xfs_buf.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  11. *
  12. * Further, this software is distributed without any warranty that it is
  13. * free of the rightful claim of any third person regarding infringement
  14. * or the like. Any license provided herein, whether implied or
  15. * otherwise, applies only to this software file. Patent licenses, if
  16. * any, provided herein do not apply to combinations of this program with
  17. * other software, or any other product whatsoever.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22. *
  23. * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
  24. * Mountain View, CA 94043, or:
  25. *
  26. * http://www.sgi.com
  27. *
  28. * For further information regarding this notice, see:
  29. *
  30. * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
  31. */
  32. /*
  33. * The xfs_buf.c code provides an abstract buffer cache model on top
  34. * of the Linux page cache. Cached metadata blocks for a file system
  35. * are hashed to the inode for the block device. xfs_buf.c assembles
  36. * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
  37. *
  38. * Written by Steve Lord, Jim Mostek, Russell Cattelan
  39. * and Rajagopal Ananthanarayanan ("ananth") at SGI.
  40. *
  41. */
  42. #include <linux/stddef.h>
  43. #include <linux/errno.h>
  44. #include <linux/slab.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/init.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/bio.h>
  49. #include <linux/sysctl.h>
  50. #include <linux/proc_fs.h>
  51. #include <linux/workqueue.h>
  52. #include <linux/percpu.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/hash.h>
  55. #include <linux/kthread.h>
  56. #include "xfs_linux.h"
  57. /*
  58. * File wide globals
  59. */
  60. STATIC kmem_cache_t *pagebuf_zone;
  61. STATIC kmem_shaker_t pagebuf_shake;
  62. STATIC int xfsbufd_wakeup(int, gfp_t);
  63. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  64. STATIC struct workqueue_struct *xfslogd_workqueue;
  65. struct workqueue_struct *xfsdatad_workqueue;
  66. /*
  67. * Pagebuf debugging
  68. */
  69. #ifdef PAGEBUF_TRACE
  70. void
  71. pagebuf_trace(
  72. xfs_buf_t *pb,
  73. char *id,
  74. void *data,
  75. void *ra)
  76. {
  77. ktrace_enter(pagebuf_trace_buf,
  78. pb, id,
  79. (void *)(unsigned long)pb->pb_flags,
  80. (void *)(unsigned long)pb->pb_hold.counter,
  81. (void *)(unsigned long)pb->pb_sema.count.counter,
  82. (void *)current,
  83. data, ra,
  84. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  85. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  86. (void *)(unsigned long)pb->pb_buffer_length,
  87. NULL, NULL, NULL, NULL, NULL);
  88. }
  89. ktrace_t *pagebuf_trace_buf;
  90. #define PAGEBUF_TRACE_SIZE 4096
  91. #define PB_TRACE(pb, id, data) \
  92. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  93. #else
  94. #define PB_TRACE(pb, id, data) do { } while (0)
  95. #endif
  96. #ifdef PAGEBUF_LOCK_TRACKING
  97. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  98. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  99. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  100. #else
  101. # define PB_SET_OWNER(pb) do { } while (0)
  102. # define PB_CLEAR_OWNER(pb) do { } while (0)
  103. # define PB_GET_OWNER(pb) do { } while (0)
  104. #endif
  105. /*
  106. * Pagebuf allocation / freeing.
  107. */
  108. #define pb_to_gfp(flags) \
  109. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  110. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  111. #define pb_to_km(flags) \
  112. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  113. #define pagebuf_allocate(flags) \
  114. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  115. #define pagebuf_deallocate(pb) \
  116. kmem_zone_free(pagebuf_zone, (pb));
  117. /*
  118. * Page Region interfaces.
  119. *
  120. * For pages in filesystems where the blocksize is smaller than the
  121. * pagesize, we use the page->private field (long) to hold a bitmap
  122. * of uptodate regions within the page.
  123. *
  124. * Each such region is "bytes per page / bits per long" bytes long.
  125. *
  126. * NBPPR == number-of-bytes-per-page-region
  127. * BTOPR == bytes-to-page-region (rounded up)
  128. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  129. */
  130. #if (BITS_PER_LONG == 32)
  131. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  132. #elif (BITS_PER_LONG == 64)
  133. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  134. #else
  135. #error BITS_PER_LONG must be 32 or 64
  136. #endif
  137. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  138. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  139. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  140. STATIC unsigned long
  141. page_region_mask(
  142. size_t offset,
  143. size_t length)
  144. {
  145. unsigned long mask;
  146. int first, final;
  147. first = BTOPR(offset);
  148. final = BTOPRT(offset + length - 1);
  149. first = min(first, final);
  150. mask = ~0UL;
  151. mask <<= BITS_PER_LONG - (final - first);
  152. mask >>= BITS_PER_LONG - (final);
  153. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  154. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  155. return mask;
  156. }
  157. STATIC inline void
  158. set_page_region(
  159. struct page *page,
  160. size_t offset,
  161. size_t length)
  162. {
  163. set_page_private(page,
  164. page_private(page) | page_region_mask(offset, length));
  165. if (page_private(page) == ~0UL)
  166. SetPageUptodate(page);
  167. }
  168. STATIC inline int
  169. test_page_region(
  170. struct page *page,
  171. size_t offset,
  172. size_t length)
  173. {
  174. unsigned long mask = page_region_mask(offset, length);
  175. return (mask && (page_private(page) & mask) == mask);
  176. }
  177. /*
  178. * Mapping of multi-page buffers into contiguous virtual space
  179. */
  180. typedef struct a_list {
  181. void *vm_addr;
  182. struct a_list *next;
  183. } a_list_t;
  184. STATIC a_list_t *as_free_head;
  185. STATIC int as_list_len;
  186. STATIC DEFINE_SPINLOCK(as_lock);
  187. /*
  188. * Try to batch vunmaps because they are costly.
  189. */
  190. STATIC void
  191. free_address(
  192. void *addr)
  193. {
  194. a_list_t *aentry;
  195. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  196. if (likely(aentry)) {
  197. spin_lock(&as_lock);
  198. aentry->next = as_free_head;
  199. aentry->vm_addr = addr;
  200. as_free_head = aentry;
  201. as_list_len++;
  202. spin_unlock(&as_lock);
  203. } else {
  204. vunmap(addr);
  205. }
  206. }
  207. STATIC void
  208. purge_addresses(void)
  209. {
  210. a_list_t *aentry, *old;
  211. if (as_free_head == NULL)
  212. return;
  213. spin_lock(&as_lock);
  214. aentry = as_free_head;
  215. as_free_head = NULL;
  216. as_list_len = 0;
  217. spin_unlock(&as_lock);
  218. while ((old = aentry) != NULL) {
  219. vunmap(aentry->vm_addr);
  220. aentry = aentry->next;
  221. kfree(old);
  222. }
  223. }
  224. /*
  225. * Internal pagebuf object manipulation
  226. */
  227. STATIC void
  228. _pagebuf_initialize(
  229. xfs_buf_t *pb,
  230. xfs_buftarg_t *target,
  231. loff_t range_base,
  232. size_t range_length,
  233. page_buf_flags_t flags)
  234. {
  235. /*
  236. * We don't want certain flags to appear in pb->pb_flags.
  237. */
  238. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  239. memset(pb, 0, sizeof(xfs_buf_t));
  240. atomic_set(&pb->pb_hold, 1);
  241. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  242. INIT_LIST_HEAD(&pb->pb_list);
  243. INIT_LIST_HEAD(&pb->pb_hash_list);
  244. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  245. PB_SET_OWNER(pb);
  246. pb->pb_target = target;
  247. pb->pb_file_offset = range_base;
  248. /*
  249. * Set buffer_length and count_desired to the same value initially.
