rt2400pci.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678
  1. /*
  2. Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. /*
  23. * Set enviroment defines for rt2x00.h
  24. */
  25. #define DRV_NAME "rt2400pci"
  26. #include <linux/delay.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/init.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/pci.h>
  32. #include <linux/eeprom_93cx6.h>
  33. #include "rt2x00.h"
  34. #include "rt2x00pci.h"
  35. #include "rt2400pci.h"
  36. /*
  37. * Register access.
  38. * All access to the CSR registers will go through the methods
  39. * rt2x00pci_register_read and rt2x00pci_register_write.
  40. * BBP and RF register require indirect register access,
  41. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  42. * These indirect registers work with busy bits,
  43. * and we will try maximal REGISTER_BUSY_COUNT times to access
  44. * the register while taking a REGISTER_BUSY_DELAY us delay
  45. * between each attampt. When the busy bit is still set at that time,
  46. * the access attempt is considered to have failed,
  47. * and we will print an error.
  48. */
  49. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  50. {
  51. u32 reg;
  52. unsigned int i;
  53. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  54. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  55. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  56. break;
  57. udelay(REGISTER_BUSY_DELAY);
  58. }
  59. return reg;
  60. }
  61. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  62. const unsigned int word, const u8 value)
  63. {
  64. u32 reg;
  65. /*
  66. * Wait until the BBP becomes ready.
  67. */
  68. reg = rt2400pci_bbp_check(rt2x00dev);
  69. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  70. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  71. return;
  72. }
  73. /*
  74. * Write the data into the BBP.
  75. */
  76. reg = 0;
  77. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  78. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  79. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  80. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  81. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  82. }
  83. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  84. const unsigned int word, u8 *value)
  85. {
  86. u32 reg;
  87. /*
  88. * Wait until the BBP becomes ready.
  89. */
  90. reg = rt2400pci_bbp_check(rt2x00dev);
  91. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  92. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  93. return;
  94. }
  95. /*
  96. * Write the request into the BBP.
  97. */
  98. reg = 0;
  99. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  100. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  101. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  102. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  103. /*
  104. * Wait until the BBP becomes ready.
  105. */
  106. reg = rt2400pci_bbp_check(rt2x00dev);
  107. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  108. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  109. *value = 0xff;
  110. return;
  111. }
  112. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  113. }
  114. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  115. const unsigned int word, const u32 value)
  116. {
  117. u32 reg;
  118. unsigned int i;
  119. if (!word)
  120. return;
  121. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  122. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  123. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  124. goto rf_write;
  125. udelay(REGISTER_BUSY_DELAY);
  126. }
  127. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  128. return;
  129. rf_write:
  130. reg = 0;
  131. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  132. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  133. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  134. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  135. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  136. rt2x00_rf_write(rt2x00dev, word, value);
  137. }
  138. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  139. {
  140. struct rt2x00_dev *rt2x00dev = eeprom->data;
  141. u32 reg;
  142. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  143. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  144. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  145. eeprom->reg_data_clock =
  146. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  147. eeprom->reg_chip_select =
  148. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  149. }
  150. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  151. {
  152. struct rt2x00_dev *rt2x00dev = eeprom->data;
  153. u32 reg = 0;
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  155. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  156. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  157. !!eeprom->reg_data_clock);
  158. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  159. !!eeprom->reg_chip_select);
  160. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  161. }
  162. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  163. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  164. static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
  165. const unsigned int word, u32 *data)
  166. {
  167. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  168. }
  169. static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
  170. const unsigned int word, u32 data)
  171. {
  172. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  173. }
  174. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  175. .owner = THIS_MODULE,
  176. .csr = {
  177. .read = rt2400pci_read_csr,
  178. .write = rt2400pci_write_csr,
  179. .word_size = sizeof(u32),
  180. .word_count = CSR_REG_SIZE / sizeof(u32),
  181. },
  182. .eeprom = {
  183. .read = rt2x00_eeprom_read,
  184. .write = rt2x00_eeprom_write,
  185. .word_size = sizeof(u16),
  186. .word_count = EEPROM_SIZE / sizeof(u16),
  187. },
  188. .bbp = {
  189. .read = rt2400pci_bbp_read,
  190. .write = rt2400pci_bbp_write,
  191. .word_size = sizeof(u8),
  192. .word_count = BBP_SIZE / sizeof(u8),
  193. },
  194. .rf = {
  195. .read = rt2x00_rf_read,
  196. .write = rt2400pci_rf_write,
  197. .word_size = sizeof(u32),
  198. .word_count = RF_SIZE / sizeof(u32),
  199. },
  200. };
  201. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  202. #ifdef CONFIG_RT2400PCI_RFKILL
  203. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  204. {
  205. u32 reg;
  206. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  207. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  208. }
  209. #else
  210. #define rt2400pci_rfkill_poll NULL
  211. #endif /* CONFIG_RT2400PCI_RFKILL */
  212. /*
  213. * Configuration handlers.
