fs_enet-main.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/pci.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/spinlock.h>
  33. #include <linux/mii.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/bitops.h>
  36. #include <linux/fs.h>
  37. #include <linux/platform_device.h>
  38. #include <linux/phy.h>
  39. #include <linux/vmalloc.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/irq.h>
  43. #include <asm/uaccess.h>
  44. #include "fs_enet.h"
  45. /*************************************************/
  46. static char version[] __devinitdata =
  47. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  48. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  49. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  50. MODULE_LICENSE("GPL");
  51. MODULE_VERSION(DRV_MODULE_VERSION);
  52. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  53. module_param(fs_enet_debug, int, 0);
  54. MODULE_PARM_DESC(fs_enet_debug,
  55. "Freescale bitmapped debugging message enable value");
  56. static void fs_set_multicast_list(struct net_device *dev)
  57. {
  58. struct fs_enet_private *fep = netdev_priv(dev);
  59. (*fep->ops->set_multicast_list)(dev);
  60. }
  61. /* NAPI receive function */
  62. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  63. {
  64. struct fs_enet_private *fep = netdev_priv(dev);
  65. const struct fs_platform_info *fpi = fep->fpi;
  66. cbd_t *bdp;
  67. struct sk_buff *skb, *skbn, *skbt;
  68. int received = 0;
  69. u16 pkt_len, sc;
  70. int curidx;
  71. int rx_work_limit = 0; /* pacify gcc */
  72. rx_work_limit = min(dev->quota, *budget);
  73. if (!netif_running(dev))
  74. return 0;
  75. /*
  76. * First, grab all of the stats for the incoming packet.
  77. * These get messed up if we get called due to a busy condition.
  78. */
  79. bdp = fep->cur_rx;
  80. /* clear RX status bits for napi*/
  81. (*fep->ops->napi_clear_rx_event)(dev);
  82. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  83. curidx = bdp - fep->rx_bd_base;
  84. /*
  85. * Since we have allocated space to hold a complete frame,
  86. * the last indicator should be set.
  87. */
  88. if ((sc & BD_ENET_RX_LAST) == 0)
  89. printk(KERN_WARNING DRV_MODULE_NAME
  90. ": %s rcv is not +last\n",
  91. dev->name);
  92. /*
  93. * Check for errors.
  94. */
  95. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  96. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  97. fep->stats.rx_errors++;
  98. /* Frame too long or too short. */
  99. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  100. fep->stats.rx_length_errors++;
  101. /* Frame alignment */
  102. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  103. fep->stats.rx_frame_errors++;
  104. /* CRC Error */
  105. if (sc & BD_ENET_RX_CR)
  106. fep->stats.rx_crc_errors++;
  107. /* FIFO overrun */
  108. if (sc & BD_ENET_RX_OV)
  109. fep->stats.rx_crc_errors++;
  110. skb = fep->rx_skbuff[curidx];
  111. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  112. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  113. DMA_FROM_DEVICE);
  114. skbn = skb;
  115. } else {
  116. /* napi, got packet but no quota */
  117. if (--rx_work_limit < 0)
  118. break;
  119. skb = fep->rx_skbuff[curidx];
  120. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  121. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  122. DMA_FROM_DEVICE);
  123. /*
  124. * Process the incoming frame.
  125. */
  126. fep->stats.rx_packets++;
  127. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  128. fep->stats.rx_bytes += pkt_len + 4;
  129. if (pkt_len <= fpi->rx_copybreak) {
  130. /* +2 to make IP header L1 cache aligned */
  131. skbn = dev_alloc_skb(pkt_len + 2);
  132. if (skbn != NULL) {
  133. skb_reserve(skbn, 2); /* align IP header */
  134. memcpy(skbn->data, skb->data, pkt_len);
  135. /* swap */
  136. skbt = skb;
  137. skb = skbn;
  138. skbn = skbt;
  139. }
  140. } else
  141. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  142. if (skbn != NULL) {
  143. skb_put(skb, pkt_len); /* Make room */
  144. skb->protocol = eth_type_trans(skb, dev);
  145. received++;
  146. netif_receive_skb(skb);
  147. } else {
  148. printk(KERN_WARNING DRV_MODULE_NAME
  149. ": %s Memory squeeze, dropping packet.\n",
  150. dev->name);
  151. fep->stats.rx_dropped++;
  152. skbn = skb;
  153. }
  154. }
  155. fep->rx_skbuff[curidx] = skbn;
  156. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  157. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  158. DMA_FROM_DEVICE));
  159. CBDW_DATLEN(bdp, 0);
  160. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  161. /*
  162. * Update BD pointer to next entry.