  250. * I/O routines should use count_desired, which will be the same in
  251. * most cases but may be reset (e.g. XFS recovery).
  252. */
  253. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  254. pb->pb_flags = flags | PBF_NONE;
  255. pb->pb_bn = XFS_BUF_DADDR_NULL;
  256. atomic_set(&pb->pb_pin_count, 0);
  257. init_waitqueue_head(&pb->pb_waiters);
  258. XFS_STATS_INC(pb_create);
  259. PB_TRACE(pb, "initialize", target);
  260. }
  261. /*
  262. * Allocate a page array capable of holding a specified number
  263. * of pages, and point the page buf at it.
  264. */
  265. STATIC int
  266. _pagebuf_get_pages(
  267. xfs_buf_t *pb,
  268. int page_count,
  269. page_buf_flags_t flags)
  270. {
  271. /* Make sure that we have a page list */
  272. if (pb->pb_pages == NULL) {
  273. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  274. pb->pb_page_count = page_count;
  275. if (page_count <= PB_PAGES) {
  276. pb->pb_pages = pb->pb_page_array;
  277. } else {
  278. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  279. page_count, pb_to_km(flags));
  280. if (pb->pb_pages == NULL)
  281. return -ENOMEM;
  282. }
  283. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  284. }
  285. return 0;
  286. }
  287. /*
  288. * Frees pb_pages if it was malloced.
  289. */
  290. STATIC void
  291. _pagebuf_free_pages(
  292. xfs_buf_t *bp)
  293. {
  294. if (bp->pb_pages != bp->pb_page_array) {
  295. kmem_free(bp->pb_pages,
  296. bp->pb_page_count * sizeof(struct page *));
  297. }
  298. }
  299. /*
  300. * Releases the specified buffer.
  301. *
  302. * The modification state of any associated pages is left unchanged.
  303. * The buffer most not be on any hash - use pagebuf_rele instead for
  304. * hashed and refcounted buffers
  305. */
  306. void
  307. pagebuf_free(
  308. xfs_buf_t *bp)
  309. {
  310. PB_TRACE(bp, "free", 0);
  311. ASSERT(list_empty(&bp->pb_hash_list));
  312. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  313. uint i;
  314. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  315. free_address(bp->pb_addr - bp->pb_offset);
  316. for (i = 0; i < bp->pb_page_count; i++)
  317. page_cache_release(bp->pb_pages[i]);
  318. _pagebuf_free_pages(bp);
  319. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  320. /*
  321. * XXX(hch): bp->pb_count_desired might be incorrect (see
  322. * pagebuf_associate_memory for details), but fortunately
  323. * the Linux version of kmem_free ignores the len argument..
  324. */
  325. kmem_free(bp->pb_addr, bp->pb_count_desired);
  326. _pagebuf_free_pages(bp);
  327. }
  328. pagebuf_deallocate(bp);
  329. }
  330. /*
  331. * Finds all pages for buffer in question and builds it's page list.
  332. */
  333. STATIC int
  334. _pagebuf_lookup_pages(
  335. xfs_buf_t *bp,
  336. uint flags)
  337. {
  338. struct address_space *mapping = bp->pb_target->pbr_mapping;
  339. size_t blocksize = bp->pb_target->pbr_bsize;
  340. size_t size = bp->pb_count_desired;
  341. size_t nbytes, offset;
  342. gfp_t gfp_mask = pb_to_gfp(flags);
  343. unsigned short page_count, i;
  344. pgoff_t first;
  345. loff_t end;
  346. int error;
  347. end = bp->pb_file_offset + bp->pb_buffer_length;
  348. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  349. error = _pagebuf_get_pages(bp, page_count, flags);
  350. if (unlikely(error))
  351. return error;
  352. bp->pb_flags |= _PBF_PAGE_CACHE;
  353. offset = bp->pb_offset;
  354. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  355. for (i = 0; i < bp->pb_page_count; i++) {
  356. struct page *page;
  357. uint retries = 0;
  358. retry:
  359. page = find_or_create_page(mapping, first + i, gfp_mask);
  360. if (unlikely(page == NULL)) {
  361. if (flags & PBF_READ_AHEAD) {
  362. bp->pb_page_count = i;
  363. for (i = 0; i < bp->pb_page_count; i++)
  364. unlock_page(bp->pb_pages[i]);
  365. return -ENOMEM;
  366. }
  367. /*
  368. * This could deadlock.
  369. *
  370. * But until all the XFS lowlevel code is revamped to
  371. * handle buffer allocation failures we can't do much.
  372. */
  373. if (!(++retries % 100))
  374. printk(KERN_ERR
  375. "XFS: possible memory allocation "
  376. "deadlock in %s (mode:0x%x)\n",
  377. __FUNCTION__, gfp_mask);
  378. XFS_STATS_INC(pb_page_retries);
  379. xfsbufd_wakeup(0, gfp_mask);
  380. blk_congestion_wait(WRITE, HZ/50);
  381. goto retry;
  382. }
  383. XFS_STATS_INC(pb_page_found);
  384. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  385. size -= nbytes;
  386. if (!PageUptodate(page)) {
  387. page_count--;
  388. if (blocksize >= PAGE_CACHE_SIZE) {
  389. if (flags & PBF_READ)
  390. bp->pb_locked = 1;
  391. } else if (!PagePrivate(page)) {
  392. if (test_page_region(page, offset, nbytes))
  393. page_count++;
  394. }
  395. }
  396. bp->pb_pages[i] = page;
  397. offset = 0;
  398. }
  399. if (!bp->pb_locked) {
  400. for (i = 0; i < bp->pb_page_count; i++)
  401. unlock_page(bp->pb_pages[i]);
  402. }
  403. if (page_count) {
  404. /* if we have any uptodate pages, mark that in the buffer */
  405. bp->pb_flags &= ~PBF_NONE;
  406. /* if some pages aren't uptodate, mark that in the buffer */
  407. if (page_count != bp->pb_page_count)
  408. bp->pb_flags |= PBF_PARTIAL;
  409. }
  410. PB_TRACE(bp, "lookup_pages", (long)page_count);
  411. return error;
  412. }
  413. /*
  414. * Map buffer into kernel address-space if nessecary.
  415. */
  416. STATIC int
  417. _pagebuf_map_pages(
  418. xfs_buf_t *bp,
  419. uint flags)
  420. {
  421. /* A single page buffer is always mappable */
  422. if (bp->pb_page_count == 1) {
  423. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  424. bp->pb_flags |= PBF_MAPPED;
  425. } else if (flags & PBF_MAPPED) {
  426. if (as_list_len > 64)
  427. purge_addresses();
  428. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  429. VM_MAP, PAGE_KERNEL);
  430. if (unlikely(bp->pb_addr == NULL))
  431. return -ENOMEM;
  432. bp->pb_addr += bp->pb_offset;
  433. bp->pb_flags |= PBF_MAPPED;
  434. }
  435. return 0;
  436. }
  437. /*
  438. * Finding and Reading Buffers
  439. */
  440. /*
  441. * _pagebuf_find
  442. *
  443. * Looks up, and creates if absent, a lockable buffer for
  444. * a given range of an inode. The buffer is returned
  445. * locked. If other overlapping buffers exist, they are
  446. * released before the new buffer is created and locked,
  447. * which may imply that this call will block until those buffers
  448. * are unlocked. No I/O is implied by this call.
