aio.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/module.h>
  17. #include <linux/syscalls.h>
  18. #define DEBUG 0
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/file.h>
  22. #include <linux/mm.h>
  23. #include <linux/mman.h>
  24. #include <linux/slab.h>
  25. #include <linux/timer.h>
  26. #include <linux/aio.h>
  27. #include <linux/highmem.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/security.h>
  30. #include <asm/kmap_types.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/mmu_context.h>
  33. #if DEBUG > 1
  34. #define dprintk printk
  35. #else
  36. #define dprintk(x...) do { ; } while (0)
  37. #endif
  38. static long aio_run = 0; /* for testing only */
  39. static long aio_wakeups = 0; /* for testing only */
  40. /*------ sysctl variables----*/
  41. atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */
  42. unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  43. /*----end sysctl variables---*/
  44. static kmem_cache_t *kiocb_cachep;
  45. static kmem_cache_t *kioctx_cachep;
  46. static struct workqueue_struct *aio_wq;
  47. /* Used for rare fput completion. */
  48. static void aio_fput_routine(void *);
  49. static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
  50. static DEFINE_SPINLOCK(fput_lock);
  51. static LIST_HEAD(fput_head);
  52. static void aio_kick_handler(void *);
  53. /* aio_setup
  54. * Creates the slab caches used by the aio routines, panic on
  55. * failure as this is done early during the boot sequence.
  56. */
  57. static int __init aio_setup(void)
  58. {
  59. kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
  60. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  61. kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
  62. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  63. aio_wq = create_workqueue("aio");
  64. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  65. return 0;
  66. }
  67. static void aio_free_ring(struct kioctx *ctx)
  68. {
  69. struct aio_ring_info *info = &ctx->ring_info;
  70. long i;
  71. for (i=0; i<info->nr_pages; i++)
  72. put_page(info->ring_pages[i]);
  73. if (info->mmap_size) {
  74. down_write(&ctx->mm->mmap_sem);
  75. do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
  76. up_write(&ctx->mm->mmap_sem);
  77. }
  78. if (info->ring_pages && info->ring_pages != info->internal_pages)
  79. kfree(info->ring_pages);
  80. info->ring_pages = NULL;
  81. info->nr = 0;
  82. }
  83. static int aio_setup_ring(struct kioctx *ctx)
  84. {
  85. struct aio_ring *ring;
  86. struct aio_ring_info *info = &ctx->ring_info;
  87. unsigned nr_events = ctx->max_reqs;
  88. unsigned long size;
  89. int nr_pages;
  90. /* Compensate for the ring buffer's head/tail overlap entry */
  91. nr_events += 2; /* 1 is required, 2 for good luck */
  92. size = sizeof(struct aio_ring);
  93. size += sizeof(struct io_event) * nr_events;
  94. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  95. if (nr_pages < 0)
  96. return -EINVAL;
  97. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  98. info->nr = 0;
  99. info->ring_pages = info->internal_pages;
  100. if (nr_pages > AIO_RING_PAGES) {
  101. info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
  102. if (!info->ring_pages)
  103. return -ENOMEM;
  104. memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
  105. }
  106. info->mmap_size = nr_pages * PAGE_SIZE;
  107. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  108. down_write(&ctx->mm->mmap_sem);
  109. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  110. PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
  111. 0);
  112. if (IS_ERR((void *)info->mmap_base)) {
  113. up_write(&ctx->mm->mmap_sem);
  114. printk("mmap err: %ld\n", -info->mmap_base);
  115. info->mmap_size = 0;
  116. aio_free_ring(ctx);
  117. return -EAGAIN;
  118. }
  119. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  120. info->nr_pages = get_user_pages(current, ctx->mm,
  121. info->mmap_base, nr_pages,
  122. 1, 0, info->ring_pages, NULL);
  123. up_write(&ctx->mm->mmap_sem);
  124. if (unlikely(info->nr_pages != nr_pages)) {
  125. aio_free_ring(ctx);
  126. return -EAGAIN;
  127. }
  128. ctx->user_id = info->mmap_base;
  129. info->nr = nr_events; /* trusted copy */
  130. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  131. ring->nr = nr_events; /* user copy */
  132. ring->id = ctx->user_id;
  133. ring->head = ring->tail = 0;
  134. ring->magic = AIO_RING_MAGIC;
  135. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  136. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  137. ring->header_length = sizeof(struct aio_ring);
  138. kunmap_atomic(ring, KM_USER0);
  139. return 0;
  140. }
  141. /* aio_ring_event: returns a pointer to the event at the given index from
  142. * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
  143. */
  144. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  145. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  146. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  147. #define aio_ring_event(info, nr, km) ({ \
  148. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  149. struct io_event *__event; \
  150. __event = kmap_atomic( \
  151. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
  152. __event += pos % AIO_EVENTS_PER_PAGE; \
  153. __event; \
  154. })
  155. #define put_aio_ring_event(event, km) do { \
  156. struct io_event *__event = (event); \
  157. (void)__event; \
  158. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
  159. } while(0)
  160. /* ioctx_alloc
  161. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  162. */
  163. static struct kioctx *ioctx_alloc(unsigned nr_events)
  164. {
  165. struct mm_struct *mm;
  166. struct kioctx *ctx;
  167. /* Prevent overflows */
  168. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  169. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  170. pr_debug("ENOMEM: nr_events too high\n");
  171. return ERR_PTR(-EINVAL);
  172. }
  173. if (nr_events > aio_max_nr)
  174. return ERR_PTR(-EAGAIN);
  175. ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
  176. if (!ctx)
  177. return ERR_PTR(-ENOMEM);
  178. memset(ctx, 0, sizeof(*ctx));
  179. ctx->max_reqs = nr_events;
  180. mm = ctx->mm = current->mm;
  181. atomic_inc(&mm->mm_count);
  182. atomic_set(&ctx->users, 1);
  183. spin_lock_init(&ctx->ctx_lock);
  184. spin_lock_init(&ctx->ring_info.ring_lock);
  185. init_waitqueue_head(&ctx->wait);
  186. INIT_LIST_HEAD(&ctx->active_reqs);
  187. INIT_LIST_HEAD(&ctx->run_list);
  188. INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
  189. if (aio_setup_ring(ctx) < 0)
  190. goto out_freectx;
  191. /* limit the number of system wide aios */
  192. atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */
  193. if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
  194. goto out_cleanup;
  195. /* now link into global list. kludge. FIXME */
  196. write_lock(&mm->ioctx_list_lock);
  197. ctx->next = mm->ioctx_list;
  198. mm->ioctx_list = ctx;
  199. write_unlock(&mm->ioctx_list_lock);
  200. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  201. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  202. return ctx;
  203. out_cleanup:
  204. atomic_sub(ctx->max_reqs, &aio_nr);
  205. ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */
  206. __put_ioctx(ctx);
  207. return ERR_PTR(-EAGAIN);
  208. out_freectx:
  209. mmdrop(mm);
  210. kmem_cache_free(kioctx_cachep, ctx);
  211. ctx = ERR_PTR(-ENOMEM);
  212. dprintk("aio: error allocating ioctx %p\n", ctx);
  213. return ctx;
  214. }
  215. /* aio_cancel_all
  216. * Cancels all outstanding aio requests on an aio context. Used
  217. * when the processes owning a context have all exited to encourage
  218. * the rapid destruction of the kioctx.
