vmx.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. static int bypass_guest_pf = 1;
  35. module_param(bypass_guest_pf, bool, 0);
  36. static int enable_vpid = 1;
  37. module_param(enable_vpid, bool, 0);
  38. static int flexpriority_enabled = 1;
  39. module_param(flexpriority_enabled, bool, 0);
  40. static int enable_ept = 1;
  41. module_param(enable_ept, bool, 0);
  42. static int emulate_invalid_guest_state = 0;
  43. module_param(emulate_invalid_guest_state, bool, 0);
  44. struct vmcs {
  45. u32 revision_id;
  46. u32 abort;
  47. char data[0];
  48. };
  49. struct vcpu_vmx {
  50. struct kvm_vcpu vcpu;
  51. struct list_head local_vcpus_link;
  52. unsigned long host_rsp;
  53. int launched;
  54. u8 fail;
  55. u32 idt_vectoring_info;
  56. struct kvm_msr_entry *guest_msrs;
  57. struct kvm_msr_entry *host_msrs;
  58. int nmsrs;
  59. int save_nmsrs;
  60. int msr_offset_efer;
  61. #ifdef CONFIG_X86_64
  62. int msr_offset_kernel_gs_base;
  63. #endif
  64. struct vmcs *vmcs;
  65. struct {
  66. int loaded;
  67. u16 fs_sel, gs_sel, ldt_sel;
  68. int gs_ldt_reload_needed;
  69. int fs_reload_needed;
  70. int guest_efer_loaded;
  71. } host_state;
  72. struct {
  73. struct {
  74. bool pending;
  75. u8 vector;
  76. unsigned rip;
  77. } irq;
  78. } rmode;
  79. int vpid;
  80. bool emulation_required;
  81. };
  82. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  83. {
  84. return container_of(vcpu, struct vcpu_vmx, vcpu);
  85. }
  86. static int init_rmode(struct kvm *kvm);
  87. static u64 construct_eptp(unsigned long root_hpa);
  88. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  89. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  90. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  91. static struct page *vmx_io_bitmap_a;
  92. static struct page *vmx_io_bitmap_b;
  93. static struct page *vmx_msr_bitmap;
  94. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  95. static DEFINE_SPINLOCK(vmx_vpid_lock);
  96. static struct vmcs_config {
  97. int size;
  98. int order;
  99. u32 revision_id;
  100. u32 pin_based_exec_ctrl;
  101. u32 cpu_based_exec_ctrl;
  102. u32 cpu_based_2nd_exec_ctrl;
  103. u32 vmexit_ctrl;
  104. u32 vmentry_ctrl;
  105. } vmcs_config;
  106. struct vmx_capability {
  107. u32 ept;
  108. u32 vpid;
  109. } vmx_capability;
  110. #define VMX_SEGMENT_FIELD(seg) \
  111. [VCPU_SREG_##seg] = { \
  112. .selector = GUEST_##seg##_SELECTOR, \
  113. .base = GUEST_##seg##_BASE, \
  114. .limit = GUEST_##seg##_LIMIT, \
  115. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  116. }
  117. static struct kvm_vmx_segment_field {
  118. unsigned selector;
  119. unsigned base;
  120. unsigned limit;
  121. unsigned ar_bytes;
  122. } kvm_vmx_segment_fields[] = {
  123. VMX_SEGMENT_FIELD(CS),
  124. VMX_SEGMENT_FIELD(DS),
  125. VMX_SEGMENT_FIELD(ES),
  126. VMX_SEGMENT_FIELD(FS),
  127. VMX_SEGMENT_FIELD(GS),
  128. VMX_SEGMENT_FIELD(SS),
  129. VMX_SEGMENT_FIELD(TR),
  130. VMX_SEGMENT_FIELD(LDTR),
  131. };
  132. /*
  133. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  134. * away by decrementing the array size.
  135. */
  136. static const u32 vmx_msr_index[] = {
  137. #ifdef CONFIG_X86_64
  138. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  139. #endif
  140. MSR_EFER, MSR_K6_STAR,
  141. };
  142. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  143. static void load_msrs(struct kvm_msr_entry *e, int n)
  144. {
  145. int i;
  146. for (i = 0; i < n; ++i)
  147. wrmsrl(e[i].index, e[i].data);
  148. }
  149. static void save_msrs(struct kvm_msr_entry *e, int n)
  150. {
  151. int i;
  152. for (i = 0; i < n; ++i)
  153. rdmsrl(e[i].index, e[i].data);
  154. }
  155. static inline int is_page_fault(u32 intr_info)
  156. {
  157. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  158. INTR_INFO_VALID_MASK)) ==
  159. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  160. }
  161. static inline int is_no_device(u32 intr_info)
  162. {
  163. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  164. INTR_INFO_VALID_MASK)) ==
  165. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  166. }
  167. static inline int is_invalid_opcode(u32 intr_info)
  168. {
  169. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  170. INTR_INFO_VALID_MASK)) ==
  171. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  172. }
  173. static inline int is_external_interrupt(u32 intr_info)
  174. {
  175. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  176. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  177. }
  178. static inline int cpu_has_vmx_msr_bitmap(void)
  179. {
  180. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  181. }
  182. static inline int cpu_has_vmx_tpr_shadow(void)
  183. {
  184. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  185. }
  186. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  187. {
  188. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  189. }
  190. static inline int cpu_has_secondary_exec_ctrls(void)
  191. {
  192. return (vmcs_config.cpu_based_exec_ctrl &
  193. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  194. }
  195. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  196. {
  197. return flexpriority_enabled
  198. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  199. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  200. }
  201. static inline int cpu_has_vmx_invept_individual_addr(void)
  202. {
  203. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  204. }
  205. static inline int cpu_has_vmx_invept_context(void)
  206. {
  207. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  208. }
  209. static inline int cpu_has_vmx_invept_global(void)
  210. {
  211. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  212. }
  213. static inline int cpu_has_vmx_ept(void)
  214. {
  215. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  216. SECONDARY_EXEC_ENABLE_EPT);
  217. }
  218. static inline int vm_need_ept(void)
  219. {
  220. return (cpu_has_vmx_ept() && enable_ept);
  221. }
  222. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  223. {
  224. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  225. (irqchip_in_kernel(kvm)));
  226. }
  227. static inline int cpu_has_vmx_vpid(void)
  228. {
  229. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  230. SECONDARY_EXEC_ENABLE_VPID);
  231. }
  232. static inline int cpu_has_virtual_nmis(void)
  233. {
  234. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  235. }
  236. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  237. {
  238. int i;
  239. for (i = 0; i < vmx->nmsrs; ++i)
  240. if (vmx->guest_msrs[i].index == msr)
  241. return i;
  242. return -1;
  243. }
  244. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  245. {
  246. struct {
  247. u64 vpid : 16;
  248. u64 rsvd : 48;
  249. u64 gva;
  250. } operand = { vpid, 0, gva };
  251. asm volatile (__ex(ASM_VMX_INVVPID)
  252. /* CF==1 or ZF==1 --> rc = -1 */
  253. "; ja 1f ; ud2 ; 1:"
  254. : : "a"(&operand), "c"(ext) : "cc", "memory");
  255. }
  256. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  257. {
  258. struct {
  259. u64 eptp, gpa;
  260. } operand = {eptp, gpa};
  261. asm volatile (__ex(ASM_VMX_INVEPT)
  262. /* CF==1 or ZF==1 --> rc = -1 */
  263. "; ja 1f ; ud2 ; 1:\n"
  264. : : "a" (&operand), "c" (ext) : "cc", "memory");
  265. }
  266. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  267. {
  268. int i;
  269. i = __find_msr_index(vmx, msr);
  270. if (i >= 0)
  271. return &vmx->guest_msrs[i];
  272. return NULL;
  273. }
  274. static void vmcs_clear(struct vmcs *vmcs)
  275. {
  276. u64 phys_addr = __pa(vmcs);
  277. u8 error;
  278. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  279. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  280. : "cc", "memory");
  281. if (error)
  282. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  283. vmcs, phys_addr);
  284. }
  285. static void __vcpu_clear(void *arg)
  286. {
  287. struct vcpu_vmx *vmx = arg;
  288. int cpu = raw_smp_processor_id();
  289. if (vmx->vcpu.cpu == cpu)
  290. vmcs_clear(vmx->vmcs);
  291. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  292. per_cpu(current_vmcs, cpu) = NULL;
  293. rdtscll(vmx->vcpu.arch.host_tsc);
  294. list_del(&vmx->local_vcpus_link);
  295. vmx->vcpu.cpu = -1;
  296. vmx->launched = 0;
  297. }
  298. static void vcpu_clear(struct vcpu_vmx *vmx)
  299. {
  300. if (vmx->vcpu.cpu == -1)
  301. return;
  302. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  303. }
  304. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  305. {
  306. if (vmx->vpid == 0)
  307. return;
  308. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  309. }
  310. static inline void ept_sync_global(void)
  311. {
  312. if (cpu_has_vmx_invept_global())
  313. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  314. }
  315. static inline void ept_sync_context(u64 eptp)
  316. {
  317. if (vm_need_ept()) {
  318. if (cpu_has_vmx_invept_context())
  319. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  320. else
  321. ept_sync_global();
  322. }
  323. }
  324. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  325. {
  326. if (vm_need_ept()) {
  327. if (cpu_has_vmx_invept_individual_addr())
  328. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  329. eptp, gpa);
  330. else
  331. ept_sync_context(eptp);
  332. }
  333. }
  334. static unsigned long vmcs_readl(unsigned long field)
  335. {
  336. unsigned long value;
  337. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  338. : "=a"(value) : "d"(field) : "cc");
  339. return value;
  340. }
  341. static u16 vmcs_read16(unsigned long field)
  342. {
  343. return vmcs_readl(field);
  344. }
  345. static u32 vmcs_read32(unsigned long field)
  346. {
  347. return vmcs_readl(field);
  348. }
  349. static u64 vmcs_read64(unsigned long field)
  350. {
  351. #ifdef CONFIG_X86_64
  352. return vmcs_readl(field);
  353. #else
  354. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  355. #endif
  356. }
  357. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  358. {
  359. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  360. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  361. dump_stack();
  362. }
  363. static void vmcs_writel(unsigned long field, unsigned long value)
  364. {
  365. u8 error;
  366. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  367. : "=q"(error) : "a"(value), "d"(field) : "cc");
  368. if (unlikely(error))
  369. vmwrite_error(field, value);
  370. }
  371. static void vmcs_write16(unsigned long field, u16 value)
  372. {
  373. vmcs_writel(field, value);
  374. }
  375. static void vmcs_write32(unsigned long field, u32 value)
  376. {
  377. vmcs_writel(field, value);
  378. }
  379. static void vmcs_write64(unsigned long field, u64 value)
  380. {
  381. vmcs_writel(field, value);
  382. #ifndef CONFIG_X86_64
  383. asm volatile ("");
  384. vmcs_writel(field+1, value >> 32);
  385. #endif
  386. }
  387. static void vmcs_clear_bits(unsigned long field, u32 mask)
  388. {
  389. vmcs_writel(field, vmcs_readl(field) & ~mask);
  390. }
  391. static void vmcs_set_bits(unsigned long field, u32 mask)
  392. {
  393. vmcs_writel(field, vmcs_readl(field) | mask);
  394. }
  395. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  396. {
  397. u32 eb;
  398. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  399. if (!vcpu->fpu_active)
  400. eb |= 1u << NM_VECTOR;
  401. if (vcpu->guest_debug.enabled)
  402. eb |= 1u << DB_VECTOR;
  403. if (vcpu->arch.rmode.active)
  404. eb = ~0;
  405. if (vm_need_ept())
  406. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  407. vmcs_write32(EXCEPTION_BITMAP, eb);
  408. }
  409. static void reload_tss(void)
  410. {
  411. /*
  412. * VT restores TR but not its size. Useless.