  163. */
  164. if ((sc & BD_ENET_RX_WRAP) == 0)
  165. bdp++;
  166. else
  167. bdp = fep->rx_bd_base;
  168. (*fep->ops->rx_bd_done)(dev);
  169. }
  170. fep->cur_rx = bdp;
  171. dev->quota -= received;
  172. *budget -= received;
  173. if (rx_work_limit < 0)
  174. return 1; /* not done */
  175. /* done */
  176. netif_rx_complete(dev);
  177. (*fep->ops->napi_enable_rx)(dev);
  178. return 0;
  179. }
  180. /* non NAPI receive function */
  181. static int fs_enet_rx_non_napi(struct net_device *dev)
  182. {
  183. struct fs_enet_private *fep = netdev_priv(dev);
  184. const struct fs_platform_info *fpi = fep->fpi;
  185. cbd_t *bdp;
  186. struct sk_buff *skb, *skbn, *skbt;
  187. int received = 0;
  188. u16 pkt_len, sc;
  189. int curidx;
  190. /*
  191. * First, grab all of the stats for the incoming packet.
  192. * These get messed up if we get called due to a busy condition.
  193. */
  194. bdp = fep->cur_rx;
  195. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  196. curidx = bdp - fep->rx_bd_base;
  197. /*
  198. * Since we have allocated space to hold a complete frame,
  199. * the last indicator should be set.
  200. */
  201. if ((sc & BD_ENET_RX_LAST) == 0)
  202. printk(KERN_WARNING DRV_MODULE_NAME
  203. ": %s rcv is not +last\n",
  204. dev->name);
  205. /*
  206. * Check for errors.
  207. */
  208. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  209. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  210. fep->stats.rx_errors++;
  211. /* Frame too long or too short. */
  212. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  213. fep->stats.rx_length_errors++;
  214. /* Frame alignment */
  215. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  216. fep->stats.rx_frame_errors++;
  217. /* CRC Error */
  218. if (sc & BD_ENET_RX_CR)
  219. fep->stats.rx_crc_errors++;
  220. /* FIFO overrun */
  221. if (sc & BD_ENET_RX_OV)
  222. fep->stats.rx_crc_errors++;
  223. skb = fep->rx_skbuff[curidx];
  224. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  225. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  226. DMA_FROM_DEVICE);
  227. skbn = skb;
  228. } else {
  229. skb = fep->rx_skbuff[curidx];
  230. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  231. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  232. DMA_FROM_DEVICE);
  233. /*
  234. * Process the incoming frame.
  235. */
  236. fep->stats.rx_packets++;
  237. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  238. fep->stats.rx_bytes += pkt_len + 4;
  239. if (pkt_len <= fpi->rx_copybreak) {
  240. /* +2 to make IP header L1 cache aligned */
  241. skbn = dev_alloc_skb(pkt_len + 2);
  242. if (skbn != NULL) {
  243. skb_reserve(skbn, 2); /* align IP header */
  244. memcpy(skbn->data, skb->data, pkt_len);
  245. /* swap */
  246. skbt = skb;
  247. skb = skbn;
  248. skbn = skbt;
  249. }
  250. } else
  251. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  252. if (skbn != NULL) {
  253. skb_put(skb, pkt_len); /* Make room */
  254. skb->protocol = eth_type_trans(skb, dev);
  255. received++;
  256. netif_rx(skb);
  257. } else {
  258. printk(KERN_WARNING DRV_MODULE_NAME
  259. ": %s Memory squeeze, dropping packet.\n",
  260. dev->name);
  261. fep->stats.rx_dropped++;
  262. skbn = skb;
  263. }
  264. }
  265. fep->rx_skbuff[curidx] = skbn;
  266. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  267. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  268. DMA_FROM_DEVICE));
  269. CBDW_DATLEN(bdp, 0);
  270. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  271. /*
  272. * Update BD pointer to next entry.
  273. */
  274. if ((sc & BD_ENET_RX_WRAP) == 0)
  275. bdp++;
  276. else
  277. bdp = fep->rx_bd_base;
  278. (*fep->ops->rx_bd_done)(dev);
  279. }
  280. fep->cur_rx = bdp;
  281. return 0;
  282. }
  283. static void fs_enet_tx(struct net_device *dev)
  284. {
  285. struct fs_enet_private *fep = netdev_priv(dev);
  286. cbd_t *bdp;
  287. struct sk_buff *skb;
  288. int dirtyidx, do_wake, do_restart;
  289. u16 sc;
  290. spin_lock(&fep->lock);
  291. bdp = fep->dirty_tx;
  292. do_wake = do_restart = 0;
  293. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  294. dirtyidx = bdp - fep->tx_bd_base;
  295. if (fep->tx_free == fep->tx_ring)
  296. break;
  297. skb = fep->tx_skbuff[dirtyidx];
  298. /*
  299. * Check for errors.