  449. */
  450. xfs_buf_t *
  451. _pagebuf_find(
  452. xfs_buftarg_t *btp, /* block device target */
  453. loff_t ioff, /* starting offset of range */
  454. size_t isize, /* length of range */
  455. page_buf_flags_t flags, /* PBF_TRYLOCK */
  456. xfs_buf_t *new_pb)/* newly allocated buffer */
  457. {
  458. loff_t range_base;
  459. size_t range_length;
  460. xfs_bufhash_t *hash;
  461. xfs_buf_t *pb, *n;
  462. range_base = (ioff << BBSHIFT);
  463. range_length = (isize << BBSHIFT);
  464. /* Check for IOs smaller than the sector size / not sector aligned */
  465. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  466. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  467. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  468. spin_lock(&hash->bh_lock);
  469. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  470. ASSERT(btp == pb->pb_target);
  471. if (pb->pb_file_offset == range_base &&
  472. pb->pb_buffer_length == range_length) {
  473. /*
  474. * If we look at something bring it to the
  475. * front of the list for next time.
  476. */
  477. atomic_inc(&pb->pb_hold);
  478. list_move(&pb->pb_hash_list, &hash->bh_list);
  479. goto found;
  480. }
  481. }
  482. /* No match found */
  483. if (new_pb) {
  484. _pagebuf_initialize(new_pb, btp, range_base,
  485. range_length, flags);
  486. new_pb->pb_hash = hash;
  487. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  488. } else {
  489. XFS_STATS_INC(pb_miss_locked);
  490. }
  491. spin_unlock(&hash->bh_lock);
  492. return new_pb;
  493. found:
  494. spin_unlock(&hash->bh_lock);
  495. /* Attempt to get the semaphore without sleeping,
  496. * if this does not work then we need to drop the
  497. * spinlock and do a hard attempt on the semaphore.
  498. */
  499. if (down_trylock(&pb->pb_sema)) {
  500. if (!(flags & PBF_TRYLOCK)) {
  501. /* wait for buffer ownership */
  502. PB_TRACE(pb, "get_lock", 0);
  503. pagebuf_lock(pb);
  504. XFS_STATS_INC(pb_get_locked_waited);
  505. } else {
  506. /* We asked for a trylock and failed, no need
  507. * to look at file offset and length here, we
  508. * know that this pagebuf at least overlaps our
  509. * pagebuf and is locked, therefore our buffer
  510. * either does not exist, or is this buffer
  511. */
  512. pagebuf_rele(pb);
  513. XFS_STATS_INC(pb_busy_locked);
  514. return (NULL);
  515. }
  516. } else {
  517. /* trylock worked */
  518. PB_SET_OWNER(pb);
  519. }
  520. if (pb->pb_flags & PBF_STALE) {
  521. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  522. pb->pb_flags &= PBF_MAPPED;
  523. }
  524. PB_TRACE(pb, "got_lock", 0);
  525. XFS_STATS_INC(pb_get_locked);
  526. return (pb);
  527. }
  528. /*
  529. * xfs_buf_get_flags assembles a buffer covering the specified range.
  530. *
  531. * Storage in memory for all portions of the buffer will be allocated,
  532. * although backing storage may not be.
  533. */
  534. xfs_buf_t *
  535. xfs_buf_get_flags( /* allocate a buffer */
  536. xfs_buftarg_t *target,/* target for buffer */
  537. loff_t ioff, /* starting offset of range */
  538. size_t isize, /* length of range */
  539. page_buf_flags_t flags) /* PBF_TRYLOCK */
  540. {
  541. xfs_buf_t *pb, *new_pb;
  542. int error = 0, i;
  543. new_pb = pagebuf_allocate(flags);
  544. if (unlikely(!new_pb))
  545. return NULL;
  546. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  547. if (pb == new_pb) {
  548. error = _pagebuf_lookup_pages(pb, flags);
  549. if (error)
  550. goto no_buffer;
  551. } else {
  552. pagebuf_deallocate(new_pb);
  553. if (unlikely(pb == NULL))
  554. return NULL;
  555. }
  556. for (i = 0; i < pb->pb_page_count; i++)
  557. mark_page_accessed(pb->pb_pages[i]);
  558. if (!(pb->pb_flags & PBF_MAPPED)) {
  559. error = _pagebuf_map_pages(pb, flags);
  560. if (unlikely(error)) {
  561. printk(KERN_WARNING "%s: failed to map pages\n",
  562. __FUNCTION__);
  563. goto no_buffer;
  564. }
  565. }
  566. XFS_STATS_INC(pb_get);
  567. /*
  568. * Always fill in the block number now, the mapped cases can do
  569. * their own overlay of this later.
  570. */
  571. pb->pb_bn = ioff;
  572. pb->pb_count_desired = pb->pb_buffer_length;
  573. PB_TRACE(pb, "get", (unsigned long)flags);
  574. return pb;
  575. no_buffer:
  576. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  577. pagebuf_unlock(pb);
  578. pagebuf_rele(pb);
  579. return NULL;
  580. }
  581. xfs_buf_t *
  582. xfs_buf_read_flags(
  583. xfs_buftarg_t *target,
  584. loff_t ioff,
  585. size_t isize,
  586. page_buf_flags_t flags)
  587. {
  588. xfs_buf_t *pb;
  589. flags |= PBF_READ;
  590. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  591. if (pb) {
  592. if (PBF_NOT_DONE(pb)) {
  593. PB_TRACE(pb, "read", (unsigned long)flags);
  594. XFS_STATS_INC(pb_get_read);
  595. pagebuf_iostart(pb, flags);
  596. } else if (flags & PBF_ASYNC) {
  597. PB_TRACE(pb, "read_async", (unsigned long)flags);
  598. /*
  599. * Read ahead call which is already satisfied,
  600. * drop the buffer
  601. */
  602. goto no_buffer;
  603. } else {
  604. PB_TRACE(pb, "read_done", (unsigned long)flags);
  605. /* We do not want read in the flags */
  606. pb->pb_flags &= ~PBF_READ;
  607. }
  608. }
  609. return pb;
  610. no_buffer:
  611. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  612. pagebuf_unlock(pb);
  613. pagebuf_rele(pb);
  614. return NULL;
  615. }
  616. /*
  617. * If we are not low on memory then do the readahead in a deadlock
  618. * safe manner.
