core.c 196 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <asm/switch_to.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include <asm/mutex.h>
  78. #ifdef CONFIG_PARAVIRT
  79. #include <asm/paravirt.h>
  80. #endif
  81. #include "sched.h"
  82. #include "../workqueue_sched.h"
  83. #include "../smpboot.h"
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/sched.h>
  86. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  87. {
  88. unsigned long delta;
  89. ktime_t soft, hard, now;
  90. for (;;) {
  91. if (hrtimer_active(period_timer))
  92. break;
  93. now = hrtimer_cb_get_time(period_timer);
  94. hrtimer_forward(period_timer, now, period);
  95. soft = hrtimer_get_softexpires(period_timer);
  96. hard = hrtimer_get_expires(period_timer);
  97. delta = ktime_to_ns(ktime_sub(hard, soft));
  98. __hrtimer_start_range_ns(period_timer, soft, delta,
  99. HRTIMER_MODE_ABS_PINNED, 0);
  100. }
  101. }
  102. DEFINE_MUTEX(sched_domains_mutex);
  103. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  104. static void update_rq_clock_task(struct rq *rq, s64 delta);
  105. void update_rq_clock(struct rq *rq)
  106. {
  107. s64 delta;
  108. if (rq->skip_clock_update > 0)
  109. return;
  110. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  111. rq->clock += delta;
  112. update_rq_clock_task(rq, delta);
  113. }
  114. /*
  115. * Debugging: various feature bits
  116. */
  117. #define SCHED_FEAT(name, enabled) \
  118. (1UL << __SCHED_FEAT_##name) * enabled |
  119. const_debug unsigned int sysctl_sched_features =
  120. #include "features.h"
  121. 0;
  122. #undef SCHED_FEAT
  123. #ifdef CONFIG_SCHED_DEBUG
  124. #define SCHED_FEAT(name, enabled) \
  125. #name ,
  126. static __read_mostly char *sched_feat_names[] = {
  127. #include "features.h"
  128. NULL
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static ssize_t
  166. sched_feat_write(struct file *filp, const char __user *ubuf,
  167. size_t cnt, loff_t *ppos)
  168. {
  169. char buf[64];
  170. char *cmp;
  171. int neg = 0;
  172. int i;
  173. if (cnt > 63)
  174. cnt = 63;
  175. if (copy_from_user(&buf, ubuf, cnt))
  176. return -EFAULT;
  177. buf[cnt] = 0;
  178. cmp = strstrip(buf);
  179. if (strncmp(cmp, "NO_", 3) == 0) {
  180. neg = 1;
  181. cmp += 3;
  182. }
  183. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  184. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  185. if (neg) {
  186. sysctl_sched_features &= ~(1UL << i);
  187. sched_feat_disable(i);
  188. } else {
  189. sysctl_sched_features |= (1UL << i);
  190. sched_feat_enable(i);
  191. }
  192. break;
  193. }
  194. }
  195. if (i == __SCHED_FEAT_NR)
  196. return -EINVAL;
  197. *ppos += cnt;
  198. return cnt;
  199. }
  200. static int sched_feat_open(struct inode *inode, struct file *filp)
  201. {
  202. return single_open(filp, sched_feat_show, NULL);
  203. }
  204. static const struct file_operations sched_feat_fops = {
  205. .open = sched_feat_open,
  206. .write = sched_feat_write,
  207. .read = seq_read,
  208. .llseek = seq_lseek,
  209. .release = single_release,
  210. };
  211. static __init int sched_init_debug(void)
  212. {
  213. debugfs_create_file("sched_features", 0644, NULL, NULL,
  214. &sched_feat_fops);
  215. return 0;
  216. }
  217. late_initcall(sched_init_debug);
  218. #endif /* CONFIG_SCHED_DEBUG */
  219. /*
  220. * Number of tasks to iterate in a single balance run.
  221. * Limited because this is done with IRQs disabled.
  222. */
  223. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  224. /*
  225. * period over which we average the RT time consumption, measured
  226. * in ms.
  227. *
  228. * default: 1s
  229. */
  230. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  231. /*
  232. * period over which we measure -rt task cpu usage in us.
  233. * default: 1s
  234. */
  235. unsigned int sysctl_sched_rt_period = 1000000;
  236. __read_mostly int scheduler_running;
  237. /*
  238. * part of the period that we allow rt tasks to run in us.
  239. * default: 0.95s
  240. */
  241. int sysctl_sched_rt_runtime = 950000;
  242. /*
  243. * __task_rq_lock - lock the rq @p resides on.
  244. */
  245. static inline struct rq *__task_rq_lock(struct task_struct *p)
  246. __acquires(rq->lock)
  247. {
  248. struct rq *rq;
  249. lockdep_assert_held(&p->pi_lock);
  250. for (;;) {
  251. rq = task_rq(p);
  252. raw_spin_lock(&rq->lock);
  253. if (likely(rq == task_rq(p)))
  254. return rq;
  255. raw_spin_unlock(&rq->lock);
  256. }
  257. }
  258. /*
  259. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  260. */
  261. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  262. __acquires(p->pi_lock)
  263. __acquires(rq->lock)
  264. {
  265. struct rq *rq;
  266. for (;;) {
  267. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  268. rq = task_rq(p);
  269. raw_spin_lock(&rq->lock);
  270. if (likely(rq == task_rq(p)))
  271. return rq;
  272. raw_spin_unlock(&rq->lock);
  273. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  274. }
  275. }
  276. static void __task_rq_unlock(struct rq *rq)
  277. __releases(rq->lock)
  278. {
  279. raw_spin_unlock(&rq->lock);
  280. }
  281. static inline void
  282. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  283. __releases(rq->lock)
  284. __releases(p->pi_lock)
  285. {
  286. raw_spin_unlock(&rq->lock);
  287. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  288. }
  289. /*
  290. * this_rq_lock - lock this runqueue and disable interrupts.
  291. */
  292. static struct rq *this_rq_lock(void)
  293. __acquires(rq->lock)
  294. {
  295. struct rq *rq;
  296. local_irq_disable();
  297. rq = this_rq();
  298. raw_spin_lock(&rq->lock);
  299. return rq;
  300. }
  301. #ifdef CONFIG_SCHED_HRTICK
  302. /*
  303. * Use HR-timers to deliver accurate preemption points.
  304. *
  305. * Its all a bit involved since we cannot program an hrt while holding the
  306. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  307. * reschedule event.
  308. *
  309. * When we get rescheduled we reprogram the hrtick_timer outside of the
  310. * rq->lock.
  311. */
  312. static void hrtick_clear(struct rq *rq)
  313. {
  314. if (hrtimer_active(&rq->hrtick_timer))
  315. hrtimer_cancel(&rq->hrtick_timer);
  316. }
  317. /*
  318. * High-resolution timer tick.
  319. * Runs from hardirq context with interrupts disabled.
  320. */
  321. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  322. {
  323. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  324. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  325. raw_spin_lock(&rq->lock);
  326. update_rq_clock(rq);
  327. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  328. raw_spin_unlock(&rq->lock);
  329. return HRTIMER_NORESTART;
  330. }
  331. #ifdef CONFIG_SMP
  332. /*
  333. * called from hardirq (IPI) context
  334. */
  335. static void __hrtick_start(void *arg)
  336. {
  337. struct rq *rq = arg;
  338. raw_spin_lock(&rq->lock);
  339. hrtimer_restart(&rq->hrtick_timer);
  340. rq->hrtick_csd_pending = 0;
  341. raw_spin_unlock(&rq->lock);
  342. }
  343. /*
  344. * Called to set the hrtick timer state.
  345. *
  346. * called with rq->lock held and irqs disabled
  347. */
  348. void hrtick_start(struct rq *rq, u64 delay)
  349. {
  350. struct hrtimer *timer = &rq->hrtick_timer;
  351. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  352. hrtimer_set_expires(timer, time);
  353. if (rq == this_rq()) {
  354. hrtimer_restart(timer);
  355. } else if (!rq->hrtick_csd_pending) {
  356. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  357. rq->hrtick_csd_pending = 1;
  358. }
  359. }
  360. static int
  361. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  362. {
  363. int cpu = (int)(long)hcpu;
  364. switch (action) {
  365. case CPU_UP_CANCELED:
  366. case CPU_UP_CANCELED_FROZEN:
  367. case CPU_DOWN_PREPARE:
  368. case CPU_DOWN_PREPARE_FROZEN:
  369. case CPU_DEAD:
  370. case CPU_DEAD_FROZEN:
  371. hrtick_clear(cpu_rq(cpu));
  372. return NOTIFY_OK;
  373. }
  374. return NOTIFY_DONE;
  375. }
  376. static __init void init_hrtick(void)
  377. {
  378. hotcpu_notifier(hotplug_hrtick, 0);
  379. }
  380. #else
  381. /*
  382. * Called to set the hrtick timer state.
  383. *
  384. * called with rq->lock held and irqs disabled
  385. */
  386. void hrtick_start(struct rq *rq, u64 delay)
  387. {
  388. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  389. HRTIMER_MODE_REL_PINNED, 0);
  390. }
  391. static inline void init_hrtick(void)
  392. {
  393. }
  394. #endif /* CONFIG_SMP */
  395. static void init_rq_hrtick(struct rq *rq)
  396. {
  397. #ifdef CONFIG_SMP
  398. rq->hrtick_csd_pending = 0;
  399. rq->hrtick_csd.flags = 0;
  400. rq->hrtick_csd.func = __hrtick_start;
  401. rq->hrtick_csd.info = rq;
  402. #endif
  403. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  404. rq->hrtick_timer.function = hrtick;
  405. }
  406. #else /* CONFIG_SCHED_HRTICK */
  407. static inline void hrtick_clear(struct rq *rq)
  408. {
  409. }
  410. static inline void init_rq_hrtick(struct rq *rq)
  411. {
  412. }
  413. static inline void init_hrtick(void)
  414. {
  415. }
  416. #endif /* CONFIG_SCHED_HRTICK */
  417. /*
  418. * resched_task - mark a task 'to be rescheduled now'.
  419. *
  420. * On UP this means the setting of the need_resched flag, on SMP it
  421. * might also involve a cross-CPU call to trigger the scheduler on
  422. * the target CPU.
  423. */
  424. #ifdef CONFIG_SMP
  425. #ifndef tsk_is_polling
  426. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  427. #endif
  428. void resched_task(struct task_struct *p)
  429. {
  430. int cpu;
  431. assert_raw_spin_locked(&task_rq(p)->lock);
  432. if (test_tsk_need_resched(p))
  433. return;
  434. set_tsk_need_resched(p);
  435. cpu = task_cpu(p);
  436. if (cpu == smp_processor_id())
  437. return;
  438. /* NEED_RESCHED must be visible before we test polling */
  439. smp_mb();
  440. if (!tsk_is_polling(p))
  441. smp_send_reschedule(cpu);
  442. }
  443. void resched_cpu(int cpu)
  444. {
  445. struct rq *rq = cpu_rq(cpu);
  446. unsigned long flags;
  447. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  448. return;
  449. resched_task(cpu_curr(cpu));
  450. raw_spin_unlock_irqrestore(&rq->lock, flags);
  451. }
  452. #ifdef CONFIG_NO_HZ
  453. /*
  454. * In the semi idle case, use the nearest busy cpu for migrating timers
  455. * from an idle cpu. This is good for power-savings.
  456. *
  457. * We don't do similar optimization for completely idle system, as
  458. * selecting an idle cpu will add more delays to the timers than intended
  459. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  460. */
  461. int get_nohz_timer_target(void)
  462. {
  463. int cpu = smp_processor_id();
  464. int i;
  465. struct sched_domain *sd;
  466. rcu_read_lock();
  467. for_each_domain(cpu, sd) {
  468. for_each_cpu(i, sched_domain_span(sd)) {
  469. if (!idle_cpu(i)) {
  470. cpu = i;
  471. goto unlock;
  472. }
  473. }
  474. }
  475. unlock:
  476. rcu_read_unlock();
  477. return cpu;
  478. }
  479. /*
  480. * When add_timer_on() enqueues a timer into the timer wheel of an
  481. * idle CPU then this timer might expire before the next timer event
  482. * which is scheduled to wake up that CPU. In case of a completely
  483. * idle system the next event might even be infinite time into the
  484. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  485. * leaves the inner idle loop so the newly added timer is taken into
  486. * account when the CPU goes back to idle and evaluates the timer
  487. * wheel for the next timer event.
  488. */
  489. void wake_up_idle_cpu(int cpu)
  490. {
  491. struct rq *rq = cpu_rq(cpu);
  492. if (cpu == smp_processor_id())
  493. return;
  494. /*
  495. * This is safe, as this function is called with the timer
  496. * wheel base lock of (cpu) held. When the CPU is on the way
  497. * to idle and has not yet set rq->curr to idle then it will
  498. * be serialized on the timer wheel base lock and take the new
  499. * timer into account automatically.
  500. */
  501. if (rq->curr != rq->idle)
  502. return;
  503. /*
  504. * We can set TIF_RESCHED on the idle task of the other CPU
  505. * lockless. The worst case is that the other CPU runs the
  506. * idle task through an additional NOOP schedule()
  507. */
  508. set_tsk_need_resched(rq->idle);
  509. /* NEED_RESCHED must be visible before we test polling */
  510. smp_mb();
  511. if (!tsk_is_polling(rq->idle))
  512. smp_send_reschedule(cpu);
  513. }
  514. static inline bool got_nohz_idle_kick(void)
  515. {
  516. int cpu = smp_processor_id();
  517. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  518. }
  519. #else /* CONFIG_NO_HZ */
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. return false;
  523. }
  524. #endif /* CONFIG_NO_HZ */
  525. void sched_avg_update(struct rq *rq)
  526. {
  527. s64 period = sched_avg_period();
  528. while ((s64)(rq->clock - rq->age_stamp) > period) {
  529. /*
  530. * Inline assembly required to prevent the compiler
  531. * optimising this loop into a divmod call.
  532. * See __iter_div_u64_rem() for another example of this.
  533. */
  534. asm("" : "+rm" (rq->age_stamp));
  535. rq->age_stamp += period;
  536. rq->rt_avg /= 2;
  537. }
  538. }
  539. #else /* !CONFIG_SMP */
  540. void resched_task(struct task_struct *p)
  541. {
  542. assert_raw_spin_locked(&task_rq(p)->lock);
  543. set_tsk_need_resched(p);
  544. }
  545. #endif /* CONFIG_SMP */
  546. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  547. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  548. /*
  549. * Iterate task_group tree rooted at *from, calling @down when first entering a
  550. * node and @up when leaving it for the final time.
  551. *
  552. * Caller must hold rcu_lock or sufficient equivalent.
  553. */
  554. int walk_tg_tree_from(struct task_group *from,
  555. tg_visitor down, tg_visitor up, void *data)
  556. {
  557. struct task_group *parent, *child;
  558. int ret;
  559. parent = from;
  560. down:
  561. ret = (*down)(parent, data);
  562. if (ret)
  563. goto out;
  564. list_for_each_entry_rcu(child, &parent->children, siblings) {
  565. parent = child;
  566. goto down;
  567. up:
  568. continue;
  569. }
  570. ret = (*up)(parent, data);
  571. if (ret || parent == from)
  572. goto out;
  573. child = parent;
  574. parent = parent->parent;
  575. if (parent)
  576. goto up;
  577. out:
  578. return ret;
  579. }
  580. int tg_nop(struct task_group *tg, void *data)
  581. {
  582. return 0;
  583. }
  584. #endif
  585. static void set_load_weight(struct task_struct *p)
  586. {
  587. int prio = p->static_prio - MAX_RT_PRIO;
  588. struct load_weight *load = &p->se.load;
  589. /*
  590. * SCHED_IDLE tasks get minimal weight:
  591. */
  592. if (p->policy == SCHED_IDLE) {
  593. load->weight = scale_load(WEIGHT_IDLEPRIO);
  594. load->inv_weight = WMULT_IDLEPRIO;
  595. return;
  596. }
  597. load->weight = scale_load(prio_to_weight[prio]);
  598. load->inv_weight = prio_to_wmult[prio];
  599. }
  600. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  601. {
  602. update_rq_clock(rq);
  603. sched_info_queued(p);
  604. p->sched_class->enqueue_task(rq, p, flags);
  605. }
  606. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_dequeued(p);
  610. p->sched_class->dequeue_task(rq, p, flags);
  611. }
  612. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. if (task_contributes_to_load(p))
  615. rq->nr_uninterruptible--;
  616. enqueue_task(rq, p, flags);
  617. }
  618. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible++;
  622. dequeue_task(rq, p, flags);
  623. }
  624. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  625. /*
  626. * There are no locks covering percpu hardirq/softirq time.
  627. * They are only modified in account_system_vtime, on corresponding CPU
  628. * with interrupts disabled. So, writes are safe.
  629. * They are read and saved off onto struct rq in update_rq_clock().
  630. * This may result in other CPU reading this CPU's irq time and can
  631. * race with irq/account_system_vtime on this CPU. We would either get old
  632. * or new value with a side effect of accounting a slice of irq time to wrong
  633. * task when irq is in progress while we read rq->clock. That is a worthy
  634. * compromise in place of having locks on each irq in account_system_time.
  635. */
  636. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  637. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  638. static DEFINE_PER_CPU(u64, irq_start_time);
  639. static int sched_clock_irqtime;
  640. void enable_sched_clock_irqtime(void)
  641. {
  642. sched_clock_irqtime = 1;
  643. }
  644. void disable_sched_clock_irqtime(void)
  645. {
  646. sched_clock_irqtime = 0;
  647. }
  648. #ifndef CONFIG_64BIT
  649. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  650. static inline void irq_time_write_begin(void)
  651. {
  652. __this_cpu_inc(irq_time_seq.sequence);
  653. smp_wmb();
  654. }
  655. static inline void irq_time_write_end(void)
  656. {
  657. smp_wmb();
  658. __this_cpu_inc(irq_time_seq.sequence);
  659. }
  660. static inline u64 irq_time_read(int cpu)
  661. {
  662. u64 irq_time;
  663. unsigned seq;
  664. do {
  665. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  666. irq_time = per_cpu(cpu_softirq_time, cpu) +
  667. per_cpu(cpu_hardirq_time, cpu);
  668. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  669. return irq_time;
  670. }
  671. #else /* CONFIG_64BIT */
  672. static inline void irq_time_write_begin(void)
  673. {
  674. }
  675. static inline void irq_time_write_end(void)
  676. {
  677. }
  678. static inline u64 irq_time_read(int cpu)
  679. {
  680. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  681. }
  682. #endif /* CONFIG_64BIT */
  683. /*
  684. * Called before incrementing preempt_count on {soft,}irq_enter
  685. * and before decrementing preempt_count on {soft,}irq_exit.
  686. */
  687. void account_system_vtime(struct task_struct *curr)
  688. {
  689. unsigned long flags;
  690. s64 delta;
  691. int cpu;
  692. if (!sched_clock_irqtime)
  693. return;
  694. local_irq_save(flags);
  695. cpu = smp_processor_id();
  696. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  697. __this_cpu_add(irq_start_time, delta);
  698. irq_time_write_begin();
  699. /*
  700. * We do not account for softirq time from ksoftirqd here.
  701. * We want to continue accounting softirq time to ksoftirqd thread
  702. * in that case, so as not to confuse scheduler with a special task
  703. * that do not consume any time, but still wants to run.
  704. */
  705. if (hardirq_count())
  706. __this_cpu_add(cpu_hardirq_time, delta);
  707. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  708. __this_cpu_add(cpu_softirq_time, delta);
  709. irq_time_write_end();
  710. local_irq_restore(flags);
  711. }
  712. EXPORT_SYMBOL_GPL(account_system_vtime);
  713. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  714. #ifdef CONFIG_PARAVIRT
  715. static inline u64 steal_ticks(u64 steal)
  716. {
  717. if (unlikely(steal > NSEC_PER_SEC))
  718. return div_u64(steal, TICK_NSEC);
  719. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  720. }
  721. #endif
  722. static void update_rq_clock_task(struct rq *rq, s64 delta)
  723. {
  724. /*
  725. * In theory, the compile should just see 0 here, and optimize out the call
  726. * to sched_rt_avg_update. But I don't trust it...
  727. */
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. s64 steal = 0, irq_delta = 0;
  730. #endif
  731. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  732. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  733. /*
  734. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  735. * this case when a previous update_rq_clock() happened inside a
  736. * {soft,}irq region.
  737. *
  738. * When this happens, we stop ->clock_task and only update the
  739. * prev_irq_time stamp to account for the part that fit, so that a next
  740. * update will consume the rest. This ensures ->clock_task is
  741. * monotonic.
  742. *
  743. * It does however cause some slight miss-attribution of {soft,}irq
  744. * time, a more accurate solution would be to update the irq_time using
  745. * the current rq->clock timestamp, except that would require using
  746. * atomic ops.
  747. */
  748. if (irq_delta > delta)
  749. irq_delta = delta;
  750. rq->prev_irq_time += irq_delta;
  751. delta -= irq_delta;
  752. #endif
  753. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  754. if (static_key_false((&paravirt_steal_rq_enabled))) {
  755. u64 st;
  756. steal = paravirt_steal_clock(cpu_of(rq));
  757. steal -= rq->prev_steal_time_rq;
  758. if (unlikely(steal > delta))
  759. steal = delta;
  760. st = steal_ticks(steal);
  761. steal = st * TICK_NSEC;
  762. rq->prev_steal_time_rq += steal;
  763. delta -= steal;
  764. }
  765. #endif
  766. rq->clock_task += delta;
  767. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  768. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  769. sched_rt_avg_update(rq, irq_delta + steal);
  770. #endif
  771. }
  772. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  773. static int irqtime_account_hi_update(void)
  774. {
  775. u64 *cpustat = kcpustat_this_cpu->cpustat;
  776. unsigned long flags;
  777. u64 latest_ns;
  778. int ret = 0;
  779. local_irq_save(flags);
  780. latest_ns = this_cpu_read(cpu_hardirq_time);
  781. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  782. ret = 1;
  783. local_irq_restore(flags);
  784. return ret;
  785. }
  786. static int irqtime_account_si_update(void)
  787. {
  788. u64 *cpustat = kcpustat_this_cpu->cpustat;
  789. unsigned long flags;
  790. u64 latest_ns;
  791. int ret = 0;
  792. local_irq_save(flags);
  793. latest_ns = this_cpu_read(cpu_softirq_time);
  794. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  795. ret = 1;
  796. local_irq_restore(flags);
  797. return ret;
  798. }
  799. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  800. #define sched_clock_irqtime (0)
  801. #endif
  802. void sched_set_stop_task(int cpu, struct task_struct *stop)
  803. {
  804. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  805. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  806. if (stop) {
  807. /*
  808. * Make it appear like a SCHED_FIFO task, its something
  809. * userspace knows about and won't get confused about.
  810. *
  811. * Also, it will make PI more or less work without too
  812. * much confusion -- but then, stop work should not
  813. * rely on PI working anyway.
  814. */
  815. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  816. stop->sched_class = &stop_sched_class;
  817. }
  818. cpu_rq(cpu)->stop = stop;
  819. if (old_stop) {
  820. /*
  821. * Reset it back to a normal scheduling class so that
  822. * it can die in pieces.
  823. */
  824. old_stop->sched_class = &rt_sched_class;
  825. }
  826. }
  827. /*
  828. * __normal_prio - return the priority that is based on the static prio
  829. */
  830. static inline int __normal_prio(struct task_struct *p)
  831. {
  832. return p->static_prio;
  833. }
  834. /*
  835. * Calculate the expected normal priority: i.e. priority
  836. * without taking RT-inheritance into account. Might be
  837. * boosted by interactivity modifiers. Changes upon fork,
  838. * setprio syscalls, and whenever the interactivity
  839. * estimator recalculates.
  840. */
  841. static inline int normal_prio(struct task_struct *p)
  842. {
  843. int prio;
  844. if (task_has_rt_policy(p))
  845. prio = MAX_RT_PRIO-1 - p->rt_priority;
  846. else
  847. prio = __normal_prio(p);
  848. return prio;
  849. }
  850. /*
  851. * Calculate the current priority, i.e. the priority
  852. * taken into account by the scheduler. This value might
  853. * be boosted by RT tasks, or might be boosted by
  854. * interactivity modifiers. Will be RT if the task got
  855. * RT-boosted. If not then it returns p->normal_prio.
  856. */
  857. static int effective_prio(struct task_struct *p)
  858. {
  859. p->normal_prio = normal_prio(p);
  860. /*
  861. * If we are RT tasks or we were boosted to RT priority,
  862. * keep the priority unchanged. Otherwise, update priority
  863. * to the normal priority:
  864. */
  865. if (!rt_prio(p->prio))
  866. return p->normal_prio;
  867. return p->prio;
  868. }
  869. /**
  870. * task_curr - is this task currently executing on a CPU?
  871. * @p: the task in question.
  872. */
  873. inline int task_curr(const struct task_struct *p)
  874. {
  875. return cpu_curr(task_cpu(p)) == p;
  876. }
  877. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  878. const struct sched_class *prev_class,
  879. int oldprio)
  880. {
  881. if (prev_class != p->sched_class) {
  882. if (prev_class->switched_from)
  883. prev_class->switched_from(rq, p);
  884. p->sched_class->switched_to(rq, p);
  885. } else if (oldprio != p->prio)
  886. p->sched_class->prio_changed(rq, p, oldprio);
  887. }
  888. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  889. {
  890. const struct sched_class *class;
  891. if (p->sched_class == rq->curr->sched_class) {
  892. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  893. } else {
  894. for_each_class(class) {
  895. if (class == rq->curr->sched_class)
  896. break;
  897. if (class == p->sched_class) {
  898. resched_task(rq->curr);
  899. break;
  900. }
  901. }
  902. }
  903. /*
  904. * A queue event has occurred, and we're going to schedule. In
  905. * this case, we can save a useless back to back clock update.
  906. */
  907. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  908. rq->skip_clock_update = 1;
  909. }
  910. #ifdef CONFIG_SMP
  911. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  912. {
  913. #ifdef CONFIG_SCHED_DEBUG
  914. /*
  915. * We should never call set_task_cpu() on a blocked task,
  916. * ttwu() will sort out the placement.
  917. */
  918. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  919. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  920. #ifdef CONFIG_LOCKDEP
  921. /*
  922. * The caller should hold either p->pi_lock or rq->lock, when changing
  923. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  924. *
  925. * sched_move_task() holds both and thus holding either pins the cgroup,
  926. * see set_task_rq().
  927. *
  928. * Furthermore, all task_rq users should acquire both locks, see
  929. * task_rq_lock().
  930. */
  931. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  932. lockdep_is_held(&task_rq(p)->lock)));
  933. #endif
  934. #endif
  935. trace_sched_migrate_task(p, new_cpu);
  936. if (task_cpu(p) != new_cpu) {
  937. p->se.nr_migrations++;
  938. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  939. }
  940. __set_task_cpu(p, new_cpu);
  941. }
  942. struct migration_arg {
  943. struct task_struct *task;
  944. int dest_cpu;
  945. };
  946. static int migration_cpu_stop(void *data);
  947. /*
  948. * wait_task_inactive - wait for a thread to unschedule.
  949. *
  950. * If @match_state is nonzero, it's the @p->state value just checked and
  951. * not expected to change. If it changes, i.e. @p might have woken up,
  952. * then return zero. When we succeed in waiting for @p to be off its CPU,
  953. * we return a positive number (its total switch count). If a second call
  954. * a short while later returns the same number, the caller can be sure that
  955. * @p has remained unscheduled the whole time.
  956. *
  957. * The caller must ensure that the task *will* unschedule sometime soon,
  958. * else this function might spin for a *long* time. This function can't
  959. * be called with interrupts off, or it may introduce deadlock with
  960. * smp_call_function() if an IPI is sent by the same process we are
  961. * waiting to become inactive.
  962. */
  963. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  964. {
  965. unsigned long flags;
  966. int running, on_rq;
  967. unsigned long ncsw;
  968. struct rq *rq;
  969. for (;;) {
  970. /*
  971. * We do the initial early heuristics without holding
  972. * any task-queue locks at all. We'll only try to get
  973. * the runqueue lock when things look like they will
  974. * work out!
  975. */
  976. rq = task_rq(p);
  977. /*
  978. * If the task is actively running on another CPU
  979. * still, just relax and busy-wait without holding
  980. * any locks.
  981. *
  982. * NOTE! Since we don't hold any locks, it's not
  983. * even sure that "rq" stays as the right runqueue!
  984. * But we don't care, since "task_running()" will
  985. * return false if the runqueue has changed and p
  986. * is actually now running somewhere else!
  987. */
  988. while (task_running(rq, p)) {
  989. if (match_state && unlikely(p->state != match_state))
  990. return 0;
  991. cpu_relax();
  992. }
  993. /*
  994. * Ok, time to look more closely! We need the rq
  995. * lock now, to be *sure*. If we're wrong, we'll
  996. * just go back and repeat.