  300. */
  301. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  302. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  303. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  304. fep->stats.tx_heartbeat_errors++;
  305. if (sc & BD_ENET_TX_LC) /* Late collision */
  306. fep->stats.tx_window_errors++;
  307. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  308. fep->stats.tx_aborted_errors++;
  309. if (sc & BD_ENET_TX_UN) /* Underrun */
  310. fep->stats.tx_fifo_errors++;
  311. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  312. fep->stats.tx_carrier_errors++;
  313. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  314. fep->stats.tx_errors++;
  315. do_restart = 1;
  316. }
  317. } else
  318. fep->stats.tx_packets++;
  319. if (sc & BD_ENET_TX_READY)
  320. printk(KERN_WARNING DRV_MODULE_NAME
  321. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  322. dev->name);
  323. /*
  324. * Deferred means some collisions occurred during transmit,
  325. * but we eventually sent the packet OK.
  326. */
  327. if (sc & BD_ENET_TX_DEF)
  328. fep->stats.collisions++;
  329. /* unmap */
  330. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  331. skb->len, DMA_TO_DEVICE);
  332. /*
  333. * Free the sk buffer associated with this last transmit.
  334. */
  335. dev_kfree_skb_irq(skb);
  336. fep->tx_skbuff[dirtyidx] = NULL;
  337. /*
  338. * Update pointer to next buffer descriptor to be transmitted.
  339. */
  340. if ((sc & BD_ENET_TX_WRAP) == 0)
  341. bdp++;
  342. else
  343. bdp = fep->tx_bd_base;
  344. /*
  345. * Since we have freed up a buffer, the ring is no longer
  346. * full.
  347. */
  348. if (!fep->tx_free++)
  349. do_wake = 1;
  350. }
  351. fep->dirty_tx = bdp;
  352. if (do_restart)
  353. (*fep->ops->tx_restart)(dev);
  354. spin_unlock(&fep->lock);
  355. if (do_wake)
  356. netif_wake_queue(dev);
  357. }
  358. /*
  359. * The interrupt handler.
  360. * This is called from the MPC core interrupt.
  361. */
  362. static irqreturn_t
  363. fs_enet_interrupt(int irq, void *dev_id)
  364. {
  365. struct net_device *dev = dev_id;
  366. struct fs_enet_private *fep;
  367. const struct fs_platform_info *fpi;
  368. u32 int_events;
  369. u32 int_clr_events;
  370. int nr, napi_ok;
  371. int handled;
  372. fep = netdev_priv(dev);
  373. fpi = fep->fpi;
  374. nr = 0;
  375. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  376. nr++;
  377. int_clr_events = int_events;
  378. if (fpi->use_napi)
  379. int_clr_events &= ~fep->ev_napi_rx;
  380. (*fep->ops->clear_int_events)(dev, int_clr_events);
  381. if (int_events & fep->ev_err)
  382. (*fep->ops->ev_error)(dev, int_events);
  383. if (int_events & fep->ev_rx) {
  384. if (!fpi->use_napi)
  385. fs_enet_rx_non_napi(dev);
  386. else {
  387. napi_ok = netif_rx_schedule_prep(dev);
  388. (*fep->ops->napi_disable_rx)(dev);
  389. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  390. /* NOTE: it is possible for FCCs in NAPI mode */
  391. /* to submit a spurious interrupt while in poll */
  392. if (napi_ok)
  393. __netif_rx_schedule(dev);
  394. }
  395. }
  396. if (int_events & fep->ev_tx)
  397. fs_enet_tx(dev);
  398. }
  399. handled = nr > 0;
  400. return IRQ_RETVAL(handled);
  401. }
  402. void fs_init_bds(struct net_device *dev)
  403. {
  404. struct fs_enet_private *fep = netdev_priv(dev);
  405. cbd_t *bdp;
  406. struct sk_buff *skb;
  407. int i;
  408. fs_cleanup_bds(dev);
  409. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  410. fep->tx_free = fep->tx_ring;
  411. fep->cur_rx = fep->rx_bd_base;
  412. /*
  413. * Initialize the receive buffer descriptors.
