hw.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "debug.h"
  26. #include "ath9k.h"
  27. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  28. MODULE_AUTHOR("Atheros Communications");
  29. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31. MODULE_LICENSE("Dual BSD/GPL");
  32. static int __init ath9k_init(void)
  33. {
  34. return 0;
  35. }
  36. module_init(ath9k_init);
  37. static void __exit ath9k_exit(void)
  38. {
  39. return;
  40. }
  41. module_exit(ath9k_exit);
  42. /* Private hardware callbacks */
  43. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  46. }
  47. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  48. {
  49. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  50. }
  51. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  52. struct ath9k_channel *chan)
  53. {
  54. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  55. }
  56. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  57. {
  58. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  59. return;
  60. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  61. }
  62. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  63. {
  64. /* You will not have this callback if using the old ANI */
  65. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  66. return;
  67. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  68. }
  69. /********************/
  70. /* Helper Functions */
  71. /********************/
  72. #ifdef CONFIG_ATH9K_DEBUGFS
  73. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  74. {
  75. struct ath_softc *sc = common->priv;
  76. if (sync_cause)
  77. sc->debug.stats.istats.sync_cause_all++;
  78. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  79. sc->debug.stats.istats.sync_rtc_irq++;
  80. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  81. sc->debug.stats.istats.sync_mac_irq++;
  82. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  83. sc->debug.stats.istats.eeprom_illegal_access++;
  84. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  85. sc->debug.stats.istats.apb_timeout++;
  86. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  87. sc->debug.stats.istats.pci_mode_conflict++;
  88. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  89. sc->debug.stats.istats.host1_fatal++;
  90. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  91. sc->debug.stats.istats.host1_perr++;
  92. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  93. sc->debug.stats.istats.trcv_fifo_perr++;
  94. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  95. sc->debug.stats.istats.radm_cpl_ep++;
  96. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  97. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  98. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  99. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  100. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  101. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  102. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  103. sc->debug.stats.istats.radm_cpl_timeout++;
  104. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  105. sc->debug.stats.istats.local_timeout++;
  106. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  107. sc->debug.stats.istats.pm_access++;
  108. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  109. sc->debug.stats.istats.mac_awake++;
  110. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  111. sc->debug.stats.istats.mac_asleep++;
  112. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  113. sc->debug.stats.istats.mac_sleep_access++;
  114. }
  115. #endif
  116. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  117. {
  118. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  119. struct ath_common *common = ath9k_hw_common(ah);
  120. unsigned int clockrate;
  121. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  122. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  123. clockrate = 117;
  124. else if (!ah->curchan) /* should really check for CCK instead */
  125. clockrate = ATH9K_CLOCK_RATE_CCK;
  126. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  127. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  128. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  129. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  130. else
  131. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  132. if (conf_is_ht40(conf))
  133. clockrate *= 2;
  134. if (ah->curchan) {
  135. if (IS_CHAN_HALF_RATE(ah->curchan))
  136. clockrate /= 2;
  137. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  138. clockrate /= 4;
  139. }
  140. common->clockrate = clockrate;
  141. }
  142. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  143. {
  144. struct ath_common *common = ath9k_hw_common(ah);
  145. return usecs * common->clockrate;
  146. }
  147. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  148. {
  149. int i;
  150. BUG_ON(timeout < AH_TIME_QUANTUM);
  151. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  152. if ((REG_READ(ah, reg) & mask) == val)
  153. return true;
  154. udelay(AH_TIME_QUANTUM);
  155. }
  156. ath_dbg(ath9k_hw_common(ah), ANY,
  157. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  158. timeout, reg, REG_READ(ah, reg), mask, val);
  159. return false;
  160. }
  161. EXPORT_SYMBOL(ath9k_hw_wait);
  162. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  163. int hw_delay)
  164. {
  165. if (IS_CHAN_B(chan))
  166. hw_delay = (4 * hw_delay) / 22;
  167. else
  168. hw_delay /= 10;
  169. if (IS_CHAN_HALF_RATE(chan))
  170. hw_delay *= 2;
  171. else if (IS_CHAN_QUARTER_RATE(chan))
  172. hw_delay *= 4;
  173. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  174. }
  175. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  176. int column, unsigned int *writecnt)
  177. {
  178. int r;
  179. ENABLE_REGWRITE_BUFFER(ah);
  180. for (r = 0; r < array->ia_rows; r++) {
  181. REG_WRITE(ah, INI_RA(array, r, 0),
  182. INI_RA(array, r, column));
  183. DO_DELAY(*writecnt);
  184. }
  185. REGWRITE_BUFFER_FLUSH(ah);
  186. }
  187. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  188. {
  189. u32 retval;
  190. int i;
  191. for (i = 0, retval = 0; i < n; i++) {
  192. retval = (retval << 1) | (val & 1);
  193. val >>= 1;
  194. }
  195. return retval;
  196. }
  197. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  198. u8 phy, int kbps,
  199. u32 frameLen, u16 rateix,
  200. bool shortPreamble)
  201. {
  202. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  203. if (kbps == 0)
  204. return 0;
  205. switch (phy) {
  206. case WLAN_RC_PHY_CCK:
  207. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  208. if (shortPreamble)
  209. phyTime >>= 1;
  210. numBits = frameLen << 3;
  211. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  212. break;
  213. case WLAN_RC_PHY_OFDM:
  214. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  215. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  216. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  217. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  218. txTime = OFDM_SIFS_TIME_QUARTER
  219. + OFDM_PREAMBLE_TIME_QUARTER
  220. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  221. } else if (ah->curchan &&
  222. IS_CHAN_HALF_RATE(ah->curchan)) {
  223. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  224. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  225. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  226. txTime = OFDM_SIFS_TIME_HALF +
  227. OFDM_PREAMBLE_TIME_HALF
  228. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  229. } else {
  230. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  231. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  232. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  233. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  234. + (numSymbols * OFDM_SYMBOL_TIME);
  235. }
  236. break;
  237. default:
  238. ath_err(ath9k_hw_common(ah),
  239. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  240. txTime = 0;
  241. break;
  242. }
  243. return txTime;
  244. }
  245. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  246. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  247. struct ath9k_channel *chan,
  248. struct chan_centers *centers)
  249. {
  250. int8_t extoff;
  251. if (!IS_CHAN_HT40(chan)) {
  252. centers->ctl_center = centers->ext_center =
  253. centers->synth_center = chan->channel;
  254. return;
  255. }
  256. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  257. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  258. centers->synth_center =
  259. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  260. extoff = 1;
  261. } else {
  262. centers->synth_center =
  263. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  264. extoff = -1;
  265. }
  266. centers->ctl_center =
  267. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. /* 25 MHz spacing is supported by hw but not on upper layers */
  269. centers->ext_center =
  270. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  271. }
  272. /******************/
  273. /* Chip Revisions */
  274. /******************/
  275. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  276. {
  277. u32 val;
  278. switch (ah->hw_version.devid) {
  279. case AR5416_AR9100_DEVID:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  281. break;
  282. case AR9300_DEVID_AR9330:
  283. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  284. if (ah->get_mac_revision) {
  285. ah->hw_version.macRev = ah->get_mac_revision();
  286. } else {
  287. val = REG_READ(ah, AR_SREV);
  288. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  289. }
  290. return;
  291. case AR9300_DEVID_AR9340:
  292. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  293. val = REG_READ(ah, AR_SREV);
  294. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. static void ath9k_hw_aspm_init(struct ath_hw *ah)
  335. {
  336. struct ath_common *common = ath9k_hw_common(ah);
  337. if (common->bus_ops->aspm_init)
  338. common->bus_ops->aspm_init(common);
  339. }
  340. /* This should work for all families including legacy */
  341. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  342. {
  343. struct ath_common *common = ath9k_hw_common(ah);
  344. u32 regAddr[2] = { AR_STA_ID0 };
  345. u32 regHold[2];
  346. static const u32 patternData[4] = {
  347. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  348. };
  349. int i, j, loop_max;
  350. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  351. loop_max = 2;
  352. regAddr[1] = AR_PHY_BASE + (8 << 2);
  353. } else
  354. loop_max = 1;
  355. for (i = 0; i < loop_max; i++) {
  356. u32 addr = regAddr[i];
  357. u32 wrData, rdData;
  358. regHold[i] = REG_READ(ah, addr);
  359. for (j = 0; j < 0x100; j++) {
  360. wrData = (j << 16) | j;
  361. REG_WRITE(ah, addr, wrData);
  362. rdData = REG_READ(ah, addr);
  363. if (rdData != wrData) {
  364. ath_err(common,
  365. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  366. addr, wrData, rdData);
  367. return false;
  368. }
  369. }
  370. for (j = 0; j < 4; j++) {
  371. wrData = patternData[j];
  372. REG_WRITE(ah, addr, wrData);
  373. rdData = REG_READ(ah, addr);
  374. if (wrData != rdData) {
  375. ath_err(common,
  376. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  377. addr, wrData, rdData);
  378. return false;
  379. }
  380. }
  381. REG_WRITE(ah, regAddr[i], regHold[i]);
  382. }
  383. udelay(100);
  384. return true;
  385. }
  386. static void ath9k_hw_init_config(struct ath_hw *ah)
  387. {
  388. int i;
  389. ah->config.dma_beacon_response_time = 1;
  390. ah->config.sw_beacon_response_time = 6;
  391. ah->config.additional_swba_backoff = 0;
  392. ah->config.ack_6mb = 0x0;
  393. ah->config.cwm_ignore_extcca = 0;
  394. ah->config.pcie_clock_req = 0;
  395. ah->config.pcie_waen = 0;
  396. ah->config.analog_shiftreg = 1;
  397. ah->config.enable_ani = true;
  398. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  399. ah->config.spurchans[i][0] = AR_NO_SPUR;
  400. ah->config.spurchans[i][1] = AR_NO_SPUR;
  401. }
  402. /* PAPRD needs some more work to be enabled */
  403. ah->config.paprd_disable = 1;
  404. ah->config.rx_intr_mitigation = true;
  405. ah->config.pcieSerDesWrite = true;
  406. /*
  407. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  408. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  409. * This means we use it for all AR5416 devices, and the few
  410. * minor PCI AR9280 devices out there.