  997. */
  998. rq = task_rq_lock(p, &flags);
  999. trace_sched_wait_task(p);
  1000. running = task_running(rq, p);
  1001. on_rq = p->on_rq;
  1002. ncsw = 0;
  1003. if (!match_state || p->state == match_state)
  1004. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1005. task_rq_unlock(rq, p, &flags);
  1006. /*
  1007. * If it changed from the expected state, bail out now.
  1008. */
  1009. if (unlikely(!ncsw))
  1010. break;
  1011. /*
  1012. * Was it really running after all now that we
  1013. * checked with the proper locks actually held?
  1014. *
  1015. * Oops. Go back and try again..
  1016. */
  1017. if (unlikely(running)) {
  1018. cpu_relax();
  1019. continue;
  1020. }
  1021. /*
  1022. * It's not enough that it's not actively running,
  1023. * it must be off the runqueue _entirely_, and not
  1024. * preempted!
  1025. *
  1026. * So if it was still runnable (but just not actively
  1027. * running right now), it's preempted, and we should
  1028. * yield - it could be a while.
  1029. */
  1030. if (unlikely(on_rq)) {
  1031. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1032. set_current_state(TASK_UNINTERRUPTIBLE);
  1033. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1034. continue;
  1035. }
  1036. /*
  1037. * Ahh, all good. It wasn't running, and it wasn't
  1038. * runnable, which means that it will never become
  1039. * running in the future either. We're all done!
  1040. */
  1041. break;
  1042. }
  1043. return ncsw;
  1044. }
  1045. /***
  1046. * kick_process - kick a running thread to enter/exit the kernel
  1047. * @p: the to-be-kicked thread
  1048. *
  1049. * Cause a process which is running on another CPU to enter
  1050. * kernel-mode, without any delay. (to get signals handled.)
  1051. *
  1052. * NOTE: this function doesn't have to take the runqueue lock,
  1053. * because all it wants to ensure is that the remote task enters
  1054. * the kernel. If the IPI races and the task has been migrated
  1055. * to another CPU then no harm is done and the purpose has been
  1056. * achieved as well.
  1057. */
  1058. void kick_process(struct task_struct *p)
  1059. {
  1060. int cpu;
  1061. preempt_disable();
  1062. cpu = task_cpu(p);
  1063. if ((cpu != smp_processor_id()) && task_curr(p))
  1064. smp_send_reschedule(cpu);
  1065. preempt_enable();
  1066. }
  1067. EXPORT_SYMBOL_GPL(kick_process);
  1068. #endif /* CONFIG_SMP */
  1069. #ifdef CONFIG_SMP
  1070. /*
  1071. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1072. */
  1073. static int select_fallback_rq(int cpu, struct task_struct *p)
  1074. {
  1075. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1076. enum { cpuset, possible, fail } state = cpuset;
  1077. int dest_cpu;
  1078. /* Look for allowed, online CPU in same node. */
  1079. for_each_cpu(dest_cpu, nodemask) {
  1080. if (!cpu_online(dest_cpu))
  1081. continue;
  1082. if (!cpu_active(dest_cpu))
  1083. continue;
  1084. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1085. return dest_cpu;
  1086. }
  1087. for (;;) {
  1088. /* Any allowed, online CPU? */
  1089. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1090. if (!cpu_online(dest_cpu))
  1091. continue;
  1092. if (!cpu_active(dest_cpu))
  1093. continue;
  1094. goto out;
  1095. }
  1096. switch (state) {
  1097. case cpuset:
  1098. /* No more Mr. Nice Guy. */
  1099. cpuset_cpus_allowed_fallback(p);
  1100. state = possible;
  1101. break;
  1102. case possible:
  1103. do_set_cpus_allowed(p, cpu_possible_mask);
  1104. state = fail;
  1105. break;
  1106. case fail:
  1107. BUG();
  1108. break;
  1109. }
  1110. }
  1111. out:
  1112. if (state != cpuset) {
  1113. /*
  1114. * Don't tell them about moving exiting tasks or
  1115. * kernel threads (both mm NULL), since they never
  1116. * leave kernel.
  1117. */
  1118. if (p->mm && printk_ratelimit()) {
  1119. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1120. task_pid_nr(p), p->comm, cpu);
  1121. }
  1122. }
  1123. return dest_cpu;
  1124. }
  1125. /*
  1126. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1127. */
  1128. static inline
  1129. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1130. {
  1131. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1132. /*
  1133. * In order not to call set_task_cpu() on a blocking task we need
  1134. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1135. * cpu.
  1136. *
  1137. * Since this is common to all placement strategies, this lives here.
  1138. *
  1139. * [ this allows ->select_task() to simply return task_cpu(p) and
  1140. * not worry about this generic constraint ]
  1141. */
  1142. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1143. !cpu_online(cpu)))
  1144. cpu = select_fallback_rq(task_cpu(p), p);
  1145. return cpu;
  1146. }
  1147. static void update_avg(u64 *avg, u64 sample)
  1148. {
  1149. s64 diff = sample - *avg;
  1150. *avg += diff >> 3;
  1151. }
  1152. #endif
  1153. static void
  1154. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1155. {
  1156. #ifdef CONFIG_SCHEDSTATS
  1157. struct rq *rq = this_rq();
  1158. #ifdef CONFIG_SMP
  1159. int this_cpu = smp_processor_id();
  1160. if (cpu == this_cpu) {
  1161. schedstat_inc(rq, ttwu_local);
  1162. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1163. } else {
  1164. struct sched_domain *sd;
  1165. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1166. rcu_read_lock();
  1167. for_each_domain(this_cpu, sd) {
  1168. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1169. schedstat_inc(sd, ttwu_wake_remote);
  1170. break;
  1171. }
  1172. }
  1173. rcu_read_unlock();
  1174. }
  1175. if (wake_flags & WF_MIGRATED)
  1176. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1177. #endif /* CONFIG_SMP */
  1178. schedstat_inc(rq, ttwu_count);
  1179. schedstat_inc(p, se.statistics.nr_wakeups);
  1180. if (wake_flags & WF_SYNC)
  1181. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1182. #endif /* CONFIG_SCHEDSTATS */
  1183. }
  1184. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1185. {
  1186. activate_task(rq, p, en_flags);
  1187. p->on_rq = 1;
  1188. /* if a worker is waking up, notify workqueue */
  1189. if (p->flags & PF_WQ_WORKER)
  1190. wq_worker_waking_up(p, cpu_of(rq));
  1191. }
  1192. /*
  1193. * Mark the task runnable and perform wakeup-preemption.
  1194. */
  1195. static void
  1196. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1197. {
  1198. trace_sched_wakeup(p, true);
  1199. check_preempt_curr(rq, p, wake_flags);
  1200. p->state = TASK_RUNNING;
  1201. #ifdef CONFIG_SMP
  1202. if (p->sched_class->task_woken)
  1203. p->sched_class->task_woken(rq, p);
  1204. if (rq->idle_stamp) {
  1205. u64 delta = rq->clock - rq->idle_stamp;
  1206. u64 max = 2*sysctl_sched_migration_cost;
  1207. if (delta > max)
  1208. rq->avg_idle = max;
  1209. else
  1210. update_avg(&rq->avg_idle, delta);
  1211. rq->idle_stamp = 0;
  1212. }
  1213. #endif
  1214. }
  1215. static void
  1216. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1217. {
  1218. #ifdef CONFIG_SMP
  1219. if (p->sched_contributes_to_load)
  1220. rq->nr_uninterruptible--;
  1221. #endif
  1222. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1223. ttwu_do_wakeup(rq, p, wake_flags);
  1224. }
  1225. /*
  1226. * Called in case the task @p isn't fully descheduled from its runqueue,
  1227. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1228. * since all we need to do is flip p->state to TASK_RUNNING, since
  1229. * the task is still ->on_rq.
  1230. */
  1231. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1232. {
  1233. struct rq *rq;
  1234. int ret = 0;
  1235. rq = __task_rq_lock(p);
  1236. if (p->on_rq) {
  1237. ttwu_do_wakeup(rq, p, wake_flags);
  1238. ret = 1;
  1239. }
  1240. __task_rq_unlock(rq);
  1241. return ret;
  1242. }
  1243. #ifdef CONFIG_SMP
  1244. static void sched_ttwu_pending(void)
  1245. {
  1246. struct rq *rq = this_rq();
  1247. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1248. struct task_struct *p;
  1249. raw_spin_lock(&rq->lock);
  1250. while (llist) {
  1251. p = llist_entry(llist, struct task_struct, wake_entry);
  1252. llist = llist_next(llist);
  1253. ttwu_do_activate(rq, p, 0);
  1254. }
  1255. raw_spin_unlock(&rq->lock);
  1256. }
  1257. void scheduler_ipi(void)
  1258. {
  1259. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1260. return;
  1261. /*
  1262. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1263. * traditionally all their work was done from the interrupt return
  1264. * path. Now that we actually do some work, we need to make sure
  1265. * we do call them.
  1266. *
  1267. * Some archs already do call them, luckily irq_enter/exit nest
  1268. * properly.
  1269. *
  1270. * Arguably we should visit all archs and update all handlers,
  1271. * however a fair share of IPIs are still resched only so this would
  1272. * somewhat pessimize the simple resched case.
  1273. */
  1274. irq_enter();
  1275. sched_ttwu_pending();
  1276. /*
  1277. * Check if someone kicked us for doing the nohz idle load balance.
  1278. */
  1279. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1280. this_rq()->idle_balance = 1;
  1281. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1282. }
  1283. irq_exit();
  1284. }
  1285. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1286. {
  1287. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1288. smp_send_reschedule(cpu);
  1289. }
  1290. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1291. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1292. {
  1293. struct rq *rq;
  1294. int ret = 0;
  1295. rq = __task_rq_lock(p);
  1296. if (p->on_cpu) {
  1297. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1298. ttwu_do_wakeup(rq, p, wake_flags);
  1299. ret = 1;
  1300. }
  1301. __task_rq_unlock(rq);
  1302. return ret;
  1303. }
  1304. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1305. bool cpus_share_cache(int this_cpu, int that_cpu)
  1306. {
  1307. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1308. }
  1309. #endif /* CONFIG_SMP */
  1310. static void ttwu_queue(struct task_struct *p, int cpu)
  1311. {
  1312. struct rq *rq = cpu_rq(cpu);
  1313. #if defined(CONFIG_SMP)
  1314. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1315. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1316. ttwu_queue_remote(p, cpu);
  1317. return;
  1318. }
  1319. #endif
  1320. raw_spin_lock(&rq->lock);
  1321. ttwu_do_activate(rq, p, 0);
  1322. raw_spin_unlock(&rq->lock);
  1323. }
  1324. /**
  1325. * try_to_wake_up - wake up a thread
  1326. * @p: the thread to be awakened
  1327. * @state: the mask of task states that can be woken
  1328. * @wake_flags: wake modifier flags (WF_*)
  1329. *
  1330. * Put it on the run-queue if it's not already there. The "current"
  1331. * thread is always on the run-queue (except when the actual
  1332. * re-schedule is in progress), and as such you're allowed to do
  1333. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1334. * runnable without the overhead of this.
  1335. *
  1336. * Returns %true if @p was woken up, %false if it was already running
  1337. * or @state didn't match @p's state.
  1338. */
  1339. static int
  1340. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1341. {
  1342. unsigned long flags;
  1343. int cpu, success = 0;
  1344. smp_wmb();
  1345. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1346. if (!(p->state & state))
  1347. goto out;
  1348. success = 1; /* we're going to change ->state */
  1349. cpu = task_cpu(p);
  1350. if (p->on_rq && ttwu_remote(p, wake_flags))
  1351. goto stat;
  1352. #ifdef CONFIG_SMP
  1353. /*
  1354. * If the owning (remote) cpu is still in the middle of schedule() with
  1355. * this task as prev, wait until its done referencing the task.
  1356. */
  1357. while (p->on_cpu) {
  1358. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1359. /*
  1360. * In case the architecture enables interrupts in
  1361. * context_switch(), we cannot busy wait, since that
  1362. * would lead to deadlocks when an interrupt hits and
  1363. * tries to wake up @prev. So bail and do a complete
  1364. * remote wakeup.
  1365. */
  1366. if (ttwu_activate_remote(p, wake_flags))
  1367. goto stat;
  1368. #else
  1369. cpu_relax();
  1370. #endif
  1371. }
  1372. /*
  1373. * Pairs with the smp_wmb() in finish_lock_switch().
  1374. */
  1375. smp_rmb();
  1376. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1377. p->state = TASK_WAKING;
  1378. if (p->sched_class->task_waking)
  1379. p->sched_class->task_waking(p);
  1380. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1381. if (task_cpu(p) != cpu) {
  1382. wake_flags |= WF_MIGRATED;
  1383. set_task_cpu(p, cpu);
  1384. }
  1385. #endif /* CONFIG_SMP */
  1386. ttwu_queue(p, cpu);
  1387. stat:
  1388. ttwu_stat(p, cpu, wake_flags);
  1389. out:
  1390. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1391. return success;
  1392. }
  1393. /**
  1394. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1395. * @p: the thread to be awakened
  1396. *
  1397. * Put @p on the run-queue if it's not already there. The caller must
  1398. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1399. * the current task.
  1400. */
  1401. static void try_to_wake_up_local(struct task_struct *p)
  1402. {
  1403. struct rq *rq = task_rq(p);
  1404. BUG_ON(rq != this_rq());
  1405. BUG_ON(p == current);
  1406. lockdep_assert_held(&rq->lock);
  1407. if (!raw_spin_trylock(&p->pi_lock)) {
  1408. raw_spin_unlock(&rq->lock);
  1409. raw_spin_lock(&p->pi_lock);
  1410. raw_spin_lock(&rq->lock);
  1411. }
  1412. if (!(p->state & TASK_NORMAL))
  1413. goto out;
  1414. if (!p->on_rq)
  1415. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1416. ttwu_do_wakeup(rq, p, 0);
  1417. ttwu_stat(p, smp_processor_id(), 0);
  1418. out:
  1419. raw_spin_unlock(&p->pi_lock);
  1420. }
  1421. /**
  1422. * wake_up_process - Wake up a specific process
  1423. * @p: The process to be woken up.
  1424. *
  1425. * Attempt to wake up the nominated process and move it to the set of runnable
  1426. * processes. Returns 1 if the process was woken up, 0 if it was already
  1427. * running.
  1428. *
  1429. * It may be assumed that this function implies a write memory barrier before
  1430. * changing the task state if and only if any tasks are woken up.
  1431. */
  1432. int wake_up_process(struct task_struct *p)
  1433. {
  1434. return try_to_wake_up(p, TASK_ALL, 0);
  1435. }
  1436. EXPORT_SYMBOL(wake_up_process);
  1437. int wake_up_state(struct task_struct *p, unsigned int state)
  1438. {
  1439. return try_to_wake_up(p, state, 0);
  1440. }
  1441. /*
  1442. * Perform scheduler related setup for a newly forked process p.
  1443. * p is forked by current.
  1444. *
  1445. * __sched_fork() is basic setup used by init_idle() too:
  1446. */
  1447. static void __sched_fork(struct task_struct *p)
  1448. {
  1449. p->on_rq = 0;
  1450. p->se.on_rq = 0;
  1451. p->se.exec_start = 0;
  1452. p->se.sum_exec_runtime = 0;
  1453. p->se.prev_sum_exec_runtime = 0;
  1454. p->se.nr_migrations = 0;
  1455. p->se.vruntime = 0;
  1456. INIT_LIST_HEAD(&p->se.group_node);
  1457. #ifdef CONFIG_SCHEDSTATS
  1458. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1459. #endif
  1460. INIT_LIST_HEAD(&p->rt.run_list);
  1461. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1462. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1463. #endif
  1464. }
  1465. /*
  1466. * fork()/clone()-time setup:
  1467. */
  1468. void sched_fork(struct task_struct *p)
  1469. {
  1470. unsigned long flags;
  1471. int cpu = get_cpu();
  1472. __sched_fork(p);
  1473. /*
  1474. * We mark the process as running here. This guarantees that
  1475. * nobody will actually run it, and a signal or other external
  1476. * event cannot wake it up and insert it on the runqueue either.
  1477. */
  1478. p->state = TASK_RUNNING;
  1479. /*
  1480. * Make sure we do not leak PI boosting priority to the child.
  1481. */
  1482. p->prio = current->normal_prio;
  1483. /*
  1484. * Revert to default priority/policy on fork if requested.
  1485. */
  1486. if (unlikely(p->sched_reset_on_fork)) {
  1487. if (task_has_rt_policy(p)) {
  1488. p->policy = SCHED_NORMAL;
  1489. p->static_prio = NICE_TO_PRIO(0);
  1490. p->rt_priority = 0;
  1491. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1492. p->static_prio = NICE_TO_PRIO(0);
  1493. p->prio = p->normal_prio = __normal_prio(p);
  1494. set_load_weight(p);
  1495. /*
  1496. * We don't need the reset flag anymore after the fork. It has
  1497. * fulfilled its duty:
  1498. */
  1499. p->sched_reset_on_fork = 0;
  1500. }
  1501. if (!rt_prio(p->prio))
  1502. p->sched_class = &fair_sched_class;
  1503. if (p->sched_class->task_fork)
  1504. p->sched_class->task_fork(p);
  1505. /*
  1506. * The child is not yet in the pid-hash so no cgroup attach races,
  1507. * and the cgroup is pinned to this child due to cgroup_fork()
  1508. * is ran before sched_fork().
  1509. *
  1510. * Silence PROVE_RCU.
  1511. */
  1512. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1513. set_task_cpu(p, cpu);
  1514. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1515. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1516. if (likely(sched_info_on()))
  1517. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1518. #endif
  1519. #if defined(CONFIG_SMP)
  1520. p->on_cpu = 0;
  1521. #endif
  1522. #ifdef CONFIG_PREEMPT_COUNT
  1523. /* Want to start with kernel preemption disabled. */
  1524. task_thread_info(p)->preempt_count = 1;
  1525. #endif
  1526. #ifdef CONFIG_SMP
  1527. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1528. #endif
  1529. put_cpu();
  1530. }
  1531. /*
  1532. * wake_up_new_task - wake up a newly created task for the first time.
  1533. *
  1534. * This function will do some initial scheduler statistics housekeeping
  1535. * that must be done for every newly created context, then puts the task
  1536. * on the runqueue and wakes it.
  1537. */
  1538. void wake_up_new_task(struct task_struct *p)
  1539. {
  1540. unsigned long flags;
  1541. struct rq *rq;
  1542. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1543. #ifdef CONFIG_SMP
  1544. /*
  1545. * Fork balancing, do it here and not earlier because:
  1546. * - cpus_allowed can change in the fork path
  1547. * - any previously selected cpu might disappear through hotplug
  1548. */
  1549. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1550. #endif
  1551. rq = __task_rq_lock(p);
  1552. activate_task(rq, p, 0);
  1553. p->on_rq = 1;
  1554. trace_sched_wakeup_new(p, true);
  1555. check_preempt_curr(rq, p, WF_FORK);
  1556. #ifdef CONFIG_SMP
  1557. if (p->sched_class->task_woken)
  1558. p->sched_class->task_woken(rq, p);
  1559. #endif
  1560. task_rq_unlock(rq, p, &flags);
  1561. }
  1562. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1563. /**
  1564. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1565. * @notifier: notifier struct to register
  1566. */
  1567. void preempt_notifier_register(struct preempt_notifier *notifier)
  1568. {
  1569. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1570. }
  1571. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1572. /**
  1573. * preempt_notifier_unregister - no longer interested in preemption notifications
  1574. * @notifier: notifier struct to unregister
  1575. *
  1576. * This is safe to call from within a preemption notifier.
  1577. */
  1578. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1579. {
  1580. hlist_del(&notifier->link);
  1581. }
  1582. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1583. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1584. {
  1585. struct preempt_notifier *notifier;
  1586. struct hlist_node *node;
  1587. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1588. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1589. }
  1590. static void
  1591. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1592. struct task_struct *next)
  1593. {
  1594. struct preempt_notifier *notifier;
  1595. struct hlist_node *node;
  1596. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1597. notifier->ops->sched_out(notifier, next);
  1598. }
  1599. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1600. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1601. {
  1602. }
  1603. static void
  1604. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1605. struct task_struct *next)
  1606. {
  1607. }
  1608. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1609. /**
  1610. * prepare_task_switch - prepare to switch tasks
  1611. * @rq: the runqueue preparing to switch
  1612. * @prev: the current task that is being switched out
  1613. * @next: the task we are going to switch to.
  1614. *
  1615. * This is called with the rq lock held and interrupts off. It must
  1616. * be paired with a subsequent finish_task_switch after the context
  1617. * switch.
  1618. *
  1619. * prepare_task_switch sets up locking and calls architecture specific
  1620. * hooks.
  1621. */
  1622. static inline void
  1623. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1624. struct task_struct *next)
  1625. {
  1626. sched_info_switch(prev, next);
  1627. perf_event_task_sched_out(prev, next);
  1628. fire_sched_out_preempt_notifiers(prev, next);
  1629. prepare_lock_switch(rq, next);
  1630. prepare_arch_switch(next);
  1631. trace_sched_switch(prev, next);
  1632. }
  1633. /**
  1634. * finish_task_switch - clean up after a task-switch
  1635. * @rq: runqueue associated with task-switch
  1636. * @prev: the thread we just switched away from.
  1637. *
  1638. * finish_task_switch must be called after the context switch, paired
  1639. * with a prepare_task_switch call before the context switch.
  1640. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1641. * and do any other architecture-specific cleanup actions.
  1642. *
  1643. * Note that we may have delayed dropping an mm in context_switch(). If
  1644. * so, we finish that here outside of the runqueue lock. (Doing it
  1645. * with the lock held can cause deadlocks; see schedule() for
  1646. * details.)
  1647. */
  1648. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1649. __releases(rq->lock)
  1650. {
  1651. struct mm_struct *mm = rq->prev_mm;
  1652. long prev_state;
  1653. rq->prev_mm = NULL;
  1654. /*
  1655. * A task struct has one reference for the use as "current".
  1656. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1657. * schedule one last time. The schedule call will never return, and
  1658. * the scheduled task must drop that reference.
  1659. * The test for TASK_DEAD must occur while the runqueue locks are
  1660. * still held, otherwise prev could be scheduled on another cpu, die
  1661. * there before we look at prev->state, and then the reference would
  1662. * be dropped twice.
  1663. * Manfred Spraul <manfred@colorfullife.com>
  1664. */
  1665. prev_state = prev->state;
  1666. finish_arch_switch(prev);
  1667. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1668. local_irq_disable();
  1669. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1670. perf_event_task_sched_in(prev, current);
  1671. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1672. local_irq_enable();
  1673. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1674. finish_lock_switch(rq, prev);
  1675. finish_arch_post_lock_switch();
  1676. fire_sched_in_preempt_notifiers(current);
  1677. if (mm)
  1678. mmdrop(mm);
  1679. if (unlikely(prev_state == TASK_DEAD)) {
  1680. /*
  1681. * Remove function-return probe instances associated with this
  1682. * task and put them back on the free list.
  1683. */
  1684. kprobe_flush_task(prev);
  1685. put_task_struct(prev);
  1686. }
  1687. }
  1688. #ifdef CONFIG_SMP
  1689. /* assumes rq->lock is held */
  1690. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1691. {
  1692. if (prev->sched_class->pre_schedule)
  1693. prev->sched_class->pre_schedule(rq, prev);
  1694. }
  1695. /* rq->lock is NOT held, but preemption is disabled */
  1696. static inline void post_schedule(struct rq *rq)
  1697. {
  1698. if (rq->post_schedule) {
  1699. unsigned long flags;
  1700. raw_spin_lock_irqsave(&rq->lock, flags);
  1701. if (rq->curr->sched_class->post_schedule)
  1702. rq->curr->sched_class->post_schedule(rq);
  1703. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1704. rq->post_schedule = 0;
  1705. }
  1706. }
  1707. #else
  1708. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1709. {
  1710. }
  1711. static inline void post_schedule(struct rq *rq)
  1712. {
  1713. }
  1714. #endif
  1715. /**
  1716. * schedule_tail - first thing a freshly forked thread must call.
  1717. * @prev: the thread we just switched away from.
  1718. */
  1719. asmlinkage void schedule_tail(struct task_struct *prev)
  1720. __releases(rq->lock)
  1721. {
  1722. struct rq *rq = this_rq();
  1723. finish_task_switch(rq, prev);
  1724. /*
  1725. * FIXME: do we need to worry about rq being invalidated by the
  1726. * task_switch?
  1727. */
  1728. post_schedule(rq);
  1729. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1730. /* In this case, finish_task_switch does not reenable preemption */
  1731. preempt_enable();
  1732. #endif
  1733. if (current->set_child_tid)
  1734. put_user(task_pid_vnr(current), current->set_child_tid);
  1735. }
  1736. /*
  1737. * context_switch - switch to the new MM and the new
  1738. * thread's register state.
  1739. */
  1740. static inline void
  1741. context_switch(struct rq *rq, struct task_struct *prev,
  1742. struct task_struct *next)
  1743. {
  1744. struct mm_struct *mm, *oldmm;
  1745. prepare_task_switch(rq, prev, next);
  1746. mm = next->mm;
  1747. oldmm = prev->active_mm;
  1748. /*
  1749. * For paravirt, this is coupled with an exit in switch_to to
  1750. * combine the page table reload and the switch backend into
  1751. * one hypercall.
  1752. */
  1753. arch_start_context_switch(prev);
  1754. if (!mm) {
  1755. next->active_mm = oldmm;
  1756. atomic_inc(&oldmm->mm_count);
  1757. enter_lazy_tlb(oldmm, next);
  1758. } else
  1759. switch_mm(oldmm, mm, next);
  1760. if (!prev->mm) {
  1761. prev->active_mm = NULL;
  1762. rq->prev_mm = oldmm;
  1763. }
  1764. /*
  1765. * Since the runqueue lock will be released by the next
  1766. * task (which is an invalid locking op but in the case
  1767. * of the scheduler it's an obvious special-case), so we
  1768. * do an early lockdep release here:
  1769. */
  1770. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1771. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1772. #endif
  1773. /* Here we just switch the register state and the stack. */
  1774. rcu_switch_from(prev);
  1775. switch_to(prev, next, prev);
  1776. barrier();
  1777. /*
  1778. * this_rq must be evaluated again because prev may have moved
  1779. * CPUs since it called schedule(), thus the 'rq' on its stack
  1780. * frame will be invalid.
  1781. */
  1782. finish_task_switch(this_rq(), prev);
  1783. }
  1784. /*
  1785. * nr_running, nr_uninterruptible and nr_context_switches:
  1786. *
  1787. * externally visible scheduler statistics: current number of runnable
  1788. * threads, current number of uninterruptible-sleeping threads, total
  1789. * number of context switches performed since bootup.
  1790. */
  1791. unsigned long nr_running(void)
  1792. {
  1793. unsigned long i, sum = 0;
  1794. for_each_online_cpu(i)
  1795. sum += cpu_rq(i)->nr_running;
  1796. return sum;
  1797. }
  1798. unsigned long nr_uninterruptible(void)
  1799. {
  1800. unsigned long i, sum = 0;
  1801. for_each_possible_cpu(i)
  1802. sum += cpu_rq(i)->nr_uninterruptible;
  1803. /*
  1804. * Since we read the counters lockless, it might be slightly
  1805. * inaccurate. Do not allow it to go below zero though:
  1806. */
  1807. if (unlikely((long)sum < 0))
  1808. sum = 0;
  1809. return sum;
  1810. }
  1811. unsigned long long nr_context_switches(void)
  1812. {
  1813. int i;
  1814. unsigned long long sum = 0;
  1815. for_each_possible_cpu(i)
  1816. sum += cpu_rq(i)->nr_switches;
  1817. return sum;
  1818. }
  1819. unsigned long nr_iowait(void)
  1820. {
  1821. unsigned long i, sum = 0;
  1822. for_each_possible_cpu(i)
  1823. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1824. return sum;
  1825. }
  1826. unsigned long nr_iowait_cpu(int cpu)
  1827. {
  1828. struct rq *this = cpu_rq(cpu);
  1829. return atomic_read(&this->nr_iowait);
  1830. }
  1831. unsigned long this_cpu_load(void)
  1832. {
  1833. struct rq *this = this_rq();
  1834. return this->cpu_load[0];
  1835. }
  1836. /* Variables and functions for calc_load */
  1837. static atomic_long_t calc_load_tasks;
  1838. static unsigned long calc_load_update;
  1839. unsigned long avenrun[3];
  1840. EXPORT_SYMBOL(avenrun);
  1841. static long calc_load_fold_active(struct rq *this_rq)
  1842. {
  1843. long nr_active, delta = 0;
  1844. nr_active = this_rq->nr_running;
  1845. nr_active += (long) this_rq->nr_uninterruptible;
  1846. if (nr_active != this_rq->calc_load_active) {
  1847. delta = nr_active - this_rq->calc_load_active;
  1848. this_rq->calc_load_active = nr_active;
  1849. }
  1850. return delta;
  1851. }
  1852. static unsigned long
  1853. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1854. {
  1855. load *= exp;
  1856. load += active * (FIXED_1 - exp);
  1857. load += 1UL << (FSHIFT - 1);
  1858. return load >> FSHIFT;
  1859. }
  1860. #ifdef CONFIG_NO_HZ
  1861. /*
  1862. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1863. *
  1864. * When making the ILB scale, we should try to pull this in as well.