  414. */
  415. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  416. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  417. if (skb == NULL) {
  418. printk(KERN_WARNING DRV_MODULE_NAME
  419. ": %s Memory squeeze, unable to allocate skb\n",
  420. dev->name);
  421. break;
  422. }
  423. fep->rx_skbuff[i] = skb;
  424. CBDW_BUFADDR(bdp,
  425. dma_map_single(fep->dev, skb->data,
  426. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  427. DMA_FROM_DEVICE));
  428. CBDW_DATLEN(bdp, 0); /* zero */
  429. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  430. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  431. }
  432. /*
  433. * if we failed, fillup remainder
  434. */
  435. for (; i < fep->rx_ring; i++, bdp++) {
  436. fep->rx_skbuff[i] = NULL;
  437. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  438. }
  439. /*
  440. * ...and the same for transmit.
  441. */
  442. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  443. fep->tx_skbuff[i] = NULL;
  444. CBDW_BUFADDR(bdp, 0);
  445. CBDW_DATLEN(bdp, 0);
  446. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  447. }
  448. }
  449. void fs_cleanup_bds(struct net_device *dev)
  450. {
  451. struct fs_enet_private *fep = netdev_priv(dev);
  452. struct sk_buff *skb;
  453. cbd_t *bdp;
  454. int i;
  455. /*
  456. * Reset SKB transmit buffers.
  457. */
  458. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  459. if ((skb = fep->tx_skbuff[i]) == NULL)
  460. continue;
  461. /* unmap */
  462. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  463. skb->len, DMA_TO_DEVICE);
  464. fep->tx_skbuff[i] = NULL;
  465. dev_kfree_skb(skb);
  466. }
  467. /*
  468. * Reset SKB receive buffers
  469. */
  470. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  471. if ((skb = fep->rx_skbuff[i]) == NULL)
  472. continue;
  473. /* unmap */
  474. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  475. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  476. DMA_FROM_DEVICE);
  477. fep->rx_skbuff[i] = NULL;
  478. dev_kfree_skb(skb);
  479. }
  480. }
  481. /**********************************************************************************/
  482. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  483. {
  484. struct fs_enet_private *fep = netdev_priv(dev);
  485. cbd_t *bdp;
  486. int curidx;
  487. u16 sc;
  488. unsigned long flags;
  489. spin_lock_irqsave(&fep->tx_lock, flags);
  490. /*
  491. * Fill in a Tx ring entry
  492. */
  493. bdp = fep->cur_tx;
  494. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  495. netif_stop_queue(dev);
  496. spin_unlock_irqrestore(&fep->tx_lock, flags);
  497. /*
  498. * Ooops. All transmit buffers are full. Bail out.
  499. * This should not happen, since the tx queue should be stopped.
  500. */
  501. printk(KERN_WARNING DRV_MODULE_NAME
  502. ": %s tx queue full!.\n", dev->name);
  503. return NETDEV_TX_BUSY;
  504. }
  505. curidx = bdp - fep->tx_bd_base;
  506. /*
  507. * Clear all of the status flags.
  508. */
  509. CBDC_SC(bdp, BD_ENET_TX_STATS);
  510. /*
  511. * Save skb pointer.
  512. */
  513. fep->tx_skbuff[curidx] = skb;
  514. fep->stats.tx_bytes += skb->len;
  515. /*
  516. * Push the data cache so the CPM does not get stale memory data.
  517. */
  518. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  519. skb->data, skb->len, DMA_TO_DEVICE));
  520. CBDW_DATLEN(bdp, skb->len);
  521. dev->trans_start = jiffies;
  522. /*
  523. * If this was the last BD in the ring, start at the beginning again.
