paging_tmpl.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define shadow_walker shadow_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  30. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define shadow_walker shadow_walker32
  44. #define FNAME(name) paging##32_##name
  45. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  46. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  49. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  50. #define PT_MAX_FULL_LEVELS 2
  51. #define CMPXCHG cmpxchg
  52. #else
  53. #error Invalid PTTYPE value
  54. #endif
  55. #define gpte_to_gfn FNAME(gpte_to_gfn)
  56. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  57. /*
  58. * The guest_walker structure emulates the behavior of the hardware page
  59. * table walker.
  60. */
  61. struct guest_walker {
  62. int level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. u32 error_code;
  70. };
  71. struct shadow_walker {
  72. struct kvm_shadow_walk walker;
  73. struct guest_walker *guest_walker;
  74. int user_fault;
  75. int write_fault;
  76. int largepage;
  77. int *ptwrite;
  78. pfn_t pfn;
  79. u64 *sptep;
  80. };
  81. static gfn_t gpte_to_gfn(pt_element_t gpte)
  82. {
  83. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  84. }
  85. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  86. {
  87. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  88. }
  89. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  90. gfn_t table_gfn, unsigned index,
  91. pt_element_t orig_pte, pt_element_t new_pte)
  92. {
  93. pt_element_t ret;
  94. pt_element_t *table;
  95. struct page *page;
  96. page = gfn_to_page(kvm, table_gfn);
  97. table = kmap_atomic(page, KM_USER0);
  98. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  99. kunmap_atomic(table, KM_USER0);
  100. kvm_release_page_dirty(page);
  101. return (ret != orig_pte);
  102. }
  103. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  104. {
  105. unsigned access;
  106. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  107. #if PTTYPE == 64
  108. if (is_nx(vcpu))
  109. access &= ~(gpte >> PT64_NX_SHIFT);
  110. #endif
  111. return access;
  112. }
  113. /*
  114. * Fetch a guest pte for a guest virtual address
  115. */
  116. static int FNAME(walk_addr)(struct guest_walker *walker,
  117. struct kvm_vcpu *vcpu, gva_t addr,
  118. int write_fault, int user_fault, int fetch_fault)
  119. {
  120. pt_element_t pte;
  121. gfn_t table_gfn;
  122. unsigned index, pt_access, pte_access;
  123. gpa_t pte_gpa;
  124. pgprintk("%s: addr %lx\n", __func__, addr);
  125. walk:
  126. walker->level = vcpu->arch.mmu.root_level;
  127. pte = vcpu->arch.cr3;
  128. #if PTTYPE == 64
  129. if (!is_long_mode(vcpu)) {
  130. pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
  131. if (!is_present_pte(pte))
  132. goto not_present;
  133. --walker->level;
  134. }
  135. #endif
  136. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  137. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  138. pt_access = ACC_ALL;
  139. for (;;) {
  140. index = PT_INDEX(addr, walker->level);
  141. table_gfn = gpte_to_gfn(pte);
  142. pte_gpa = gfn_to_gpa(table_gfn);
  143. pte_gpa += index * sizeof(pt_element_t);
  144. walker->table_gfn[walker->level - 1] = table_gfn;
  145. walker->pte_gpa[walker->level - 1] = pte_gpa;
  146. pgprintk("%s: table_gfn[%d] %lx\n", __func__,
  147. walker->level - 1, table_gfn);
  148. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  149. if (!is_present_pte(pte))
  150. goto not_present;
  151. if (write_fault && !is_writeble_pte(pte))
  152. if (user_fault || is_write_protection(vcpu))
  153. goto access_error;
  154. if (user_fault && !(pte & PT_USER_MASK))
  155. goto access_error;
  156. #if PTTYPE == 64
  157. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  158. goto access_error;
  159. #endif
  160. if (!(pte & PT_ACCESSED_MASK)) {
  161. mark_page_dirty(vcpu->kvm, table_gfn);
  162. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  163. index, pte, pte|PT_ACCESSED_MASK))
  164. goto walk;
  165. pte |= PT_ACCESSED_MASK;
  166. }
  167. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  168. walker->ptes[walker->level - 1] = pte;
  169. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  170. walker->gfn = gpte_to_gfn(pte);
  171. break;
  172. }
  173. if (walker->level == PT_DIRECTORY_LEVEL
  174. && (pte & PT_PAGE_SIZE_MASK)
  175. && (PTTYPE == 64 || is_pse(vcpu))) {
  176. walker->gfn = gpte_to_gfn_pde(pte);
  177. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  178. if (PTTYPE == 32 && is_cpuid_PSE36())
  179. walker->gfn += pse36_gfn_delta(pte);
  180. break;
  181. }
  182. pt_access = pte_access;
  183. --walker->level;
  184. }
  185. if (write_fault && !is_dirty_pte(pte)) {
  186. bool ret;
  187. mark_page_dirty(vcpu->kvm, table_gfn);
  188. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  189. pte|PT_DIRTY_MASK);
  190. if (ret)
  191. goto walk;
  192. pte |= PT_DIRTY_MASK;