  413. */
  414. struct descriptor_table gdt;
  415. struct desc_struct *descs;
  416. kvm_get_gdt(&gdt);
  417. descs = (void *)gdt.base;
  418. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  419. load_TR_desc();
  420. }
  421. static void load_transition_efer(struct vcpu_vmx *vmx)
  422. {
  423. int efer_offset = vmx->msr_offset_efer;
  424. u64 host_efer = vmx->host_msrs[efer_offset].data;
  425. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  426. u64 ignore_bits;
  427. if (efer_offset < 0)
  428. return;
  429. /*
  430. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  431. * outside long mode
  432. */
  433. ignore_bits = EFER_NX | EFER_SCE;
  434. #ifdef CONFIG_X86_64
  435. ignore_bits |= EFER_LMA | EFER_LME;
  436. /* SCE is meaningful only in long mode on Intel */
  437. if (guest_efer & EFER_LMA)
  438. ignore_bits &= ~(u64)EFER_SCE;
  439. #endif
  440. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  441. return;
  442. vmx->host_state.guest_efer_loaded = 1;
  443. guest_efer &= ~ignore_bits;
  444. guest_efer |= host_efer & ignore_bits;
  445. wrmsrl(MSR_EFER, guest_efer);
  446. vmx->vcpu.stat.efer_reload++;
  447. }
  448. static void reload_host_efer(struct vcpu_vmx *vmx)
  449. {
  450. if (vmx->host_state.guest_efer_loaded) {
  451. vmx->host_state.guest_efer_loaded = 0;
  452. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  453. }
  454. }
  455. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  456. {
  457. struct vcpu_vmx *vmx = to_vmx(vcpu);
  458. if (vmx->host_state.loaded)
  459. return;
  460. vmx->host_state.loaded = 1;
  461. /*
  462. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  463. * allow segment selectors with cpl > 0 or ti == 1.
  464. */
  465. vmx->host_state.ldt_sel = kvm_read_ldt();
  466. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  467. vmx->host_state.fs_sel = kvm_read_fs();
  468. if (!(vmx->host_state.fs_sel & 7)) {
  469. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  470. vmx->host_state.fs_reload_needed = 0;
  471. } else {
  472. vmcs_write16(HOST_FS_SELECTOR, 0);
  473. vmx->host_state.fs_reload_needed = 1;
  474. }
  475. vmx->host_state.gs_sel = kvm_read_gs();
  476. if (!(vmx->host_state.gs_sel & 7))
  477. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  478. else {
  479. vmcs_write16(HOST_GS_SELECTOR, 0);
  480. vmx->host_state.gs_ldt_reload_needed = 1;
  481. }
  482. #ifdef CONFIG_X86_64
  483. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  484. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  485. #else
  486. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  487. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  488. #endif
  489. #ifdef CONFIG_X86_64
  490. if (is_long_mode(&vmx->vcpu))
  491. save_msrs(vmx->host_msrs +
  492. vmx->msr_offset_kernel_gs_base, 1);
  493. #endif
  494. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  495. load_transition_efer(vmx);
  496. }
  497. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  498. {
  499. unsigned long flags;
  500. if (!vmx->host_state.loaded)
  501. return;
  502. ++vmx->vcpu.stat.host_state_reload;
  503. vmx->host_state.loaded = 0;
  504. if (vmx->host_state.fs_reload_needed)
  505. kvm_load_fs(vmx->host_state.fs_sel);
  506. if (vmx->host_state.gs_ldt_reload_needed) {
  507. kvm_load_ldt(vmx->host_state.ldt_sel);
  508. /*
  509. * If we have to reload gs, we must take care to
  510. * preserve our gs base.
  511. */
  512. local_irq_save(flags);
  513. kvm_load_gs(vmx->host_state.gs_sel);
  514. #ifdef CONFIG_X86_64
  515. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  516. #endif
  517. local_irq_restore(flags);
  518. }
  519. reload_tss();
  520. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  521. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  522. reload_host_efer(vmx);
  523. }
  524. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  525. {
  526. preempt_disable();
  527. __vmx_load_host_state(vmx);
  528. preempt_enable();
  529. }
  530. /*
  531. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  532. * vcpu mutex is already taken.
  533. */
  534. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  535. {
  536. struct vcpu_vmx *vmx = to_vmx(vcpu);
  537. u64 phys_addr = __pa(vmx->vmcs);
  538. u64 tsc_this, delta, new_offset;
  539. if (vcpu->cpu != cpu) {
  540. vcpu_clear(vmx);
  541. kvm_migrate_timers(vcpu);
  542. vpid_sync_vcpu_all(vmx);
  543. local_irq_disable();
  544. list_add(&vmx->local_vcpus_link,
  545. &per_cpu(vcpus_on_cpu, cpu));
  546. local_irq_enable();
  547. }
  548. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  549. u8 error;
  550. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  551. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  552. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  553. : "cc");
  554. if (error)
  555. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  556. vmx->vmcs, phys_addr);
  557. }
  558. if (vcpu->cpu != cpu) {
  559. struct descriptor_table dt;
  560. unsigned long sysenter_esp;
  561. vcpu->cpu = cpu;
  562. /*
  563. * Linux uses per-cpu TSS and GDT, so set these when switching
  564. * processors.
  565. */
  566. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  567. kvm_get_gdt(&dt);
  568. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  569. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  570. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  571. /*
  572. * Make sure the time stamp counter is monotonous.
  573. */
  574. rdtscll(tsc_this);
  575. if (tsc_this < vcpu->arch.host_tsc) {
  576. delta = vcpu->arch.host_tsc - tsc_this;
  577. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  578. vmcs_write64(TSC_OFFSET, new_offset);
  579. }
  580. }
  581. }
  582. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  583. {
  584. __vmx_load_host_state(to_vmx(vcpu));
  585. }
  586. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  587. {
  588. if (vcpu->fpu_active)
  589. return;
  590. vcpu->fpu_active = 1;
  591. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  592. if (vcpu->arch.cr0 & X86_CR0_TS)
  593. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  594. update_exception_bitmap(vcpu);
  595. }
  596. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  597. {
  598. if (!vcpu->fpu_active)
  599. return;
  600. vcpu->fpu_active = 0;
  601. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  602. update_exception_bitmap(vcpu);
  603. }
  604. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  605. {
  606. return vmcs_readl(GUEST_RFLAGS);
  607. }
  608. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  609. {
  610. if (vcpu->arch.rmode.active)
  611. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  612. vmcs_writel(GUEST_RFLAGS, rflags);
  613. }
  614. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  615. {
  616. unsigned long rip;
  617. u32 interruptibility;
  618. rip = kvm_rip_read(vcpu);
  619. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  620. kvm_rip_write(vcpu, rip);
  621. /*
  622. * We emulated an instruction, so temporary interrupt blocking
  623. * should be removed, if set.
  624. */
  625. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  626. if (interruptibility & 3)
  627. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  628. interruptibility & ~3);
  629. vcpu->arch.interrupt_window_open = 1;
  630. }
  631. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  632. bool has_error_code, u32 error_code)
  633. {
  634. struct vcpu_vmx *vmx = to_vmx(vcpu);
  635. if (has_error_code)
  636. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  637. if (vcpu->arch.rmode.active) {
  638. vmx->rmode.irq.pending = true;
  639. vmx->rmode.irq.vector = nr;
  640. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  641. if (nr == BP_VECTOR)
  642. vmx->rmode.irq.rip++;
  643. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  644. nr | INTR_TYPE_SOFT_INTR
  645. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  646. | INTR_INFO_VALID_MASK);
  647. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  648. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  649. return;
  650. }
  651. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  652. nr | INTR_TYPE_EXCEPTION
  653. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  654. | INTR_INFO_VALID_MASK);
  655. }
  656. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  657. {
  658. return false;
  659. }
  660. /*
  661. * Swap MSR entry in host/guest MSR entry array.
  662. */
  663. #ifdef CONFIG_X86_64
  664. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  665. {
  666. struct kvm_msr_entry tmp;
  667. tmp = vmx->guest_msrs[to];
  668. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  669. vmx->guest_msrs[from] = tmp;
  670. tmp = vmx->host_msrs[to];
  671. vmx->host_msrs[to] = vmx->host_msrs[from];
  672. vmx->host_msrs[from] = tmp;
  673. }
  674. #endif
  675. /*
  676. * Set up the vmcs to automatically save and restore system
  677. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  678. * mode, as fiddling with msrs is very expensive.
  679. */
  680. static void setup_msrs(struct vcpu_vmx *vmx)
  681. {
  682. int save_nmsrs;
  683. vmx_load_host_state(vmx);
  684. save_nmsrs = 0;
  685. #ifdef CONFIG_X86_64
  686. if (is_long_mode(&vmx->vcpu)) {
  687. int index;
  688. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  689. if (index >= 0)
  690. move_msr_up(vmx, index, save_nmsrs++);
  691. index = __find_msr_index(vmx, MSR_LSTAR);
  692. if (index >= 0)
  693. move_msr_up(vmx, index, save_nmsrs++);
  694. index = __find_msr_index(vmx, MSR_CSTAR);
  695. if (index >= 0)
  696. move_msr_up(vmx, index, save_nmsrs++);
  697. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  698. if (index >= 0)
  699. move_msr_up(vmx, index, save_nmsrs++);
  700. /*
  701. * MSR_K6_STAR is only needed on long mode guests, and only
  702. * if efer.sce is enabled.
  703. */
  704. index = __find_msr_index(vmx, MSR_K6_STAR);
  705. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. }
  708. #endif
  709. vmx->save_nmsrs = save_nmsrs;
  710. #ifdef CONFIG_X86_64
  711. vmx->msr_offset_kernel_gs_base =
  712. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  713. #endif
  714. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  715. }
  716. /*
  717. * reads and returns guest's timestamp counter "register"
  718. * guest_tsc = host_tsc + tsc_offset -- 21.3
  719. */
  720. static u64 guest_read_tsc(void)
  721. {
  722. u64 host_tsc, tsc_offset;
  723. rdtscll(host_tsc);
  724. tsc_offset = vmcs_read64(TSC_OFFSET);
  725. return host_tsc + tsc_offset;
  726. }
  727. /*
  728. * writes 'guest_tsc' into guest's timestamp counter "register"
  729. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  730. */
  731. static void guest_write_tsc(u64 guest_tsc)
  732. {
  733. u64 host_tsc;
  734. rdtscll(host_tsc);
  735. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  736. }
  737. /*
  738. * Reads an msr value (of 'msr_index') into 'pdata'.
  739. * Returns 0 on success, non-0 otherwise.
  740. * Assumes vcpu_load() was already called.
  741. */
  742. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  743. {
  744. u64 data;
  745. struct kvm_msr_entry *msr;
  746. if (!pdata) {
  747. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  748. return -EINVAL;
  749. }
  750. switch (msr_index) {
  751. #ifdef CONFIG_X86_64
  752. case MSR_FS_BASE:
  753. data = vmcs_readl(GUEST_FS_BASE);
  754. break;
  755. case MSR_GS_BASE:
  756. data = vmcs_readl(GUEST_GS_BASE);
  757. break;
  758. case MSR_EFER:
  759. return kvm_get_msr_common(vcpu, msr_index, pdata);
  760. #endif
  761. case MSR_IA32_TIME_STAMP_COUNTER:
  762. data = guest_read_tsc();
  763. break;
  764. case MSR_IA32_SYSENTER_CS:
  765. data = vmcs_read32(GUEST_SYSENTER_CS);
  766. break;
  767. case MSR_IA32_SYSENTER_EIP:
  768. data = vmcs_readl(GUEST_SYSENTER_EIP);
  769. break;
  770. case MSR_IA32_SYSENTER_ESP:
  771. data = vmcs_readl(GUEST_SYSENTER_ESP);
  772. break;
  773. default:
  774. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  775. if (msr) {
  776. data = msr->data;
  777. break;
  778. }
  779. return kvm_get_msr_common(vcpu, msr_index, pdata);
  780. }
  781. *pdata = data;
  782. return 0;
  783. }
  784. /*
  785. * Writes msr value into into the appropriate "register".