  524. */
  525. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  526. fep->cur_tx++;
  527. else
  528. fep->cur_tx = fep->tx_bd_base;
  529. if (!--fep->tx_free)
  530. netif_stop_queue(dev);
  531. /* Trigger transmission start */
  532. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  533. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  534. /* note that while FEC does not have this bit
  535. * it marks it as available for software use
  536. * yay for hw reuse :) */
  537. if (skb->len <= 60)
  538. sc |= BD_ENET_TX_PAD;
  539. CBDS_SC(bdp, sc);
  540. (*fep->ops->tx_kickstart)(dev);
  541. spin_unlock_irqrestore(&fep->tx_lock, flags);
  542. return NETDEV_TX_OK;
  543. }
  544. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  545. irq_handler_t irqf)
  546. {
  547. struct fs_enet_private *fep = netdev_priv(dev);
  548. (*fep->ops->pre_request_irq)(dev, irq);
  549. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  550. }
  551. static void fs_free_irq(struct net_device *dev, int irq)
  552. {
  553. struct fs_enet_private *fep = netdev_priv(dev);
  554. free_irq(irq, dev);
  555. (*fep->ops->post_free_irq)(dev, irq);
  556. }
  557. static void fs_timeout(struct net_device *dev)
  558. {
  559. struct fs_enet_private *fep = netdev_priv(dev);
  560. unsigned long flags;
  561. int wake = 0;
  562. fep->stats.tx_errors++;
  563. spin_lock_irqsave(&fep->lock, flags);
  564. if (dev->flags & IFF_UP) {
  565. phy_stop(fep->phydev);
  566. (*fep->ops->stop)(dev);
  567. (*fep->ops->restart)(dev);
  568. phy_start(fep->phydev);
  569. }
  570. phy_start(fep->phydev);
  571. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  572. spin_unlock_irqrestore(&fep->lock, flags);
  573. if (wake)
  574. netif_wake_queue(dev);
  575. }
  576. /*-----------------------------------------------------------------------------
  577. * generic link-change handler - should be sufficient for most cases
  578. *-----------------------------------------------------------------------------*/
  579. static void generic_adjust_link(struct net_device *dev)
  580. {
  581. struct fs_enet_private *fep = netdev_priv(dev);
  582. struct phy_device *phydev = fep->phydev;
  583. int new_state = 0;
  584. if (phydev->link) {
  585. /* adjust to duplex mode */
  586. if (phydev->duplex != fep->oldduplex){
  587. new_state = 1;
  588. fep->oldduplex = phydev->duplex;
  589. }
  590. if (phydev->speed != fep->oldspeed) {
  591. new_state = 1;
  592. fep->oldspeed = phydev->speed;
  593. }
  594. if (!fep->oldlink) {
  595. new_state = 1;
  596. fep->oldlink = 1;
  597. netif_schedule(dev);
  598. netif_carrier_on(dev);
  599. netif_start_queue(dev);
  600. }
  601. if (new_state)
  602. fep->ops->restart(dev);
  603. } else if (fep->oldlink) {
  604. new_state = 1;
  605. fep->oldlink = 0;
  606. fep->oldspeed = 0;
  607. fep->oldduplex = -1;
  608. netif_carrier_off(dev);
  609. netif_stop_queue(dev);
  610. }
  611. if (new_state && netif_msg_link(fep))
  612. phy_print_status(phydev);
  613. }
  614. static void fs_adjust_link(struct net_device *dev)
  615. {
  616. struct fs_enet_private *fep = netdev_priv(dev);
  617. unsigned long flags;
  618. spin_lock_irqsave(&fep->lock, flags);
  619. if(fep->ops->adjust_link)
  620. fep->ops->adjust_link(dev);
  621. else
  622. generic_adjust_link(dev);
  623. spin_unlock_irqrestore(&fep->lock, flags);
  624. }
  625. static int fs_init_phy(struct net_device *dev)
  626. {
  627. struct fs_enet_private *fep = netdev_priv(dev);
  628. struct phy_device *phydev;
  629. fep->oldlink = 0;
  630. fep->oldspeed = 0;
  631. fep->oldduplex = -1;
  632. if(fep->fpi->bus_id)
  633. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  634. PHY_INTERFACE_MODE_MII);
  635. else {
  636. printk("No phy bus ID specified in BSP code\n");
  637. return -EINVAL;
  638. }
  639. if (IS_ERR(phydev)) {
  640. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  641. return PTR_ERR(phydev);
  642. }
  643. fep->phydev = phydev;
  644. return 0;
  645. }
  646. static int fs_enet_open(struct net_device *dev)
  647. {
  648. struct fs_enet_private *fep = netdev_priv(dev);
  649. int r;
  650. int err;
  651. /* Install our interrupt handler. */
  652. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  653. if (r != 0) {
  654. printk(KERN_ERR DRV_MODULE_NAME
  655. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  656. return -EINVAL;
  657. }
  658. err = fs_init_phy(dev);
  659. if(err)
  660. return err;
  661. phy_start(fep->phydev);
  662. return 0;
  663. }
  664. static int fs_enet_close(struct net_device *dev)
  665. {
  666. struct fs_enet_private *fep = netdev_priv(dev);
  667. unsigned long flags;
  668. netif_stop_queue(dev);
  669. netif_carrier_off(dev);
  670. phy_stop(fep->phydev);
  671. spin_lock_irqsave(&fep->lock, flags);
  672. (*fep->ops->stop)(dev);
  673. spin_unlock_irqrestore(&fep->lock, flags);
  674. /* release any irqs */
  675. phy_disconnect(fep->phydev);
  676. fep->phydev = NULL;