  619. */
  620. void
  621. pagebuf_readahead(
  622. xfs_buftarg_t *target,
  623. loff_t ioff,
  624. size_t isize,
  625. page_buf_flags_t flags)
  626. {
  627. struct backing_dev_info *bdi;
  628. bdi = target->pbr_mapping->backing_dev_info;
  629. if (bdi_read_congested(bdi))
  630. return;
  631. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  632. xfs_buf_read_flags(target, ioff, isize, flags);
  633. }
  634. xfs_buf_t *
  635. pagebuf_get_empty(
  636. size_t len,
  637. xfs_buftarg_t *target)
  638. {
  639. xfs_buf_t *pb;
  640. pb = pagebuf_allocate(0);
  641. if (pb)
  642. _pagebuf_initialize(pb, target, 0, len, 0);
  643. return pb;
  644. }
  645. static inline struct page *
  646. mem_to_page(
  647. void *addr)
  648. {
  649. if (((unsigned long)addr < VMALLOC_START) ||
  650. ((unsigned long)addr >= VMALLOC_END)) {
  651. return virt_to_page(addr);
  652. } else {
  653. return vmalloc_to_page(addr);
  654. }
  655. }
  656. int
  657. pagebuf_associate_memory(
  658. xfs_buf_t *pb,
  659. void *mem,
  660. size_t len)
  661. {
  662. int rval;
  663. int i = 0;
  664. size_t ptr;
  665. size_t end, end_cur;
  666. off_t offset;
  667. int page_count;
  668. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  669. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  670. if (offset && (len > PAGE_CACHE_SIZE))
  671. page_count++;
  672. /* Free any previous set of page pointers */
  673. if (pb->pb_pages)
  674. _pagebuf_free_pages(pb);
  675. pb->pb_pages = NULL;
  676. pb->pb_addr = mem;
  677. rval = _pagebuf_get_pages(pb, page_count, 0);
  678. if (rval)
  679. return rval;
  680. pb->pb_offset = offset;
  681. ptr = (size_t) mem & PAGE_CACHE_MASK;
  682. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  683. end_cur = end;
  684. /* set up first page */
  685. pb->pb_pages[0] = mem_to_page(mem);
  686. ptr += PAGE_CACHE_SIZE;
  687. pb->pb_page_count = ++i;
  688. while (ptr < end) {
  689. pb->pb_pages[i] = mem_to_page((void *)ptr);
  690. pb->pb_page_count = ++i;
  691. ptr += PAGE_CACHE_SIZE;
  692. }
  693. pb->pb_locked = 0;
  694. pb->pb_count_desired = pb->pb_buffer_length = len;
  695. pb->pb_flags |= PBF_MAPPED;
  696. return 0;
  697. }
  698. xfs_buf_t *
  699. pagebuf_get_no_daddr(
  700. size_t len,
  701. xfs_buftarg_t *target)
  702. {
  703. size_t malloc_len = len;
  704. xfs_buf_t *bp;
  705. void *data;
  706. int error;
  707. bp = pagebuf_allocate(0);
  708. if (unlikely(bp == NULL))
  709. goto fail;
  710. _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
  711. try_again:
  712. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  713. if (unlikely(data == NULL))
  714. goto fail_free_buf;
  715. /* check whether alignment matches.. */
  716. if ((__psunsigned_t)data !=
  717. ((__psunsigned_t)data & ~target->pbr_smask)) {
  718. /* .. else double the size and try again */
  719. kmem_free(data, malloc_len);
  720. malloc_len <<= 1;
  721. goto try_again;
  722. }
  723. error = pagebuf_associate_memory(bp, data, len);
  724. if (error)
  725. goto fail_free_mem;
  726. bp->pb_flags |= _PBF_KMEM_ALLOC;
  727. pagebuf_unlock(bp);
  728. PB_TRACE(bp, "no_daddr", data);
  729. return bp;
  730. fail_free_mem:
  731. kmem_free(data, malloc_len);
  732. fail_free_buf:
  733. pagebuf_free(bp);
  734. fail:
  735. return NULL;
  736. }
  737. /*
  738. * pagebuf_hold
  739. *
  740. * Increment reference count on buffer, to hold the buffer concurrently
  741. * with another thread which may release (free) the buffer asynchronously.
  742. *
  743. * Must hold the buffer already to call this function.
  744. */
  745. void
  746. pagebuf_hold(
  747. xfs_buf_t *pb)
  748. {
  749. atomic_inc(&pb->pb_hold);
  750. PB_TRACE(pb, "hold", 0);
  751. }
  752. /*
  753. * pagebuf_rele
  754. *
  755. * pagebuf_rele releases a hold on the specified buffer. If the
  756. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  757. */
  758. void
  759. pagebuf_rele(
  760. xfs_buf_t *pb)
  761. {
  762. xfs_bufhash_t *hash = pb->pb_hash;
  763. PB_TRACE(pb, "rele", pb->pb_relse);
  764. /*
  765. * pagebuf_lookup buffers are not hashed, not delayed write,
  766. * and don't have their own release routines. Special case.
  767. */
  768. if (unlikely(!hash)) {
  769. ASSERT(!pb->pb_relse);
  770. if (atomic_dec_and_test(&pb->pb_hold))
  771. xfs_buf_free(pb);
  772. return;
  773. }
  774. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  775. int do_free = 1;
  776. if (pb->pb_relse) {
  777. atomic_inc(&pb->pb_hold);
  778. spin_unlock(&hash->bh_lock);
  779. (*(pb->pb_relse)) (pb);
  780. spin_lock(&hash->bh_lock);
  781. do_free = 0;
  782. }
  783. if (pb->pb_flags & PBF_FS_MANAGED) {
  784. do_free = 0;
  785. }
  786. if (do_free) {
  787. ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
  788. list_del_init(&pb->pb_hash_list);
  789. spin_unlock(&hash->bh_lock);
  790. pagebuf_free(pb);
  791. } else {
  792. spin_unlock(&hash->bh_lock);
  793. }
  794. } else {
  795. /*
  796. * Catch reference count leaks
  797. */
  798. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  799. }
  800. }
  801. /*
  802. * Mutual exclusion on buffers. Locking model:
  803. *
  804. * Buffers associated with inodes for which buffer locking
  805. * is not enabled are not protected by semaphores, and are
  806. * assumed to be exclusively owned by the caller. There is a
  807. * spinlock in the buffer, used by the caller when concurrent
  808. * access is possible.
  809. */
  810. /*
  811. * pagebuf_cond_lock
  812. *
  813. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  814. * Note that this in no way
  815. * locks the underlying pages, so it is only useful for synchronizing
  816. * concurrent use of page buffer objects, not for synchronizing independent
  817. * access to the underlying pages.
  818. */
  819. int
  820. pagebuf_cond_lock( /* lock buffer, if not locked */
  821. /* returns -EBUSY if locked) */
  822. xfs_buf_t *pb)
  823. {
  824. int locked;
  825. locked = down_trylock(&pb->pb_sema) == 0;
  826. if (locked) {
  827. PB_SET_OWNER(pb);
  828. }
  829. PB_TRACE(pb, "cond_lock", (long)locked);
  830. return(locked ? 0 : -EBUSY);
  831. }
  832. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  833. /*
  834. * pagebuf_lock_value
  835. *
  836. * Return lock value for a pagebuf
  837. */
  838. int
  839. pagebuf_lock_value(
  840. xfs_buf_t *pb)
  841. {
  842. return(atomic_read(&pb->pb_sema.count));
  843. }
  844. #endif
  845. /*
  846. * pagebuf_lock
  847. *
  848. * pagebuf_lock locks a buffer object. Note that this in no way
  849. * locks the underlying pages, so it is only useful for synchronizing
  850. * concurrent use of page buffer objects, not for synchronizing independent
  851. * access to the underlying pages.
  852. */
  853. int
  854. pagebuf_lock(
  855. xfs_buf_t *pb)
  856. {
  857. PB_TRACE(pb, "lock", 0);
  858. if (atomic_read(&pb->pb_io_remaining))
  859. blk_run_address_space(pb->pb_target->pbr_mapping);
  860. down(&pb->pb_sema);
  861. PB_SET_OWNER(pb);
  862. PB_TRACE(pb, "locked", 0);
  863. return 0;
  864. }
  865. /*
  866. * pagebuf_unlock
  867. *
  868. * pagebuf_unlock releases the lock on the buffer object created by
  869. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  870. * created by pagebuf_pin).
