setup.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2010 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <linux/err.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/mmzone.h>
  30. #include <linux/clk.h>
  31. #include <linux/delay.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/lmb.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/io.h>
  36. #include <asm/page.h>
  37. #include <asm/elf.h>
  38. #include <asm/sections.h>
  39. #include <asm/irq.h>
  40. #include <asm/setup.h>
  41. #include <asm/clock.h>
  42. #include <asm/smp.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/mmzone.h>
  45. /*
  46. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  47. * This value will be used at the very early stage of serial setup.
  48. * The bigger value means no problem.
  49. */
  50. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  51. [0] = {
  52. .type = CPU_SH_NONE,
  53. .family = CPU_FAMILY_UNKNOWN,
  54. .loops_per_jiffy = 10000000,
  55. },
  56. };
  57. EXPORT_SYMBOL(cpu_data);
  58. /*
  59. * The machine vector. First entry in .machvec.init, or clobbered by
  60. * sh_mv= on the command line, prior to .machvec.init teardown.
  61. */
  62. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  63. EXPORT_SYMBOL(sh_mv);
  64. #ifdef CONFIG_VT
  65. struct screen_info screen_info;
  66. #endif
  67. extern int root_mountflags;
  68. #define RAMDISK_IMAGE_START_MASK 0x07FF
  69. #define RAMDISK_PROMPT_FLAG 0x8000
  70. #define RAMDISK_LOAD_FLAG 0x4000
  71. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  72. static struct resource code_resource = {
  73. .name = "Kernel code",
  74. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  75. };
  76. static struct resource data_resource = {
  77. .name = "Kernel data",
  78. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  79. };
  80. static struct resource bss_resource = {
  81. .name = "Kernel bss",
  82. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  83. };
  84. unsigned long memory_start;
  85. EXPORT_SYMBOL(memory_start);
  86. unsigned long memory_end = 0;
  87. EXPORT_SYMBOL(memory_end);
  88. unsigned long memory_limit = 0;
  89. static struct resource mem_resources[MAX_NUMNODES];
  90. int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
  91. static int __init early_parse_mem(char *p)
  92. {
  93. if (!p)
  94. return 1;
  95. memory_limit = PAGE_ALIGN(memparse(p, &p));
  96. pr_notice("Memory limited to %ldMB\n", memory_limit >> 20);
  97. return 0;
  98. }
  99. early_param("mem", early_parse_mem);
  100. void __init check_for_initrd(void)
  101. {
  102. #ifdef CONFIG_BLK_DEV_INITRD
  103. unsigned long start, end;
  104. /*
  105. * Check for the rare cases where boot loaders adhere to the boot
  106. * ABI.
  107. */
  108. if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE)
  109. goto disable;
  110. start = INITRD_START + __MEMORY_START;
  111. end = start + INITRD_SIZE;
  112. if (unlikely(end <= start))
  113. goto disable;
  114. if (unlikely(start & ~PAGE_MASK)) {
  115. pr_err("initrd must be page aligned\n");
  116. goto disable;
  117. }
  118. if (unlikely(start < PAGE_OFFSET)) {
  119. pr_err("initrd start < PAGE_OFFSET\n");
  120. goto disable;
  121. }
  122. if (unlikely(end > lmb_end_of_DRAM())) {
  123. pr_err("initrd extends beyond end of memory "
  124. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  125. end, (unsigned long)lmb_end_of_DRAM());
  126. goto disable;
  127. }
  128. /*
  129. * If we got this far inspite of the boot loader's best efforts
  130. * to the contrary, assume we actually have a valid initrd and
  131. * fix up the root dev.