  214. */
  215. static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
  216. __le32 *mac)
  217. {
  218. rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
  219. (2 * sizeof(__le32)));
  220. }
  221. static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev,
  222. __le32 *bssid)
  223. {
  224. rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
  225. (2 * sizeof(__le32)));
  226. }
  227. static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
  228. const int tsf_sync)
  229. {
  230. u32 reg;
  231. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  232. /*
  233. * Enable beacon config
  234. */
  235. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  236. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
  237. PREAMBLE + get_duration(IEEE80211_HEADER, 20));
  238. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  239. /*
  240. * Enable synchronisation.
  241. */
  242. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  243. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  244. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  245. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  246. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
  247. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  248. }
  249. static void rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  250. const int short_preamble,
  251. const int ack_timeout,
  252. const int ack_consume_time)
  253. {
  254. int preamble_mask;
  255. u32 reg;
  256. /*
  257. * When short preamble is enabled, we should set bit 0x08
  258. */
  259. preamble_mask = short_preamble << 3;
  260. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  261. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  262. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  263. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  264. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  265. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  266. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  267. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  268. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  269. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  270. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  271. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  272. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  273. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  274. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  275. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  276. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  277. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  278. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  279. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  280. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  281. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  282. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  283. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  284. }
  285. static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  286. const int basic_rate_mask)
  287. {
  288. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  289. }
  290. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  291. struct rf_channel *rf)
  292. {
  293. /*
  294. * Switch on tuning bits.
  295. */
  296. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  297. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  298. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  299. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  300. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  301. /*
  302. * RF2420 chipset don't need any additional actions.
  303. */
  304. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  305. return;
  306. /*
  307. * For the RT2421 chipsets we need to write an invalid
  308. * reference clock rate to activate auto_tune.
  309. * After that we set the value back to the correct channel.
  310. */
  311. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  312. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  313. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  314. msleep(1);
  315. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  316. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  317. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  318. msleep(1);
  319. /*
  320. * Switch off tuning bits.
  321. */
  322. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  323. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  324. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  325. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  326. /*
  327. * Clear false CRC during channel switch.
  328. */
  329. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  330. }
  331. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  332. {
  333. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  334. }
  335. static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  336. struct antenna_setup *ant)
  337. {
  338. u8 r1;
  339. u8 r4;
  340. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  341. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  342. /*
  343. * Configure the TX antenna.
  344. */
  345. switch (ant->tx) {
  346. case ANTENNA_HW_DIVERSITY:
  347. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  348. break;
  349. case ANTENNA_A:
  350. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  351. break;
  352. case ANTENNA_SW_DIVERSITY:
  353. /*
  354. * NOTE: We should never come here because rt2x00lib is
  355. * supposed to catch this and send us the correct antenna
  356. * explicitely. However we are nog going to bug about this.
  357. * Instead, just default to antenna B.
  358. */
  359. case ANTENNA_B:
  360. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  361. break;
  362. }
  363. /*
  364. * Configure the RX antenna.
  365. */
  366. switch (ant->rx) {
  367. case ANTENNA_HW_DIVERSITY:
  368. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  369. break;
  370. case ANTENNA_A:
  371. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  372. break;
  373. case ANTENNA_SW_DIVERSITY:
  374. /*
  375. * NOTE: We should never come here because rt2x00lib is
  376. * supposed to catch this and send us the correct antenna
  377. * explicitely. However we are nog going to bug about this.
  378. * Instead, just default to antenna B.
  379. */
  380. case ANTENNA_B:
  381. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  382. break;
  383. }
  384. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  385. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  386. }
  387. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  388. struct rt2x00lib_conf *libconf)
  389. {
  390. u32 reg;
  391. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  392. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  393. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  394. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  395. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  396. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  397. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  398. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  399. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  400. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  401. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  402. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  403. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  404. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  405. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  406. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  407. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  408. libconf->conf->beacon_int * 16);
  409. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  410. libconf->conf->beacon_int * 16);
  411. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  412. }
  413. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  414. const unsigned int flags,
  415. struct rt2x00lib_conf *libconf)
  416. {
  417. if (flags & CONFIG_UPDATE_PHYMODE)
  418. rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
  419. if (flags & CONFIG_UPDATE_CHANNEL)
  420. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  421. if (flags & CONFIG_UPDATE_TXPOWER)
  422. rt2400pci_config_txpower(rt2x00dev,
  423. libconf->conf->power_level);
  424. if (flags & CONFIG_UPDATE_ANTENNA)
  425. rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
  426. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  427. rt2400pci_config_duration(rt2x00dev, libconf);
  428. }
  429. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  430. struct ieee80211_tx_queue_params *params)
  431. {
  432. u32 reg;
  433. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  434. rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
  435. rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
  436. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  437. }
  438. /*
  439. * LED functions.