  219. */
  220. static void aio_cancel_all(struct kioctx *ctx)
  221. {
  222. int (*cancel)(struct kiocb *, struct io_event *);
  223. struct io_event res;
  224. spin_lock_irq(&ctx->ctx_lock);
  225. ctx->dead = 1;
  226. while (!list_empty(&ctx->active_reqs)) {
  227. struct list_head *pos = ctx->active_reqs.next;
  228. struct kiocb *iocb = list_kiocb(pos);
  229. list_del_init(&iocb->ki_list);
  230. cancel = iocb->ki_cancel;
  231. kiocbSetCancelled(iocb);
  232. if (cancel) {
  233. iocb->ki_users++;
  234. spin_unlock_irq(&ctx->ctx_lock);
  235. cancel(iocb, &res);
  236. spin_lock_irq(&ctx->ctx_lock);
  237. }
  238. }
  239. spin_unlock_irq(&ctx->ctx_lock);
  240. }
  241. static void wait_for_all_aios(struct kioctx *ctx)
  242. {
  243. struct task_struct *tsk = current;
  244. DECLARE_WAITQUEUE(wait, tsk);
  245. if (!ctx->reqs_active)
  246. return;
  247. add_wait_queue(&ctx->wait, &wait);
  248. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  249. while (ctx->reqs_active) {
  250. schedule();
  251. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  252. }
  253. __set_task_state(tsk, TASK_RUNNING);
  254. remove_wait_queue(&ctx->wait, &wait);
  255. }
  256. /* wait_on_sync_kiocb:
  257. * Waits on the given sync kiocb to complete.
  258. */
  259. ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
  260. {
  261. while (iocb->ki_users) {
  262. set_current_state(TASK_UNINTERRUPTIBLE);
  263. if (!iocb->ki_users)
  264. break;
  265. schedule();
  266. }
  267. __set_current_state(TASK_RUNNING);
  268. return iocb->ki_user_data;
  269. }
  270. /* exit_aio: called when the last user of mm goes away. At this point,
  271. * there is no way for any new requests to be submited or any of the
  272. * io_* syscalls to be called on the context. However, there may be
  273. * outstanding requests which hold references to the context; as they
  274. * go away, they will call put_ioctx and release any pinned memory
  275. * associated with the request (held via struct page * references).
  276. */
  277. void fastcall exit_aio(struct mm_struct *mm)
  278. {
  279. struct kioctx *ctx = mm->ioctx_list;
  280. mm->ioctx_list = NULL;
  281. while (ctx) {
  282. struct kioctx *next = ctx->next;
  283. ctx->next = NULL;
  284. aio_cancel_all(ctx);
  285. wait_for_all_aios(ctx);
  286. /*
  287. * this is an overkill, but ensures we don't leave
  288. * the ctx on the aio_wq
  289. */
  290. flush_workqueue(aio_wq);
  291. if (1 != atomic_read(&ctx->users))
  292. printk(KERN_DEBUG
  293. "exit_aio:ioctx still alive: %d %d %d\n",
  294. atomic_read(&ctx->users), ctx->dead,
  295. ctx->reqs_active);
  296. put_ioctx(ctx);
  297. ctx = next;
  298. }
  299. }
  300. /* __put_ioctx
  301. * Called when the last user of an aio context has gone away,
  302. * and the struct needs to be freed.
  303. */
  304. void fastcall __put_ioctx(struct kioctx *ctx)
  305. {
  306. unsigned nr_events = ctx->max_reqs;
  307. if (unlikely(ctx->reqs_active))
  308. BUG();
  309. cancel_delayed_work(&ctx->wq);
  310. flush_workqueue(aio_wq);
  311. aio_free_ring(ctx);
  312. mmdrop(ctx->mm);
  313. ctx->mm = NULL;
  314. pr_debug("__put_ioctx: freeing %p\n", ctx);
  315. kmem_cache_free(kioctx_cachep, ctx);
  316. atomic_sub(nr_events, &aio_nr);
  317. }
  318. /* aio_get_req
  319. * Allocate a slot for an aio request. Increments the users count
  320. * of the kioctx so that the kioctx stays around until all requests are
  321. * complete. Returns NULL if no requests are free.
  322. *
  323. * Returns with kiocb->users set to 2. The io submit code path holds
  324. * an extra reference while submitting the i/o.
  325. * This prevents races between the aio code path referencing the
  326. * req (after submitting it) and aio_complete() freeing the req.
  327. */
  328. static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
  329. static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
  330. {
  331. struct kiocb *req = NULL;
  332. struct aio_ring *ring;
  333. int okay = 0;
  334. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  335. if (unlikely(!req))
  336. return NULL;
  337. req->ki_flags = 1 << KIF_LOCKED;
  338. req->ki_users = 2;
  339. req->ki_key = 0;
  340. req->ki_ctx = ctx;
  341. req->ki_cancel = NULL;
  342. req->ki_retry = NULL;
  343. req->ki_dtor = NULL;
  344. req->private = NULL;
  345. INIT_LIST_HEAD(&req->ki_run_list);
  346. /* Check if the completion queue has enough free space to
  347. * accept an event from this io.
  348. */
  349. spin_lock_irq(&ctx->ctx_lock);
  350. ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
  351. if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
  352. list_add(&req->ki_list, &ctx->active_reqs);
  353. get_ioctx(ctx);
  354. ctx->reqs_active++;
  355. okay = 1;
  356. }
  357. kunmap_atomic(ring, KM_USER0);
  358. spin_unlock_irq(&ctx->ctx_lock);
  359. if (!okay) {
  360. kmem_cache_free(kiocb_cachep, req);
  361. req = NULL;
  362. }
  363. return req;
  364. }
  365. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  366. {
  367. struct kiocb *req;
  368. /* Handle a potential starvation case -- should be exceedingly rare as
  369. * requests will be stuck on fput_head only if the aio_fput_routine is
  370. * delayed and the requests were the last user of the struct file.