  786. * Returns 0 on success, non-0 otherwise.
  787. * Assumes vcpu_load() was already called.
  788. */
  789. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  790. {
  791. struct vcpu_vmx *vmx = to_vmx(vcpu);
  792. struct kvm_msr_entry *msr;
  793. int ret = 0;
  794. switch (msr_index) {
  795. #ifdef CONFIG_X86_64
  796. case MSR_EFER:
  797. vmx_load_host_state(vmx);
  798. ret = kvm_set_msr_common(vcpu, msr_index, data);
  799. break;
  800. case MSR_FS_BASE:
  801. vmcs_writel(GUEST_FS_BASE, data);
  802. break;
  803. case MSR_GS_BASE:
  804. vmcs_writel(GUEST_GS_BASE, data);
  805. break;
  806. #endif
  807. case MSR_IA32_SYSENTER_CS:
  808. vmcs_write32(GUEST_SYSENTER_CS, data);
  809. break;
  810. case MSR_IA32_SYSENTER_EIP:
  811. vmcs_writel(GUEST_SYSENTER_EIP, data);
  812. break;
  813. case MSR_IA32_SYSENTER_ESP:
  814. vmcs_writel(GUEST_SYSENTER_ESP, data);
  815. break;
  816. case MSR_IA32_TIME_STAMP_COUNTER:
  817. guest_write_tsc(data);
  818. break;
  819. case MSR_P6_PERFCTR0:
  820. case MSR_P6_PERFCTR1:
  821. case MSR_P6_EVNTSEL0:
  822. case MSR_P6_EVNTSEL1:
  823. /*
  824. * Just discard all writes to the performance counters; this
  825. * should keep both older linux and windows 64-bit guests
  826. * happy
  827. */
  828. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  829. break;
  830. default:
  831. vmx_load_host_state(vmx);
  832. msr = find_msr_entry(vmx, msr_index);
  833. if (msr) {
  834. msr->data = data;
  835. break;
  836. }
  837. ret = kvm_set_msr_common(vcpu, msr_index, data);
  838. }
  839. return ret;
  840. }
  841. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  842. {
  843. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  844. switch (reg) {
  845. case VCPU_REGS_RSP:
  846. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  847. break;
  848. case VCPU_REGS_RIP:
  849. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  850. break;
  851. default:
  852. break;
  853. }
  854. }
  855. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  856. {
  857. unsigned long dr7 = 0x400;
  858. int old_singlestep;
  859. old_singlestep = vcpu->guest_debug.singlestep;
  860. vcpu->guest_debug.enabled = dbg->enabled;
  861. if (vcpu->guest_debug.enabled) {
  862. int i;
  863. dr7 |= 0x200; /* exact */
  864. for (i = 0; i < 4; ++i) {
  865. if (!dbg->breakpoints[i].enabled)
  866. continue;
  867. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  868. dr7 |= 2 << (i*2); /* global enable */
  869. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  870. }
  871. vcpu->guest_debug.singlestep = dbg->singlestep;
  872. } else
  873. vcpu->guest_debug.singlestep = 0;
  874. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  875. unsigned long flags;
  876. flags = vmcs_readl(GUEST_RFLAGS);
  877. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  878. vmcs_writel(GUEST_RFLAGS, flags);
  879. }
  880. update_exception_bitmap(vcpu);
  881. vmcs_writel(GUEST_DR7, dr7);
  882. return 0;
  883. }
  884. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  885. {
  886. if (!vcpu->arch.interrupt.pending)
  887. return -1;
  888. return vcpu->arch.interrupt.nr;
  889. }
  890. static __init int cpu_has_kvm_support(void)
  891. {
  892. unsigned long ecx = cpuid_ecx(1);
  893. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  894. }
  895. static __init int vmx_disabled_by_bios(void)
  896. {
  897. u64 msr;
  898. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  899. return (msr & (FEATURE_CONTROL_LOCKED |
  900. FEATURE_CONTROL_VMXON_ENABLED))
  901. == FEATURE_CONTROL_LOCKED;
  902. /* locked but not enabled */
  903. }
  904. static void hardware_enable(void *garbage)
  905. {
  906. int cpu = raw_smp_processor_id();
  907. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  908. u64 old;
  909. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  910. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  911. if ((old & (FEATURE_CONTROL_LOCKED |
  912. FEATURE_CONTROL_VMXON_ENABLED))
  913. != (FEATURE_CONTROL_LOCKED |
  914. FEATURE_CONTROL_VMXON_ENABLED))
  915. /* enable and lock */
  916. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  917. FEATURE_CONTROL_LOCKED |
  918. FEATURE_CONTROL_VMXON_ENABLED);
  919. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  920. asm volatile (ASM_VMX_VMXON_RAX
  921. : : "a"(&phys_addr), "m"(phys_addr)
  922. : "memory", "cc");
  923. }
  924. static void vmclear_local_vcpus(void)
  925. {
  926. int cpu = raw_smp_processor_id();
  927. struct vcpu_vmx *vmx, *n;
  928. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  929. local_vcpus_link)
  930. __vcpu_clear(vmx);
  931. }
  932. static void hardware_disable(void *garbage)
  933. {
  934. vmclear_local_vcpus();
  935. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  936. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  937. }
  938. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  939. u32 msr, u32 *result)
  940. {
  941. u32 vmx_msr_low, vmx_msr_high;
  942. u32 ctl = ctl_min | ctl_opt;
  943. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  944. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  945. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  946. /* Ensure minimum (required) set of control bits are supported. */
  947. if (ctl_min & ~ctl)
  948. return -EIO;
  949. *result = ctl;
  950. return 0;
  951. }
  952. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  953. {
  954. u32 vmx_msr_low, vmx_msr_high;
  955. u32 min, opt, min2, opt2;
  956. u32 _pin_based_exec_control = 0;
  957. u32 _cpu_based_exec_control = 0;
  958. u32 _cpu_based_2nd_exec_control = 0;
  959. u32 _vmexit_control = 0;
  960. u32 _vmentry_control = 0;
  961. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  962. opt = PIN_BASED_VIRTUAL_NMIS;
  963. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  964. &_pin_based_exec_control) < 0)
  965. return -EIO;
  966. min = CPU_BASED_HLT_EXITING |
  967. #ifdef CONFIG_X86_64
  968. CPU_BASED_CR8_LOAD_EXITING |
  969. CPU_BASED_CR8_STORE_EXITING |
  970. #endif
  971. CPU_BASED_CR3_LOAD_EXITING |
  972. CPU_BASED_CR3_STORE_EXITING |
  973. CPU_BASED_USE_IO_BITMAPS |
  974. CPU_BASED_MOV_DR_EXITING |
  975. CPU_BASED_USE_TSC_OFFSETING;
  976. opt = CPU_BASED_TPR_SHADOW |
  977. CPU_BASED_USE_MSR_BITMAPS |
  978. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  979. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  980. &_cpu_based_exec_control) < 0)
  981. return -EIO;
  982. #ifdef CONFIG_X86_64
  983. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  984. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  985. ~CPU_BASED_CR8_STORE_EXITING;
  986. #endif
  987. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  988. min2 = 0;
  989. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  990. SECONDARY_EXEC_WBINVD_EXITING |
  991. SECONDARY_EXEC_ENABLE_VPID |
  992. SECONDARY_EXEC_ENABLE_EPT;
  993. if (adjust_vmx_controls(min2, opt2,
  994. MSR_IA32_VMX_PROCBASED_CTLS2,
  995. &_cpu_based_2nd_exec_control) < 0)
  996. return -EIO;
  997. }
  998. #ifndef CONFIG_X86_64
  999. if (!(_cpu_based_2nd_exec_control &
  1000. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1001. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1002. #endif
  1003. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1004. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  1005. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1006. CPU_BASED_CR3_STORE_EXITING);
  1007. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1008. &_cpu_based_exec_control) < 0)
  1009. return -EIO;
  1010. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1011. vmx_capability.ept, vmx_capability.vpid);
  1012. }
  1013. min = 0;
  1014. #ifdef CONFIG_X86_64
  1015. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1016. #endif
  1017. opt = 0;
  1018. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1019. &_vmexit_control) < 0)
  1020. return -EIO;
  1021. min = opt = 0;
  1022. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1023. &_vmentry_control) < 0)
  1024. return -EIO;
  1025. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1026. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1027. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1028. return -EIO;
  1029. #ifdef CONFIG_X86_64
  1030. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1031. if (vmx_msr_high & (1u<<16))
  1032. return -EIO;
  1033. #endif
  1034. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1035. if (((vmx_msr_high >> 18) & 15) != 6)
  1036. return -EIO;
  1037. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1038. vmcs_conf->order = get_order(vmcs_config.size);
  1039. vmcs_conf->revision_id = vmx_msr_low;
  1040. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1041. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1042. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1043. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1044. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1045. return 0;
  1046. }
  1047. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1048. {
  1049. int node = cpu_to_node(cpu);
  1050. struct page *pages;
  1051. struct vmcs *vmcs;
  1052. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1053. if (!pages)
  1054. return NULL;
  1055. vmcs = page_address(pages);
  1056. memset(vmcs, 0, vmcs_config.size);
  1057. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1058. return vmcs;
  1059. }
  1060. static struct vmcs *alloc_vmcs(void)
  1061. {
  1062. return alloc_vmcs_cpu(raw_smp_processor_id());
  1063. }
  1064. static void free_vmcs(struct vmcs *vmcs)
  1065. {
  1066. free_pages((unsigned long)vmcs, vmcs_config.order);
  1067. }
  1068. static void free_kvm_area(void)
  1069. {
  1070. int cpu;
  1071. for_each_online_cpu(cpu)
  1072. free_vmcs(per_cpu(vmxarea, cpu));
  1073. }
  1074. static __init int alloc_kvm_area(void)
  1075. {
  1076. int cpu;
  1077. for_each_online_cpu(cpu) {
  1078. struct vmcs *vmcs;
  1079. vmcs = alloc_vmcs_cpu(cpu);
  1080. if (!vmcs) {
  1081. free_kvm_area();
  1082. return -ENOMEM;
  1083. }
  1084. per_cpu(vmxarea, cpu) = vmcs;
  1085. }
  1086. return 0;
  1087. }
  1088. static __init int hardware_setup(void)
  1089. {
  1090. if (setup_vmcs_config(&vmcs_config) < 0)
  1091. return -EIO;
  1092. if (boot_cpu_has(X86_FEATURE_NX))
  1093. kvm_enable_efer_bits(EFER_NX);
  1094. return alloc_kvm_area();
  1095. }
  1096. static __exit void hardware_unsetup(void)
  1097. {
  1098. free_kvm_area();
  1099. }
  1100. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1101. {
  1102. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1103. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1104. vmcs_write16(sf->selector, save->selector);
  1105. vmcs_writel(sf->base, save->base);
  1106. vmcs_write32(sf->limit, save->limit);
  1107. vmcs_write32(sf->ar_bytes, save->ar);
  1108. } else {
  1109. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1110. << AR_DPL_SHIFT;
  1111. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1112. }
  1113. }
  1114. static void enter_pmode(struct kvm_vcpu *vcpu)
  1115. {
  1116. unsigned long flags;
  1117. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1118. vmx->emulation_required = 1;
  1119. vcpu->arch.rmode.active = 0;
  1120. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1121. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1122. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1123. flags = vmcs_readl(GUEST_RFLAGS);
  1124. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1125. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1126. vmcs_writel(GUEST_RFLAGS, flags);