  1865. */
  1866. static atomic_long_t calc_load_tasks_idle;
  1867. void calc_load_account_idle(struct rq *this_rq)
  1868. {
  1869. long delta;
  1870. delta = calc_load_fold_active(this_rq);
  1871. if (delta)
  1872. atomic_long_add(delta, &calc_load_tasks_idle);
  1873. }
  1874. static long calc_load_fold_idle(void)
  1875. {
  1876. long delta = 0;
  1877. /*
  1878. * Its got a race, we don't care...
  1879. */
  1880. if (atomic_long_read(&calc_load_tasks_idle))
  1881. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1882. return delta;
  1883. }
  1884. /**
  1885. * fixed_power_int - compute: x^n, in O(log n) time
  1886. *
  1887. * @x: base of the power
  1888. * @frac_bits: fractional bits of @x
  1889. * @n: power to raise @x to.
  1890. *
  1891. * By exploiting the relation between the definition of the natural power
  1892. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1893. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1894. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1895. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1896. * of course trivially computable in O(log_2 n), the length of our binary
  1897. * vector.
  1898. */
  1899. static unsigned long
  1900. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1901. {
  1902. unsigned long result = 1UL << frac_bits;
  1903. if (n) for (;;) {
  1904. if (n & 1) {
  1905. result *= x;
  1906. result += 1UL << (frac_bits - 1);
  1907. result >>= frac_bits;
  1908. }
  1909. n >>= 1;
  1910. if (!n)
  1911. break;
  1912. x *= x;
  1913. x += 1UL << (frac_bits - 1);
  1914. x >>= frac_bits;
  1915. }
  1916. return result;
  1917. }
  1918. /*
  1919. * a1 = a0 * e + a * (1 - e)
  1920. *
  1921. * a2 = a1 * e + a * (1 - e)
  1922. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1923. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1924. *
  1925. * a3 = a2 * e + a * (1 - e)
  1926. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1927. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1928. *
  1929. * ...
  1930. *
  1931. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1932. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1933. * = a0 * e^n + a * (1 - e^n)
  1934. *
  1935. * [1] application of the geometric series:
  1936. *
  1937. * n 1 - x^(n+1)
  1938. * S_n := \Sum x^i = -------------
  1939. * i=0 1 - x
  1940. */
  1941. static unsigned long
  1942. calc_load_n(unsigned long load, unsigned long exp,
  1943. unsigned long active, unsigned int n)
  1944. {
  1945. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1946. }
  1947. /*
  1948. * NO_HZ can leave us missing all per-cpu ticks calling
  1949. * calc_load_account_active(), but since an idle CPU folds its delta into
  1950. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1951. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1952. *
  1953. * Once we've updated the global active value, we need to apply the exponential
  1954. * weights adjusted to the number of cycles missed.
  1955. */
  1956. static void calc_global_nohz(void)
  1957. {
  1958. long delta, active, n;
  1959. /*
  1960. * If we crossed a calc_load_update boundary, make sure to fold
  1961. * any pending idle changes, the respective CPUs might have
  1962. * missed the tick driven calc_load_account_active() update
  1963. * due to NO_HZ.
  1964. */
  1965. delta = calc_load_fold_idle();
  1966. if (delta)
  1967. atomic_long_add(delta, &calc_load_tasks);
  1968. /*
  1969. * It could be the one fold was all it took, we done!
  1970. */
  1971. if (time_before(jiffies, calc_load_update + 10))
  1972. return;
  1973. /*
  1974. * Catch-up, fold however many we are behind still
  1975. */
  1976. delta = jiffies - calc_load_update - 10;
  1977. n = 1 + (delta / LOAD_FREQ);
  1978. active = atomic_long_read(&calc_load_tasks);
  1979. active = active > 0 ? active * FIXED_1 : 0;
  1980. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1981. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1982. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1983. calc_load_update += n * LOAD_FREQ;
  1984. }
  1985. #else
  1986. void calc_load_account_idle(struct rq *this_rq)
  1987. {
  1988. }
  1989. static inline long calc_load_fold_idle(void)
  1990. {
  1991. return 0;
  1992. }
  1993. static void calc_global_nohz(void)
  1994. {
  1995. }
  1996. #endif
  1997. /**
  1998. * get_avenrun - get the load average array
  1999. * @loads: pointer to dest load array
  2000. * @offset: offset to add
  2001. * @shift: shift count to shift the result left
  2002. *
  2003. * These values are estimates at best, so no need for locking.
  2004. */
  2005. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2006. {
  2007. loads[0] = (avenrun[0] + offset) << shift;
  2008. loads[1] = (avenrun[1] + offset) << shift;
  2009. loads[2] = (avenrun[2] + offset) << shift;
  2010. }
  2011. /*
  2012. * calc_load - update the avenrun load estimates 10 ticks after the
  2013. * CPUs have updated calc_load_tasks.
  2014. */
  2015. void calc_global_load(unsigned long ticks)
  2016. {
  2017. long active;
  2018. if (time_before(jiffies, calc_load_update + 10))
  2019. return;
  2020. active = atomic_long_read(&calc_load_tasks);
  2021. active = active > 0 ? active * FIXED_1 : 0;
  2022. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2023. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2024. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2025. calc_load_update += LOAD_FREQ;
  2026. /*
  2027. * Account one period with whatever state we found before
  2028. * folding in the nohz state and ageing the entire idle period.
  2029. *
  2030. * This avoids loosing a sample when we go idle between
  2031. * calc_load_account_active() (10 ticks ago) and now and thus
  2032. * under-accounting.
  2033. */
  2034. calc_global_nohz();
  2035. }
  2036. /*
  2037. * Called from update_cpu_load() to periodically update this CPU's
  2038. * active count.
  2039. */
  2040. static void calc_load_account_active(struct rq *this_rq)
  2041. {
  2042. long delta;
  2043. if (time_before(jiffies, this_rq->calc_load_update))
  2044. return;
  2045. delta = calc_load_fold_active(this_rq);
  2046. delta += calc_load_fold_idle();
  2047. if (delta)
  2048. atomic_long_add(delta, &calc_load_tasks);
  2049. this_rq->calc_load_update += LOAD_FREQ;
  2050. }
  2051. /*
  2052. * The exact cpuload at various idx values, calculated at every tick would be
  2053. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2054. *
  2055. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2056. * on nth tick when cpu may be busy, then we have:
  2057. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2058. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2059. *
  2060. * decay_load_missed() below does efficient calculation of
  2061. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2062. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2063. *
  2064. * The calculation is approximated on a 128 point scale.
  2065. * degrade_zero_ticks is the number of ticks after which load at any
  2066. * particular idx is approximated to be zero.
  2067. * degrade_factor is a precomputed table, a row for each load idx.
  2068. * Each column corresponds to degradation factor for a power of two ticks,
  2069. * based on 128 point scale.
  2070. * Example:
  2071. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2072. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2073. *
  2074. * With this power of 2 load factors, we can degrade the load n times
  2075. * by looking at 1 bits in n and doing as many mult/shift instead of
  2076. * n mult/shifts needed by the exact degradation.
  2077. */
  2078. #define DEGRADE_SHIFT 7
  2079. static const unsigned char
  2080. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2081. static const unsigned char
  2082. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2083. {0, 0, 0, 0, 0, 0, 0, 0},
  2084. {64, 32, 8, 0, 0, 0, 0, 0},
  2085. {96, 72, 40, 12, 1, 0, 0},
  2086. {112, 98, 75, 43, 15, 1, 0},
  2087. {120, 112, 98, 76, 45, 16, 2} };
  2088. /*
  2089. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2090. * would be when CPU is idle and so we just decay the old load without
  2091. * adding any new load.
  2092. */
  2093. static unsigned long
  2094. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2095. {
  2096. int j = 0;
  2097. if (!missed_updates)
  2098. return load;
  2099. if (missed_updates >= degrade_zero_ticks[idx])
  2100. return 0;
  2101. if (idx == 1)
  2102. return load >> missed_updates;
  2103. while (missed_updates) {
  2104. if (missed_updates % 2)
  2105. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2106. missed_updates >>= 1;
  2107. j++;
  2108. }
  2109. return load;
  2110. }
  2111. /*
  2112. * Update rq->cpu_load[] statistics. This function is usually called every
  2113. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2114. * every tick. We fix it up based on jiffies.
  2115. */
  2116. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2117. unsigned long pending_updates)
  2118. {
  2119. int i, scale;
  2120. this_rq->nr_load_updates++;
  2121. /* Update our load: */
  2122. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2123. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2124. unsigned long old_load, new_load;
  2125. /* scale is effectively 1 << i now, and >> i divides by scale */
  2126. old_load = this_rq->cpu_load[i];
  2127. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2128. new_load = this_load;
  2129. /*
  2130. * Round up the averaging division if load is increasing. This
  2131. * prevents us from getting stuck on 9 if the load is 10, for
  2132. * example.
  2133. */
  2134. if (new_load > old_load)
  2135. new_load += scale - 1;
  2136. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2137. }
  2138. sched_avg_update(this_rq);
  2139. }
  2140. /*
  2141. * Called from nohz_idle_balance() to update the load ratings before doing the
  2142. * idle balance.
  2143. */
  2144. void update_idle_cpu_load(struct rq *this_rq)
  2145. {
  2146. unsigned long curr_jiffies = jiffies;
  2147. unsigned long load = this_rq->load.weight;
  2148. unsigned long pending_updates;
  2149. /*
  2150. * Bloody broken means of dealing with nohz, but better than nothing..
  2151. * jiffies is updated by one cpu, another cpu can drift wrt the jiffy
  2152. * update and see 0 difference the one time and 2 the next, even though
  2153. * we ticked at roughtly the same rate.
  2154. *
  2155. * Hence we only use this from nohz_idle_balance() and skip this
  2156. * nonsense when called from the scheduler_tick() since that's
  2157. * guaranteed a stable rate.
  2158. */
  2159. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2160. return;
  2161. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2162. this_rq->last_load_update_tick = curr_jiffies;
  2163. __update_cpu_load(this_rq, load, pending_updates);
  2164. }
  2165. /*
  2166. * Called from scheduler_tick()
  2167. */
  2168. static void update_cpu_load_active(struct rq *this_rq)
  2169. {
  2170. /*
  2171. * See the mess in update_idle_cpu_load().
  2172. */
  2173. this_rq->last_load_update_tick = jiffies;
  2174. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2175. calc_load_account_active(this_rq);
  2176. }
  2177. #ifdef CONFIG_SMP
  2178. /*
  2179. * sched_exec - execve() is a valuable balancing opportunity, because at
  2180. * this point the task has the smallest effective memory and cache footprint.
  2181. */
  2182. void sched_exec(void)
  2183. {
  2184. struct task_struct *p = current;
  2185. unsigned long flags;
  2186. int dest_cpu;
  2187. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2188. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2189. if (dest_cpu == smp_processor_id())
  2190. goto unlock;
  2191. if (likely(cpu_active(dest_cpu))) {
  2192. struct migration_arg arg = { p, dest_cpu };
  2193. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2194. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2195. return;
  2196. }
  2197. unlock:
  2198. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2199. }
  2200. #endif
  2201. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2202. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2203. EXPORT_PER_CPU_SYMBOL(kstat);
  2204. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2205. /*
  2206. * Return any ns on the sched_clock that have not yet been accounted in
  2207. * @p in case that task is currently running.
  2208. *
  2209. * Called with task_rq_lock() held on @rq.
  2210. */
  2211. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2212. {
  2213. u64 ns = 0;
  2214. if (task_current(rq, p)) {
  2215. update_rq_clock(rq);
  2216. ns = rq->clock_task - p->se.exec_start;
  2217. if ((s64)ns < 0)
  2218. ns = 0;
  2219. }
  2220. return ns;
  2221. }
  2222. unsigned long long task_delta_exec(struct task_struct *p)
  2223. {
  2224. unsigned long flags;
  2225. struct rq *rq;
  2226. u64 ns = 0;
  2227. rq = task_rq_lock(p, &flags);
  2228. ns = do_task_delta_exec(p, rq);
  2229. task_rq_unlock(rq, p, &flags);
  2230. return ns;
  2231. }
  2232. /*
  2233. * Return accounted runtime for the task.
  2234. * In case the task is currently running, return the runtime plus current's
  2235. * pending runtime that have not been accounted yet.
  2236. */
  2237. unsigned long long task_sched_runtime(struct task_struct *p)
  2238. {
  2239. unsigned long flags;
  2240. struct rq *rq;
  2241. u64 ns = 0;
  2242. rq = task_rq_lock(p, &flags);
  2243. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2244. task_rq_unlock(rq, p, &flags);
  2245. return ns;
  2246. }
  2247. #ifdef CONFIG_CGROUP_CPUACCT
  2248. struct cgroup_subsys cpuacct_subsys;
  2249. struct cpuacct root_cpuacct;
  2250. #endif
  2251. static inline void task_group_account_field(struct task_struct *p, int index,
  2252. u64 tmp)
  2253. {
  2254. #ifdef CONFIG_CGROUP_CPUACCT
  2255. struct kernel_cpustat *kcpustat;
  2256. struct cpuacct *ca;
  2257. #endif
  2258. /*
  2259. * Since all updates are sure to touch the root cgroup, we
  2260. * get ourselves ahead and touch it first. If the root cgroup
  2261. * is the only cgroup, then nothing else should be necessary.
  2262. *
  2263. */
  2264. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2265. #ifdef CONFIG_CGROUP_CPUACCT
  2266. if (unlikely(!cpuacct_subsys.active))
  2267. return;
  2268. rcu_read_lock();
  2269. ca = task_ca(p);
  2270. while (ca && (ca != &root_cpuacct)) {
  2271. kcpustat = this_cpu_ptr(ca->cpustat);
  2272. kcpustat->cpustat[index] += tmp;
  2273. ca = parent_ca(ca);
  2274. }
  2275. rcu_read_unlock();
  2276. #endif
  2277. }
  2278. /*
  2279. * Account user cpu time to a process.
  2280. * @p: the process that the cpu time gets accounted to
  2281. * @cputime: the cpu time spent in user space since the last update
  2282. * @cputime_scaled: cputime scaled by cpu frequency
  2283. */
  2284. void account_user_time(struct task_struct *p, cputime_t cputime,
  2285. cputime_t cputime_scaled)
  2286. {
  2287. int index;
  2288. /* Add user time to process. */
  2289. p->utime += cputime;
  2290. p->utimescaled += cputime_scaled;
  2291. account_group_user_time(p, cputime);
  2292. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2293. /* Add user time to cpustat. */
  2294. task_group_account_field(p, index, (__force u64) cputime);
  2295. /* Account for user time used */
  2296. acct_update_integrals(p);
  2297. }
  2298. /*
  2299. * Account guest cpu time to a process.
  2300. * @p: the process that the cpu time gets accounted to
  2301. * @cputime: the cpu time spent in virtual machine since the last update
  2302. * @cputime_scaled: cputime scaled by cpu frequency
  2303. */
  2304. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2305. cputime_t cputime_scaled)
  2306. {
  2307. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2308. /* Add guest time to process. */
  2309. p->utime += cputime;
  2310. p->utimescaled += cputime_scaled;
  2311. account_group_user_time(p, cputime);
  2312. p->gtime += cputime;
  2313. /* Add guest time to cpustat. */
  2314. if (TASK_NICE(p) > 0) {
  2315. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2316. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2317. } else {
  2318. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2319. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2320. }
  2321. }
  2322. /*
  2323. * Account system cpu time to a process and desired cpustat field
  2324. * @p: the process that the cpu time gets accounted to
  2325. * @cputime: the cpu time spent in kernel space since the last update
  2326. * @cputime_scaled: cputime scaled by cpu frequency
  2327. * @target_cputime64: pointer to cpustat field that has to be updated
  2328. */
  2329. static inline
  2330. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2331. cputime_t cputime_scaled, int index)
  2332. {
  2333. /* Add system time to process. */
  2334. p->stime += cputime;
  2335. p->stimescaled += cputime_scaled;
  2336. account_group_system_time(p, cputime);
  2337. /* Add system time to cpustat. */
  2338. task_group_account_field(p, index, (__force u64) cputime);
  2339. /* Account for system time used */
  2340. acct_update_integrals(p);
  2341. }
  2342. /*
  2343. * Account system cpu time to a process.
  2344. * @p: the process that the cpu time gets accounted to
  2345. * @hardirq_offset: the offset to subtract from hardirq_count()
  2346. * @cputime: the cpu time spent in kernel space since the last update
  2347. * @cputime_scaled: cputime scaled by cpu frequency
  2348. */
  2349. void account_system_time(struct task_struct *p, int hardirq_offset,
  2350. cputime_t cputime, cputime_t cputime_scaled)
  2351. {
  2352. int index;
  2353. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2354. account_guest_time(p, cputime, cputime_scaled);
  2355. return;
  2356. }
  2357. if (hardirq_count() - hardirq_offset)
  2358. index = CPUTIME_IRQ;
  2359. else if (in_serving_softirq())
  2360. index = CPUTIME_SOFTIRQ;
  2361. else
  2362. index = CPUTIME_SYSTEM;
  2363. __account_system_time(p, cputime, cputime_scaled, index);
  2364. }
  2365. /*
  2366. * Account for involuntary wait time.
  2367. * @cputime: the cpu time spent in involuntary wait
  2368. */
  2369. void account_steal_time(cputime_t cputime)
  2370. {
  2371. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2372. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2373. }
  2374. /*
  2375. * Account for idle time.
  2376. * @cputime: the cpu time spent in idle wait
  2377. */
  2378. void account_idle_time(cputime_t cputime)
  2379. {
  2380. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2381. struct rq *rq = this_rq();
  2382. if (atomic_read(&rq->nr_iowait) > 0)
  2383. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2384. else
  2385. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2386. }
  2387. static __always_inline bool steal_account_process_tick(void)
  2388. {
  2389. #ifdef CONFIG_PARAVIRT
  2390. if (static_key_false(&paravirt_steal_enabled)) {
  2391. u64 steal, st = 0;
  2392. steal = paravirt_steal_clock(smp_processor_id());
  2393. steal -= this_rq()->prev_steal_time;
  2394. st = steal_ticks(steal);
  2395. this_rq()->prev_steal_time += st * TICK_NSEC;
  2396. account_steal_time(st);
  2397. return st;
  2398. }
  2399. #endif
  2400. return false;
  2401. }
  2402. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2403. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2404. /*
  2405. * Account a tick to a process and cpustat
  2406. * @p: the process that the cpu time gets accounted to
  2407. * @user_tick: is the tick from userspace
  2408. * @rq: the pointer to rq
  2409. *
  2410. * Tick demultiplexing follows the order
  2411. * - pending hardirq update
  2412. * - pending softirq update
  2413. * - user_time
  2414. * - idle_time
  2415. * - system time
  2416. * - check for guest_time
  2417. * - else account as system_time
  2418. *
  2419. * Check for hardirq is done both for system and user time as there is
  2420. * no timer going off while we are on hardirq and hence we may never get an
  2421. * opportunity to update it solely in system time.
  2422. * p->stime and friends are only updated on system time and not on irq
  2423. * softirq as those do not count in task exec_runtime any more.
  2424. */
  2425. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2426. struct rq *rq)
  2427. {
  2428. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2429. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2430. if (steal_account_process_tick())
  2431. return;
  2432. if (irqtime_account_hi_update()) {
  2433. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2434. } else if (irqtime_account_si_update()) {
  2435. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2436. } else if (this_cpu_ksoftirqd() == p) {
  2437. /*
  2438. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2439. * So, we have to handle it separately here.
  2440. * Also, p->stime needs to be updated for ksoftirqd.
  2441. */
  2442. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2443. CPUTIME_SOFTIRQ);
  2444. } else if (user_tick) {
  2445. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2446. } else if (p == rq->idle) {
  2447. account_idle_time(cputime_one_jiffy);
  2448. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2449. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2450. } else {
  2451. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2452. CPUTIME_SYSTEM);
  2453. }
  2454. }
  2455. static void irqtime_account_idle_ticks(int ticks)
  2456. {
  2457. int i;
  2458. struct rq *rq = this_rq();
  2459. for (i = 0; i < ticks; i++)
  2460. irqtime_account_process_tick(current, 0, rq);
  2461. }
  2462. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2463. static void irqtime_account_idle_ticks(int ticks) {}
  2464. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2465. struct rq *rq) {}
  2466. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2467. /*
  2468. * Account a single tick of cpu time.
  2469. * @p: the process that the cpu time gets accounted to
  2470. * @user_tick: indicates if the tick is a user or a system tick
  2471. */
  2472. void account_process_tick(struct task_struct *p, int user_tick)
  2473. {
  2474. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2475. struct rq *rq = this_rq();
  2476. if (sched_clock_irqtime) {
  2477. irqtime_account_process_tick(p, user_tick, rq);
  2478. return;
  2479. }
  2480. if (steal_account_process_tick())
  2481. return;
  2482. if (user_tick)
  2483. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2484. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2485. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2486. one_jiffy_scaled);
  2487. else
  2488. account_idle_time(cputime_one_jiffy);
  2489. }
  2490. /*
  2491. * Account multiple ticks of steal time.
  2492. * @p: the process from which the cpu time has been stolen
  2493. * @ticks: number of stolen ticks
  2494. */
  2495. void account_steal_ticks(unsigned long ticks)
  2496. {
  2497. account_steal_time(jiffies_to_cputime(ticks));
  2498. }
  2499. /*
  2500. * Account multiple ticks of idle time.
  2501. * @ticks: number of stolen ticks
  2502. */
  2503. void account_idle_ticks(unsigned long ticks)
  2504. {
  2505. if (sched_clock_irqtime) {
  2506. irqtime_account_idle_ticks(ticks);
  2507. return;
  2508. }
  2509. account_idle_time(jiffies_to_cputime(ticks));
  2510. }
  2511. #endif
  2512. /*
  2513. * Use precise platform statistics if available:
  2514. */
  2515. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2516. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2517. {
  2518. *ut = p->utime;
  2519. *st = p->stime;
  2520. }
  2521. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2522. {
  2523. struct task_cputime cputime;
  2524. thread_group_cputime(p, &cputime);
  2525. *ut = cputime.utime;
  2526. *st = cputime.stime;
  2527. }
  2528. #else
  2529. #ifndef nsecs_to_cputime
  2530. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2531. #endif
  2532. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2533. {
  2534. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2535. /*
  2536. * Use CFS's precise accounting:
  2537. */
  2538. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2539. if (total) {
  2540. u64 temp = (__force u64) rtime;
  2541. temp *= (__force u64) utime;
  2542. do_div(temp, (__force u32) total);
  2543. utime = (__force cputime_t) temp;
  2544. } else
  2545. utime = rtime;
  2546. /*
  2547. * Compare with previous values, to keep monotonicity:
  2548. */
  2549. p->prev_utime = max(p->prev_utime, utime);
  2550. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2551. *ut = p->prev_utime;
  2552. *st = p->prev_stime;
  2553. }
  2554. /*
  2555. * Must be called with siglock held.
  2556. */
  2557. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2558. {
  2559. struct signal_struct *sig = p->signal;
  2560. struct task_cputime cputime;
  2561. cputime_t rtime, utime, total;
  2562. thread_group_cputime(p, &cputime);
  2563. total = cputime.utime + cputime.stime;
  2564. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2565. if (total) {
  2566. u64 temp = (__force u64) rtime;
  2567. temp *= (__force u64) cputime.utime;
  2568. do_div(temp, (__force u32) total);
  2569. utime = (__force cputime_t) temp;
  2570. } else
  2571. utime = rtime;
  2572. sig->prev_utime = max(sig->prev_utime, utime);
  2573. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2574. *ut = sig->prev_utime;
  2575. *st = sig->prev_stime;
  2576. }
  2577. #endif
  2578. /*
  2579. * This function gets called by the timer code, with HZ frequency.
  2580. * We call it with interrupts disabled.
  2581. */
  2582. void scheduler_tick(void)
  2583. {
  2584. int cpu = smp_processor_id();
  2585. struct rq *rq = cpu_rq(cpu);
  2586. struct task_struct *curr = rq->curr;
  2587. sched_clock_tick();
  2588. raw_spin_lock(&rq->lock);
  2589. update_rq_clock(rq);
  2590. update_cpu_load_active(rq);
  2591. curr->sched_class->task_tick(rq, curr, 0);
  2592. raw_spin_unlock(&rq->lock);
  2593. perf_event_task_tick();
  2594. #ifdef CONFIG_SMP
  2595. rq->idle_balance = idle_cpu(cpu);
  2596. trigger_load_balance(rq, cpu);
  2597. #endif
  2598. }
  2599. notrace unsigned long get_parent_ip(unsigned long addr)
  2600. {
  2601. if (in_lock_functions(addr)) {
  2602. addr = CALLER_ADDR2;
  2603. if (in_lock_functions(addr))
  2604. addr = CALLER_ADDR3;
  2605. }
  2606. return addr;
  2607. }
  2608. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2609. defined(CONFIG_PREEMPT_TRACER))
  2610. void __kprobes add_preempt_count(int val)
  2611. {
  2612. #ifdef CONFIG_DEBUG_PREEMPT
  2613. /*
  2614. * Underflow?
  2615. */
  2616. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2617. return;
  2618. #endif
  2619. preempt_count() += val;
  2620. #ifdef CONFIG_DEBUG_PREEMPT
  2621. /*
  2622. * Spinlock count overflowing soon?
  2623. */
  2624. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2625. PREEMPT_MASK - 10);
  2626. #endif
  2627. if (preempt_count() == val)
  2628. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2629. }
  2630. EXPORT_SYMBOL(add_preempt_count);
  2631. void __kprobes sub_preempt_count(int val)
  2632. {
  2633. #ifdef CONFIG_DEBUG_PREEMPT
  2634. /*
  2635. * Underflow?
  2636. */
  2637. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2638. return;
  2639. /*
  2640. * Is the spinlock portion underflowing?
  2641. */
  2642. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2643. !(preempt_count() & PREEMPT_MASK)))
  2644. return;
  2645. #endif
  2646. if (preempt_count() == val)
  2647. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2648. preempt_count() -= val;
  2649. }
  2650. EXPORT_SYMBOL(sub_preempt_count);
  2651. #endif
  2652. /*
  2653. * Print scheduling while atomic bug:
  2654. */
  2655. static noinline void __schedule_bug(struct task_struct *prev)
  2656. {
  2657. if (oops_in_progress)
  2658. return;
  2659. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2660. prev->comm, prev->pid, preempt_count());
  2661. debug_show_held_locks(prev);
  2662. print_modules();
  2663. if (irqs_disabled())
  2664. print_irqtrace_events(prev);
  2665. dump_stack();
  2666. add_taint(TAINT_WARN);
  2667. }
  2668. /*
  2669. * Various schedule()-time debugging checks and statistics:
  2670. */
  2671. static inline void schedule_debug(struct task_struct *prev)
  2672. {
  2673. /*
  2674. * Test if we are atomic. Since do_exit() needs to call into
  2675. * schedule() atomically, we ignore that path for now.
  2676. * Otherwise, whine if we are scheduling when we should not be.
  2677. */
  2678. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2679. __schedule_bug(prev);
  2680. rcu_sleep_check();
  2681. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2682. schedstat_inc(this_rq(), sched_count);
  2683. }
  2684. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2685. {
  2686. if (prev->on_rq || rq->skip_clock_update < 0)
  2687. update_rq_clock(rq);
  2688. prev->sched_class->put_prev_task(rq, prev);
  2689. }
  2690. /*
  2691. * Pick up the highest-prio task:
  2692. */
  2693. static inline struct task_struct *
  2694. pick_next_task(struct rq *rq)
  2695. {
  2696. const struct sched_class *class;
  2697. struct task_struct *p;
  2698. /*
  2699. * Optimization: we know that if all tasks are in
  2700. * the fair class we can call that function directly:
  2701. */
  2702. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2703. p = fair_sched_class.pick_next_task(rq);
  2704. if (likely(p))
  2705. return p;
  2706. }
  2707. for_each_class(class) {
  2708. p = class->pick_next_task(rq);
  2709. if (p)
  2710. return p;
  2711. }
  2712. BUG(); /* the idle class will always have a runnable task */
  2713. }
  2714. /*
  2715. * __schedule() is the main scheduler function.