  440. */
  441. static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
  442. {
  443. u32 reg;
  444. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  445. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  446. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  447. rt2x00_set_field32(&reg, LEDCSR_LINK,
  448. (rt2x00dev->led_mode != LED_MODE_ASUS));
  449. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
  450. (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
  451. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  452. }
  453. static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
  454. {
  455. u32 reg;
  456. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  457. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  458. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  459. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  460. }
  461. /*
  462. * Link tuning
  463. */
  464. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  465. struct link_qual *qual)
  466. {
  467. u32 reg;
  468. u8 bbp;
  469. /*
  470. * Update FCS error count from register.
  471. */
  472. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  473. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  474. /*
  475. * Update False CCA count from register.
  476. */
  477. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  478. qual->false_cca = bbp;
  479. }
  480. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  481. {
  482. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  483. rt2x00dev->link.vgc_level = 0x08;
  484. }
  485. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  486. {
  487. u8 reg;
  488. /*
  489. * The link tuner should not run longer then 60 seconds,
  490. * and should run once every 2 seconds.
  491. */
  492. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  493. return;
  494. /*
  495. * Base r13 link tuning on the false cca count.
  496. */
  497. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  498. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  499. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  500. rt2x00dev->link.vgc_level = reg;
  501. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  502. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  503. rt2x00dev->link.vgc_level = reg;
  504. }
  505. }
  506. /*
  507. * Initialization functions.
  508. */
  509. static void rt2400pci_init_rxring(struct rt2x00_dev *rt2x00dev)
  510. {
  511. struct data_ring *ring = rt2x00dev->rx;
  512. __le32 *rxd;
  513. unsigned int i;
  514. u32 word;
  515. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  516. for (i = 0; i < ring->stats.limit; i++) {
  517. rxd = ring->entry[i].priv;
  518. rt2x00_desc_read(rxd, 2, &word);
  519. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
  520. ring->data_size);
  521. rt2x00_desc_write(rxd, 2, word);
  522. rt2x00_desc_read(rxd, 1, &word);
  523. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
  524. ring->entry[i].data_dma);
  525. rt2x00_desc_write(rxd, 1, word);
  526. rt2x00_desc_read(rxd, 0, &word);
  527. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  528. rt2x00_desc_write(rxd, 0, word);
  529. }
  530. rt2x00_ring_index_clear(rt2x00dev->rx);
  531. }
  532. static void rt2400pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
  533. {
  534. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  535. __le32 *txd;
  536. unsigned int i;
  537. u32 word;
  538. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  539. for (i = 0; i < ring->stats.limit; i++) {
  540. txd = ring->entry[i].priv;
  541. rt2x00_desc_read(txd, 1, &word);
  542. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
  543. ring->entry[i].data_dma);
  544. rt2x00_desc_write(txd, 1, word);
  545. rt2x00_desc_read(txd, 2, &word);
  546. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
  547. ring->data_size);
  548. rt2x00_desc_write(txd, 2, word);
  549. rt2x00_desc_read(txd, 0, &word);
  550. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  551. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  552. rt2x00_desc_write(txd, 0, word);
  553. }
  554. rt2x00_ring_index_clear(ring);
  555. }
  556. static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
  557. {
  558. u32 reg;
  559. /*
  560. * Initialize rings.
  561. */
  562. rt2400pci_init_rxring(rt2x00dev);
  563. rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  564. rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  565. rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  566. rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
  567. /*
  568. * Initialize registers.
  569. */
  570. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  571. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
  572. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
  573. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
  574. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
  575. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
  576. rt2x00dev->bcn[1].stats.limit);
  577. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
  578. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
  579. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  580. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  581. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  582. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
  583. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  584. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  585. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  586. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
  587. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  588. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  589. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  590. rt2x00dev->bcn[1].data_dma);
  591. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  592. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  593. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  594. rt2x00dev->bcn[0].data_dma);
  595. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  596. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  597. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  598. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
  599. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  600. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  601. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  602. rt2x00dev->rx->data_dma);
  603. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  604. return 0;
  605. }
  606. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  607. {
  608. u32 reg;
  609. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  610. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  611. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  612. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  613. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  614. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  615. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  616. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  617. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  618. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  619. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  620. (rt2x00dev->rx->data_size / 128));
  621. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  622. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  623. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  624. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  625. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  626. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  627. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  628. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  629. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  630. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  631. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  632. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  633. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  634. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  635. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  636. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  637. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  638. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  639. return -EBUSY;
  640. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  641. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  642. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  643. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  644. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  645. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  646. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  647. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  648. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  649. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  650. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  651. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  652. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  653. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  654. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  655. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  656. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  657. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  658. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  659. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  660. /*
  661. * We must clear the FCS and FIFO error count.