  1127. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1128. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1129. update_exception_bitmap(vcpu);
  1130. if (emulate_invalid_guest_state)
  1131. return;
  1132. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1133. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1134. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1135. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1136. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1137. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1138. vmcs_write16(GUEST_CS_SELECTOR,
  1139. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1140. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1141. }
  1142. static gva_t rmode_tss_base(struct kvm *kvm)
  1143. {
  1144. if (!kvm->arch.tss_addr) {
  1145. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1146. kvm->memslots[0].npages - 3;
  1147. return base_gfn << PAGE_SHIFT;
  1148. }
  1149. return kvm->arch.tss_addr;
  1150. }
  1151. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1152. {
  1153. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1154. save->selector = vmcs_read16(sf->selector);
  1155. save->base = vmcs_readl(sf->base);
  1156. save->limit = vmcs_read32(sf->limit);
  1157. save->ar = vmcs_read32(sf->ar_bytes);
  1158. vmcs_write16(sf->selector, save->base >> 4);
  1159. vmcs_write32(sf->base, save->base & 0xfffff);
  1160. vmcs_write32(sf->limit, 0xffff);
  1161. vmcs_write32(sf->ar_bytes, 0xf3);
  1162. }
  1163. static void enter_rmode(struct kvm_vcpu *vcpu)
  1164. {
  1165. unsigned long flags;
  1166. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1167. vmx->emulation_required = 1;
  1168. vcpu->arch.rmode.active = 1;
  1169. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1170. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1171. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1172. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1173. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1174. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1175. flags = vmcs_readl(GUEST_RFLAGS);
  1176. vcpu->arch.rmode.save_iopl
  1177. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1178. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1179. vmcs_writel(GUEST_RFLAGS, flags);
  1180. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1181. update_exception_bitmap(vcpu);
  1182. if (emulate_invalid_guest_state)
  1183. goto continue_rmode;
  1184. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1185. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1186. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1187. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1188. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1189. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1190. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1191. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1192. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1193. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1194. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1195. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1196. continue_rmode:
  1197. kvm_mmu_reset_context(vcpu);
  1198. init_rmode(vcpu->kvm);
  1199. }
  1200. #ifdef CONFIG_X86_64
  1201. static void enter_lmode(struct kvm_vcpu *vcpu)
  1202. {
  1203. u32 guest_tr_ar;
  1204. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1205. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1206. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1207. __func__);
  1208. vmcs_write32(GUEST_TR_AR_BYTES,
  1209. (guest_tr_ar & ~AR_TYPE_MASK)
  1210. | AR_TYPE_BUSY_64_TSS);
  1211. }
  1212. vcpu->arch.shadow_efer |= EFER_LMA;
  1213. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1214. vmcs_write32(VM_ENTRY_CONTROLS,
  1215. vmcs_read32(VM_ENTRY_CONTROLS)
  1216. | VM_ENTRY_IA32E_MODE);
  1217. }
  1218. static void exit_lmode(struct kvm_vcpu *vcpu)
  1219. {
  1220. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1221. vmcs_write32(VM_ENTRY_CONTROLS,
  1222. vmcs_read32(VM_ENTRY_CONTROLS)
  1223. & ~VM_ENTRY_IA32E_MODE);
  1224. }
  1225. #endif
  1226. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1227. {
  1228. vpid_sync_vcpu_all(to_vmx(vcpu));
  1229. if (vm_need_ept())
  1230. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1231. }
  1232. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1233. {
  1234. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1235. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1236. }
  1237. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1238. {
  1239. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1240. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1241. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1242. return;
  1243. }
  1244. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1245. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1246. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1247. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1248. }
  1249. }
  1250. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1251. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1252. unsigned long cr0,
  1253. struct kvm_vcpu *vcpu)
  1254. {
  1255. if (!(cr0 & X86_CR0_PG)) {
  1256. /* From paging/starting to nonpaging */
  1257. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1258. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1259. (CPU_BASED_CR3_LOAD_EXITING |
  1260. CPU_BASED_CR3_STORE_EXITING));
  1261. vcpu->arch.cr0 = cr0;
  1262. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1263. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1264. *hw_cr0 &= ~X86_CR0_WP;
  1265. } else if (!is_paging(vcpu)) {
  1266. /* From nonpaging to paging */
  1267. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1268. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1269. ~(CPU_BASED_CR3_LOAD_EXITING |
  1270. CPU_BASED_CR3_STORE_EXITING));
  1271. vcpu->arch.cr0 = cr0;
  1272. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1273. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1274. *hw_cr0 &= ~X86_CR0_WP;
  1275. }
  1276. }
  1277. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1278. struct kvm_vcpu *vcpu)
  1279. {
  1280. if (!is_paging(vcpu)) {
  1281. *hw_cr4 &= ~X86_CR4_PAE;
  1282. *hw_cr4 |= X86_CR4_PSE;
  1283. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1284. *hw_cr4 &= ~X86_CR4_PAE;
  1285. }
  1286. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1287. {
  1288. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1289. KVM_VM_CR0_ALWAYS_ON;
  1290. vmx_fpu_deactivate(vcpu);
  1291. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1292. enter_pmode(vcpu);
  1293. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1294. enter_rmode(vcpu);
  1295. #ifdef CONFIG_X86_64
  1296. if (vcpu->arch.shadow_efer & EFER_LME) {
  1297. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1298. enter_lmode(vcpu);
  1299. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1300. exit_lmode(vcpu);
  1301. }
  1302. #endif
  1303. if (vm_need_ept())
  1304. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1305. vmcs_writel(CR0_READ_SHADOW, cr0);
  1306. vmcs_writel(GUEST_CR0, hw_cr0);
  1307. vcpu->arch.cr0 = cr0;
  1308. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1309. vmx_fpu_activate(vcpu);
  1310. }
  1311. static u64 construct_eptp(unsigned long root_hpa)
  1312. {
  1313. u64 eptp;
  1314. /* TODO write the value reading from MSR */
  1315. eptp = VMX_EPT_DEFAULT_MT |
  1316. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1317. eptp |= (root_hpa & PAGE_MASK);
  1318. return eptp;
  1319. }
  1320. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1321. {
  1322. unsigned long guest_cr3;
  1323. u64 eptp;
  1324. guest_cr3 = cr3;
  1325. if (vm_need_ept()) {
  1326. eptp = construct_eptp(cr3);
  1327. vmcs_write64(EPT_POINTER, eptp);
  1328. ept_sync_context(eptp);
  1329. ept_load_pdptrs(vcpu);
  1330. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1331. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1332. }
  1333. vmx_flush_tlb(vcpu);
  1334. vmcs_writel(GUEST_CR3, guest_cr3);
  1335. if (vcpu->arch.cr0 & X86_CR0_PE)
  1336. vmx_fpu_deactivate(vcpu);
  1337. }
  1338. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1339. {
  1340. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1341. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1342. vcpu->arch.cr4 = cr4;
  1343. if (vm_need_ept())
  1344. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1345. vmcs_writel(CR4_READ_SHADOW, cr4);
  1346. vmcs_writel(GUEST_CR4, hw_cr4);
  1347. }
  1348. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1349. {
  1350. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1351. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1352. vcpu->arch.shadow_efer = efer;
  1353. if (!msr)
  1354. return;
  1355. if (efer & EFER_LMA) {
  1356. vmcs_write32(VM_ENTRY_CONTROLS,
  1357. vmcs_read32(VM_ENTRY_CONTROLS) |
  1358. VM_ENTRY_IA32E_MODE);
  1359. msr->data = efer;
  1360. } else {
  1361. vmcs_write32(VM_ENTRY_CONTROLS,
  1362. vmcs_read32(VM_ENTRY_CONTROLS) &
  1363. ~VM_ENTRY_IA32E_MODE);
  1364. msr->data = efer & ~EFER_LME;
  1365. }
  1366. setup_msrs(vmx);
  1367. }
  1368. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1369. {
  1370. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1371. return vmcs_readl(sf->base);
  1372. }
  1373. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1374. struct kvm_segment *var, int seg)
  1375. {
  1376. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1377. u32 ar;
  1378. var->base = vmcs_readl(sf->base);
  1379. var->limit = vmcs_read32(sf->limit);
  1380. var->selector = vmcs_read16(sf->selector);
  1381. ar = vmcs_read32(sf->ar_bytes);
  1382. if (ar & AR_UNUSABLE_MASK)
  1383. ar = 0;
  1384. var->type = ar & 15;
  1385. var->s = (ar >> 4) & 1;
  1386. var->dpl = (ar >> 5) & 3;
  1387. var->present = (ar >> 7) & 1;
  1388. var->avl = (ar >> 12) & 1;
  1389. var->l = (ar >> 13) & 1;
  1390. var->db = (ar >> 14) & 1;
  1391. var->g = (ar >> 15) & 1;
  1392. var->unusable = (ar >> 16) & 1;
  1393. }
  1394. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1395. {
  1396. struct kvm_segment kvm_seg;
  1397. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1398. return 0;
  1399. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1400. return 3;
  1401. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1402. return kvm_seg.selector & 3;
  1403. }
  1404. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1405. {
  1406. u32 ar;
  1407. if (var->unusable)
  1408. ar = 1 << 16;
  1409. else {
  1410. ar = var->type & 15;
  1411. ar |= (var->s & 1) << 4;
  1412. ar |= (var->dpl & 3) << 5;
  1413. ar |= (var->present & 1) << 7;
  1414. ar |= (var->avl & 1) << 12;
  1415. ar |= (var->l & 1) << 13;
  1416. ar |= (var->db & 1) << 14;
  1417. ar |= (var->g & 1) << 15;
  1418. }
  1419. if (ar == 0) /* a 0 value means unusable */
  1420. ar = AR_UNUSABLE_MASK;
  1421. return ar;
  1422. }
  1423. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1424. struct kvm_segment *var, int seg)
  1425. {
  1426. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1427. u32 ar;
  1428. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1429. vcpu->arch.rmode.tr.selector = var->selector;
  1430. vcpu->arch.rmode.tr.base = var->base;
  1431. vcpu->arch.rmode.tr.limit = var->limit;
  1432. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1433. return;
  1434. }
  1435. vmcs_writel(sf->base, var->base);
  1436. vmcs_write32(sf->limit, var->limit);
  1437. vmcs_write16(sf->selector, var->selector);
  1438. if (vcpu->arch.rmode.active && var->s) {
  1439. /*
  1440. * Hack real-mode segments into vm86 compatibility.