  411. *
  412. * Serialization is required because these devices do not handle
  413. * well the case of two concurrent reads/writes due to the latency
  414. * involved. During one read/write another read/write can be issued
  415. * on another CPU while the previous read/write may still be working
  416. * on our hardware, if we hit this case the hardware poops in a loop.
  417. * We prevent this by serializing reads and writes.
  418. *
  419. * This issue is not present on PCI-Express devices or pre-AR5416
  420. * devices (legacy, 802.11abg).
  421. */
  422. if (num_possible_cpus() > 1)
  423. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  424. }
  425. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  426. {
  427. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  428. regulatory->country_code = CTRY_DEFAULT;
  429. regulatory->power_limit = MAX_RATE_POWER;
  430. ah->hw_version.magic = AR5416_MAGIC;
  431. ah->hw_version.subvendorid = 0;
  432. ah->atim_window = 0;
  433. ah->sta_id1_defaults =
  434. AR_STA_ID1_CRPT_MIC_ENABLE |
  435. AR_STA_ID1_MCAST_KSRCH;
  436. if (AR_SREV_9100(ah))
  437. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  438. ah->slottime = ATH9K_SLOT_TIME_9;
  439. ah->globaltxtimeout = (u32) -1;
  440. ah->power_mode = ATH9K_PM_UNDEFINED;
  441. ah->htc_reset_init = true;
  442. }
  443. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  444. {
  445. struct ath_common *common = ath9k_hw_common(ah);
  446. u32 sum;
  447. int i;
  448. u16 eeval;
  449. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  450. sum = 0;
  451. for (i = 0; i < 3; i++) {
  452. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  453. sum += eeval;
  454. common->macaddr[2 * i] = eeval >> 8;
  455. common->macaddr[2 * i + 1] = eeval & 0xff;
  456. }
  457. if (sum == 0 || sum == 0xffff * 3)
  458. return -EADDRNOTAVAIL;
  459. return 0;
  460. }
  461. static int ath9k_hw_post_init(struct ath_hw *ah)
  462. {
  463. struct ath_common *common = ath9k_hw_common(ah);
  464. int ecode;
  465. if (common->bus_ops->ath_bus_type != ATH_USB) {
  466. if (!ath9k_hw_chip_test(ah))
  467. return -ENODEV;
  468. }
  469. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  470. ecode = ar9002_hw_rf_claim(ah);
  471. if (ecode != 0)
  472. return ecode;
  473. }
  474. ecode = ath9k_hw_eeprom_init(ah);
  475. if (ecode != 0)
  476. return ecode;
  477. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  478. ah->eep_ops->get_eeprom_ver(ah),
  479. ah->eep_ops->get_eeprom_rev(ah));
  480. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  481. if (ecode) {
  482. ath_err(ath9k_hw_common(ah),
  483. "Failed allocating banks for external radio\n");
  484. ath9k_hw_rf_free_ext_banks(ah);
  485. return ecode;
  486. }
  487. if (ah->config.enable_ani) {
  488. ath9k_hw_ani_setup(ah);
  489. ath9k_hw_ani_init(ah);
  490. }
  491. return 0;
  492. }
  493. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  494. {
  495. if (AR_SREV_9300_20_OR_LATER(ah))
  496. ar9003_hw_attach_ops(ah);
  497. else
  498. ar9002_hw_attach_ops(ah);
  499. }
  500. /* Called for all hardware families */
  501. static int __ath9k_hw_init(struct ath_hw *ah)
  502. {
  503. struct ath_common *common = ath9k_hw_common(ah);
  504. int r = 0;
  505. ath9k_hw_read_revisions(ah);
  506. /*
  507. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  508. * We need to do this to avoid RMW of this register. We cannot
  509. * read the reg when chip is asleep.
  510. */
  511. ah->WARegVal = REG_READ(ah, AR_WA);
  512. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  513. AR_WA_ASPM_TIMER_BASED_DISABLE);
  514. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  515. ath_err(common, "Couldn't reset chip\n");
  516. return -EIO;
  517. }
  518. if (AR_SREV_9462(ah))
  519. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  520. ath9k_hw_init_defaults(ah);
  521. ath9k_hw_init_config(ah);
  522. ath9k_hw_attach_ops(ah);
  523. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  524. ath_err(common, "Couldn't wakeup chip\n");
  525. return -EIO;
  526. }
  527. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  528. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  529. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  530. !ah->is_pciexpress)) {
  531. ah->config.serialize_regmode =
  532. SER_REG_MODE_ON;
  533. } else {
  534. ah->config.serialize_regmode =
  535. SER_REG_MODE_OFF;
  536. }
  537. }
  538. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  539. ah->config.serialize_regmode);
  540. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  541. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  542. else
  543. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  544. switch (ah->hw_version.macVersion) {
  545. case AR_SREV_VERSION_5416_PCI:
  546. case AR_SREV_VERSION_5416_PCIE:
  547. case AR_SREV_VERSION_9160:
  548. case AR_SREV_VERSION_9100:
  549. case AR_SREV_VERSION_9280:
  550. case AR_SREV_VERSION_9285:
  551. case AR_SREV_VERSION_9287:
  552. case AR_SREV_VERSION_9271:
  553. case AR_SREV_VERSION_9300:
  554. case AR_SREV_VERSION_9330:
  555. case AR_SREV_VERSION_9485:
  556. case AR_SREV_VERSION_9340:
  557. case AR_SREV_VERSION_9462:
  558. break;
  559. default:
  560. ath_err(common,
  561. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  562. ah->hw_version.macVersion, ah->hw_version.macRev);
  563. return -EOPNOTSUPP;
  564. }
  565. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  566. AR_SREV_9330(ah))
  567. ah->is_pciexpress = false;
  568. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  569. ath9k_hw_init_cal_settings(ah);
  570. ah->ani_function = ATH9K_ANI_ALL;
  571. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  572. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  573. if (!AR_SREV_9300_20_OR_LATER(ah))
  574. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  575. /* disable ANI for 9340 */
  576. if (AR_SREV_9340(ah))
  577. ah->config.enable_ani = false;
  578. ath9k_hw_init_mode_regs(ah);
  579. if (!ah->is_pciexpress)
  580. ath9k_hw_disablepcie(ah);
  581. r = ath9k_hw_post_init(ah);
  582. if (r)
  583. return r;
  584. ath9k_hw_init_mode_gain_regs(ah);
  585. r = ath9k_hw_fill_cap_info(ah);
  586. if (r)
  587. return r;
  588. if (ah->is_pciexpress)
  589. ath9k_hw_aspm_init(ah);
  590. r = ath9k_hw_init_macaddr(ah);
  591. if (r) {
  592. ath_err(common, "Failed to initialize MAC address\n");
  593. return r;
  594. }
  595. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  596. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  597. else
  598. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  599. if (AR_SREV_9330(ah))
  600. ah->bb_watchdog_timeout_ms = 85;
  601. else
  602. ah->bb_watchdog_timeout_ms = 25;
  603. common->state = ATH_HW_INITIALIZED;
  604. return 0;
  605. }
  606. int ath9k_hw_init(struct ath_hw *ah)
  607. {
  608. int ret;
  609. struct ath_common *common = ath9k_hw_common(ah);
  610. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  611. switch (ah->hw_version.devid) {
  612. case AR5416_DEVID_PCI:
  613. case AR5416_DEVID_PCIE:
  614. case AR5416_AR9100_DEVID:
  615. case AR9160_DEVID_PCI:
  616. case AR9280_DEVID_PCI:
  617. case AR9280_DEVID_PCIE:
  618. case AR9285_DEVID_PCIE:
  619. case AR9287_DEVID_PCI:
  620. case AR9287_DEVID_PCIE:
  621. case AR2427_DEVID_PCIE:
  622. case AR9300_DEVID_PCIE:
  623. case AR9300_DEVID_AR9485_PCIE:
  624. case AR9300_DEVID_AR9330:
  625. case AR9300_DEVID_AR9340:
  626. case AR9300_DEVID_AR9580:
  627. case AR9300_DEVID_AR9462:
  628. break;
  629. default:
  630. if (common->bus_ops->ath_bus_type == ATH_USB)
  631. break;
  632. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  633. ah->hw_version.devid);
  634. return -EOPNOTSUPP;
  635. }
  636. ret = __ath9k_hw_init(ah);
  637. if (ret) {
  638. ath_err(common,
  639. "Unable to initialize hardware; initialization status: %d\n",
  640. ret);
  641. return ret;
  642. }
  643. return 0;
  644. }
  645. EXPORT_SYMBOL(ath9k_hw_init);
  646. static void ath9k_hw_init_qos(struct ath_hw *ah)
  647. {
  648. ENABLE_REGWRITE_BUFFER(ah);
  649. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  650. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  651. REG_WRITE(ah, AR_QOS_NO_ACK,
  652. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  653. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  654. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  655. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  656. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  657. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  658. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  659. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  660. REGWRITE_BUFFER_FLUSH(ah);
  661. }
  662. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  663. {
  664. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  665. udelay(100);
  666. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  667. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  668. udelay(100);
  669. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  670. }
  671. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  672. static void ath9k_hw_init_pll(struct ath_hw *ah,
  673. struct ath9k_channel *chan)
  674. {
  675. u32 pll;
  676. if (AR_SREV_9485(ah)) {
  677. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  679. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  681. AR_CH0_DPLL2_KD, 0x40);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  683. AR_CH0_DPLL2_KI, 0x4);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  685. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  687. AR_CH0_BB_DPLL1_NINI, 0x58);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  689. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  690. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  691. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  692. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  693. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  694. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  695. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  696. /* program BB PLL phase_shift to 0x6 */
  697. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  698. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  699. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  700. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  701. udelay(1000);
  702. } else if (AR_SREV_9330(ah)) {
  703. u32 ddr_dpll2, pll_control2, kd;
  704. if (ah->is_clk_25mhz) {
  705. ddr_dpll2 = 0x18e82f01;
  706. pll_control2 = 0xe04a3d;
  707. kd = 0x1d;
  708. } else {
  709. ddr_dpll2 = 0x19e82f01;
  710. pll_control2 = 0x886666;
  711. kd = 0x3d;
  712. }
  713. /* program DDR PLL ki and kd value */
  714. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  715. /* program DDR PLL phase_shift */