  2716. */
  2717. static void __sched __schedule(void)
  2718. {
  2719. struct task_struct *prev, *next;
  2720. unsigned long *switch_count;
  2721. struct rq *rq;
  2722. int cpu;
  2723. need_resched:
  2724. preempt_disable();
  2725. cpu = smp_processor_id();
  2726. rq = cpu_rq(cpu);
  2727. rcu_note_context_switch(cpu);
  2728. prev = rq->curr;
  2729. schedule_debug(prev);
  2730. if (sched_feat(HRTICK))
  2731. hrtick_clear(rq);
  2732. raw_spin_lock_irq(&rq->lock);
  2733. switch_count = &prev->nivcsw;
  2734. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2735. if (unlikely(signal_pending_state(prev->state, prev))) {
  2736. prev->state = TASK_RUNNING;
  2737. } else {
  2738. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2739. prev->on_rq = 0;
  2740. /*
  2741. * If a worker went to sleep, notify and ask workqueue
  2742. * whether it wants to wake up a task to maintain
  2743. * concurrency.
  2744. */
  2745. if (prev->flags & PF_WQ_WORKER) {
  2746. struct task_struct *to_wakeup;
  2747. to_wakeup = wq_worker_sleeping(prev, cpu);
  2748. if (to_wakeup)
  2749. try_to_wake_up_local(to_wakeup);
  2750. }
  2751. }
  2752. switch_count = &prev->nvcsw;
  2753. }
  2754. pre_schedule(rq, prev);
  2755. if (unlikely(!rq->nr_running))
  2756. idle_balance(cpu, rq);
  2757. put_prev_task(rq, prev);
  2758. next = pick_next_task(rq);
  2759. clear_tsk_need_resched(prev);
  2760. rq->skip_clock_update = 0;
  2761. if (likely(prev != next)) {
  2762. rq->nr_switches++;
  2763. rq->curr = next;
  2764. ++*switch_count;
  2765. context_switch(rq, prev, next); /* unlocks the rq */
  2766. /*
  2767. * The context switch have flipped the stack from under us
  2768. * and restored the local variables which were saved when
  2769. * this task called schedule() in the past. prev == current
  2770. * is still correct, but it can be moved to another cpu/rq.
  2771. */
  2772. cpu = smp_processor_id();
  2773. rq = cpu_rq(cpu);
  2774. } else
  2775. raw_spin_unlock_irq(&rq->lock);
  2776. post_schedule(rq);
  2777. sched_preempt_enable_no_resched();
  2778. if (need_resched())
  2779. goto need_resched;
  2780. }
  2781. static inline void sched_submit_work(struct task_struct *tsk)
  2782. {
  2783. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2784. return;
  2785. /*
  2786. * If we are going to sleep and we have plugged IO queued,
  2787. * make sure to submit it to avoid deadlocks.
  2788. */
  2789. if (blk_needs_flush_plug(tsk))
  2790. blk_schedule_flush_plug(tsk);
  2791. }
  2792. asmlinkage void __sched schedule(void)
  2793. {
  2794. struct task_struct *tsk = current;
  2795. sched_submit_work(tsk);
  2796. __schedule();
  2797. }
  2798. EXPORT_SYMBOL(schedule);
  2799. /**
  2800. * schedule_preempt_disabled - called with preemption disabled
  2801. *
  2802. * Returns with preemption disabled. Note: preempt_count must be 1
  2803. */
  2804. void __sched schedule_preempt_disabled(void)
  2805. {
  2806. sched_preempt_enable_no_resched();
  2807. schedule();
  2808. preempt_disable();
  2809. }
  2810. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2811. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2812. {
  2813. if (lock->owner != owner)
  2814. return false;
  2815. /*
  2816. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2817. * lock->owner still matches owner, if that fails, owner might
  2818. * point to free()d memory, if it still matches, the rcu_read_lock()
  2819. * ensures the memory stays valid.
  2820. */
  2821. barrier();
  2822. return owner->on_cpu;
  2823. }
  2824. /*
  2825. * Look out! "owner" is an entirely speculative pointer
  2826. * access and not reliable.
  2827. */
  2828. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2829. {
  2830. if (!sched_feat(OWNER_SPIN))
  2831. return 0;
  2832. rcu_read_lock();
  2833. while (owner_running(lock, owner)) {
  2834. if (need_resched())
  2835. break;
  2836. arch_mutex_cpu_relax();
  2837. }
  2838. rcu_read_unlock();
  2839. /*
  2840. * We break out the loop above on need_resched() and when the
  2841. * owner changed, which is a sign for heavy contention. Return
  2842. * success only when lock->owner is NULL.
  2843. */
  2844. return lock->owner == NULL;
  2845. }
  2846. #endif
  2847. #ifdef CONFIG_PREEMPT
  2848. /*
  2849. * this is the entry point to schedule() from in-kernel preemption
  2850. * off of preempt_enable. Kernel preemptions off return from interrupt
  2851. * occur there and call schedule directly.
  2852. */
  2853. asmlinkage void __sched notrace preempt_schedule(void)
  2854. {
  2855. struct thread_info *ti = current_thread_info();
  2856. /*
  2857. * If there is a non-zero preempt_count or interrupts are disabled,
  2858. * we do not want to preempt the current task. Just return..
  2859. */
  2860. if (likely(ti->preempt_count || irqs_disabled()))
  2861. return;
  2862. do {
  2863. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2864. __schedule();
  2865. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2866. /*
  2867. * Check again in case we missed a preemption opportunity
  2868. * between schedule and now.
  2869. */
  2870. barrier();
  2871. } while (need_resched());
  2872. }
  2873. EXPORT_SYMBOL(preempt_schedule);
  2874. /*
  2875. * this is the entry point to schedule() from kernel preemption
  2876. * off of irq context.
  2877. * Note, that this is called and return with irqs disabled. This will
  2878. * protect us against recursive calling from irq.
  2879. */
  2880. asmlinkage void __sched preempt_schedule_irq(void)
  2881. {
  2882. struct thread_info *ti = current_thread_info();
  2883. /* Catch callers which need to be fixed */
  2884. BUG_ON(ti->preempt_count || !irqs_disabled());
  2885. do {
  2886. add_preempt_count(PREEMPT_ACTIVE);
  2887. local_irq_enable();
  2888. __schedule();
  2889. local_irq_disable();
  2890. sub_preempt_count(PREEMPT_ACTIVE);
  2891. /*
  2892. * Check again in case we missed a preemption opportunity
  2893. * between schedule and now.
  2894. */
  2895. barrier();
  2896. } while (need_resched());
  2897. }
  2898. #endif /* CONFIG_PREEMPT */
  2899. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2900. void *key)
  2901. {
  2902. return try_to_wake_up(curr->private, mode, wake_flags);
  2903. }
  2904. EXPORT_SYMBOL(default_wake_function);
  2905. /*
  2906. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2907. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2908. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2909. *
  2910. * There are circumstances in which we can try to wake a task which has already
  2911. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2912. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2913. */
  2914. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2915. int nr_exclusive, int wake_flags, void *key)
  2916. {
  2917. wait_queue_t *curr, *next;
  2918. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2919. unsigned flags = curr->flags;
  2920. if (curr->func(curr, mode, wake_flags, key) &&
  2921. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2922. break;
  2923. }
  2924. }
  2925. /**
  2926. * __wake_up - wake up threads blocked on a waitqueue.
  2927. * @q: the waitqueue
  2928. * @mode: which threads
  2929. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2930. * @key: is directly passed to the wakeup function
  2931. *
  2932. * It may be assumed that this function implies a write memory barrier before
  2933. * changing the task state if and only if any tasks are woken up.
  2934. */
  2935. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2936. int nr_exclusive, void *key)
  2937. {
  2938. unsigned long flags;
  2939. spin_lock_irqsave(&q->lock, flags);
  2940. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2941. spin_unlock_irqrestore(&q->lock, flags);
  2942. }
  2943. EXPORT_SYMBOL(__wake_up);
  2944. /*
  2945. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2946. */
  2947. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2948. {
  2949. __wake_up_common(q, mode, nr, 0, NULL);
  2950. }
  2951. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2952. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2953. {
  2954. __wake_up_common(q, mode, 1, 0, key);
  2955. }
  2956. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2957. /**
  2958. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2959. * @q: the waitqueue
  2960. * @mode: which threads
  2961. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2962. * @key: opaque value to be passed to wakeup targets
  2963. *
  2964. * The sync wakeup differs that the waker knows that it will schedule
  2965. * away soon, so while the target thread will be woken up, it will not
  2966. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2967. * with each other. This can prevent needless bouncing between CPUs.
  2968. *
  2969. * On UP it can prevent extra preemption.
  2970. *
  2971. * It may be assumed that this function implies a write memory barrier before
  2972. * changing the task state if and only if any tasks are woken up.
  2973. */
  2974. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2975. int nr_exclusive, void *key)
  2976. {
  2977. unsigned long flags;
  2978. int wake_flags = WF_SYNC;
  2979. if (unlikely(!q))
  2980. return;
  2981. if (unlikely(!nr_exclusive))
  2982. wake_flags = 0;
  2983. spin_lock_irqsave(&q->lock, flags);
  2984. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2985. spin_unlock_irqrestore(&q->lock, flags);
  2986. }
  2987. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2988. /*
  2989. * __wake_up_sync - see __wake_up_sync_key()
  2990. */
  2991. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2992. {
  2993. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2994. }
  2995. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2996. /**
  2997. * complete: - signals a single thread waiting on this completion
  2998. * @x: holds the state of this particular completion
  2999. *
  3000. * This will wake up a single thread waiting on this completion. Threads will be
  3001. * awakened in the same order in which they were queued.
  3002. *
  3003. * See also complete_all(), wait_for_completion() and related routines.
  3004. *
  3005. * It may be assumed that this function implies a write memory barrier before
  3006. * changing the task state if and only if any tasks are woken up.
  3007. */
  3008. void complete(struct completion *x)
  3009. {
  3010. unsigned long flags;
  3011. spin_lock_irqsave(&x->wait.lock, flags);
  3012. x->done++;
  3013. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3014. spin_unlock_irqrestore(&x->wait.lock, flags);
  3015. }
  3016. EXPORT_SYMBOL(complete);
  3017. /**
  3018. * complete_all: - signals all threads waiting on this completion
  3019. * @x: holds the state of this particular completion
  3020. *
  3021. * This will wake up all threads waiting on this particular completion event.
  3022. *
  3023. * It may be assumed that this function implies a write memory barrier before
  3024. * changing the task state if and only if any tasks are woken up.
  3025. */
  3026. void complete_all(struct completion *x)
  3027. {
  3028. unsigned long flags;
  3029. spin_lock_irqsave(&x->wait.lock, flags);
  3030. x->done += UINT_MAX/2;
  3031. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3032. spin_unlock_irqrestore(&x->wait.lock, flags);
  3033. }
  3034. EXPORT_SYMBOL(complete_all);
  3035. static inline long __sched
  3036. do_wait_for_common(struct completion *x, long timeout, int state)
  3037. {
  3038. if (!x->done) {
  3039. DECLARE_WAITQUEUE(wait, current);
  3040. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3041. do {
  3042. if (signal_pending_state(state, current)) {
  3043. timeout = -ERESTARTSYS;
  3044. break;
  3045. }
  3046. __set_current_state(state);
  3047. spin_unlock_irq(&x->wait.lock);
  3048. timeout = schedule_timeout(timeout);
  3049. spin_lock_irq(&x->wait.lock);
  3050. } while (!x->done && timeout);
  3051. __remove_wait_queue(&x->wait, &wait);
  3052. if (!x->done)
  3053. return timeout;
  3054. }
  3055. x->done--;
  3056. return timeout ?: 1;
  3057. }
  3058. static long __sched
  3059. wait_for_common(struct completion *x, long timeout, int state)
  3060. {
  3061. might_sleep();
  3062. spin_lock_irq(&x->wait.lock);
  3063. timeout = do_wait_for_common(x, timeout, state);
  3064. spin_unlock_irq(&x->wait.lock);
  3065. return timeout;
  3066. }
  3067. /**
  3068. * wait_for_completion: - waits for completion of a task
  3069. * @x: holds the state of this particular completion
  3070. *
  3071. * This waits to be signaled for completion of a specific task. It is NOT
  3072. * interruptible and there is no timeout.
  3073. *
  3074. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3075. * and interrupt capability. Also see complete().
  3076. */
  3077. void __sched wait_for_completion(struct completion *x)
  3078. {
  3079. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3080. }
  3081. EXPORT_SYMBOL(wait_for_completion);
  3082. /**
  3083. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3084. * @x: holds the state of this particular completion
  3085. * @timeout: timeout value in jiffies
  3086. *
  3087. * This waits for either a completion of a specific task to be signaled or for a
  3088. * specified timeout to expire. The timeout is in jiffies. It is not
  3089. * interruptible.
  3090. *
  3091. * The return value is 0 if timed out, and positive (at least 1, or number of
  3092. * jiffies left till timeout) if completed.
  3093. */
  3094. unsigned long __sched
  3095. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3096. {
  3097. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3098. }
  3099. EXPORT_SYMBOL(wait_for_completion_timeout);
  3100. /**
  3101. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3102. * @x: holds the state of this particular completion
  3103. *
  3104. * This waits for completion of a specific task to be signaled. It is
  3105. * interruptible.
  3106. *
  3107. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3108. */
  3109. int __sched wait_for_completion_interruptible(struct completion *x)
  3110. {
  3111. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3112. if (t == -ERESTARTSYS)
  3113. return t;
  3114. return 0;
  3115. }
  3116. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3117. /**
  3118. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3119. * @x: holds the state of this particular completion
  3120. * @timeout: timeout value in jiffies
  3121. *
  3122. * This waits for either a completion of a specific task to be signaled or for a
  3123. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3124. *
  3125. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3126. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3127. */
  3128. long __sched
  3129. wait_for_completion_interruptible_timeout(struct completion *x,
  3130. unsigned long timeout)
  3131. {
  3132. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3133. }
  3134. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3135. /**
  3136. * wait_for_completion_killable: - waits for completion of a task (killable)
  3137. * @x: holds the state of this particular completion
  3138. *
  3139. * This waits to be signaled for completion of a specific task. It can be
  3140. * interrupted by a kill signal.
  3141. *
  3142. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3143. */
  3144. int __sched wait_for_completion_killable(struct completion *x)
  3145. {
  3146. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3147. if (t == -ERESTARTSYS)
  3148. return t;
  3149. return 0;
  3150. }
  3151. EXPORT_SYMBOL(wait_for_completion_killable);
  3152. /**
  3153. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3154. * @x: holds the state of this particular completion
  3155. * @timeout: timeout value in jiffies
  3156. *
  3157. * This waits for either a completion of a specific task to be
  3158. * signaled or for a specified timeout to expire. It can be
  3159. * interrupted by a kill signal. The timeout is in jiffies.
  3160. *
  3161. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3162. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3163. */
  3164. long __sched
  3165. wait_for_completion_killable_timeout(struct completion *x,
  3166. unsigned long timeout)
  3167. {
  3168. return wait_for_common(x, timeout, TASK_KILLABLE);
  3169. }
  3170. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3171. /**
  3172. * try_wait_for_completion - try to decrement a completion without blocking
  3173. * @x: completion structure
  3174. *
  3175. * Returns: 0 if a decrement cannot be done without blocking
  3176. * 1 if a decrement succeeded.
  3177. *
  3178. * If a completion is being used as a counting completion,
  3179. * attempt to decrement the counter without blocking. This
  3180. * enables us to avoid waiting if the resource the completion
  3181. * is protecting is not available.
  3182. */
  3183. bool try_wait_for_completion(struct completion *x)
  3184. {
  3185. unsigned long flags;
  3186. int ret = 1;
  3187. spin_lock_irqsave(&x->wait.lock, flags);
  3188. if (!x->done)
  3189. ret = 0;
  3190. else
  3191. x->done--;
  3192. spin_unlock_irqrestore(&x->wait.lock, flags);
  3193. return ret;
  3194. }
  3195. EXPORT_SYMBOL(try_wait_for_completion);
  3196. /**
  3197. * completion_done - Test to see if a completion has any waiters
  3198. * @x: completion structure
  3199. *
  3200. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3201. * 1 if there are no waiters.
  3202. *
  3203. */
  3204. bool completion_done(struct completion *x)
  3205. {
  3206. unsigned long flags;
  3207. int ret = 1;
  3208. spin_lock_irqsave(&x->wait.lock, flags);
  3209. if (!x->done)
  3210. ret = 0;
  3211. spin_unlock_irqrestore(&x->wait.lock, flags);
  3212. return ret;
  3213. }
  3214. EXPORT_SYMBOL(completion_done);
  3215. static long __sched
  3216. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3217. {
  3218. unsigned long flags;
  3219. wait_queue_t wait;
  3220. init_waitqueue_entry(&wait, current);
  3221. __set_current_state(state);
  3222. spin_lock_irqsave(&q->lock, flags);
  3223. __add_wait_queue(q, &wait);
  3224. spin_unlock(&q->lock);
  3225. timeout = schedule_timeout(timeout);
  3226. spin_lock_irq(&q->lock);
  3227. __remove_wait_queue(q, &wait);
  3228. spin_unlock_irqrestore(&q->lock, flags);
  3229. return timeout;
  3230. }
  3231. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3232. {
  3233. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3234. }
  3235. EXPORT_SYMBOL(interruptible_sleep_on);
  3236. long __sched
  3237. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3238. {
  3239. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3240. }
  3241. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3242. void __sched sleep_on(wait_queue_head_t *q)
  3243. {
  3244. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3245. }
  3246. EXPORT_SYMBOL(sleep_on);
  3247. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3248. {
  3249. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3250. }
  3251. EXPORT_SYMBOL(sleep_on_timeout);
  3252. #ifdef CONFIG_RT_MUTEXES
  3253. /*
  3254. * rt_mutex_setprio - set the current priority of a task
  3255. * @p: task
  3256. * @prio: prio value (kernel-internal form)
  3257. *
  3258. * This function changes the 'effective' priority of a task. It does
  3259. * not touch ->normal_prio like __setscheduler().
  3260. *
  3261. * Used by the rt_mutex code to implement priority inheritance logic.
  3262. */
  3263. void rt_mutex_setprio(struct task_struct *p, int prio)
  3264. {
  3265. int oldprio, on_rq, running;
  3266. struct rq *rq;
  3267. const struct sched_class *prev_class;
  3268. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3269. rq = __task_rq_lock(p);
  3270. /*
  3271. * Idle task boosting is a nono in general. There is one
  3272. * exception, when PREEMPT_RT and NOHZ is active:
  3273. *
  3274. * The idle task calls get_next_timer_interrupt() and holds
  3275. * the timer wheel base->lock on the CPU and another CPU wants
  3276. * to access the timer (probably to cancel it). We can safely
  3277. * ignore the boosting request, as the idle CPU runs this code
  3278. * with interrupts disabled and will complete the lock
  3279. * protected section without being interrupted. So there is no
  3280. * real need to boost.
  3281. */
  3282. if (unlikely(p == rq->idle)) {
  3283. WARN_ON(p != rq->curr);
  3284. WARN_ON(p->pi_blocked_on);
  3285. goto out_unlock;
  3286. }
  3287. trace_sched_pi_setprio(p, prio);
  3288. oldprio = p->prio;
  3289. prev_class = p->sched_class;
  3290. on_rq = p->on_rq;
  3291. running = task_current(rq, p);
  3292. if (on_rq)
  3293. dequeue_task(rq, p, 0);
  3294. if (running)
  3295. p->sched_class->put_prev_task(rq, p);
  3296. if (rt_prio(prio))
  3297. p->sched_class = &rt_sched_class;
  3298. else
  3299. p->sched_class = &fair_sched_class;
  3300. p->prio = prio;
  3301. if (running)
  3302. p->sched_class->set_curr_task(rq);
  3303. if (on_rq)
  3304. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3305. check_class_changed(rq, p, prev_class, oldprio);
  3306. out_unlock:
  3307. __task_rq_unlock(rq);
  3308. }
  3309. #endif
  3310. void set_user_nice(struct task_struct *p, long nice)
  3311. {
  3312. int old_prio, delta, on_rq;
  3313. unsigned long flags;
  3314. struct rq *rq;
  3315. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3316. return;
  3317. /*
  3318. * We have to be careful, if called from sys_setpriority(),
  3319. * the task might be in the middle of scheduling on another CPU.
  3320. */
  3321. rq = task_rq_lock(p, &flags);
  3322. /*
  3323. * The RT priorities are set via sched_setscheduler(), but we still
  3324. * allow the 'normal' nice value to be set - but as expected
  3325. * it wont have any effect on scheduling until the task is
  3326. * SCHED_FIFO/SCHED_RR:
  3327. */
  3328. if (task_has_rt_policy(p)) {
  3329. p->static_prio = NICE_TO_PRIO(nice);
  3330. goto out_unlock;
  3331. }
  3332. on_rq = p->on_rq;
  3333. if (on_rq)
  3334. dequeue_task(rq, p, 0);
  3335. p->static_prio = NICE_TO_PRIO(nice);
  3336. set_load_weight(p);
  3337. old_prio = p->prio;
  3338. p->prio = effective_prio(p);
  3339. delta = p->prio - old_prio;
  3340. if (on_rq) {
  3341. enqueue_task(rq, p, 0);
  3342. /*
  3343. * If the task increased its priority or is running and
  3344. * lowered its priority, then reschedule its CPU:
  3345. */
  3346. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3347. resched_task(rq->curr);
  3348. }
  3349. out_unlock:
  3350. task_rq_unlock(rq, p, &flags);
  3351. }
  3352. EXPORT_SYMBOL(set_user_nice);
  3353. /*
  3354. * can_nice - check if a task can reduce its nice value
  3355. * @p: task
  3356. * @nice: nice value
  3357. */
  3358. int can_nice(const struct task_struct *p, const int nice)
  3359. {
  3360. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3361. int nice_rlim = 20 - nice;
  3362. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3363. capable(CAP_SYS_NICE));
  3364. }
  3365. #ifdef __ARCH_WANT_SYS_NICE
  3366. /*
  3367. * sys_nice - change the priority of the current process.
  3368. * @increment: priority increment
  3369. *
  3370. * sys_setpriority is a more generic, but much slower function that
  3371. * does similar things.
  3372. */
  3373. SYSCALL_DEFINE1(nice, int, increment)
  3374. {
  3375. long nice, retval;
  3376. /*
  3377. * Setpriority might change our priority at the same moment.
  3378. * We don't have to worry. Conceptually one call occurs first
  3379. * and we have a single winner.
  3380. */
  3381. if (increment < -40)
  3382. increment = -40;
  3383. if (increment > 40)
  3384. increment = 40;
  3385. nice = TASK_NICE(current) + increment;
  3386. if (nice < -20)
  3387. nice = -20;
  3388. if (nice > 19)
  3389. nice = 19;
  3390. if (increment < 0 && !can_nice(current, nice))
  3391. return -EPERM;
  3392. retval = security_task_setnice(current, nice);
  3393. if (retval)
  3394. return retval;
  3395. set_user_nice(current, nice);
  3396. return 0;
  3397. }
  3398. #endif
  3399. /**
  3400. * task_prio - return the priority value of a given task.
  3401. * @p: the task in question.
  3402. *
  3403. * This is the priority value as seen by users in /proc.
  3404. * RT tasks are offset by -200. Normal tasks are centered
  3405. * around 0, value goes from -16 to +15.
  3406. */
  3407. int task_prio(const struct task_struct *p)
  3408. {
  3409. return p->prio - MAX_RT_PRIO;
  3410. }
  3411. /**
  3412. * task_nice - return the nice value of a given task.
  3413. * @p: the task in question.
  3414. */
  3415. int task_nice(const struct task_struct *p)
  3416. {
  3417. return TASK_NICE(p);
  3418. }
  3419. EXPORT_SYMBOL(task_nice);
  3420. /**
  3421. * idle_cpu - is a given cpu idle currently?
  3422. * @cpu: the processor in question.
  3423. */
  3424. int idle_cpu(int cpu)
  3425. {
  3426. struct rq *rq = cpu_rq(cpu);
  3427. if (rq->curr != rq->idle)
  3428. return 0;
  3429. if (rq->nr_running)
  3430. return 0;
  3431. #ifdef CONFIG_SMP
  3432. if (!llist_empty(&rq->wake_list))
  3433. return 0;
  3434. #endif
  3435. return 1;
  3436. }
  3437. /**
  3438. * idle_task - return the idle task for a given cpu.
  3439. * @cpu: the processor in question.
  3440. */
  3441. struct task_struct *idle_task(int cpu)
  3442. {
  3443. return cpu_rq(cpu)->idle;
  3444. }
  3445. /**
  3446. * find_process_by_pid - find a process with a matching PID value.
  3447. * @pid: the pid in question.
  3448. */
  3449. static struct task_struct *find_process_by_pid(pid_t pid)
  3450. {
  3451. return pid ? find_task_by_vpid(pid) : current;
  3452. }
  3453. /* Actually do priority change: must hold rq lock. */
  3454. static void
  3455. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3456. {
  3457. p->policy = policy;
  3458. p->rt_priority = prio;
  3459. p->normal_prio = normal_prio(p);
  3460. /* we are holding p->pi_lock already */
  3461. p->prio = rt_mutex_getprio(p);
  3462. if (rt_prio(p->prio))
  3463. p->sched_class = &rt_sched_class;
  3464. else
  3465. p->sched_class = &fair_sched_class;
  3466. set_load_weight(p);
  3467. }
  3468. /*
  3469. * check the target process has a UID that matches the current process's
  3470. */
  3471. static bool check_same_owner(struct task_struct *p)
  3472. {
  3473. const struct cred *cred = current_cred(), *pcred;
  3474. bool match;
  3475. rcu_read_lock();
  3476. pcred = __task_cred(p);
  3477. match = (uid_eq(cred->euid, pcred->euid) ||
  3478. uid_eq(cred->euid, pcred->uid));
  3479. rcu_read_unlock();
  3480. return match;
  3481. }
  3482. static int __sched_setscheduler(struct task_struct *p, int policy,
  3483. const struct sched_param *param, bool user)
  3484. {
  3485. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3486. unsigned long flags;
  3487. const struct sched_class *prev_class;
  3488. struct rq *rq;
  3489. int reset_on_fork;
  3490. /* may grab non-irq protected spin_locks */
  3491. BUG_ON(in_interrupt());
  3492. recheck:
  3493. /* double check policy once rq lock held */
  3494. if (policy < 0) {
  3495. reset_on_fork = p->sched_reset_on_fork;
  3496. policy = oldpolicy = p->policy;
  3497. } else {
  3498. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3499. policy &= ~SCHED_RESET_ON_FORK;
  3500. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3501. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3502. policy != SCHED_IDLE)
  3503. return -EINVAL;
  3504. }
  3505. /*
  3506. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3507. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3508. * SCHED_BATCH and SCHED_IDLE is 0.
  3509. */
  3510. if (param->sched_priority < 0 ||
  3511. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3512. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3513. return -EINVAL;
  3514. if (rt_policy(policy) != (param->sched_priority != 0))
  3515. return -EINVAL;
  3516. /*
  3517. * Allow unprivileged RT tasks to decrease priority:
  3518. */
  3519. if (user && !capable(CAP_SYS_NICE)) {
  3520. if (rt_policy(policy)) {
  3521. unsigned long rlim_rtprio =
  3522. task_rlimit(p, RLIMIT_RTPRIO);
  3523. /* can't set/change the rt policy */
  3524. if (policy != p->policy && !rlim_rtprio)
  3525. return -EPERM;
  3526. /* can't increase priority */
  3527. if (param->sched_priority > p->rt_priority &&
  3528. param->sched_priority > rlim_rtprio)
  3529. return -EPERM;
  3530. }
  3531. /*
  3532. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3533. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3534. */
  3535. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3536. if (!can_nice(p, TASK_NICE(p)))
  3537. return -EPERM;
  3538. }
  3539. /* can't change other user's priorities */
  3540. if (!check_same_owner(p))
  3541. return -EPERM;
  3542. /* Normal users shall not reset the sched_reset_on_fork flag */
  3543. if (p->sched_reset_on_fork && !reset_on_fork)
  3544. return -EPERM;
  3545. }
  3546. if (user) {
  3547. retval = security_task_setscheduler(p);
  3548. if (retval)
  3549. return retval;
  3550. }
  3551. /*
  3552. * make sure no PI-waiters arrive (or leave) while we are
  3553. * changing the priority of the task:
  3554. *
  3555. * To be able to change p->policy safely, the appropriate
  3556. * runqueue lock must be held.