  871. *
  872. * If the buffer is marked delwri but is not queued, do so before we
  873. * unlock the buffer as we need to set flags correctly. We also need to
  874. * take a reference for the delwri queue because the unlocker is going to
  875. * drop their's and they don't know we just queued it.
  876. */
  877. void
  878. pagebuf_unlock( /* unlock buffer */
  879. xfs_buf_t *pb) /* buffer to unlock */
  880. {
  881. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  882. atomic_inc(&pb->pb_hold);
  883. pb->pb_flags |= PBF_ASYNC;
  884. pagebuf_delwri_queue(pb, 0);
  885. }
  886. PB_CLEAR_OWNER(pb);
  887. up(&pb->pb_sema);
  888. PB_TRACE(pb, "unlock", 0);
  889. }
  890. /*
  891. * Pinning Buffer Storage in Memory
  892. */
  893. /*
  894. * pagebuf_pin
  895. *
  896. * pagebuf_pin locks all of the memory represented by a buffer in
  897. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  898. * the same or different buffers affecting a given page, will
  899. * properly count the number of outstanding "pin" requests. The
  900. * buffer may be released after the pagebuf_pin and a different
  901. * buffer used when calling pagebuf_unpin, if desired.
  902. * pagebuf_pin should be used by the file system when it wants be
  903. * assured that no attempt will be made to force the affected
  904. * memory to disk. It does not assure that a given logical page
  905. * will not be moved to a different physical page.
  906. */
  907. void
  908. pagebuf_pin(
  909. xfs_buf_t *pb)
  910. {
  911. atomic_inc(&pb->pb_pin_count);
  912. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  913. }
  914. /*
  915. * pagebuf_unpin
  916. *
  917. * pagebuf_unpin reverses the locking of memory performed by
  918. * pagebuf_pin. Note that both functions affected the logical
  919. * pages associated with the buffer, not the buffer itself.
  920. */
  921. void
  922. pagebuf_unpin(
  923. xfs_buf_t *pb)
  924. {
  925. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  926. wake_up_all(&pb->pb_waiters);
  927. }
  928. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  929. }
  930. int
  931. pagebuf_ispin(
  932. xfs_buf_t *pb)
  933. {
  934. return atomic_read(&pb->pb_pin_count);
  935. }
  936. /*
  937. * pagebuf_wait_unpin
  938. *
  939. * pagebuf_wait_unpin waits until all of the memory associated
  940. * with the buffer is not longer locked in memory. It returns
  941. * immediately if none of the affected pages are locked.
  942. */
  943. static inline void
  944. _pagebuf_wait_unpin(
  945. xfs_buf_t *pb)
  946. {
  947. DECLARE_WAITQUEUE (wait, current);
  948. if (atomic_read(&pb->pb_pin_count) == 0)
  949. return;
  950. add_wait_queue(&pb->pb_waiters, &wait);
  951. for (;;) {
  952. set_current_state(TASK_UNINTERRUPTIBLE);
  953. if (atomic_read(&pb->pb_pin_count) == 0)
  954. break;
  955. if (atomic_read(&pb->pb_io_remaining))
  956. blk_run_address_space(pb->pb_target->pbr_mapping);
  957. schedule();
  958. }
  959. remove_wait_queue(&pb->pb_waiters, &wait);
  960. set_current_state(TASK_RUNNING);
  961. }
  962. /*
  963. * Buffer Utility Routines
  964. */
  965. /*
  966. * pagebuf_iodone
  967. *
  968. * pagebuf_iodone marks a buffer for which I/O is in progress
  969. * done with respect to that I/O. The pb_iodone routine, if
  970. * present, will be called as a side-effect.
  971. */
  972. STATIC void
  973. pagebuf_iodone_work(
  974. void *v)
  975. {
  976. xfs_buf_t *bp = (xfs_buf_t *)v;
  977. if (bp->pb_iodone)
  978. (*(bp->pb_iodone))(bp);
  979. else if (bp->pb_flags & PBF_ASYNC)
  980. xfs_buf_relse(bp);
  981. }
  982. void
  983. pagebuf_iodone(
  984. xfs_buf_t *pb,
  985. int dataio,
  986. int schedule)
  987. {
  988. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  989. if (pb->pb_error == 0) {
  990. pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
  991. }
  992. PB_TRACE(pb, "iodone", pb->pb_iodone);
  993. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  994. if (schedule) {
  995. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  996. queue_work(dataio ? xfsdatad_workqueue :
  997. xfslogd_workqueue, &pb->pb_iodone_work);
  998. } else {
  999. pagebuf_iodone_work(pb);
  1000. }
  1001. } else {
  1002. up(&pb->pb_iodonesema);
  1003. }
  1004. }
  1005. /*
  1006. * pagebuf_ioerror
  1007. *
  1008. * pagebuf_ioerror sets the error code for a buffer.
  1009. */
  1010. void
  1011. pagebuf_ioerror( /* mark/clear buffer error flag */
  1012. xfs_buf_t *pb, /* buffer to mark */
  1013. int error) /* error to store (0 if none) */
  1014. {
  1015. ASSERT(error >= 0 && error <= 0xffff);
  1016. pb->pb_error = (unsigned short)error;
  1017. PB_TRACE(pb, "ioerror", (unsigned long)error);
  1018. }
  1019. /*
  1020. * pagebuf_iostart
  1021. *
  1022. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  1023. * If necessary, it will arrange for any disk space allocation required,
  1024. * and it will break up the request if the block mappings require it.
  1025. * The pb_iodone routine in the buffer supplied will only be called
  1026. * when all of the subsidiary I/O requests, if any, have been completed.
  1027. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  1028. * pagebuf_iorequest, if the former routine is not defined, to start
  1029. * the I/O on a given low-level request.
  1030. */
  1031. int
  1032. pagebuf_iostart( /* start I/O on a buffer */
  1033. xfs_buf_t *pb, /* buffer to start */
  1034. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  1035. /* PBF_WRITE, PBF_DELWRI, */
  1036. /* PBF_DONT_BLOCK */
  1037. {
  1038. int status = 0;
  1039. PB_TRACE(pb, "iostart", (unsigned long)flags);
  1040. if (flags & PBF_DELWRI) {
  1041. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  1042. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  1043. pagebuf_delwri_queue(pb, 1);
  1044. return status;
  1045. }
  1046. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  1047. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1048. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  1049. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1050. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  1051. /* For writes allow an alternate strategy routine to precede
  1052. * the actual I/O request (which may not be issued at all in
  1053. * a shutdown situation, for example).
  1054. */
  1055. status = (flags & PBF_WRITE) ?
  1056. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  1057. /* Wait for I/O if we are not an async request.
  1058. * Note: async I/O request completion will release the buffer,
  1059. * and that can already be done by this point. So using the
  1060. * buffer pointer from here on, after async I/O, is invalid.