  371. */
  372. req = __aio_get_req(ctx);
  373. if (unlikely(NULL == req)) {
  374. aio_fput_routine(NULL);
  375. req = __aio_get_req(ctx);
  376. }
  377. return req;
  378. }
  379. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  380. {
  381. if (req->ki_dtor)
  382. req->ki_dtor(req);
  383. kmem_cache_free(kiocb_cachep, req);
  384. ctx->reqs_active--;
  385. if (unlikely(!ctx->reqs_active && ctx->dead))
  386. wake_up(&ctx->wait);
  387. }
  388. static void aio_fput_routine(void *data)
  389. {
  390. spin_lock_irq(&fput_lock);
  391. while (likely(!list_empty(&fput_head))) {
  392. struct kiocb *req = list_kiocb(fput_head.next);
  393. struct kioctx *ctx = req->ki_ctx;
  394. list_del(&req->ki_list);
  395. spin_unlock_irq(&fput_lock);
  396. /* Complete the fput */
  397. __fput(req->ki_filp);
  398. /* Link the iocb into the context's free list */
  399. spin_lock_irq(&ctx->ctx_lock);
  400. really_put_req(ctx, req);
  401. spin_unlock_irq(&ctx->ctx_lock);
  402. put_ioctx(ctx);
  403. spin_lock_irq(&fput_lock);
  404. }
  405. spin_unlock_irq(&fput_lock);
  406. }
  407. /* __aio_put_req
  408. * Returns true if this put was the last user of the request.
  409. */
  410. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  411. {
  412. dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
  413. req, atomic_read(&req->ki_filp->f_count));
  414. req->ki_users --;
  415. if (unlikely(req->ki_users < 0))
  416. BUG();
  417. if (likely(req->ki_users))
  418. return 0;
  419. list_del(&req->ki_list); /* remove from active_reqs */
  420. req->ki_cancel = NULL;
  421. req->ki_retry = NULL;
  422. /* Must be done under the lock to serialise against cancellation.
  423. * Call this aio_fput as it duplicates fput via the fput_work.
  424. */
  425. if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
  426. get_ioctx(ctx);
  427. spin_lock(&fput_lock);
  428. list_add(&req->ki_list, &fput_head);
  429. spin_unlock(&fput_lock);
  430. queue_work(aio_wq, &fput_work);
  431. } else
  432. really_put_req(ctx, req);
  433. return 1;
  434. }
  435. /* aio_put_req
  436. * Returns true if this put was the last user of the kiocb,
  437. * false if the request is still in use.
  438. */
  439. int fastcall aio_put_req(struct kiocb *req)
  440. {
  441. struct kioctx *ctx = req->ki_ctx;
  442. int ret;
  443. spin_lock_irq(&ctx->ctx_lock);
  444. ret = __aio_put_req(ctx, req);
  445. spin_unlock_irq(&ctx->ctx_lock);
  446. if (ret)
  447. put_ioctx(ctx);
  448. return ret;
  449. }
  450. /* Lookup an ioctx id. ioctx_list is lockless for reads.
  451. * FIXME: this is O(n) and is only suitable for development.
  452. */
  453. struct kioctx *lookup_ioctx(unsigned long ctx_id)
  454. {
  455. struct kioctx *ioctx;
  456. struct mm_struct *mm;
  457. mm = current->mm;
  458. read_lock(&mm->ioctx_list_lock);
  459. for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
  460. if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
  461. get_ioctx(ioctx);
  462. break;
  463. }
  464. read_unlock(&mm->ioctx_list_lock);
  465. return ioctx;
  466. }
  467. /*
  468. * use_mm
  469. * Makes the calling kernel thread take on the specified
  470. * mm context.
  471. * Called by the retry thread execute retries within the
  472. * iocb issuer's mm context, so that copy_from/to_user
  473. * operations work seamlessly for aio.
  474. * (Note: this routine is intended to be called only
  475. * from a kernel thread context)
  476. */
  477. static void use_mm(struct mm_struct *mm)
  478. {
  479. struct mm_struct *active_mm;
  480. struct task_struct *tsk = current;
  481. task_lock(tsk);
  482. tsk->flags |= PF_BORROWED_MM;
  483. active_mm = tsk->active_mm;
  484. atomic_inc(&mm->mm_count);
  485. tsk->mm = mm;
  486. tsk->active_mm = mm;
  487. activate_mm(active_mm, mm);
  488. task_unlock(tsk);
  489. mmdrop(active_mm);
  490. }
  491. /*
  492. * unuse_mm
  493. * Reverses the effect of use_mm, i.e. releases the
  494. * specified mm context which was earlier taken on
  495. * by the calling kernel thread
  496. * (Note: this routine is intended to be called only
  497. * from a kernel thread context)
  498. *
  499. * Comments: Called with ctx->ctx_lock held. This nests
  500. * task_lock instead ctx_lock.
  501. */
  502. static void unuse_mm(struct mm_struct *mm)
  503. {
  504. struct task_struct *tsk = current;
  505. task_lock(tsk);
  506. tsk->flags &= ~PF_BORROWED_MM;
  507. tsk->mm = NULL;
  508. /* active_mm is still 'mm' */
  509. enter_lazy_tlb(mm, tsk);
  510. task_unlock(tsk);
  511. }
  512. /*
  513. * Queue up a kiocb to be retried. Assumes that the kiocb
  514. * has already been marked as kicked, and places it on
  515. * the retry run list for the corresponding ioctx, if it
  516. * isn't already queued. Returns 1 if it actually queued
  517. * the kiocb (to tell the caller to activate the work
  518. * queue to process it), or 0, if it found that it was
  519. * already queued.
  520. *
  521. * Should be called with the spin lock iocb->ki_ctx->ctx_lock
  522. * held
  523. */
  524. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  525. {
  526. struct kioctx *ctx = iocb->ki_ctx;
  527. if (list_empty(&iocb->ki_run_list)) {
  528. list_add_tail(&iocb->ki_run_list,
  529. &ctx->run_list);
  530. iocb->ki_queued++;
  531. return 1;
  532. }
  533. return 0;
  534. }
  535. /* aio_run_iocb
  536. * This is the core aio execution routine. It is
  537. * invoked both for initial i/o submission and
  538. * subsequent retries via the aio_kick_handler.
  539. * Expects to be invoked with iocb->ki_ctx->lock
  540. * already held. The lock is released and reaquired
  541. * as needed during processing.
  542. *
  543. * Calls the iocb retry method (already setup for the
  544. * iocb on initial submission) for operation specific
  545. * handling, but takes care of most of common retry
  546. * execution details for a given iocb. The retry method
  547. * needs to be non-blocking as far as possible, to avoid
  548. * holding up other iocbs waiting to be serviced by the
  549. * retry kernel thread.
  550. *
  551. * The trickier parts in this code have to do with
  552. * ensuring that only one retry instance is in progress
  553. * for a given iocb at any time. Providing that guarantee
  554. * simplifies the coding of individual aio operations as
  555. * it avoids various potential races.