  677. fs_free_irq(dev, fep->interrupt);
  678. return 0;
  679. }
  680. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  681. {
  682. struct fs_enet_private *fep = netdev_priv(dev);
  683. return &fep->stats;
  684. }
  685. /*************************************************************************/
  686. static void fs_get_drvinfo(struct net_device *dev,
  687. struct ethtool_drvinfo *info)
  688. {
  689. strcpy(info->driver, DRV_MODULE_NAME);
  690. strcpy(info->version, DRV_MODULE_VERSION);
  691. }
  692. static int fs_get_regs_len(struct net_device *dev)
  693. {
  694. struct fs_enet_private *fep = netdev_priv(dev);
  695. return (*fep->ops->get_regs_len)(dev);
  696. }
  697. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  698. void *p)
  699. {
  700. struct fs_enet_private *fep = netdev_priv(dev);
  701. unsigned long flags;
  702. int r, len;
  703. len = regs->len;
  704. spin_lock_irqsave(&fep->lock, flags);
  705. r = (*fep->ops->get_regs)(dev, p, &len);
  706. spin_unlock_irqrestore(&fep->lock, flags);
  707. if (r == 0)
  708. regs->version = 0;
  709. }
  710. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  711. {
  712. struct fs_enet_private *fep = netdev_priv(dev);
  713. return phy_ethtool_gset(fep->phydev, cmd);
  714. }
  715. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  716. {
  717. struct fs_enet_private *fep = netdev_priv(dev);
  718. phy_ethtool_sset(fep->phydev, cmd);
  719. return 0;
  720. }
  721. static int fs_nway_reset(struct net_device *dev)
  722. {
  723. return 0;
  724. }
  725. static u32 fs_get_msglevel(struct net_device *dev)
  726. {
  727. struct fs_enet_private *fep = netdev_priv(dev);
  728. return fep->msg_enable;
  729. }
  730. static void fs_set_msglevel(struct net_device *dev, u32 value)
  731. {
  732. struct fs_enet_private *fep = netdev_priv(dev);
  733. fep->msg_enable = value;
  734. }
  735. static const struct ethtool_ops fs_ethtool_ops = {
  736. .get_drvinfo = fs_get_drvinfo,
  737. .get_regs_len = fs_get_regs_len,
  738. .get_settings = fs_get_settings,
  739. .set_settings = fs_set_settings,
  740. .nway_reset = fs_nway_reset,
  741. .get_link = ethtool_op_get_link,
  742. .get_msglevel = fs_get_msglevel,
  743. .set_msglevel = fs_set_msglevel,
  744. .get_tx_csum = ethtool_op_get_tx_csum,
  745. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  746. .get_sg = ethtool_op_get_sg,
  747. .set_sg = ethtool_op_set_sg,
  748. .get_regs = fs_get_regs,
  749. };
  750. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  751. {
  752. struct fs_enet_private *fep = netdev_priv(dev);
  753. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  754. unsigned long flags;
  755. int rc;
  756. if (!netif_running(dev))
  757. return -EINVAL;
  758. spin_lock_irqsave(&fep->lock, flags);
  759. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  760. spin_unlock_irqrestore(&fep->lock, flags);
  761. return rc;
  762. }
  763. extern int fs_mii_connect(struct net_device *dev);
  764. extern void fs_mii_disconnect(struct net_device *dev);
  765. static struct net_device *fs_init_instance(struct device *dev,
  766. struct fs_platform_info *fpi)
  767. {
  768. struct net_device *ndev = NULL;
  769. struct fs_enet_private *fep = NULL;
  770. int privsize, i, r, err = 0, registered = 0;
  771. fpi->fs_no = fs_get_id(fpi);
  772. /* guard */
  773. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  774. return ERR_PTR(-EINVAL);
  775. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  776. (fpi->rx_ring + fpi->tx_ring));
  777. ndev = alloc_etherdev(privsize);
  778. if (!ndev) {
  779. err = -ENOMEM;
  780. goto err;
  781. }
  782. SET_MODULE_OWNER(ndev);
  783. fep = netdev_priv(ndev);
  784. memset(fep, 0, privsize); /* clear everything */
  785. fep->dev = dev;
  786. dev_set_drvdata(dev, ndev);
  787. fep->fpi = fpi;
  788. if (fpi->init_ioports)
  789. fpi->init_ioports((struct fs_platform_info *)fpi);
  790. #ifdef CONFIG_FS_ENET_HAS_FEC
  791. if (fs_get_fec_index(fpi->fs_no) >= 0)
  792. fep->ops = &fs_fec_ops;
  793. #endif
  794. #ifdef CONFIG_FS_ENET_HAS_SCC
  795. if (fs_get_scc_index(fpi->fs_no) >=0 )
  796. fep->ops = &fs_scc_ops;
  797. #endif
  798. #ifdef CONFIG_FS_ENET_HAS_FCC
  799. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  800. fep->ops = &fs_fcc_ops;
  801. #endif
  802. if (fep->ops == NULL) {
  803. printk(KERN_ERR DRV_MODULE_NAME
  804. ": %s No matching ops found (%d).\n",
  805. ndev->name, fpi->fs_no);
  806. err = -EINVAL;
  807. goto err;
  808. }
  809. r = (*fep->ops->setup_data)(ndev);
  810. if (r != 0) {
  811. printk(KERN_ERR DRV_MODULE_NAME
  812. ": %s setup_data failed\n",
  813. ndev->name);
  814. err = r;
  815. goto err;
  816. }
  817. /* point rx_skbuff, tx_skbuff */
  818. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  819. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  820. /* init locks */
  821. spin_lock_init(&fep->lock);
  822. spin_lock_init(&fep->tx_lock);
  823. /*
  824. * Set the Ethernet address.