  1061. */
  1062. if (!status && !(flags & PBF_ASYNC))
  1063. status = pagebuf_iowait(pb);
  1064. return status;
  1065. }
  1066. /*
  1067. * Helper routine for pagebuf_iorequest
  1068. */
  1069. STATIC __inline__ int
  1070. _pagebuf_iolocked(
  1071. xfs_buf_t *pb)
  1072. {
  1073. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1074. if (pb->pb_flags & PBF_READ)
  1075. return pb->pb_locked;
  1076. return 0;
  1077. }
  1078. STATIC __inline__ void
  1079. _pagebuf_iodone(
  1080. xfs_buf_t *pb,
  1081. int schedule)
  1082. {
  1083. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1084. pb->pb_locked = 0;
  1085. pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
  1086. }
  1087. }
  1088. STATIC int
  1089. bio_end_io_pagebuf(
  1090. struct bio *bio,
  1091. unsigned int bytes_done,
  1092. int error)
  1093. {
  1094. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1095. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1096. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1097. if (bio->bi_size)
  1098. return 1;
  1099. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1100. pb->pb_error = EIO;
  1101. do {
  1102. struct page *page = bvec->bv_page;
  1103. if (unlikely(pb->pb_error)) {
  1104. if (pb->pb_flags & PBF_READ)
  1105. ClearPageUptodate(page);
  1106. SetPageError(page);
  1107. } else if (blocksize == PAGE_CACHE_SIZE) {
  1108. SetPageUptodate(page);
  1109. } else if (!PagePrivate(page) &&
  1110. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1111. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1112. }
  1113. if (--bvec >= bio->bi_io_vec)
  1114. prefetchw(&bvec->bv_page->flags);
  1115. if (_pagebuf_iolocked(pb)) {
  1116. unlock_page(page);
  1117. }
  1118. } while (bvec >= bio->bi_io_vec);
  1119. _pagebuf_iodone(pb, 1);
  1120. bio_put(bio);
  1121. return 0;
  1122. }
  1123. STATIC void
  1124. _pagebuf_ioapply(
  1125. xfs_buf_t *pb)
  1126. {
  1127. int i, rw, map_i, total_nr_pages, nr_pages;
  1128. struct bio *bio;
  1129. int offset = pb->pb_offset;
  1130. int size = pb->pb_count_desired;
  1131. sector_t sector = pb->pb_bn;
  1132. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1133. int locking = _pagebuf_iolocked(pb);
  1134. total_nr_pages = pb->pb_page_count;
  1135. map_i = 0;
  1136. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1137. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1138. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1139. } else {
  1140. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1141. }
  1142. /* Special code path for reading a sub page size pagebuf in --
  1143. * we populate up the whole page, and hence the other metadata
  1144. * in the same page. This optimization is only valid when the
  1145. * filesystem block size and the page size are equal.
  1146. */
  1147. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1148. (pb->pb_flags & PBF_READ) && locking &&
  1149. (blocksize == PAGE_CACHE_SIZE)) {
  1150. bio = bio_alloc(GFP_NOIO, 1);
  1151. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1152. bio->bi_sector = sector - (offset >> BBSHIFT);
  1153. bio->bi_end_io = bio_end_io_pagebuf;
  1154. bio->bi_private = pb;
  1155. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1156. size = 0;
  1157. atomic_inc(&pb->pb_io_remaining);
  1158. goto submit_io;
  1159. }
  1160. /* Lock down the pages which we need to for the request */
  1161. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1162. for (i = 0; size; i++) {
  1163. int nbytes = PAGE_CACHE_SIZE - offset;
  1164. struct page *page = pb->pb_pages[i];
  1165. if (nbytes > size)
  1166. nbytes = size;
  1167. lock_page(page);
  1168. size -= nbytes;
  1169. offset = 0;
  1170. }
  1171. offset = pb->pb_offset;
  1172. size = pb->pb_count_desired;
  1173. }
  1174. next_chunk:
  1175. atomic_inc(&pb->pb_io_remaining);
  1176. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1177. if (nr_pages > total_nr_pages)
  1178. nr_pages = total_nr_pages;
  1179. bio = bio_alloc(GFP_NOIO, nr_pages);
  1180. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1181. bio->bi_sector = sector;
  1182. bio->bi_end_io = bio_end_io_pagebuf;
  1183. bio->bi_private = pb;
  1184. for (; size && nr_pages; nr_pages--, map_i++) {
  1185. int nbytes = PAGE_CACHE_SIZE - offset;
  1186. if (nbytes > size)
  1187. nbytes = size;
  1188. if (bio_add_page(bio, pb->pb_pages[map_i],
  1189. nbytes, offset) < nbytes)
  1190. break;
  1191. offset = 0;
  1192. sector += nbytes >> BBSHIFT;
  1193. size -= nbytes;
  1194. total_nr_pages--;
  1195. }
  1196. submit_io:
  1197. if (likely(bio->bi_size)) {
  1198. submit_bio(rw, bio);
  1199. if (size)
  1200. goto next_chunk;
  1201. } else {
  1202. bio_put(bio);
  1203. pagebuf_ioerror(pb, EIO);
  1204. }
  1205. }
  1206. /*
  1207. * pagebuf_iorequest -- the core I/O request routine.
  1208. */
  1209. int
  1210. pagebuf_iorequest( /* start real I/O */
  1211. xfs_buf_t *pb) /* buffer to convey to device */
  1212. {
  1213. PB_TRACE(pb, "iorequest", 0);
  1214. if (pb->pb_flags & PBF_DELWRI) {
  1215. pagebuf_delwri_queue(pb, 1);
  1216. return 0;
  1217. }
  1218. if (pb->pb_flags & PBF_WRITE) {
  1219. _pagebuf_wait_unpin(pb);
  1220. }
  1221. pagebuf_hold(pb);
  1222. /* Set the count to 1 initially, this will stop an I/O
  1223. * completion callout which happens before we have started
  1224. * all the I/O from calling pagebuf_iodone too early.
  1225. */
  1226. atomic_set(&pb->pb_io_remaining, 1);
  1227. _pagebuf_ioapply(pb);
  1228. _pagebuf_iodone(pb, 0);
  1229. pagebuf_rele(pb);
  1230. return 0;
  1231. }
  1232. /*
  1233. * pagebuf_iowait
  1234. *
  1235. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1236. * It returns immediately if no I/O is pending. In any case, it returns
  1237. * the error code, if any, or 0 if there is no error.
  1238. */
  1239. int
  1240. pagebuf_iowait(
  1241. xfs_buf_t *pb)
  1242. {
  1243. PB_TRACE(pb, "iowait", 0);
  1244. if (atomic_read(&pb->pb_io_remaining))
  1245. blk_run_address_space(pb->pb_target->pbr_mapping);
  1246. down(&pb->pb_iodonesema);
  1247. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1248. return pb->pb_error;
  1249. }
  1250. caddr_t
  1251. pagebuf_offset(
  1252. xfs_buf_t *pb,
  1253. size_t offset)
  1254. {
  1255. struct page *page;
  1256. offset += pb->pb_offset;
  1257. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1258. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1259. }
  1260. /*
  1261. * pagebuf_iomove
  1262. *
  1263. * Move data into or out of a buffer.
  1264. */
  1265. void
  1266. pagebuf_iomove(
  1267. xfs_buf_t *pb, /* buffer to process */
  1268. size_t boff, /* starting buffer offset */
  1269. size_t bsize, /* length to copy */
  1270. caddr_t data, /* data address */
  1271. page_buf_rw_t mode) /* read/write flag */
  1272. {
  1273. size_t bend, cpoff, csize;
  1274. struct page *page;
  1275. bend = boff + bsize;
  1276. while (boff < bend) {
  1277. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1278. cpoff = page_buf_poff(boff + pb->pb_offset);
  1279. csize = min_t(size_t,
  1280. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1281. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1282. switch (mode) {
  1283. case PBRW_ZERO:
  1284. memset(page_address(page) + cpoff, 0, csize);
  1285. break;
  1286. case PBRW_READ:
  1287. memcpy(data, page_address(page) + cpoff, csize);
  1288. break;
  1289. case PBRW_WRITE:
  1290. memcpy(page_address(page) + cpoff, data, csize);
  1291. }
  1292. boff += csize;
  1293. data += csize;
  1294. }
  1295. }
  1296. /*
  1297. * Handling of buftargs.