  556. */
  557. static ssize_t aio_run_iocb(struct kiocb *iocb)
  558. {
  559. struct kioctx *ctx = iocb->ki_ctx;
  560. ssize_t (*retry)(struct kiocb *);
  561. ssize_t ret;
  562. if (iocb->ki_retried++ > 1024*1024) {
  563. printk("Maximal retry count. Bytes done %Zd\n",
  564. iocb->ki_nbytes - iocb->ki_left);
  565. return -EAGAIN;
  566. }
  567. if (!(iocb->ki_retried & 0xff)) {
  568. pr_debug("%ld retry: %d of %d (kick %ld, Q %ld run %ld, wake %ld)\n",
  569. iocb->ki_retried,
  570. iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes,
  571. iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups);
  572. }
  573. if (!(retry = iocb->ki_retry)) {
  574. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  575. return 0;
  576. }
  577. /*
  578. * We don't want the next retry iteration for this
  579. * operation to start until this one has returned and
  580. * updated the iocb state. However, wait_queue functions
  581. * can trigger a kick_iocb from interrupt context in the
  582. * meantime, indicating that data is available for the next
  583. * iteration. We want to remember that and enable the
  584. * next retry iteration _after_ we are through with
  585. * this one.
  586. *
  587. * So, in order to be able to register a "kick", but
  588. * prevent it from being queued now, we clear the kick
  589. * flag, but make the kick code *think* that the iocb is
  590. * still on the run list until we are actually done.
  591. * When we are done with this iteration, we check if
  592. * the iocb was kicked in the meantime and if so, queue
  593. * it up afresh.
  594. */
  595. kiocbClearKicked(iocb);
  596. /*
  597. * This is so that aio_complete knows it doesn't need to
  598. * pull the iocb off the run list (We can't just call
  599. * INIT_LIST_HEAD because we don't want a kick_iocb to
  600. * queue this on the run list yet)
  601. */
  602. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  603. spin_unlock_irq(&ctx->ctx_lock);
  604. /* Quit retrying if the i/o has been cancelled */
  605. if (kiocbIsCancelled(iocb)) {
  606. ret = -EINTR;
  607. aio_complete(iocb, ret, 0);
  608. /* must not access the iocb after this */
  609. goto out;
  610. }
  611. /*
  612. * Now we are all set to call the retry method in async
  613. * context. By setting this thread's io_wait context
  614. * to point to the wait queue entry inside the currently
  615. * running iocb for the duration of the retry, we ensure
  616. * that async notification wakeups are queued by the
  617. * operation instead of blocking waits, and when notified,
  618. * cause the iocb to be kicked for continuation (through
  619. * the aio_wake_function callback).
  620. */
  621. BUG_ON(current->io_wait != NULL);
  622. current->io_wait = &iocb->ki_wait;
  623. ret = retry(iocb);
  624. current->io_wait = NULL;
  625. if (-EIOCBRETRY != ret) {
  626. if (-EIOCBQUEUED != ret) {
  627. BUG_ON(!list_empty(&iocb->ki_wait.task_list));
  628. aio_complete(iocb, ret, 0);
  629. /* must not access the iocb after this */
  630. }
  631. } else {
  632. /*
  633. * Issue an additional retry to avoid waiting forever if
  634. * no waits were queued (e.g. in case of a short read).
  635. */
  636. if (list_empty(&iocb->ki_wait.task_list))
  637. kiocbSetKicked(iocb);
  638. }
  639. out:
  640. spin_lock_irq(&ctx->ctx_lock);
  641. if (-EIOCBRETRY == ret) {
  642. /*
  643. * OK, now that we are done with this iteration
  644. * and know that there is more left to go,
  645. * this is where we let go so that a subsequent
  646. * "kick" can start the next iteration
  647. */
  648. /* will make __queue_kicked_iocb succeed from here on */
  649. INIT_LIST_HEAD(&iocb->ki_run_list);
  650. /* we must queue the next iteration ourselves, if it
  651. * has already been kicked */
  652. if (kiocbIsKicked(iocb)) {
  653. __queue_kicked_iocb(iocb);
  654. }
  655. }
  656. return ret;
  657. }
  658. /*
  659. * __aio_run_iocbs:
  660. * Process all pending retries queued on the ioctx
  661. * run list.
  662. * Assumes it is operating within the aio issuer's mm
  663. * context. Expects to be called with ctx->ctx_lock held
  664. */
  665. static int __aio_run_iocbs(struct kioctx *ctx)
  666. {
  667. struct kiocb *iocb;
  668. int count = 0;
  669. LIST_HEAD(run_list);
  670. list_splice_init(&ctx->run_list, &run_list);
  671. while (!list_empty(&run_list)) {
  672. iocb = list_entry(run_list.next, struct kiocb,
  673. ki_run_list);
  674. list_del(&iocb->ki_run_list);
  675. /*
  676. * Hold an extra reference while retrying i/o.
  677. */
  678. iocb->ki_users++; /* grab extra reference */
  679. aio_run_iocb(iocb);
  680. if (__aio_put_req(ctx, iocb)) /* drop extra ref */
  681. put_ioctx(ctx);
  682. count++;
  683. }
  684. aio_run++;
  685. if (!list_empty(&ctx->run_list))
  686. return 1;
  687. return 0;
  688. }
  689. static void aio_queue_work(struct kioctx * ctx)
  690. {
  691. unsigned long timeout;
  692. /*
  693. * if someone is waiting, get the work started right
  694. * away, otherwise, use a longer delay
  695. */
  696. smp_mb();
  697. if (waitqueue_active(&ctx->wait))
  698. timeout = 1;
  699. else
  700. timeout = HZ/10;
  701. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  702. }
  703. /*
  704. * aio_run_iocbs:
  705. * Process all pending retries queued on the ioctx
  706. * run list.
  707. * Assumes it is operating within the aio issuer's mm
  708. * context.
  709. */
  710. static inline void aio_run_iocbs(struct kioctx *ctx)
  711. {
  712. int requeue;
  713. spin_lock_irq(&ctx->ctx_lock);
  714. requeue = __aio_run_iocbs(ctx);
  715. spin_unlock_irq(&ctx->ctx_lock);
  716. if (requeue)
  717. aio_queue_work(ctx);
  718. }
  719. /*
  720. * just like aio_run_iocbs, but keeps running them until
  721. * the list stays empty
  722. */
  723. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  724. {
  725. spin_lock_irq(&ctx->ctx_lock);
  726. while (__aio_run_iocbs(ctx))
  727. ;
  728. spin_unlock_irq(&ctx->ctx_lock);
  729. }
  730. /*
  731. * aio_kick_handler:
  732. * Work queue handler triggered to process pending
  733. * retries on an ioctx. Takes on the aio issuer's
  734. * mm context before running the iocbs, so that
  735. * copy_xxx_user operates on the issuer's address
  736. * space.
  737. * Run on aiod's context.
