vmx.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  52. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  53. #define KVM_GUEST_CR0_MASK \
  54. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  55. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
  57. #define KVM_VM_CR0_ALWAYS_ON \
  58. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_CR4_GUEST_OWNED_BITS \
  60. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  61. | X86_CR4_OSXMMEXCPT)
  62. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  63. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  64. /*
  65. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  66. * ple_gap: upper bound on the amount of time between two successive
  67. * executions of PAUSE in a loop. Also indicate if ple enabled.
  68. * According to test, this time is usually small than 41 cycles.
  69. * ple_window: upper bound on the amount of time a guest is allowed to execute
  70. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  71. * less than 2^12 cycles
  72. * Time is measured based on a counter that runs at the same rate as the TSC,
  73. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  74. */
  75. #define KVM_VMX_DEFAULT_PLE_GAP 41
  76. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  77. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  78. module_param(ple_gap, int, S_IRUGO);
  79. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  80. module_param(ple_window, int, S_IRUGO);
  81. struct vmcs {
  82. u32 revision_id;
  83. u32 abort;
  84. char data[0];
  85. };
  86. struct shared_msr_entry {
  87. unsigned index;
  88. u64 data;
  89. u64 mask;
  90. };
  91. struct vcpu_vmx {
  92. struct kvm_vcpu vcpu;
  93. struct list_head local_vcpus_link;
  94. unsigned long host_rsp;
  95. int launched;
  96. u8 fail;
  97. u32 idt_vectoring_info;
  98. struct shared_msr_entry *guest_msrs;
  99. int nmsrs;
  100. int save_nmsrs;
  101. #ifdef CONFIG_X86_64
  102. u64 msr_host_kernel_gs_base;
  103. u64 msr_guest_kernel_gs_base;
  104. #endif
  105. struct vmcs *vmcs;
  106. struct {
  107. int loaded;
  108. u16 fs_sel, gs_sel, ldt_sel;
  109. int gs_ldt_reload_needed;
  110. int fs_reload_needed;
  111. } host_state;
  112. struct {
  113. int vm86_active;
  114. u8 save_iopl;
  115. struct kvm_save_segment {
  116. u16 selector;
  117. unsigned long base;
  118. u32 limit;
  119. u32 ar;
  120. } tr, es, ds, fs, gs;
  121. struct {
  122. bool pending;
  123. u8 vector;
  124. unsigned rip;
  125. } irq;
  126. } rmode;
  127. int vpid;
  128. bool emulation_required;
  129. /* Support for vnmi-less CPUs */
  130. int soft_vnmi_blocked;
  131. ktime_t entry_time;
  132. s64 vnmi_blocked_time;
  133. u32 exit_reason;
  134. };
  135. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  136. {
  137. return container_of(vcpu, struct vcpu_vmx, vcpu);
  138. }
  139. static int init_rmode(struct kvm *kvm);
  140. static u64 construct_eptp(unsigned long root_hpa);
  141. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  142. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  143. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  144. static unsigned long *vmx_io_bitmap_a;
  145. static unsigned long *vmx_io_bitmap_b;
  146. static unsigned long *vmx_msr_bitmap_legacy;
  147. static unsigned long *vmx_msr_bitmap_longmode;
  148. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  149. static DEFINE_SPINLOCK(vmx_vpid_lock);
  150. static struct vmcs_config {
  151. int size;
  152. int order;
  153. u32 revision_id;
  154. u32 pin_based_exec_ctrl;
  155. u32 cpu_based_exec_ctrl;
  156. u32 cpu_based_2nd_exec_ctrl;
  157. u32 vmexit_ctrl;
  158. u32 vmentry_ctrl;
  159. } vmcs_config;
  160. static struct vmx_capability {
  161. u32 ept;
  162. u32 vpid;
  163. } vmx_capability;
  164. #define VMX_SEGMENT_FIELD(seg) \
  165. [VCPU_SREG_##seg] = { \
  166. .selector = GUEST_##seg##_SELECTOR, \
  167. .base = GUEST_##seg##_BASE, \
  168. .limit = GUEST_##seg##_LIMIT, \
  169. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  170. }
  171. static struct kvm_vmx_segment_field {
  172. unsigned selector;
  173. unsigned base;
  174. unsigned limit;
  175. unsigned ar_bytes;
  176. } kvm_vmx_segment_fields[] = {
  177. VMX_SEGMENT_FIELD(CS),
  178. VMX_SEGMENT_FIELD(DS),
  179. VMX_SEGMENT_FIELD(ES),
  180. VMX_SEGMENT_FIELD(FS),
  181. VMX_SEGMENT_FIELD(GS),
  182. VMX_SEGMENT_FIELD(SS),
  183. VMX_SEGMENT_FIELD(TR),
  184. VMX_SEGMENT_FIELD(LDTR),
  185. };
  186. static u64 host_efer;
  187. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  188. /*
  189. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  190. * away by decrementing the array size.
  191. */
  192. static const u32 vmx_msr_index[] = {
  193. #ifdef CONFIG_X86_64
  194. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  195. #endif
  196. MSR_EFER, MSR_K6_STAR,
  197. };
  198. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  199. static inline int is_page_fault(u32 intr_info)
  200. {
  201. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  202. INTR_INFO_VALID_MASK)) ==
  203. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  204. }
  205. static inline int is_no_device(u32 intr_info)
  206. {
  207. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  208. INTR_INFO_VALID_MASK)) ==
  209. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  210. }
  211. static inline int is_invalid_opcode(u32 intr_info)
  212. {
  213. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  214. INTR_INFO_VALID_MASK)) ==
  215. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  216. }
  217. static inline int is_external_interrupt(u32 intr_info)
  218. {
  219. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  220. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  221. }
  222. static inline int is_machine_check(u32 intr_info)
  223. {
  224. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  225. INTR_INFO_VALID_MASK)) ==
  226. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  227. }
  228. static inline int cpu_has_vmx_msr_bitmap(void)
  229. {
  230. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  231. }
  232. static inline int cpu_has_vmx_tpr_shadow(void)
  233. {
  234. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  235. }
  236. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  237. {
  238. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  239. }
  240. static inline int cpu_has_secondary_exec_ctrls(void)
  241. {
  242. return vmcs_config.cpu_based_exec_ctrl &
  243. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  244. }
  245. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  246. {
  247. return vmcs_config.cpu_based_2nd_exec_ctrl &
  248. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  249. }
  250. static inline bool cpu_has_vmx_flexpriority(void)
  251. {
  252. return cpu_has_vmx_tpr_shadow() &&
  253. cpu_has_vmx_virtualize_apic_accesses();
  254. }
  255. static inline bool cpu_has_vmx_ept_execute_only(void)
  256. {
  257. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  258. }
  259. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  260. {
  261. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  262. }
  263. static inline bool cpu_has_vmx_eptp_writeback(void)
  264. {
  265. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  266. }
  267. static inline bool cpu_has_vmx_ept_2m_page(void)
  268. {
  269. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  270. }
  271. static inline int cpu_has_vmx_invept_individual_addr(void)
  272. {
  273. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  274. }
  275. static inline int cpu_has_vmx_invept_context(void)
  276. {
  277. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  278. }
  279. static inline int cpu_has_vmx_invept_global(void)
  280. {
  281. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  282. }
  283. static inline int cpu_has_vmx_ept(void)
  284. {
  285. return vmcs_config.cpu_based_2nd_exec_ctrl &
  286. SECONDARY_EXEC_ENABLE_EPT;
  287. }
  288. static inline int cpu_has_vmx_unrestricted_guest(void)
  289. {
  290. return vmcs_config.cpu_based_2nd_exec_ctrl &
  291. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  292. }
  293. static inline int cpu_has_vmx_ple(void)
  294. {
  295. return vmcs_config.cpu_based_2nd_exec_ctrl &
  296. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  297. }
  298. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  299. {
  300. return flexpriority_enabled &&
  301. (cpu_has_vmx_virtualize_apic_accesses()) &&
  302. (irqchip_in_kernel(kvm));
  303. }
  304. static inline int cpu_has_vmx_vpid(void)
  305. {
  306. return vmcs_config.cpu_based_2nd_exec_ctrl &
  307. SECONDARY_EXEC_ENABLE_VPID;
  308. }
  309. static inline int cpu_has_virtual_nmis(void)
  310. {
  311. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  312. }
  313. static inline bool report_flexpriority(void)
  314. {
  315. return flexpriority_enabled;
  316. }
  317. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  318. {
  319. int i;
  320. for (i = 0; i < vmx->nmsrs; ++i)
  321. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  322. return i;
  323. return -1;
  324. }
  325. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  326. {
  327. struct {
  328. u64 vpid : 16;
  329. u64 rsvd : 48;
  330. u64 gva;
  331. } operand = { vpid, 0, gva };
  332. asm volatile (__ex(ASM_VMX_INVVPID)
  333. /* CF==1 or ZF==1 --> rc = -1 */
  334. "; ja 1f ; ud2 ; 1:"
  335. : : "a"(&operand), "c"(ext) : "cc", "memory");
  336. }
  337. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  338. {
  339. struct {
  340. u64 eptp, gpa;
  341. } operand = {eptp, gpa};
  342. asm volatile (__ex(ASM_VMX_INVEPT)
  343. /* CF==1 or ZF==1 --> rc = -1 */
  344. "; ja 1f ; ud2 ; 1:\n"
  345. : : "a" (&operand), "c" (ext) : "cc", "memory");
  346. }
  347. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  348. {
  349. int i;
  350. i = __find_msr_index(vmx, msr);
  351. if (i >= 0)
  352. return &vmx->guest_msrs[i];
  353. return NULL;
  354. }
  355. static void vmcs_clear(struct vmcs *vmcs)
  356. {
  357. u64 phys_addr = __pa(vmcs);
  358. u8 error;
  359. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  360. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  361. : "cc", "memory");
  362. if (error)
  363. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  364. vmcs, phys_addr);
  365. }
  366. static void __vcpu_clear(void *arg)
  367. {
  368. struct vcpu_vmx *vmx = arg;
  369. int cpu = raw_smp_processor_id();
  370. if (vmx->vcpu.cpu == cpu)
  371. vmcs_clear(vmx->vmcs);
  372. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  373. per_cpu(current_vmcs, cpu) = NULL;
  374. rdtscll(vmx->vcpu.arch.host_tsc);
  375. list_del(&vmx->local_vcpus_link);
  376. vmx->vcpu.cpu = -1;
  377. vmx->launched = 0;
  378. }
  379. static void vcpu_clear(struct vcpu_vmx *vmx)
  380. {
  381. if (vmx->vcpu.cpu == -1)
  382. return;
  383. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  384. }
  385. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  386. {
  387. if (vmx->vpid == 0)
  388. return;
  389. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  390. }
  391. static inline void ept_sync_global(void)
  392. {
  393. if (cpu_has_vmx_invept_global())
  394. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  395. }
  396. static inline void ept_sync_context(u64 eptp)
  397. {
  398. if (enable_ept) {
  399. if (cpu_has_vmx_invept_context())
  400. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  401. else
  402. ept_sync_global();
  403. }
  404. }
  405. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  406. {
  407. if (enable_ept) {
  408. if (cpu_has_vmx_invept_individual_addr())
  409. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  410. eptp, gpa);
  411. else
  412. ept_sync_context(eptp);
  413. }
  414. }
  415. static unsigned long vmcs_readl(unsigned long field)
  416. {
  417. unsigned long value;
  418. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  419. : "=a"(value) : "d"(field) : "cc");
  420. return value;
  421. }
  422. static u16 vmcs_read16(unsigned long field)
  423. {
  424. return vmcs_readl(field);
  425. }
  426. static u32 vmcs_read32(unsigned long field)
  427. {
  428. return vmcs_readl(field);
  429. }
  430. static u64 vmcs_read64(unsigned long field)
  431. {
  432. #ifdef CONFIG_X86_64
  433. return vmcs_readl(field);
  434. #else
  435. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  436. #endif
  437. }
  438. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  439. {
  440. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  441. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  442. dump_stack();
  443. }
  444. static void vmcs_writel(unsigned long field, unsigned long value)
  445. {
  446. u8 error;
  447. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  448. : "=q"(error) : "a"(value), "d"(field) : "cc");
  449. if (unlikely(error))
  450. vmwrite_error(field, value);
  451. }
  452. static void vmcs_write16(unsigned long field, u16 value)
  453. {
  454. vmcs_writel(field, value);
  455. }
  456. static void vmcs_write32(unsigned long field, u32 value)
  457. {
  458. vmcs_writel(field, value);
  459. }
  460. static void vmcs_write64(unsigned long field, u64 value)
  461. {
  462. vmcs_writel(field, value);
  463. #ifndef CONFIG_X86_64
  464. asm volatile ("");
  465. vmcs_writel(field+1, value >> 32);
  466. #endif
  467. }
  468. static void vmcs_clear_bits(unsigned long field, u32 mask)
  469. {
  470. vmcs_writel(field, vmcs_readl(field) & ~mask);
  471. }
  472. static void vmcs_set_bits(unsigned long field, u32 mask)
  473. {
  474. vmcs_writel(field, vmcs_readl(field) | mask);
  475. }
  476. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  477. {
  478. u32 eb;
  479. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  480. if (!vcpu->fpu_active)
  481. eb |= 1u << NM_VECTOR;
  482. /*
  483. * Unconditionally intercept #DB so we can maintain dr6 without
  484. * reading it every exit.
  485. */
  486. eb |= 1u << DB_VECTOR;
  487. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  488. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  489. eb |= 1u << BP_VECTOR;
  490. }
  491. if (to_vmx(vcpu)->rmode.vm86_active)
  492. eb = ~0;
  493. if (enable_ept)
  494. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  495. vmcs_write32(EXCEPTION_BITMAP, eb);
  496. }
  497. static void reload_tss(void)
  498. {
  499. /*
  500. * VT restores TR but not its size. Useless.