  1298. */
  1299. /*
  1300. * Wait for any bufs with callbacks that have been submitted but
  1301. * have not yet returned... walk the hash list for the target.
  1302. */
  1303. void
  1304. xfs_wait_buftarg(
  1305. xfs_buftarg_t *btp)
  1306. {
  1307. xfs_buf_t *bp, *n;
  1308. xfs_bufhash_t *hash;
  1309. uint i;
  1310. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1311. hash = &btp->bt_hash[i];
  1312. again:
  1313. spin_lock(&hash->bh_lock);
  1314. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1315. ASSERT(btp == bp->pb_target);
  1316. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1317. spin_unlock(&hash->bh_lock);
  1318. /*
  1319. * Catch superblock reference count leaks
  1320. * immediately
  1321. */
  1322. BUG_ON(bp->pb_bn == 0);
  1323. delay(100);
  1324. goto again;
  1325. }
  1326. }
  1327. spin_unlock(&hash->bh_lock);
  1328. }
  1329. }
  1330. /*
  1331. * Allocate buffer hash table for a given target.
  1332. * For devices containing metadata (i.e. not the log/realtime devices)
  1333. * we need to allocate a much larger hash table.
  1334. */
  1335. STATIC void
  1336. xfs_alloc_bufhash(
  1337. xfs_buftarg_t *btp,
  1338. int external)
  1339. {
  1340. unsigned int i;
  1341. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1342. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1343. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1344. sizeof(xfs_bufhash_t), KM_SLEEP);
  1345. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1346. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1347. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1348. }
  1349. }
  1350. STATIC void
  1351. xfs_free_bufhash(
  1352. xfs_buftarg_t *btp)
  1353. {
  1354. kmem_free(btp->bt_hash,
  1355. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1356. btp->bt_hash = NULL;
  1357. }
  1358. void
  1359. xfs_free_buftarg(
  1360. xfs_buftarg_t *btp,
  1361. int external)
  1362. {
  1363. xfs_flush_buftarg(btp, 1);
  1364. if (external)
  1365. xfs_blkdev_put(btp->pbr_bdev);
  1366. xfs_free_bufhash(btp);
  1367. iput(btp->pbr_mapping->host);
  1368. kmem_free(btp, sizeof(*btp));
  1369. }
  1370. STATIC int
  1371. xfs_setsize_buftarg_flags(
  1372. xfs_buftarg_t *btp,
  1373. unsigned int blocksize,
  1374. unsigned int sectorsize,
  1375. int verbose)
  1376. {
  1377. btp->pbr_bsize = blocksize;
  1378. btp->pbr_sshift = ffs(sectorsize) - 1;
  1379. btp->pbr_smask = sectorsize - 1;
  1380. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1381. printk(KERN_WARNING
  1382. "XFS: Cannot set_blocksize to %u on device %s\n",
  1383. sectorsize, XFS_BUFTARG_NAME(btp));
  1384. return EINVAL;
  1385. }
  1386. if (verbose &&
  1387. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1388. printk(KERN_WARNING
  1389. "XFS: %u byte sectors in use on device %s. "
  1390. "This is suboptimal; %u or greater is ideal.\n",
  1391. sectorsize, XFS_BUFTARG_NAME(btp),
  1392. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1393. }
  1394. return 0;
  1395. }
  1396. /*
  1397. * When allocating the initial buffer target we have not yet
  1398. * read in the superblock, so don't know what sized sectors
  1399. * are being used is at this early stage. Play safe.
  1400. */
  1401. STATIC int
  1402. xfs_setsize_buftarg_early(
  1403. xfs_buftarg_t *btp,
  1404. struct block_device *bdev)
  1405. {
  1406. return xfs_setsize_buftarg_flags(btp,
  1407. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1408. }
  1409. int
  1410. xfs_setsize_buftarg(
  1411. xfs_buftarg_t *btp,
  1412. unsigned int blocksize,
  1413. unsigned int sectorsize)
  1414. {
  1415. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1416. }
  1417. STATIC int
  1418. xfs_mapping_buftarg(
  1419. xfs_buftarg_t *btp,
  1420. struct block_device *bdev)
  1421. {
  1422. struct backing_dev_info *bdi;
  1423. struct inode *inode;
  1424. struct address_space *mapping;
  1425. static struct address_space_operations mapping_aops = {
  1426. .sync_page = block_sync_page,
  1427. };
  1428. inode = new_inode(bdev->bd_inode->i_sb);
  1429. if (!inode) {
  1430. printk(KERN_WARNING
  1431. "XFS: Cannot allocate mapping inode for device %s\n",
  1432. XFS_BUFTARG_NAME(btp));
  1433. return ENOMEM;
  1434. }
  1435. inode->i_mode = S_IFBLK;
  1436. inode->i_bdev = bdev;
  1437. inode->i_rdev = bdev->bd_dev;
  1438. bdi = blk_get_backing_dev_info(bdev);
  1439. if (!bdi)
  1440. bdi = &default_backing_dev_info;
  1441. mapping = &inode->i_data;
  1442. mapping->a_ops = &mapping_aops;
  1443. mapping->backing_dev_info = bdi;
  1444. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1445. btp->pbr_mapping = mapping;
  1446. return 0;
  1447. }
  1448. xfs_buftarg_t *
  1449. xfs_alloc_buftarg(
  1450. struct block_device *bdev,
  1451. int external)
  1452. {
  1453. xfs_buftarg_t *btp;
  1454. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1455. btp->pbr_dev = bdev->bd_dev;
  1456. btp->pbr_bdev = bdev;
  1457. if (xfs_setsize_buftarg_early(btp, bdev))
  1458. goto error;
  1459. if (xfs_mapping_buftarg(btp, bdev))
  1460. goto error;
  1461. xfs_alloc_bufhash(btp, external);
  1462. return btp;
  1463. error:
  1464. kmem_free(btp, sizeof(*btp));
  1465. return NULL;
  1466. }
  1467. /*
  1468. * Pagebuf delayed write buffer handling
  1469. */
  1470. STATIC LIST_HEAD(pbd_delwrite_queue);
  1471. STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
  1472. STATIC void
  1473. pagebuf_delwri_queue(
  1474. xfs_buf_t *pb,
  1475. int unlock)
  1476. {
  1477. PB_TRACE(pb, "delwri_q", (long)unlock);
  1478. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1479. (PBF_DELWRI|PBF_ASYNC));
  1480. spin_lock(&pbd_delwrite_lock);
  1481. /* If already in the queue, dequeue and place at tail */
  1482. if (!list_empty(&pb->pb_list)) {
  1483. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1484. if (unlock) {
  1485. atomic_dec(&pb->pb_hold);
  1486. }
  1487. list_del(&pb->pb_list);
  1488. }
  1489. pb->pb_flags |= _PBF_DELWRI_Q;
  1490. list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
  1491. pb->pb_queuetime = jiffies;
  1492. spin_unlock(&pbd_delwrite_lock);
  1493. if (unlock)
  1494. pagebuf_unlock(pb);
  1495. }
  1496. void
  1497. pagebuf_delwri_dequeue(
  1498. xfs_buf_t *pb)
  1499. {
  1500. int dequeued = 0;
  1501. spin_lock(&pbd_delwrite_lock);
  1502. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1503. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1504. list_del_init(&pb->pb_list);