  132. */
  133. ROOT_DEV = Root_RAM0;
  134. /*
  135. * Address sanitization
  136. */
  137. initrd_start = (unsigned long)__va(__pa(start));
  138. initrd_end = initrd_start + INITRD_SIZE;
  139. lmb_reserve(__pa(initrd_start), INITRD_SIZE);
  140. return;
  141. disable:
  142. pr_info("initrd disabled\n");
  143. initrd_start = initrd_end = 0;
  144. #endif
  145. }
  146. void __cpuinit calibrate_delay(void)
  147. {
  148. struct clk *clk = clk_get(NULL, "cpu_clk");
  149. if (IS_ERR(clk))
  150. panic("Need a sane CPU clock definition!");
  151. loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
  152. printk(KERN_INFO "Calibrating delay loop (skipped)... "
  153. "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
  154. loops_per_jiffy/(500000/HZ),
  155. (loops_per_jiffy/(5000/HZ)) % 100,
  156. loops_per_jiffy);
  157. }
  158. void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
  159. unsigned long end_pfn)
  160. {
  161. struct resource *res = &mem_resources[nid];
  162. WARN_ON(res->name); /* max one active range per node for now */
  163. res->name = "System RAM";
  164. res->start = start_pfn << PAGE_SHIFT;
  165. res->end = (end_pfn << PAGE_SHIFT) - 1;
  166. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  167. if (request_resource(&iomem_resource, res)) {
  168. pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
  169. start_pfn, end_pfn);
  170. return;
  171. }
  172. /*
  173. * We don't know which RAM region contains kernel data,
  174. * so we try it repeatedly and let the resource manager
  175. * test it.
  176. */
  177. request_resource(res, &code_resource);
  178. request_resource(res, &data_resource);
  179. request_resource(res, &bss_resource);
  180. add_active_range(nid, start_pfn, end_pfn);
  181. }
  182. /*
  183. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  184. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  185. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  186. */
  187. #ifdef CONFIG_CRASH_DUMP
  188. /* elfcorehdr= specifies the location of elf core header
  189. * stored by the crashed kernel.
  190. */
  191. static int __init parse_elfcorehdr(char *arg)
  192. {
  193. if (!arg)
  194. return -EINVAL;
  195. elfcorehdr_addr = memparse(arg, &arg);
  196. return 0;
  197. }
  198. early_param("elfcorehdr", parse_elfcorehdr);
  199. #endif
  200. void __init __weak plat_early_device_setup(void)
  201. {
  202. }
  203. void __init setup_arch(char **cmdline_p)
  204. {
  205. enable_mmu();
  206. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  207. printk(KERN_NOTICE "Boot params:\n"
  208. "... MOUNT_ROOT_RDONLY - %08lx\n"
  209. "... RAMDISK_FLAGS - %08lx\n"
  210. "... ORIG_ROOT_DEV - %08lx\n"
  211. "... LOADER_TYPE - %08lx\n"
  212. "... INITRD_START - %08lx\n"
  213. "... INITRD_SIZE - %08lx\n",
  214. MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
  215. ORIG_ROOT_DEV, LOADER_TYPE,
  216. INITRD_START, INITRD_SIZE);
  217. #ifdef CONFIG_BLK_DEV_RAM
  218. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  219. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  220. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  221. #endif
  222. if (!MOUNT_ROOT_RDONLY)
  223. root_mountflags &= ~MS_RDONLY;
  224. init_mm.start_code = (unsigned long) _text;
  225. init_mm.end_code = (unsigned long) _etext;
  226. init_mm.end_data = (unsigned long) _edata;
  227. init_mm.brk = (unsigned long) _end;
  228. code_resource.start = virt_to_phys(_text);
  229. code_resource.end = virt_to_phys(_etext)-1;
  230. data_resource.start = virt_to_phys(_etext);
  231. data_resource.end = virt_to_phys(_edata)-1;
  232. bss_resource.start = virt_to_phys(__bss_start);
  233. bss_resource.end = virt_to_phys(_ebss)-1;
  234. #ifdef CONFIG_CMDLINE_OVERWRITE
  235. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  236. #else
  237. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  238. #ifdef CONFIG_CMDLINE_EXTEND
  239. strlcat(command_line, " ", sizeof(command_line));
  240. strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
  241. #endif
  242. #endif
  243. /* Save unparsed command line copy for /proc/cmdline */
  244. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  245. *cmdline_p = command_line;
  246. parse_early_param();
  247. plat_early_device_setup();
  248. sh_mv_setup();
  249. /* Let earlyprintk output early console messages */
  250. early_platform_driver_probe("earlyprintk", 1, 1);
  251. paging_init();
  252. #ifdef CONFIG_DUMMY_CONSOLE
  253. conswitchp = &dummy_con;
  254. #endif
  255. /* Perform the machine specific initialisation */
  256. if (likely(sh_mv.mv_setup))
  257. sh_mv.mv_setup(cmdline_p);
  258. plat_smp_setup();
  259. }
  260. /* processor boot mode configuration */
  261. int generic_mode_pins(void)
  262. {
  263. pr_warning("generic_mode_pins(): missing mode pin configuration\n");
  264. return 0;
  265. }