  716. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  717. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  718. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  719. udelay(1000);
  720. /* program refdiv, nint, frac to RTC register */
  721. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  722. /* program BB PLL kd and ki value */
  723. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  724. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  725. /* program BB PLL phase_shift */
  726. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  727. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  728. } else if (AR_SREV_9340(ah)) {
  729. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  730. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  731. udelay(1000);
  732. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  733. udelay(100);
  734. if (ah->is_clk_25mhz) {
  735. pll2_divint = 0x54;
  736. pll2_divfrac = 0x1eb85;
  737. refdiv = 3;
  738. } else {
  739. pll2_divint = 88;
  740. pll2_divfrac = 0;
  741. refdiv = 5;
  742. }
  743. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  744. regval |= (0x1 << 16);
  745. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  746. udelay(100);
  747. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  748. (pll2_divint << 18) | pll2_divfrac);
  749. udelay(100);
  750. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  751. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  752. (0x4 << 26) | (0x18 << 19);
  753. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  754. REG_WRITE(ah, AR_PHY_PLL_MODE,
  755. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  756. udelay(1000);
  757. }
  758. pll = ath9k_hw_compute_pll_control(ah, chan);
  759. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  760. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  761. udelay(1000);
  762. /* Switch the core clock for ar9271 to 117Mhz */
  763. if (AR_SREV_9271(ah)) {
  764. udelay(500);
  765. REG_WRITE(ah, 0x50040, 0x304);
  766. }
  767. udelay(RTC_PLL_SETTLE_DELAY);
  768. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  769. if (AR_SREV_9340(ah)) {
  770. if (ah->is_clk_25mhz) {
  771. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  772. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  773. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  774. } else {
  775. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  776. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  777. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  778. }
  779. udelay(100);
  780. }
  781. }
  782. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  783. enum nl80211_iftype opmode)
  784. {
  785. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  786. u32 imr_reg = AR_IMR_TXERR |
  787. AR_IMR_TXURN |
  788. AR_IMR_RXERR |
  789. AR_IMR_RXORN |
  790. AR_IMR_BCNMISC;
  791. if (AR_SREV_9340(ah))
  792. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  793. if (AR_SREV_9300_20_OR_LATER(ah)) {
  794. imr_reg |= AR_IMR_RXOK_HP;
  795. if (ah->config.rx_intr_mitigation)
  796. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  797. else
  798. imr_reg |= AR_IMR_RXOK_LP;
  799. } else {
  800. if (ah->config.rx_intr_mitigation)
  801. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  802. else
  803. imr_reg |= AR_IMR_RXOK;
  804. }
  805. if (ah->config.tx_intr_mitigation)
  806. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  807. else
  808. imr_reg |= AR_IMR_TXOK;
  809. if (opmode == NL80211_IFTYPE_AP)
  810. imr_reg |= AR_IMR_MIB;
  811. ENABLE_REGWRITE_BUFFER(ah);
  812. REG_WRITE(ah, AR_IMR, imr_reg);
  813. ah->imrs2_reg |= AR_IMR_S2_GTT;
  814. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  815. if (!AR_SREV_9100(ah)) {
  816. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  817. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  818. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  819. }
  820. REGWRITE_BUFFER_FLUSH(ah);
  821. if (AR_SREV_9300_20_OR_LATER(ah)) {
  822. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  823. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  824. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  825. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  826. }
  827. }
  828. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  829. {
  830. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  831. val = min(val, (u32) 0xFFFF);
  832. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  833. }
  834. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  835. {
  836. u32 val = ath9k_hw_mac_to_clks(ah, us);
  837. val = min(val, (u32) 0xFFFF);
  838. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  839. }
  840. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  841. {
  842. u32 val = ath9k_hw_mac_to_clks(ah, us);
  843. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  844. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  845. }
  846. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  847. {
  848. u32 val = ath9k_hw_mac_to_clks(ah, us);
  849. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  850. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  851. }
  852. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  853. {
  854. if (tu > 0xFFFF) {
  855. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  856. tu);
  857. ah->globaltxtimeout = (u32) -1;
  858. return false;
  859. } else {
  860. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  861. ah->globaltxtimeout = tu;
  862. return true;
  863. }
  864. }
  865. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  866. {
  867. struct ath_common *common = ath9k_hw_common(ah);
  868. struct ieee80211_conf *conf = &common->hw->conf;
  869. const struct ath9k_channel *chan = ah->curchan;
  870. int acktimeout, ctstimeout, ack_offset = 0;
  871. int slottime;
  872. int sifstime;
  873. int rx_lat = 0, tx_lat = 0, eifs = 0;
  874. u32 reg;
  875. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  876. ah->misc_mode);
  877. if (!chan)
  878. return;
  879. if (ah->misc_mode != 0)
  880. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  881. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  882. rx_lat = 41;
  883. else
  884. rx_lat = 37;
  885. tx_lat = 54;
  886. if (IS_CHAN_5GHZ(chan))
  887. sifstime = 16;
  888. else
  889. sifstime = 10;
  890. if (IS_CHAN_HALF_RATE(chan)) {
  891. eifs = 175;
  892. rx_lat *= 2;
  893. tx_lat *= 2;
  894. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  895. tx_lat += 11;
  896. sifstime *= 2;
  897. ack_offset = 16;
  898. slottime = 13;
  899. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  900. eifs = 340;
  901. rx_lat = (rx_lat * 4) - 1;
  902. tx_lat *= 4;
  903. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  904. tx_lat += 22;
  905. sifstime *= 4;
  906. ack_offset = 32;
  907. slottime = 21;
  908. } else {
  909. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  910. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  911. reg = AR_USEC_ASYNC_FIFO;
  912. } else {
  913. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  914. common->clockrate;
  915. reg = REG_READ(ah, AR_USEC);
  916. }
  917. rx_lat = MS(reg, AR_USEC_RX_LAT);
  918. tx_lat = MS(reg, AR_USEC_TX_LAT);
  919. slottime = ah->slottime;
  920. }
  921. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  922. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  923. ctstimeout = acktimeout;
  924. /*
  925. * Workaround for early ACK timeouts, add an offset to match the
  926. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  927. * This was initially only meant to work around an issue with delayed
  928. * BA frames in some implementations, but it has been found to fix ACK
  929. * timeout issues in other cases as well.
  930. */
  931. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  932. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  933. acktimeout += 64 - sifstime - ah->slottime;
  934. ctstimeout += 48 - sifstime - ah->slottime;
  935. }
  936. ath9k_hw_set_sifs_time(ah, sifstime);
  937. ath9k_hw_setslottime(ah, slottime);
  938. ath9k_hw_set_ack_timeout(ah, acktimeout);
  939. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  940. if (ah->globaltxtimeout != (u32) -1)
  941. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  942. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  943. REG_RMW(ah, AR_USEC,
  944. (common->clockrate - 1) |
  945. SM(rx_lat, AR_USEC_RX_LAT) |
  946. SM(tx_lat, AR_USEC_TX_LAT),
  947. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  948. }
  949. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  950. void ath9k_hw_deinit(struct ath_hw *ah)
  951. {
  952. struct ath_common *common = ath9k_hw_common(ah);
  953. if (common->state < ATH_HW_INITIALIZED)
  954. goto free_hw;
  955. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  956. free_hw:
  957. ath9k_hw_rf_free_ext_banks(ah);
  958. }
  959. EXPORT_SYMBOL(ath9k_hw_deinit);
  960. /*******/
  961. /* INI */
  962. /*******/
  963. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  964. {
  965. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  966. if (IS_CHAN_B(chan))
  967. ctl |= CTL_11B;
  968. else if (IS_CHAN_G(chan))
  969. ctl |= CTL_11G;
  970. else
  971. ctl |= CTL_11A;
  972. return ctl;
  973. }
  974. /****************************************/
  975. /* Reset and Channel Switching Routines */
  976. /****************************************/
  977. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  978. {
  979. struct ath_common *common = ath9k_hw_common(ah);
  980. ENABLE_REGWRITE_BUFFER(ah);
  981. /*
  982. * set AHB_MODE not to do cacheline prefetches
  983. */
  984. if (!AR_SREV_9300_20_OR_LATER(ah))
  985. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  986. /*
  987. * let mac dma reads be in 128 byte chunks
  988. */
  989. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  990. REGWRITE_BUFFER_FLUSH(ah);
  991. /*
  992. * Restore TX Trigger Level to its pre-reset value.
  993. * The initial value depends on whether aggregation is enabled, and is
  994. * adjusted whenever underruns are detected.
  995. */
  996. if (!AR_SREV_9300_20_OR_LATER(ah))
  997. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  998. ENABLE_REGWRITE_BUFFER(ah);
  999. /*
  1000. * let mac dma writes be in 128 byte chunks
  1001. */
  1002. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1003. /*
  1004. * Setup receive FIFO threshold to hold off TX activities
  1005. */
  1006. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1007. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1008. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1009. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1010. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1011. ah->caps.rx_status_len);
  1012. }
  1013. /*
  1014. * reduce the number of usable entries in PCU TXBUF to avoid
  1015. * wrap around issues.
  1016. */
  1017. if (AR_SREV_9285(ah)) {
  1018. /* For AR9285 the number of Fifos are reduced to half.