  1505. dequeued = 1;
  1506. }
  1507. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1508. spin_unlock(&pbd_delwrite_lock);
  1509. if (dequeued)
  1510. pagebuf_rele(pb);
  1511. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1512. }
  1513. STATIC void
  1514. pagebuf_runall_queues(
  1515. struct workqueue_struct *queue)
  1516. {
  1517. flush_workqueue(queue);
  1518. }
  1519. /* Defines for pagebuf daemon */
  1520. STATIC struct task_struct *xfsbufd_task;
  1521. STATIC int xfsbufd_force_flush;
  1522. STATIC int xfsbufd_force_sleep;
  1523. STATIC int
  1524. xfsbufd_wakeup(
  1525. int priority,
  1526. gfp_t mask)
  1527. {
  1528. if (xfsbufd_force_sleep)
  1529. return 0;
  1530. xfsbufd_force_flush = 1;
  1531. barrier();
  1532. wake_up_process(xfsbufd_task);
  1533. return 0;
  1534. }
  1535. STATIC int
  1536. xfsbufd(
  1537. void *data)
  1538. {
  1539. struct list_head tmp;
  1540. unsigned long age;
  1541. xfs_buftarg_t *target;
  1542. xfs_buf_t *pb, *n;
  1543. current->flags |= PF_MEMALLOC;
  1544. INIT_LIST_HEAD(&tmp);
  1545. do {
  1546. if (unlikely(freezing(current))) {
  1547. xfsbufd_force_sleep = 1;
  1548. refrigerator();
  1549. } else {
  1550. xfsbufd_force_sleep = 0;
  1551. }
  1552. schedule_timeout_interruptible
  1553. (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1554. age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1555. spin_lock(&pbd_delwrite_lock);
  1556. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1557. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1558. ASSERT(pb->pb_flags & PBF_DELWRI);
  1559. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1560. if (!xfsbufd_force_flush &&
  1561. time_before(jiffies,
  1562. pb->pb_queuetime + age)) {
  1563. pagebuf_unlock(pb);
  1564. break;
  1565. }
  1566. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1567. pb->pb_flags |= PBF_WRITE;
  1568. list_move(&pb->pb_list, &tmp);
  1569. }
  1570. }
  1571. spin_unlock(&pbd_delwrite_lock);
  1572. while (!list_empty(&tmp)) {
  1573. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1574. target = pb->pb_target;
  1575. list_del_init(&pb->pb_list);
  1576. pagebuf_iostrategy(pb);
  1577. blk_run_address_space(target->pbr_mapping);
  1578. }
  1579. if (as_list_len > 0)
  1580. purge_addresses();
  1581. xfsbufd_force_flush = 0;
  1582. } while (!kthread_should_stop());
  1583. return 0;
  1584. }
  1585. /*
  1586. * Go through all incore buffers, and release buffers if they belong to
  1587. * the given device. This is used in filesystem error handling to
  1588. * preserve the consistency of its metadata.
  1589. */
  1590. int
  1591. xfs_flush_buftarg(
  1592. xfs_buftarg_t *target,
  1593. int wait)
  1594. {
  1595. struct list_head tmp;
  1596. xfs_buf_t *pb, *n;
  1597. int pincount = 0;
  1598. pagebuf_runall_queues(xfsdatad_workqueue);
  1599. pagebuf_runall_queues(xfslogd_workqueue);
  1600. INIT_LIST_HEAD(&tmp);
  1601. spin_lock(&pbd_delwrite_lock);
  1602. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1603. if (pb->pb_target != target)
  1604. continue;
  1605. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1606. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1607. if (pagebuf_ispin(pb)) {
  1608. pincount++;
  1609. continue;
  1610. }
  1611. list_move(&pb->pb_list, &tmp);
  1612. }
  1613. spin_unlock(&pbd_delwrite_lock);
  1614. /*
  1615. * Dropped the delayed write list lock, now walk the temporary list
  1616. */
  1617. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1618. pagebuf_lock(pb);
  1619. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1620. pb->pb_flags |= PBF_WRITE;
  1621. if (wait)
  1622. pb->pb_flags &= ~PBF_ASYNC;
  1623. else
  1624. list_del_init(&pb->pb_list);
  1625. pagebuf_iostrategy(pb);
  1626. }
  1627. /*
  1628. * Remaining list items must be flushed before returning
  1629. */
  1630. while (!list_empty(&tmp)) {
  1631. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1632. list_del_init(&pb->pb_list);
  1633. xfs_iowait(pb);
  1634. xfs_buf_relse(pb);
  1635. }
  1636. if (wait)
  1637. blk_run_address_space(target->pbr_mapping);
  1638. return pincount;
  1639. }
  1640. STATIC int
  1641. xfs_buf_daemons_start(void)
  1642. {
  1643. int error = -ENOMEM;
  1644. xfslogd_workqueue = create_workqueue("xfslogd");
  1645. if (!xfslogd_workqueue)
  1646. goto out;
  1647. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1648. if (!xfsdatad_workqueue)
  1649. goto out_destroy_xfslogd_workqueue;
  1650. xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
  1651. if (IS_ERR(xfsbufd_task)) {
  1652. error = PTR_ERR(xfsbufd_task);
  1653. goto out_destroy_xfsdatad_workqueue;
  1654. }
  1655. return 0;
  1656. out_destroy_xfsdatad_workqueue:
  1657. destroy_workqueue(xfsdatad_workqueue);
  1658. out_destroy_xfslogd_workqueue:
  1659. destroy_workqueue(xfslogd_workqueue);
  1660. out:
  1661. return error;
  1662. }
  1663. /*
  1664. * Note: do not mark as __exit, it is called from pagebuf_terminate.
  1665. */
  1666. STATIC void
  1667. xfs_buf_daemons_stop(void)
  1668. {
  1669. kthread_stop(xfsbufd_task);
  1670. destroy_workqueue(xfslogd_workqueue);
  1671. destroy_workqueue(xfsdatad_workqueue);
  1672. }
  1673. /*
  1674. * Initialization and Termination
  1675. */
  1676. int __init
  1677. pagebuf_init(void)
  1678. {
  1679. int error = -ENOMEM;
  1680. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1681. if (!pagebuf_zone)
  1682. goto out;
  1683. #ifdef PAGEBUF_TRACE
  1684. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1685. #endif
  1686. error = xfs_buf_daemons_start();
  1687. if (error)
  1688. goto out_free_buf_zone;
  1689. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1690. if (!pagebuf_shake) {
  1691. error = -ENOMEM;
  1692. goto out_stop_daemons;
  1693. }
  1694. return 0;
  1695. out_stop_daemons:
  1696. xfs_buf_daemons_stop();
  1697. out_free_buf_zone:
  1698. #ifdef PAGEBUF_TRACE
  1699. ktrace_free(pagebuf_trace_buf);
  1700. #endif
  1701. kmem_zone_destroy(pagebuf_zone);
  1702. out:
  1703. return error;
  1704. }
  1705. /*
  1706. * pagebuf_terminate.
  1707. *
  1708. * Note: do not mark as __exit, this is also called from the __init code.
  1709. */
  1710. void
  1711. pagebuf_terminate(void)
  1712. {
  1713. xfs_buf_daemons_stop();
  1714. #ifdef PAGEBUF_TRACE
  1715. ktrace_free(pagebuf_trace_buf);
  1716. #endif
  1717. kmem_zone_destroy(pagebuf_zone);
  1718. kmem_shake_deregister(pagebuf_shake);
  1719. }