  501. */
  502. struct descriptor_table gdt;
  503. struct desc_struct *descs;
  504. kvm_get_gdt(&gdt);
  505. descs = (void *)gdt.base;
  506. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  507. load_TR_desc();
  508. }
  509. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  510. {
  511. u64 guest_efer;
  512. u64 ignore_bits;
  513. guest_efer = vmx->vcpu.arch.shadow_efer;
  514. /*
  515. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  516. * outside long mode
  517. */
  518. ignore_bits = EFER_NX | EFER_SCE;
  519. #ifdef CONFIG_X86_64
  520. ignore_bits |= EFER_LMA | EFER_LME;
  521. /* SCE is meaningful only in long mode on Intel */
  522. if (guest_efer & EFER_LMA)
  523. ignore_bits &= ~(u64)EFER_SCE;
  524. #endif
  525. guest_efer &= ~ignore_bits;
  526. guest_efer |= host_efer & ignore_bits;
  527. vmx->guest_msrs[efer_offset].data = guest_efer;
  528. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  529. return true;
  530. }
  531. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  532. {
  533. struct vcpu_vmx *vmx = to_vmx(vcpu);
  534. int i;
  535. if (vmx->host_state.loaded)
  536. return;
  537. vmx->host_state.loaded = 1;
  538. /*
  539. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  540. * allow segment selectors with cpl > 0 or ti == 1.
  541. */
  542. vmx->host_state.ldt_sel = kvm_read_ldt();
  543. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  544. vmx->host_state.fs_sel = kvm_read_fs();
  545. if (!(vmx->host_state.fs_sel & 7)) {
  546. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  547. vmx->host_state.fs_reload_needed = 0;
  548. } else {
  549. vmcs_write16(HOST_FS_SELECTOR, 0);
  550. vmx->host_state.fs_reload_needed = 1;
  551. }
  552. vmx->host_state.gs_sel = kvm_read_gs();
  553. if (!(vmx->host_state.gs_sel & 7))
  554. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  555. else {
  556. vmcs_write16(HOST_GS_SELECTOR, 0);
  557. vmx->host_state.gs_ldt_reload_needed = 1;
  558. }
  559. #ifdef CONFIG_X86_64
  560. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  561. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  562. #else
  563. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  564. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  565. #endif
  566. #ifdef CONFIG_X86_64
  567. if (is_long_mode(&vmx->vcpu)) {
  568. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  569. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  570. }
  571. #endif
  572. for (i = 0; i < vmx->save_nmsrs; ++i)
  573. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  574. vmx->guest_msrs[i].data,
  575. vmx->guest_msrs[i].mask);
  576. }
  577. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  578. {
  579. unsigned long flags;
  580. if (!vmx->host_state.loaded)
  581. return;
  582. ++vmx->vcpu.stat.host_state_reload;
  583. vmx->host_state.loaded = 0;
  584. if (vmx->host_state.fs_reload_needed)
  585. kvm_load_fs(vmx->host_state.fs_sel);
  586. if (vmx->host_state.gs_ldt_reload_needed) {
  587. kvm_load_ldt(vmx->host_state.ldt_sel);
  588. /*
  589. * If we have to reload gs, we must take care to
  590. * preserve our gs base.
  591. */
  592. local_irq_save(flags);
  593. kvm_load_gs(vmx->host_state.gs_sel);
  594. #ifdef CONFIG_X86_64
  595. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  596. #endif
  597. local_irq_restore(flags);
  598. }
  599. reload_tss();
  600. #ifdef CONFIG_X86_64
  601. if (is_long_mode(&vmx->vcpu)) {
  602. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  603. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  604. }
  605. #endif
  606. }
  607. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  608. {
  609. preempt_disable();
  610. __vmx_load_host_state(vmx);
  611. preempt_enable();
  612. }
  613. /*
  614. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  615. * vcpu mutex is already taken.
  616. */
  617. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  618. {
  619. struct vcpu_vmx *vmx = to_vmx(vcpu);
  620. u64 phys_addr = __pa(vmx->vmcs);
  621. u64 tsc_this, delta, new_offset;
  622. if (vcpu->cpu != cpu) {
  623. vcpu_clear(vmx);
  624. kvm_migrate_timers(vcpu);
  625. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  626. local_irq_disable();
  627. list_add(&vmx->local_vcpus_link,
  628. &per_cpu(vcpus_on_cpu, cpu));
  629. local_irq_enable();
  630. }
  631. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  632. u8 error;
  633. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  634. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  635. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  636. : "cc");
  637. if (error)
  638. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  639. vmx->vmcs, phys_addr);
  640. }
  641. if (vcpu->cpu != cpu) {
  642. struct descriptor_table dt;
  643. unsigned long sysenter_esp;
  644. vcpu->cpu = cpu;
  645. /*
  646. * Linux uses per-cpu TSS and GDT, so set these when switching
  647. * processors.
  648. */
  649. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  650. kvm_get_gdt(&dt);
  651. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  652. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  653. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  654. /*
  655. * Make sure the time stamp counter is monotonous.
  656. */
  657. rdtscll(tsc_this);
  658. if (tsc_this < vcpu->arch.host_tsc) {
  659. delta = vcpu->arch.host_tsc - tsc_this;
  660. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  661. vmcs_write64(TSC_OFFSET, new_offset);
  662. }
  663. }
  664. }
  665. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  666. {
  667. __vmx_load_host_state(to_vmx(vcpu));
  668. }
  669. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  670. {
  671. if (vcpu->fpu_active)
  672. return;
  673. vcpu->fpu_active = 1;
  674. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  675. if (vcpu->arch.cr0 & X86_CR0_TS)
  676. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  677. update_exception_bitmap(vcpu);
  678. }
  679. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  680. {
  681. if (!vcpu->fpu_active)
  682. return;
  683. vcpu->fpu_active = 0;
  684. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  685. update_exception_bitmap(vcpu);
  686. }
  687. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  688. {
  689. unsigned long rflags;
  690. rflags = vmcs_readl(GUEST_RFLAGS);
  691. if (to_vmx(vcpu)->rmode.vm86_active)
  692. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  693. return rflags;
  694. }
  695. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  696. {
  697. if (to_vmx(vcpu)->rmode.vm86_active)
  698. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  699. vmcs_writel(GUEST_RFLAGS, rflags);
  700. }
  701. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  702. {
  703. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  704. int ret = 0;
  705. if (interruptibility & GUEST_INTR_STATE_STI)
  706. ret |= X86_SHADOW_INT_STI;
  707. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  708. ret |= X86_SHADOW_INT_MOV_SS;
  709. return ret & mask;
  710. }
  711. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  712. {
  713. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  714. u32 interruptibility = interruptibility_old;
  715. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  716. if (mask & X86_SHADOW_INT_MOV_SS)
  717. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  718. if (mask & X86_SHADOW_INT_STI)
  719. interruptibility |= GUEST_INTR_STATE_STI;
  720. if ((interruptibility != interruptibility_old))
  721. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  722. }
  723. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  724. {
  725. unsigned long rip;
  726. rip = kvm_rip_read(vcpu);
  727. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  728. kvm_rip_write(vcpu, rip);
  729. /* skipping an emulated instruction also counts */
  730. vmx_set_interrupt_shadow(vcpu, 0);
  731. }
  732. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  733. bool has_error_code, u32 error_code)
  734. {
  735. struct vcpu_vmx *vmx = to_vmx(vcpu);
  736. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  737. if (has_error_code) {
  738. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  739. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  740. }
  741. if (vmx->rmode.vm86_active) {
  742. vmx->rmode.irq.pending = true;
  743. vmx->rmode.irq.vector = nr;
  744. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  745. if (kvm_exception_is_soft(nr))
  746. vmx->rmode.irq.rip +=
  747. vmx->vcpu.arch.event_exit_inst_len;
  748. intr_info |= INTR_TYPE_SOFT_INTR;
  749. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  750. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  751. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  752. return;
  753. }
  754. if (kvm_exception_is_soft(nr)) {
  755. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  756. vmx->vcpu.arch.event_exit_inst_len);
  757. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  758. } else
  759. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  760. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  761. }
  762. /*
  763. * Swap MSR entry in host/guest MSR entry array.
  764. */
  765. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  766. {
  767. struct shared_msr_entry tmp;
  768. tmp = vmx->guest_msrs[to];
  769. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  770. vmx->guest_msrs[from] = tmp;
  771. }
  772. /*
  773. * Set up the vmcs to automatically save and restore system
  774. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  775. * mode, as fiddling with msrs is very expensive.
  776. */
  777. static void setup_msrs(struct vcpu_vmx *vmx)
  778. {
  779. int save_nmsrs, index;
  780. unsigned long *msr_bitmap;
  781. vmx_load_host_state(vmx);
  782. save_nmsrs = 0;
  783. #ifdef CONFIG_X86_64
  784. if (is_long_mode(&vmx->vcpu)) {
  785. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  786. if (index >= 0)
  787. move_msr_up(vmx, index, save_nmsrs++);
  788. index = __find_msr_index(vmx, MSR_LSTAR);
  789. if (index >= 0)
  790. move_msr_up(vmx, index, save_nmsrs++);
  791. index = __find_msr_index(vmx, MSR_CSTAR);
  792. if (index >= 0)
  793. move_msr_up(vmx, index, save_nmsrs++);
  794. /*
  795. * MSR_K6_STAR is only needed on long mode guests, and only
  796. * if efer.sce is enabled.
  797. */
  798. index = __find_msr_index(vmx, MSR_K6_STAR);
  799. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  800. move_msr_up(vmx, index, save_nmsrs++);
  801. }
  802. #endif
  803. index = __find_msr_index(vmx, MSR_EFER);
  804. if (index >= 0 && update_transition_efer(vmx, index))
  805. move_msr_up(vmx, index, save_nmsrs++);
  806. vmx->save_nmsrs = save_nmsrs;
  807. if (cpu_has_vmx_msr_bitmap()) {
  808. if (is_long_mode(&vmx->vcpu))
  809. msr_bitmap = vmx_msr_bitmap_longmode;
  810. else
  811. msr_bitmap = vmx_msr_bitmap_legacy;
  812. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  813. }
  814. }
  815. /*
  816. * reads and returns guest's timestamp counter "register"
  817. * guest_tsc = host_tsc + tsc_offset -- 21.3
  818. */
  819. static u64 guest_read_tsc(void)
  820. {
  821. u64 host_tsc, tsc_offset;
  822. rdtscll(host_tsc);
  823. tsc_offset = vmcs_read64(TSC_OFFSET);
  824. return host_tsc + tsc_offset;
  825. }
  826. /*
  827. * writes 'guest_tsc' into guest's timestamp counter "register"
  828. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  829. */
  830. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  831. {
  832. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  833. }
  834. /*
  835. * Reads an msr value (of 'msr_index') into 'pdata'.
  836. * Returns 0 on success, non-0 otherwise.
  837. * Assumes vcpu_load() was already called.
  838. */
  839. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  840. {
  841. u64 data;
  842. struct shared_msr_entry *msr;
  843. if (!pdata) {
  844. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  845. return -EINVAL;
  846. }
  847. switch (msr_index) {
  848. #ifdef CONFIG_X86_64
  849. case MSR_FS_BASE:
  850. data = vmcs_readl(GUEST_FS_BASE);
  851. break;
  852. case MSR_GS_BASE:
  853. data = vmcs_readl(GUEST_GS_BASE);
  854. break;
  855. case MSR_KERNEL_GS_BASE:
  856. vmx_load_host_state(to_vmx(vcpu));
  857. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  858. break;
  859. #endif
  860. case MSR_EFER:
  861. return kvm_get_msr_common(vcpu, msr_index, pdata);
  862. case MSR_IA32_TSC:
  863. data = guest_read_tsc();
  864. break;
  865. case MSR_IA32_SYSENTER_CS:
  866. data = vmcs_read32(GUEST_SYSENTER_CS);
  867. break;
  868. case MSR_IA32_SYSENTER_EIP:
  869. data = vmcs_readl(GUEST_SYSENTER_EIP);
  870. break;
  871. case MSR_IA32_SYSENTER_ESP:
  872. data = vmcs_readl(GUEST_SYSENTER_ESP);
  873. break;
  874. default:
  875. vmx_load_host_state(to_vmx(vcpu));
  876. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  877. if (msr) {
  878. vmx_load_host_state(to_vmx(vcpu));
  879. data = msr->data;
  880. break;
  881. }
  882. return kvm_get_msr_common(vcpu, msr_index, pdata);
  883. }
  884. *pdata = data;
  885. return 0;
  886. }
  887. /*
  888. * Writes msr value into into the appropriate "register".
  889. * Returns 0 on success, non-0 otherwise.
  890. * Assumes vcpu_load() was already called.