  1441. */
  1442. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1443. vmcs_writel(sf->base, 0xf0000);
  1444. ar = 0xf3;
  1445. } else
  1446. ar = vmx_segment_access_rights(var);
  1447. vmcs_write32(sf->ar_bytes, ar);
  1448. }
  1449. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1450. {
  1451. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1452. *db = (ar >> 14) & 1;
  1453. *l = (ar >> 13) & 1;
  1454. }
  1455. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1456. {
  1457. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1458. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1459. }
  1460. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1461. {
  1462. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1463. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1464. }
  1465. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1466. {
  1467. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1468. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1469. }
  1470. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1471. {
  1472. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1473. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1474. }
  1475. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1476. {
  1477. struct kvm_segment var;
  1478. u32 ar;
  1479. vmx_get_segment(vcpu, &var, seg);
  1480. ar = vmx_segment_access_rights(&var);
  1481. if (var.base != (var.selector << 4))
  1482. return false;
  1483. if (var.limit != 0xffff)
  1484. return false;
  1485. if (ar != 0xf3)
  1486. return false;
  1487. return true;
  1488. }
  1489. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1490. {
  1491. struct kvm_segment cs;
  1492. unsigned int cs_rpl;
  1493. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1494. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1495. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1496. return false;
  1497. if (!cs.s)
  1498. return false;
  1499. if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
  1500. if (cs.dpl > cs_rpl)
  1501. return false;
  1502. } else if (cs.type & AR_TYPE_CODE_MASK) {
  1503. if (cs.dpl != cs_rpl)
  1504. return false;
  1505. }
  1506. if (!cs.present)
  1507. return false;
  1508. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1509. return true;
  1510. }
  1511. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1512. {
  1513. struct kvm_segment ss;
  1514. unsigned int ss_rpl;
  1515. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1516. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1517. if ((ss.type != 3) || (ss.type != 7))
  1518. return false;
  1519. if (!ss.s)
  1520. return false;
  1521. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1522. return false;
  1523. if (!ss.present)
  1524. return false;
  1525. return true;
  1526. }
  1527. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1528. {
  1529. struct kvm_segment var;
  1530. unsigned int rpl;
  1531. vmx_get_segment(vcpu, &var, seg);
  1532. rpl = var.selector & SELECTOR_RPL_MASK;
  1533. if (!var.s)
  1534. return false;
  1535. if (!var.present)
  1536. return false;
  1537. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1538. if (var.dpl < rpl) /* DPL < RPL */
  1539. return false;
  1540. }
  1541. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1542. * rights flags
  1543. */
  1544. return true;
  1545. }
  1546. static bool tr_valid(struct kvm_vcpu *vcpu)
  1547. {
  1548. struct kvm_segment tr;
  1549. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1550. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1551. return false;
  1552. if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
  1553. return false;
  1554. if (!tr.present)
  1555. return false;
  1556. return true;
  1557. }
  1558. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1559. {
  1560. struct kvm_segment ldtr;
  1561. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1562. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1563. return false;
  1564. if (ldtr.type != 2)
  1565. return false;
  1566. if (!ldtr.present)
  1567. return false;
  1568. return true;
  1569. }
  1570. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1571. {
  1572. struct kvm_segment cs, ss;
  1573. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1574. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1575. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1576. (ss.selector & SELECTOR_RPL_MASK));
  1577. }
  1578. /*
  1579. * Check if guest state is valid. Returns true if valid, false if
  1580. * not.
  1581. * We assume that registers are always usable
  1582. */
  1583. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1584. {
  1585. /* real mode guest state checks */
  1586. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1587. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1588. return false;
  1589. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1590. return false;
  1591. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1592. return false;
  1593. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1594. return false;
  1595. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1596. return false;
  1597. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1598. return false;
  1599. } else {
  1600. /* protected mode guest state checks */
  1601. if (!cs_ss_rpl_check(vcpu))
  1602. return false;
  1603. if (!code_segment_valid(vcpu))
  1604. return false;
  1605. if (!stack_segment_valid(vcpu))
  1606. return false;
  1607. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1608. return false;
  1609. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1610. return false;
  1611. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1612. return false;
  1613. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1614. return false;
  1615. if (!tr_valid(vcpu))
  1616. return false;
  1617. if (!ldtr_valid(vcpu))
  1618. return false;
  1619. }
  1620. /* TODO:
  1621. * - Add checks on RIP
  1622. * - Add checks on RFLAGS
  1623. */
  1624. return true;
  1625. }
  1626. static int init_rmode_tss(struct kvm *kvm)
  1627. {
  1628. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1629. u16 data = 0;
  1630. int ret = 0;
  1631. int r;
  1632. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1633. if (r < 0)
  1634. goto out;
  1635. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1636. r = kvm_write_guest_page(kvm, fn++, &data,
  1637. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1638. if (r < 0)
  1639. goto out;
  1640. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1641. if (r < 0)
  1642. goto out;
  1643. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1644. if (r < 0)
  1645. goto out;
  1646. data = ~0;
  1647. r = kvm_write_guest_page(kvm, fn, &data,
  1648. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1649. sizeof(u8));
  1650. if (r < 0)
  1651. goto out;
  1652. ret = 1;
  1653. out:
  1654. return ret;
  1655. }
  1656. static int init_rmode_identity_map(struct kvm *kvm)
  1657. {
  1658. int i, r, ret;
  1659. pfn_t identity_map_pfn;
  1660. u32 tmp;
  1661. if (!vm_need_ept())
  1662. return 1;
  1663. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1664. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1665. "haven't been allocated!\n");
  1666. return 0;
  1667. }
  1668. if (likely(kvm->arch.ept_identity_pagetable_done))
  1669. return 1;
  1670. ret = 0;
  1671. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1672. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1673. if (r < 0)
  1674. goto out;
  1675. /* Set up identity-mapping pagetable for EPT in real mode */
  1676. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1677. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1678. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1679. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1680. &tmp, i * sizeof(tmp), sizeof(tmp));
  1681. if (r < 0)
  1682. goto out;
  1683. }
  1684. kvm->arch.ept_identity_pagetable_done = true;
  1685. ret = 1;
  1686. out:
  1687. return ret;
  1688. }
  1689. static void seg_setup(int seg)
  1690. {
  1691. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1692. vmcs_write16(sf->selector, 0);
  1693. vmcs_writel(sf->base, 0);
  1694. vmcs_write32(sf->limit, 0xffff);
  1695. vmcs_write32(sf->ar_bytes, 0xf3);
  1696. }
  1697. static int alloc_apic_access_page(struct kvm *kvm)
  1698. {
  1699. struct kvm_userspace_memory_region kvm_userspace_mem;
  1700. int r = 0;
  1701. down_write(&kvm->slots_lock);
  1702. if (kvm->arch.apic_access_page)
  1703. goto out;
  1704. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1705. kvm_userspace_mem.flags = 0;
  1706. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1707. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1708. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1709. if (r)
  1710. goto out;
  1711. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1712. out:
  1713. up_write(&kvm->slots_lock);
  1714. return r;
  1715. }
  1716. static int alloc_identity_pagetable(struct kvm *kvm)
  1717. {
  1718. struct kvm_userspace_memory_region kvm_userspace_mem;
  1719. int r = 0;
  1720. down_write(&kvm->slots_lock);
  1721. if (kvm->arch.ept_identity_pagetable)
  1722. goto out;
  1723. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1724. kvm_userspace_mem.flags = 0;
  1725. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1726. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1727. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1728. if (r)
  1729. goto out;
  1730. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1731. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1732. out:
  1733. up_write(&kvm->slots_lock);
  1734. return r;
  1735. }
  1736. static void allocate_vpid(struct vcpu_vmx *vmx)
  1737. {
  1738. int vpid;
  1739. vmx->vpid = 0;
  1740. if (!enable_vpid || !cpu_has_vmx_vpid())
  1741. return;
  1742. spin_lock(&vmx_vpid_lock);
  1743. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1744. if (vpid < VMX_NR_VPIDS) {
  1745. vmx->vpid = vpid;
  1746. __set_bit(vpid, vmx_vpid_bitmap);
  1747. }
  1748. spin_unlock(&vmx_vpid_lock);
  1749. }
  1750. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1751. {
  1752. void *va;
  1753. if (!cpu_has_vmx_msr_bitmap())
  1754. return;
  1755. /*
  1756. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1757. * have the write-low and read-high bitmap offsets the wrong way round.
  1758. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1759. */
  1760. va = kmap(msr_bitmap);
  1761. if (msr <= 0x1fff) {
  1762. __clear_bit(msr, va + 0x000); /* read-low */
  1763. __clear_bit(msr, va + 0x800); /* write-low */
  1764. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1765. msr &= 0x1fff;
  1766. __clear_bit(msr, va + 0x400); /* read-high */
  1767. __clear_bit(msr, va + 0xc00); /* write-high */
  1768. }
  1769. kunmap(msr_bitmap);
  1770. }
  1771. /*
  1772. * Sets up the vmcs for emulated real mode.
  1773. */
  1774. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1775. {
  1776. u32 host_sysenter_cs;
  1777. u32 junk;
  1778. unsigned long a;
  1779. struct descriptor_table dt;
  1780. int i;
  1781. unsigned long kvm_vmx_return;
  1782. u32 exec_control;
  1783. /* I/O */
  1784. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1785. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1786. if (cpu_has_vmx_msr_bitmap())
  1787. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1788. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1789. /* Control */
  1790. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1791. vmcs_config.pin_based_exec_ctrl);
  1792. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1793. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1794. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1795. #ifdef CONFIG_X86_64
  1796. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1797. CPU_BASED_CR8_LOAD_EXITING;
  1798. #endif
  1799. }
  1800. if (!vm_need_ept())
  1801. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1802. CPU_BASED_CR3_LOAD_EXITING;
  1803. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1804. if (cpu_has_secondary_exec_ctrls()) {
  1805. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1806. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1807. exec_control &=
  1808. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1809. if (vmx->vpid == 0)
  1810. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1811. if (!vm_need_ept())
  1812. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1813. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1814. }
  1815. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1816. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1817. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1818. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1819. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1820. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1821. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1822. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1823. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1824. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1825. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1826. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1827. #ifdef CONFIG_X86_64
  1828. rdmsrl(MSR_FS_BASE, a);
  1829. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1830. rdmsrl(MSR_GS_BASE, a);
  1831. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1832. #else
  1833. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1834. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1835. #endif
  1836. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1837. kvm_get_idt(&dt);
  1838. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1839. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1840. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1841. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1842. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1843. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1844. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1845. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1846. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1847. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1848. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1849. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1850. for (i = 0; i < NR_VMX_MSR; ++i) {
  1851. u32 index = vmx_msr_index[i];
  1852. u32 data_low, data_high;
  1853. u64 data;
  1854. int j = vmx->nmsrs;
  1855. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1856. continue;
  1857. if (wrmsr_safe(index, data_low, data_high) < 0)
  1858. continue;
  1859. data = data_low | ((u64)data_high << 32);
  1860. vmx->host_msrs[j].index = index;
  1861. vmx->host_msrs[j].reserved = 0;
  1862. vmx->host_msrs[j].data = data;
  1863. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1864. ++vmx->nmsrs;
  1865. }
  1866. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1867. /* 22.2.1, 20.8.1 */
  1868. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1869. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1870. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1871. return 0;
  1872. }
  1873. static int init_rmode(struct kvm *kvm)
  1874. {
  1875. if (!init_rmode_tss(kvm))
  1876. return 0;
  1877. if (!init_rmode_identity_map(kvm))
  1878. return 0;
  1879. return 1;
  1880. }
  1881. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1882. {
  1883. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1884. u64 msr;
  1885. int ret;
  1886. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1887. down_read(&vcpu->kvm->slots_lock);
  1888. if (!init_rmode(vmx->vcpu.kvm)) {
  1889. ret = -ENOMEM;
  1890. goto out;
  1891. }
  1892. vmx->vcpu.arch.rmode.active = 0;
  1893. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1894. kvm_set_cr8(&vmx->vcpu, 0);
  1895. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1896. if (vmx->vcpu.vcpu_id == 0)
  1897. msr |= MSR_IA32_APICBASE_BSP;
  1898. kvm_set_apic_base(&vmx->vcpu, msr);
  1899. fx_init(&vmx->vcpu);
  1900. seg_setup(VCPU_SREG_CS);
  1901. /*
  1902. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1903. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1904. */
  1905. if (vmx->vcpu.vcpu_id == 0) {
  1906. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1907. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1908. } else {
  1909. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1910. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1911. }
  1912. seg_setup(VCPU_SREG_DS);
  1913. seg_setup(VCPU_SREG_ES);
  1914. seg_setup(VCPU_SREG_FS);
  1915. seg_setup(VCPU_SREG_GS);
  1916. seg_setup(VCPU_SREG_SS);
  1917. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1918. vmcs_writel(GUEST_TR_BASE, 0);
  1919. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1920. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1921. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1922. vmcs_writel(GUEST_LDTR_BASE, 0);
  1923. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1924. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1925. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1926. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1927. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1928. vmcs_writel(GUEST_RFLAGS, 0x02);
  1929. if (vmx->vcpu.vcpu_id == 0)
  1930. kvm_rip_write(vcpu, 0xfff0);
  1931. else
  1932. kvm_rip_write(vcpu, 0);
  1933. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1934. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1935. vmcs_writel(GUEST_DR7, 0x400);
  1936. vmcs_writel(GUEST_GDTR_BASE, 0);
  1937. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1938. vmcs_writel(GUEST_IDTR_BASE, 0);
  1939. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1940. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1941. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1942. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1943. guest_write_tsc(0);
  1944. /* Special registers */
  1945. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1946. setup_msrs(vmx);
  1947. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1948. if (cpu_has_vmx_tpr_shadow()) {
  1949. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1950. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1951. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1952. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1953. vmcs_write32(TPR_THRESHOLD, 0);
  1954. }
  1955. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1956. vmcs_write64(APIC_ACCESS_ADDR,
  1957. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1958. if (vmx->vpid != 0)
  1959. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1960. vmx->vcpu.arch.cr0 = 0x60000010;
  1961. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1962. vmx_set_cr4(&vmx->vcpu, 0);
  1963. vmx_set_efer(&vmx->vcpu, 0);
  1964. vmx_fpu_activate(&vmx->vcpu);
  1965. update_exception_bitmap(&vmx->vcpu);
  1966. vpid_sync_vcpu_all(vmx);
  1967. ret = 0;
  1968. /* HACK: Don't enable emulation on guest boot/reset */
  1969. vmx->emulation_required = 0;
  1970. out:
  1971. up_read(&vcpu->kvm->slots_lock);
  1972. return ret;
  1973. }
  1974. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1975. {
  1976. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1977. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1978. ++vcpu->stat.irq_injections;
  1979. if (vcpu->arch.rmode.active) {
  1980. vmx->rmode.irq.pending = true;
  1981. vmx->rmode.irq.vector = irq;
  1982. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  1983. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1984. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1985. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1986. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  1987. return;
  1988. }
  1989. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1990. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1991. }
  1992. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1993. {
  1994. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1995. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  1996. }
  1997. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1998. {
  1999. int word_index = __ffs(vcpu->arch.irq_summary);
  2000. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  2001. int irq = word_index * BITS_PER_LONG + bit_index;
  2002. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  2003. if (!vcpu->arch.irq_pending[word_index])
  2004. clear_bit(word_index, &vcpu->arch.irq_summary);
  2005. kvm_queue_interrupt(vcpu, irq);
  2006. }
  2007. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2008. struct kvm_run *kvm_run)
  2009. {
  2010. u32 cpu_based_vm_exec_control;
  2011. vcpu->arch.interrupt_window_open =
  2012. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2013. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2014. if (vcpu->arch.interrupt_window_open &&
  2015. vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2016. kvm_do_inject_irq(vcpu);
  2017. if (vcpu->arch.interrupt_window_open && vcpu->arch.interrupt.pending)
  2018. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2019. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2020. if (!vcpu->arch.interrupt_window_open &&
  2021. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2022. /*
  2023. * Interrupts blocked. Wait for unblock.