  1019. * So set the usable tx buf size also to half to
  1020. * avoid data/delimiter underruns
  1021. */
  1022. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1023. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1024. } else if (!AR_SREV_9271(ah)) {
  1025. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1026. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1027. }
  1028. REGWRITE_BUFFER_FLUSH(ah);
  1029. if (AR_SREV_9300_20_OR_LATER(ah))
  1030. ath9k_hw_reset_txstatus_ring(ah);
  1031. }
  1032. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1033. {
  1034. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1035. u32 set = AR_STA_ID1_KSRCH_MODE;
  1036. switch (opmode) {
  1037. case NL80211_IFTYPE_ADHOC:
  1038. case NL80211_IFTYPE_MESH_POINT:
  1039. set |= AR_STA_ID1_ADHOC;
  1040. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1041. break;
  1042. case NL80211_IFTYPE_AP:
  1043. set |= AR_STA_ID1_STA_AP;
  1044. /* fall through */
  1045. case NL80211_IFTYPE_STATION:
  1046. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1047. break;
  1048. default:
  1049. if (!ah->is_monitoring)
  1050. set = 0;
  1051. break;
  1052. }
  1053. REG_RMW(ah, AR_STA_ID1, set, mask);
  1054. }
  1055. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1056. u32 *coef_mantissa, u32 *coef_exponent)
  1057. {
  1058. u32 coef_exp, coef_man;
  1059. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1060. if ((coef_scaled >> coef_exp) & 0x1)
  1061. break;
  1062. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1063. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1064. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1065. *coef_exponent = coef_exp - 16;
  1066. }
  1067. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1068. {
  1069. u32 rst_flags;
  1070. u32 tmpReg;
  1071. if (AR_SREV_9100(ah)) {
  1072. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1073. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1074. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1075. }
  1076. ENABLE_REGWRITE_BUFFER(ah);
  1077. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1078. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1079. udelay(10);
  1080. }
  1081. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1082. AR_RTC_FORCE_WAKE_ON_INT);
  1083. if (AR_SREV_9100(ah)) {
  1084. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1085. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1086. } else {
  1087. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1088. if (tmpReg &
  1089. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1090. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1091. u32 val;
  1092. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1093. val = AR_RC_HOSTIF;
  1094. if (!AR_SREV_9300_20_OR_LATER(ah))
  1095. val |= AR_RC_AHB;
  1096. REG_WRITE(ah, AR_RC, val);
  1097. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1098. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1099. rst_flags = AR_RTC_RC_MAC_WARM;
  1100. if (type == ATH9K_RESET_COLD)
  1101. rst_flags |= AR_RTC_RC_MAC_COLD;
  1102. }
  1103. if (AR_SREV_9330(ah)) {
  1104. int npend = 0;
  1105. int i;
  1106. /* AR9330 WAR:
  1107. * call external reset function to reset WMAC if:
  1108. * - doing a cold reset
  1109. * - we have pending frames in the TX queues
  1110. */
  1111. for (i = 0; i < AR_NUM_QCU; i++) {
  1112. npend = ath9k_hw_numtxpending(ah, i);
  1113. if (npend)
  1114. break;
  1115. }
  1116. if (ah->external_reset &&
  1117. (npend || type == ATH9K_RESET_COLD)) {
  1118. int reset_err = 0;
  1119. ath_dbg(ath9k_hw_common(ah), RESET,
  1120. "reset MAC via external reset\n");
  1121. reset_err = ah->external_reset();
  1122. if (reset_err) {
  1123. ath_err(ath9k_hw_common(ah),
  1124. "External reset failed, err=%d\n",
  1125. reset_err);
  1126. return false;
  1127. }
  1128. REG_WRITE(ah, AR_RTC_RESET, 1);
  1129. }
  1130. }
  1131. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1132. REGWRITE_BUFFER_FLUSH(ah);
  1133. udelay(50);
  1134. REG_WRITE(ah, AR_RTC_RC, 0);
  1135. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1136. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1137. return false;
  1138. }
  1139. if (!AR_SREV_9100(ah))
  1140. REG_WRITE(ah, AR_RC, 0);
  1141. if (AR_SREV_9100(ah))
  1142. udelay(50);
  1143. return true;
  1144. }
  1145. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1146. {
  1147. ENABLE_REGWRITE_BUFFER(ah);
  1148. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1149. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1150. udelay(10);
  1151. }
  1152. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1153. AR_RTC_FORCE_WAKE_ON_INT);
  1154. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1155. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1156. REG_WRITE(ah, AR_RTC_RESET, 0);
  1157. REGWRITE_BUFFER_FLUSH(ah);
  1158. if (!AR_SREV_9300_20_OR_LATER(ah))
  1159. udelay(2);
  1160. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1161. REG_WRITE(ah, AR_RC, 0);
  1162. REG_WRITE(ah, AR_RTC_RESET, 1);
  1163. if (!ath9k_hw_wait(ah,
  1164. AR_RTC_STATUS,
  1165. AR_RTC_STATUS_M,
  1166. AR_RTC_STATUS_ON,
  1167. AH_WAIT_TIMEOUT)) {
  1168. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1169. return false;
  1170. }
  1171. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1172. }
  1173. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1174. {
  1175. bool ret = false;
  1176. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1177. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1178. udelay(10);
  1179. }
  1180. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1181. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1182. switch (type) {
  1183. case ATH9K_RESET_POWER_ON:
  1184. ret = ath9k_hw_set_reset_power_on(ah);
  1185. break;
  1186. case ATH9K_RESET_WARM:
  1187. case ATH9K_RESET_COLD:
  1188. ret = ath9k_hw_set_reset(ah, type);
  1189. break;
  1190. default:
  1191. break;
  1192. }
  1193. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1194. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1195. return ret;
  1196. }
  1197. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1198. struct ath9k_channel *chan)
  1199. {
  1200. int reset_type = ATH9K_RESET_WARM;
  1201. if (AR_SREV_9280(ah)) {
  1202. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1203. reset_type = ATH9K_RESET_POWER_ON;
  1204. else
  1205. reset_type = ATH9K_RESET_COLD;
  1206. }
  1207. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1208. return false;
  1209. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1210. return false;
  1211. ah->chip_fullsleep = false;
  1212. if (AR_SREV_9330(ah))
  1213. ar9003_hw_internal_regulator_apply(ah);
  1214. ath9k_hw_init_pll(ah, chan);
  1215. ath9k_hw_set_rfmode(ah, chan);
  1216. return true;
  1217. }
  1218. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1219. struct ath9k_channel *chan)
  1220. {
  1221. struct ath_common *common = ath9k_hw_common(ah);
  1222. u32 qnum;
  1223. int r;
  1224. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1225. bool band_switch, mode_diff;
  1226. u8 ini_reloaded;
  1227. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1228. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1229. CHANNEL_5GHZ));
  1230. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1231. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1232. if (ath9k_hw_numtxpending(ah, qnum)) {
  1233. ath_dbg(common, QUEUE,
  1234. "Transmit frames pending on queue %d\n", qnum);
  1235. return false;
  1236. }
  1237. }
  1238. if (!ath9k_hw_rfbus_req(ah)) {
  1239. ath_err(common, "Could not kill baseband RX\n");
  1240. return false;
  1241. }
  1242. if (edma && (band_switch || mode_diff)) {
  1243. ath9k_hw_mark_phy_inactive(ah);
  1244. udelay(5);
  1245. ath9k_hw_init_pll(ah, NULL);
  1246. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1247. ath_err(common, "Failed to do fast channel change\n");
  1248. return false;
  1249. }
  1250. }
  1251. ath9k_hw_set_channel_regs(ah, chan);
  1252. r = ath9k_hw_rf_set_freq(ah, chan);
  1253. if (r) {
  1254. ath_err(common, "Failed to set channel\n");
  1255. return false;
  1256. }
  1257. ath9k_hw_set_clockrate(ah);
  1258. ath9k_hw_apply_txpower(ah, chan, false);
  1259. ath9k_hw_rfbus_done(ah);
  1260. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1261. ath9k_hw_set_delta_slope(ah, chan);
  1262. ath9k_hw_spur_mitigate_freq(ah, chan);
  1263. if (edma && (band_switch || mode_diff)) {
  1264. ah->ah_flags |= AH_FASTCC;
  1265. if (band_switch || ini_reloaded)
  1266. ah->eep_ops->set_board_values(ah, chan);
  1267. ath9k_hw_init_bb(ah, chan);
  1268. if (band_switch || ini_reloaded)
  1269. ath9k_hw_init_cal(ah, chan);
  1270. ah->ah_flags &= ~AH_FASTCC;
  1271. }
  1272. return true;
  1273. }
  1274. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1275. {
  1276. u32 gpio_mask = ah->gpio_mask;
  1277. int i;
  1278. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1279. if (!(gpio_mask & 1))
  1280. continue;
  1281. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1282. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1283. }
  1284. }
  1285. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1286. int *hang_state, int *hang_pos)
  1287. {
  1288. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1289. u32 chain_state, dcs_pos, i;
  1290. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1291. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1292. for (i = 0; i < 3; i++) {
  1293. if (chain_state == dcu_chain_state[i]) {
  1294. *hang_state = chain_state;
  1295. *hang_pos = dcs_pos;
  1296. return true;
  1297. }
  1298. }
  1299. }
  1300. return false;
  1301. }
  1302. #define DCU_COMPLETE_STATE 1
  1303. #define DCU_COMPLETE_STATE_MASK 0x3
  1304. #define NUM_STATUS_READS 50
  1305. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1306. {
  1307. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1308. u32 i, hang_pos, hang_state, num_state = 6;
  1309. comp_state = REG_READ(ah, AR_DMADBG_6);
  1310. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1311. ath_dbg(ath9k_hw_common(ah), RESET,
  1312. "MAC Hang signature not found at DCU complete\n");
  1313. return false;
  1314. }
  1315. chain_state = REG_READ(ah, dcs_reg);
  1316. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1317. goto hang_check_iter;
  1318. dcs_reg = AR_DMADBG_5;
  1319. num_state = 4;
  1320. chain_state = REG_READ(ah, dcs_reg);
  1321. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1322. goto hang_check_iter;
  1323. ath_dbg(ath9k_hw_common(ah), RESET,
  1324. "MAC Hang signature 1 not found\n");
  1325. return false;
  1326. hang_check_iter:
  1327. ath_dbg(ath9k_hw_common(ah), RESET,
  1328. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1329. chain_state, comp_state, hang_state, hang_pos);
  1330. for (i = 0; i < NUM_STATUS_READS; i++) {
  1331. chain_state = REG_READ(ah, dcs_reg);
  1332. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1333. comp_state = REG_READ(ah, AR_DMADBG_6);
  1334. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1335. DCU_COMPLETE_STATE) ||
  1336. (chain_state != hang_state))
  1337. return false;
  1338. }
  1339. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1340. return true;
  1341. }
  1342. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1343. {
  1344. int count = 50;
  1345. u32 reg;
  1346. if (AR_SREV_9300(ah))
  1347. return !ath9k_hw_detect_mac_hang(ah);
  1348. if (AR_SREV_9285_12_OR_LATER(ah))
  1349. return true;
  1350. do {
  1351. reg = REG_READ(ah, AR_OBS_BUS_1);
  1352. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1353. continue;
  1354. switch (reg & 0x7E000B00) {
  1355. case 0x1E000000:
  1356. case 0x52000B00:
  1357. case 0x18000B00:
  1358. continue;
  1359. default:
  1360. return true;
  1361. }
  1362. } while (count-- > 0);
  1363. return false;
  1364. }
  1365. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1366. /*
  1367. * Fast channel change:
  1368. * (Change synthesizer based on channel freq without resetting chip)
  1369. *
  1370. * Don't do FCC when
  1371. * - Flag is not set
  1372. * - Chip is just coming out of full sleep
  1373. * - Channel to be set is same as current channel
  1374. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1375. */
  1376. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1377. {
  1378. struct ath_common *common = ath9k_hw_common(ah);
  1379. int ret;
  1380. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1381. goto fail;
  1382. if (ah->chip_fullsleep)
  1383. goto fail;
  1384. if (!ah->curchan)
  1385. goto fail;
  1386. if (chan->channel == ah->curchan->channel)
  1387. goto fail;
  1388. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1389. (CHANNEL_HALF | CHANNEL_QUARTER))
  1390. goto fail;
  1391. if ((chan->channelFlags & CHANNEL_ALL) !=
  1392. (ah->curchan->channelFlags & CHANNEL_ALL))
  1393. goto fail;
  1394. if (!ath9k_hw_check_alive(ah))
  1395. goto fail;
  1396. /*
  1397. * For AR9462, make sure that calibration data for
  1398. * re-using are present.
