  9069. /* Skip inactive CRTCs */
  9070. if (!crtc->fb)
  9071. continue;
  9072. intel_increase_pllclock(crtc);
  9073. }
  9074. intel_disable_fbc(dev);
  9075. i915_enable_vga_mem(dev);
  9076. intel_disable_gt_powersave(dev);
  9077. ironlake_teardown_rc6(dev);
  9078. mutex_unlock(&dev->struct_mutex);
  9079. /* flush any delayed tasks or pending work */
  9080. flush_scheduled_work();
  9081. /* destroy backlight, if any, before the connectors */
  9082. intel_panel_destroy_backlight(dev);
  9083. /* destroy the sysfs files before encoders/connectors */
  9084. list_for_each_entry(connector, &dev->mode_config.connector_list, head)
  9085. drm_sysfs_connector_remove(connector);
  9086. drm_mode_config_cleanup(dev);
  9087. intel_cleanup_overlay(dev);
  9088. }
  9089. /*
  9090. * Return which encoder is currently attached for connector.
  9091. */
  9092. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  9093. {
  9094. return &intel_attached_encoder(connector)->base;
  9095. }
  9096. void intel_connector_attach_encoder(struct intel_connector *connector,
  9097. struct intel_encoder *encoder)
  9098. {
  9099. connector->encoder = encoder;
  9100. drm_mode_connector_attach_encoder(&connector->base,
  9101. &encoder->base);
  9102. }
  9103. /*
  9104. * set vga decode state - true == enable VGA decode
  9105. */
  9106. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  9107. {
  9108. struct drm_i915_private *dev_priv = dev->dev_private;
  9109. u16 gmch_ctrl;
  9110. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  9111. if (state)
  9112. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  9113. else
  9114. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  9115. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  9116. return 0;
  9117. }
  9118. struct intel_display_error_state {
  9119. u32 power_well_driver;
  9120. int num_transcoders;
  9121. struct intel_cursor_error_state {
  9122. u32 control;
  9123. u32 position;
  9124. u32 base;
  9125. u32 size;
  9126. } cursor[I915_MAX_PIPES];
  9127. struct intel_pipe_error_state {
  9128. u32 source;
  9129. } pipe[I915_MAX_PIPES];
  9130. struct intel_plane_error_state {
  9131. u32 control;
  9132. u32 stride;
  9133. u32 size;
  9134. u32 pos;
  9135. u32 addr;
  9136. u32 surface;
  9137. u32 tile_offset;
  9138. } plane[I915_MAX_PIPES];
  9139. struct intel_transcoder_error_state {
  9140. enum transcoder cpu_transcoder;
  9141. u32 conf;
  9142. u32 htotal;
  9143. u32 hblank;
  9144. u32 hsync;
  9145. u32 vtotal;
  9146. u32 vblank;
  9147. u32 vsync;
  9148. } transcoder[4];
  9149. };
  9150. struct intel_display_error_state *
  9151. intel_display_capture_error_state(struct drm_device *dev)
  9152. {
  9153. drm_i915_private_t *dev_priv = dev->dev_private;
  9154. struct intel_display_error_state *error;
  9155. int transcoders[] = {
  9156. TRANSCODER_A,
  9157. TRANSCODER_B,
  9158. TRANSCODER_C,
  9159. TRANSCODER_EDP,
  9160. };
  9161. int i;
  9162. if (INTEL_INFO(dev)->num_pipes == 0)
  9163. return NULL;
  9164. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9165. if (error == NULL)
  9166. return NULL;
  9167. if (HAS_POWER_WELL(dev))
  9168. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9169. for_each_pipe(i) {
  9170. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9171. error->cursor[i].control = I915_READ(CURCNTR(i));
  9172. error->cursor[i].position = I915_READ(CURPOS(i));
  9173. error->cursor[i].base = I915_READ(CURBASE(i));
  9174. } else {
  9175. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9176. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9177. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9178. }
  9179. error->plane[i].control = I915_READ(DSPCNTR(i));
  9180. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9181. if (INTEL_INFO(dev)->gen <= 3) {
  9182. error->plane[i].size = I915_READ(DSPSIZE(i));
  9183. error->plane[i].pos = I915_READ(DSPPOS(i));
  9184. }
  9185. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9186. error->plane[i].addr = I915_READ(DSPADDR(i));
  9187. if (INTEL_INFO(dev)->gen >= 4) {
  9188. error->plane[i].surface = I915_READ(DSPSURF(i));
  9189. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9190. }
  9191. error->pipe[i].source = I915_READ(PIPESRC(i));
  9192. }
  9193. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9194. if (HAS_DDI(dev_priv->dev))
  9195. error->num_transcoders++; /* Account for eDP. */
  9196. for (i = 0; i < error->num_transcoders; i++) {
  9197. enum transcoder cpu_transcoder = transcoders[i];
  9198. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9199. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9200. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9201. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9202. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9203. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9204. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9205. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9206. }
  9207. /* In the code above we read the registers without checking if the power
  9208. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9209. * prevent the next I915_WRITE from detecting it and printing an error
  9210. * message. */
  9211. intel_uncore_clear_errors(dev);
  9212. return error;
  9213. }
  9214. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9215. void
  9216. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9217. struct drm_device *dev,
  9218. struct intel_display_error_state *error)
  9219. {
  9220. int i;
  9221. if (!error)
  9222. return;
  9223. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9224. if (HAS_POWER_WELL(dev))
  9225. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9226. error->power_well_driver);
  9227. for_each_pipe(i) {
  9228. err_printf(m, "Pipe [%d]:\n", i);
  9229. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9230. err_printf(m, "Plane [%d]:\n", i);
  9231. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9232. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9233. if (INTEL_INFO(dev)->gen <= 3) {
  9234. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9235. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9236. }
  9237. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9238. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9239. if (INTEL_INFO(dev)->gen >= 4) {
  9240. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9241. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9242. }
  9243. err_printf(m, "Cursor [%d]:\n", i);
  9244. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9245. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9246. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9247. }
  9248. for (i = 0; i < error->num_transcoders; i++) {
  9249. err_printf(m, " CPU transcoder: %c\n",
  9250. transcoder_name(error->transcoder[i].cpu_transcoder));
  9251. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9252. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9253. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9254. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9255. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9256. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9257. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9258. }
  9259. }