  738. */
  739. static void aio_kick_handler(void *data)
  740. {
  741. struct kioctx *ctx = data;
  742. mm_segment_t oldfs = get_fs();
  743. int requeue;
  744. set_fs(USER_DS);
  745. use_mm(ctx->mm);
  746. spin_lock_irq(&ctx->ctx_lock);
  747. requeue =__aio_run_iocbs(ctx);
  748. unuse_mm(ctx->mm);
  749. spin_unlock_irq(&ctx->ctx_lock);
  750. set_fs(oldfs);
  751. /*
  752. * we're in a worker thread already, don't use queue_delayed_work,
  753. */
  754. if (requeue)
  755. queue_work(aio_wq, &ctx->wq);
  756. }
  757. /*
  758. * Called by kick_iocb to queue the kiocb for retry
  759. * and if required activate the aio work queue to process
  760. * it
  761. */
  762. static void queue_kicked_iocb(struct kiocb *iocb)
  763. {
  764. struct kioctx *ctx = iocb->ki_ctx;
  765. unsigned long flags;
  766. int run = 0;
  767. WARN_ON((!list_empty(&iocb->ki_wait.task_list)));
  768. spin_lock_irqsave(&ctx->ctx_lock, flags);
  769. run = __queue_kicked_iocb(iocb);
  770. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  771. if (run) {
  772. aio_queue_work(ctx);
  773. aio_wakeups++;
  774. }
  775. }
  776. /*
  777. * kick_iocb:
  778. * Called typically from a wait queue callback context
  779. * (aio_wake_function) to trigger a retry of the iocb.
  780. * The retry is usually executed by aio workqueue
  781. * threads (See aio_kick_handler).
  782. */
  783. void fastcall kick_iocb(struct kiocb *iocb)
  784. {
  785. /* sync iocbs are easy: they can only ever be executing from a
  786. * single context. */
  787. if (is_sync_kiocb(iocb)) {
  788. kiocbSetKicked(iocb);
  789. wake_up_process(iocb->ki_obj.tsk);
  790. return;
  791. }
  792. iocb->ki_kicked++;
  793. /* If its already kicked we shouldn't queue it again */
  794. if (!kiocbTryKick(iocb)) {
  795. queue_kicked_iocb(iocb);
  796. }
  797. }
  798. EXPORT_SYMBOL(kick_iocb);
  799. /* aio_complete
  800. * Called when the io request on the given iocb is complete.
  801. * Returns true if this is the last user of the request. The
  802. * only other user of the request can be the cancellation code.
  803. */
  804. int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
  805. {
  806. struct kioctx *ctx = iocb->ki_ctx;
  807. struct aio_ring_info *info;
  808. struct aio_ring *ring;
  809. struct io_event *event;
  810. unsigned long flags;
  811. unsigned long tail;
  812. int ret;
  813. /* Special case handling for sync iocbs: events go directly
  814. * into the iocb for fast handling. Note that this will not
  815. * work if we allow sync kiocbs to be cancelled. in which
  816. * case the usage count checks will have to move under ctx_lock
  817. * for all cases.
  818. */
  819. if (is_sync_kiocb(iocb)) {
  820. int ret;
  821. iocb->ki_user_data = res;
  822. if (iocb->ki_users == 1) {
  823. iocb->ki_users = 0;
  824. ret = 1;
  825. } else {
  826. spin_lock_irq(&ctx->ctx_lock);
  827. iocb->ki_users--;
  828. ret = (0 == iocb->ki_users);
  829. spin_unlock_irq(&ctx->ctx_lock);
  830. }
  831. /* sync iocbs put the task here for us */
  832. wake_up_process(iocb->ki_obj.tsk);
  833. return ret;
  834. }
  835. info = &ctx->ring_info;
  836. /* add a completion event to the ring buffer.
  837. * must be done holding ctx->ctx_lock to prevent
  838. * other code from messing with the tail
  839. * pointer since we might be called from irq
  840. * context.
  841. */
  842. spin_lock_irqsave(&ctx->ctx_lock, flags);
  843. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  844. list_del_init(&iocb->ki_run_list);
  845. /*
  846. * cancelled requests don't get events, userland was given one
  847. * when the event got cancelled.
  848. */
  849. if (kiocbIsCancelled(iocb))
  850. goto put_rq;
  851. ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
  852. tail = info->tail;
  853. event = aio_ring_event(info, tail, KM_IRQ0);
  854. if (++tail >= info->nr)
  855. tail = 0;
  856. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  857. event->data = iocb->ki_user_data;
  858. event->res = res;
  859. event->res2 = res2;
  860. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  861. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  862. res, res2);
  863. /* after flagging the request as done, we
  864. * must never even look at it again
  865. */
  866. smp_wmb(); /* make event visible before updating tail */
  867. info->tail = tail;
  868. ring->tail = tail;
  869. put_aio_ring_event(event, KM_IRQ0);
  870. kunmap_atomic(ring, KM_IRQ1);
  871. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  872. pr_debug("%ld retries: %d of %d (kicked %ld, Q %ld run %ld wake %ld)\n",
  873. iocb->ki_retried,
  874. iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes,
  875. iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups);
  876. put_rq:
  877. /* everything turned out well, dispose of the aiocb. */
  878. ret = __aio_put_req(ctx, iocb);
  879. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  880. if (waitqueue_active(&ctx->wait))
  881. wake_up(&ctx->wait);
  882. if (ret)
  883. put_ioctx(ctx);
  884. return ret;
  885. }
  886. /* aio_read_evt
  887. * Pull an event off of the ioctx's event ring. Returns the number of
  888. * events fetched (0 or 1 ;-)
  889. * FIXME: make this use cmpxchg.
  890. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  891. */
  892. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  893. {
  894. struct aio_ring_info *info = &ioctx->ring_info;
  895. struct aio_ring *ring;
  896. unsigned long head;
  897. int ret = 0;
  898. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  899. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  900. (unsigned long)ring->head, (unsigned long)ring->tail,
  901. (unsigned long)ring->nr);
  902. if (ring->head == ring->tail)
  903. goto out;
  904. spin_lock(&info->ring_lock);
  905. head = ring->head % info->nr;
  906. if (head != ring->tail) {
  907. struct io_event *evp = aio_ring_event(info, head, KM_USER1);
  908. *ent = *evp;
  909. head = (head + 1) % info->nr;
  910. smp_mb(); /* finish reading the event before updatng the head */
  911. ring->head = head;
  912. ret = 1;
  913. put_aio_ring_event(evp, KM_USER1);
  914. }
  915. spin_unlock(&info->ring_lock);
  916. out:
  917. kunmap_atomic(ring, KM_USER0);
  918. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  919. (unsigned long)ring->head, (unsigned long)ring->tail);
  920. return ret;
  921. }
  922. struct aio_timeout {
  923. struct timer_list timer;
  924. int timed_out;
  925. struct task_struct *p;
  926. };
  927. static void timeout_func(unsigned long data)
  928. {
  929. struct aio_timeout *to = (struct aio_timeout *)data;
  930. to->timed_out = 1;
  931. wake_up_process(to->p);
  932. }
  933. static inline void init_timeout(struct aio_timeout *to)
  934. {
  935. init_timer(&to->timer);
  936. to->timer.data = (unsigned long)to;
  937. to->timer.function = timeout_func;
  938. to->timed_out = 0;
  939. to->p = current;
  940. }
  941. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  942. const struct timespec *ts)
  943. {
  944. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  945. if (time_after(to->timer.expires, jiffies))
  946. add_timer(&to->timer);
  947. else
  948. to->timed_out = 1;
  949. }
  950. static inline void clear_timeout(struct aio_timeout *to)
  951. {
  952. del_singleshot_timer_sync(&to->timer);
  953. }
  954. static int read_events(struct kioctx *ctx,
  955. long min_nr, long nr,
  956. struct io_event __user *event,
  957. struct timespec __user *timeout)
  958. {
  959. long start_jiffies = jiffies;
  960. struct task_struct *tsk = current;
  961. DECLARE_WAITQUEUE(wait, tsk);
  962. int ret;
  963. int i = 0;
  964. struct io_event ent;
  965. struct aio_timeout to;
  966. int event_loop = 0; /* testing only */
  967. int retry = 0;
  968. /* needed to zero any padding within an entry (there shouldn't be
  969. * any, but C is fun!