  1399. */
  1400. if (AR_SREV_9462(ah) && (ah->caldata &&
  1401. (!ah->caldata->done_txiqcal_once ||
  1402. !ah->caldata->done_txclcal_once ||
  1403. !ah->caldata->rtt_done)))
  1404. goto fail;
  1405. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1406. ah->curchan->channel, chan->channel);
  1407. ret = ath9k_hw_channel_change(ah, chan);
  1408. if (!ret)
  1409. goto fail;
  1410. ath9k_hw_loadnf(ah, ah->curchan);
  1411. ath9k_hw_start_nfcal(ah, true);
  1412. if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
  1413. ar9003_mci_2g5g_switch(ah, true);
  1414. if (AR_SREV_9271(ah))
  1415. ar9002_hw_load_ani_reg(ah, chan);
  1416. return 0;
  1417. fail:
  1418. return -EINVAL;
  1419. }
  1420. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1421. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1422. {
  1423. struct ath_common *common = ath9k_hw_common(ah);
  1424. u32 saveLedState;
  1425. u32 saveDefAntenna;
  1426. u32 macStaId1;
  1427. u64 tsf = 0;
  1428. int i, r;
  1429. bool start_mci_reset = false;
  1430. bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
  1431. bool save_fullsleep = ah->chip_fullsleep;
  1432. if (mci) {
  1433. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1434. if (start_mci_reset)
  1435. return 0;
  1436. }
  1437. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1438. return -EIO;
  1439. if (ah->curchan && !ah->chip_fullsleep)
  1440. ath9k_hw_getnf(ah, ah->curchan);
  1441. ah->caldata = caldata;
  1442. if (caldata &&
  1443. (chan->channel != caldata->channel ||
  1444. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1445. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1446. /* Operating channel changed, reset channel calibration data */
  1447. memset(caldata, 0, sizeof(*caldata));
  1448. ath9k_init_nfcal_hist_buffer(ah, chan);
  1449. }
  1450. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1451. if (fastcc) {
  1452. r = ath9k_hw_do_fastcc(ah, chan);
  1453. if (!r)
  1454. return r;
  1455. }
  1456. if (mci)
  1457. ar9003_mci_stop_bt(ah, save_fullsleep);
  1458. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1459. if (saveDefAntenna == 0)
  1460. saveDefAntenna = 1;
  1461. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1462. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1463. if (AR_SREV_9100(ah) ||
  1464. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1465. tsf = ath9k_hw_gettsf64(ah);
  1466. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1467. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1468. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1469. ath9k_hw_mark_phy_inactive(ah);
  1470. ah->paprd_table_write_done = false;
  1471. /* Only required on the first reset */
  1472. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1473. REG_WRITE(ah,
  1474. AR9271_RESET_POWER_DOWN_CONTROL,
  1475. AR9271_RADIO_RF_RST);
  1476. udelay(50);
  1477. }
  1478. if (!ath9k_hw_chip_reset(ah, chan)) {
  1479. ath_err(common, "Chip reset failed\n");
  1480. return -EINVAL;
  1481. }
  1482. /* Only required on the first reset */
  1483. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1484. ah->htc_reset_init = false;
  1485. REG_WRITE(ah,
  1486. AR9271_RESET_POWER_DOWN_CONTROL,
  1487. AR9271_GATE_MAC_CTL);
  1488. udelay(50);
  1489. }
  1490. /* Restore TSF */
  1491. if (tsf)
  1492. ath9k_hw_settsf64(ah, tsf);
  1493. if (AR_SREV_9280_20_OR_LATER(ah))
  1494. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1495. if (!AR_SREV_9300_20_OR_LATER(ah))
  1496. ar9002_hw_enable_async_fifo(ah);
  1497. r = ath9k_hw_process_ini(ah, chan);
  1498. if (r)
  1499. return r;
  1500. if (mci)
  1501. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1502. /*
  1503. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1504. * right after the chip reset. When that happens, write a new
  1505. * value after the initvals have been applied, with an offset
  1506. * based on measured time difference
  1507. */
  1508. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1509. tsf += 1500;
  1510. ath9k_hw_settsf64(ah, tsf);
  1511. }
  1512. /* Setup MFP options for CCMP */
  1513. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1514. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1515. * frames when constructing CCMP AAD. */
  1516. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1517. 0xc7ff);
  1518. ah->sw_mgmt_crypto = false;
  1519. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1520. /* Disable hardware crypto for management frames */
  1521. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1522. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1523. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1524. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1525. ah->sw_mgmt_crypto = true;
  1526. } else
  1527. ah->sw_mgmt_crypto = true;
  1528. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1529. ath9k_hw_set_delta_slope(ah, chan);
  1530. ath9k_hw_spur_mitigate_freq(ah, chan);
  1531. ah->eep_ops->set_board_values(ah, chan);
  1532. ENABLE_REGWRITE_BUFFER(ah);
  1533. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1534. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1535. | macStaId1
  1536. | AR_STA_ID1_RTS_USE_DEF
  1537. | (ah->config.
  1538. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1539. | ah->sta_id1_defaults);
  1540. ath_hw_setbssidmask(common);
  1541. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1542. ath9k_hw_write_associd(ah);
  1543. REG_WRITE(ah, AR_ISR, ~0);
  1544. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1545. REGWRITE_BUFFER_FLUSH(ah);
  1546. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1547. r = ath9k_hw_rf_set_freq(ah, chan);
  1548. if (r)
  1549. return r;
  1550. ath9k_hw_set_clockrate(ah);
  1551. ENABLE_REGWRITE_BUFFER(ah);
  1552. for (i = 0; i < AR_NUM_DCU; i++)
  1553. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1554. REGWRITE_BUFFER_FLUSH(ah);
  1555. ah->intr_txqs = 0;
  1556. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1557. ath9k_hw_resettxqueue(ah, i);
  1558. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1559. ath9k_hw_ani_cache_ini_regs(ah);
  1560. ath9k_hw_init_qos(ah);
  1561. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1562. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1563. ath9k_hw_init_global_settings(ah);
  1564. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1565. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1566. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1567. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1568. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1569. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1570. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1571. }
  1572. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1573. ath9k_hw_set_dma(ah);
  1574. REG_WRITE(ah, AR_OBS, 8);
  1575. if (ah->config.rx_intr_mitigation) {
  1576. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1577. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1578. }
  1579. if (ah->config.tx_intr_mitigation) {
  1580. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1581. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1582. }
  1583. ath9k_hw_init_bb(ah, chan);
  1584. if (caldata) {
  1585. caldata->done_txiqcal_once = false;
  1586. caldata->done_txclcal_once = false;
  1587. }
  1588. if (!ath9k_hw_init_cal(ah, chan))
  1589. return -EIO;
  1590. ath9k_hw_loadnf(ah, chan);
  1591. ath9k_hw_start_nfcal(ah, true);
  1592. if (mci && ar9003_mci_end_reset(ah, chan, caldata))
  1593. return -EIO;
  1594. ENABLE_REGWRITE_BUFFER(ah);
  1595. ath9k_hw_restore_chainmask(ah);
  1596. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1597. REGWRITE_BUFFER_FLUSH(ah);
  1598. /*
  1599. * For big endian systems turn on swapping for descriptors
  1600. */
  1601. if (AR_SREV_9100(ah)) {
  1602. u32 mask;
  1603. mask = REG_READ(ah, AR_CFG);
  1604. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1605. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1606. mask);
  1607. } else {
  1608. mask =
  1609. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1610. REG_WRITE(ah, AR_CFG, mask);
  1611. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1612. REG_READ(ah, AR_CFG));
  1613. }
  1614. } else {
  1615. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1616. /* Configure AR9271 target WLAN */
  1617. if (AR_SREV_9271(ah))
  1618. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1619. else
  1620. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1621. }
  1622. #ifdef __BIG_ENDIAN
  1623. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1624. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1625. else
  1626. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1627. #endif
  1628. }
  1629. if (ath9k_hw_btcoex_is_enabled(ah))
  1630. ath9k_hw_btcoex_enable(ah);
  1631. if (mci)
  1632. ar9003_mci_check_bt(ah);
  1633. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1634. ar9003_hw_bb_watchdog_config(ah);
  1635. ar9003_hw_disable_phy_restart(ah);
  1636. }
  1637. ath9k_hw_apply_gpio_override(ah);
  1638. return 0;
  1639. }
  1640. EXPORT_SYMBOL(ath9k_hw_reset);
  1641. /******************************/
  1642. /* Power Management (Chipset) */
  1643. /******************************/
  1644. /*
  1645. * Notify Power Mgt is disabled in self-generated frames.