  193. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
  194. walker->ptes[walker->level - 1] = pte;
  195. }
  196. walker->pt_access = pt_access;
  197. walker->pte_access = pte_access;
  198. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  199. __func__, (u64)pte, pt_access, pte_access);
  200. return 1;
  201. not_present:
  202. walker->error_code = 0;
  203. goto err;
  204. access_error:
  205. walker->error_code = PFERR_PRESENT_MASK;
  206. err:
  207. if (write_fault)
  208. walker->error_code |= PFERR_WRITE_MASK;
  209. if (user_fault)
  210. walker->error_code |= PFERR_USER_MASK;
  211. if (fetch_fault)
  212. walker->error_code |= PFERR_FETCH_MASK;
  213. return 0;
  214. }
  215. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  216. u64 *spte, const void *pte)
  217. {
  218. pt_element_t gpte;
  219. unsigned pte_access;
  220. pfn_t pfn;
  221. int largepage = vcpu->arch.update_pte.largepage;
  222. gpte = *(const pt_element_t *)pte;
  223. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  224. if (!is_present_pte(gpte))
  225. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  226. return;
  227. }
  228. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  229. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  230. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  231. return;
  232. pfn = vcpu->arch.update_pte.pfn;
  233. if (is_error_pfn(pfn))
  234. return;
  235. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  236. return;
  237. kvm_get_pfn(pfn);
  238. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  239. gpte & PT_DIRTY_MASK, NULL, largepage, gpte_to_gfn(gpte),
  240. pfn, true);
  241. }
  242. /*
  243. * Fetch a shadow pte for a specific level in the paging hierarchy.
  244. */
  245. static int FNAME(shadow_walk_entry)(struct kvm_shadow_walk *_sw,
  246. struct kvm_vcpu *vcpu, u64 addr,
  247. u64 *sptep, int level)
  248. {
  249. struct shadow_walker *sw =
  250. container_of(_sw, struct shadow_walker, walker);
  251. struct guest_walker *gw = sw->guest_walker;
  252. unsigned access = gw->pt_access;
  253. struct kvm_mmu_page *shadow_page;
  254. u64 spte;
  255. int metaphysical;
  256. gfn_t table_gfn;
  257. int r;
  258. pt_element_t curr_pte;
  259. if (level == PT_PAGE_TABLE_LEVEL
  260. || (sw->largepage && level == PT_DIRECTORY_LEVEL)) {
  261. mmu_set_spte(vcpu, sptep, access, gw->pte_access & access,
  262. sw->user_fault, sw->write_fault,
  263. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  264. sw->ptwrite, sw->largepage, gw->gfn, sw->pfn,
  265. false);
  266. sw->sptep = sptep;
  267. return 1;
  268. }
  269. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  270. return 0;
  271. if (is_large_pte(*sptep))
  272. rmap_remove(vcpu->kvm, sptep);
  273. if (level == PT_DIRECTORY_LEVEL && gw->level == PT_DIRECTORY_LEVEL) {
  274. metaphysical = 1;
  275. if (!is_dirty_pte(gw->ptes[level - 1]))
  276. access &= ~ACC_WRITE_MASK;
  277. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  278. } else {
  279. metaphysical = 0;
  280. table_gfn = gw->table_gfn[level - 2];
  281. }
  282. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, (gva_t)addr, level-1,
  283. metaphysical, access, sptep);
  284. if (!metaphysical) {
  285. r = kvm_read_guest_atomic(vcpu->kvm, gw->pte_gpa[level - 2],
  286. &curr_pte, sizeof(curr_pte));
  287. if (r || curr_pte != gw->ptes[level - 2]) {
  288. kvm_release_pfn_clean(sw->pfn);
  289. sw->sptep = NULL;
  290. return 1;
  291. }
  292. }
  293. spte = __pa(shadow_page->spt) | PT_PRESENT_MASK | PT_ACCESSED_MASK
  294. | PT_WRITABLE_MASK | PT_USER_MASK;
  295. *sptep = spte;
  296. return 0;
  297. }
  298. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  299. struct guest_walker *guest_walker,
  300. int user_fault, int write_fault, int largepage,
  301. int *ptwrite, pfn_t pfn)
  302. {
  303. struct shadow_walker walker = {
  304. .walker = { .entry = FNAME(shadow_walk_entry), },
  305. .guest_walker = guest_walker,
  306. .user_fault = user_fault,
  307. .write_fault = write_fault,
  308. .largepage = largepage,
  309. .ptwrite = ptwrite,
  310. .pfn = pfn,
  311. };
  312. if (!is_present_pte(guest_walker->ptes[guest_walker->level - 1]))
  313. return NULL;
  314. walk_shadow(&walker.walker, vcpu, addr);
  315. return walker.sptep;
  316. }
  317. /*
  318. * Page fault handler. There are several causes for a page fault:
  319. * - there is no shadow pte for the guest pte
  320. * - write access through a shadow pte marked read only so that we can set
  321. * the dirty bit
  322. * - write access to a shadow pte marked read only so we can update the page
  323. * dirty bitmap, when userspace requests it
  324. * - mmio access; in this case we will never install a present shadow pte
  325. * - normal guest page fault due to the guest pte marked not present, not
  326. * writable, or not executable
  327. *
  328. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  329. * a negative value on error.