  891. */
  892. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  893. {
  894. struct vcpu_vmx *vmx = to_vmx(vcpu);
  895. struct shared_msr_entry *msr;
  896. u64 host_tsc;
  897. int ret = 0;
  898. switch (msr_index) {
  899. case MSR_EFER:
  900. vmx_load_host_state(vmx);
  901. ret = kvm_set_msr_common(vcpu, msr_index, data);
  902. break;
  903. #ifdef CONFIG_X86_64
  904. case MSR_FS_BASE:
  905. vmcs_writel(GUEST_FS_BASE, data);
  906. break;
  907. case MSR_GS_BASE:
  908. vmcs_writel(GUEST_GS_BASE, data);
  909. break;
  910. case MSR_KERNEL_GS_BASE:
  911. vmx_load_host_state(vmx);
  912. vmx->msr_guest_kernel_gs_base = data;
  913. break;
  914. #endif
  915. case MSR_IA32_SYSENTER_CS:
  916. vmcs_write32(GUEST_SYSENTER_CS, data);
  917. break;
  918. case MSR_IA32_SYSENTER_EIP:
  919. vmcs_writel(GUEST_SYSENTER_EIP, data);
  920. break;
  921. case MSR_IA32_SYSENTER_ESP:
  922. vmcs_writel(GUEST_SYSENTER_ESP, data);
  923. break;
  924. case MSR_IA32_TSC:
  925. rdtscll(host_tsc);
  926. guest_write_tsc(data, host_tsc);
  927. break;
  928. case MSR_IA32_CR_PAT:
  929. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  930. vmcs_write64(GUEST_IA32_PAT, data);
  931. vcpu->arch.pat = data;
  932. break;
  933. }
  934. /* Otherwise falls through to kvm_set_msr_common */
  935. default:
  936. msr = find_msr_entry(vmx, msr_index);
  937. if (msr) {
  938. vmx_load_host_state(vmx);
  939. msr->data = data;
  940. break;
  941. }
  942. ret = kvm_set_msr_common(vcpu, msr_index, data);
  943. }
  944. return ret;
  945. }
  946. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  947. {
  948. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  949. switch (reg) {
  950. case VCPU_REGS_RSP:
  951. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  952. break;
  953. case VCPU_REGS_RIP:
  954. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  955. break;
  956. case VCPU_EXREG_PDPTR:
  957. if (enable_ept)
  958. ept_save_pdptrs(vcpu);
  959. break;
  960. default:
  961. break;
  962. }
  963. }
  964. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  965. {
  966. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  967. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  968. else
  969. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  970. update_exception_bitmap(vcpu);
  971. }
  972. static __init int cpu_has_kvm_support(void)
  973. {
  974. return cpu_has_vmx();
  975. }
  976. static __init int vmx_disabled_by_bios(void)
  977. {
  978. u64 msr;
  979. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  980. return (msr & (FEATURE_CONTROL_LOCKED |
  981. FEATURE_CONTROL_VMXON_ENABLED))
  982. == FEATURE_CONTROL_LOCKED;
  983. /* locked but not enabled */
  984. }
  985. static int hardware_enable(void *garbage)
  986. {
  987. int cpu = raw_smp_processor_id();
  988. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  989. u64 old;
  990. if (read_cr4() & X86_CR4_VMXE)
  991. return -EBUSY;
  992. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  993. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  994. if ((old & (FEATURE_CONTROL_LOCKED |
  995. FEATURE_CONTROL_VMXON_ENABLED))
  996. != (FEATURE_CONTROL_LOCKED |
  997. FEATURE_CONTROL_VMXON_ENABLED))
  998. /* enable and lock */
  999. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1000. FEATURE_CONTROL_LOCKED |
  1001. FEATURE_CONTROL_VMXON_ENABLED);
  1002. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1003. asm volatile (ASM_VMX_VMXON_RAX
  1004. : : "a"(&phys_addr), "m"(phys_addr)
  1005. : "memory", "cc");
  1006. ept_sync_global();
  1007. return 0;
  1008. }
  1009. static void vmclear_local_vcpus(void)
  1010. {
  1011. int cpu = raw_smp_processor_id();
  1012. struct vcpu_vmx *vmx, *n;
  1013. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1014. local_vcpus_link)
  1015. __vcpu_clear(vmx);
  1016. }
  1017. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1018. * tricks.
  1019. */
  1020. static void kvm_cpu_vmxoff(void)
  1021. {
  1022. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1023. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1024. }
  1025. static void hardware_disable(void *garbage)
  1026. {
  1027. vmclear_local_vcpus();
  1028. kvm_cpu_vmxoff();
  1029. }
  1030. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1031. u32 msr, u32 *result)
  1032. {
  1033. u32 vmx_msr_low, vmx_msr_high;
  1034. u32 ctl = ctl_min | ctl_opt;
  1035. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1036. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1037. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1038. /* Ensure minimum (required) set of control bits are supported. */
  1039. if (ctl_min & ~ctl)
  1040. return -EIO;
  1041. *result = ctl;
  1042. return 0;
  1043. }
  1044. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1045. {
  1046. u32 vmx_msr_low, vmx_msr_high;
  1047. u32 min, opt, min2, opt2;
  1048. u32 _pin_based_exec_control = 0;
  1049. u32 _cpu_based_exec_control = 0;
  1050. u32 _cpu_based_2nd_exec_control = 0;
  1051. u32 _vmexit_control = 0;
  1052. u32 _vmentry_control = 0;
  1053. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1054. opt = PIN_BASED_VIRTUAL_NMIS;
  1055. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1056. &_pin_based_exec_control) < 0)
  1057. return -EIO;
  1058. min = CPU_BASED_HLT_EXITING |
  1059. #ifdef CONFIG_X86_64
  1060. CPU_BASED_CR8_LOAD_EXITING |
  1061. CPU_BASED_CR8_STORE_EXITING |
  1062. #endif
  1063. CPU_BASED_CR3_LOAD_EXITING |
  1064. CPU_BASED_CR3_STORE_EXITING |
  1065. CPU_BASED_USE_IO_BITMAPS |
  1066. CPU_BASED_MOV_DR_EXITING |
  1067. CPU_BASED_USE_TSC_OFFSETING |
  1068. CPU_BASED_MWAIT_EXITING |
  1069. CPU_BASED_MONITOR_EXITING |
  1070. CPU_BASED_INVLPG_EXITING;
  1071. opt = CPU_BASED_TPR_SHADOW |
  1072. CPU_BASED_USE_MSR_BITMAPS |
  1073. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1074. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1075. &_cpu_based_exec_control) < 0)
  1076. return -EIO;
  1077. #ifdef CONFIG_X86_64
  1078. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1079. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1080. ~CPU_BASED_CR8_STORE_EXITING;
  1081. #endif
  1082. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1083. min2 = 0;
  1084. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1085. SECONDARY_EXEC_WBINVD_EXITING |
  1086. SECONDARY_EXEC_ENABLE_VPID |
  1087. SECONDARY_EXEC_ENABLE_EPT |
  1088. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1089. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1090. if (adjust_vmx_controls(min2, opt2,
  1091. MSR_IA32_VMX_PROCBASED_CTLS2,
  1092. &_cpu_based_2nd_exec_control) < 0)
  1093. return -EIO;
  1094. }
  1095. #ifndef CONFIG_X86_64
  1096. if (!(_cpu_based_2nd_exec_control &
  1097. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1098. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1099. #endif
  1100. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1101. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1102. enabled */
  1103. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1104. CPU_BASED_CR3_STORE_EXITING |
  1105. CPU_BASED_INVLPG_EXITING);
  1106. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1107. vmx_capability.ept, vmx_capability.vpid);
  1108. }
  1109. min = 0;
  1110. #ifdef CONFIG_X86_64
  1111. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1112. #endif
  1113. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1114. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1115. &_vmexit_control) < 0)
  1116. return -EIO;
  1117. min = 0;
  1118. opt = VM_ENTRY_LOAD_IA32_PAT;
  1119. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1120. &_vmentry_control) < 0)
  1121. return -EIO;
  1122. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1123. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1124. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1125. return -EIO;
  1126. #ifdef CONFIG_X86_64
  1127. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1128. if (vmx_msr_high & (1u<<16))
  1129. return -EIO;
  1130. #endif
  1131. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1132. if (((vmx_msr_high >> 18) & 15) != 6)
  1133. return -EIO;
  1134. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1135. vmcs_conf->order = get_order(vmcs_config.size);
  1136. vmcs_conf->revision_id = vmx_msr_low;
  1137. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1138. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1139. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1140. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1141. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1142. return 0;
  1143. }
  1144. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1145. {
  1146. int node = cpu_to_node(cpu);
  1147. struct page *pages;
  1148. struct vmcs *vmcs;
  1149. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1150. if (!pages)
  1151. return NULL;
  1152. vmcs = page_address(pages);
  1153. memset(vmcs, 0, vmcs_config.size);
  1154. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1155. return vmcs;
  1156. }
  1157. static struct vmcs *alloc_vmcs(void)
  1158. {
  1159. return alloc_vmcs_cpu(raw_smp_processor_id());
  1160. }
  1161. static void free_vmcs(struct vmcs *vmcs)
  1162. {
  1163. free_pages((unsigned long)vmcs, vmcs_config.order);
  1164. }
  1165. static void free_kvm_area(void)
  1166. {
  1167. int cpu;
  1168. for_each_possible_cpu(cpu) {
  1169. free_vmcs(per_cpu(vmxarea, cpu));
  1170. per_cpu(vmxarea, cpu) = NULL;
  1171. }
  1172. }
  1173. static __init int alloc_kvm_area(void)
  1174. {
  1175. int cpu;
  1176. for_each_possible_cpu(cpu) {
  1177. struct vmcs *vmcs;
  1178. vmcs = alloc_vmcs_cpu(cpu);
  1179. if (!vmcs) {
  1180. free_kvm_area();
  1181. return -ENOMEM;
  1182. }
  1183. per_cpu(vmxarea, cpu) = vmcs;
  1184. }
  1185. return 0;
  1186. }
  1187. static __init int hardware_setup(void)
  1188. {
  1189. if (setup_vmcs_config(&vmcs_config) < 0)
  1190. return -EIO;
  1191. if (boot_cpu_has(X86_FEATURE_NX))
  1192. kvm_enable_efer_bits(EFER_NX);
  1193. if (!cpu_has_vmx_vpid())
  1194. enable_vpid = 0;
  1195. if (!cpu_has_vmx_ept()) {
  1196. enable_ept = 0;
  1197. enable_unrestricted_guest = 0;
  1198. }
  1199. if (!cpu_has_vmx_unrestricted_guest())
  1200. enable_unrestricted_guest = 0;
  1201. if (!cpu_has_vmx_flexpriority())
  1202. flexpriority_enabled = 0;
  1203. if (!cpu_has_vmx_tpr_shadow())
  1204. kvm_x86_ops->update_cr8_intercept = NULL;
  1205. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1206. kvm_disable_largepages();
  1207. if (!cpu_has_vmx_ple())
  1208. ple_gap = 0;
  1209. return alloc_kvm_area();
  1210. }
  1211. static __exit void hardware_unsetup(void)
  1212. {
  1213. free_kvm_area();
  1214. }
  1215. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1216. {
  1217. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1218. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1219. vmcs_write16(sf->selector, save->selector);
  1220. vmcs_writel(sf->base, save->base);
  1221. vmcs_write32(sf->limit, save->limit);
  1222. vmcs_write32(sf->ar_bytes, save->ar);
  1223. } else {
  1224. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1225. << AR_DPL_SHIFT;
  1226. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1227. }
  1228. }
  1229. static void enter_pmode(struct kvm_vcpu *vcpu)
  1230. {
  1231. unsigned long flags;
  1232. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1233. vmx->emulation_required = 1;
  1234. vmx->rmode.vm86_active = 0;
  1235. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1236. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1237. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1238. flags = vmcs_readl(GUEST_RFLAGS);
  1239. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1240. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1241. vmcs_writel(GUEST_RFLAGS, flags);
  1242. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1243. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1244. update_exception_bitmap(vcpu);
  1245. if (emulate_invalid_guest_state)
  1246. return;
  1247. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1248. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1249. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1250. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1251. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1252. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1253. vmcs_write16(GUEST_CS_SELECTOR,
  1254. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1255. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1256. }
  1257. static gva_t rmode_tss_base(struct kvm *kvm)
  1258. {
  1259. if (!kvm->arch.tss_addr) {
  1260. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1261. kvm->memslots[0].npages - 3;
  1262. return base_gfn << PAGE_SHIFT;
  1263. }
  1264. return kvm->arch.tss_addr;
  1265. }
  1266. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1267. {
  1268. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1269. save->selector = vmcs_read16(sf->selector);
  1270. save->base = vmcs_readl(sf->base);
  1271. save->limit = vmcs_read32(sf->limit);
  1272. save->ar = vmcs_read32(sf->ar_bytes);
  1273. vmcs_write16(sf->selector, save->base >> 4);
  1274. vmcs_write32(sf->base, save->base & 0xfffff);
  1275. vmcs_write32(sf->limit, 0xffff);
  1276. vmcs_write32(sf->ar_bytes, 0xf3);
  1277. }
  1278. static void enter_rmode(struct kvm_vcpu *vcpu)
  1279. {
  1280. unsigned long flags;
  1281. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1282. if (enable_unrestricted_guest)
  1283. return;
  1284. vmx->emulation_required = 1;
  1285. vmx->rmode.vm86_active = 1;
  1286. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1287. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1288. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1289. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1290. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1291. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1292. flags = vmcs_readl(GUEST_RFLAGS);
  1293. vmx->rmode.save_iopl
  1294. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1295. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1296. vmcs_writel(GUEST_RFLAGS, flags);
  1297. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1298. update_exception_bitmap(vcpu);
  1299. if (emulate_invalid_guest_state)
  1300. goto continue_rmode;
  1301. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1302. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1303. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1304. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1305. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1306. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1307. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1308. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1309. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1310. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1311. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1312. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1313. continue_rmode:
  1314. kvm_mmu_reset_context(vcpu);
  1315. init_rmode(vcpu->kvm);
  1316. }
  1317. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1318. {
  1319. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1320. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1321. if (!msr)
  1322. return;
  1323. /*
  1324. * Force kernel_gs_base reloading before EFER changes, as control
  1325. * of this msr depends on is_long_mode().