  970. */
  971. memset(&ent, 0, sizeof(ent));
  972. retry:
  973. ret = 0;
  974. while (likely(i < nr)) {
  975. ret = aio_read_evt(ctx, &ent);
  976. if (unlikely(ret <= 0))
  977. break;
  978. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  979. ent.data, ent.obj, ent.res, ent.res2);
  980. /* Could we split the check in two? */
  981. ret = -EFAULT;
  982. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  983. dprintk("aio: lost an event due to EFAULT.\n");
  984. break;
  985. }
  986. ret = 0;
  987. /* Good, event copied to userland, update counts. */
  988. event ++;
  989. i ++;
  990. }
  991. if (min_nr <= i)
  992. return i;
  993. if (ret)
  994. return ret;
  995. /* End fast path */
  996. /* racey check, but it gets redone */
  997. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  998. retry = 1;
  999. aio_run_all_iocbs(ctx);
  1000. goto retry;
  1001. }
  1002. init_timeout(&to);
  1003. if (timeout) {
  1004. struct timespec ts;
  1005. ret = -EFAULT;
  1006. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  1007. goto out;
  1008. set_timeout(start_jiffies, &to, &ts);
  1009. }
  1010. while (likely(i < nr)) {
  1011. add_wait_queue_exclusive(&ctx->wait, &wait);
  1012. do {
  1013. set_task_state(tsk, TASK_INTERRUPTIBLE);
  1014. ret = aio_read_evt(ctx, &ent);
  1015. if (ret)
  1016. break;
  1017. if (min_nr <= i)
  1018. break;
  1019. ret = 0;
  1020. if (to.timed_out) /* Only check after read evt */
  1021. break;
  1022. schedule();
  1023. event_loop++;
  1024. if (signal_pending(tsk)) {
  1025. ret = -EINTR;
  1026. break;
  1027. }
  1028. /*ret = aio_read_evt(ctx, &ent);*/
  1029. } while (1) ;
  1030. set_task_state(tsk, TASK_RUNNING);
  1031. remove_wait_queue(&ctx->wait, &wait);
  1032. if (unlikely(ret <= 0))
  1033. break;
  1034. ret = -EFAULT;
  1035. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1036. dprintk("aio: lost an event due to EFAULT.\n");
  1037. break;
  1038. }
  1039. /* Good, event copied to userland, update counts. */
  1040. event ++;
  1041. i ++;
  1042. }
  1043. if (timeout)
  1044. clear_timeout(&to);
  1045. out:
  1046. pr_debug("event loop executed %d times\n", event_loop);
  1047. pr_debug("aio_run %ld\n", aio_run);
  1048. pr_debug("aio_wakeups %ld\n", aio_wakeups);
  1049. return i ? i : ret;
  1050. }
  1051. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1052. * against races with itself via ->dead.
  1053. */
  1054. static void io_destroy(struct kioctx *ioctx)
  1055. {
  1056. struct mm_struct *mm = current->mm;
  1057. struct kioctx **tmp;
  1058. int was_dead;
  1059. /* delete the entry from the list is someone else hasn't already */
  1060. write_lock(&mm->ioctx_list_lock);
  1061. was_dead = ioctx->dead;
  1062. ioctx->dead = 1;
  1063. for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
  1064. tmp = &(*tmp)->next)
  1065. ;
  1066. if (*tmp)
  1067. *tmp = ioctx->next;
  1068. write_unlock(&mm->ioctx_list_lock);
  1069. dprintk("aio_release(%p)\n", ioctx);
  1070. if (likely(!was_dead))
  1071. put_ioctx(ioctx); /* twice for the list */
  1072. aio_cancel_all(ioctx);
  1073. wait_for_all_aios(ioctx);
  1074. put_ioctx(ioctx); /* once for the lookup */
  1075. }
  1076. /* sys_io_setup:
  1077. * Create an aio_context capable of receiving at least nr_events.
  1078. * ctxp must not point to an aio_context that already exists, and
  1079. * must be initialized to 0 prior to the call. On successful
  1080. * creation of the aio_context, *ctxp is filled in with the resulting
  1081. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1082. * if the specified nr_events exceeds internal limits. May fail
  1083. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1084. * of available events. May fail with -ENOMEM if insufficient kernel
  1085. * resources are available. May fail with -EFAULT if an invalid
  1086. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1087. * implemented.
  1088. */
  1089. asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
  1090. {
  1091. struct kioctx *ioctx = NULL;
  1092. unsigned long ctx;
  1093. long ret;
  1094. ret = get_user(ctx, ctxp);
  1095. if (unlikely(ret))
  1096. goto out;
  1097. ret = -EINVAL;
  1098. if (unlikely(ctx || (int)nr_events <= 0)) {
  1099. pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
  1100. goto out;
  1101. }
  1102. ioctx = ioctx_alloc(nr_events);
  1103. ret = PTR_ERR(ioctx);
  1104. if (!IS_ERR(ioctx)) {
  1105. ret = put_user(ioctx->user_id, ctxp);
  1106. if (!ret)
  1107. return 0;
  1108. get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
  1109. io_destroy(ioctx);
  1110. }
  1111. out:
  1112. return ret;
  1113. }
  1114. /* sys_io_destroy:
  1115. * Destroy the aio_context specified. May cancel any outstanding
  1116. * AIOs and block on completion. Will fail with -ENOSYS if not
  1117. * implemented. May fail with -EFAULT if the context pointed to
  1118. * is invalid.
  1119. */
  1120. asmlinkage long sys_io_destroy(aio_context_t ctx)
  1121. {
  1122. struct kioctx *ioctx = lookup_ioctx(ctx);
  1123. if (likely(NULL != ioctx)) {
  1124. io_destroy(ioctx);
  1125. return 0;
  1126. }
  1127. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1128. return -EINVAL;
  1129. }
  1130. /*
  1131. * Default retry method for aio_read (also used for first time submit)
  1132. * Responsible for updating iocb state as retries progress
  1133. */
  1134. static ssize_t aio_pread(struct kiocb *iocb)
  1135. {
  1136. struct file *file = iocb->ki_filp;
  1137. struct address_space *mapping = file->f_mapping;
  1138. struct inode *inode = mapping->host;
  1139. ssize_t ret = 0;
  1140. ret = file->f_op->aio_read(iocb, iocb->ki_buf,
  1141. iocb->ki_left, iocb->ki_pos);
  1142. /*
  1143. * Can't just depend on iocb->ki_left to determine
  1144. * whether we are done. This may have been a short read.