  825. */
  826. for (i = 0; i < 6; i++)
  827. ndev->dev_addr[i] = fpi->macaddr[i];
  828. r = (*fep->ops->allocate_bd)(ndev);
  829. if (fep->ring_base == NULL) {
  830. printk(KERN_ERR DRV_MODULE_NAME
  831. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  832. err = r;
  833. goto err;
  834. }
  835. /*
  836. * Set receive and transmit descriptor base.
  837. */
  838. fep->rx_bd_base = fep->ring_base;
  839. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  840. /* initialize ring size variables */
  841. fep->tx_ring = fpi->tx_ring;
  842. fep->rx_ring = fpi->rx_ring;
  843. /*
  844. * The FEC Ethernet specific entries in the device structure.
  845. */
  846. ndev->open = fs_enet_open;
  847. ndev->hard_start_xmit = fs_enet_start_xmit;
  848. ndev->tx_timeout = fs_timeout;
  849. ndev->watchdog_timeo = 2 * HZ;
  850. ndev->stop = fs_enet_close;
  851. ndev->get_stats = fs_enet_get_stats;
  852. ndev->set_multicast_list = fs_set_multicast_list;
  853. if (fpi->use_napi) {
  854. ndev->poll = fs_enet_rx_napi;
  855. ndev->weight = fpi->napi_weight;
  856. }
  857. ndev->ethtool_ops = &fs_ethtool_ops;
  858. ndev->do_ioctl = fs_ioctl;
  859. init_timer(&fep->phy_timer_list);
  860. netif_carrier_off(ndev);
  861. err = register_netdev(ndev);
  862. if (err != 0) {
  863. printk(KERN_ERR DRV_MODULE_NAME
  864. ": %s register_netdev failed.\n", ndev->name);
  865. goto err;
  866. }
  867. registered = 1;
  868. return ndev;
  869. err:
  870. if (ndev != NULL) {
  871. if (registered)
  872. unregister_netdev(ndev);
  873. if (fep != NULL) {
  874. (*fep->ops->free_bd)(ndev);
  875. (*fep->ops->cleanup_data)(ndev);
  876. }
  877. free_netdev(ndev);
  878. }
  879. dev_set_drvdata(dev, NULL);
  880. return ERR_PTR(err);
  881. }
  882. static int fs_cleanup_instance(struct net_device *ndev)
  883. {
  884. struct fs_enet_private *fep;
  885. const struct fs_platform_info *fpi;
  886. struct device *dev;
  887. if (ndev == NULL)
  888. return -EINVAL;
  889. fep = netdev_priv(ndev);
  890. if (fep == NULL)
  891. return -EINVAL;
  892. fpi = fep->fpi;
  893. unregister_netdev(ndev);
  894. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  895. fep->ring_base, fep->ring_mem_addr);
  896. /* reset it */
  897. (*fep->ops->cleanup_data)(ndev);
  898. dev = fep->dev;
  899. if (dev != NULL) {
  900. dev_set_drvdata(dev, NULL);
  901. fep->dev = NULL;
  902. }
  903. free_netdev(ndev);
  904. return 0;
  905. }
  906. /**************************************************************************************/
  907. /* handy pointer to the immap */
  908. void *fs_enet_immap = NULL;
  909. static int setup_immap(void)
  910. {
  911. phys_addr_t paddr = 0;
  912. unsigned long size = 0;
  913. #ifdef CONFIG_CPM1
  914. paddr = IMAP_ADDR;
  915. size = 0x10000; /* map 64K */
  916. #endif
  917. #ifdef CONFIG_CPM2
  918. paddr = CPM_MAP_ADDR;
  919. size = 0x40000; /* map 256 K */
  920. #endif
  921. fs_enet_immap = ioremap(paddr, size);
  922. if (fs_enet_immap == NULL)
  923. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  924. return 0;
  925. }
  926. static void cleanup_immap(void)
  927. {