  1326. */
  1327. vmx_load_host_state(to_vmx(vcpu));
  1328. vcpu->arch.shadow_efer = efer;
  1329. if (!msr)
  1330. return;
  1331. if (efer & EFER_LMA) {
  1332. vmcs_write32(VM_ENTRY_CONTROLS,
  1333. vmcs_read32(VM_ENTRY_CONTROLS) |
  1334. VM_ENTRY_IA32E_MODE);
  1335. msr->data = efer;
  1336. } else {
  1337. vmcs_write32(VM_ENTRY_CONTROLS,
  1338. vmcs_read32(VM_ENTRY_CONTROLS) &
  1339. ~VM_ENTRY_IA32E_MODE);
  1340. msr->data = efer & ~EFER_LME;
  1341. }
  1342. setup_msrs(vmx);
  1343. }
  1344. #ifdef CONFIG_X86_64
  1345. static void enter_lmode(struct kvm_vcpu *vcpu)
  1346. {
  1347. u32 guest_tr_ar;
  1348. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1349. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1350. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1351. __func__);
  1352. vmcs_write32(GUEST_TR_AR_BYTES,
  1353. (guest_tr_ar & ~AR_TYPE_MASK)
  1354. | AR_TYPE_BUSY_64_TSS);
  1355. }
  1356. vcpu->arch.shadow_efer |= EFER_LMA;
  1357. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1358. }
  1359. static void exit_lmode(struct kvm_vcpu *vcpu)
  1360. {
  1361. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1362. vmcs_write32(VM_ENTRY_CONTROLS,
  1363. vmcs_read32(VM_ENTRY_CONTROLS)
  1364. & ~VM_ENTRY_IA32E_MODE);
  1365. }
  1366. #endif
  1367. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1368. {
  1369. vpid_sync_vcpu_all(to_vmx(vcpu));
  1370. if (enable_ept)
  1371. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1372. }
  1373. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1374. {
  1375. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1376. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1377. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1378. }
  1379. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1380. {
  1381. if (!test_bit(VCPU_EXREG_PDPTR,
  1382. (unsigned long *)&vcpu->arch.regs_dirty))
  1383. return;
  1384. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1385. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1386. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1387. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1388. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1389. }
  1390. }
  1391. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1392. {
  1393. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1394. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1395. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1396. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1397. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1398. }
  1399. __set_bit(VCPU_EXREG_PDPTR,
  1400. (unsigned long *)&vcpu->arch.regs_avail);
  1401. __set_bit(VCPU_EXREG_PDPTR,
  1402. (unsigned long *)&vcpu->arch.regs_dirty);
  1403. }
  1404. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1405. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1406. unsigned long cr0,
  1407. struct kvm_vcpu *vcpu)
  1408. {
  1409. if (!(cr0 & X86_CR0_PG)) {
  1410. /* From paging/starting to nonpaging */
  1411. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1412. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1413. (CPU_BASED_CR3_LOAD_EXITING |
  1414. CPU_BASED_CR3_STORE_EXITING));
  1415. vcpu->arch.cr0 = cr0;
  1416. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1417. } else if (!is_paging(vcpu)) {
  1418. /* From nonpaging to paging */
  1419. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1420. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1421. ~(CPU_BASED_CR3_LOAD_EXITING |
  1422. CPU_BASED_CR3_STORE_EXITING));
  1423. vcpu->arch.cr0 = cr0;
  1424. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1425. }
  1426. if (!(cr0 & X86_CR0_WP))
  1427. *hw_cr0 &= ~X86_CR0_WP;
  1428. }
  1429. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1430. struct kvm_vcpu *vcpu)
  1431. {
  1432. if (!is_paging(vcpu)) {
  1433. *hw_cr4 &= ~X86_CR4_PAE;
  1434. *hw_cr4 |= X86_CR4_PSE;
  1435. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1436. *hw_cr4 &= ~X86_CR4_PAE;
  1437. }
  1438. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1439. {
  1440. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1441. unsigned long hw_cr0;
  1442. if (enable_unrestricted_guest)
  1443. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1444. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1445. else
  1446. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1447. vmx_fpu_deactivate(vcpu);
  1448. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1449. enter_pmode(vcpu);
  1450. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1451. enter_rmode(vcpu);
  1452. #ifdef CONFIG_X86_64
  1453. if (vcpu->arch.shadow_efer & EFER_LME) {
  1454. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1455. enter_lmode(vcpu);
  1456. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1457. exit_lmode(vcpu);
  1458. }
  1459. #endif
  1460. if (enable_ept)
  1461. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1462. vmcs_writel(CR0_READ_SHADOW, cr0);
  1463. vmcs_writel(GUEST_CR0, hw_cr0);
  1464. vcpu->arch.cr0 = cr0;
  1465. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1466. vmx_fpu_activate(vcpu);
  1467. }
  1468. static u64 construct_eptp(unsigned long root_hpa)
  1469. {
  1470. u64 eptp;
  1471. /* TODO write the value reading from MSR */
  1472. eptp = VMX_EPT_DEFAULT_MT |
  1473. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1474. eptp |= (root_hpa & PAGE_MASK);
  1475. return eptp;
  1476. }
  1477. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1478. {
  1479. unsigned long guest_cr3;
  1480. u64 eptp;
  1481. guest_cr3 = cr3;
  1482. if (enable_ept) {
  1483. eptp = construct_eptp(cr3);
  1484. vmcs_write64(EPT_POINTER, eptp);
  1485. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1486. vcpu->kvm->arch.ept_identity_map_addr;
  1487. ept_load_pdptrs(vcpu);
  1488. }
  1489. vmx_flush_tlb(vcpu);
  1490. vmcs_writel(GUEST_CR3, guest_cr3);
  1491. if (vcpu->arch.cr0 & X86_CR0_PE)
  1492. vmx_fpu_deactivate(vcpu);
  1493. }
  1494. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1495. {
  1496. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1497. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1498. vcpu->arch.cr4 = cr4;
  1499. if (enable_ept)
  1500. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1501. vmcs_writel(CR4_READ_SHADOW, cr4);
  1502. vmcs_writel(GUEST_CR4, hw_cr4);
  1503. }
  1504. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1505. {
  1506. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1507. return vmcs_readl(sf->base);
  1508. }
  1509. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1510. struct kvm_segment *var, int seg)
  1511. {
  1512. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1513. u32 ar;
  1514. var->base = vmcs_readl(sf->base);
  1515. var->limit = vmcs_read32(sf->limit);
  1516. var->selector = vmcs_read16(sf->selector);
  1517. ar = vmcs_read32(sf->ar_bytes);
  1518. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1519. ar = 0;
  1520. var->type = ar & 15;
  1521. var->s = (ar >> 4) & 1;
  1522. var->dpl = (ar >> 5) & 3;
  1523. var->present = (ar >> 7) & 1;
  1524. var->avl = (ar >> 12) & 1;
  1525. var->l = (ar >> 13) & 1;
  1526. var->db = (ar >> 14) & 1;
  1527. var->g = (ar >> 15) & 1;
  1528. var->unusable = (ar >> 16) & 1;
  1529. }
  1530. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1531. {
  1532. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1533. return 0;
  1534. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1535. return 3;
  1536. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1537. }
  1538. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1539. {
  1540. u32 ar;
  1541. if (var->unusable)
  1542. ar = 1 << 16;
  1543. else {
  1544. ar = var->type & 15;
  1545. ar |= (var->s & 1) << 4;
  1546. ar |= (var->dpl & 3) << 5;
  1547. ar |= (var->present & 1) << 7;
  1548. ar |= (var->avl & 1) << 12;
  1549. ar |= (var->l & 1) << 13;
  1550. ar |= (var->db & 1) << 14;
  1551. ar |= (var->g & 1) << 15;
  1552. }
  1553. if (ar == 0) /* a 0 value means unusable */
  1554. ar = AR_UNUSABLE_MASK;
  1555. return ar;
  1556. }
  1557. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1558. struct kvm_segment *var, int seg)
  1559. {
  1560. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1561. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1562. u32 ar;
  1563. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1564. vmx->rmode.tr.selector = var->selector;
  1565. vmx->rmode.tr.base = var->base;
  1566. vmx->rmode.tr.limit = var->limit;
  1567. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1568. return;
  1569. }
  1570. vmcs_writel(sf->base, var->base);
  1571. vmcs_write32(sf->limit, var->limit);
  1572. vmcs_write16(sf->selector, var->selector);
  1573. if (vmx->rmode.vm86_active && var->s) {
  1574. /*
  1575. * Hack real-mode segments into vm86 compatibility.
  1576. */
  1577. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1578. vmcs_writel(sf->base, 0xf0000);
  1579. ar = 0xf3;
  1580. } else
  1581. ar = vmx_segment_access_rights(var);
  1582. /*
  1583. * Fix the "Accessed" bit in AR field of segment registers for older
  1584. * qemu binaries.
  1585. * IA32 arch specifies that at the time of processor reset the
  1586. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1587. * is setting it to 0 in the usedland code. This causes invalid guest
  1588. * state vmexit when "unrestricted guest" mode is turned on.
  1589. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1590. * tree. Newer qemu binaries with that qemu fix would not need this
  1591. * kvm hack.
  1592. */
  1593. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1594. ar |= 0x1; /* Accessed */
  1595. vmcs_write32(sf->ar_bytes, ar);
  1596. }
  1597. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1598. {
  1599. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1600. *db = (ar >> 14) & 1;
  1601. *l = (ar >> 13) & 1;
  1602. }
  1603. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1604. {
  1605. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1606. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1607. }
  1608. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1609. {
  1610. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1611. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1612. }
  1613. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1614. {
  1615. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1616. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1617. }
  1618. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1619. {
  1620. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1621. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1622. }
  1623. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1624. {
  1625. struct kvm_segment var;
  1626. u32 ar;
  1627. vmx_get_segment(vcpu, &var, seg);
  1628. ar = vmx_segment_access_rights(&var);
  1629. if (var.base != (var.selector << 4))
  1630. return false;
  1631. if (var.limit != 0xffff)
  1632. return false;
  1633. if (ar != 0xf3)
  1634. return false;
  1635. return true;
  1636. }
  1637. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1638. {
  1639. struct kvm_segment cs;
  1640. unsigned int cs_rpl;
  1641. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1642. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1643. if (cs.unusable)
  1644. return false;
  1645. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1646. return false;
  1647. if (!cs.s)
  1648. return false;
  1649. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1650. if (cs.dpl > cs_rpl)
  1651. return false;
  1652. } else {
  1653. if (cs.dpl != cs_rpl)
  1654. return false;
  1655. }
  1656. if (!cs.present)
  1657. return false;
  1658. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1659. return true;
  1660. }
  1661. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1662. {
  1663. struct kvm_segment ss;
  1664. unsigned int ss_rpl;
  1665. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1666. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1667. if (ss.unusable)
  1668. return true;
  1669. if (ss.type != 3 && ss.type != 7)
  1670. return false;
  1671. if (!ss.s)
  1672. return false;
  1673. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1674. return false;
  1675. if (!ss.present)
  1676. return false;
  1677. return true;
  1678. }
  1679. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1680. {
  1681. struct kvm_segment var;
  1682. unsigned int rpl;
  1683. vmx_get_segment(vcpu, &var, seg);
  1684. rpl = var.selector & SELECTOR_RPL_MASK;
  1685. if (var.unusable)
  1686. return true;
  1687. if (!var.s)
  1688. return false;
  1689. if (!var.present)
  1690. return false;
  1691. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1692. if (var.dpl < rpl) /* DPL < RPL */
  1693. return false;
  1694. }
  1695. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1696. * rights flags
  1697. */
  1698. return true;
  1699. }
  1700. static bool tr_valid(struct kvm_vcpu *vcpu)
  1701. {
  1702. struct kvm_segment tr;
  1703. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1704. if (tr.unusable)
  1705. return false;
  1706. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1707. return false;
  1708. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1709. return false;
  1710. if (!tr.present)
  1711. return false;
  1712. return true;
  1713. }
  1714. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1715. {
  1716. struct kvm_segment ldtr;
  1717. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1718. if (ldtr.unusable)
  1719. return true;
  1720. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1721. return false;
  1722. if (ldtr.type != 2)
  1723. return false;
  1724. if (!ldtr.present)
  1725. return false;
  1726. return true;
  1727. }
  1728. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1729. {
  1730. struct kvm_segment cs, ss;
  1731. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1732. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1733. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1734. (ss.selector & SELECTOR_RPL_MASK));
  1735. }
  1736. /*
  1737. * Check if guest state is valid. Returns true if valid, false if
  1738. * not.