  3557. */
  3558. rq = task_rq_lock(p, &flags);
  3559. /*
  3560. * Changing the policy of the stop threads its a very bad idea
  3561. */
  3562. if (p == rq->stop) {
  3563. task_rq_unlock(rq, p, &flags);
  3564. return -EINVAL;
  3565. }
  3566. /*
  3567. * If not changing anything there's no need to proceed further:
  3568. */
  3569. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3570. param->sched_priority == p->rt_priority))) {
  3571. __task_rq_unlock(rq);
  3572. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3573. return 0;
  3574. }
  3575. #ifdef CONFIG_RT_GROUP_SCHED
  3576. if (user) {
  3577. /*
  3578. * Do not allow realtime tasks into groups that have no runtime
  3579. * assigned.
  3580. */
  3581. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3582. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3583. !task_group_is_autogroup(task_group(p))) {
  3584. task_rq_unlock(rq, p, &flags);
  3585. return -EPERM;
  3586. }
  3587. }
  3588. #endif
  3589. /* recheck policy now with rq lock held */
  3590. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3591. policy = oldpolicy = -1;
  3592. task_rq_unlock(rq, p, &flags);
  3593. goto recheck;
  3594. }
  3595. on_rq = p->on_rq;
  3596. running = task_current(rq, p);
  3597. if (on_rq)
  3598. dequeue_task(rq, p, 0);
  3599. if (running)
  3600. p->sched_class->put_prev_task(rq, p);
  3601. p->sched_reset_on_fork = reset_on_fork;
  3602. oldprio = p->prio;
  3603. prev_class = p->sched_class;
  3604. __setscheduler(rq, p, policy, param->sched_priority);
  3605. if (running)
  3606. p->sched_class->set_curr_task(rq);
  3607. if (on_rq)
  3608. enqueue_task(rq, p, 0);
  3609. check_class_changed(rq, p, prev_class, oldprio);
  3610. task_rq_unlock(rq, p, &flags);
  3611. rt_mutex_adjust_pi(p);
  3612. return 0;
  3613. }
  3614. /**
  3615. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3616. * @p: the task in question.
  3617. * @policy: new policy.
  3618. * @param: structure containing the new RT priority.
  3619. *
  3620. * NOTE that the task may be already dead.
  3621. */
  3622. int sched_setscheduler(struct task_struct *p, int policy,
  3623. const struct sched_param *param)
  3624. {
  3625. return __sched_setscheduler(p, policy, param, true);
  3626. }
  3627. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3628. /**
  3629. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3630. * @p: the task in question.
  3631. * @policy: new policy.
  3632. * @param: structure containing the new RT priority.
  3633. *
  3634. * Just like sched_setscheduler, only don't bother checking if the
  3635. * current context has permission. For example, this is needed in
  3636. * stop_machine(): we create temporary high priority worker threads,
  3637. * but our caller might not have that capability.
  3638. */
  3639. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3640. const struct sched_param *param)
  3641. {
  3642. return __sched_setscheduler(p, policy, param, false);
  3643. }
  3644. static int
  3645. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3646. {
  3647. struct sched_param lparam;
  3648. struct task_struct *p;
  3649. int retval;
  3650. if (!param || pid < 0)
  3651. return -EINVAL;
  3652. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3653. return -EFAULT;
  3654. rcu_read_lock();
  3655. retval = -ESRCH;
  3656. p = find_process_by_pid(pid);
  3657. if (p != NULL)
  3658. retval = sched_setscheduler(p, policy, &lparam);
  3659. rcu_read_unlock();
  3660. return retval;
  3661. }
  3662. /**
  3663. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3664. * @pid: the pid in question.
  3665. * @policy: new policy.
  3666. * @param: structure containing the new RT priority.
  3667. */
  3668. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3669. struct sched_param __user *, param)
  3670. {
  3671. /* negative values for policy are not valid */
  3672. if (policy < 0)
  3673. return -EINVAL;
  3674. return do_sched_setscheduler(pid, policy, param);
  3675. }
  3676. /**
  3677. * sys_sched_setparam - set/change the RT priority of a thread
  3678. * @pid: the pid in question.
  3679. * @param: structure containing the new RT priority.
  3680. */
  3681. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3682. {
  3683. return do_sched_setscheduler(pid, -1, param);
  3684. }
  3685. /**
  3686. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3687. * @pid: the pid in question.
  3688. */
  3689. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3690. {
  3691. struct task_struct *p;
  3692. int retval;
  3693. if (pid < 0)
  3694. return -EINVAL;
  3695. retval = -ESRCH;
  3696. rcu_read_lock();
  3697. p = find_process_by_pid(pid);
  3698. if (p) {
  3699. retval = security_task_getscheduler(p);
  3700. if (!retval)
  3701. retval = p->policy
  3702. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3703. }
  3704. rcu_read_unlock();
  3705. return retval;
  3706. }
  3707. /**
  3708. * sys_sched_getparam - get the RT priority of a thread
  3709. * @pid: the pid in question.
  3710. * @param: structure containing the RT priority.
  3711. */
  3712. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3713. {
  3714. struct sched_param lp;
  3715. struct task_struct *p;
  3716. int retval;
  3717. if (!param || pid < 0)
  3718. return -EINVAL;
  3719. rcu_read_lock();
  3720. p = find_process_by_pid(pid);
  3721. retval = -ESRCH;
  3722. if (!p)
  3723. goto out_unlock;
  3724. retval = security_task_getscheduler(p);
  3725. if (retval)
  3726. goto out_unlock;
  3727. lp.sched_priority = p->rt_priority;
  3728. rcu_read_unlock();
  3729. /*
  3730. * This one might sleep, we cannot do it with a spinlock held ...
  3731. */
  3732. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3733. return retval;
  3734. out_unlock:
  3735. rcu_read_unlock();
  3736. return retval;
  3737. }
  3738. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3739. {
  3740. cpumask_var_t cpus_allowed, new_mask;
  3741. struct task_struct *p;
  3742. int retval;
  3743. get_online_cpus();
  3744. rcu_read_lock();
  3745. p = find_process_by_pid(pid);
  3746. if (!p) {
  3747. rcu_read_unlock();
  3748. put_online_cpus();
  3749. return -ESRCH;
  3750. }
  3751. /* Prevent p going away */
  3752. get_task_struct(p);
  3753. rcu_read_unlock();
  3754. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3755. retval = -ENOMEM;
  3756. goto out_put_task;
  3757. }
  3758. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3759. retval = -ENOMEM;
  3760. goto out_free_cpus_allowed;
  3761. }
  3762. retval = -EPERM;
  3763. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3764. goto out_unlock;
  3765. retval = security_task_setscheduler(p);
  3766. if (retval)
  3767. goto out_unlock;
  3768. cpuset_cpus_allowed(p, cpus_allowed);
  3769. cpumask_and(new_mask, in_mask, cpus_allowed);
  3770. again:
  3771. retval = set_cpus_allowed_ptr(p, new_mask);
  3772. if (!retval) {
  3773. cpuset_cpus_allowed(p, cpus_allowed);
  3774. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3775. /*
  3776. * We must have raced with a concurrent cpuset
  3777. * update. Just reset the cpus_allowed to the
  3778. * cpuset's cpus_allowed
  3779. */
  3780. cpumask_copy(new_mask, cpus_allowed);
  3781. goto again;
  3782. }
  3783. }
  3784. out_unlock:
  3785. free_cpumask_var(new_mask);
  3786. out_free_cpus_allowed:
  3787. free_cpumask_var(cpus_allowed);
  3788. out_put_task:
  3789. put_task_struct(p);
  3790. put_online_cpus();
  3791. return retval;
  3792. }
  3793. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3794. struct cpumask *new_mask)
  3795. {
  3796. if (len < cpumask_size())
  3797. cpumask_clear(new_mask);
  3798. else if (len > cpumask_size())
  3799. len = cpumask_size();
  3800. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3801. }
  3802. /**
  3803. * sys_sched_setaffinity - set the cpu affinity of a process
  3804. * @pid: pid of the process
  3805. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3806. * @user_mask_ptr: user-space pointer to the new cpu mask
  3807. */
  3808. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3809. unsigned long __user *, user_mask_ptr)
  3810. {
  3811. cpumask_var_t new_mask;
  3812. int retval;
  3813. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3814. return -ENOMEM;
  3815. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3816. if (retval == 0)
  3817. retval = sched_setaffinity(pid, new_mask);
  3818. free_cpumask_var(new_mask);
  3819. return retval;
  3820. }
  3821. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3822. {
  3823. struct task_struct *p;
  3824. unsigned long flags;
  3825. int retval;
  3826. get_online_cpus();
  3827. rcu_read_lock();
  3828. retval = -ESRCH;
  3829. p = find_process_by_pid(pid);
  3830. if (!p)
  3831. goto out_unlock;
  3832. retval = security_task_getscheduler(p);
  3833. if (retval)
  3834. goto out_unlock;
  3835. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3836. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3837. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3838. out_unlock:
  3839. rcu_read_unlock();
  3840. put_online_cpus();
  3841. return retval;
  3842. }
  3843. /**
  3844. * sys_sched_getaffinity - get the cpu affinity of a process
  3845. * @pid: pid of the process
  3846. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3847. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3848. */
  3849. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3850. unsigned long __user *, user_mask_ptr)
  3851. {
  3852. int ret;
  3853. cpumask_var_t mask;
  3854. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3855. return -EINVAL;
  3856. if (len & (sizeof(unsigned long)-1))
  3857. return -EINVAL;
  3858. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3859. return -ENOMEM;
  3860. ret = sched_getaffinity(pid, mask);
  3861. if (ret == 0) {
  3862. size_t retlen = min_t(size_t, len, cpumask_size());
  3863. if (copy_to_user(user_mask_ptr, mask, retlen))
  3864. ret = -EFAULT;
  3865. else
  3866. ret = retlen;
  3867. }
  3868. free_cpumask_var(mask);
  3869. return ret;
  3870. }
  3871. /**
  3872. * sys_sched_yield - yield the current processor to other threads.
  3873. *
  3874. * This function yields the current CPU to other tasks. If there are no
  3875. * other threads running on this CPU then this function will return.
  3876. */
  3877. SYSCALL_DEFINE0(sched_yield)
  3878. {
  3879. struct rq *rq = this_rq_lock();
  3880. schedstat_inc(rq, yld_count);
  3881. current->sched_class->yield_task(rq);
  3882. /*
  3883. * Since we are going to call schedule() anyway, there's
  3884. * no need to preempt or enable interrupts:
  3885. */
  3886. __release(rq->lock);
  3887. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3888. do_raw_spin_unlock(&rq->lock);
  3889. sched_preempt_enable_no_resched();
  3890. schedule();
  3891. return 0;
  3892. }
  3893. static inline int should_resched(void)
  3894. {
  3895. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3896. }
  3897. static void __cond_resched(void)
  3898. {
  3899. add_preempt_count(PREEMPT_ACTIVE);
  3900. __schedule();
  3901. sub_preempt_count(PREEMPT_ACTIVE);
  3902. }
  3903. int __sched _cond_resched(void)
  3904. {
  3905. if (should_resched()) {
  3906. __cond_resched();
  3907. return 1;
  3908. }
  3909. return 0;
  3910. }
  3911. EXPORT_SYMBOL(_cond_resched);
  3912. /*
  3913. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3914. * call schedule, and on return reacquire the lock.
  3915. *
  3916. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3917. * operations here to prevent schedule() from being called twice (once via
  3918. * spin_unlock(), once by hand).
  3919. */
  3920. int __cond_resched_lock(spinlock_t *lock)
  3921. {
  3922. int resched = should_resched();
  3923. int ret = 0;
  3924. lockdep_assert_held(lock);
  3925. if (spin_needbreak(lock) || resched) {
  3926. spin_unlock(lock);
  3927. if (resched)
  3928. __cond_resched();
  3929. else
  3930. cpu_relax();
  3931. ret = 1;
  3932. spin_lock(lock);
  3933. }
  3934. return ret;
  3935. }
  3936. EXPORT_SYMBOL(__cond_resched_lock);
  3937. int __sched __cond_resched_softirq(void)
  3938. {
  3939. BUG_ON(!in_softirq());
  3940. if (should_resched()) {
  3941. local_bh_enable();
  3942. __cond_resched();
  3943. local_bh_disable();
  3944. return 1;
  3945. }
  3946. return 0;
  3947. }
  3948. EXPORT_SYMBOL(__cond_resched_softirq);
  3949. /**
  3950. * yield - yield the current processor to other threads.
  3951. *
  3952. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3953. *
  3954. * The scheduler is at all times free to pick the calling task as the most
  3955. * eligible task to run, if removing the yield() call from your code breaks
  3956. * it, its already broken.
  3957. *
  3958. * Typical broken usage is:
  3959. *
  3960. * while (!event)
  3961. * yield();
  3962. *
  3963. * where one assumes that yield() will let 'the other' process run that will
  3964. * make event true. If the current task is a SCHED_FIFO task that will never
  3965. * happen. Never use yield() as a progress guarantee!!
  3966. *
  3967. * If you want to use yield() to wait for something, use wait_event().
  3968. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3969. * If you still want to use yield(), do not!
  3970. */
  3971. void __sched yield(void)
  3972. {
  3973. set_current_state(TASK_RUNNING);
  3974. sys_sched_yield();
  3975. }
  3976. EXPORT_SYMBOL(yield);
  3977. /**
  3978. * yield_to - yield the current processor to another thread in
  3979. * your thread group, or accelerate that thread toward the
  3980. * processor it's on.
  3981. * @p: target task
  3982. * @preempt: whether task preemption is allowed or not
  3983. *
  3984. * It's the caller's job to ensure that the target task struct
  3985. * can't go away on us before we can do any checks.
  3986. *
  3987. * Returns true if we indeed boosted the target task.
  3988. */
  3989. bool __sched yield_to(struct task_struct *p, bool preempt)
  3990. {
  3991. struct task_struct *curr = current;
  3992. struct rq *rq, *p_rq;
  3993. unsigned long flags;
  3994. bool yielded = 0;
  3995. local_irq_save(flags);
  3996. rq = this_rq();
  3997. again:
  3998. p_rq = task_rq(p);
  3999. double_rq_lock(rq, p_rq);
  4000. while (task_rq(p) != p_rq) {
  4001. double_rq_unlock(rq, p_rq);
  4002. goto again;
  4003. }
  4004. if (!curr->sched_class->yield_to_task)
  4005. goto out;
  4006. if (curr->sched_class != p->sched_class)
  4007. goto out;
  4008. if (task_running(p_rq, p) || p->state)
  4009. goto out;
  4010. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4011. if (yielded) {
  4012. schedstat_inc(rq, yld_count);
  4013. /*
  4014. * Make p's CPU reschedule; pick_next_entity takes care of
  4015. * fairness.
  4016. */
  4017. if (preempt && rq != p_rq)
  4018. resched_task(p_rq->curr);
  4019. } else {
  4020. /*
  4021. * We might have set it in task_yield_fair(), but are
  4022. * not going to schedule(), so don't want to skip
  4023. * the next update.
  4024. */
  4025. rq->skip_clock_update = 0;
  4026. }
  4027. out:
  4028. double_rq_unlock(rq, p_rq);
  4029. local_irq_restore(flags);
  4030. if (yielded)
  4031. schedule();
  4032. return yielded;
  4033. }
  4034. EXPORT_SYMBOL_GPL(yield_to);
  4035. /*
  4036. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4037. * that process accounting knows that this is a task in IO wait state.
  4038. */
  4039. void __sched io_schedule(void)
  4040. {
  4041. struct rq *rq = raw_rq();
  4042. delayacct_blkio_start();
  4043. atomic_inc(&rq->nr_iowait);
  4044. blk_flush_plug(current);
  4045. current->in_iowait = 1;
  4046. schedule();
  4047. current->in_iowait = 0;
  4048. atomic_dec(&rq->nr_iowait);
  4049. delayacct_blkio_end();
  4050. }
  4051. EXPORT_SYMBOL(io_schedule);
  4052. long __sched io_schedule_timeout(long timeout)
  4053. {
  4054. struct rq *rq = raw_rq();
  4055. long ret;
  4056. delayacct_blkio_start();
  4057. atomic_inc(&rq->nr_iowait);
  4058. blk_flush_plug(current);
  4059. current->in_iowait = 1;
  4060. ret = schedule_timeout(timeout);
  4061. current->in_iowait = 0;
  4062. atomic_dec(&rq->nr_iowait);
  4063. delayacct_blkio_end();
  4064. return ret;
  4065. }
  4066. /**
  4067. * sys_sched_get_priority_max - return maximum RT priority.
  4068. * @policy: scheduling class.
  4069. *
  4070. * this syscall returns the maximum rt_priority that can be used
  4071. * by a given scheduling class.
  4072. */
  4073. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4074. {
  4075. int ret = -EINVAL;
  4076. switch (policy) {
  4077. case SCHED_FIFO:
  4078. case SCHED_RR:
  4079. ret = MAX_USER_RT_PRIO-1;
  4080. break;
  4081. case SCHED_NORMAL:
  4082. case SCHED_BATCH:
  4083. case SCHED_IDLE:
  4084. ret = 0;
  4085. break;
  4086. }
  4087. return ret;
  4088. }
  4089. /**
  4090. * sys_sched_get_priority_min - return minimum RT priority.
  4091. * @policy: scheduling class.
  4092. *
  4093. * this syscall returns the minimum rt_priority that can be used
  4094. * by a given scheduling class.
  4095. */
  4096. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4097. {
  4098. int ret = -EINVAL;
  4099. switch (policy) {
  4100. case SCHED_FIFO:
  4101. case SCHED_RR:
  4102. ret = 1;
  4103. break;
  4104. case SCHED_NORMAL:
  4105. case SCHED_BATCH:
  4106. case SCHED_IDLE:
  4107. ret = 0;
  4108. }
  4109. return ret;
  4110. }
  4111. /**
  4112. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4113. * @pid: pid of the process.
  4114. * @interval: userspace pointer to the timeslice value.
  4115. *
  4116. * this syscall writes the default timeslice value of a given process
  4117. * into the user-space timespec buffer. A value of '0' means infinity.
  4118. */
  4119. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4120. struct timespec __user *, interval)
  4121. {
  4122. struct task_struct *p;
  4123. unsigned int time_slice;
  4124. unsigned long flags;
  4125. struct rq *rq;
  4126. int retval;
  4127. struct timespec t;
  4128. if (pid < 0)
  4129. return -EINVAL;
  4130. retval = -ESRCH;
  4131. rcu_read_lock();
  4132. p = find_process_by_pid(pid);
  4133. if (!p)
  4134. goto out_unlock;
  4135. retval = security_task_getscheduler(p);
  4136. if (retval)
  4137. goto out_unlock;
  4138. rq = task_rq_lock(p, &flags);
  4139. time_slice = p->sched_class->get_rr_interval(rq, p);
  4140. task_rq_unlock(rq, p, &flags);
  4141. rcu_read_unlock();
  4142. jiffies_to_timespec(time_slice, &t);
  4143. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4144. return retval;
  4145. out_unlock:
  4146. rcu_read_unlock();
  4147. return retval;
  4148. }
  4149. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4150. void sched_show_task(struct task_struct *p)
  4151. {
  4152. unsigned long free = 0;
  4153. unsigned state;
  4154. state = p->state ? __ffs(p->state) + 1 : 0;
  4155. printk(KERN_INFO "%-15.15s %c", p->comm,
  4156. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4157. #if BITS_PER_LONG == 32
  4158. if (state == TASK_RUNNING)
  4159. printk(KERN_CONT " running ");
  4160. else
  4161. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4162. #else
  4163. if (state == TASK_RUNNING)
  4164. printk(KERN_CONT " running task ");
  4165. else
  4166. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4167. #endif
  4168. #ifdef CONFIG_DEBUG_STACK_USAGE
  4169. free = stack_not_used(p);
  4170. #endif
  4171. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4172. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4173. (unsigned long)task_thread_info(p)->flags);
  4174. show_stack(p, NULL);
  4175. }
  4176. void show_state_filter(unsigned long state_filter)
  4177. {
  4178. struct task_struct *g, *p;
  4179. #if BITS_PER_LONG == 32
  4180. printk(KERN_INFO
  4181. " task PC stack pid father\n");
  4182. #else
  4183. printk(KERN_INFO
  4184. " task PC stack pid father\n");
  4185. #endif
  4186. rcu_read_lock();
  4187. do_each_thread(g, p) {
  4188. /*
  4189. * reset the NMI-timeout, listing all files on a slow
  4190. * console might take a lot of time:
  4191. */
  4192. touch_nmi_watchdog();
  4193. if (!state_filter || (p->state & state_filter))
  4194. sched_show_task(p);
  4195. } while_each_thread(g, p);
  4196. touch_all_softlockup_watchdogs();
  4197. #ifdef CONFIG_SCHED_DEBUG
  4198. sysrq_sched_debug_show();
  4199. #endif
  4200. rcu_read_unlock();
  4201. /*
  4202. * Only show locks if all tasks are dumped:
  4203. */
  4204. if (!state_filter)
  4205. debug_show_all_locks();
  4206. }
  4207. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4208. {
  4209. idle->sched_class = &idle_sched_class;
  4210. }
  4211. /**
  4212. * init_idle - set up an idle thread for a given CPU
  4213. * @idle: task in question
  4214. * @cpu: cpu the idle task belongs to
  4215. *
  4216. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4217. * flag, to make booting more robust.
  4218. */
  4219. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4220. {
  4221. struct rq *rq = cpu_rq(cpu);
  4222. unsigned long flags;
  4223. raw_spin_lock_irqsave(&rq->lock, flags);
  4224. __sched_fork(idle);
  4225. idle->state = TASK_RUNNING;
  4226. idle->se.exec_start = sched_clock();
  4227. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4228. /*
  4229. * We're having a chicken and egg problem, even though we are
  4230. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4231. * lockdep check in task_group() will fail.
  4232. *
  4233. * Similar case to sched_fork(). / Alternatively we could
  4234. * use task_rq_lock() here and obtain the other rq->lock.
  4235. *
  4236. * Silence PROVE_RCU
  4237. */
  4238. rcu_read_lock();
  4239. __set_task_cpu(idle, cpu);
  4240. rcu_read_unlock();
  4241. rq->curr = rq->idle = idle;
  4242. #if defined(CONFIG_SMP)
  4243. idle->on_cpu = 1;
  4244. #endif
  4245. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4246. /* Set the preempt count _outside_ the spinlocks! */
  4247. task_thread_info(idle)->preempt_count = 0;
  4248. /*
  4249. * The idle tasks have their own, simple scheduling class:
  4250. */
  4251. idle->sched_class = &idle_sched_class;
  4252. ftrace_graph_init_idle_task(idle, cpu);
  4253. #if defined(CONFIG_SMP)
  4254. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4255. #endif
  4256. }
  4257. #ifdef CONFIG_SMP
  4258. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4259. {
  4260. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4261. p->sched_class->set_cpus_allowed(p, new_mask);
  4262. cpumask_copy(&p->cpus_allowed, new_mask);
  4263. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4264. }
  4265. /*
  4266. * This is how migration works:
  4267. *
  4268. * 1) we invoke migration_cpu_stop() on the target CPU using
  4269. * stop_one_cpu().
  4270. * 2) stopper starts to run (implicitly forcing the migrated thread
  4271. * off the CPU)
  4272. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4273. * 4) if it's in the wrong runqueue then the migration thread removes
  4274. * it and puts it into the right queue.
  4275. * 5) stopper completes and stop_one_cpu() returns and the migration
  4276. * is done.
  4277. */
  4278. /*
  4279. * Change a given task's CPU affinity. Migrate the thread to a
  4280. * proper CPU and schedule it away if the CPU it's executing on
  4281. * is removed from the allowed bitmask.
  4282. *
  4283. * NOTE: the caller must have a valid reference to the task, the
  4284. * task must not exit() & deallocate itself prematurely. The
  4285. * call is not atomic; no spinlocks may be held.
  4286. */
  4287. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4288. {
  4289. unsigned long flags;
  4290. struct rq *rq;
  4291. unsigned int dest_cpu;
  4292. int ret = 0;
  4293. rq = task_rq_lock(p, &flags);
  4294. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4295. goto out;
  4296. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4297. ret = -EINVAL;
  4298. goto out;
  4299. }
  4300. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4301. ret = -EINVAL;
  4302. goto out;
  4303. }
  4304. do_set_cpus_allowed(p, new_mask);
  4305. /* Can the task run on the task's current CPU? If so, we're done */
  4306. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4307. goto out;
  4308. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4309. if (p->on_rq) {
  4310. struct migration_arg arg = { p, dest_cpu };
  4311. /* Need help from migration thread: drop lock and wait. */
  4312. task_rq_unlock(rq, p, &flags);
  4313. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4314. tlb_migrate_finish(p->mm);
  4315. return 0;
  4316. }
  4317. out:
  4318. task_rq_unlock(rq, p, &flags);
  4319. return ret;
  4320. }
  4321. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4322. /*
  4323. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4324. * this because either it can't run here any more (set_cpus_allowed()
  4325. * away from this CPU, or CPU going down), or because we're
  4326. * attempting to rebalance this task on exec (sched_exec).
  4327. *
  4328. * So we race with normal scheduler movements, but that's OK, as long
  4329. * as the task is no longer on this CPU.
  4330. *
  4331. * Returns non-zero if task was successfully migrated.
  4332. */
  4333. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4334. {
  4335. struct rq *rq_dest, *rq_src;
  4336. int ret = 0;
  4337. if (unlikely(!cpu_active(dest_cpu)))
  4338. return ret;
  4339. rq_src = cpu_rq(src_cpu);
  4340. rq_dest = cpu_rq(dest_cpu);
  4341. raw_spin_lock(&p->pi_lock);
  4342. double_rq_lock(rq_src, rq_dest);
  4343. /* Already moved. */
  4344. if (task_cpu(p) != src_cpu)
  4345. goto done;
  4346. /* Affinity changed (again). */
  4347. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4348. goto fail;
  4349. /*
  4350. * If we're not on a rq, the next wake-up will ensure we're
  4351. * placed properly.
  4352. */
  4353. if (p->on_rq) {
  4354. dequeue_task(rq_src, p, 0);
  4355. set_task_cpu(p, dest_cpu);
  4356. enqueue_task(rq_dest, p, 0);
  4357. check_preempt_curr(rq_dest, p, 0);
  4358. }
  4359. done:
  4360. ret = 1;
  4361. fail:
  4362. double_rq_unlock(rq_src, rq_dest);
  4363. raw_spin_unlock(&p->pi_lock);
  4364. return ret;
  4365. }
  4366. /*
  4367. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4368. * and performs thread migration by bumping thread off CPU then
  4369. * 'pushing' onto another runqueue.
  4370. */
  4371. static int migration_cpu_stop(void *data)
  4372. {
  4373. struct migration_arg *arg = data;
  4374. /*
  4375. * The original target cpu might have gone down and we might
  4376. * be on another cpu but it doesn't matter.
  4377. */
  4378. local_irq_disable();
  4379. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4380. local_irq_enable();
  4381. return 0;
  4382. }
  4383. #ifdef CONFIG_HOTPLUG_CPU
  4384. /*
  4385. * Ensures that the idle task is using init_mm right before its cpu goes
  4386. * offline.
  4387. */
  4388. void idle_task_exit(void)
  4389. {
  4390. struct mm_struct *mm = current->active_mm;
  4391. BUG_ON(cpu_online(smp_processor_id()));
  4392. if (mm != &init_mm)
  4393. switch_mm(mm, &init_mm, current);
  4394. mmdrop(mm);
  4395. }
  4396. /*
  4397. * While a dead CPU has no uninterruptible tasks queued at this point,
  4398. * it might still have a nonzero ->nr_uninterruptible counter, because
  4399. * for performance reasons the counter is not stricly tracking tasks to
  4400. * their home CPUs. So we just add the counter to another CPU's counter,
  4401. * to keep the global sum constant after CPU-down:
  4402. */
  4403. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4404. {
  4405. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4406. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4407. rq_src->nr_uninterruptible = 0;
  4408. }
  4409. /*
  4410. * remove the tasks which were accounted by rq from calc_load_tasks.
  4411. */
  4412. static void calc_global_load_remove(struct rq *rq)
  4413. {
  4414. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4415. rq->calc_load_active = 0;
  4416. }
  4417. /*
  4418. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4419. * try_to_wake_up()->select_task_rq().
  4420. *
  4421. * Called with rq->lock held even though we'er in stop_machine() and
  4422. * there's no concurrency possible, we hold the required locks anyway
  4423. * because of lock validation efforts.
  4424. */
  4425. static void migrate_tasks(unsigned int dead_cpu)
  4426. {
  4427. struct rq *rq = cpu_rq(dead_cpu);
  4428. struct task_struct *next, *stop = rq->stop;
  4429. int dest_cpu;
  4430. /*
  4431. * Fudge the rq selection such that the below task selection loop
  4432. * doesn't get stuck on the currently eligible stop task.
  4433. *
  4434. * We're currently inside stop_machine() and the rq is either stuck
  4435. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4436. * either way we should never end up calling schedule() until we're
  4437. * done here.