  2024. */
  2025. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2026. else
  2027. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2028. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2029. }
  2030. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2031. {
  2032. int ret;
  2033. struct kvm_userspace_memory_region tss_mem = {
  2034. .slot = 8,
  2035. .guest_phys_addr = addr,
  2036. .memory_size = PAGE_SIZE * 3,
  2037. .flags = 0,
  2038. };
  2039. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2040. if (ret)
  2041. return ret;
  2042. kvm->arch.tss_addr = addr;
  2043. return 0;
  2044. }
  2045. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  2046. {
  2047. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  2048. set_debugreg(dbg->bp[0], 0);
  2049. set_debugreg(dbg->bp[1], 1);
  2050. set_debugreg(dbg->bp[2], 2);
  2051. set_debugreg(dbg->bp[3], 3);
  2052. if (dbg->singlestep) {
  2053. unsigned long flags;
  2054. flags = vmcs_readl(GUEST_RFLAGS);
  2055. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  2056. vmcs_writel(GUEST_RFLAGS, flags);
  2057. }
  2058. }
  2059. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2060. int vec, u32 err_code)
  2061. {
  2062. /*
  2063. * Instruction with address size override prefix opcode 0x67
  2064. * Cause the #SS fault with 0 error code in VM86 mode.
  2065. */
  2066. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2067. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2068. return 1;
  2069. /*
  2070. * Forward all other exceptions that are valid in real mode.
  2071. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2072. * the required debugging infrastructure rework.
  2073. */
  2074. switch (vec) {
  2075. case DE_VECTOR:
  2076. case DB_VECTOR:
  2077. case BP_VECTOR:
  2078. case OF_VECTOR:
  2079. case BR_VECTOR:
  2080. case UD_VECTOR:
  2081. case DF_VECTOR:
  2082. case SS_VECTOR:
  2083. case GP_VECTOR:
  2084. case MF_VECTOR:
  2085. kvm_queue_exception(vcpu, vec);
  2086. return 1;
  2087. }
  2088. return 0;
  2089. }
  2090. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2091. {
  2092. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2093. u32 intr_info, error_code;
  2094. unsigned long cr2, rip;
  2095. u32 vect_info;
  2096. enum emulation_result er;
  2097. vect_info = vmx->idt_vectoring_info;
  2098. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2099. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2100. !is_page_fault(intr_info))
  2101. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2102. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2103. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2104. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2105. set_bit(irq, vcpu->arch.irq_pending);
  2106. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  2107. }
  2108. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2109. return 1; /* already handled by vmx_vcpu_run() */
  2110. if (is_no_device(intr_info)) {
  2111. vmx_fpu_activate(vcpu);
  2112. return 1;
  2113. }
  2114. if (is_invalid_opcode(intr_info)) {
  2115. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2116. if (er != EMULATE_DONE)
  2117. kvm_queue_exception(vcpu, UD_VECTOR);
  2118. return 1;
  2119. }
  2120. error_code = 0;
  2121. rip = kvm_rip_read(vcpu);
  2122. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2123. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2124. if (is_page_fault(intr_info)) {
  2125. /* EPT won't cause page fault directly */
  2126. if (vm_need_ept())
  2127. BUG();
  2128. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2129. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2130. (u32)((u64)cr2 >> 32), handler);
  2131. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2132. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2133. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2134. }
  2135. if (vcpu->arch.rmode.active &&
  2136. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2137. error_code)) {
  2138. if (vcpu->arch.halt_request) {
  2139. vcpu->arch.halt_request = 0;
  2140. return kvm_emulate_halt(vcpu);
  2141. }
  2142. return 1;
  2143. }
  2144. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  2145. (INTR_TYPE_EXCEPTION | 1)) {
  2146. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2147. return 0;
  2148. }
  2149. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2150. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  2151. kvm_run->ex.error_code = error_code;
  2152. return 0;
  2153. }
  2154. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2155. struct kvm_run *kvm_run)
  2156. {
  2157. ++vcpu->stat.irq_exits;
  2158. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2159. return 1;
  2160. }
  2161. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2162. {
  2163. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2164. return 0;
  2165. }
  2166. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2167. {
  2168. unsigned long exit_qualification;
  2169. int size, down, in, string, rep;
  2170. unsigned port;
  2171. ++vcpu->stat.io_exits;
  2172. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2173. string = (exit_qualification & 16) != 0;
  2174. if (string) {
  2175. if (emulate_instruction(vcpu,
  2176. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2177. return 0;
  2178. return 1;
  2179. }
  2180. size = (exit_qualification & 7) + 1;
  2181. in = (exit_qualification & 8) != 0;
  2182. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2183. rep = (exit_qualification & 32) != 0;
  2184. port = exit_qualification >> 16;
  2185. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2186. }
  2187. static void
  2188. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2189. {
  2190. /*
  2191. * Patch in the VMCALL instruction:
  2192. */
  2193. hypercall[0] = 0x0f;
  2194. hypercall[1] = 0x01;
  2195. hypercall[2] = 0xc1;
  2196. }
  2197. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2198. {
  2199. unsigned long exit_qualification;
  2200. int cr;
  2201. int reg;
  2202. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2203. cr = exit_qualification & 15;
  2204. reg = (exit_qualification >> 8) & 15;
  2205. switch ((exit_qualification >> 4) & 3) {
  2206. case 0: /* mov to cr */
  2207. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2208. (u32)kvm_register_read(vcpu, reg),
  2209. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2210. handler);
  2211. switch (cr) {
  2212. case 0:
  2213. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2214. skip_emulated_instruction(vcpu);
  2215. return 1;
  2216. case 3:
  2217. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2218. skip_emulated_instruction(vcpu);
  2219. return 1;
  2220. case 4:
  2221. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2222. skip_emulated_instruction(vcpu);
  2223. return 1;
  2224. case 8:
  2225. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2226. skip_emulated_instruction(vcpu);
  2227. if (irqchip_in_kernel(vcpu->kvm))
  2228. return 1;
  2229. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2230. return 0;
  2231. };
  2232. break;
  2233. case 2: /* clts */
  2234. vmx_fpu_deactivate(vcpu);
  2235. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2236. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2237. vmx_fpu_activate(vcpu);
  2238. KVMTRACE_0D(CLTS, vcpu, handler);
  2239. skip_emulated_instruction(vcpu);
  2240. return 1;
  2241. case 1: /*mov from cr*/
  2242. switch (cr) {
  2243. case 3:
  2244. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2245. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2246. (u32)kvm_register_read(vcpu, reg),
  2247. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2248. handler);
  2249. skip_emulated_instruction(vcpu);
  2250. return 1;
  2251. case 8:
  2252. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2253. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2254. (u32)kvm_register_read(vcpu, reg), handler);
  2255. skip_emulated_instruction(vcpu);
  2256. return 1;
  2257. }
  2258. break;
  2259. case 3: /* lmsw */
  2260. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2261. skip_emulated_instruction(vcpu);
  2262. return 1;
  2263. default:
  2264. break;
  2265. }
  2266. kvm_run->exit_reason = 0;
  2267. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2268. (int)(exit_qualification >> 4) & 3, cr);
  2269. return 0;
  2270. }
  2271. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2272. {
  2273. unsigned long exit_qualification;
  2274. unsigned long val;
  2275. int dr, reg;
  2276. /*
  2277. * FIXME: this code assumes the host is debugging the guest.
  2278. * need to deal with guest debugging itself too.