  1739. * We assume that registers are always usable
  1740. */
  1741. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1742. {
  1743. /* real mode guest state checks */
  1744. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1745. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1746. return false;
  1747. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1748. return false;
  1749. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1750. return false;
  1751. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1752. return false;
  1753. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1754. return false;
  1755. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1756. return false;
  1757. } else {
  1758. /* protected mode guest state checks */
  1759. if (!cs_ss_rpl_check(vcpu))
  1760. return false;
  1761. if (!code_segment_valid(vcpu))
  1762. return false;
  1763. if (!stack_segment_valid(vcpu))
  1764. return false;
  1765. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1766. return false;
  1767. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1768. return false;
  1769. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1770. return false;
  1771. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1772. return false;
  1773. if (!tr_valid(vcpu))
  1774. return false;
  1775. if (!ldtr_valid(vcpu))
  1776. return false;
  1777. }
  1778. /* TODO:
  1779. * - Add checks on RIP
  1780. * - Add checks on RFLAGS
  1781. */
  1782. return true;
  1783. }
  1784. static int init_rmode_tss(struct kvm *kvm)
  1785. {
  1786. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1787. u16 data = 0;
  1788. int ret = 0;
  1789. int r;
  1790. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1791. if (r < 0)
  1792. goto out;
  1793. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1794. r = kvm_write_guest_page(kvm, fn++, &data,
  1795. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1796. if (r < 0)
  1797. goto out;
  1798. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1799. if (r < 0)
  1800. goto out;
  1801. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1802. if (r < 0)
  1803. goto out;
  1804. data = ~0;
  1805. r = kvm_write_guest_page(kvm, fn, &data,
  1806. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1807. sizeof(u8));
  1808. if (r < 0)
  1809. goto out;
  1810. ret = 1;
  1811. out:
  1812. return ret;
  1813. }
  1814. static int init_rmode_identity_map(struct kvm *kvm)
  1815. {
  1816. int i, r, ret;
  1817. pfn_t identity_map_pfn;
  1818. u32 tmp;
  1819. if (!enable_ept)
  1820. return 1;
  1821. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1822. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1823. "haven't been allocated!\n");
  1824. return 0;
  1825. }
  1826. if (likely(kvm->arch.ept_identity_pagetable_done))
  1827. return 1;
  1828. ret = 0;
  1829. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1830. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1831. if (r < 0)
  1832. goto out;
  1833. /* Set up identity-mapping pagetable for EPT in real mode */
  1834. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1835. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1836. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1837. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1838. &tmp, i * sizeof(tmp), sizeof(tmp));
  1839. if (r < 0)
  1840. goto out;
  1841. }
  1842. kvm->arch.ept_identity_pagetable_done = true;
  1843. ret = 1;
  1844. out:
  1845. return ret;
  1846. }
  1847. static void seg_setup(int seg)
  1848. {
  1849. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1850. unsigned int ar;
  1851. vmcs_write16(sf->selector, 0);
  1852. vmcs_writel(sf->base, 0);
  1853. vmcs_write32(sf->limit, 0xffff);
  1854. if (enable_unrestricted_guest) {
  1855. ar = 0x93;
  1856. if (seg == VCPU_SREG_CS)
  1857. ar |= 0x08; /* code segment */
  1858. } else
  1859. ar = 0xf3;
  1860. vmcs_write32(sf->ar_bytes, ar);
  1861. }
  1862. static int alloc_apic_access_page(struct kvm *kvm)
  1863. {
  1864. struct kvm_userspace_memory_region kvm_userspace_mem;
  1865. int r = 0;
  1866. down_write(&kvm->slots_lock);
  1867. if (kvm->arch.apic_access_page)
  1868. goto out;
  1869. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1870. kvm_userspace_mem.flags = 0;
  1871. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1872. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1873. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1874. if (r)
  1875. goto out;
  1876. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1877. out:
  1878. up_write(&kvm->slots_lock);
  1879. return r;
  1880. }
  1881. static int alloc_identity_pagetable(struct kvm *kvm)
  1882. {
  1883. struct kvm_userspace_memory_region kvm_userspace_mem;
  1884. int r = 0;
  1885. down_write(&kvm->slots_lock);
  1886. if (kvm->arch.ept_identity_pagetable)
  1887. goto out;
  1888. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1889. kvm_userspace_mem.flags = 0;
  1890. kvm_userspace_mem.guest_phys_addr =
  1891. kvm->arch.ept_identity_map_addr;
  1892. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1893. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1894. if (r)
  1895. goto out;
  1896. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1897. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1898. out:
  1899. up_write(&kvm->slots_lock);
  1900. return r;
  1901. }
  1902. static void allocate_vpid(struct vcpu_vmx *vmx)
  1903. {
  1904. int vpid;
  1905. vmx->vpid = 0;
  1906. if (!enable_vpid)
  1907. return;
  1908. spin_lock(&vmx_vpid_lock);
  1909. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1910. if (vpid < VMX_NR_VPIDS) {
  1911. vmx->vpid = vpid;
  1912. __set_bit(vpid, vmx_vpid_bitmap);
  1913. }
  1914. spin_unlock(&vmx_vpid_lock);
  1915. }
  1916. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1917. {
  1918. int f = sizeof(unsigned long);
  1919. if (!cpu_has_vmx_msr_bitmap())
  1920. return;
  1921. /*
  1922. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1923. * have the write-low and read-high bitmap offsets the wrong way round.
  1924. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1925. */
  1926. if (msr <= 0x1fff) {
  1927. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1928. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1929. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1930. msr &= 0x1fff;
  1931. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1932. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1933. }
  1934. }
  1935. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1936. {
  1937. if (!longmode_only)
  1938. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1939. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1940. }
  1941. /*
  1942. * Sets up the vmcs for emulated real mode.
  1943. */
  1944. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1945. {
  1946. u32 host_sysenter_cs, msr_low, msr_high;
  1947. u32 junk;
  1948. u64 host_pat, tsc_this, tsc_base;
  1949. unsigned long a;
  1950. struct descriptor_table dt;
  1951. int i;
  1952. unsigned long kvm_vmx_return;
  1953. u32 exec_control;
  1954. /* I/O */
  1955. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1956. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1957. if (cpu_has_vmx_msr_bitmap())
  1958. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1959. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1960. /* Control */
  1961. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1962. vmcs_config.pin_based_exec_ctrl);
  1963. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1964. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1965. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1966. #ifdef CONFIG_X86_64
  1967. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1968. CPU_BASED_CR8_LOAD_EXITING;
  1969. #endif
  1970. }
  1971. if (!enable_ept)
  1972. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1973. CPU_BASED_CR3_LOAD_EXITING |
  1974. CPU_BASED_INVLPG_EXITING;
  1975. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1976. if (cpu_has_secondary_exec_ctrls()) {
  1977. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1978. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1979. exec_control &=
  1980. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1981. if (vmx->vpid == 0)
  1982. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1983. if (!enable_ept) {
  1984. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1985. enable_unrestricted_guest = 0;
  1986. }
  1987. if (!enable_unrestricted_guest)
  1988. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1989. if (!ple_gap)
  1990. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1991. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1992. }
  1993. if (ple_gap) {
  1994. vmcs_write32(PLE_GAP, ple_gap);
  1995. vmcs_write32(PLE_WINDOW, ple_window);
  1996. }
  1997. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1998. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1999. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2000. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  2001. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2002. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2003. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2004. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2005. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2006. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2007. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2008. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2009. #ifdef CONFIG_X86_64
  2010. rdmsrl(MSR_FS_BASE, a);
  2011. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2012. rdmsrl(MSR_GS_BASE, a);
  2013. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2014. #else
  2015. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2016. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2017. #endif
  2018. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2019. kvm_get_idt(&dt);
  2020. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2021. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2022. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2023. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2024. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2025. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2026. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2027. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2028. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2029. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2030. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2031. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2032. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2033. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2034. host_pat = msr_low | ((u64) msr_high << 32);
  2035. vmcs_write64(HOST_IA32_PAT, host_pat);
  2036. }
  2037. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2038. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2039. host_pat = msr_low | ((u64) msr_high << 32);
  2040. /* Write the default value follow host pat */
  2041. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2042. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2043. vmx->vcpu.arch.pat = host_pat;
  2044. }
  2045. for (i = 0; i < NR_VMX_MSR; ++i) {
  2046. u32 index = vmx_msr_index[i];
  2047. u32 data_low, data_high;
  2048. u64 data;
  2049. int j = vmx->nmsrs;
  2050. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2051. continue;
  2052. if (wrmsr_safe(index, data_low, data_high) < 0)
  2053. continue;
  2054. data = data_low | ((u64)data_high << 32);
  2055. vmx->guest_msrs[j].index = i;
  2056. vmx->guest_msrs[j].data = 0;
  2057. vmx->guest_msrs[j].mask = -1ull;
  2058. ++vmx->nmsrs;
  2059. }
  2060. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2061. /* 22.2.1, 20.8.1 */
  2062. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2063. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2064. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2065. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2066. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2067. rdtscll(tsc_this);
  2068. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2069. tsc_base = tsc_this;
  2070. guest_write_tsc(0, tsc_base);
  2071. return 0;
  2072. }
  2073. static int init_rmode(struct kvm *kvm)
  2074. {
  2075. if (!init_rmode_tss(kvm))
  2076. return 0;
  2077. if (!init_rmode_identity_map(kvm))
  2078. return 0;
  2079. return 1;
  2080. }
  2081. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2082. {
  2083. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2084. u64 msr;
  2085. int ret;
  2086. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2087. down_read(&vcpu->kvm->slots_lock);
  2088. if (!init_rmode(vmx->vcpu.kvm)) {
  2089. ret = -ENOMEM;
  2090. goto out;
  2091. }
  2092. vmx->rmode.vm86_active = 0;
  2093. vmx->soft_vnmi_blocked = 0;
  2094. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2095. kvm_set_cr8(&vmx->vcpu, 0);
  2096. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2097. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2098. msr |= MSR_IA32_APICBASE_BSP;
  2099. kvm_set_apic_base(&vmx->vcpu, msr);
  2100. fx_init(&vmx->vcpu);
  2101. seg_setup(VCPU_SREG_CS);
  2102. /*
  2103. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2104. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2105. */
  2106. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2107. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2108. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2109. } else {
  2110. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2111. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2112. }
  2113. seg_setup(VCPU_SREG_DS);
  2114. seg_setup(VCPU_SREG_ES);
  2115. seg_setup(VCPU_SREG_FS);
  2116. seg_setup(VCPU_SREG_GS);
  2117. seg_setup(VCPU_SREG_SS);
  2118. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2119. vmcs_writel(GUEST_TR_BASE, 0);
  2120. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2121. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2122. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2123. vmcs_writel(GUEST_LDTR_BASE, 0);
  2124. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2125. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2126. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2127. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2128. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2129. vmcs_writel(GUEST_RFLAGS, 0x02);
  2130. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2131. kvm_rip_write(vcpu, 0xfff0);
  2132. else
  2133. kvm_rip_write(vcpu, 0);
  2134. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2135. vmcs_writel(GUEST_DR7, 0x400);
  2136. vmcs_writel(GUEST_GDTR_BASE, 0);
  2137. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2138. vmcs_writel(GUEST_IDTR_BASE, 0);
  2139. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2140. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2141. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2142. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2143. /* Special registers */
  2144. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2145. setup_msrs(vmx);
  2146. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2147. if (cpu_has_vmx_tpr_shadow()) {
  2148. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2149. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2150. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2151. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2152. vmcs_write32(TPR_THRESHOLD, 0);
  2153. }
  2154. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2155. vmcs_write64(APIC_ACCESS_ADDR,
  2156. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2157. if (vmx->vpid != 0)
  2158. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2159. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2160. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2161. vmx_set_cr4(&vmx->vcpu, 0);
  2162. vmx_set_efer(&vmx->vcpu, 0);
  2163. vmx_fpu_activate(&vmx->vcpu);
  2164. update_exception_bitmap(&vmx->vcpu);
  2165. vpid_sync_vcpu_all(vmx);
  2166. ret = 0;
  2167. /* HACK: Don't enable emulation on guest boot/reset */
  2168. vmx->emulation_required = 0;
  2169. out:
  2170. up_read(&vcpu->kvm->slots_lock);
  2171. return ret;
  2172. }
  2173. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2174. {
  2175. u32 cpu_based_vm_exec_control;
  2176. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2177. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2178. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2179. }
  2180. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2181. {
  2182. u32 cpu_based_vm_exec_control;
  2183. if (!cpu_has_virtual_nmis()) {
  2184. enable_irq_window(vcpu);
  2185. return;
  2186. }
  2187. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2188. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2189. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2190. }
  2191. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2192. {
  2193. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2194. uint32_t intr;
  2195. int irq = vcpu->arch.interrupt.nr;
  2196. trace_kvm_inj_virq(irq);
  2197. ++vcpu->stat.irq_injections;
  2198. if (vmx->rmode.vm86_active) {
  2199. vmx->rmode.irq.pending = true;
  2200. vmx->rmode.irq.vector = irq;
  2201. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2202. if (vcpu->arch.interrupt.soft)
  2203. vmx->rmode.irq.rip +=
  2204. vmx->vcpu.arch.event_exit_inst_len;
  2205. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2206. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2207. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2208. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2209. return;
  2210. }
  2211. intr = irq | INTR_INFO_VALID_MASK;
  2212. if (vcpu->arch.interrupt.soft) {
  2213. intr |= INTR_TYPE_SOFT_INTR;
  2214. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2215. vmx->vcpu.arch.event_exit_inst_len);
  2216. } else
  2217. intr |= INTR_TYPE_EXT_INTR;
  2218. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2219. }
  2220. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2221. {
  2222. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2223. if (!cpu_has_virtual_nmis()) {
  2224. /*
  2225. * Tracking the NMI-blocked state in software is built upon
  2226. * finding the next open IRQ window. This, in turn, depends on
  2227. * well-behaving guests: They have to keep IRQs disabled at
  2228. * least as long as the NMI handler runs. Otherwise we may
  2229. * cause NMI nesting, maybe breaking the guest. But as this is
  2230. * highly unlikely, we can live with the residual risk.
  2231. */
  2232. vmx->soft_vnmi_blocked = 1;
  2233. vmx->vnmi_blocked_time = 0;
  2234. }
  2235. ++vcpu->stat.nmi_injections;
  2236. if (vmx->rmode.vm86_active) {
  2237. vmx->rmode.irq.pending = true;
  2238. vmx->rmode.irq.vector = NMI_VECTOR;
  2239. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2240. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2241. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2242. INTR_INFO_VALID_MASK);
  2243. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2244. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2245. return;
  2246. }
  2247. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2248. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2249. }
  2250. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2251. {
  2252. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2253. return 0;
  2254. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2255. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2256. GUEST_INTR_STATE_NMI));
  2257. }
  2258. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2259. {
  2260. if (!cpu_has_virtual_nmis())
  2261. return to_vmx(vcpu)->soft_vnmi_blocked;
  2262. else
  2263. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2264. GUEST_INTR_STATE_NMI);
  2265. }
  2266. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2267. {
  2268. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2269. if (!cpu_has_virtual_nmis()) {
  2270. if (vmx->soft_vnmi_blocked != masked) {
  2271. vmx->soft_vnmi_blocked = masked;
  2272. vmx->vnmi_blocked_time = 0;
  2273. }
  2274. } else {
  2275. if (masked)
  2276. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2277. GUEST_INTR_STATE_NMI);
  2278. else
  2279. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2280. GUEST_INTR_STATE_NMI);
  2281. }
  2282. }
  2283. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2284. {
  2285. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2286. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2287. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2288. }
  2289. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2290. {
  2291. int ret;
  2292. struct kvm_userspace_memory_region tss_mem = {
  2293. .slot = TSS_PRIVATE_MEMSLOT,
  2294. .guest_phys_addr = addr,
  2295. .memory_size = PAGE_SIZE * 3,
  2296. .flags = 0,
  2297. };
  2298. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2299. if (ret)
  2300. return ret;
  2301. kvm->arch.tss_addr = addr;
  2302. return 0;
  2303. }
  2304. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2305. int vec, u32 err_code)
  2306. {
  2307. /*
  2308. * Instruction with address size override prefix opcode 0x67
  2309. * Cause the #SS fault with 0 error code in VM86 mode.