  662. * These registers are cleared on read,
  663. * so we may pass a useless variable to store the value.
  664. */
  665. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  666. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  667. return 0;
  668. }
  669. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  670. {
  671. unsigned int i;
  672. u16 eeprom;
  673. u8 reg_id;
  674. u8 value;
  675. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  676. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  677. if ((value != 0xff) && (value != 0x00))
  678. goto continue_csr_init;
  679. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  680. udelay(REGISTER_BUSY_DELAY);
  681. }
  682. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  683. return -EACCES;
  684. continue_csr_init:
  685. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  686. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  687. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  688. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  689. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  690. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  691. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  692. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  693. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  694. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  695. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  696. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  697. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  698. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  699. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  700. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  701. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  702. if (eeprom != 0xffff && eeprom != 0x0000) {
  703. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  704. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  705. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  706. reg_id, value);
  707. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  708. }
  709. }
  710. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  711. return 0;
  712. }
  713. /*
  714. * Device state switch handlers.
  715. */
  716. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  717. enum dev_state state)
  718. {
  719. u32 reg;
  720. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  721. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  722. state == STATE_RADIO_RX_OFF);
  723. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  724. }
  725. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  726. enum dev_state state)
  727. {
  728. int mask = (state == STATE_RADIO_IRQ_OFF);
  729. u32 reg;
  730. /*
  731. * When interrupts are being enabled, the interrupt registers
  732. * should clear the register to assure a clean state.
  733. */
  734. if (state == STATE_RADIO_IRQ_ON) {
  735. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  736. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  737. }
  738. /*
  739. * Only toggle the interrupts bits we are going to use.
  740. * Non-checked interrupt bits are disabled by default.
  741. */
  742. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  743. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  744. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  745. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  746. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  747. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  748. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  749. }
  750. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  751. {
  752. /*
  753. * Initialize all registers.
  754. */
  755. if (rt2400pci_init_rings(rt2x00dev) ||
  756. rt2400pci_init_registers(rt2x00dev) ||
  757. rt2400pci_init_bbp(rt2x00dev)) {
  758. ERROR(rt2x00dev, "Register initialization failed.\n");
  759. return -EIO;
  760. }
  761. /*
  762. * Enable interrupts.
  763. */
  764. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  765. /*
  766. * Enable LED
  767. */
  768. rt2400pci_enable_led(rt2x00dev);
  769. return 0;
  770. }
  771. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  772. {
  773. u32 reg;
  774. /*
  775. * Disable LED
  776. */
  777. rt2400pci_disable_led(rt2x00dev);
  778. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  779. /*
  780. * Disable synchronisation.
  781. */
  782. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  783. /*
  784. * Cancel RX and TX.
  785. */
  786. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  787. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  788. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  789. /*
  790. * Disable interrupts.
  791. */
  792. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  793. }
  794. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  795. enum dev_state state)
  796. {
  797. u32 reg;
  798. unsigned int i;
  799. char put_to_sleep;
  800. char bbp_state;
  801. char rf_state;
  802. put_to_sleep = (state != STATE_AWAKE);
  803. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  804. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  805. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  806. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  807. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  808. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  809. /*
  810. * Device is not guaranteed to be in the requested state yet.
  811. * We must wait until the register indicates that the
  812. * device has entered the correct state.
  813. */
  814. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  815. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  816. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  817. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  818. if (bbp_state == state && rf_state == state)
  819. return 0;
  820. msleep(10);
  821. }
  822. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  823. "current device state: bbp %d and rf %d.\n",
  824. state, bbp_state, rf_state);
  825. return -EBUSY;
  826. }
  827. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  828. enum dev_state state)
  829. {
  830. int retval = 0;
  831. switch (state) {
  832. case STATE_RADIO_ON:
  833. retval = rt2400pci_enable_radio(rt2x00dev);
  834. break;
  835. case STATE_RADIO_OFF:
  836. rt2400pci_disable_radio(rt2x00dev);
  837. break;
  838. case STATE_RADIO_RX_ON:
  839. case STATE_RADIO_RX_OFF:
  840. rt2400pci_toggle_rx(rt2x00dev, state);
  841. break;
  842. case STATE_DEEP_SLEEP:
  843. case STATE_SLEEP:
  844. case STATE_STANDBY:
  845. case STATE_AWAKE:
  846. retval = rt2400pci_set_state(rt2x00dev, state);
  847. break;
  848. default:
  849. retval = -ENOTSUPP;
  850. break;
  851. }
  852. return retval;
  853. }
  854. /*
  855. * TX descriptor initialization
  856. */
  857. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  858. __le32 *txd,
  859. struct txdata_entry_desc *desc,
  860. struct ieee80211_hdr *ieee80211hdr,
  861. unsigned int length,
  862. struct ieee80211_tx_control *control)
  863. {
  864. u32 word;
  865. u32 signal = 0;
  866. u32 service = 0;
  867. u32 length_high = 0;
  868. u32 length_low = 0;
  869. /*
  870. * The PLCP values should be treated as if they
  871. * were BBP values.