  1646. * If requested, force chip to sleep.
  1647. */
  1648. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1649. {
  1650. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1651. if (setChip) {
  1652. if (AR_SREV_9462(ah)) {
  1653. REG_WRITE(ah, AR_TIMER_MODE,
  1654. REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
  1655. REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
  1656. AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
  1657. REG_WRITE(ah, AR_SLP32_INC,
  1658. REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
  1659. /* xxx Required for WLAN only case ? */
  1660. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1661. udelay(100);
  1662. }
  1663. /*
  1664. * Clear the RTC force wake bit to allow the
  1665. * mac to go to sleep.
  1666. */
  1667. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1668. if (AR_SREV_9462(ah))
  1669. udelay(100);
  1670. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1671. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1672. /* Shutdown chip. Active low */
  1673. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1674. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1675. udelay(2);
  1676. }
  1677. }
  1678. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1679. if (AR_SREV_9300_20_OR_LATER(ah))
  1680. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1681. }
  1682. /*
  1683. * Notify Power Management is enabled in self-generating
  1684. * frames. If request, set power mode of chip to
  1685. * auto/normal. Duration in units of 128us (1/8 TU).
  1686. */
  1687. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1688. {
  1689. u32 val;
  1690. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1691. if (setChip) {
  1692. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1693. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1694. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1695. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1696. AR_RTC_FORCE_WAKE_ON_INT);
  1697. } else {
  1698. /* When chip goes into network sleep, it could be waken
  1699. * up by MCI_INT interrupt caused by BT's HW messages
  1700. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1701. * rate (~100us). This will cause chip to leave and
  1702. * re-enter network sleep mode frequently, which in
  1703. * consequence will have WLAN MCI HW to generate lots of
  1704. * SYS_WAKING and SYS_SLEEPING messages which will make
  1705. * BT CPU to busy to process.
  1706. */
  1707. if (AR_SREV_9462(ah)) {
  1708. val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
  1709. ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
  1710. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
  1711. }
  1712. /*
  1713. * Clear the RTC force wake bit to allow the
  1714. * mac to go to sleep.
  1715. */
  1716. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1717. AR_RTC_FORCE_WAKE_EN);
  1718. if (AR_SREV_9462(ah))
  1719. udelay(30);
  1720. }
  1721. }
  1722. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1723. if (AR_SREV_9300_20_OR_LATER(ah))
  1724. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1725. }
  1726. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1727. {
  1728. u32 val;
  1729. int i;
  1730. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1731. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1732. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1733. udelay(10);
  1734. }
  1735. if (setChip) {
  1736. if ((REG_READ(ah, AR_RTC_STATUS) &
  1737. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1738. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1739. return false;
  1740. }
  1741. if (!AR_SREV_9300_20_OR_LATER(ah))
  1742. ath9k_hw_init_pll(ah, NULL);
  1743. }
  1744. if (AR_SREV_9100(ah))
  1745. REG_SET_BIT(ah, AR_RTC_RESET,
  1746. AR_RTC_RESET_EN);
  1747. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1748. AR_RTC_FORCE_WAKE_EN);
  1749. udelay(50);
  1750. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1751. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1752. if (val == AR_RTC_STATUS_ON)
  1753. break;
  1754. udelay(50);
  1755. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1756. AR_RTC_FORCE_WAKE_EN);
  1757. }
  1758. if (i == 0) {
  1759. ath_err(ath9k_hw_common(ah),
  1760. "Failed to wakeup in %uus\n",
  1761. POWER_UP_TIME / 20);
  1762. return false;
  1763. }
  1764. }
  1765. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1766. return true;
  1767. }
  1768. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1769. {
  1770. struct ath_common *common = ath9k_hw_common(ah);
  1771. int status = true, setChip = true;
  1772. static const char *modes[] = {
  1773. "AWAKE",
  1774. "FULL-SLEEP",
  1775. "NETWORK SLEEP",
  1776. "UNDEFINED"
  1777. };
  1778. if (ah->power_mode == mode)
  1779. return status;
  1780. ath_dbg(common, RESET, "%s -> %s\n",
  1781. modes[ah->power_mode], modes[mode]);
  1782. switch (mode) {
  1783. case ATH9K_PM_AWAKE:
  1784. status = ath9k_hw_set_power_awake(ah, setChip);
  1785. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1786. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1787. break;
  1788. case ATH9K_PM_FULL_SLEEP:
  1789. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1790. ar9003_mci_set_full_sleep(ah);
  1791. ath9k_set_power_sleep(ah, setChip);
  1792. ah->chip_fullsleep = true;
  1793. break;
  1794. case ATH9K_PM_NETWORK_SLEEP:
  1795. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1796. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1797. ath9k_set_power_network_sleep(ah, setChip);
  1798. break;
  1799. default:
  1800. ath_err(common, "Unknown power mode %u\n", mode);
  1801. return false;
  1802. }
  1803. ah->power_mode = mode;
  1804. /*
  1805. * XXX: If this warning never comes up after a while then
  1806. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1807. * ath9k_hw_setpower() return type void.
  1808. */
  1809. if (!(ah->ah_flags & AH_UNPLUGGED))
  1810. ATH_DBG_WARN_ON_ONCE(!status);
  1811. return status;
  1812. }
  1813. EXPORT_SYMBOL(ath9k_hw_setpower);
  1814. /*******************/
  1815. /* Beacon Handling */
  1816. /*******************/
  1817. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1818. {
  1819. int flags = 0;
  1820. ENABLE_REGWRITE_BUFFER(ah);
  1821. switch (ah->opmode) {
  1822. case NL80211_IFTYPE_ADHOC:
  1823. case NL80211_IFTYPE_MESH_POINT:
  1824. REG_SET_BIT(ah, AR_TXCFG,
  1825. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1826. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1827. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1828. flags |= AR_NDP_TIMER_EN;
  1829. case NL80211_IFTYPE_AP:
  1830. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1831. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1832. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1833. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1834. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1835. flags |=
  1836. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1837. break;
  1838. default:
  1839. ath_dbg(ath9k_hw_common(ah), BEACON,
  1840. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1841. return;
  1842. break;
  1843. }
  1844. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1845. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1846. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1847. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1848. REGWRITE_BUFFER_FLUSH(ah);
  1849. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1850. }
  1851. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1852. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1853. const struct ath9k_beacon_state *bs)
  1854. {
  1855. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1856. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1857. struct ath_common *common = ath9k_hw_common(ah);
  1858. ENABLE_REGWRITE_BUFFER(ah);
  1859. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1860. REG_WRITE(ah, AR_BEACON_PERIOD,
  1861. TU_TO_USEC(bs->bs_intval));
  1862. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1863. TU_TO_USEC(bs->bs_intval));
  1864. REGWRITE_BUFFER_FLUSH(ah);
  1865. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1866. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1867. beaconintval = bs->bs_intval;
  1868. if (bs->bs_sleepduration > beaconintval)
  1869. beaconintval = bs->bs_sleepduration;
  1870. dtimperiod = bs->bs_dtimperiod;
  1871. if (bs->bs_sleepduration > dtimperiod)
  1872. dtimperiod = bs->bs_sleepduration;
  1873. if (beaconintval == dtimperiod)
  1874. nextTbtt = bs->bs_nextdtim;
  1875. else
  1876. nextTbtt = bs->bs_nexttbtt;
  1877. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1878. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1879. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1880. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1881. ENABLE_REGWRITE_BUFFER(ah);
  1882. REG_WRITE(ah, AR_NEXT_DTIM,
  1883. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1884. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1885. REG_WRITE(ah, AR_SLEEP1,
  1886. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1887. | AR_SLEEP1_ASSUME_DTIM);
  1888. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1889. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1890. else
  1891. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1892. REG_WRITE(ah, AR_SLEEP2,
  1893. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1894. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1895. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1896. REGWRITE_BUFFER_FLUSH(ah);
  1897. REG_SET_BIT(ah, AR_TIMER_MODE,
  1898. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1899. AR_DTIM_TIMER_EN);
  1900. /* TSF Out of Range Threshold */
  1901. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1902. }
  1903. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1904. /*******************/
  1905. /* HW Capabilities */
  1906. /*******************/
  1907. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1908. {
  1909. eeprom_chainmask &= chip_chainmask;
  1910. if (eeprom_chainmask)
  1911. return eeprom_chainmask;
  1912. else
  1913. return chip_chainmask;
  1914. }
  1915. /**
  1916. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1917. * @ah: the atheros hardware data structure
  1918. *
  1919. * We enable DFS support upstream on chipsets which have passed a series
  1920. * of tests. The testing requirements are going to be documented. Desired
  1921. * test requirements are documented at:
  1922. *
  1923. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1924. *
  1925. * Once a new chipset gets properly tested an individual commit can be used
  1926. * to document the testing for DFS for that chipset.
  1927. */
  1928. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1929. {
  1930. switch (ah->hw_version.macVersion) {
  1931. /* AR9580 will likely be our first target to get testing on */
  1932. case AR_SREV_VERSION_9580:
  1933. default:
  1934. return false;
  1935. }
  1936. }
  1937. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1938. {
  1939. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1940. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1941. struct ath_common *common = ath9k_hw_common(ah);
  1942. unsigned int chip_chainmask;
  1943. u16 eeval;
  1944. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1945. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1946. regulatory->current_rd = eeval;
  1947. if (ah->opmode != NL80211_IFTYPE_AP &&
  1948. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1949. if (regulatory->current_rd == 0x64 ||
  1950. regulatory->current_rd == 0x65)
  1951. regulatory->current_rd += 5;
  1952. else if (regulatory->current_rd == 0x41)
  1953. regulatory->current_rd = 0x43;
  1954. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1955. regulatory->current_rd);
  1956. }
  1957. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1958. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1959. ath_err(common,
  1960. "no band has been marked as supported in EEPROM\n");
  1961. return -EINVAL;
  1962. }
  1963. if (eeval & AR5416_OPFLAGS_11A)
  1964. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1965. if (eeval & AR5416_OPFLAGS_11G)
  1966. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1967. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1968. chip_chainmask = 1;
  1969. else if (AR_SREV_9462(ah))
  1970. chip_chainmask = 3;
  1971. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1972. chip_chainmask = 7;
  1973. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1974. chip_chainmask = 3;
  1975. else
  1976. chip_chainmask = 7;
  1977. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1978. /*
  1979. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1980. * the EEPROM.