  2310. */
  2311. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2312. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2313. return 1;
  2314. /*
  2315. * Forward all other exceptions that are valid in real mode.
  2316. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2317. * the required debugging infrastructure rework.
  2318. */
  2319. switch (vec) {
  2320. case DB_VECTOR:
  2321. if (vcpu->guest_debug &
  2322. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2323. return 0;
  2324. kvm_queue_exception(vcpu, vec);
  2325. return 1;
  2326. case BP_VECTOR:
  2327. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2328. return 0;
  2329. /* fall through */
  2330. case DE_VECTOR:
  2331. case OF_VECTOR:
  2332. case BR_VECTOR:
  2333. case UD_VECTOR:
  2334. case DF_VECTOR:
  2335. case SS_VECTOR:
  2336. case GP_VECTOR:
  2337. case MF_VECTOR:
  2338. kvm_queue_exception(vcpu, vec);
  2339. return 1;
  2340. }
  2341. return 0;
  2342. }
  2343. /*
  2344. * Trigger machine check on the host. We assume all the MSRs are already set up
  2345. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2346. * We pass a fake environment to the machine check handler because we want
  2347. * the guest to be always treated like user space, no matter what context
  2348. * it used internally.
  2349. */
  2350. static void kvm_machine_check(void)
  2351. {
  2352. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2353. struct pt_regs regs = {
  2354. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2355. .flags = X86_EFLAGS_IF,
  2356. };
  2357. do_machine_check(&regs, 0);
  2358. #endif
  2359. }
  2360. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2361. {
  2362. /* already handled by vcpu_run */
  2363. return 1;
  2364. }
  2365. static int handle_exception(struct kvm_vcpu *vcpu)
  2366. {
  2367. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2368. struct kvm_run *kvm_run = vcpu->run;
  2369. u32 intr_info, ex_no, error_code;
  2370. unsigned long cr2, rip, dr6;
  2371. u32 vect_info;
  2372. enum emulation_result er;
  2373. vect_info = vmx->idt_vectoring_info;
  2374. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2375. if (is_machine_check(intr_info))
  2376. return handle_machine_check(vcpu);
  2377. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2378. !is_page_fault(intr_info)) {
  2379. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2380. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2381. vcpu->run->internal.ndata = 2;
  2382. vcpu->run->internal.data[0] = vect_info;
  2383. vcpu->run->internal.data[1] = intr_info;
  2384. return 0;
  2385. }
  2386. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2387. return 1; /* already handled by vmx_vcpu_run() */
  2388. if (is_no_device(intr_info)) {
  2389. vmx_fpu_activate(vcpu);
  2390. return 1;
  2391. }
  2392. if (is_invalid_opcode(intr_info)) {
  2393. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2394. if (er != EMULATE_DONE)
  2395. kvm_queue_exception(vcpu, UD_VECTOR);
  2396. return 1;
  2397. }
  2398. error_code = 0;
  2399. rip = kvm_rip_read(vcpu);
  2400. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2401. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2402. if (is_page_fault(intr_info)) {
  2403. /* EPT won't cause page fault directly */
  2404. if (enable_ept)
  2405. BUG();
  2406. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2407. trace_kvm_page_fault(cr2, error_code);
  2408. if (kvm_event_needs_reinjection(vcpu))
  2409. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2410. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2411. }
  2412. if (vmx->rmode.vm86_active &&
  2413. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2414. error_code)) {
  2415. if (vcpu->arch.halt_request) {
  2416. vcpu->arch.halt_request = 0;
  2417. return kvm_emulate_halt(vcpu);
  2418. }
  2419. return 1;
  2420. }
  2421. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2422. switch (ex_no) {
  2423. case DB_VECTOR:
  2424. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2425. if (!(vcpu->guest_debug &
  2426. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2427. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2428. kvm_queue_exception(vcpu, DB_VECTOR);
  2429. return 1;
  2430. }
  2431. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2432. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2433. /* fall through */
  2434. case BP_VECTOR:
  2435. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2436. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2437. kvm_run->debug.arch.exception = ex_no;
  2438. break;
  2439. default:
  2440. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2441. kvm_run->ex.exception = ex_no;
  2442. kvm_run->ex.error_code = error_code;
  2443. break;
  2444. }
  2445. return 0;
  2446. }
  2447. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2448. {
  2449. ++vcpu->stat.irq_exits;
  2450. return 1;
  2451. }
  2452. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2453. {
  2454. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2455. return 0;
  2456. }
  2457. static int handle_io(struct kvm_vcpu *vcpu)
  2458. {
  2459. unsigned long exit_qualification;
  2460. int size, in, string;
  2461. unsigned port;
  2462. ++vcpu->stat.io_exits;
  2463. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2464. string = (exit_qualification & 16) != 0;
  2465. if (string) {
  2466. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2467. return 0;
  2468. return 1;
  2469. }
  2470. size = (exit_qualification & 7) + 1;
  2471. in = (exit_qualification & 8) != 0;
  2472. port = exit_qualification >> 16;
  2473. skip_emulated_instruction(vcpu);
  2474. return kvm_emulate_pio(vcpu, in, size, port);
  2475. }
  2476. static void
  2477. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2478. {
  2479. /*
  2480. * Patch in the VMCALL instruction:
  2481. */
  2482. hypercall[0] = 0x0f;
  2483. hypercall[1] = 0x01;
  2484. hypercall[2] = 0xc1;
  2485. }
  2486. static int handle_cr(struct kvm_vcpu *vcpu)
  2487. {
  2488. unsigned long exit_qualification, val;
  2489. int cr;
  2490. int reg;
  2491. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2492. cr = exit_qualification & 15;
  2493. reg = (exit_qualification >> 8) & 15;
  2494. switch ((exit_qualification >> 4) & 3) {
  2495. case 0: /* mov to cr */
  2496. val = kvm_register_read(vcpu, reg);
  2497. trace_kvm_cr_write(cr, val);
  2498. switch (cr) {
  2499. case 0:
  2500. kvm_set_cr0(vcpu, val);
  2501. skip_emulated_instruction(vcpu);
  2502. return 1;
  2503. case 3:
  2504. kvm_set_cr3(vcpu, val);
  2505. skip_emulated_instruction(vcpu);
  2506. return 1;
  2507. case 4:
  2508. kvm_set_cr4(vcpu, val);
  2509. skip_emulated_instruction(vcpu);
  2510. return 1;
  2511. case 8: {
  2512. u8 cr8_prev = kvm_get_cr8(vcpu);
  2513. u8 cr8 = kvm_register_read(vcpu, reg);
  2514. kvm_set_cr8(vcpu, cr8);
  2515. skip_emulated_instruction(vcpu);
  2516. if (irqchip_in_kernel(vcpu->kvm))
  2517. return 1;
  2518. if (cr8_prev <= cr8)
  2519. return 1;
  2520. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2521. return 0;
  2522. }
  2523. };
  2524. break;
  2525. case 2: /* clts */
  2526. vmx_fpu_deactivate(vcpu);
  2527. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2528. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2529. vmx_fpu_activate(vcpu);
  2530. skip_emulated_instruction(vcpu);
  2531. return 1;
  2532. case 1: /*mov from cr*/
  2533. switch (cr) {
  2534. case 3:
  2535. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2536. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2537. skip_emulated_instruction(vcpu);
  2538. return 1;
  2539. case 8:
  2540. val = kvm_get_cr8(vcpu);
  2541. kvm_register_write(vcpu, reg, val);
  2542. trace_kvm_cr_read(cr, val);
  2543. skip_emulated_instruction(vcpu);
  2544. return 1;
  2545. }
  2546. break;
  2547. case 3: /* lmsw */
  2548. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2549. skip_emulated_instruction(vcpu);
  2550. return 1;
  2551. default:
  2552. break;
  2553. }
  2554. vcpu->run->exit_reason = 0;
  2555. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2556. (int)(exit_qualification >> 4) & 3, cr);
  2557. return 0;
  2558. }
  2559. static int handle_dr(struct kvm_vcpu *vcpu)
  2560. {
  2561. unsigned long exit_qualification;
  2562. unsigned long val;
  2563. int dr, reg;
  2564. if (!kvm_require_cpl(vcpu, 0))
  2565. return 1;
  2566. dr = vmcs_readl(GUEST_DR7);
  2567. if (dr & DR7_GD) {
  2568. /*
  2569. * As the vm-exit takes precedence over the debug trap, we
  2570. * need to emulate the latter, either for the host or the
  2571. * guest debugging itself.
  2572. */
  2573. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2574. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2575. vcpu->run->debug.arch.dr7 = dr;
  2576. vcpu->run->debug.arch.pc =
  2577. vmcs_readl(GUEST_CS_BASE) +
  2578. vmcs_readl(GUEST_RIP);
  2579. vcpu->run->debug.arch.exception = DB_VECTOR;
  2580. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2581. return 0;
  2582. } else {
  2583. vcpu->arch.dr7 &= ~DR7_GD;
  2584. vcpu->arch.dr6 |= DR6_BD;
  2585. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2586. kvm_queue_exception(vcpu, DB_VECTOR);
  2587. return 1;
  2588. }
  2589. }
  2590. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2591. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2592. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2593. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2594. switch (dr) {
  2595. case 0 ... 3:
  2596. val = vcpu->arch.db[dr];
  2597. break;
  2598. case 6:
  2599. val = vcpu->arch.dr6;
  2600. break;
  2601. case 7:
  2602. val = vcpu->arch.dr7;
  2603. break;
  2604. default:
  2605. val = 0;
  2606. }
  2607. kvm_register_write(vcpu, reg, val);
  2608. } else {
  2609. val = vcpu->arch.regs[reg];
  2610. switch (dr) {
  2611. case 0 ... 3:
  2612. vcpu->arch.db[dr] = val;
  2613. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2614. vcpu->arch.eff_db[dr] = val;
  2615. break;
  2616. case 4 ... 5:
  2617. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  2618. kvm_queue_exception(vcpu, UD_VECTOR);
  2619. break;
  2620. case 6:
  2621. if (val & 0xffffffff00000000ULL) {
  2622. kvm_queue_exception(vcpu, GP_VECTOR);
  2623. break;
  2624. }
  2625. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2626. break;
  2627. case 7:
  2628. if (val & 0xffffffff00000000ULL) {
  2629. kvm_queue_exception(vcpu, GP_VECTOR);
  2630. break;
  2631. }
  2632. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2633. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2634. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2635. vcpu->arch.switch_db_regs =
  2636. (val & DR7_BP_EN_MASK);
  2637. }
  2638. break;
  2639. }
  2640. }
  2641. skip_emulated_instruction(vcpu);
  2642. return 1;
  2643. }
  2644. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2645. {
  2646. kvm_emulate_cpuid(vcpu);
  2647. return 1;
  2648. }
  2649. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2650. {
  2651. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2652. u64 data;
  2653. if (vmx_get_msr(vcpu, ecx, &data)) {
  2654. kvm_inject_gp(vcpu, 0);
  2655. return 1;
  2656. }
  2657. trace_kvm_msr_read(ecx, data);
  2658. /* FIXME: handling of bits 32:63 of rax, rdx */
  2659. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2660. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2661. skip_emulated_instruction(vcpu);
  2662. return 1;
  2663. }
  2664. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2665. {
  2666. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2667. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2668. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2669. trace_kvm_msr_write(ecx, data);
  2670. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2671. kvm_inject_gp(vcpu, 0);
  2672. return 1;
  2673. }
  2674. skip_emulated_instruction(vcpu);
  2675. return 1;
  2676. }
  2677. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2678. {
  2679. return 1;
  2680. }
  2681. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2682. {
  2683. u32 cpu_based_vm_exec_control;
  2684. /* clear pending irq */
  2685. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2686. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2687. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2688. ++vcpu->stat.irq_window_exits;
  2689. /*
  2690. * If the user space waits to inject interrupts, exit as soon as
  2691. * possible
  2692. */
  2693. if (!irqchip_in_kernel(vcpu->kvm) &&
  2694. vcpu->run->request_interrupt_window &&
  2695. !kvm_cpu_has_interrupt(vcpu)) {
  2696. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2697. return 0;
  2698. }
  2699. return 1;
  2700. }
  2701. static int handle_halt(struct kvm_vcpu *vcpu)
  2702. {
  2703. skip_emulated_instruction(vcpu);
  2704. return kvm_emulate_halt(vcpu);
  2705. }
  2706. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2707. {
  2708. skip_emulated_instruction(vcpu);
  2709. kvm_emulate_hypercall(vcpu);
  2710. return 1;
  2711. }
  2712. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2713. {
  2714. kvm_queue_exception(vcpu, UD_VECTOR);
  2715. return 1;
  2716. }
  2717. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2718. {
  2719. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2720. kvm_mmu_invlpg(vcpu, exit_qualification);
  2721. skip_emulated_instruction(vcpu);
  2722. return 1;
  2723. }
  2724. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2725. {
  2726. skip_emulated_instruction(vcpu);
  2727. /* TODO: Add support for VT-d/pass-through device */
  2728. return 1;
  2729. }
  2730. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2731. {
  2732. unsigned long exit_qualification;
  2733. enum emulation_result er;
  2734. unsigned long offset;
  2735. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2736. offset = exit_qualification & 0xffful;
  2737. er = emulate_instruction(vcpu, 0, 0, 0);
  2738. if (er != EMULATE_DONE) {
  2739. printk(KERN_ERR
  2740. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2741. offset);
  2742. return -ENOEXEC;
  2743. }
  2744. return 1;
  2745. }
  2746. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2747. {
  2748. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2749. unsigned long exit_qualification;
  2750. u16 tss_selector;
  2751. int reason, type, idt_v;
  2752. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2753. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2754. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2755. reason = (u32)exit_qualification >> 30;
  2756. if (reason == TASK_SWITCH_GATE && idt_v) {
  2757. switch (type) {
  2758. case INTR_TYPE_NMI_INTR:
  2759. vcpu->arch.nmi_injected = false;
  2760. if (cpu_has_virtual_nmis())
  2761. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2762. GUEST_INTR_STATE_NMI);
  2763. break;
  2764. case INTR_TYPE_EXT_INTR:
  2765. case INTR_TYPE_SOFT_INTR:
  2766. kvm_clear_interrupt_queue(vcpu);
  2767. break;
  2768. case INTR_TYPE_HARD_EXCEPTION:
  2769. case INTR_TYPE_SOFT_EXCEPTION:
  2770. kvm_clear_exception_queue(vcpu);
  2771. break;
  2772. default:
  2773. break;
  2774. }
  2775. }
  2776. tss_selector = exit_qualification;
  2777. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2778. type != INTR_TYPE_EXT_INTR &&
  2779. type != INTR_TYPE_NMI_INTR))
  2780. skip_emulated_instruction(vcpu);
  2781. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2782. return 0;
  2783. /* clear all local breakpoint enable flags */
  2784. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2785. /*
  2786. * TODO: What about debug traps on tss switch?