  1145. */
  1146. if (ret > 0) {
  1147. iocb->ki_buf += ret;
  1148. iocb->ki_left -= ret;
  1149. /*
  1150. * For pipes and sockets we return once we have
  1151. * some data; for regular files we retry till we
  1152. * complete the entire read or find that we can't
  1153. * read any more data (e.g short reads).
  1154. */
  1155. if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))
  1156. ret = -EIOCBRETRY;
  1157. }
  1158. /* This means we must have transferred all that we could */
  1159. /* No need to retry anymore */
  1160. if ((ret == 0) || (iocb->ki_left == 0))
  1161. ret = iocb->ki_nbytes - iocb->ki_left;
  1162. return ret;
  1163. }
  1164. /*
  1165. * Default retry method for aio_write (also used for first time submit)
  1166. * Responsible for updating iocb state as retries progress
  1167. */
  1168. static ssize_t aio_pwrite(struct kiocb *iocb)
  1169. {
  1170. struct file *file = iocb->ki_filp;
  1171. ssize_t ret = 0;
  1172. ret = file->f_op->aio_write(iocb, iocb->ki_buf,
  1173. iocb->ki_left, iocb->ki_pos);
  1174. if (ret > 0) {
  1175. iocb->ki_buf += ret;
  1176. iocb->ki_left -= ret;
  1177. ret = -EIOCBRETRY;
  1178. }
  1179. /* This means we must have transferred all that we could */
  1180. /* No need to retry anymore */
  1181. if ((ret == 0) || (iocb->ki_left == 0))
  1182. ret = iocb->ki_nbytes - iocb->ki_left;
  1183. return ret;
  1184. }
  1185. static ssize_t aio_fdsync(struct kiocb *iocb)
  1186. {
  1187. struct file *file = iocb->ki_filp;
  1188. ssize_t ret = -EINVAL;
  1189. if (file->f_op->aio_fsync)
  1190. ret = file->f_op->aio_fsync(iocb, 1);
  1191. return ret;
  1192. }
  1193. static ssize_t aio_fsync(struct kiocb *iocb)
  1194. {
  1195. struct file *file = iocb->ki_filp;
  1196. ssize_t ret = -EINVAL;
  1197. if (file->f_op->aio_fsync)
  1198. ret = file->f_op->aio_fsync(iocb, 0);
  1199. return ret;
  1200. }
  1201. /*
  1202. * aio_setup_iocb:
  1203. * Performs the initial checks and aio retry method
  1204. * setup for the kiocb at the time of io submission.
  1205. */
  1206. static ssize_t aio_setup_iocb(struct kiocb *kiocb)
  1207. {
  1208. struct file *file = kiocb->ki_filp;
  1209. ssize_t ret = 0;
  1210. switch (kiocb->ki_opcode) {
  1211. case IOCB_CMD_PREAD:
  1212. ret = -EBADF;
  1213. if (unlikely(!(file->f_mode & FMODE_READ)))
  1214. break;
  1215. ret = -EFAULT;
  1216. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1217. kiocb->ki_left)))
  1218. break;
  1219. ret = -EINVAL;
  1220. if (file->f_op->aio_read)
  1221. kiocb->ki_retry = aio_pread;
  1222. break;
  1223. case IOCB_CMD_PWRITE:
  1224. ret = -EBADF;
  1225. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1226. break;
  1227. ret = -EFAULT;
  1228. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1229. kiocb->ki_left)))
  1230. break;
  1231. ret = -EINVAL;
  1232. if (file->f_op->aio_write)
  1233. kiocb->ki_retry = aio_pwrite;
  1234. break;
  1235. case IOCB_CMD_FDSYNC:
  1236. ret = -EINVAL;
  1237. if (file->f_op->aio_fsync)
  1238. kiocb->ki_retry = aio_fdsync;
  1239. break;
  1240. case IOCB_CMD_FSYNC:
  1241. ret = -EINVAL;
  1242. if (file->f_op->aio_fsync)
  1243. kiocb->ki_retry = aio_fsync;
  1244. break;
  1245. default:
  1246. dprintk("EINVAL: io_submit: no operation provided\n");
  1247. ret = -EINVAL;
  1248. }
  1249. if (!kiocb->ki_retry)
  1250. return ret;
  1251. return 0;
  1252. }
  1253. /*
  1254. * aio_wake_function:
  1255. * wait queue callback function for aio notification,
  1256. * Simply triggers a retry of the operation via kick_iocb.
  1257. *
  1258. * This callback is specified in the wait queue entry in
  1259. * a kiocb (current->io_wait points to this wait queue
  1260. * entry when an aio operation executes; it is used
  1261. * instead of a synchronous wait when an i/o blocking
  1262. * condition is encountered during aio).
  1263. *
  1264. * Note:
  1265. * This routine is executed with the wait queue lock held.
  1266. * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
  1267. * the ioctx lock inside the wait queue lock. This is safe
  1268. * because this callback isn't used for wait queues which
  1269. * are nested inside ioctx lock (i.e. ctx->wait)
  1270. */
  1271. static int aio_wake_function(wait_queue_t *wait, unsigned mode,
  1272. int sync, void *key)
  1273. {
  1274. struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
  1275. list_del_init(&wait->task_list);
  1276. kick_iocb(iocb);
  1277. return 1;
  1278. }
  1279. int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1280. struct iocb *iocb)
  1281. {
  1282. struct kiocb *req;
  1283. struct file *file;
  1284. ssize_t ret;
  1285. /* enforce forwards compatibility on users */
  1286. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
  1287. iocb->aio_reserved3)) {
  1288. pr_debug("EINVAL: io_submit: reserve field set\n");
  1289. return -EINVAL;
  1290. }
  1291. /* prevent overflows */
  1292. if (unlikely(
  1293. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1294. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1295. ((ssize_t)iocb->aio_nbytes < 0)
  1296. )) {
  1297. pr_debug("EINVAL: io_submit: overflow check\n");
  1298. return -EINVAL;
  1299. }
  1300. file = fget(iocb->aio_fildes);
  1301. if (unlikely(!file))
  1302. return -EBADF;
  1303. req = aio_get_req(ctx); /* returns with 2 references to req */
  1304. if (unlikely(!req)) {
  1305. fput(file);
  1306. return -EAGAIN;
  1307. }
  1308. req->ki_filp = file;
  1309. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1310. if (unlikely(ret)) {
  1311. dprintk("EFAULT: aio_key\n");
  1312. goto out_put_req;
  1313. }
  1314. req->ki_obj.user = user_iocb;
  1315. req->ki_user_data = iocb->aio_data;
  1316. req->ki_pos = iocb->aio_offset;
  1317. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1318. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1319. req->ki_opcode = iocb->aio_lio_opcode;
  1320. init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
  1321. INIT_LIST_HEAD(&req->ki_wait.task_list);
  1322. req->ki_retried = 0;
  1323. req->ki_kicked = 0;
  1324. req->ki_queued = 0;
  1325. aio_run = 0;
  1326. aio_wakeups = 0;
  1327. ret = aio_setup_iocb(req);
  1328. if (ret)
  1329. goto out_put_req;
  1330. spin_lock_irq(&ctx->ctx_lock);
  1331. list_add_tail(&req->ki_run_list, &ctx->run_list);
  1332. /* drain the run list */
  1333. while (__aio_run_iocbs(ctx))
  1334. ;
  1335. spin_unlock_irq(&ctx->ctx_lock);
  1336. aio_put_req(req); /* drop extra ref to req */
  1337. return 0;
  1338. out_put_req:
  1339. aio_put_req(req); /* drop extra ref to req */
  1340. aio_put_req(req); /* drop i/o ref to req */
  1341. return ret;
  1342. }
  1343. /* sys_io_submit:
  1344. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1345. * the number of iocbs queued. May return -EINVAL if the aio_context
  1346. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1347. * *iocbpp[0] is not properly initialized, if the operation specified
  1348. * is invalid for the file descriptor in the iocb. May fail with
  1349. * -EFAULT if any of the data structures point to invalid data. May
  1350. * fail with -EBADF if the file descriptor specified in the first
  1351. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1352. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1353. * fail with -ENOSYS if not implemented.