  4438. */
  4439. rq->stop = NULL;
  4440. /* Ensure any throttled groups are reachable by pick_next_task */
  4441. unthrottle_offline_cfs_rqs(rq);
  4442. for ( ; ; ) {
  4443. /*
  4444. * There's this thread running, bail when that's the only
  4445. * remaining thread.
  4446. */
  4447. if (rq->nr_running == 1)
  4448. break;
  4449. next = pick_next_task(rq);
  4450. BUG_ON(!next);
  4451. next->sched_class->put_prev_task(rq, next);
  4452. /* Find suitable destination for @next, with force if needed. */
  4453. dest_cpu = select_fallback_rq(dead_cpu, next);
  4454. raw_spin_unlock(&rq->lock);
  4455. __migrate_task(next, dead_cpu, dest_cpu);
  4456. raw_spin_lock(&rq->lock);
  4457. }
  4458. rq->stop = stop;
  4459. }
  4460. #endif /* CONFIG_HOTPLUG_CPU */
  4461. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4462. static struct ctl_table sd_ctl_dir[] = {
  4463. {
  4464. .procname = "sched_domain",
  4465. .mode = 0555,
  4466. },
  4467. {}
  4468. };
  4469. static struct ctl_table sd_ctl_root[] = {
  4470. {
  4471. .procname = "kernel",
  4472. .mode = 0555,
  4473. .child = sd_ctl_dir,
  4474. },
  4475. {}
  4476. };
  4477. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4478. {
  4479. struct ctl_table *entry =
  4480. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4481. return entry;
  4482. }
  4483. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4484. {
  4485. struct ctl_table *entry;
  4486. /*
  4487. * In the intermediate directories, both the child directory and
  4488. * procname are dynamically allocated and could fail but the mode
  4489. * will always be set. In the lowest directory the names are
  4490. * static strings and all have proc handlers.
  4491. */
  4492. for (entry = *tablep; entry->mode; entry++) {
  4493. if (entry->child)
  4494. sd_free_ctl_entry(&entry->child);
  4495. if (entry->proc_handler == NULL)
  4496. kfree(entry->procname);
  4497. }
  4498. kfree(*tablep);
  4499. *tablep = NULL;
  4500. }
  4501. static void
  4502. set_table_entry(struct ctl_table *entry,
  4503. const char *procname, void *data, int maxlen,
  4504. umode_t mode, proc_handler *proc_handler)
  4505. {
  4506. entry->procname = procname;
  4507. entry->data = data;
  4508. entry->maxlen = maxlen;
  4509. entry->mode = mode;
  4510. entry->proc_handler = proc_handler;
  4511. }
  4512. static struct ctl_table *
  4513. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4514. {
  4515. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4516. if (table == NULL)
  4517. return NULL;
  4518. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4519. sizeof(long), 0644, proc_doulongvec_minmax);
  4520. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4521. sizeof(long), 0644, proc_doulongvec_minmax);
  4522. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4523. sizeof(int), 0644, proc_dointvec_minmax);
  4524. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4525. sizeof(int), 0644, proc_dointvec_minmax);
  4526. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4527. sizeof(int), 0644, proc_dointvec_minmax);
  4528. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4529. sizeof(int), 0644, proc_dointvec_minmax);
  4530. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4531. sizeof(int), 0644, proc_dointvec_minmax);
  4532. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4533. sizeof(int), 0644, proc_dointvec_minmax);
  4534. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4535. sizeof(int), 0644, proc_dointvec_minmax);
  4536. set_table_entry(&table[9], "cache_nice_tries",
  4537. &sd->cache_nice_tries,
  4538. sizeof(int), 0644, proc_dointvec_minmax);
  4539. set_table_entry(&table[10], "flags", &sd->flags,
  4540. sizeof(int), 0644, proc_dointvec_minmax);
  4541. set_table_entry(&table[11], "name", sd->name,
  4542. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4543. /* &table[12] is terminator */
  4544. return table;
  4545. }
  4546. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4547. {
  4548. struct ctl_table *entry, *table;
  4549. struct sched_domain *sd;
  4550. int domain_num = 0, i;
  4551. char buf[32];
  4552. for_each_domain(cpu, sd)
  4553. domain_num++;
  4554. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4555. if (table == NULL)
  4556. return NULL;
  4557. i = 0;
  4558. for_each_domain(cpu, sd) {
  4559. snprintf(buf, 32, "domain%d", i);
  4560. entry->procname = kstrdup(buf, GFP_KERNEL);
  4561. entry->mode = 0555;
  4562. entry->child = sd_alloc_ctl_domain_table(sd);
  4563. entry++;
  4564. i++;
  4565. }
  4566. return table;
  4567. }
  4568. static struct ctl_table_header *sd_sysctl_header;
  4569. static void register_sched_domain_sysctl(void)
  4570. {
  4571. int i, cpu_num = num_possible_cpus();
  4572. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4573. char buf[32];
  4574. WARN_ON(sd_ctl_dir[0].child);
  4575. sd_ctl_dir[0].child = entry;
  4576. if (entry == NULL)
  4577. return;
  4578. for_each_possible_cpu(i) {
  4579. snprintf(buf, 32, "cpu%d", i);
  4580. entry->procname = kstrdup(buf, GFP_KERNEL);
  4581. entry->mode = 0555;
  4582. entry->child = sd_alloc_ctl_cpu_table(i);
  4583. entry++;
  4584. }
  4585. WARN_ON(sd_sysctl_header);
  4586. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4587. }
  4588. /* may be called multiple times per register */
  4589. static void unregister_sched_domain_sysctl(void)
  4590. {
  4591. if (sd_sysctl_header)
  4592. unregister_sysctl_table(sd_sysctl_header);
  4593. sd_sysctl_header = NULL;
  4594. if (sd_ctl_dir[0].child)
  4595. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4596. }
  4597. #else
  4598. static void register_sched_domain_sysctl(void)
  4599. {
  4600. }
  4601. static void unregister_sched_domain_sysctl(void)
  4602. {
  4603. }
  4604. #endif
  4605. static void set_rq_online(struct rq *rq)
  4606. {
  4607. if (!rq->online) {
  4608. const struct sched_class *class;
  4609. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4610. rq->online = 1;
  4611. for_each_class(class) {
  4612. if (class->rq_online)
  4613. class->rq_online(rq);
  4614. }
  4615. }
  4616. }
  4617. static void set_rq_offline(struct rq *rq)
  4618. {
  4619. if (rq->online) {
  4620. const struct sched_class *class;
  4621. for_each_class(class) {
  4622. if (class->rq_offline)
  4623. class->rq_offline(rq);
  4624. }
  4625. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4626. rq->online = 0;
  4627. }
  4628. }
  4629. /*
  4630. * migration_call - callback that gets triggered when a CPU is added.
  4631. * Here we can start up the necessary migration thread for the new CPU.
  4632. */
  4633. static int __cpuinit
  4634. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4635. {
  4636. int cpu = (long)hcpu;
  4637. unsigned long flags;
  4638. struct rq *rq = cpu_rq(cpu);
  4639. switch (action & ~CPU_TASKS_FROZEN) {
  4640. case CPU_UP_PREPARE:
  4641. rq->calc_load_update = calc_load_update;
  4642. break;
  4643. case CPU_ONLINE:
  4644. /* Update our root-domain */
  4645. raw_spin_lock_irqsave(&rq->lock, flags);
  4646. if (rq->rd) {
  4647. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4648. set_rq_online(rq);
  4649. }
  4650. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4651. break;
  4652. #ifdef CONFIG_HOTPLUG_CPU
  4653. case CPU_DYING:
  4654. sched_ttwu_pending();
  4655. /* Update our root-domain */
  4656. raw_spin_lock_irqsave(&rq->lock, flags);
  4657. if (rq->rd) {
  4658. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4659. set_rq_offline(rq);
  4660. }
  4661. migrate_tasks(cpu);
  4662. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4663. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4664. migrate_nr_uninterruptible(rq);
  4665. calc_global_load_remove(rq);
  4666. break;
  4667. #endif
  4668. }
  4669. update_max_interval();
  4670. return NOTIFY_OK;
  4671. }
  4672. /*
  4673. * Register at high priority so that task migration (migrate_all_tasks)
  4674. * happens before everything else. This has to be lower priority than
  4675. * the notifier in the perf_event subsystem, though.
  4676. */
  4677. static struct notifier_block __cpuinitdata migration_notifier = {
  4678. .notifier_call = migration_call,
  4679. .priority = CPU_PRI_MIGRATION,
  4680. };
  4681. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4682. unsigned long action, void *hcpu)
  4683. {
  4684. switch (action & ~CPU_TASKS_FROZEN) {
  4685. case CPU_STARTING:
  4686. case CPU_DOWN_FAILED:
  4687. set_cpu_active((long)hcpu, true);
  4688. return NOTIFY_OK;
  4689. default:
  4690. return NOTIFY_DONE;
  4691. }
  4692. }
  4693. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4694. unsigned long action, void *hcpu)
  4695. {
  4696. switch (action & ~CPU_TASKS_FROZEN) {
  4697. case CPU_DOWN_PREPARE:
  4698. set_cpu_active((long)hcpu, false);
  4699. return NOTIFY_OK;
  4700. default:
  4701. return NOTIFY_DONE;
  4702. }
  4703. }
  4704. static int __init migration_init(void)
  4705. {
  4706. void *cpu = (void *)(long)smp_processor_id();
  4707. int err;
  4708. /* Initialize migration for the boot CPU */
  4709. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4710. BUG_ON(err == NOTIFY_BAD);
  4711. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4712. register_cpu_notifier(&migration_notifier);
  4713. /* Register cpu active notifiers */
  4714. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4715. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4716. return 0;
  4717. }
  4718. early_initcall(migration_init);
  4719. #endif
  4720. #ifdef CONFIG_SMP
  4721. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4722. #ifdef CONFIG_SCHED_DEBUG
  4723. static __read_mostly int sched_domain_debug_enabled;
  4724. static int __init sched_domain_debug_setup(char *str)
  4725. {
  4726. sched_domain_debug_enabled = 1;
  4727. return 0;
  4728. }
  4729. early_param("sched_debug", sched_domain_debug_setup);
  4730. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4731. struct cpumask *groupmask)
  4732. {
  4733. struct sched_group *group = sd->groups;
  4734. char str[256];
  4735. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4736. cpumask_clear(groupmask);
  4737. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4738. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4739. printk("does not load-balance\n");
  4740. if (sd->parent)
  4741. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4742. " has parent");
  4743. return -1;
  4744. }
  4745. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4746. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4747. printk(KERN_ERR "ERROR: domain->span does not contain "
  4748. "CPU%d\n", cpu);
  4749. }
  4750. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4751. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4752. " CPU%d\n", cpu);
  4753. }
  4754. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4755. do {
  4756. if (!group) {
  4757. printk("\n");
  4758. printk(KERN_ERR "ERROR: group is NULL\n");
  4759. break;
  4760. }
  4761. if (!group->sgp->power) {
  4762. printk(KERN_CONT "\n");
  4763. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4764. "set\n");
  4765. break;
  4766. }
  4767. if (!cpumask_weight(sched_group_cpus(group))) {
  4768. printk(KERN_CONT "\n");
  4769. printk(KERN_ERR "ERROR: empty group\n");
  4770. break;
  4771. }
  4772. if (!(sd->flags & SD_OVERLAP) &&
  4773. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4774. printk(KERN_CONT "\n");
  4775. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4776. break;
  4777. }
  4778. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4779. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4780. printk(KERN_CONT " %s", str);
  4781. if (group->sgp->power != SCHED_POWER_SCALE) {
  4782. printk(KERN_CONT " (cpu_power = %d)",
  4783. group->sgp->power);
  4784. }
  4785. group = group->next;
  4786. } while (group != sd->groups);
  4787. printk(KERN_CONT "\n");
  4788. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4789. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4790. if (sd->parent &&
  4791. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4792. printk(KERN_ERR "ERROR: parent span is not a superset "
  4793. "of domain->span\n");
  4794. return 0;
  4795. }
  4796. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4797. {
  4798. int level = 0;
  4799. if (!sched_domain_debug_enabled)
  4800. return;
  4801. if (!sd) {
  4802. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4803. return;
  4804. }
  4805. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4806. for (;;) {
  4807. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4808. break;
  4809. level++;
  4810. sd = sd->parent;
  4811. if (!sd)
  4812. break;
  4813. }
  4814. }
  4815. #else /* !CONFIG_SCHED_DEBUG */
  4816. # define sched_domain_debug(sd, cpu) do { } while (0)
  4817. #endif /* CONFIG_SCHED_DEBUG */
  4818. static int sd_degenerate(struct sched_domain *sd)
  4819. {
  4820. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4821. return 1;
  4822. /* Following flags need at least 2 groups */
  4823. if (sd->flags & (SD_LOAD_BALANCE |
  4824. SD_BALANCE_NEWIDLE |
  4825. SD_BALANCE_FORK |
  4826. SD_BALANCE_EXEC |
  4827. SD_SHARE_CPUPOWER |
  4828. SD_SHARE_PKG_RESOURCES)) {
  4829. if (sd->groups != sd->groups->next)
  4830. return 0;
  4831. }
  4832. /* Following flags don't use groups */
  4833. if (sd->flags & (SD_WAKE_AFFINE))
  4834. return 0;
  4835. return 1;
  4836. }
  4837. static int
  4838. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4839. {
  4840. unsigned long cflags = sd->flags, pflags = parent->flags;
  4841. if (sd_degenerate(parent))
  4842. return 1;
  4843. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4844. return 0;
  4845. /* Flags needing groups don't count if only 1 group in parent */
  4846. if (parent->groups == parent->groups->next) {
  4847. pflags &= ~(SD_LOAD_BALANCE |
  4848. SD_BALANCE_NEWIDLE |
  4849. SD_BALANCE_FORK |
  4850. SD_BALANCE_EXEC |
  4851. SD_SHARE_CPUPOWER |
  4852. SD_SHARE_PKG_RESOURCES);
  4853. if (nr_node_ids == 1)
  4854. pflags &= ~SD_SERIALIZE;
  4855. }
  4856. if (~cflags & pflags)
  4857. return 0;
  4858. return 1;
  4859. }
  4860. static void free_rootdomain(struct rcu_head *rcu)
  4861. {
  4862. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4863. cpupri_cleanup(&rd->cpupri);
  4864. free_cpumask_var(rd->rto_mask);
  4865. free_cpumask_var(rd->online);
  4866. free_cpumask_var(rd->span);
  4867. kfree(rd);
  4868. }
  4869. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4870. {
  4871. struct root_domain *old_rd = NULL;
  4872. unsigned long flags;
  4873. raw_spin_lock_irqsave(&rq->lock, flags);
  4874. if (rq->rd) {
  4875. old_rd = rq->rd;
  4876. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4877. set_rq_offline(rq);
  4878. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4879. /*
  4880. * If we dont want to free the old_rt yet then
  4881. * set old_rd to NULL to skip the freeing later
  4882. * in this function:
  4883. */
  4884. if (!atomic_dec_and_test(&old_rd->refcount))
  4885. old_rd = NULL;
  4886. }
  4887. atomic_inc(&rd->refcount);
  4888. rq->rd = rd;
  4889. cpumask_set_cpu(rq->cpu, rd->span);
  4890. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4891. set_rq_online(rq);
  4892. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4893. if (old_rd)
  4894. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4895. }
  4896. static int init_rootdomain(struct root_domain *rd)
  4897. {
  4898. memset(rd, 0, sizeof(*rd));
  4899. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4900. goto out;
  4901. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4902. goto free_span;
  4903. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4904. goto free_online;
  4905. if (cpupri_init(&rd->cpupri) != 0)
  4906. goto free_rto_mask;
  4907. return 0;
  4908. free_rto_mask:
  4909. free_cpumask_var(rd->rto_mask);
  4910. free_online:
  4911. free_cpumask_var(rd->online);
  4912. free_span:
  4913. free_cpumask_var(rd->span);
  4914. out:
  4915. return -ENOMEM;
  4916. }
  4917. /*
  4918. * By default the system creates a single root-domain with all cpus as
  4919. * members (mimicking the global state we have today).
  4920. */
  4921. struct root_domain def_root_domain;
  4922. static void init_defrootdomain(void)
  4923. {
  4924. init_rootdomain(&def_root_domain);
  4925. atomic_set(&def_root_domain.refcount, 1);
  4926. }
  4927. static struct root_domain *alloc_rootdomain(void)
  4928. {
  4929. struct root_domain *rd;
  4930. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4931. if (!rd)
  4932. return NULL;
  4933. if (init_rootdomain(rd) != 0) {
  4934. kfree(rd);
  4935. return NULL;
  4936. }
  4937. return rd;
  4938. }
  4939. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4940. {
  4941. struct sched_group *tmp, *first;
  4942. if (!sg)
  4943. return;
  4944. first = sg;
  4945. do {
  4946. tmp = sg->next;
  4947. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4948. kfree(sg->sgp);
  4949. kfree(sg);
  4950. sg = tmp;
  4951. } while (sg != first);
  4952. }
  4953. static void free_sched_domain(struct rcu_head *rcu)
  4954. {
  4955. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4956. /*
  4957. * If its an overlapping domain it has private groups, iterate and
  4958. * nuke them all.
  4959. */
  4960. if (sd->flags & SD_OVERLAP) {
  4961. free_sched_groups(sd->groups, 1);
  4962. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4963. kfree(sd->groups->sgp);
  4964. kfree(sd->groups);
  4965. }
  4966. kfree(sd);
  4967. }
  4968. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4969. {
  4970. call_rcu(&sd->rcu, free_sched_domain);
  4971. }
  4972. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4973. {
  4974. for (; sd; sd = sd->parent)
  4975. destroy_sched_domain(sd, cpu);
  4976. }
  4977. /*
  4978. * Keep a special pointer to the highest sched_domain that has
  4979. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4980. * allows us to avoid some pointer chasing select_idle_sibling().
  4981. *
  4982. * Also keep a unique ID per domain (we use the first cpu number in
  4983. * the cpumask of the domain), this allows us to quickly tell if
  4984. * two cpus are in the same cache domain, see cpus_share_cache().
  4985. */
  4986. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4987. DEFINE_PER_CPU(int, sd_llc_id);
  4988. static void update_top_cache_domain(int cpu)
  4989. {
  4990. struct sched_domain *sd;
  4991. int id = cpu;
  4992. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4993. if (sd)
  4994. id = cpumask_first(sched_domain_span(sd));
  4995. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4996. per_cpu(sd_llc_id, cpu) = id;
  4997. }
  4998. /*
  4999. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5000. * hold the hotplug lock.
  5001. */
  5002. static void
  5003. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5004. {
  5005. struct rq *rq = cpu_rq(cpu);
  5006. struct sched_domain *tmp;
  5007. /* Remove the sched domains which do not contribute to scheduling. */
  5008. for (tmp = sd; tmp; ) {
  5009. struct sched_domain *parent = tmp->parent;
  5010. if (!parent)
  5011. break;
  5012. if (sd_parent_degenerate(tmp, parent)) {
  5013. tmp->parent = parent->parent;
  5014. if (parent->parent)
  5015. parent->parent->child = tmp;
  5016. destroy_sched_domain(parent, cpu);
  5017. } else
  5018. tmp = tmp->parent;
  5019. }
  5020. if (sd && sd_degenerate(sd)) {
  5021. tmp = sd;
  5022. sd = sd->parent;
  5023. destroy_sched_domain(tmp, cpu);
  5024. if (sd)
  5025. sd->child = NULL;
  5026. }
  5027. sched_domain_debug(sd, cpu);
  5028. rq_attach_root(rq, rd);
  5029. tmp = rq->sd;
  5030. rcu_assign_pointer(rq->sd, sd);
  5031. destroy_sched_domains(tmp, cpu);
  5032. update_top_cache_domain(cpu);
  5033. }
  5034. /* cpus with isolated domains */
  5035. static cpumask_var_t cpu_isolated_map;
  5036. /* Setup the mask of cpus configured for isolated domains */
  5037. static int __init isolated_cpu_setup(char *str)
  5038. {
  5039. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5040. cpulist_parse(str, cpu_isolated_map);
  5041. return 1;
  5042. }
  5043. __setup("isolcpus=", isolated_cpu_setup);
  5044. static const struct cpumask *cpu_cpu_mask(int cpu)
  5045. {
  5046. return cpumask_of_node(cpu_to_node(cpu));
  5047. }
  5048. struct sd_data {
  5049. struct sched_domain **__percpu sd;
  5050. struct sched_group **__percpu sg;
  5051. struct sched_group_power **__percpu sgp;
  5052. };
  5053. struct s_data {
  5054. struct sched_domain ** __percpu sd;
  5055. struct root_domain *rd;
  5056. };
  5057. enum s_alloc {
  5058. sa_rootdomain,
  5059. sa_sd,
  5060. sa_sd_storage,
  5061. sa_none,
  5062. };
  5063. struct sched_domain_topology_level;
  5064. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5065. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5066. #define SDTL_OVERLAP 0x01
  5067. struct sched_domain_topology_level {
  5068. sched_domain_init_f init;
  5069. sched_domain_mask_f mask;
  5070. int flags;
  5071. int numa_level;
  5072. struct sd_data data;
  5073. };
  5074. static int
  5075. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5076. {
  5077. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5078. const struct cpumask *span = sched_domain_span(sd);
  5079. struct cpumask *covered = sched_domains_tmpmask;
  5080. struct sd_data *sdd = sd->private;
  5081. struct sched_domain *child;
  5082. int i;
  5083. cpumask_clear(covered);
  5084. for_each_cpu(i, span) {
  5085. struct cpumask *sg_span;
  5086. if (cpumask_test_cpu(i, covered))
  5087. continue;
  5088. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5089. GFP_KERNEL, cpu_to_node(cpu));
  5090. if (!sg)
  5091. goto fail;
  5092. sg_span = sched_group_cpus(sg);
  5093. child = *per_cpu_ptr(sdd->sd, i);
  5094. if (child->child) {
  5095. child = child->child;
  5096. cpumask_copy(sg_span, sched_domain_span(child));
  5097. } else
  5098. cpumask_set_cpu(i, sg_span);
  5099. cpumask_or(covered, covered, sg_span);
  5100. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5101. atomic_inc(&sg->sgp->ref);
  5102. if (cpumask_test_cpu(cpu, sg_span))
  5103. groups = sg;
  5104. if (!first)
  5105. first = sg;
  5106. if (last)
  5107. last->next = sg;
  5108. last = sg;
  5109. last->next = first;
  5110. }
  5111. sd->groups = groups;
  5112. return 0;
  5113. fail:
  5114. free_sched_groups(first, 0);
  5115. return -ENOMEM;
  5116. }
  5117. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5118. {
  5119. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5120. struct sched_domain *child = sd->child;
  5121. if (child)
  5122. cpu = cpumask_first(sched_domain_span(child));
  5123. if (sg) {
  5124. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5125. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5126. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5127. }
  5128. return cpu;
  5129. }
  5130. /*
  5131. * build_sched_groups will build a circular linked list of the groups
  5132. * covered by the given span, and will set each group's ->cpumask correctly,
  5133. * and ->cpu_power to 0.
  5134. *
  5135. * Assumes the sched_domain tree is fully constructed
  5136. */
  5137. static int
  5138. build_sched_groups(struct sched_domain *sd, int cpu)
  5139. {
  5140. struct sched_group *first = NULL, *last = NULL;
  5141. struct sd_data *sdd = sd->private;
  5142. const struct cpumask *span = sched_domain_span(sd);
  5143. struct cpumask *covered;
  5144. int i;
  5145. get_group(cpu, sdd, &sd->groups);
  5146. atomic_inc(&sd->groups->ref);
  5147. if (cpu != cpumask_first(sched_domain_span(sd)))
  5148. return 0;
  5149. lockdep_assert_held(&sched_domains_mutex);
  5150. covered = sched_domains_tmpmask;
  5151. cpumask_clear(covered);
  5152. for_each_cpu(i, span) {
  5153. struct sched_group *sg;
  5154. int group = get_group(i, sdd, &sg);
  5155. int j;
  5156. if (cpumask_test_cpu(i, covered))
  5157. continue;
  5158. cpumask_clear(sched_group_cpus(sg));
  5159. sg->sgp->power = 0;
  5160. for_each_cpu(j, span) {
  5161. if (get_group(j, sdd, NULL) != group)
  5162. continue;
  5163. cpumask_set_cpu(j, covered);
  5164. cpumask_set_cpu(j, sched_group_cpus(sg));
  5165. }
  5166. if (!first)
  5167. first = sg;
  5168. if (last)
  5169. last->next = sg;
  5170. last = sg;
  5171. }
  5172. last->next = first;
  5173. return 0;
  5174. }
  5175. /*
  5176. * Initialize sched groups cpu_power.
  5177. *
  5178. * cpu_power indicates the capacity of sched group, which is used while
  5179. * distributing the load between different sched groups in a sched domain.
  5180. * Typically cpu_power for all the groups in a sched domain will be same unless
  5181. * there are asymmetries in the topology. If there are asymmetries, group
  5182. * having more cpu_power will pickup more load compared to the group having
  5183. * less cpu_power.
  5184. */
  5185. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5186. {
  5187. struct sched_group *sg = sd->groups;
  5188. WARN_ON(!sd || !sg);
  5189. do {
  5190. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5191. sg = sg->next;
  5192. } while (sg != sd->groups);
  5193. if (cpu != group_first_cpu(sg))
  5194. return;
  5195. update_group_power(sd, cpu);
  5196. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5197. }
  5198. int __weak arch_sd_sibling_asym_packing(void)
  5199. {
  5200. return 0*SD_ASYM_PACKING;
  5201. }
  5202. /*
  5203. * Initializers for schedule domains
  5204. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5205. */
  5206. #ifdef CONFIG_SCHED_DEBUG
  5207. # define SD_INIT_NAME(sd, type) sd->name = #type
  5208. #else
  5209. # define SD_INIT_NAME(sd, type) do { } while (0)
  5210. #endif
  5211. #define SD_INIT_FUNC(type) \
  5212. static noinline struct sched_domain * \
  5213. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5214. { \
  5215. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5216. *sd = SD_##type##_INIT; \
  5217. SD_INIT_NAME(sd, type); \
  5218. sd->private = &tl->data; \
  5219. return sd; \
  5220. }
  5221. SD_INIT_FUNC(CPU)
  5222. #ifdef CONFIG_SCHED_SMT
  5223. SD_INIT_FUNC(SIBLING)
  5224. #endif
  5225. #ifdef CONFIG_SCHED_MC
  5226. SD_INIT_FUNC(MC)
  5227. #endif
  5228. #ifdef CONFIG_SCHED_BOOK
  5229. SD_INIT_FUNC(BOOK)
  5230. #endif
  5231. static int default_relax_domain_level = -1;
  5232. int sched_domain_level_max;
  5233. static int __init setup_relax_domain_level(char *str)
  5234. {
  5235. unsigned long val;
  5236. val = simple_strtoul(str, NULL, 0);
  5237. if (val < sched_domain_level_max)
  5238. default_relax_domain_level = val;
  5239. return 1;
  5240. }
  5241. __setup("relax_domain_level=", setup_relax_domain_level);
  5242. static void set_domain_attribute(struct sched_domain *sd,
  5243. struct sched_domain_attr *attr)
  5244. {
  5245. int request;
  5246. if (!attr || attr->relax_domain_level < 0) {
  5247. if (default_relax_domain_level < 0)
  5248. return;
  5249. else
  5250. request = default_relax_domain_level;
  5251. } else
  5252. request = attr->relax_domain_level;
  5253. if (request < sd->level) {
  5254. /* turn off idle balance on this domain */
  5255. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5256. } else {
  5257. /* turn on idle balance on this domain */
  5258. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5259. }
  5260. }
  5261. static void __sdt_free(const struct cpumask *cpu_map);
  5262. static int __sdt_alloc(const struct cpumask *cpu_map);
  5263. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5264. const struct cpumask *cpu_map)
  5265. {
  5266. switch (what) {
  5267. case sa_rootdomain:
  5268. if (!atomic_read(&d->rd->refcount))
  5269. free_rootdomain(&d->rd->rcu); /* fall through */
  5270. case sa_sd:
  5271. free_percpu(d->sd); /* fall through */
  5272. case sa_sd_storage:
  5273. __sdt_free(cpu_map); /* fall through */
  5274. case sa_none:
  5275. break;
  5276. }
  5277. }
  5278. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5279. const struct cpumask *cpu_map)
  5280. {
  5281. memset(d, 0, sizeof(*d));
  5282. if (__sdt_alloc(cpu_map))
  5283. return sa_sd_storage;
  5284. d->sd = alloc_percpu(struct sched_domain *);
  5285. if (!d->sd)
  5286. return sa_sd_storage;
  5287. d->rd = alloc_rootdomain();
  5288. if (!d->rd)
  5289. return sa_sd;
  5290. return sa_rootdomain;
  5291. }
  5292. /*
  5293. * NULL the sd_data elements we've used to build the sched_domain and
  5294. * sched_group structure so that the subsequent __free_domain_allocs()
  5295. * will not free the data we're using.