  2787. * Are we supposed to inject them and update dr6?
  2788. */
  2789. return 1;
  2790. }
  2791. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2792. {
  2793. unsigned long exit_qualification;
  2794. gpa_t gpa;
  2795. int gla_validity;
  2796. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2797. if (exit_qualification & (1 << 6)) {
  2798. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2799. return -EINVAL;
  2800. }
  2801. gla_validity = (exit_qualification >> 7) & 0x3;
  2802. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2803. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2804. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2805. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2806. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2807. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2808. (long unsigned int)exit_qualification);
  2809. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2810. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2811. return 0;
  2812. }
  2813. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2814. trace_kvm_page_fault(gpa, exit_qualification);
  2815. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2816. }
  2817. static u64 ept_rsvd_mask(u64 spte, int level)
  2818. {
  2819. int i;
  2820. u64 mask = 0;
  2821. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2822. mask |= (1ULL << i);
  2823. if (level > 2)
  2824. /* bits 7:3 reserved */
  2825. mask |= 0xf8;
  2826. else if (level == 2) {
  2827. if (spte & (1ULL << 7))
  2828. /* 2MB ref, bits 20:12 reserved */
  2829. mask |= 0x1ff000;
  2830. else
  2831. /* bits 6:3 reserved */
  2832. mask |= 0x78;
  2833. }
  2834. return mask;
  2835. }
  2836. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2837. int level)
  2838. {
  2839. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2840. /* 010b (write-only) */
  2841. WARN_ON((spte & 0x7) == 0x2);
  2842. /* 110b (write/execute) */
  2843. WARN_ON((spte & 0x7) == 0x6);
  2844. /* 100b (execute-only) and value not supported by logical processor */
  2845. if (!cpu_has_vmx_ept_execute_only())
  2846. WARN_ON((spte & 0x7) == 0x4);
  2847. /* not 000b */
  2848. if ((spte & 0x7)) {
  2849. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2850. if (rsvd_bits != 0) {
  2851. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2852. __func__, rsvd_bits);
  2853. WARN_ON(1);
  2854. }
  2855. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2856. u64 ept_mem_type = (spte & 0x38) >> 3;
  2857. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2858. ept_mem_type == 7) {
  2859. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2860. __func__, ept_mem_type);
  2861. WARN_ON(1);
  2862. }
  2863. }
  2864. }
  2865. }
  2866. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2867. {
  2868. u64 sptes[4];
  2869. int nr_sptes, i;
  2870. gpa_t gpa;
  2871. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2872. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2873. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2874. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2875. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2876. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2877. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2878. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2879. return 0;
  2880. }
  2881. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2882. {
  2883. u32 cpu_based_vm_exec_control;
  2884. /* clear pending NMI */
  2885. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2886. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2887. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2888. ++vcpu->stat.nmi_window_exits;
  2889. return 1;
  2890. }
  2891. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2892. {
  2893. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2894. enum emulation_result err = EMULATE_DONE;
  2895. int ret = 1;
  2896. while (!guest_state_valid(vcpu)) {
  2897. err = emulate_instruction(vcpu, 0, 0, 0);
  2898. if (err == EMULATE_DO_MMIO) {
  2899. ret = 0;
  2900. goto out;
  2901. }
  2902. if (err != EMULATE_DONE) {
  2903. kvm_report_emulation_failure(vcpu, "emulation failure");
  2904. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2905. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2906. vcpu->run->internal.ndata = 0;
  2907. ret = 0;
  2908. goto out;
  2909. }
  2910. if (signal_pending(current))
  2911. goto out;
  2912. if (need_resched())
  2913. schedule();
  2914. }
  2915. vmx->emulation_required = 0;
  2916. out:
  2917. return ret;
  2918. }
  2919. /*
  2920. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2921. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2922. */
  2923. static int handle_pause(struct kvm_vcpu *vcpu)
  2924. {
  2925. skip_emulated_instruction(vcpu);
  2926. kvm_vcpu_on_spin(vcpu);
  2927. return 1;
  2928. }
  2929. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2930. {
  2931. kvm_queue_exception(vcpu, UD_VECTOR);
  2932. return 1;
  2933. }
  2934. /*
  2935. * The exit handlers return 1 if the exit was handled fully and guest execution
  2936. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2937. * to be done to userspace and return 0.
  2938. */
  2939. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2940. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2941. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2942. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2943. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2944. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2945. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2946. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2947. [EXIT_REASON_CPUID] = handle_cpuid,
  2948. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2949. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2950. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2951. [EXIT_REASON_HLT] = handle_halt,
  2952. [EXIT_REASON_INVLPG] = handle_invlpg,
  2953. [EXIT_REASON_VMCALL] = handle_vmcall,
  2954. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2955. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2956. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2957. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2958. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2959. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2960. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2961. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2962. [EXIT_REASON_VMON] = handle_vmx_insn,
  2963. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2964. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2965. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2966. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2967. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2968. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2969. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2970. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2971. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  2972. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  2973. };
  2974. static const int kvm_vmx_max_exit_handlers =
  2975. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2976. /*
  2977. * The guest has exited. See if we can fix it or if we need userspace
  2978. * assistance.
  2979. */
  2980. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2981. {
  2982. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2983. u32 exit_reason = vmx->exit_reason;
  2984. u32 vectoring_info = vmx->idt_vectoring_info;
  2985. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2986. /* If guest state is invalid, start emulating */
  2987. if (vmx->emulation_required && emulate_invalid_guest_state)
  2988. return handle_invalid_guest_state(vcpu);
  2989. /* Access CR3 don't cause VMExit in paging mode, so we need
  2990. * to sync with guest real CR3. */
  2991. if (enable_ept && is_paging(vcpu))
  2992. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2993. if (unlikely(vmx->fail)) {
  2994. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2995. vcpu->run->fail_entry.hardware_entry_failure_reason
  2996. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2997. return 0;
  2998. }
  2999. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3000. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3001. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3002. exit_reason != EXIT_REASON_TASK_SWITCH))
  3003. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3004. "(0x%x) and exit reason is 0x%x\n",
  3005. __func__, vectoring_info, exit_reason);
  3006. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3007. if (vmx_interrupt_allowed(vcpu)) {
  3008. vmx->soft_vnmi_blocked = 0;
  3009. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3010. vcpu->arch.nmi_pending) {
  3011. /*
  3012. * This CPU don't support us in finding the end of an
  3013. * NMI-blocked window if the guest runs with IRQs
  3014. * disabled. So we pull the trigger after 1 s of
  3015. * futile waiting, but inform the user about this.
  3016. */
  3017. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3018. "state on VCPU %d after 1 s timeout\n",
  3019. __func__, vcpu->vcpu_id);
  3020. vmx->soft_vnmi_blocked = 0;
  3021. }
  3022. }
  3023. if (exit_reason < kvm_vmx_max_exit_handlers
  3024. && kvm_vmx_exit_handlers[exit_reason])
  3025. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3026. else {
  3027. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3028. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3029. }
  3030. return 0;
  3031. }
  3032. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3033. {
  3034. if (irr == -1 || tpr < irr) {
  3035. vmcs_write32(TPR_THRESHOLD, 0);
  3036. return;
  3037. }
  3038. vmcs_write32(TPR_THRESHOLD, irr);
  3039. }
  3040. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3041. {
  3042. u32 exit_intr_info;
  3043. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3044. bool unblock_nmi;
  3045. u8 vector;
  3046. int type;
  3047. bool idtv_info_valid;
  3048. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3049. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3050. /* Handle machine checks before interrupts are enabled */
  3051. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3052. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3053. && is_machine_check(exit_intr_info)))
  3054. kvm_machine_check();
  3055. /* We need to handle NMIs before interrupts are enabled */
  3056. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3057. (exit_intr_info & INTR_INFO_VALID_MASK))
  3058. asm("int $2");
  3059. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3060. if (cpu_has_virtual_nmis()) {
  3061. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3062. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3063. /*
  3064. * SDM 3: 27.7.1.2 (September 2008)
  3065. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3066. * a guest IRET fault.
  3067. * SDM 3: 23.2.2 (September 2008)
  3068. * Bit 12 is undefined in any of the following cases:
  3069. * If the VM exit sets the valid bit in the IDT-vectoring
  3070. * information field.
  3071. * If the VM exit is due to a double fault.
  3072. */
  3073. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3074. vector != DF_VECTOR && !idtv_info_valid)
  3075. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3076. GUEST_INTR_STATE_NMI);
  3077. } else if (unlikely(vmx->soft_vnmi_blocked))
  3078. vmx->vnmi_blocked_time +=
  3079. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3080. vmx->vcpu.arch.nmi_injected = false;
  3081. kvm_clear_exception_queue(&vmx->vcpu);
  3082. kvm_clear_interrupt_queue(&vmx->vcpu);
  3083. if (!idtv_info_valid)
  3084. return;
  3085. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3086. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3087. switch (type) {
  3088. case INTR_TYPE_NMI_INTR:
  3089. vmx->vcpu.arch.nmi_injected = true;
  3090. /*
  3091. * SDM 3: 27.7.1.2 (September 2008)
  3092. * Clear bit "block by NMI" before VM entry if a NMI
  3093. * delivery faulted.
  3094. */
  3095. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3096. GUEST_INTR_STATE_NMI);
  3097. break;
  3098. case INTR_TYPE_SOFT_EXCEPTION:
  3099. vmx->vcpu.arch.event_exit_inst_len =
  3100. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3101. /* fall through */
  3102. case INTR_TYPE_HARD_EXCEPTION:
  3103. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3104. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3105. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3106. } else
  3107. kvm_queue_exception(&vmx->vcpu, vector);
  3108. break;
  3109. case INTR_TYPE_SOFT_INTR:
  3110. vmx->vcpu.arch.event_exit_inst_len =
  3111. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3112. /* fall through */
  3113. case INTR_TYPE_EXT_INTR:
  3114. kvm_queue_interrupt(&vmx->vcpu, vector,
  3115. type == INTR_TYPE_SOFT_INTR);
  3116. break;
  3117. default:
  3118. break;
  3119. }
  3120. }
  3121. /*
  3122. * Failure to inject an interrupt should give us the information
  3123. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3124. * when fetching the interrupt redirection bitmap in the real-mode
  3125. * tss, this doesn't happen. So we do it ourselves.