  266. int test_mode_pin(int pin)
  267. {
  268. return sh_mv.mv_mode_pins() & pin;
  269. }
  270. static const char *cpu_name[] = {
  271. [CPU_SH7201] = "SH7201",
  272. [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
  273. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  274. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  275. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  276. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  277. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  278. [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
  279. [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
  280. [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
  281. [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
  282. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  283. [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
  284. [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
  285. [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
  286. [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
  287. [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
  288. [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
  289. [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
  290. [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
  291. [CPU_SH_NONE] = "Unknown"
  292. };
  293. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  294. {
  295. return cpu_name[c->type];
  296. }
  297. EXPORT_SYMBOL(get_cpu_subtype);
  298. #ifdef CONFIG_PROC_FS
  299. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  300. static const char *cpu_flags[] = {
  301. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  302. "ptea", "llsc", "l2", "op32", "pteaex", NULL
  303. };
  304. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  305. {
  306. unsigned long i;
  307. seq_printf(m, "cpu flags\t:");
  308. if (!c->flags) {
  309. seq_printf(m, " %s\n", cpu_flags[0]);
  310. return;
  311. }
  312. for (i = 0; cpu_flags[i]; i++)
  313. if ((c->flags & (1 << i)))
  314. seq_printf(m, " %s", cpu_flags[i+1]);
  315. seq_printf(m, "\n");
  316. }
  317. static void show_cacheinfo(struct seq_file *m, const char *type,
  318. struct cache_info info)
  319. {
  320. unsigned int cache_size;
  321. cache_size = info.ways * info.sets * info.linesz;
  322. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  323. type, cache_size >> 10, info.ways);
  324. }
  325. /*
  326. * Get CPU information for use by the procfs.
  327. */
  328. static int show_cpuinfo(struct seq_file *m, void *v)
  329. {
  330. struct sh_cpuinfo *c = v;
  331. unsigned int cpu = c - cpu_data;
  332. if (!cpu_online(cpu))
  333. return 0;
  334. if (cpu == 0)
  335. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  336. else
  337. seq_printf(m, "\n");
  338. seq_printf(m, "processor\t: %d\n", cpu);
  339. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  340. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  341. if (c->cut_major == -1)
  342. seq_printf(m, "cut\t\t: unknown\n");
  343. else if (c->cut_minor == -1)
  344. seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
  345. else
  346. seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
  347. show_cpuflags(m, c);
  348. seq_printf(m, "cache type\t: ");
  349. /*
  350. * Check for what type of cache we have, we support both the
  351. * unified cache on the SH-2 and SH-3, as well as the harvard
  352. * style cache on the SH-4.
  353. */
  354. if (c->icache.flags & SH_CACHE_COMBINED) {
  355. seq_printf(m, "unified\n");
  356. show_cacheinfo(m, "cache", c->icache);
  357. } else {
  358. seq_printf(m, "split (harvard)\n");
  359. show_cacheinfo(m, "icache", c->icache);
  360. show_cacheinfo(m, "dcache", c->dcache);
  361. }
  362. /* Optional secondary cache */
  363. if (c->flags & CPU_HAS_L2_CACHE)
  364. show_cacheinfo(m, "scache", c->scache);
  365. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  366. c->loops_per_jiffy/(500000/HZ),
  367. (c->loops_per_jiffy/(5000/HZ)) % 100);
  368. return 0;
  369. }
  370. static void *c_start(struct seq_file *m, loff_t *pos)
  371. {
  372. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  373. }
  374. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  375. {
  376. ++*pos;
  377. return c_start(m, pos);
  378. }
  379. static void c_stop(struct seq_file *m, void *v)
  380. {
  381. }
  382. const struct seq_operations cpuinfo_op = {
  383. .start = c_start,
  384. .next = c_next,
  385. .stop = c_stop,
  386. .show = show_cpuinfo,
  387. };
  388. #endif /* CONFIG_PROC_FS */
  389. struct dentry *sh_debugfs_root;
  390. static int __init sh_debugfs_init(void)
  391. {
  392. sh_debugfs_root = debugfs_create_dir("sh", NULL);
  393. if (!sh_debugfs_root)
  394. return -ENOMEM;
  395. if (IS_ERR(sh_debugfs_root))
  396. return PTR_ERR(sh_debugfs_root);
  397. return 0;
  398. }
  399. arch_initcall(sh_debugfs_init);