  2279. */
  2280. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2281. dr = exit_qualification & 7;
  2282. reg = (exit_qualification >> 8) & 15;
  2283. if (exit_qualification & 16) {
  2284. /* mov from dr */
  2285. switch (dr) {
  2286. case 6:
  2287. val = 0xffff0ff0;
  2288. break;
  2289. case 7:
  2290. val = 0x400;
  2291. break;
  2292. default:
  2293. val = 0;
  2294. }
  2295. kvm_register_write(vcpu, reg, val);
  2296. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2297. } else {
  2298. /* mov to dr */
  2299. }
  2300. skip_emulated_instruction(vcpu);
  2301. return 1;
  2302. }
  2303. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2304. {
  2305. kvm_emulate_cpuid(vcpu);
  2306. return 1;
  2307. }
  2308. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2309. {
  2310. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2311. u64 data;
  2312. if (vmx_get_msr(vcpu, ecx, &data)) {
  2313. kvm_inject_gp(vcpu, 0);
  2314. return 1;
  2315. }
  2316. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2317. handler);
  2318. /* FIXME: handling of bits 32:63 of rax, rdx */
  2319. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2320. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2321. skip_emulated_instruction(vcpu);
  2322. return 1;
  2323. }
  2324. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2325. {
  2326. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2327. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2328. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2329. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2330. handler);
  2331. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2332. kvm_inject_gp(vcpu, 0);
  2333. return 1;
  2334. }
  2335. skip_emulated_instruction(vcpu);
  2336. return 1;
  2337. }
  2338. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2339. struct kvm_run *kvm_run)
  2340. {
  2341. return 1;
  2342. }
  2343. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2344. struct kvm_run *kvm_run)
  2345. {
  2346. u32 cpu_based_vm_exec_control;
  2347. /* clear pending irq */
  2348. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2349. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2350. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2351. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2352. /*
  2353. * If the user space waits to inject interrupts, exit as soon as
  2354. * possible
  2355. */
  2356. if (kvm_run->request_interrupt_window &&
  2357. !vcpu->arch.irq_summary) {
  2358. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2359. ++vcpu->stat.irq_window_exits;
  2360. return 0;
  2361. }
  2362. return 1;
  2363. }
  2364. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2365. {
  2366. skip_emulated_instruction(vcpu);
  2367. return kvm_emulate_halt(vcpu);
  2368. }
  2369. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2370. {
  2371. skip_emulated_instruction(vcpu);
  2372. kvm_emulate_hypercall(vcpu);
  2373. return 1;
  2374. }
  2375. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2376. {
  2377. skip_emulated_instruction(vcpu);
  2378. /* TODO: Add support for VT-d/pass-through device */
  2379. return 1;
  2380. }
  2381. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2382. {
  2383. u64 exit_qualification;
  2384. enum emulation_result er;
  2385. unsigned long offset;
  2386. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2387. offset = exit_qualification & 0xffful;
  2388. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2389. if (er != EMULATE_DONE) {
  2390. printk(KERN_ERR
  2391. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2392. offset);
  2393. return -ENOTSUPP;
  2394. }
  2395. return 1;
  2396. }
  2397. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2398. {
  2399. unsigned long exit_qualification;
  2400. u16 tss_selector;
  2401. int reason;
  2402. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2403. reason = (u32)exit_qualification >> 30;
  2404. tss_selector = exit_qualification;
  2405. return kvm_task_switch(vcpu, tss_selector, reason);
  2406. }
  2407. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2408. {
  2409. u64 exit_qualification;
  2410. enum emulation_result er;
  2411. gpa_t gpa;
  2412. unsigned long hva;
  2413. int gla_validity;
  2414. int r;
  2415. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2416. if (exit_qualification & (1 << 6)) {
  2417. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2418. return -ENOTSUPP;
  2419. }
  2420. gla_validity = (exit_qualification >> 7) & 0x3;
  2421. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2422. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2423. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2424. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2425. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2426. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2427. (long unsigned int)exit_qualification);
  2428. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2429. kvm_run->hw.hardware_exit_reason = 0;
  2430. return -ENOTSUPP;
  2431. }
  2432. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2433. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2434. if (!kvm_is_error_hva(hva)) {
  2435. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2436. if (r < 0) {
  2437. printk(KERN_ERR "EPT: Not enough memory!\n");
  2438. return -ENOMEM;
  2439. }
  2440. return 1;
  2441. } else {
  2442. /* must be MMIO */
  2443. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2444. if (er == EMULATE_FAIL) {
  2445. printk(KERN_ERR
  2446. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2447. er);
  2448. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2449. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2450. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2451. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2452. (long unsigned int)exit_qualification);
  2453. return -ENOTSUPP;
  2454. } else if (er == EMULATE_DO_MMIO)
  2455. return 0;
  2456. }
  2457. return 1;
  2458. }
  2459. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2460. {
  2461. u32 cpu_based_vm_exec_control;
  2462. /* clear pending NMI */
  2463. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2464. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2465. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2466. ++vcpu->stat.nmi_window_exits;
  2467. return 1;
  2468. }
  2469. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2470. struct kvm_run *kvm_run)
  2471. {
  2472. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2473. int err;
  2474. preempt_enable();
  2475. local_irq_enable();
  2476. while (!guest_state_valid(vcpu)) {
  2477. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2478. switch (err) {
  2479. case EMULATE_DONE:
  2480. break;
  2481. case EMULATE_DO_MMIO:
  2482. kvm_report_emulation_failure(vcpu, "mmio");
  2483. /* TODO: Handle MMIO */
  2484. return;
  2485. default:
  2486. kvm_report_emulation_failure(vcpu, "emulation failure");
  2487. return;
  2488. }
  2489. if (signal_pending(current))
  2490. break;
  2491. if (need_resched())
  2492. schedule();
  2493. }
  2494. local_irq_disable();
  2495. preempt_disable();
  2496. /* Guest state should be valid now, no more emulation should be needed */
  2497. vmx->emulation_required = 0;
  2498. }
  2499. /*
  2500. * The exit handlers return 1 if the exit was handled fully and guest execution
  2501. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2502. * to be done to userspace and return 0.
  2503. */
  2504. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2505. struct kvm_run *kvm_run) = {
  2506. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2507. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2508. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2509. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2510. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2511. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2512. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2513. [EXIT_REASON_CPUID] = handle_cpuid,
  2514. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2515. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2516. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2517. [EXIT_REASON_HLT] = handle_halt,
  2518. [EXIT_REASON_VMCALL] = handle_vmcall,
  2519. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2520. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2521. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2522. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2523. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2524. };
  2525. static const int kvm_vmx_max_exit_handlers =
  2526. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2527. /*
  2528. * The guest has exited. See if we can fix it or if we need userspace
  2529. * assistance.
  2530. */
  2531. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2532. {
  2533. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2534. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2535. u32 vectoring_info = vmx->idt_vectoring_info;
  2536. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2537. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2538. /* Access CR3 don't cause VMExit in paging mode, so we need
  2539. * to sync with guest real CR3. */
  2540. if (vm_need_ept() && is_paging(vcpu)) {
  2541. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2542. ept_load_pdptrs(vcpu);
  2543. }
  2544. if (unlikely(vmx->fail)) {
  2545. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2546. kvm_run->fail_entry.hardware_entry_failure_reason
  2547. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2548. return 0;
  2549. }
  2550. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2551. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2552. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2553. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2554. "exit reason is 0x%x\n", __func__, exit_reason);
  2555. if (exit_reason < kvm_vmx_max_exit_handlers
  2556. && kvm_vmx_exit_handlers[exit_reason])
  2557. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2558. else {
  2559. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2560. kvm_run->hw.hardware_exit_reason = exit_reason;
  2561. }
  2562. return 0;
  2563. }
  2564. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2565. {
  2566. int max_irr, tpr;
  2567. if (!vm_need_tpr_shadow(vcpu->kvm))
  2568. return;
  2569. if (!kvm_lapic_enabled(vcpu) ||
  2570. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2571. vmcs_write32(TPR_THRESHOLD, 0);
  2572. return;
  2573. }
  2574. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2575. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2576. }
  2577. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2578. {
  2579. u32 cpu_based_vm_exec_control;
  2580. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2581. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2582. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2583. }
  2584. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2585. {
  2586. u32 cpu_based_vm_exec_control;
  2587. if (!cpu_has_virtual_nmis())
  2588. return;
  2589. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2590. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2591. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2592. }
  2593. static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
  2594. {
  2595. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2596. return !(guest_intr & (GUEST_INTR_STATE_NMI |
  2597. GUEST_INTR_STATE_MOV_SS |
  2598. GUEST_INTR_STATE_STI));
  2599. }
  2600. static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
  2601. {
  2602. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2603. return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
  2604. GUEST_INTR_STATE_STI)) &&
  2605. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  2606. }
  2607. static void enable_intr_window(struct kvm_vcpu *vcpu)
  2608. {
  2609. if (vcpu->arch.nmi_pending)
  2610. enable_nmi_window(vcpu);
  2611. else if (kvm_cpu_has_interrupt(vcpu))
  2612. enable_irq_window(vcpu);
  2613. }
  2614. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2615. {
  2616. u32 exit_intr_info;
  2617. u32 idt_vectoring_info;
  2618. bool unblock_nmi;
  2619. u8 vector;
  2620. int type;
  2621. bool idtv_info_valid;
  2622. u32 error;
  2623. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2624. if (cpu_has_virtual_nmis()) {
  2625. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2626. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2627. /*
  2628. * SDM 3: 25.7.1.2
  2629. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2630. * a guest IRET fault.
  2631. */
  2632. if (unblock_nmi && vector != DF_VECTOR)
  2633. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2634. GUEST_INTR_STATE_NMI);
  2635. }
  2636. idt_vectoring_info = vmx->idt_vectoring_info;
  2637. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2638. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2639. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2640. if (vmx->vcpu.arch.nmi_injected) {
  2641. /*
  2642. * SDM 3: 25.7.1.2
  2643. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2644. * faulted.
  2645. */
  2646. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2647. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2648. GUEST_INTR_STATE_NMI);
  2649. else
  2650. vmx->vcpu.arch.nmi_injected = false;
  2651. }
  2652. kvm_clear_exception_queue(&vmx->vcpu);
  2653. if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
  2654. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2655. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2656. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2657. } else
  2658. kvm_queue_exception(&vmx->vcpu, vector);
  2659. vmx->idt_vectoring_info = 0;
  2660. }
  2661. kvm_clear_interrupt_queue(&vmx->vcpu);
  2662. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2663. kvm_queue_interrupt(&vmx->vcpu, vector);
  2664. vmx->idt_vectoring_info = 0;
  2665. }
  2666. }
  2667. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2668. {
  2669. update_tpr_threshold(vcpu);
  2670. if (cpu_has_virtual_nmis()) {
  2671. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2672. if (vmx_nmi_enabled(vcpu)) {
  2673. vcpu->arch.nmi_pending = false;
  2674. vcpu->arch.nmi_injected = true;
  2675. } else {
  2676. enable_intr_window(vcpu);
  2677. return;
  2678. }
  2679. }
  2680. if (vcpu->arch.nmi_injected) {
  2681. vmx_inject_nmi(vcpu);
  2682. enable_intr_window(vcpu);
  2683. return;
  2684. }
  2685. }
  2686. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2687. if (vmx_irq_enabled(vcpu))
  2688. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2689. else
  2690. enable_irq_window(vcpu);
  2691. }
  2692. if (vcpu->arch.interrupt.pending) {
  2693. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2694. kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
  2695. }
  2696. }
  2697. /*
  2698. * Failure to inject an interrupt should give us the information
  2699. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2700. * when fetching the interrupt redirection bitmap in the real-mode
  2701. * tss, this doesn't happen. So we do it ourselves.