  872. */
  873. rt2x00_set_field32(&signal, BBPCSR_VALUE, desc->signal);
  874. rt2x00_set_field32(&signal, BBPCSR_REGNUM, 5);
  875. rt2x00_set_field32(&signal, BBPCSR_BUSY, 1);
  876. rt2x00_set_field32(&service, BBPCSR_VALUE, desc->service);
  877. rt2x00_set_field32(&service, BBPCSR_REGNUM, 6);
  878. rt2x00_set_field32(&service, BBPCSR_BUSY, 1);
  879. rt2x00_set_field32(&length_high, BBPCSR_VALUE, desc->length_high);
  880. rt2x00_set_field32(&length_high, BBPCSR_REGNUM, 7);
  881. rt2x00_set_field32(&length_high, BBPCSR_BUSY, 1);
  882. rt2x00_set_field32(&length_low, BBPCSR_VALUE, desc->length_low);
  883. rt2x00_set_field32(&length_low, BBPCSR_REGNUM, 8);
  884. rt2x00_set_field32(&length_low, BBPCSR_BUSY, 1);
  885. /*
  886. * Start writing the descriptor words.
  887. */
  888. rt2x00_desc_read(txd, 2, &word);
  889. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, length);
  890. rt2x00_desc_write(txd, 2, word);
  891. rt2x00_desc_read(txd, 3, &word);
  892. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, signal);
  893. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, service);
  894. rt2x00_desc_write(txd, 3, word);
  895. rt2x00_desc_read(txd, 4, &word);
  896. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, length_low);
  897. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, length_high);
  898. rt2x00_desc_write(txd, 4, word);
  899. rt2x00_desc_read(txd, 0, &word);
  900. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  901. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  902. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  903. test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
  904. rt2x00_set_field32(&word, TXD_W0_ACK,
  905. !(control->flags & IEEE80211_TXCTL_NO_ACK));
  906. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  907. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
  908. rt2x00_set_field32(&word, TXD_W0_RTS,
  909. test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
  910. rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
  911. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  912. !!(control->flags &
  913. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  914. rt2x00_desc_write(txd, 0, word);
  915. }
  916. /*
  917. * TX data initialization
  918. */
  919. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  920. unsigned int queue)
  921. {
  922. u32 reg;
  923. if (queue == IEEE80211_TX_QUEUE_BEACON) {
  924. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  925. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  926. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  927. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  928. }
  929. return;
  930. }
  931. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  932. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  933. (queue == IEEE80211_TX_QUEUE_DATA0));
  934. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  935. (queue == IEEE80211_TX_QUEUE_DATA1));
  936. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  937. (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
  938. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  939. }
  940. /*
  941. * RX control handlers
  942. */
  943. static void rt2400pci_fill_rxdone(struct data_entry *entry,
  944. struct rxdata_entry_desc *desc)
  945. {
  946. __le32 *rxd = entry->priv;
  947. u32 word0;
  948. u32 word2;
  949. rt2x00_desc_read(rxd, 0, &word0);
  950. rt2x00_desc_read(rxd, 2, &word2);
  951. desc->flags = 0;
  952. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  953. desc->flags |= RX_FLAG_FAILED_FCS_CRC;
  954. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  955. desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  956. /*
  957. * Obtain the status about this packet.
  958. */
  959. desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  960. desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  961. entry->ring->rt2x00dev->rssi_offset;
  962. desc->ofdm = 0;
  963. desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  964. }
  965. /*
  966. * Interrupt functions.
  967. */
  968. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
  969. {
  970. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  971. struct data_entry *entry;
  972. __le32 *txd;
  973. u32 word;
  974. int tx_status;
  975. int retry;
  976. while (!rt2x00_ring_empty(ring)) {
  977. entry = rt2x00_get_data_entry_done(ring);
  978. txd = entry->priv;
  979. rt2x00_desc_read(txd, 0, &word);
  980. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  981. !rt2x00_get_field32(word, TXD_W0_VALID))
  982. break;
  983. /*
  984. * Obtain the status about this packet.