  5296. */
  5297. static void claim_allocations(int cpu, struct sched_domain *sd)
  5298. {
  5299. struct sd_data *sdd = sd->private;
  5300. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5301. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5302. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5303. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5304. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5305. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5306. }
  5307. #ifdef CONFIG_SCHED_SMT
  5308. static const struct cpumask *cpu_smt_mask(int cpu)
  5309. {
  5310. return topology_thread_cpumask(cpu);
  5311. }
  5312. #endif
  5313. /*
  5314. * Topology list, bottom-up.
  5315. */
  5316. static struct sched_domain_topology_level default_topology[] = {
  5317. #ifdef CONFIG_SCHED_SMT
  5318. { sd_init_SIBLING, cpu_smt_mask, },
  5319. #endif
  5320. #ifdef CONFIG_SCHED_MC
  5321. { sd_init_MC, cpu_coregroup_mask, },
  5322. #endif
  5323. #ifdef CONFIG_SCHED_BOOK
  5324. { sd_init_BOOK, cpu_book_mask, },
  5325. #endif
  5326. { sd_init_CPU, cpu_cpu_mask, },
  5327. { NULL, },
  5328. };
  5329. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5330. #ifdef CONFIG_NUMA
  5331. static int sched_domains_numa_levels;
  5332. static int sched_domains_numa_scale;
  5333. static int *sched_domains_numa_distance;
  5334. static struct cpumask ***sched_domains_numa_masks;
  5335. static int sched_domains_curr_level;
  5336. static inline int sd_local_flags(int level)
  5337. {
  5338. if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
  5339. return 0;
  5340. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5341. }
  5342. static struct sched_domain *
  5343. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5344. {
  5345. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5346. int level = tl->numa_level;
  5347. int sd_weight = cpumask_weight(
  5348. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5349. *sd = (struct sched_domain){
  5350. .min_interval = sd_weight,
  5351. .max_interval = 2*sd_weight,
  5352. .busy_factor = 32,
  5353. .imbalance_pct = 125,
  5354. .cache_nice_tries = 2,
  5355. .busy_idx = 3,
  5356. .idle_idx = 2,
  5357. .newidle_idx = 0,
  5358. .wake_idx = 0,
  5359. .forkexec_idx = 0,
  5360. .flags = 1*SD_LOAD_BALANCE
  5361. | 1*SD_BALANCE_NEWIDLE
  5362. | 0*SD_BALANCE_EXEC
  5363. | 0*SD_BALANCE_FORK
  5364. | 0*SD_BALANCE_WAKE
  5365. | 0*SD_WAKE_AFFINE
  5366. | 0*SD_PREFER_LOCAL
  5367. | 0*SD_SHARE_CPUPOWER
  5368. | 0*SD_SHARE_PKG_RESOURCES
  5369. | 1*SD_SERIALIZE
  5370. | 0*SD_PREFER_SIBLING
  5371. | sd_local_flags(level)
  5372. ,
  5373. .last_balance = jiffies,
  5374. .balance_interval = sd_weight,
  5375. };
  5376. SD_INIT_NAME(sd, NUMA);
  5377. sd->private = &tl->data;
  5378. /*
  5379. * Ugly hack to pass state to sd_numa_mask()...
  5380. */
  5381. sched_domains_curr_level = tl->numa_level;
  5382. return sd;
  5383. }
  5384. static const struct cpumask *sd_numa_mask(int cpu)
  5385. {
  5386. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5387. }
  5388. static void sched_init_numa(void)
  5389. {
  5390. int next_distance, curr_distance = node_distance(0, 0);
  5391. struct sched_domain_topology_level *tl;
  5392. int level = 0;
  5393. int i, j, k;
  5394. sched_domains_numa_scale = curr_distance;
  5395. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5396. if (!sched_domains_numa_distance)
  5397. return;
  5398. /*
  5399. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5400. * unique distances in the node_distance() table.
  5401. *
  5402. * Assumes node_distance(0,j) includes all distances in
  5403. * node_distance(i,j) in order to avoid cubic time.
  5404. *
  5405. * XXX: could be optimized to O(n log n) by using sort()
  5406. */
  5407. next_distance = curr_distance;
  5408. for (i = 0; i < nr_node_ids; i++) {
  5409. for (j = 0; j < nr_node_ids; j++) {
  5410. int distance = node_distance(0, j);
  5411. if (distance > curr_distance &&
  5412. (distance < next_distance ||
  5413. next_distance == curr_distance))
  5414. next_distance = distance;
  5415. }
  5416. if (next_distance != curr_distance) {
  5417. sched_domains_numa_distance[level++] = next_distance;
  5418. sched_domains_numa_levels = level;
  5419. curr_distance = next_distance;
  5420. } else break;
  5421. }
  5422. /*
  5423. * 'level' contains the number of unique distances, excluding the
  5424. * identity distance node_distance(i,i).
  5425. *
  5426. * The sched_domains_nume_distance[] array includes the actual distance
  5427. * numbers.
  5428. */
  5429. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5430. if (!sched_domains_numa_masks)
  5431. return;
  5432. /*
  5433. * Now for each level, construct a mask per node which contains all
  5434. * cpus of nodes that are that many hops away from us.
  5435. */
  5436. for (i = 0; i < level; i++) {
  5437. sched_domains_numa_masks[i] =
  5438. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5439. if (!sched_domains_numa_masks[i])
  5440. return;
  5441. for (j = 0; j < nr_node_ids; j++) {
  5442. struct cpumask *mask = kzalloc_node(cpumask_size(), GFP_KERNEL, j);
  5443. if (!mask)
  5444. return;
  5445. sched_domains_numa_masks[i][j] = mask;
  5446. for (k = 0; k < nr_node_ids; k++) {
  5447. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5448. continue;
  5449. cpumask_or(mask, mask, cpumask_of_node(k));
  5450. }
  5451. }
  5452. }
  5453. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5454. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5455. if (!tl)
  5456. return;
  5457. /*
  5458. * Copy the default topology bits..
  5459. */
  5460. for (i = 0; default_topology[i].init; i++)
  5461. tl[i] = default_topology[i];
  5462. /*
  5463. * .. and append 'j' levels of NUMA goodness.
  5464. */
  5465. for (j = 0; j < level; i++, j++) {
  5466. tl[i] = (struct sched_domain_topology_level){
  5467. .init = sd_numa_init,
  5468. .mask = sd_numa_mask,
  5469. .flags = SDTL_OVERLAP,
  5470. .numa_level = j,
  5471. };
  5472. }
  5473. sched_domain_topology = tl;
  5474. }
  5475. #else
  5476. static inline void sched_init_numa(void)
  5477. {
  5478. }
  5479. #endif /* CONFIG_NUMA */
  5480. static int __sdt_alloc(const struct cpumask *cpu_map)
  5481. {
  5482. struct sched_domain_topology_level *tl;
  5483. int j;
  5484. for (tl = sched_domain_topology; tl->init; tl++) {
  5485. struct sd_data *sdd = &tl->data;
  5486. sdd->sd = alloc_percpu(struct sched_domain *);
  5487. if (!sdd->sd)
  5488. return -ENOMEM;
  5489. sdd->sg = alloc_percpu(struct sched_group *);
  5490. if (!sdd->sg)
  5491. return -ENOMEM;
  5492. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5493. if (!sdd->sgp)
  5494. return -ENOMEM;
  5495. for_each_cpu(j, cpu_map) {
  5496. struct sched_domain *sd;
  5497. struct sched_group *sg;
  5498. struct sched_group_power *sgp;
  5499. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5500. GFP_KERNEL, cpu_to_node(j));
  5501. if (!sd)
  5502. return -ENOMEM;
  5503. *per_cpu_ptr(sdd->sd, j) = sd;
  5504. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5505. GFP_KERNEL, cpu_to_node(j));
  5506. if (!sg)
  5507. return -ENOMEM;
  5508. sg->next = sg;
  5509. *per_cpu_ptr(sdd->sg, j) = sg;
  5510. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5511. GFP_KERNEL, cpu_to_node(j));
  5512. if (!sgp)
  5513. return -ENOMEM;
  5514. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5515. }
  5516. }
  5517. return 0;
  5518. }
  5519. static void __sdt_free(const struct cpumask *cpu_map)
  5520. {
  5521. struct sched_domain_topology_level *tl;
  5522. int j;
  5523. for (tl = sched_domain_topology; tl->init; tl++) {
  5524. struct sd_data *sdd = &tl->data;
  5525. for_each_cpu(j, cpu_map) {
  5526. struct sched_domain *sd;
  5527. if (sdd->sd) {
  5528. sd = *per_cpu_ptr(sdd->sd, j);
  5529. if (sd && (sd->flags & SD_OVERLAP))
  5530. free_sched_groups(sd->groups, 0);
  5531. kfree(*per_cpu_ptr(sdd->sd, j));
  5532. }
  5533. if (sdd->sg)
  5534. kfree(*per_cpu_ptr(sdd->sg, j));
  5535. if (sdd->sgp)
  5536. kfree(*per_cpu_ptr(sdd->sgp, j));
  5537. }
  5538. free_percpu(sdd->sd);
  5539. sdd->sd = NULL;
  5540. free_percpu(sdd->sg);
  5541. sdd->sg = NULL;
  5542. free_percpu(sdd->sgp);
  5543. sdd->sgp = NULL;
  5544. }
  5545. }
  5546. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5547. struct s_data *d, const struct cpumask *cpu_map,
  5548. struct sched_domain_attr *attr, struct sched_domain *child,
  5549. int cpu)
  5550. {
  5551. struct sched_domain *sd = tl->init(tl, cpu);
  5552. if (!sd)
  5553. return child;
  5554. set_domain_attribute(sd, attr);
  5555. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5556. if (child) {
  5557. sd->level = child->level + 1;
  5558. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5559. child->parent = sd;
  5560. }
  5561. sd->child = child;
  5562. return sd;
  5563. }
  5564. /*
  5565. * Build sched domains for a given set of cpus and attach the sched domains
  5566. * to the individual cpus
  5567. */
  5568. static int build_sched_domains(const struct cpumask *cpu_map,
  5569. struct sched_domain_attr *attr)
  5570. {
  5571. enum s_alloc alloc_state = sa_none;
  5572. struct sched_domain *sd;
  5573. struct s_data d;
  5574. int i, ret = -ENOMEM;
  5575. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5576. if (alloc_state != sa_rootdomain)
  5577. goto error;
  5578. /* Set up domains for cpus specified by the cpu_map. */
  5579. for_each_cpu(i, cpu_map) {
  5580. struct sched_domain_topology_level *tl;
  5581. sd = NULL;
  5582. for (tl = sched_domain_topology; tl->init; tl++) {
  5583. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5584. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5585. sd->flags |= SD_OVERLAP;
  5586. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5587. break;
  5588. }
  5589. while (sd->child)
  5590. sd = sd->child;
  5591. *per_cpu_ptr(d.sd, i) = sd;
  5592. }
  5593. /* Build the groups for the domains */
  5594. for_each_cpu(i, cpu_map) {
  5595. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5596. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5597. if (sd->flags & SD_OVERLAP) {
  5598. if (build_overlap_sched_groups(sd, i))
  5599. goto error;
  5600. } else {
  5601. if (build_sched_groups(sd, i))
  5602. goto error;
  5603. }
  5604. }
  5605. }
  5606. /* Calculate CPU power for physical packages and nodes */
  5607. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5608. if (!cpumask_test_cpu(i, cpu_map))
  5609. continue;
  5610. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5611. claim_allocations(i, sd);
  5612. init_sched_groups_power(i, sd);
  5613. }
  5614. }
  5615. /* Attach the domains */
  5616. rcu_read_lock();
  5617. for_each_cpu(i, cpu_map) {
  5618. sd = *per_cpu_ptr(d.sd, i);
  5619. cpu_attach_domain(sd, d.rd, i);
  5620. }
  5621. rcu_read_unlock();
  5622. ret = 0;
  5623. error:
  5624. __free_domain_allocs(&d, alloc_state, cpu_map);
  5625. return ret;
  5626. }
  5627. static cpumask_var_t *doms_cur; /* current sched domains */
  5628. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5629. static struct sched_domain_attr *dattr_cur;
  5630. /* attribues of custom domains in 'doms_cur' */
  5631. /*
  5632. * Special case: If a kmalloc of a doms_cur partition (array of
  5633. * cpumask) fails, then fallback to a single sched domain,
  5634. * as determined by the single cpumask fallback_doms.
  5635. */
  5636. static cpumask_var_t fallback_doms;
  5637. /*
  5638. * arch_update_cpu_topology lets virtualized architectures update the
  5639. * cpu core maps. It is supposed to return 1 if the topology changed
  5640. * or 0 if it stayed the same.
  5641. */
  5642. int __attribute__((weak)) arch_update_cpu_topology(void)
  5643. {
  5644. return 0;
  5645. }
  5646. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5647. {
  5648. int i;
  5649. cpumask_var_t *doms;
  5650. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5651. if (!doms)
  5652. return NULL;
  5653. for (i = 0; i < ndoms; i++) {
  5654. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5655. free_sched_domains(doms, i);
  5656. return NULL;
  5657. }
  5658. }
  5659. return doms;
  5660. }
  5661. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5662. {
  5663. unsigned int i;
  5664. for (i = 0; i < ndoms; i++)
  5665. free_cpumask_var(doms[i]);
  5666. kfree(doms);
  5667. }
  5668. /*
  5669. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5670. * For now this just excludes isolated cpus, but could be used to
  5671. * exclude other special cases in the future.
  5672. */
  5673. static int init_sched_domains(const struct cpumask *cpu_map)
  5674. {
  5675. int err;
  5676. arch_update_cpu_topology();
  5677. ndoms_cur = 1;
  5678. doms_cur = alloc_sched_domains(ndoms_cur);
  5679. if (!doms_cur)
  5680. doms_cur = &fallback_doms;
  5681. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5682. dattr_cur = NULL;
  5683. err = build_sched_domains(doms_cur[0], NULL);
  5684. register_sched_domain_sysctl();
  5685. return err;
  5686. }
  5687. /*
  5688. * Detach sched domains from a group of cpus specified in cpu_map
  5689. * These cpus will now be attached to the NULL domain
  5690. */
  5691. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5692. {
  5693. int i;
  5694. rcu_read_lock();
  5695. for_each_cpu(i, cpu_map)
  5696. cpu_attach_domain(NULL, &def_root_domain, i);
  5697. rcu_read_unlock();
  5698. }
  5699. /* handle null as "default" */
  5700. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5701. struct sched_domain_attr *new, int idx_new)
  5702. {
  5703. struct sched_domain_attr tmp;
  5704. /* fast path */
  5705. if (!new && !cur)
  5706. return 1;
  5707. tmp = SD_ATTR_INIT;
  5708. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5709. new ? (new + idx_new) : &tmp,
  5710. sizeof(struct sched_domain_attr));
  5711. }
  5712. /*
  5713. * Partition sched domains as specified by the 'ndoms_new'
  5714. * cpumasks in the array doms_new[] of cpumasks. This compares
  5715. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5716. * It destroys each deleted domain and builds each new domain.
  5717. *
  5718. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5719. * The masks don't intersect (don't overlap.) We should setup one
  5720. * sched domain for each mask. CPUs not in any of the cpumasks will
  5721. * not be load balanced. If the same cpumask appears both in the
  5722. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5723. * it as it is.
  5724. *
  5725. * The passed in 'doms_new' should be allocated using
  5726. * alloc_sched_domains. This routine takes ownership of it and will
  5727. * free_sched_domains it when done with it. If the caller failed the
  5728. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5729. * and partition_sched_domains() will fallback to the single partition
  5730. * 'fallback_doms', it also forces the domains to be rebuilt.
  5731. *
  5732. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5733. * ndoms_new == 0 is a special case for destroying existing domains,
  5734. * and it will not create the default domain.
  5735. *
  5736. * Call with hotplug lock held
  5737. */
  5738. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5739. struct sched_domain_attr *dattr_new)
  5740. {
  5741. int i, j, n;
  5742. int new_topology;
  5743. mutex_lock(&sched_domains_mutex);
  5744. /* always unregister in case we don't destroy any domains */
  5745. unregister_sched_domain_sysctl();
  5746. /* Let architecture update cpu core mappings. */
  5747. new_topology = arch_update_cpu_topology();
  5748. n = doms_new ? ndoms_new : 0;
  5749. /* Destroy deleted domains */
  5750. for (i = 0; i < ndoms_cur; i++) {
  5751. for (j = 0; j < n && !new_topology; j++) {
  5752. if (cpumask_equal(doms_cur[i], doms_new[j])
  5753. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5754. goto match1;
  5755. }
  5756. /* no match - a current sched domain not in new doms_new[] */
  5757. detach_destroy_domains(doms_cur[i]);
  5758. match1:
  5759. ;
  5760. }
  5761. if (doms_new == NULL) {
  5762. ndoms_cur = 0;
  5763. doms_new = &fallback_doms;
  5764. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5765. WARN_ON_ONCE(dattr_new);
  5766. }
  5767. /* Build new domains */
  5768. for (i = 0; i < ndoms_new; i++) {
  5769. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5770. if (cpumask_equal(doms_new[i], doms_cur[j])
  5771. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5772. goto match2;
  5773. }
  5774. /* no match - add a new doms_new */
  5775. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5776. match2:
  5777. ;
  5778. }
  5779. /* Remember the new sched domains */
  5780. if (doms_cur != &fallback_doms)
  5781. free_sched_domains(doms_cur, ndoms_cur);
  5782. kfree(dattr_cur); /* kfree(NULL) is safe */
  5783. doms_cur = doms_new;
  5784. dattr_cur = dattr_new;
  5785. ndoms_cur = ndoms_new;
  5786. register_sched_domain_sysctl();
  5787. mutex_unlock(&sched_domains_mutex);
  5788. }
  5789. /*
  5790. * Update cpusets according to cpu_active mask. If cpusets are
  5791. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5792. * around partition_sched_domains().
  5793. */
  5794. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5795. void *hcpu)
  5796. {
  5797. switch (action & ~CPU_TASKS_FROZEN) {
  5798. case CPU_ONLINE:
  5799. case CPU_DOWN_FAILED:
  5800. cpuset_update_active_cpus();
  5801. return NOTIFY_OK;
  5802. default:
  5803. return NOTIFY_DONE;
  5804. }
  5805. }
  5806. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5807. void *hcpu)
  5808. {
  5809. switch (action & ~CPU_TASKS_FROZEN) {
  5810. case CPU_DOWN_PREPARE:
  5811. cpuset_update_active_cpus();
  5812. return NOTIFY_OK;
  5813. default:
  5814. return NOTIFY_DONE;
  5815. }
  5816. }
  5817. void __init sched_init_smp(void)
  5818. {
  5819. cpumask_var_t non_isolated_cpus;
  5820. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5821. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5822. sched_init_numa();
  5823. get_online_cpus();
  5824. mutex_lock(&sched_domains_mutex);
  5825. init_sched_domains(cpu_active_mask);
  5826. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5827. if (cpumask_empty(non_isolated_cpus))
  5828. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5829. mutex_unlock(&sched_domains_mutex);
  5830. put_online_cpus();
  5831. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5832. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5833. /* RT runtime code needs to handle some hotplug events */
  5834. hotcpu_notifier(update_runtime, 0);
  5835. init_hrtick();
  5836. /* Move init over to a non-isolated CPU */
  5837. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5838. BUG();
  5839. sched_init_granularity();
  5840. free_cpumask_var(non_isolated_cpus);
  5841. init_sched_rt_class();
  5842. }
  5843. #else
  5844. void __init sched_init_smp(void)
  5845. {
  5846. sched_init_granularity();
  5847. }
  5848. #endif /* CONFIG_SMP */
  5849. const_debug unsigned int sysctl_timer_migration = 1;
  5850. int in_sched_functions(unsigned long addr)
  5851. {
  5852. return in_lock_functions(addr) ||
  5853. (addr >= (unsigned long)__sched_text_start
  5854. && addr < (unsigned long)__sched_text_end);
  5855. }
  5856. #ifdef CONFIG_CGROUP_SCHED
  5857. struct task_group root_task_group;
  5858. #endif
  5859. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5860. void __init sched_init(void)
  5861. {
  5862. int i, j;
  5863. unsigned long alloc_size = 0, ptr;
  5864. #ifdef CONFIG_FAIR_GROUP_SCHED
  5865. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5866. #endif
  5867. #ifdef CONFIG_RT_GROUP_SCHED
  5868. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5869. #endif
  5870. #ifdef CONFIG_CPUMASK_OFFSTACK
  5871. alloc_size += num_possible_cpus() * cpumask_size();
  5872. #endif
  5873. if (alloc_size) {
  5874. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5875. #ifdef CONFIG_FAIR_GROUP_SCHED
  5876. root_task_group.se = (struct sched_entity **)ptr;
  5877. ptr += nr_cpu_ids * sizeof(void **);
  5878. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5879. ptr += nr_cpu_ids * sizeof(void **);
  5880. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5881. #ifdef CONFIG_RT_GROUP_SCHED
  5882. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5883. ptr += nr_cpu_ids * sizeof(void **);
  5884. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5885. ptr += nr_cpu_ids * sizeof(void **);
  5886. #endif /* CONFIG_RT_GROUP_SCHED */
  5887. #ifdef CONFIG_CPUMASK_OFFSTACK
  5888. for_each_possible_cpu(i) {
  5889. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5890. ptr += cpumask_size();
  5891. }
  5892. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5893. }
  5894. #ifdef CONFIG_SMP
  5895. init_defrootdomain();
  5896. #endif
  5897. init_rt_bandwidth(&def_rt_bandwidth,
  5898. global_rt_period(), global_rt_runtime());
  5899. #ifdef CONFIG_RT_GROUP_SCHED
  5900. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5901. global_rt_period(), global_rt_runtime());
  5902. #endif /* CONFIG_RT_GROUP_SCHED */
  5903. #ifdef CONFIG_CGROUP_SCHED
  5904. list_add(&root_task_group.list, &task_groups);
  5905. INIT_LIST_HEAD(&root_task_group.children);
  5906. INIT_LIST_HEAD(&root_task_group.siblings);
  5907. autogroup_init(&init_task);
  5908. #endif /* CONFIG_CGROUP_SCHED */
  5909. #ifdef CONFIG_CGROUP_CPUACCT
  5910. root_cpuacct.cpustat = &kernel_cpustat;
  5911. root_cpuacct.cpuusage = alloc_percpu(u64);
  5912. /* Too early, not expected to fail */
  5913. BUG_ON(!root_cpuacct.cpuusage);
  5914. #endif
  5915. for_each_possible_cpu(i) {
  5916. struct rq *rq;
  5917. rq = cpu_rq(i);
  5918. raw_spin_lock_init(&rq->lock);
  5919. rq->nr_running = 0;
  5920. rq->calc_load_active = 0;
  5921. rq->calc_load_update = jiffies + LOAD_FREQ;
  5922. init_cfs_rq(&rq->cfs);
  5923. init_rt_rq(&rq->rt, rq);
  5924. #ifdef CONFIG_FAIR_GROUP_SCHED
  5925. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5926. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5927. /*
  5928. * How much cpu bandwidth does root_task_group get?
  5929. *
  5930. * In case of task-groups formed thr' the cgroup filesystem, it
  5931. * gets 100% of the cpu resources in the system. This overall
  5932. * system cpu resource is divided among the tasks of
  5933. * root_task_group and its child task-groups in a fair manner,
  5934. * based on each entity's (task or task-group's) weight
  5935. * (se->load.weight).
  5936. *
  5937. * In other words, if root_task_group has 10 tasks of weight
  5938. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5939. * then A0's share of the cpu resource is:
  5940. *
  5941. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5942. *
  5943. * We achieve this by letting root_task_group's tasks sit
  5944. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5945. */
  5946. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5947. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5948. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5949. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5950. #ifdef CONFIG_RT_GROUP_SCHED
  5951. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5952. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5953. #endif
  5954. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5955. rq->cpu_load[j] = 0;
  5956. rq->last_load_update_tick = jiffies;
  5957. #ifdef CONFIG_SMP
  5958. rq->sd = NULL;
  5959. rq->rd = NULL;
  5960. rq->cpu_power = SCHED_POWER_SCALE;
  5961. rq->post_schedule = 0;
  5962. rq->active_balance = 0;
  5963. rq->next_balance = jiffies;
  5964. rq->push_cpu = 0;
  5965. rq->cpu = i;
  5966. rq->online = 0;
  5967. rq->idle_stamp = 0;
  5968. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5969. INIT_LIST_HEAD(&rq->cfs_tasks);
  5970. rq_attach_root(rq, &def_root_domain);
  5971. #ifdef CONFIG_NO_HZ
  5972. rq->nohz_flags = 0;
  5973. #endif
  5974. #endif
  5975. init_rq_hrtick(rq);
  5976. atomic_set(&rq->nr_iowait, 0);
  5977. }
  5978. set_load_weight(&init_task);
  5979. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5980. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5981. #endif
  5982. #ifdef CONFIG_RT_MUTEXES
  5983. plist_head_init(&init_task.pi_waiters);
  5984. #endif
  5985. /*
  5986. * The boot idle thread does lazy MMU switching as well:
  5987. */
  5988. atomic_inc(&init_mm.mm_count);
  5989. enter_lazy_tlb(&init_mm, current);
  5990. /*
  5991. * Make us the idle thread. Technically, schedule() should not be
  5992. * called from this thread, however somewhere below it might be,
  5993. * but because we are the idle thread, we just pick up running again
  5994. * when this runqueue becomes "idle".
  5995. */
  5996. init_idle(current, smp_processor_id());
  5997. calc_load_update = jiffies + LOAD_FREQ;
  5998. /*
  5999. * During early bootup we pretend to be a normal task:
  6000. */
  6001. current->sched_class = &fair_sched_class;
  6002. #ifdef CONFIG_SMP
  6003. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6004. /* May be allocated at isolcpus cmdline parse time */
  6005. if (cpu_isolated_map == NULL)
  6006. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6007. idle_thread_set_boot_cpu();
  6008. #endif
  6009. init_sched_fair_class();
  6010. scheduler_running = 1;
  6011. }
  6012. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6013. static inline int preempt_count_equals(int preempt_offset)
  6014. {
  6015. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6016. return (nested == preempt_offset);
  6017. }
  6018. void __might_sleep(const char *file, int line, int preempt_offset)
  6019. {
  6020. static unsigned long prev_jiffy; /* ratelimiting */
  6021. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6022. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6023. system_state != SYSTEM_RUNNING || oops_in_progress)
  6024. return;
  6025. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6026. return;
  6027. prev_jiffy = jiffies;
  6028. printk(KERN_ERR
  6029. "BUG: sleeping function called from invalid context at %s:%d\n",
  6030. file, line);
  6031. printk(KERN_ERR
  6032. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6033. in_atomic(), irqs_disabled(),
  6034. current->pid, current->comm);
  6035. debug_show_held_locks(current);
  6036. if (irqs_disabled())
  6037. print_irqtrace_events(current);
  6038. dump_stack();
  6039. }
  6040. EXPORT_SYMBOL(__might_sleep);
  6041. #endif
  6042. #ifdef CONFIG_MAGIC_SYSRQ
  6043. static void normalize_task(struct rq *rq, struct task_struct *p)
  6044. {
  6045. const struct sched_class *prev_class = p->sched_class;
  6046. int old_prio = p->prio;
  6047. int on_rq;
  6048. on_rq = p->on_rq;
  6049. if (on_rq)
  6050. dequeue_task(rq, p, 0);
  6051. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6052. if (on_rq) {
  6053. enqueue_task(rq, p, 0);
  6054. resched_task(rq->curr);
  6055. }
  6056. check_class_changed(rq, p, prev_class, old_prio);
  6057. }
  6058. void normalize_rt_tasks(void)
  6059. {
  6060. struct task_struct *g, *p;
  6061. unsigned long flags;
  6062. struct rq *rq;
  6063. read_lock_irqsave(&tasklist_lock, flags);
  6064. do_each_thread(g, p) {
  6065. /*
  6066. * Only normalize user tasks:
  6067. */
  6068. if (!p->mm)
  6069. continue;
  6070. p->se.exec_start = 0;
  6071. #ifdef CONFIG_SCHEDSTATS
  6072. p->se.statistics.wait_start = 0;
  6073. p->se.statistics.sleep_start = 0;
  6074. p->se.statistics.block_start = 0;
  6075. #endif
  6076. if (!rt_task(p)) {
  6077. /*
  6078. * Renice negative nice level userspace
  6079. * tasks back to 0:
  6080. */
  6081. if (TASK_NICE(p) < 0 && p->mm)
  6082. set_user_nice(p, 0);
  6083. continue;
  6084. }
  6085. raw_spin_lock(&p->pi_lock);
  6086. rq = __task_rq_lock(p);
  6087. normalize_task(rq, p);
  6088. __task_rq_unlock(rq);
  6089. raw_spin_unlock(&p->pi_lock);
  6090. } while_each_thread(g, p);
  6091. read_unlock_irqrestore(&tasklist_lock, flags);
  6092. }
  6093. #endif /* CONFIG_MAGIC_SYSRQ */
  6094. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6095. /*
  6096. * These functions are only useful for the IA64 MCA handling, or kdb.