  1354. */
  1355. asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
  1356. struct iocb __user * __user *iocbpp)
  1357. {
  1358. struct kioctx *ctx;
  1359. long ret = 0;
  1360. int i;
  1361. if (unlikely(nr < 0))
  1362. return -EINVAL;
  1363. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1364. return -EFAULT;
  1365. ctx = lookup_ioctx(ctx_id);
  1366. if (unlikely(!ctx)) {
  1367. pr_debug("EINVAL: io_submit: invalid context id\n");
  1368. return -EINVAL;
  1369. }
  1370. /*
  1371. * AKPM: should this return a partial result if some of the IOs were
  1372. * successfully submitted?
  1373. */
  1374. for (i=0; i<nr; i++) {
  1375. struct iocb __user *user_iocb;
  1376. struct iocb tmp;
  1377. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1378. ret = -EFAULT;
  1379. break;
  1380. }
  1381. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1382. ret = -EFAULT;
  1383. break;
  1384. }
  1385. ret = io_submit_one(ctx, user_iocb, &tmp);
  1386. if (ret)
  1387. break;
  1388. }
  1389. put_ioctx(ctx);
  1390. return i ? i : ret;
  1391. }
  1392. /* lookup_kiocb
  1393. * Finds a given iocb for cancellation.
  1394. * MUST be called with ctx->ctx_lock held.
  1395. */
  1396. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1397. u32 key)
  1398. {
  1399. struct list_head *pos;
  1400. /* TODO: use a hash or array, this sucks. */
  1401. list_for_each(pos, &ctx->active_reqs) {
  1402. struct kiocb *kiocb = list_kiocb(pos);
  1403. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1404. return kiocb;
  1405. }
  1406. return NULL;
  1407. }
  1408. /* sys_io_cancel:
  1409. * Attempts to cancel an iocb previously passed to io_submit. If
  1410. * the operation is successfully cancelled, the resulting event is
  1411. * copied into the memory pointed to by result without being placed
  1412. * into the completion queue and 0 is returned. May fail with
  1413. * -EFAULT if any of the data structures pointed to are invalid.
  1414. * May fail with -EINVAL if aio_context specified by ctx_id is
  1415. * invalid. May fail with -EAGAIN if the iocb specified was not
  1416. * cancelled. Will fail with -ENOSYS if not implemented.
  1417. */
  1418. asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
  1419. struct io_event __user *result)
  1420. {
  1421. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1422. struct kioctx *ctx;
  1423. struct kiocb *kiocb;
  1424. u32 key;
  1425. int ret;
  1426. ret = get_user(key, &iocb->aio_key);
  1427. if (unlikely(ret))
  1428. return -EFAULT;
  1429. ctx = lookup_ioctx(ctx_id);
  1430. if (unlikely(!ctx))
  1431. return -EINVAL;
  1432. spin_lock_irq(&ctx->ctx_lock);
  1433. ret = -EAGAIN;
  1434. kiocb = lookup_kiocb(ctx, iocb, key);
  1435. if (kiocb && kiocb->ki_cancel) {
  1436. cancel = kiocb->ki_cancel;
  1437. kiocb->ki_users ++;
  1438. kiocbSetCancelled(kiocb);
  1439. } else
  1440. cancel = NULL;
  1441. spin_unlock_irq(&ctx->ctx_lock);
  1442. if (NULL != cancel) {
  1443. struct io_event tmp;
  1444. pr_debug("calling cancel\n");
  1445. memset(&tmp, 0, sizeof(tmp));
  1446. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1447. tmp.data = kiocb->ki_user_data;
  1448. ret = cancel(kiocb, &tmp);
  1449. if (!ret) {
  1450. /* Cancellation succeeded -- copy the result
  1451. * into the user's buffer.
  1452. */
  1453. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1454. ret = -EFAULT;
  1455. }
  1456. } else
  1457. printk(KERN_DEBUG "iocb has no cancel operation\n");
  1458. put_ioctx(ctx);
  1459. return ret;
  1460. }
  1461. /* io_getevents:
  1462. * Attempts to read at least min_nr events and up to nr events from
  1463. * the completion queue for the aio_context specified by ctx_id. May
  1464. * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
  1465. * if nr is out of range, if when is out of range. May fail with
  1466. * -EFAULT if any of the memory specified to is invalid. May return
  1467. * 0 or < min_nr if no events are available and the timeout specified
  1468. * by when has elapsed, where when == NULL specifies an infinite
  1469. * timeout. Note that the timeout pointed to by when is relative and
  1470. * will be updated if not NULL and the operation blocks. Will fail
  1471. * with -ENOSYS if not implemented.
  1472. */
  1473. asmlinkage long sys_io_getevents(aio_context_t ctx_id,
  1474. long min_nr,
  1475. long nr,
  1476. struct io_event __user *events,
  1477. struct timespec __user *timeout)
  1478. {
  1479. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1480. long ret = -EINVAL;
  1481. if (likely(ioctx)) {
  1482. if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
  1483. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1484. put_ioctx(ioctx);
  1485. }
  1486. return ret;
  1487. }
  1488. __initcall(aio_setup);
  1489. EXPORT_SYMBOL(aio_complete);
  1490. EXPORT_SYMBOL(aio_put_req);
  1491. EXPORT_SYMBOL(wait_on_sync_kiocb);