  1981. */
  1982. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1983. !(eeval & AR5416_OPFLAGS_11A) &&
  1984. !(AR_SREV_9271(ah)))
  1985. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1986. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1987. else if (AR_SREV_9100(ah))
  1988. pCap->rx_chainmask = 0x7;
  1989. else
  1990. /* Use rx_chainmask from EEPROM. */
  1991. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1992. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1993. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1994. ah->txchainmask = pCap->tx_chainmask;
  1995. ah->rxchainmask = pCap->rx_chainmask;
  1996. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1997. /* enable key search for every frame in an aggregate */
  1998. if (AR_SREV_9300_20_OR_LATER(ah))
  1999. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2000. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2001. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2002. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2003. else
  2004. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2005. if (AR_SREV_9271(ah))
  2006. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2007. else if (AR_DEVID_7010(ah))
  2008. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2009. else if (AR_SREV_9300_20_OR_LATER(ah))
  2010. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2011. else if (AR_SREV_9287_11_OR_LATER(ah))
  2012. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2013. else if (AR_SREV_9285_12_OR_LATER(ah))
  2014. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2015. else if (AR_SREV_9280_20_OR_LATER(ah))
  2016. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2017. else
  2018. pCap->num_gpio_pins = AR_NUM_GPIO;
  2019. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2020. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2021. else
  2022. pCap->rts_aggr_limit = (8 * 1024);
  2023. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2024. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2025. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2026. ah->rfkill_gpio =
  2027. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2028. ah->rfkill_polarity =
  2029. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2030. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2031. }
  2032. #endif
  2033. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2034. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2035. else
  2036. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2037. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2038. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2039. else
  2040. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2041. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2042. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2043. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  2044. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2045. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2046. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2047. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2048. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2049. pCap->txs_len = sizeof(struct ar9003_txs);
  2050. if (!ah->config.paprd_disable &&
  2051. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2052. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2053. } else {
  2054. pCap->tx_desc_len = sizeof(struct ath_desc);
  2055. if (AR_SREV_9280_20(ah))
  2056. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2057. }
  2058. if (AR_SREV_9300_20_OR_LATER(ah))
  2059. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2060. if (AR_SREV_9300_20_OR_LATER(ah))
  2061. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2062. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2063. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2064. if (AR_SREV_9285(ah))
  2065. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2066. ant_div_ctl1 =
  2067. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2068. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2069. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2070. }
  2071. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2072. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2073. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2074. }
  2075. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2076. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2077. /*
  2078. * enable the diversity-combining algorithm only when
  2079. * both enable_lna_div and enable_fast_div are set
  2080. * Table for Diversity
  2081. * ant_div_alt_lnaconf bit 0-1
  2082. * ant_div_main_lnaconf bit 2-3
  2083. * ant_div_alt_gaintb bit 4
  2084. * ant_div_main_gaintb bit 5
  2085. * enable_ant_div_lnadiv bit 6
  2086. * enable_ant_fast_div bit 7
  2087. */
  2088. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2089. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2090. }
  2091. if (AR_SREV_9485_10(ah)) {
  2092. pCap->pcie_lcr_extsync_en = true;
  2093. pCap->pcie_lcr_offset = 0x80;
  2094. }
  2095. if (ath9k_hw_dfs_tested(ah))
  2096. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2097. tx_chainmask = pCap->tx_chainmask;
  2098. rx_chainmask = pCap->rx_chainmask;
  2099. while (tx_chainmask || rx_chainmask) {
  2100. if (tx_chainmask & BIT(0))
  2101. pCap->max_txchains++;
  2102. if (rx_chainmask & BIT(0))
  2103. pCap->max_rxchains++;
  2104. tx_chainmask >>= 1;
  2105. rx_chainmask >>= 1;
  2106. }
  2107. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2108. ah->enabled_cals |= TX_IQ_CAL;
  2109. if (AR_SREV_9485_OR_LATER(ah))
  2110. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2111. }
  2112. if (AR_SREV_9462(ah)) {
  2113. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2114. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2115. if (AR_SREV_9462_20(ah))
  2116. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2117. }
  2118. return 0;
  2119. }
  2120. /****************************/
  2121. /* GPIO / RFKILL / Antennae */
  2122. /****************************/
  2123. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2124. u32 gpio, u32 type)
  2125. {
  2126. int addr;
  2127. u32 gpio_shift, tmp;
  2128. if (gpio > 11)
  2129. addr = AR_GPIO_OUTPUT_MUX3;
  2130. else if (gpio > 5)
  2131. addr = AR_GPIO_OUTPUT_MUX2;
  2132. else
  2133. addr = AR_GPIO_OUTPUT_MUX1;
  2134. gpio_shift = (gpio % 6) * 5;
  2135. if (AR_SREV_9280_20_OR_LATER(ah)
  2136. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2137. REG_RMW(ah, addr, (type << gpio_shift),
  2138. (0x1f << gpio_shift));
  2139. } else {
  2140. tmp = REG_READ(ah, addr);
  2141. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2142. tmp &= ~(0x1f << gpio_shift);
  2143. tmp |= (type << gpio_shift);
  2144. REG_WRITE(ah, addr, tmp);
  2145. }
  2146. }
  2147. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2148. {
  2149. u32 gpio_shift;
  2150. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2151. if (AR_DEVID_7010(ah)) {
  2152. gpio_shift = gpio;
  2153. REG_RMW(ah, AR7010_GPIO_OE,
  2154. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2155. (AR7010_GPIO_OE_MASK << gpio_shift));
  2156. return;
  2157. }
  2158. gpio_shift = gpio << 1;
  2159. REG_RMW(ah,
  2160. AR_GPIO_OE_OUT,
  2161. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2162. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2163. }
  2164. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2165. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2166. {
  2167. #define MS_REG_READ(x, y) \
  2168. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2169. if (gpio >= ah->caps.num_gpio_pins)
  2170. return 0xffffffff;
  2171. if (AR_DEVID_7010(ah)) {
  2172. u32 val;
  2173. val = REG_READ(ah, AR7010_GPIO_IN);
  2174. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2175. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2176. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2177. AR_GPIO_BIT(gpio)) != 0;
  2178. else if (AR_SREV_9271(ah))
  2179. return MS_REG_READ(AR9271, gpio) != 0;
  2180. else if (AR_SREV_9287_11_OR_LATER(ah))
  2181. return MS_REG_READ(AR9287, gpio) != 0;
  2182. else if (AR_SREV_9285_12_OR_LATER(ah))
  2183. return MS_REG_READ(AR9285, gpio) != 0;
  2184. else if (AR_SREV_9280_20_OR_LATER(ah))
  2185. return MS_REG_READ(AR928X, gpio) != 0;
  2186. else
  2187. return MS_REG_READ(AR, gpio) != 0;
  2188. }
  2189. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2190. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2191. u32 ah_signal_type)
  2192. {
  2193. u32 gpio_shift;
  2194. if (AR_DEVID_7010(ah)) {
  2195. gpio_shift = gpio;
  2196. REG_RMW(ah, AR7010_GPIO_OE,
  2197. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2198. (AR7010_GPIO_OE_MASK << gpio_shift));
  2199. return;
  2200. }
  2201. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2202. gpio_shift = 2 * gpio;
  2203. REG_RMW(ah,
  2204. AR_GPIO_OE_OUT,
  2205. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2206. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2207. }
  2208. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2209. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2210. {
  2211. if (AR_DEVID_7010(ah)) {
  2212. val = val ? 0 : 1;
  2213. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2214. AR_GPIO_BIT(gpio));
  2215. return;
  2216. }
  2217. if (AR_SREV_9271(ah))
  2218. val = ~val;
  2219. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2220. AR_GPIO_BIT(gpio));
  2221. }
  2222. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2223. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2224. {
  2225. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2226. }
  2227. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2228. /*********************/
  2229. /* General Operation */
  2230. /*********************/
  2231. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2232. {
  2233. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2234. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2235. if (phybits & AR_PHY_ERR_RADAR)
  2236. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2237. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2238. bits |= ATH9K_RX_FILTER_PHYERR;
  2239. return bits;
  2240. }
  2241. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2242. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2243. {
  2244. u32 phybits;
  2245. ENABLE_REGWRITE_BUFFER(ah);
  2246. if (AR_SREV_9462(ah))
  2247. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2248. REG_WRITE(ah, AR_RX_FILTER, bits);
  2249. phybits = 0;
  2250. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2251. phybits |= AR_PHY_ERR_RADAR;
  2252. if (bits & ATH9K_RX_FILTER_PHYERR)
  2253. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2254. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2255. if (phybits)
  2256. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2257. else
  2258. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2259. REGWRITE_BUFFER_FLUSH(ah);
  2260. }
  2261. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2262. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2263. {
  2264. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2265. return false;
  2266. ath9k_hw_init_pll(ah, NULL);
  2267. ah->htc_reset_init = true;
  2268. return true;
  2269. }
  2270. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2271. bool ath9k_hw_disable(struct ath_hw *ah)
  2272. {
  2273. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2274. return false;
  2275. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2276. return false;
  2277. ath9k_hw_init_pll(ah, NULL);
  2278. return true;
  2279. }
  2280. EXPORT_SYMBOL(ath9k_hw_disable);
  2281. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2282. {
  2283. enum eeprom_param gain_param;
  2284. if (IS_CHAN_2GHZ(chan))
  2285. gain_param = EEP_ANTENNA_GAIN_2G;
  2286. else
  2287. gain_param = EEP_ANTENNA_GAIN_5G;
  2288. return ah->eep_ops->get_eeprom(ah, gain_param);
  2289. }
  2290. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2291. bool test)
  2292. {
  2293. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2294. struct ieee80211_channel *channel;
  2295. int chan_pwr, new_pwr, max_gain;
  2296. int ant_gain, ant_reduction = 0;
  2297. if (!chan)
  2298. return;
  2299. channel = chan->chan;
  2300. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2301. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2302. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2303. ant_gain = get_antenna_gain(ah, chan);
  2304. if (ant_gain > max_gain)
  2305. ant_reduction = ant_gain - max_gain;