  985. */
  986. tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
  987. retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  988. rt2x00lib_txdone(entry, tx_status, retry);
  989. /*
  990. * Make this entry available for reuse.
  991. */
  992. entry->flags = 0;
  993. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  994. rt2x00_desc_write(txd, 0, word);
  995. rt2x00_ring_index_done_inc(ring);
  996. }
  997. /*
  998. * If the data ring was full before the txdone handler
  999. * we must make sure the packet queue in the mac80211 stack
  1000. * is reenabled when the txdone handler has finished.
  1001. */
  1002. entry = ring->entry;
  1003. if (!rt2x00_ring_full(ring))
  1004. ieee80211_wake_queue(rt2x00dev->hw,
  1005. entry->tx_status.control.queue);
  1006. }
  1007. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1008. {
  1009. struct rt2x00_dev *rt2x00dev = dev_instance;
  1010. u32 reg;
  1011. /*
  1012. * Get the interrupt sources & saved to local variable.
  1013. * Write register value back to clear pending interrupts.
  1014. */
  1015. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1016. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1017. if (!reg)
  1018. return IRQ_NONE;
  1019. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1020. return IRQ_HANDLED;
  1021. /*
  1022. * Handle interrupts, walk through all bits
  1023. * and run the tasks, the bits are checked in order of
  1024. * priority.
  1025. */
  1026. /*
  1027. * 1 - Beacon timer expired interrupt.
  1028. */
  1029. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1030. rt2x00lib_beacondone(rt2x00dev);
  1031. /*
  1032. * 2 - Rx ring done interrupt.
  1033. */
  1034. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1035. rt2x00pci_rxdone(rt2x00dev);
  1036. /*
  1037. * 3 - Atim ring transmit done interrupt.
  1038. */
  1039. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1040. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  1041. /*
  1042. * 4 - Priority ring transmit done interrupt.
  1043. */
  1044. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1045. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1046. /*
  1047. * 5 - Tx ring transmit done interrupt.
  1048. */
  1049. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1050. rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1051. return IRQ_HANDLED;
  1052. }
  1053. /*
  1054. * Device probe functions.
  1055. */
  1056. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1057. {
  1058. struct eeprom_93cx6 eeprom;
  1059. u32 reg;
  1060. u16 word;
  1061. u8 *mac;
  1062. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1063. eeprom.data = rt2x00dev;
  1064. eeprom.register_read = rt2400pci_eepromregister_read;
  1065. eeprom.register_write = rt2400pci_eepromregister_write;
  1066. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1067. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1068. eeprom.reg_data_in = 0;
  1069. eeprom.reg_data_out = 0;
  1070. eeprom.reg_data_clock = 0;
  1071. eeprom.reg_chip_select = 0;
  1072. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1073. EEPROM_SIZE / sizeof(u16));
  1074. /*
  1075. * Start validation of the data that has been read.
  1076. */
  1077. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1078. if (!is_valid_ether_addr(mac)) {
  1079. DECLARE_MAC_BUF(macbuf);
  1080. random_ether_addr(mac);
  1081. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1082. }
  1083. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1084. if (word == 0xffff) {
  1085. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1086. return -EINVAL;
  1087. }
  1088. return 0;
  1089. }
  1090. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1091. {
  1092. u32 reg;
  1093. u16 value;
  1094. u16 eeprom;
  1095. /*
  1096. * Read EEPROM word for configuration.
  1097. */
  1098. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1099. /*
  1100. * Identify RF chipset.
  1101. */
  1102. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1103. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1104. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1105. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1106. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1107. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1108. return -ENODEV;
  1109. }
  1110. /*
  1111. * Identify default antenna configuration.
  1112. */
  1113. rt2x00dev->default_ant.tx =
  1114. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1115. rt2x00dev->default_ant.rx =
  1116. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1117. /*
  1118. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1119. * I am not 100% sure about this, but the legacy drivers do not
  1120. * indicate antenna swapping in software is required when
  1121. * diversity is enabled.
  1122. */
  1123. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1124. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1125. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1126. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1127. /*
  1128. * Store led mode, for correct led behaviour.
  1129. */
  1130. rt2x00dev->led_mode =
  1131. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1132. /*
  1133. * Detect if this device has an hardware controlled radio.
  1134. */
  1135. #ifdef CONFIG_RT2400PCI_RFKILL
  1136. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1137. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1138. #endif /* CONFIG_RT2400PCI_RFKILL */
  1139. /*
  1140. * Check if the BBP tuning should be enabled.
  1141. */
  1142. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1143. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1144. return 0;
  1145. }
  1146. /*
  1147. * RF value list for RF2420 & RF2421
  1148. * Supports: 2.4 GHz
  1149. */
  1150. static const struct rf_channel rf_vals_bg[] = {
  1151. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1152. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1153. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1154. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1155. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1156. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1157. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1158. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1159. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1160. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1161. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1162. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1163. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1164. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1165. };
  1166. static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1167. {
  1168. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1169. u8 *txpower;
  1170. unsigned int i;
  1171. /*
  1172. * Initialize all hw fields.