  928. if (fs_enet_immap != NULL) {
  929. iounmap(fs_enet_immap);
  930. fs_enet_immap = NULL;
  931. }
  932. }
  933. /**************************************************************************************/
  934. static int __devinit fs_enet_probe(struct device *dev)
  935. {
  936. struct net_device *ndev;
  937. /* no fixup - no device */
  938. if (dev->platform_data == NULL) {
  939. printk(KERN_INFO "fs_enet: "
  940. "probe called with no platform data; "
  941. "remove unused devices\n");
  942. return -ENODEV;
  943. }
  944. ndev = fs_init_instance(dev, dev->platform_data);
  945. if (IS_ERR(ndev))
  946. return PTR_ERR(ndev);
  947. return 0;
  948. }
  949. static int fs_enet_remove(struct device *dev)
  950. {
  951. return fs_cleanup_instance(dev_get_drvdata(dev));
  952. }
  953. static struct device_driver fs_enet_fec_driver = {
  954. .name = "fsl-cpm-fec",
  955. .bus = &platform_bus_type,
  956. .probe = fs_enet_probe,
  957. .remove = fs_enet_remove,
  958. #ifdef CONFIG_PM
  959. /* .suspend = fs_enet_suspend, TODO */
  960. /* .resume = fs_enet_resume, TODO */
  961. #endif
  962. };
  963. static struct device_driver fs_enet_scc_driver = {
  964. .name = "fsl-cpm-scc",
  965. .bus = &platform_bus_type,
  966. .probe = fs_enet_probe,
  967. .remove = fs_enet_remove,
  968. #ifdef CONFIG_PM
  969. /* .suspend = fs_enet_suspend, TODO */
  970. /* .resume = fs_enet_resume, TODO */
  971. #endif
  972. };
  973. static struct device_driver fs_enet_fcc_driver = {
  974. .name = "fsl-cpm-fcc",
  975. .bus = &platform_bus_type,
  976. .probe = fs_enet_probe,
  977. .remove = fs_enet_remove,
  978. #ifdef CONFIG_PM
  979. /* .suspend = fs_enet_suspend, TODO */
  980. /* .resume = fs_enet_resume, TODO */
  981. #endif
  982. };
  983. static int __init fs_init(void)
  984. {
  985. int r;
  986. printk(KERN_INFO
  987. "%s", version);
  988. r = setup_immap();
  989. if (r != 0)
  990. return r;
  991. #ifdef CONFIG_FS_ENET_HAS_FCC
  992. /* let's insert mii stuff */
  993. r = fs_enet_mdio_bb_init();
  994. if (r != 0) {
  995. printk(KERN_ERR DRV_MODULE_NAME
  996. "BB PHY init failed.\n");
  997. return r;
  998. }
  999. r = driver_register(&fs_enet_fcc_driver);
  1000. if (r != 0)
  1001. goto err;
  1002. #endif
  1003. #ifdef CONFIG_FS_ENET_HAS_FEC
  1004. r = fs_enet_mdio_fec_init();
  1005. if (r != 0) {
  1006. printk(KERN_ERR DRV_MODULE_NAME
  1007. "FEC PHY init failed.\n");
  1008. return r;
  1009. }
  1010. r = driver_register(&fs_enet_fec_driver);
  1011. if (r != 0)
  1012. goto err;
  1013. #endif
  1014. #ifdef CONFIG_FS_ENET_HAS_SCC
  1015. r = driver_register(&fs_enet_scc_driver);
  1016. if (r != 0)
  1017. goto err;
  1018. #endif
  1019. return 0;
  1020. err:
  1021. cleanup_immap();
  1022. return r;
  1023. }
  1024. static void __exit fs_cleanup(void)
  1025. {
  1026. driver_unregister(&fs_enet_fec_driver);
  1027. driver_unregister(&fs_enet_fcc_driver);
  1028. driver_unregister(&fs_enet_scc_driver);
  1029. cleanup_immap();
  1030. }
  1031. /**************************************************************************************/
  1032. module_init(fs_init);
  1033. module_exit(fs_cleanup);