  330. */
  331. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  332. u32 error_code)
  333. {
  334. int write_fault = error_code & PFERR_WRITE_MASK;
  335. int user_fault = error_code & PFERR_USER_MASK;
  336. int fetch_fault = error_code & PFERR_FETCH_MASK;
  337. struct guest_walker walker;
  338. u64 *shadow_pte;
  339. int write_pt = 0;
  340. int r;
  341. pfn_t pfn;
  342. int largepage = 0;
  343. unsigned long mmu_seq;
  344. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  345. kvm_mmu_audit(vcpu, "pre page fault");
  346. r = mmu_topup_memory_caches(vcpu);
  347. if (r)
  348. return r;
  349. /*
  350. * Look up the shadow pte for the faulting address.
  351. */
  352. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  353. fetch_fault);
  354. /*
  355. * The page is not mapped by the guest. Let the guest handle it.
  356. */
  357. if (!r) {
  358. pgprintk("%s: guest page fault\n", __func__);
  359. inject_page_fault(vcpu, addr, walker.error_code);
  360. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  361. return 0;
  362. }
  363. if (walker.level == PT_DIRECTORY_LEVEL) {
  364. gfn_t large_gfn;
  365. large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
  366. if (is_largepage_backed(vcpu, large_gfn)) {
  367. walker.gfn = large_gfn;
  368. largepage = 1;
  369. }
  370. }
  371. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  372. smp_rmb();
  373. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  374. /* mmio */
  375. if (is_error_pfn(pfn)) {
  376. pgprintk("gfn %lx is mmio\n", walker.gfn);
  377. kvm_release_pfn_clean(pfn);
  378. return 1;
  379. }
  380. spin_lock(&vcpu->kvm->mmu_lock);
  381. if (mmu_notifier_retry(vcpu, mmu_seq))
  382. goto out_unlock;
  383. kvm_mmu_free_some_pages(vcpu);
  384. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  385. largepage, &write_pt, pfn);
  386. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  387. shadow_pte, *shadow_pte, write_pt);
  388. if (!write_pt)
  389. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  390. ++vcpu->stat.pf_fixed;
  391. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  392. spin_unlock(&vcpu->kvm->mmu_lock);
  393. return write_pt;
  394. out_unlock:
  395. spin_unlock(&vcpu->kvm->mmu_lock);
  396. kvm_release_pfn_clean(pfn);
  397. return 0;
  398. }
  399. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  400. {
  401. struct guest_walker walker;
  402. gpa_t gpa = UNMAPPED_GVA;
  403. int r;
  404. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  405. if (r) {
  406. gpa = gfn_to_gpa(walker.gfn);
  407. gpa |= vaddr & ~PAGE_MASK;
  408. }
  409. return gpa;
  410. }
  411. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  412. struct kvm_mmu_page *sp)
  413. {
  414. int i, j, offset, r;
  415. pt_element_t pt[256 / sizeof(pt_element_t)];
  416. gpa_t pte_gpa;
  417. if (sp->role.metaphysical
  418. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  419. nonpaging_prefetch_page(vcpu, sp);
  420. return;
  421. }
  422. pte_gpa = gfn_to_gpa(sp->gfn);
  423. if (PTTYPE == 32) {
  424. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  425. pte_gpa += offset * sizeof(pt_element_t);
  426. }
  427. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  428. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  429. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  430. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  431. if (r || is_present_pte(pt[j]))
  432. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  433. else
  434. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  435. }
  436. }
  437. #undef pt_element_t
  438. #undef guest_walker
  439. #undef shadow_walker
  440. #undef FNAME
  441. #undef PT_BASE_ADDR_MASK
  442. #undef PT_INDEX
  443. #undef PT_LEVEL_MASK
  444. #undef PT_DIR_BASE_ADDR_MASK
  445. #undef PT_LEVEL_BITS
  446. #undef PT_MAX_FULL_LEVELS
  447. #undef gpte_to_gfn
  448. #undef gpte_to_gfn_pde
  449. #undef CMPXCHG