  6097. *
  6098. * They can only be called when the whole system has been
  6099. * stopped - every CPU needs to be quiescent, and no scheduling
  6100. * activity can take place. Using them for anything else would
  6101. * be a serious bug, and as a result, they aren't even visible
  6102. * under any other configuration.
  6103. */
  6104. /**
  6105. * curr_task - return the current task for a given cpu.
  6106. * @cpu: the processor in question.
  6107. *
  6108. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6109. */
  6110. struct task_struct *curr_task(int cpu)
  6111. {
  6112. return cpu_curr(cpu);
  6113. }
  6114. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6115. #ifdef CONFIG_IA64
  6116. /**
  6117. * set_curr_task - set the current task for a given cpu.
  6118. * @cpu: the processor in question.
  6119. * @p: the task pointer to set.
  6120. *
  6121. * Description: This function must only be used when non-maskable interrupts
  6122. * are serviced on a separate stack. It allows the architecture to switch the
  6123. * notion of the current task on a cpu in a non-blocking manner. This function
  6124. * must be called with all CPU's synchronized, and interrupts disabled, the
  6125. * and caller must save the original value of the current task (see
  6126. * curr_task() above) and restore that value before reenabling interrupts and
  6127. * re-starting the system.
  6128. *
  6129. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6130. */
  6131. void set_curr_task(int cpu, struct task_struct *p)
  6132. {
  6133. cpu_curr(cpu) = p;
  6134. }
  6135. #endif
  6136. #ifdef CONFIG_CGROUP_SCHED
  6137. /* task_group_lock serializes the addition/removal of task groups */
  6138. static DEFINE_SPINLOCK(task_group_lock);
  6139. static void free_sched_group(struct task_group *tg)
  6140. {
  6141. free_fair_sched_group(tg);
  6142. free_rt_sched_group(tg);
  6143. autogroup_free(tg);
  6144. kfree(tg);
  6145. }
  6146. /* allocate runqueue etc for a new task group */
  6147. struct task_group *sched_create_group(struct task_group *parent)
  6148. {
  6149. struct task_group *tg;
  6150. unsigned long flags;
  6151. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6152. if (!tg)
  6153. return ERR_PTR(-ENOMEM);
  6154. if (!alloc_fair_sched_group(tg, parent))
  6155. goto err;
  6156. if (!alloc_rt_sched_group(tg, parent))
  6157. goto err;
  6158. spin_lock_irqsave(&task_group_lock, flags);
  6159. list_add_rcu(&tg->list, &task_groups);
  6160. WARN_ON(!parent); /* root should already exist */
  6161. tg->parent = parent;
  6162. INIT_LIST_HEAD(&tg->children);
  6163. list_add_rcu(&tg->siblings, &parent->children);
  6164. spin_unlock_irqrestore(&task_group_lock, flags);
  6165. return tg;
  6166. err:
  6167. free_sched_group(tg);
  6168. return ERR_PTR(-ENOMEM);
  6169. }
  6170. /* rcu callback to free various structures associated with a task group */
  6171. static void free_sched_group_rcu(struct rcu_head *rhp)
  6172. {
  6173. /* now it should be safe to free those cfs_rqs */
  6174. free_sched_group(container_of(rhp, struct task_group, rcu));
  6175. }
  6176. /* Destroy runqueue etc associated with a task group */
  6177. void sched_destroy_group(struct task_group *tg)
  6178. {
  6179. unsigned long flags;
  6180. int i;
  6181. /* end participation in shares distribution */
  6182. for_each_possible_cpu(i)
  6183. unregister_fair_sched_group(tg, i);
  6184. spin_lock_irqsave(&task_group_lock, flags);
  6185. list_del_rcu(&tg->list);
  6186. list_del_rcu(&tg->siblings);
  6187. spin_unlock_irqrestore(&task_group_lock, flags);
  6188. /* wait for possible concurrent references to cfs_rqs complete */
  6189. call_rcu(&tg->rcu, free_sched_group_rcu);
  6190. }
  6191. /* change task's runqueue when it moves between groups.
  6192. * The caller of this function should have put the task in its new group
  6193. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6194. * reflect its new group.
  6195. */
  6196. void sched_move_task(struct task_struct *tsk)
  6197. {
  6198. int on_rq, running;
  6199. unsigned long flags;
  6200. struct rq *rq;
  6201. rq = task_rq_lock(tsk, &flags);
  6202. running = task_current(rq, tsk);
  6203. on_rq = tsk->on_rq;
  6204. if (on_rq)
  6205. dequeue_task(rq, tsk, 0);
  6206. if (unlikely(running))
  6207. tsk->sched_class->put_prev_task(rq, tsk);
  6208. #ifdef CONFIG_FAIR_GROUP_SCHED
  6209. if (tsk->sched_class->task_move_group)
  6210. tsk->sched_class->task_move_group(tsk, on_rq);
  6211. else
  6212. #endif
  6213. set_task_rq(tsk, task_cpu(tsk));
  6214. if (unlikely(running))
  6215. tsk->sched_class->set_curr_task(rq);
  6216. if (on_rq)
  6217. enqueue_task(rq, tsk, 0);
  6218. task_rq_unlock(rq, tsk, &flags);
  6219. }
  6220. #endif /* CONFIG_CGROUP_SCHED */
  6221. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6222. static unsigned long to_ratio(u64 period, u64 runtime)
  6223. {
  6224. if (runtime == RUNTIME_INF)
  6225. return 1ULL << 20;
  6226. return div64_u64(runtime << 20, period);
  6227. }
  6228. #endif
  6229. #ifdef CONFIG_RT_GROUP_SCHED
  6230. /*
  6231. * Ensure that the real time constraints are schedulable.
  6232. */
  6233. static DEFINE_MUTEX(rt_constraints_mutex);
  6234. /* Must be called with tasklist_lock held */
  6235. static inline int tg_has_rt_tasks(struct task_group *tg)
  6236. {
  6237. struct task_struct *g, *p;
  6238. do_each_thread(g, p) {
  6239. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6240. return 1;
  6241. } while_each_thread(g, p);
  6242. return 0;
  6243. }
  6244. struct rt_schedulable_data {
  6245. struct task_group *tg;
  6246. u64 rt_period;
  6247. u64 rt_runtime;
  6248. };
  6249. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6250. {
  6251. struct rt_schedulable_data *d = data;
  6252. struct task_group *child;
  6253. unsigned long total, sum = 0;
  6254. u64 period, runtime;
  6255. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6256. runtime = tg->rt_bandwidth.rt_runtime;
  6257. if (tg == d->tg) {
  6258. period = d->rt_period;
  6259. runtime = d->rt_runtime;
  6260. }
  6261. /*
  6262. * Cannot have more runtime than the period.
  6263. */
  6264. if (runtime > period && runtime != RUNTIME_INF)
  6265. return -EINVAL;
  6266. /*
  6267. * Ensure we don't starve existing RT tasks.
  6268. */
  6269. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6270. return -EBUSY;
  6271. total = to_ratio(period, runtime);
  6272. /*
  6273. * Nobody can have more than the global setting allows.
  6274. */
  6275. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6276. return -EINVAL;
  6277. /*
  6278. * The sum of our children's runtime should not exceed our own.
  6279. */
  6280. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6281. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6282. runtime = child->rt_bandwidth.rt_runtime;
  6283. if (child == d->tg) {
  6284. period = d->rt_period;
  6285. runtime = d->rt_runtime;
  6286. }
  6287. sum += to_ratio(period, runtime);
  6288. }
  6289. if (sum > total)
  6290. return -EINVAL;
  6291. return 0;
  6292. }
  6293. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6294. {
  6295. int ret;
  6296. struct rt_schedulable_data data = {
  6297. .tg = tg,
  6298. .rt_period = period,
  6299. .rt_runtime = runtime,
  6300. };
  6301. rcu_read_lock();
  6302. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6303. rcu_read_unlock();
  6304. return ret;
  6305. }
  6306. static int tg_set_rt_bandwidth(struct task_group *tg,
  6307. u64 rt_period, u64 rt_runtime)
  6308. {
  6309. int i, err = 0;
  6310. mutex_lock(&rt_constraints_mutex);
  6311. read_lock(&tasklist_lock);
  6312. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6313. if (err)
  6314. goto unlock;
  6315. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6316. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6317. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6318. for_each_possible_cpu(i) {
  6319. struct rt_rq *rt_rq = tg->rt_rq[i];
  6320. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6321. rt_rq->rt_runtime = rt_runtime;
  6322. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6323. }
  6324. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6325. unlock:
  6326. read_unlock(&tasklist_lock);
  6327. mutex_unlock(&rt_constraints_mutex);
  6328. return err;
  6329. }
  6330. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6331. {
  6332. u64 rt_runtime, rt_period;
  6333. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6334. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6335. if (rt_runtime_us < 0)
  6336. rt_runtime = RUNTIME_INF;
  6337. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6338. }
  6339. long sched_group_rt_runtime(struct task_group *tg)
  6340. {
  6341. u64 rt_runtime_us;
  6342. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6343. return -1;
  6344. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6345. do_div(rt_runtime_us, NSEC_PER_USEC);
  6346. return rt_runtime_us;
  6347. }
  6348. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6349. {
  6350. u64 rt_runtime, rt_period;
  6351. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6352. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6353. if (rt_period == 0)
  6354. return -EINVAL;
  6355. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6356. }
  6357. long sched_group_rt_period(struct task_group *tg)
  6358. {
  6359. u64 rt_period_us;
  6360. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6361. do_div(rt_period_us, NSEC_PER_USEC);
  6362. return rt_period_us;
  6363. }
  6364. static int sched_rt_global_constraints(void)
  6365. {
  6366. u64 runtime, period;
  6367. int ret = 0;
  6368. if (sysctl_sched_rt_period <= 0)
  6369. return -EINVAL;
  6370. runtime = global_rt_runtime();
  6371. period = global_rt_period();
  6372. /*
  6373. * Sanity check on the sysctl variables.
  6374. */
  6375. if (runtime > period && runtime != RUNTIME_INF)
  6376. return -EINVAL;
  6377. mutex_lock(&rt_constraints_mutex);
  6378. read_lock(&tasklist_lock);
  6379. ret = __rt_schedulable(NULL, 0, 0);
  6380. read_unlock(&tasklist_lock);
  6381. mutex_unlock(&rt_constraints_mutex);
  6382. return ret;
  6383. }
  6384. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6385. {
  6386. /* Don't accept realtime tasks when there is no way for them to run */
  6387. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6388. return 0;
  6389. return 1;
  6390. }
  6391. #else /* !CONFIG_RT_GROUP_SCHED */
  6392. static int sched_rt_global_constraints(void)
  6393. {
  6394. unsigned long flags;
  6395. int i;
  6396. if (sysctl_sched_rt_period <= 0)
  6397. return -EINVAL;
  6398. /*
  6399. * There's always some RT tasks in the root group
  6400. * -- migration, kstopmachine etc..
  6401. */
  6402. if (sysctl_sched_rt_runtime == 0)
  6403. return -EBUSY;
  6404. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6405. for_each_possible_cpu(i) {
  6406. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6407. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6408. rt_rq->rt_runtime = global_rt_runtime();
  6409. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6410. }
  6411. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6412. return 0;
  6413. }
  6414. #endif /* CONFIG_RT_GROUP_SCHED */
  6415. int sched_rt_handler(struct ctl_table *table, int write,
  6416. void __user *buffer, size_t *lenp,
  6417. loff_t *ppos)
  6418. {
  6419. int ret;
  6420. int old_period, old_runtime;
  6421. static DEFINE_MUTEX(mutex);
  6422. mutex_lock(&mutex);
  6423. old_period = sysctl_sched_rt_period;
  6424. old_runtime = sysctl_sched_rt_runtime;
  6425. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6426. if (!ret && write) {
  6427. ret = sched_rt_global_constraints();
  6428. if (ret) {
  6429. sysctl_sched_rt_period = old_period;
  6430. sysctl_sched_rt_runtime = old_runtime;
  6431. } else {
  6432. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6433. def_rt_bandwidth.rt_period =
  6434. ns_to_ktime(global_rt_period());
  6435. }
  6436. }
  6437. mutex_unlock(&mutex);
  6438. return ret;
  6439. }
  6440. #ifdef CONFIG_CGROUP_SCHED
  6441. /* return corresponding task_group object of a cgroup */
  6442. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6443. {
  6444. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6445. struct task_group, css);
  6446. }
  6447. static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
  6448. {
  6449. struct task_group *tg, *parent;
  6450. if (!cgrp->parent) {
  6451. /* This is early initialization for the top cgroup */
  6452. return &root_task_group.css;
  6453. }
  6454. parent = cgroup_tg(cgrp->parent);
  6455. tg = sched_create_group(parent);
  6456. if (IS_ERR(tg))
  6457. return ERR_PTR(-ENOMEM);
  6458. return &tg->css;
  6459. }
  6460. static void cpu_cgroup_destroy(struct cgroup *cgrp)
  6461. {
  6462. struct task_group *tg = cgroup_tg(cgrp);
  6463. sched_destroy_group(tg);
  6464. }
  6465. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6466. struct cgroup_taskset *tset)
  6467. {
  6468. struct task_struct *task;
  6469. cgroup_taskset_for_each(task, cgrp, tset) {
  6470. #ifdef CONFIG_RT_GROUP_SCHED
  6471. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6472. return -EINVAL;
  6473. #else
  6474. /* We don't support RT-tasks being in separate groups */
  6475. if (task->sched_class != &fair_sched_class)
  6476. return -EINVAL;
  6477. #endif
  6478. }
  6479. return 0;
  6480. }
  6481. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6482. struct cgroup_taskset *tset)
  6483. {
  6484. struct task_struct *task;
  6485. cgroup_taskset_for_each(task, cgrp, tset)
  6486. sched_move_task(task);
  6487. }
  6488. static void
  6489. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6490. struct task_struct *task)
  6491. {
  6492. /*
  6493. * cgroup_exit() is called in the copy_process() failure path.
  6494. * Ignore this case since the task hasn't ran yet, this avoids
  6495. * trying to poke a half freed task state from generic code.
  6496. */
  6497. if (!(task->flags & PF_EXITING))
  6498. return;
  6499. sched_move_task(task);
  6500. }
  6501. #ifdef CONFIG_FAIR_GROUP_SCHED
  6502. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6503. u64 shareval)
  6504. {
  6505. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6506. }
  6507. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6508. {
  6509. struct task_group *tg = cgroup_tg(cgrp);
  6510. return (u64) scale_load_down(tg->shares);
  6511. }
  6512. #ifdef CONFIG_CFS_BANDWIDTH
  6513. static DEFINE_MUTEX(cfs_constraints_mutex);
  6514. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6515. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6516. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6517. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6518. {
  6519. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6520. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6521. if (tg == &root_task_group)
  6522. return -EINVAL;
  6523. /*
  6524. * Ensure we have at some amount of bandwidth every period. This is
  6525. * to prevent reaching a state of large arrears when throttled via
  6526. * entity_tick() resulting in prolonged exit starvation.
  6527. */
  6528. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6529. return -EINVAL;
  6530. /*
  6531. * Likewise, bound things on the otherside by preventing insane quota
  6532. * periods. This also allows us to normalize in computing quota
  6533. * feasibility.
  6534. */
  6535. if (period > max_cfs_quota_period)
  6536. return -EINVAL;
  6537. mutex_lock(&cfs_constraints_mutex);
  6538. ret = __cfs_schedulable(tg, period, quota);
  6539. if (ret)
  6540. goto out_unlock;
  6541. runtime_enabled = quota != RUNTIME_INF;
  6542. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6543. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6544. raw_spin_lock_irq(&cfs_b->lock);
  6545. cfs_b->period = ns_to_ktime(period);
  6546. cfs_b->quota = quota;
  6547. __refill_cfs_bandwidth_runtime(cfs_b);
  6548. /* restart the period timer (if active) to handle new period expiry */
  6549. if (runtime_enabled && cfs_b->timer_active) {
  6550. /* force a reprogram */
  6551. cfs_b->timer_active = 0;
  6552. __start_cfs_bandwidth(cfs_b);
  6553. }
  6554. raw_spin_unlock_irq(&cfs_b->lock);
  6555. for_each_possible_cpu(i) {
  6556. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6557. struct rq *rq = cfs_rq->rq;
  6558. raw_spin_lock_irq(&rq->lock);
  6559. cfs_rq->runtime_enabled = runtime_enabled;
  6560. cfs_rq->runtime_remaining = 0;
  6561. if (cfs_rq->throttled)
  6562. unthrottle_cfs_rq(cfs_rq);
  6563. raw_spin_unlock_irq(&rq->lock);
  6564. }
  6565. out_unlock:
  6566. mutex_unlock(&cfs_constraints_mutex);
  6567. return ret;
  6568. }
  6569. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6570. {
  6571. u64 quota, period;
  6572. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6573. if (cfs_quota_us < 0)
  6574. quota = RUNTIME_INF;
  6575. else
  6576. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6577. return tg_set_cfs_bandwidth(tg, period, quota);
  6578. }
  6579. long tg_get_cfs_quota(struct task_group *tg)
  6580. {
  6581. u64 quota_us;
  6582. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6583. return -1;
  6584. quota_us = tg->cfs_bandwidth.quota;
  6585. do_div(quota_us, NSEC_PER_USEC);
  6586. return quota_us;
  6587. }
  6588. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6589. {
  6590. u64 quota, period;
  6591. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6592. quota = tg->cfs_bandwidth.quota;
  6593. return tg_set_cfs_bandwidth(tg, period, quota);
  6594. }
  6595. long tg_get_cfs_period(struct task_group *tg)
  6596. {
  6597. u64 cfs_period_us;
  6598. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6599. do_div(cfs_period_us, NSEC_PER_USEC);
  6600. return cfs_period_us;
  6601. }
  6602. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6603. {
  6604. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6605. }
  6606. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6607. s64 cfs_quota_us)
  6608. {
  6609. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6610. }
  6611. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6612. {
  6613. return tg_get_cfs_period(cgroup_tg(cgrp));
  6614. }
  6615. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6616. u64 cfs_period_us)
  6617. {
  6618. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6619. }
  6620. struct cfs_schedulable_data {
  6621. struct task_group *tg;
  6622. u64 period, quota;
  6623. };
  6624. /*
  6625. * normalize group quota/period to be quota/max_period
  6626. * note: units are usecs
  6627. */
  6628. static u64 normalize_cfs_quota(struct task_group *tg,
  6629. struct cfs_schedulable_data *d)
  6630. {
  6631. u64 quota, period;
  6632. if (tg == d->tg) {
  6633. period = d->period;
  6634. quota = d->quota;
  6635. } else {
  6636. period = tg_get_cfs_period(tg);
  6637. quota = tg_get_cfs_quota(tg);
  6638. }
  6639. /* note: these should typically be equivalent */
  6640. if (quota == RUNTIME_INF || quota == -1)
  6641. return RUNTIME_INF;
  6642. return to_ratio(period, quota);
  6643. }
  6644. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6645. {
  6646. struct cfs_schedulable_data *d = data;
  6647. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6648. s64 quota = 0, parent_quota = -1;
  6649. if (!tg->parent) {
  6650. quota = RUNTIME_INF;
  6651. } else {
  6652. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6653. quota = normalize_cfs_quota(tg, d);
  6654. parent_quota = parent_b->hierarchal_quota;
  6655. /*
  6656. * ensure max(child_quota) <= parent_quota, inherit when no
  6657. * limit is set
  6658. */
  6659. if (quota == RUNTIME_INF)
  6660. quota = parent_quota;
  6661. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6662. return -EINVAL;
  6663. }
  6664. cfs_b->hierarchal_quota = quota;
  6665. return 0;
  6666. }
  6667. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6668. {
  6669. int ret;
  6670. struct cfs_schedulable_data data = {
  6671. .tg = tg,
  6672. .period = period,
  6673. .quota = quota,
  6674. };
  6675. if (quota != RUNTIME_INF) {
  6676. do_div(data.period, NSEC_PER_USEC);
  6677. do_div(data.quota, NSEC_PER_USEC);
  6678. }
  6679. rcu_read_lock();
  6680. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6681. rcu_read_unlock();
  6682. return ret;
  6683. }
  6684. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6685. struct cgroup_map_cb *cb)
  6686. {
  6687. struct task_group *tg = cgroup_tg(cgrp);
  6688. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6689. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6690. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6691. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6692. return 0;
  6693. }
  6694. #endif /* CONFIG_CFS_BANDWIDTH */
  6695. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6696. #ifdef CONFIG_RT_GROUP_SCHED
  6697. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6698. s64 val)
  6699. {
  6700. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6701. }
  6702. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6703. {
  6704. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6705. }
  6706. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6707. u64 rt_period_us)
  6708. {
  6709. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6710. }
  6711. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6712. {
  6713. return sched_group_rt_period(cgroup_tg(cgrp));
  6714. }
  6715. #endif /* CONFIG_RT_GROUP_SCHED */
  6716. static struct cftype cpu_files[] = {
  6717. #ifdef CONFIG_FAIR_GROUP_SCHED
  6718. {
  6719. .name = "shares",
  6720. .read_u64 = cpu_shares_read_u64,
  6721. .write_u64 = cpu_shares_write_u64,
  6722. },
  6723. #endif
  6724. #ifdef CONFIG_CFS_BANDWIDTH
  6725. {
  6726. .name = "cfs_quota_us",
  6727. .read_s64 = cpu_cfs_quota_read_s64,
  6728. .write_s64 = cpu_cfs_quota_write_s64,
  6729. },
  6730. {
  6731. .name = "cfs_period_us",
  6732. .read_u64 = cpu_cfs_period_read_u64,
  6733. .write_u64 = cpu_cfs_period_write_u64,
  6734. },
  6735. {
  6736. .name = "stat",
  6737. .read_map = cpu_stats_show,
  6738. },
  6739. #endif
  6740. #ifdef CONFIG_RT_GROUP_SCHED
  6741. {
  6742. .name = "rt_runtime_us",
  6743. .read_s64 = cpu_rt_runtime_read,
  6744. .write_s64 = cpu_rt_runtime_write,
  6745. },
  6746. {
  6747. .name = "rt_period_us",
  6748. .read_u64 = cpu_rt_period_read_uint,
  6749. .write_u64 = cpu_rt_period_write_uint,
  6750. },
  6751. #endif
  6752. { } /* terminate */
  6753. };
  6754. struct cgroup_subsys cpu_cgroup_subsys = {
  6755. .name = "cpu",
  6756. .create = cpu_cgroup_create,
  6757. .destroy = cpu_cgroup_destroy,
  6758. .can_attach = cpu_cgroup_can_attach,
  6759. .attach = cpu_cgroup_attach,
  6760. .exit = cpu_cgroup_exit,
  6761. .subsys_id = cpu_cgroup_subsys_id,
  6762. .base_cftypes = cpu_files,
  6763. .early_init = 1,
  6764. };
  6765. #endif /* CONFIG_CGROUP_SCHED */
  6766. #ifdef CONFIG_CGROUP_CPUACCT
  6767. /*
  6768. * CPU accounting code for task groups.
  6769. *
  6770. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6771. * (balbir@in.ibm.com).
  6772. */
  6773. /* create a new cpu accounting group */
  6774. static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
  6775. {
  6776. struct cpuacct *ca;
  6777. if (!cgrp->parent)
  6778. return &root_cpuacct.css;
  6779. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6780. if (!ca)
  6781. goto out;
  6782. ca->cpuusage = alloc_percpu(u64);
  6783. if (!ca->cpuusage)
  6784. goto out_free_ca;
  6785. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6786. if (!ca->cpustat)
  6787. goto out_free_cpuusage;
  6788. return &ca->css;
  6789. out_free_cpuusage:
  6790. free_percpu(ca->cpuusage);
  6791. out_free_ca:
  6792. kfree(ca);
  6793. out:
  6794. return ERR_PTR(-ENOMEM);
  6795. }
  6796. /* destroy an existing cpu accounting group */
  6797. static void cpuacct_destroy(struct cgroup *cgrp)
  6798. {
  6799. struct cpuacct *ca = cgroup_ca(cgrp);
  6800. free_percpu(ca->cpustat);
  6801. free_percpu(ca->cpuusage);
  6802. kfree(ca);
  6803. }
  6804. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6805. {
  6806. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6807. u64 data;
  6808. #ifndef CONFIG_64BIT
  6809. /*
  6810. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6811. */
  6812. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6813. data = *cpuusage;
  6814. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6815. #else
  6816. data = *cpuusage;
  6817. #endif
  6818. return data;
  6819. }
  6820. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6821. {
  6822. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6823. #ifndef CONFIG_64BIT
  6824. /*
  6825. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6826. */
  6827. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6828. *cpuusage = val;
  6829. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6830. #else
  6831. *cpuusage = val;
  6832. #endif
  6833. }
  6834. /* return total cpu usage (in nanoseconds) of a group */
  6835. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6836. {
  6837. struct cpuacct *ca = cgroup_ca(cgrp);
  6838. u64 totalcpuusage = 0;
  6839. int i;
  6840. for_each_present_cpu(i)
  6841. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6842. return totalcpuusage;
  6843. }
  6844. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6845. u64 reset)
  6846. {
  6847. struct cpuacct *ca = cgroup_ca(cgrp);
  6848. int err = 0;
  6849. int i;
  6850. if (reset) {
  6851. err = -EINVAL;
  6852. goto out;
  6853. }
  6854. for_each_present_cpu(i)
  6855. cpuacct_cpuusage_write(ca, i, 0);
  6856. out:
  6857. return err;
  6858. }
  6859. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6860. struct seq_file *m)
  6861. {
  6862. struct cpuacct *ca = cgroup_ca(cgroup);
  6863. u64 percpu;
  6864. int i;
  6865. for_each_present_cpu(i) {
  6866. percpu = cpuacct_cpuusage_read(ca, i);
  6867. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6868. }
  6869. seq_printf(m, "\n");
  6870. return 0;
  6871. }
  6872. static const char *cpuacct_stat_desc[] = {
  6873. [CPUACCT_STAT_USER] = "user",
  6874. [CPUACCT_STAT_SYSTEM] = "system",
  6875. };
  6876. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6877. struct cgroup_map_cb *cb)
  6878. {
  6879. struct cpuacct *ca = cgroup_ca(cgrp);
  6880. int cpu;
  6881. s64 val = 0;
  6882. for_each_online_cpu(cpu) {
  6883. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6884. val += kcpustat->cpustat[CPUTIME_USER];
  6885. val += kcpustat->cpustat[CPUTIME_NICE];
  6886. }
  6887. val = cputime64_to_clock_t(val);
  6888. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6889. val = 0;
  6890. for_each_online_cpu(cpu) {
  6891. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6892. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6893. val += kcpustat->cpustat[CPUTIME_IRQ];
  6894. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6895. }
  6896. val = cputime64_to_clock_t(val);
  6897. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6898. return 0;
  6899. }
  6900. static struct cftype files[] = {
  6901. {
  6902. .name = "usage",
  6903. .read_u64 = cpuusage_read,
  6904. .write_u64 = cpuusage_write,
  6905. },
  6906. {
  6907. .name = "usage_percpu",
  6908. .read_seq_string = cpuacct_percpu_seq_read,
  6909. },
  6910. {
  6911. .name = "stat",
  6912. .read_map = cpuacct_stats_show,
  6913. },
  6914. { } /* terminate */
  6915. };
  6916. /*
  6917. * charge this task's execution time to its accounting group.
  6918. *
  6919. * called with rq->lock held.
  6920. */
  6921. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6922. {
  6923. struct cpuacct *ca;
  6924. int cpu;
  6925. if (unlikely(!cpuacct_subsys.active))
  6926. return;
  6927. cpu = task_cpu(tsk);
  6928. rcu_read_lock();
  6929. ca = task_ca(tsk);
  6930. for (; ca; ca = parent_ca(ca)) {
  6931. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6932. *cpuusage += cputime;
  6933. }
  6934. rcu_read_unlock();
  6935. }
  6936. struct cgroup_subsys cpuacct_subsys = {
  6937. .name = "cpuacct",
  6938. .create = cpuacct_create,
  6939. .destroy = cpuacct_destroy,
  6940. .subsys_id = cpuacct_subsys_id,
  6941. .base_cftypes = files,
  6942. };
  6943. #endif /* CONFIG_CGROUP_CPUACCT */