  2702. */
  2703. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2704. {
  2705. vmx->rmode.irq.pending = 0;
  2706. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2707. return;
  2708. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2709. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2710. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2711. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2712. return;
  2713. }
  2714. vmx->idt_vectoring_info =
  2715. VECTORING_INFO_VALID_MASK
  2716. | INTR_TYPE_EXT_INTR
  2717. | vmx->rmode.irq.vector;
  2718. }
  2719. #ifdef CONFIG_X86_64
  2720. #define R "r"
  2721. #define Q "q"
  2722. #else
  2723. #define R "e"
  2724. #define Q "l"
  2725. #endif
  2726. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2727. {
  2728. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2729. u32 intr_info;
  2730. /* Handle invalid guest state instead of entering VMX */
  2731. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2732. handle_invalid_guest_state(vcpu, kvm_run);
  2733. return;
  2734. }
  2735. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2736. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2737. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2738. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2739. /*
  2740. * Loading guest fpu may have cleared host cr0.ts
  2741. */
  2742. vmcs_writel(HOST_CR0, read_cr0());
  2743. asm(
  2744. /* Store host registers */
  2745. "push %%"R"dx; push %%"R"bp;"
  2746. "push %%"R"cx \n\t"
  2747. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2748. "je 1f \n\t"
  2749. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2750. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2751. "1: \n\t"
  2752. /* Check if vmlaunch of vmresume is needed */
  2753. "cmpl $0, %c[launched](%0) \n\t"
  2754. /* Load guest registers. Don't clobber flags. */
  2755. "mov %c[cr2](%0), %%"R"ax \n\t"
  2756. "mov %%"R"ax, %%cr2 \n\t"
  2757. "mov %c[rax](%0), %%"R"ax \n\t"
  2758. "mov %c[rbx](%0), %%"R"bx \n\t"
  2759. "mov %c[rdx](%0), %%"R"dx \n\t"
  2760. "mov %c[rsi](%0), %%"R"si \n\t"
  2761. "mov %c[rdi](%0), %%"R"di \n\t"
  2762. "mov %c[rbp](%0), %%"R"bp \n\t"
  2763. #ifdef CONFIG_X86_64
  2764. "mov %c[r8](%0), %%r8 \n\t"
  2765. "mov %c[r9](%0), %%r9 \n\t"
  2766. "mov %c[r10](%0), %%r10 \n\t"
  2767. "mov %c[r11](%0), %%r11 \n\t"
  2768. "mov %c[r12](%0), %%r12 \n\t"
  2769. "mov %c[r13](%0), %%r13 \n\t"
  2770. "mov %c[r14](%0), %%r14 \n\t"
  2771. "mov %c[r15](%0), %%r15 \n\t"
  2772. #endif
  2773. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2774. /* Enter guest mode */
  2775. "jne .Llaunched \n\t"
  2776. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2777. "jmp .Lkvm_vmx_return \n\t"
  2778. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2779. ".Lkvm_vmx_return: "
  2780. /* Save guest registers, load host registers, keep flags */
  2781. "xchg %0, (%%"R"sp) \n\t"
  2782. "mov %%"R"ax, %c[rax](%0) \n\t"
  2783. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2784. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2785. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2786. "mov %%"R"si, %c[rsi](%0) \n\t"
  2787. "mov %%"R"di, %c[rdi](%0) \n\t"
  2788. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2789. #ifdef CONFIG_X86_64
  2790. "mov %%r8, %c[r8](%0) \n\t"
  2791. "mov %%r9, %c[r9](%0) \n\t"
  2792. "mov %%r10, %c[r10](%0) \n\t"
  2793. "mov %%r11, %c[r11](%0) \n\t"
  2794. "mov %%r12, %c[r12](%0) \n\t"
  2795. "mov %%r13, %c[r13](%0) \n\t"
  2796. "mov %%r14, %c[r14](%0) \n\t"
  2797. "mov %%r15, %c[r15](%0) \n\t"
  2798. #endif
  2799. "mov %%cr2, %%"R"ax \n\t"
  2800. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2801. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2802. "setbe %c[fail](%0) \n\t"
  2803. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2804. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2805. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2806. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2807. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2808. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2809. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2810. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2811. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2812. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2813. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2814. #ifdef CONFIG_X86_64
  2815. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2816. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2817. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2818. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2819. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2820. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2821. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2822. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2823. #endif
  2824. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2825. : "cc", "memory"
  2826. , R"bx", R"di", R"si"
  2827. #ifdef CONFIG_X86_64
  2828. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2829. #endif
  2830. );
  2831. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2832. vcpu->arch.regs_dirty = 0;
  2833. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2834. if (vmx->rmode.irq.pending)
  2835. fixup_rmode_irq(vmx);
  2836. vcpu->arch.interrupt_window_open =
  2837. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2838. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
  2839. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2840. vmx->launched = 1;
  2841. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2842. /* We need to handle NMIs before interrupts are enabled */
  2843. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
  2844. (intr_info & INTR_INFO_VALID_MASK)) {
  2845. KVMTRACE_0D(NMI, vcpu, handler);
  2846. asm("int $2");
  2847. }
  2848. vmx_complete_interrupts(vmx);
  2849. }
  2850. #undef R
  2851. #undef Q
  2852. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2853. {
  2854. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2855. if (vmx->vmcs) {
  2856. vcpu_clear(vmx);
  2857. free_vmcs(vmx->vmcs);
  2858. vmx->vmcs = NULL;
  2859. }
  2860. }
  2861. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2862. {
  2863. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2864. spin_lock(&vmx_vpid_lock);
  2865. if (vmx->vpid != 0)
  2866. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2867. spin_unlock(&vmx_vpid_lock);
  2868. vmx_free_vmcs(vcpu);
  2869. kfree(vmx->host_msrs);
  2870. kfree(vmx->guest_msrs);
  2871. kvm_vcpu_uninit(vcpu);
  2872. kmem_cache_free(kvm_vcpu_cache, vmx);
  2873. }
  2874. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2875. {
  2876. int err;
  2877. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2878. int cpu;
  2879. if (!vmx)
  2880. return ERR_PTR(-ENOMEM);
  2881. allocate_vpid(vmx);
  2882. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2883. if (err)
  2884. goto free_vcpu;
  2885. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2886. if (!vmx->guest_msrs) {
  2887. err = -ENOMEM;
  2888. goto uninit_vcpu;
  2889. }
  2890. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2891. if (!vmx->host_msrs)
  2892. goto free_guest_msrs;
  2893. vmx->vmcs = alloc_vmcs();
  2894. if (!vmx->vmcs)
  2895. goto free_msrs;
  2896. vmcs_clear(vmx->vmcs);
  2897. cpu = get_cpu();
  2898. vmx_vcpu_load(&vmx->vcpu, cpu);
  2899. err = vmx_vcpu_setup(vmx);
  2900. vmx_vcpu_put(&vmx->vcpu);
  2901. put_cpu();
  2902. if (err)
  2903. goto free_vmcs;
  2904. if (vm_need_virtualize_apic_accesses(kvm))
  2905. if (alloc_apic_access_page(kvm) != 0)
  2906. goto free_vmcs;
  2907. if (vm_need_ept())
  2908. if (alloc_identity_pagetable(kvm) != 0)
  2909. goto free_vmcs;
  2910. return &vmx->vcpu;
  2911. free_vmcs:
  2912. free_vmcs(vmx->vmcs);
  2913. free_msrs:
  2914. kfree(vmx->host_msrs);
  2915. free_guest_msrs:
  2916. kfree(vmx->guest_msrs);
  2917. uninit_vcpu:
  2918. kvm_vcpu_uninit(&vmx->vcpu);
  2919. free_vcpu:
  2920. kmem_cache_free(kvm_vcpu_cache, vmx);
  2921. return ERR_PTR(err);
  2922. }
  2923. static void __init vmx_check_processor_compat(void *rtn)
  2924. {
  2925. struct vmcs_config vmcs_conf;
  2926. *(int *)rtn = 0;
  2927. if (setup_vmcs_config(&vmcs_conf) < 0)
  2928. *(int *)rtn = -EIO;
  2929. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2930. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2931. smp_processor_id());
  2932. *(int *)rtn = -EIO;
  2933. }
  2934. }
  2935. static int get_ept_level(void)
  2936. {
  2937. return VMX_EPT_DEFAULT_GAW + 1;
  2938. }
  2939. static struct kvm_x86_ops vmx_x86_ops = {
  2940. .cpu_has_kvm_support = cpu_has_kvm_support,
  2941. .disabled_by_bios = vmx_disabled_by_bios,
  2942. .hardware_setup = hardware_setup,
  2943. .hardware_unsetup = hardware_unsetup,
  2944. .check_processor_compatibility = vmx_check_processor_compat,
  2945. .hardware_enable = hardware_enable,
  2946. .hardware_disable = hardware_disable,
  2947. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2948. .vcpu_create = vmx_create_vcpu,
  2949. .vcpu_free = vmx_free_vcpu,
  2950. .vcpu_reset = vmx_vcpu_reset,
  2951. .prepare_guest_switch = vmx_save_host_state,
  2952. .vcpu_load = vmx_vcpu_load,
  2953. .vcpu_put = vmx_vcpu_put,
  2954. .set_guest_debug = set_guest_debug,
  2955. .guest_debug_pre = kvm_guest_debug_pre,
  2956. .get_msr = vmx_get_msr,
  2957. .set_msr = vmx_set_msr,
  2958. .get_segment_base = vmx_get_segment_base,
  2959. .get_segment = vmx_get_segment,
  2960. .set_segment = vmx_set_segment,
  2961. .get_cpl = vmx_get_cpl,
  2962. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2963. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2964. .set_cr0 = vmx_set_cr0,
  2965. .set_cr3 = vmx_set_cr3,
  2966. .set_cr4 = vmx_set_cr4,
  2967. .set_efer = vmx_set_efer,
  2968. .get_idt = vmx_get_idt,
  2969. .set_idt = vmx_set_idt,
  2970. .get_gdt = vmx_get_gdt,
  2971. .set_gdt = vmx_set_gdt,
  2972. .cache_reg = vmx_cache_reg,
  2973. .get_rflags = vmx_get_rflags,
  2974. .set_rflags = vmx_set_rflags,
  2975. .tlb_flush = vmx_flush_tlb,
  2976. .run = vmx_vcpu_run,
  2977. .handle_exit = kvm_handle_exit,
  2978. .skip_emulated_instruction = skip_emulated_instruction,
  2979. .patch_hypercall = vmx_patch_hypercall,
  2980. .get_irq = vmx_get_irq,
  2981. .set_irq = vmx_inject_irq,
  2982. .queue_exception = vmx_queue_exception,
  2983. .exception_injected = vmx_exception_injected,
  2984. .inject_pending_irq = vmx_intr_assist,
  2985. .inject_pending_vectors = do_interrupt_requests,
  2986. .set_tss_addr = vmx_set_tss_addr,
  2987. .get_tdp_level = get_ept_level,
  2988. };
  2989. static int __init vmx_init(void)
  2990. {
  2991. void *va;
  2992. int r;
  2993. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2994. if (!vmx_io_bitmap_a)
  2995. return -ENOMEM;
  2996. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2997. if (!vmx_io_bitmap_b) {
  2998. r = -ENOMEM;
  2999. goto out;
  3000. }
  3001. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3002. if (!vmx_msr_bitmap) {
  3003. r = -ENOMEM;
  3004. goto out1;
  3005. }
  3006. /*
  3007. * Allow direct access to the PC debug port (it is often used for I/O
  3008. * delays, but the vmexits simply slow things down).
  3009. */
  3010. va = kmap(vmx_io_bitmap_a);
  3011. memset(va, 0xff, PAGE_SIZE);
  3012. clear_bit(0x80, va);
  3013. kunmap(vmx_io_bitmap_a);
  3014. va = kmap(vmx_io_bitmap_b);
  3015. memset(va, 0xff, PAGE_SIZE);
  3016. kunmap(vmx_io_bitmap_b);
  3017. va = kmap(vmx_msr_bitmap);
  3018. memset(va, 0xff, PAGE_SIZE);
  3019. kunmap(vmx_msr_bitmap);
  3020. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3021. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3022. if (r)
  3023. goto out2;
  3024. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  3025. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  3026. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  3027. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  3028. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  3029. if (vm_need_ept()) {
  3030. bypass_guest_pf = 0;
  3031. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3032. VMX_EPT_WRITABLE_MASK |
  3033. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3034. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3035. VMX_EPT_EXECUTABLE_MASK);
  3036. kvm_enable_tdp();
  3037. } else
  3038. kvm_disable_tdp();
  3039. if (bypass_guest_pf)
  3040. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3041. ept_sync_global();
  3042. return 0;
  3043. out2:
  3044. __free_page(vmx_msr_bitmap);
  3045. out1:
  3046. __free_page(vmx_io_bitmap_b);
  3047. out:
  3048. __free_page(vmx_io_bitmap_a);
  3049. return r;
  3050. }
  3051. static void __exit vmx_exit(void)
  3052. {
  3053. __free_page(vmx_msr_bitmap);
  3054. __free_page(vmx_io_bitmap_b);
  3055. __free_page(vmx_io_bitmap_a);
  3056. kvm_exit();
  3057. }
  3058. module_init(vmx_init)
  3059. module_exit(vmx_exit)