  1173. */
  1174. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1175. rt2x00dev->hw->extra_tx_headroom = 0;
  1176. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1177. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1178. rt2x00dev->hw->queues = 2;
  1179. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1180. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1181. rt2x00_eeprom_addr(rt2x00dev,
  1182. EEPROM_MAC_ADDR_0));
  1183. /*
  1184. * Convert tx_power array in eeprom.
  1185. */
  1186. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1187. for (i = 0; i < 14; i++)
  1188. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1189. /*
  1190. * Initialize hw_mode information.
  1191. */
  1192. spec->num_modes = 1;
  1193. spec->num_rates = 4;
  1194. spec->tx_power_a = NULL;
  1195. spec->tx_power_bg = txpower;
  1196. spec->tx_power_default = DEFAULT_TXPOWER;
  1197. spec->num_channels = ARRAY_SIZE(rf_vals_bg);
  1198. spec->channels = rf_vals_bg;
  1199. }
  1200. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1201. {
  1202. int retval;
  1203. /*
  1204. * Allocate eeprom data.
  1205. */
  1206. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1207. if (retval)
  1208. return retval;
  1209. retval = rt2400pci_init_eeprom(rt2x00dev);
  1210. if (retval)
  1211. return retval;
  1212. /*
  1213. * Initialize hw specifications.
  1214. */
  1215. rt2400pci_probe_hw_mode(rt2x00dev);
  1216. /*
  1217. * This device requires the beacon ring
  1218. */
  1219. __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
  1220. /*
  1221. * Set the rssi offset.
  1222. */
  1223. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1224. return 0;
  1225. }
  1226. /*
  1227. * IEEE80211 stack callback functions.
  1228. */
  1229. static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
  1230. unsigned int changed_flags,
  1231. unsigned int *total_flags,
  1232. int mc_count,
  1233. struct dev_addr_list *mc_list)
  1234. {
  1235. struct rt2x00_dev *rt2x00dev = hw->priv;
  1236. struct interface *intf = &rt2x00dev->interface;
  1237. u32 reg;
  1238. /*
  1239. * Mask off any flags we are going to ignore from
  1240. * the total_flags field.
  1241. */
  1242. *total_flags &=
  1243. FIF_ALLMULTI |
  1244. FIF_FCSFAIL |
  1245. FIF_PLCPFAIL |
  1246. FIF_CONTROL |
  1247. FIF_OTHER_BSS |
  1248. FIF_PROMISC_IN_BSS;
  1249. /*
  1250. * Apply some rules to the filters:
  1251. * - Some filters imply different filters to be set.
  1252. * - Some things we can't filter out at all.
  1253. * - Some filters are set based on interface type.
  1254. */
  1255. *total_flags |= FIF_ALLMULTI;
  1256. if (*total_flags & FIF_OTHER_BSS ||
  1257. *total_flags & FIF_PROMISC_IN_BSS)
  1258. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1259. if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
  1260. *total_flags |= FIF_PROMISC_IN_BSS;
  1261. /*
  1262. * Check if there is any work left for us.
  1263. */
  1264. if (intf->filter == *total_flags)
  1265. return;
  1266. intf->filter = *total_flags;
  1267. /*
  1268. * Start configuration steps.
  1269. * Note that the version error will always be dropped
  1270. * since there is no filter for it at this time.
  1271. */
  1272. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1273. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1274. !(*total_flags & FIF_FCSFAIL));
  1275. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1276. !(*total_flags & FIF_PLCPFAIL));
  1277. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1278. !(*total_flags & FIF_CONTROL));
  1279. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1280. !(*total_flags & FIF_PROMISC_IN_BSS));
  1281. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1282. !(*total_flags & FIF_PROMISC_IN_BSS));
  1283. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1284. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1285. }
  1286. static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
  1287. u32 short_retry, u32 long_retry)
  1288. {
  1289. struct rt2x00_dev *rt2x00dev = hw->priv;
  1290. u32 reg;
  1291. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1292. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1293. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1294. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1295. return 0;
  1296. }
  1297. static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
  1298. int queue,
  1299. const struct ieee80211_tx_queue_params *params)
  1300. {
  1301. struct rt2x00_dev *rt2x00dev = hw->priv;
  1302. /*
  1303. * We don't support variating cw_min and cw_max variables
  1304. * per queue. So by default we only configure the TX queue,
  1305. * and ignore all other configurations.