  2306. ah->eep_ops->set_txpower(ah, chan,
  2307. ath9k_regd_get_ctl(reg, chan),
  2308. ant_reduction, new_pwr, test);
  2309. }
  2310. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2311. {
  2312. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2313. struct ath9k_channel *chan = ah->curchan;
  2314. struct ieee80211_channel *channel = chan->chan;
  2315. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2316. if (test)
  2317. channel->max_power = MAX_RATE_POWER / 2;
  2318. ath9k_hw_apply_txpower(ah, chan, test);
  2319. if (test)
  2320. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2321. }
  2322. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2323. void ath9k_hw_setopmode(struct ath_hw *ah)
  2324. {
  2325. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2326. }
  2327. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2328. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2329. {
  2330. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2331. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2332. }
  2333. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2334. void ath9k_hw_write_associd(struct ath_hw *ah)
  2335. {
  2336. struct ath_common *common = ath9k_hw_common(ah);
  2337. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2338. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2339. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2340. }
  2341. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2342. #define ATH9K_MAX_TSF_READ 10
  2343. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2344. {
  2345. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2346. int i;
  2347. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2348. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2349. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2350. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2351. if (tsf_upper2 == tsf_upper1)
  2352. break;
  2353. tsf_upper1 = tsf_upper2;
  2354. }
  2355. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2356. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2357. }
  2358. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2359. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2360. {
  2361. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2362. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2363. }
  2364. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2365. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2366. {
  2367. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2368. AH_TSF_WRITE_TIMEOUT))
  2369. ath_dbg(ath9k_hw_common(ah), RESET,
  2370. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2371. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2372. }
  2373. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2374. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2375. {
  2376. if (setting)
  2377. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2378. else
  2379. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2380. }
  2381. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2382. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2383. {
  2384. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2385. u32 macmode;
  2386. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2387. macmode = AR_2040_JOINED_RX_CLEAR;
  2388. else
  2389. macmode = 0;
  2390. REG_WRITE(ah, AR_2040_MODE, macmode);
  2391. }
  2392. /* HW Generic timers configuration */
  2393. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2394. {
  2395. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2396. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2397. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2398. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2399. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2400. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2401. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2402. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2403. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2404. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2405. AR_NDP2_TIMER_MODE, 0x0002},
  2406. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2407. AR_NDP2_TIMER_MODE, 0x0004},
  2408. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2409. AR_NDP2_TIMER_MODE, 0x0008},
  2410. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2411. AR_NDP2_TIMER_MODE, 0x0010},
  2412. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2413. AR_NDP2_TIMER_MODE, 0x0020},
  2414. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2415. AR_NDP2_TIMER_MODE, 0x0040},
  2416. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2417. AR_NDP2_TIMER_MODE, 0x0080}
  2418. };
  2419. /* HW generic timer primitives */
  2420. /* compute and clear index of rightmost 1 */
  2421. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2422. {
  2423. u32 b;
  2424. b = *mask;
  2425. b &= (0-b);
  2426. *mask &= ~b;
  2427. b *= debruijn32;
  2428. b >>= 27;
  2429. return timer_table->gen_timer_index[b];
  2430. }
  2431. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2432. {
  2433. return REG_READ(ah, AR_TSF_L32);
  2434. }
  2435. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2436. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2437. void (*trigger)(void *),
  2438. void (*overflow)(void *),
  2439. void *arg,
  2440. u8 timer_index)
  2441. {
  2442. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2443. struct ath_gen_timer *timer;
  2444. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2445. if (timer == NULL) {
  2446. ath_err(ath9k_hw_common(ah),
  2447. "Failed to allocate memory for hw timer[%d]\n",
  2448. timer_index);
  2449. return NULL;
  2450. }
  2451. /* allocate a hardware generic timer slot */
  2452. timer_table->timers[timer_index] = timer;
  2453. timer->index = timer_index;
  2454. timer->trigger = trigger;
  2455. timer->overflow = overflow;
  2456. timer->arg = arg;
  2457. return timer;
  2458. }
  2459. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2460. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2461. struct ath_gen_timer *timer,
  2462. u32 trig_timeout,
  2463. u32 timer_period)
  2464. {
  2465. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2466. u32 tsf, timer_next;
  2467. BUG_ON(!timer_period);
  2468. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2469. tsf = ath9k_hw_gettsf32(ah);
  2470. timer_next = tsf + trig_timeout;
  2471. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2472. "current tsf %x period %x timer_next %x\n",
  2473. tsf, timer_period, timer_next);
  2474. /*
  2475. * Program generic timer registers
  2476. */
  2477. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2478. timer_next);
  2479. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2480. timer_period);
  2481. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2482. gen_tmr_configuration[timer->index].mode_mask);
  2483. if (AR_SREV_9462(ah)) {
  2484. /*
  2485. * Starting from AR9462, each generic timer can select which tsf
  2486. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2487. * 8 - 15 use tsf2.
  2488. */
  2489. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2490. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2491. (1 << timer->index));
  2492. else
  2493. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2494. (1 << timer->index));
  2495. }
  2496. /* Enable both trigger and thresh interrupt masks */
  2497. REG_SET_BIT(ah, AR_IMR_S5,
  2498. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2499. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2500. }
  2501. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2502. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2503. {
  2504. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2505. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2506. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2507. return;
  2508. }
  2509. /* Clear generic timer enable bits. */
  2510. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2511. gen_tmr_configuration[timer->index].mode_mask);
  2512. /* Disable both trigger and thresh interrupt masks */
  2513. REG_CLR_BIT(ah, AR_IMR_S5,
  2514. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2515. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2516. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2517. }
  2518. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2519. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2520. {
  2521. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2522. /* free the hardware generic timer slot */
  2523. timer_table->timers[timer->index] = NULL;
  2524. kfree(timer);
  2525. }
  2526. EXPORT_SYMBOL(ath_gen_timer_free);
  2527. /*
  2528. * Generic Timer Interrupts handling
  2529. */
  2530. void ath_gen_timer_isr(struct ath_hw *ah)
  2531. {
  2532. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2533. struct ath_gen_timer *timer;
  2534. struct ath_common *common = ath9k_hw_common(ah);
  2535. u32 trigger_mask, thresh_mask, index;
  2536. /* get hardware generic timer interrupt status */
  2537. trigger_mask = ah->intr_gen_timer_trigger;
  2538. thresh_mask = ah->intr_gen_timer_thresh;
  2539. trigger_mask &= timer_table->timer_mask.val;
  2540. thresh_mask &= timer_table->timer_mask.val;
  2541. trigger_mask &= ~thresh_mask;
  2542. while (thresh_mask) {
  2543. index = rightmost_index(timer_table, &thresh_mask);
  2544. timer = timer_table->timers[index];
  2545. BUG_ON(!timer);
  2546. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2547. index);
  2548. timer->overflow(timer->arg);
  2549. }
  2550. while (trigger_mask) {
  2551. index = rightmost_index(timer_table, &trigger_mask);
  2552. timer = timer_table->timers[index];
  2553. BUG_ON(!timer);
  2554. ath_dbg(common, HWTIMER,
  2555. "Gen timer[%d] trigger\n", index);
  2556. timer->trigger(timer->arg);
  2557. }
  2558. }
  2559. EXPORT_SYMBOL(ath_gen_timer_isr);
  2560. /********/
  2561. /* HTC */
  2562. /********/
  2563. static struct {
  2564. u32 version;
  2565. const char * name;
  2566. } ath_mac_bb_names[] = {
  2567. /* Devices with external radios */
  2568. { AR_SREV_VERSION_5416_PCI, "5416" },
  2569. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2570. { AR_SREV_VERSION_9100, "9100" },
  2571. { AR_SREV_VERSION_9160, "9160" },
  2572. /* Single-chip solutions */
  2573. { AR_SREV_VERSION_9280, "9280" },
  2574. { AR_SREV_VERSION_9285, "9285" },
  2575. { AR_SREV_VERSION_9287, "9287" },
  2576. { AR_SREV_VERSION_9271, "9271" },
  2577. { AR_SREV_VERSION_9300, "9300" },
  2578. { AR_SREV_VERSION_9330, "9330" },
  2579. { AR_SREV_VERSION_9340, "9340" },
  2580. { AR_SREV_VERSION_9485, "9485" },
  2581. { AR_SREV_VERSION_9462, "9462" },
  2582. };
  2583. /* For devices with external radios */
  2584. static struct {
  2585. u16 version;
  2586. const char * name;
  2587. } ath_rf_names[] = {
  2588. { 0, "5133" },
  2589. { AR_RAD5133_SREV_MAJOR, "5133" },
  2590. { AR_RAD5122_SREV_MAJOR, "5122" },
  2591. { AR_RAD2133_SREV_MAJOR, "2133" },
  2592. { AR_RAD2122_SREV_MAJOR, "2122" }
  2593. };
  2594. /*
  2595. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2596. */
  2597. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2598. {
  2599. int i;
  2600. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2601. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2602. return ath_mac_bb_names[i].name;
  2603. }
  2604. }
  2605. return "????";
  2606. }
  2607. /*
  2608. * Return the RF name. "????" is returned if the RF is unknown.
  2609. * Used for devices with external radios.
  2610. */
  2611. static const char *ath9k_hw_rf_name(u16 rf_version)
  2612. {
  2613. int i;
  2614. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2615. if (ath_rf_names[i].version == rf_version) {
  2616. return ath_rf_names[i].name;
  2617. }
  2618. }
  2619. return "????";
  2620. }
  2621. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2622. {
  2623. int used;
  2624. /* chipsets >= AR9280 are single-chip */
  2625. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2626. used = snprintf(hw_name, len,
  2627. "Atheros AR%s Rev:%x",
  2628. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2629. ah->hw_version.macRev);
  2630. }
  2631. else {
  2632. used = snprintf(hw_name, len,
  2633. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2634. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2635. ah->hw_version.macRev,
  2636. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2637. AR_RADIO_SREV_MAJOR)),
  2638. ah->hw_version.phyRev);
  2639. }
  2640. hw_name[used] = '\0';
  2641. }
  2642. EXPORT_SYMBOL(ath9k_hw_name);