  3126. */
  3127. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3128. {
  3129. vmx->rmode.irq.pending = 0;
  3130. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3131. return;
  3132. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3133. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3134. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3135. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3136. return;
  3137. }
  3138. vmx->idt_vectoring_info =
  3139. VECTORING_INFO_VALID_MASK
  3140. | INTR_TYPE_EXT_INTR
  3141. | vmx->rmode.irq.vector;
  3142. }
  3143. #ifdef CONFIG_X86_64
  3144. #define R "r"
  3145. #define Q "q"
  3146. #else
  3147. #define R "e"
  3148. #define Q "l"
  3149. #endif
  3150. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3151. {
  3152. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3153. /* Record the guest's net vcpu time for enforced NMI injections. */
  3154. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3155. vmx->entry_time = ktime_get();
  3156. /* Don't enter VMX if guest state is invalid, let the exit handler
  3157. start emulation until we arrive back to a valid state */
  3158. if (vmx->emulation_required && emulate_invalid_guest_state)
  3159. return;
  3160. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3161. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3162. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3163. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3164. /* When single-stepping over STI and MOV SS, we must clear the
  3165. * corresponding interruptibility bits in the guest state. Otherwise
  3166. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3167. * exceptions being set, but that's not correct for the guest debugging
  3168. * case. */
  3169. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3170. vmx_set_interrupt_shadow(vcpu, 0);
  3171. /*
  3172. * Loading guest fpu may have cleared host cr0.ts
  3173. */
  3174. vmcs_writel(HOST_CR0, read_cr0());
  3175. if (vcpu->arch.switch_db_regs)
  3176. set_debugreg(vcpu->arch.dr6, 6);
  3177. asm(
  3178. /* Store host registers */
  3179. "push %%"R"dx; push %%"R"bp;"
  3180. "push %%"R"cx \n\t"
  3181. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3182. "je 1f \n\t"
  3183. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3184. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3185. "1: \n\t"
  3186. /* Reload cr2 if changed */
  3187. "mov %c[cr2](%0), %%"R"ax \n\t"
  3188. "mov %%cr2, %%"R"dx \n\t"
  3189. "cmp %%"R"ax, %%"R"dx \n\t"
  3190. "je 2f \n\t"
  3191. "mov %%"R"ax, %%cr2 \n\t"
  3192. "2: \n\t"
  3193. /* Check if vmlaunch of vmresume is needed */
  3194. "cmpl $0, %c[launched](%0) \n\t"
  3195. /* Load guest registers. Don't clobber flags. */
  3196. "mov %c[rax](%0), %%"R"ax \n\t"
  3197. "mov %c[rbx](%0), %%"R"bx \n\t"
  3198. "mov %c[rdx](%0), %%"R"dx \n\t"
  3199. "mov %c[rsi](%0), %%"R"si \n\t"
  3200. "mov %c[rdi](%0), %%"R"di \n\t"
  3201. "mov %c[rbp](%0), %%"R"bp \n\t"
  3202. #ifdef CONFIG_X86_64
  3203. "mov %c[r8](%0), %%r8 \n\t"
  3204. "mov %c[r9](%0), %%r9 \n\t"
  3205. "mov %c[r10](%0), %%r10 \n\t"
  3206. "mov %c[r11](%0), %%r11 \n\t"
  3207. "mov %c[r12](%0), %%r12 \n\t"
  3208. "mov %c[r13](%0), %%r13 \n\t"
  3209. "mov %c[r14](%0), %%r14 \n\t"
  3210. "mov %c[r15](%0), %%r15 \n\t"
  3211. #endif
  3212. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3213. /* Enter guest mode */
  3214. "jne .Llaunched \n\t"
  3215. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3216. "jmp .Lkvm_vmx_return \n\t"
  3217. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3218. ".Lkvm_vmx_return: "
  3219. /* Save guest registers, load host registers, keep flags */
  3220. "xchg %0, (%%"R"sp) \n\t"
  3221. "mov %%"R"ax, %c[rax](%0) \n\t"
  3222. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3223. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3224. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3225. "mov %%"R"si, %c[rsi](%0) \n\t"
  3226. "mov %%"R"di, %c[rdi](%0) \n\t"
  3227. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3228. #ifdef CONFIG_X86_64
  3229. "mov %%r8, %c[r8](%0) \n\t"
  3230. "mov %%r9, %c[r9](%0) \n\t"
  3231. "mov %%r10, %c[r10](%0) \n\t"
  3232. "mov %%r11, %c[r11](%0) \n\t"
  3233. "mov %%r12, %c[r12](%0) \n\t"
  3234. "mov %%r13, %c[r13](%0) \n\t"
  3235. "mov %%r14, %c[r14](%0) \n\t"
  3236. "mov %%r15, %c[r15](%0) \n\t"
  3237. #endif
  3238. "mov %%cr2, %%"R"ax \n\t"
  3239. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3240. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3241. "setbe %c[fail](%0) \n\t"
  3242. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3243. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3244. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3245. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3246. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3247. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3248. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3249. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3250. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3251. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3252. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3253. #ifdef CONFIG_X86_64
  3254. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3255. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3256. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3257. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3258. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3259. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3260. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3261. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3262. #endif
  3263. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3264. : "cc", "memory"
  3265. , R"bx", R"di", R"si"
  3266. #ifdef CONFIG_X86_64
  3267. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3268. #endif
  3269. );
  3270. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3271. | (1 << VCPU_EXREG_PDPTR));
  3272. vcpu->arch.regs_dirty = 0;
  3273. if (vcpu->arch.switch_db_regs)
  3274. get_debugreg(vcpu->arch.dr6, 6);
  3275. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3276. if (vmx->rmode.irq.pending)
  3277. fixup_rmode_irq(vmx);
  3278. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3279. vmx->launched = 1;
  3280. vmx_complete_interrupts(vmx);
  3281. }
  3282. #undef R
  3283. #undef Q
  3284. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3285. {
  3286. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3287. if (vmx->vmcs) {
  3288. vcpu_clear(vmx);
  3289. free_vmcs(vmx->vmcs);
  3290. vmx->vmcs = NULL;
  3291. }
  3292. }
  3293. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3294. {
  3295. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3296. spin_lock(&vmx_vpid_lock);
  3297. if (vmx->vpid != 0)
  3298. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3299. spin_unlock(&vmx_vpid_lock);
  3300. vmx_free_vmcs(vcpu);
  3301. kfree(vmx->guest_msrs);
  3302. kvm_vcpu_uninit(vcpu);
  3303. kmem_cache_free(kvm_vcpu_cache, vmx);
  3304. }
  3305. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3306. {
  3307. int err;
  3308. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3309. int cpu;
  3310. if (!vmx)
  3311. return ERR_PTR(-ENOMEM);
  3312. allocate_vpid(vmx);
  3313. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3314. if (err)
  3315. goto free_vcpu;
  3316. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3317. if (!vmx->guest_msrs) {
  3318. err = -ENOMEM;
  3319. goto uninit_vcpu;
  3320. }
  3321. vmx->vmcs = alloc_vmcs();
  3322. if (!vmx->vmcs)
  3323. goto free_msrs;
  3324. vmcs_clear(vmx->vmcs);
  3325. cpu = get_cpu();
  3326. vmx_vcpu_load(&vmx->vcpu, cpu);
  3327. err = vmx_vcpu_setup(vmx);
  3328. vmx_vcpu_put(&vmx->vcpu);
  3329. put_cpu();
  3330. if (err)
  3331. goto free_vmcs;
  3332. if (vm_need_virtualize_apic_accesses(kvm))
  3333. if (alloc_apic_access_page(kvm) != 0)
  3334. goto free_vmcs;
  3335. if (enable_ept) {
  3336. if (!kvm->arch.ept_identity_map_addr)
  3337. kvm->arch.ept_identity_map_addr =
  3338. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3339. if (alloc_identity_pagetable(kvm) != 0)
  3340. goto free_vmcs;
  3341. }
  3342. return &vmx->vcpu;
  3343. free_vmcs:
  3344. free_vmcs(vmx->vmcs);
  3345. free_msrs:
  3346. kfree(vmx->guest_msrs);
  3347. uninit_vcpu:
  3348. kvm_vcpu_uninit(&vmx->vcpu);
  3349. free_vcpu:
  3350. kmem_cache_free(kvm_vcpu_cache, vmx);
  3351. return ERR_PTR(err);
  3352. }
  3353. static void __init vmx_check_processor_compat(void *rtn)
  3354. {
  3355. struct vmcs_config vmcs_conf;
  3356. *(int *)rtn = 0;
  3357. if (setup_vmcs_config(&vmcs_conf) < 0)
  3358. *(int *)rtn = -EIO;
  3359. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3360. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3361. smp_processor_id());
  3362. *(int *)rtn = -EIO;
  3363. }
  3364. }
  3365. static int get_ept_level(void)
  3366. {
  3367. return VMX_EPT_DEFAULT_GAW + 1;
  3368. }
  3369. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3370. {
  3371. u64 ret;
  3372. /* For VT-d and EPT combination
  3373. * 1. MMIO: always map as UC
  3374. * 2. EPT with VT-d:
  3375. * a. VT-d without snooping control feature: can't guarantee the
  3376. * result, try to trust guest.
  3377. * b. VT-d with snooping control feature: snooping control feature of
  3378. * VT-d engine can guarantee the cache correctness. Just set it
  3379. * to WB to keep consistent with host. So the same as item 3.
  3380. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3381. * consistent with host MTRR
  3382. */
  3383. if (is_mmio)
  3384. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3385. else if (vcpu->kvm->arch.iommu_domain &&
  3386. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3387. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3388. VMX_EPT_MT_EPTE_SHIFT;
  3389. else
  3390. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3391. | VMX_EPT_IGMT_BIT;
  3392. return ret;
  3393. }
  3394. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3395. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3396. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3397. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3398. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3399. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3400. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3401. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3402. { EXIT_REASON_CPUID, "cpuid" },
  3403. { EXIT_REASON_MSR_READ, "rdmsr" },
  3404. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3405. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3406. { EXIT_REASON_HLT, "halt" },
  3407. { EXIT_REASON_INVLPG, "invlpg" },
  3408. { EXIT_REASON_VMCALL, "hypercall" },
  3409. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3410. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3411. { EXIT_REASON_WBINVD, "wbinvd" },
  3412. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3413. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3414. { -1, NULL }
  3415. };
  3416. static bool vmx_gb_page_enable(void)
  3417. {
  3418. return false;
  3419. }
  3420. static struct kvm_x86_ops vmx_x86_ops = {
  3421. .cpu_has_kvm_support = cpu_has_kvm_support,
  3422. .disabled_by_bios = vmx_disabled_by_bios,
  3423. .hardware_setup = hardware_setup,
  3424. .hardware_unsetup = hardware_unsetup,
  3425. .check_processor_compatibility = vmx_check_processor_compat,
  3426. .hardware_enable = hardware_enable,
  3427. .hardware_disable = hardware_disable,
  3428. .cpu_has_accelerated_tpr = report_flexpriority,
  3429. .vcpu_create = vmx_create_vcpu,
  3430. .vcpu_free = vmx_free_vcpu,
  3431. .vcpu_reset = vmx_vcpu_reset,
  3432. .prepare_guest_switch = vmx_save_host_state,
  3433. .vcpu_load = vmx_vcpu_load,
  3434. .vcpu_put = vmx_vcpu_put,
  3435. .set_guest_debug = set_guest_debug,
  3436. .get_msr = vmx_get_msr,
  3437. .set_msr = vmx_set_msr,
  3438. .get_segment_base = vmx_get_segment_base,
  3439. .get_segment = vmx_get_segment,
  3440. .set_segment = vmx_set_segment,
  3441. .get_cpl = vmx_get_cpl,
  3442. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3443. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3444. .set_cr0 = vmx_set_cr0,
  3445. .set_cr3 = vmx_set_cr3,
  3446. .set_cr4 = vmx_set_cr4,
  3447. .set_efer = vmx_set_efer,
  3448. .get_idt = vmx_get_idt,
  3449. .set_idt = vmx_set_idt,
  3450. .get_gdt = vmx_get_gdt,
  3451. .set_gdt = vmx_set_gdt,
  3452. .cache_reg = vmx_cache_reg,
  3453. .get_rflags = vmx_get_rflags,
  3454. .set_rflags = vmx_set_rflags,
  3455. .tlb_flush = vmx_flush_tlb,
  3456. .run = vmx_vcpu_run,
  3457. .handle_exit = vmx_handle_exit,
  3458. .skip_emulated_instruction = skip_emulated_instruction,
  3459. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3460. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3461. .patch_hypercall = vmx_patch_hypercall,
  3462. .set_irq = vmx_inject_irq,
  3463. .set_nmi = vmx_inject_nmi,
  3464. .queue_exception = vmx_queue_exception,
  3465. .interrupt_allowed = vmx_interrupt_allowed,
  3466. .nmi_allowed = vmx_nmi_allowed,
  3467. .get_nmi_mask = vmx_get_nmi_mask,
  3468. .set_nmi_mask = vmx_set_nmi_mask,
  3469. .enable_nmi_window = enable_nmi_window,
  3470. .enable_irq_window = enable_irq_window,
  3471. .update_cr8_intercept = update_cr8_intercept,
  3472. .set_tss_addr = vmx_set_tss_addr,
  3473. .get_tdp_level = get_ept_level,
  3474. .get_mt_mask = vmx_get_mt_mask,
  3475. .exit_reasons_str = vmx_exit_reasons_str,
  3476. .gb_page_enable = vmx_gb_page_enable,
  3477. };
  3478. static int __init vmx_init(void)
  3479. {
  3480. int r, i;
  3481. rdmsrl_safe(MSR_EFER, &host_efer);
  3482. for (i = 0; i < NR_VMX_MSR; ++i)
  3483. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3484. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3485. if (!vmx_io_bitmap_a)
  3486. return -ENOMEM;
  3487. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3488. if (!vmx_io_bitmap_b) {
  3489. r = -ENOMEM;
  3490. goto out;
  3491. }
  3492. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3493. if (!vmx_msr_bitmap_legacy) {
  3494. r = -ENOMEM;
  3495. goto out1;
  3496. }
  3497. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3498. if (!vmx_msr_bitmap_longmode) {
  3499. r = -ENOMEM;
  3500. goto out2;
  3501. }
  3502. /*
  3503. * Allow direct access to the PC debug port (it is often used for I/O
  3504. * delays, but the vmexits simply slow things down).
  3505. */
  3506. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3507. clear_bit(0x80, vmx_io_bitmap_a);
  3508. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3509. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3510. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3511. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3512. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3513. if (r)
  3514. goto out3;
  3515. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3516. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3517. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3518. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3519. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3520. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3521. if (enable_ept) {
  3522. bypass_guest_pf = 0;
  3523. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3524. VMX_EPT_WRITABLE_MASK);
  3525. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3526. VMX_EPT_EXECUTABLE_MASK);
  3527. kvm_enable_tdp();
  3528. } else
  3529. kvm_disable_tdp();
  3530. if (bypass_guest_pf)
  3531. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3532. return 0;
  3533. out3:
  3534. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3535. out2:
  3536. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3537. out1:
  3538. free_page((unsigned long)vmx_io_bitmap_b);
  3539. out:
  3540. free_page((unsigned long)vmx_io_bitmap_a);
  3541. return r;
  3542. }
  3543. static void __exit vmx_exit(void)
  3544. {
  3545. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3546. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3547. free_page((unsigned long)vmx_io_bitmap_b);
  3548. free_page((unsigned long)vmx_io_bitmap_a);
  3549. kvm_exit();
  3550. }
  3551. module_init(vmx_init)
  3552. module_exit(vmx_exit)