  1306. */
  1307. if (queue != IEEE80211_TX_QUEUE_DATA0)
  1308. return -EINVAL;
  1309. if (rt2x00mac_conf_tx(hw, queue, params))
  1310. return -EINVAL;
  1311. /*
  1312. * Write configuration to register.
  1313. */
  1314. rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
  1315. return 0;
  1316. }
  1317. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1318. {
  1319. struct rt2x00_dev *rt2x00dev = hw->priv;
  1320. u64 tsf;
  1321. u32 reg;
  1322. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1323. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1324. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1325. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1326. return tsf;
  1327. }
  1328. static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
  1329. {
  1330. struct rt2x00_dev *rt2x00dev = hw->priv;
  1331. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1332. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1333. }
  1334. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1335. {
  1336. struct rt2x00_dev *rt2x00dev = hw->priv;
  1337. u32 reg;
  1338. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1339. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1340. }
  1341. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1342. .tx = rt2x00mac_tx,
  1343. .start = rt2x00mac_start,
  1344. .stop = rt2x00mac_stop,
  1345. .add_interface = rt2x00mac_add_interface,
  1346. .remove_interface = rt2x00mac_remove_interface,
  1347. .config = rt2x00mac_config,
  1348. .config_interface = rt2x00mac_config_interface,
  1349. .configure_filter = rt2400pci_configure_filter,
  1350. .get_stats = rt2x00mac_get_stats,
  1351. .set_retry_limit = rt2400pci_set_retry_limit,
  1352. .erp_ie_changed = rt2x00mac_erp_ie_changed,
  1353. .conf_tx = rt2400pci_conf_tx,
  1354. .get_tx_stats = rt2x00mac_get_tx_stats,
  1355. .get_tsf = rt2400pci_get_tsf,
  1356. .reset_tsf = rt2400pci_reset_tsf,
  1357. .beacon_update = rt2x00pci_beacon_update,
  1358. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1359. };
  1360. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1361. .irq_handler = rt2400pci_interrupt,
  1362. .probe_hw = rt2400pci_probe_hw,
  1363. .initialize = rt2x00pci_initialize,
  1364. .uninitialize = rt2x00pci_uninitialize,
  1365. .set_device_state = rt2400pci_set_device_state,
  1366. .rfkill_poll = rt2400pci_rfkill_poll,
  1367. .link_stats = rt2400pci_link_stats,
  1368. .reset_tuner = rt2400pci_reset_tuner,
  1369. .link_tuner = rt2400pci_link_tuner,
  1370. .write_tx_desc = rt2400pci_write_tx_desc,
  1371. .write_tx_data = rt2x00pci_write_tx_data,
  1372. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1373. .fill_rxdone = rt2400pci_fill_rxdone,
  1374. .config_mac_addr = rt2400pci_config_mac_addr,
  1375. .config_bssid = rt2400pci_config_bssid,
  1376. .config_type = rt2400pci_config_type,
  1377. .config_preamble = rt2400pci_config_preamble,
  1378. .config = rt2400pci_config,
  1379. };
  1380. static const struct rt2x00_ops rt2400pci_ops = {
  1381. .name = DRV_NAME,
  1382. .rxd_size = RXD_DESC_SIZE,
  1383. .txd_size = TXD_DESC_SIZE,
  1384. .eeprom_size = EEPROM_SIZE,
  1385. .rf_size = RF_SIZE,
  1386. .lib = &rt2400pci_rt2x00_ops,
  1387. .hw = &rt2400pci_mac80211_ops,
  1388. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1389. .debugfs = &rt2400pci_rt2x00debug,
  1390. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1391. };
  1392. /*
  1393. * RT2400pci module information.
  1394. */
  1395. static struct pci_device_id rt2400pci_device_table[] = {
  1396. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1397. { 0, }
  1398. };
  1399. MODULE_AUTHOR(DRV_PROJECT);
  1400. MODULE_VERSION(DRV_VERSION);
  1401. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1402. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1403. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1404. MODULE_LICENSE("GPL");
  1405. static struct pci_driver rt2400pci_driver = {
  1406. .name = DRV_NAME,
  1407. .id_table = rt2400pci_device_table,
  1408. .probe = rt2x00pci_probe,
  1409. .remove = __devexit_p(rt2x00pci_remove),
  1410. .suspend = rt2x00pci_suspend,
  1411. .resume = rt2x00pci_resume,
  1412. };
  1413. static int __init rt2400pci_init(void)
  1414. {
  1415. return pci_register_driver(&rt2400pci_driver);
  1416. }
  1417. static void __exit rt2400pci_exit(void)
  1418. {
  1419. pci_unregister_driver(&rt2400pci_driver);
  1420. }
  1421. module_init(rt2400pci_init);
  1422. module_exit(rt2400pci_exit);