qlge_main.c 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int qlge_irq_type = MSIX_IRQ;
  67. module_param(qlge_irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static int qlge_mpi_coredump;
  70. module_param(qlge_mpi_coredump, int, 0);
  71. MODULE_PARM_DESC(qlge_mpi_coredump,
  72. "Option to enable MPI firmware dump. "
  73. "Default is OFF - Do Not allocate memory. ");
  74. static int qlge_force_coredump;
  75. module_param(qlge_force_coredump, int, 0);
  76. MODULE_PARM_DESC(qlge_force_coredump,
  77. "Option to allow force of firmware core dump. "
  78. "Default is OFF - Do not allow.");
  79. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  80. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  81. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  82. /* required last entry */
  83. {0,}
  84. };
  85. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  86. /* This hardware semaphore causes exclusive access to
  87. * resources shared between the NIC driver, MPI firmware,
  88. * FCOE firmware and the FC driver.
  89. */
  90. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  91. {
  92. u32 sem_bits = 0;
  93. switch (sem_mask) {
  94. case SEM_XGMAC0_MASK:
  95. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  96. break;
  97. case SEM_XGMAC1_MASK:
  98. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  99. break;
  100. case SEM_ICB_MASK:
  101. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  102. break;
  103. case SEM_MAC_ADDR_MASK:
  104. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  105. break;
  106. case SEM_FLASH_MASK:
  107. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  108. break;
  109. case SEM_PROBE_MASK:
  110. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  111. break;
  112. case SEM_RT_IDX_MASK:
  113. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  114. break;
  115. case SEM_PROC_REG_MASK:
  116. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  117. break;
  118. default:
  119. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  120. return -EINVAL;
  121. }
  122. ql_write32(qdev, SEM, sem_bits | sem_mask);
  123. return !(ql_read32(qdev, SEM) & sem_bits);
  124. }
  125. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. unsigned int wait_count = 30;
  128. do {
  129. if (!ql_sem_trylock(qdev, sem_mask))
  130. return 0;
  131. udelay(100);
  132. } while (--wait_count);
  133. return -ETIMEDOUT;
  134. }
  135. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  136. {
  137. ql_write32(qdev, SEM, sem_mask);
  138. ql_read32(qdev, SEM); /* flush */
  139. }
  140. /* This function waits for a specific bit to come ready
  141. * in a given register. It is used mostly by the initialize
  142. * process, but is also used in kernel thread API such as
  143. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  144. */
  145. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  146. {
  147. u32 temp;
  148. int count = UDELAY_COUNT;
  149. while (count) {
  150. temp = ql_read32(qdev, reg);
  151. /* check for errors */
  152. if (temp & err_bit) {
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "register 0x%.08x access error, value = 0x%.08x!.\n",
  155. reg, temp);
  156. return -EIO;
  157. } else if (temp & bit)
  158. return 0;
  159. udelay(UDELAY_DELAY);
  160. count--;
  161. }
  162. QPRINTK(qdev, PROBE, ALERT,
  163. "Timed out waiting for reg %x to come ready.\n", reg);
  164. return -ETIMEDOUT;
  165. }
  166. /* The CFG register is used to download TX and RX control blocks
  167. * to the chip. This function waits for an operation to complete.
  168. */
  169. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  170. {
  171. int count = UDELAY_COUNT;
  172. u32 temp;
  173. while (count) {
  174. temp = ql_read32(qdev, CFG);
  175. if (temp & CFG_LE)
  176. return -EIO;
  177. if (!(temp & bit))
  178. return 0;
  179. udelay(UDELAY_DELAY);
  180. count--;
  181. }
  182. return -ETIMEDOUT;
  183. }
  184. /* Used to issue init control blocks to hw. Maps control block,
  185. * sets address, triggers download, waits for completion.
  186. */
  187. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  188. u16 q_id)
  189. {
  190. u64 map;
  191. int status = 0;
  192. int direction;
  193. u32 mask;
  194. u32 value;
  195. direction =
  196. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  197. PCI_DMA_FROMDEVICE;
  198. map = pci_map_single(qdev->pdev, ptr, size, direction);
  199. if (pci_dma_mapping_error(qdev->pdev, map)) {
  200. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  201. return -ENOMEM;
  202. }
  203. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  204. if (status)
  205. return status;
  206. status = ql_wait_cfg(qdev, bit);
  207. if (status) {
  208. QPRINTK(qdev, IFUP, ERR,
  209. "Timed out waiting for CFG to come ready.\n");
  210. goto exit;
  211. }
  212. ql_write32(qdev, ICB_L, (u32) map);
  213. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  214. mask = CFG_Q_MASK | (bit << 16);
  215. value = bit | (q_id << CFG_Q_SHIFT);
  216. ql_write32(qdev, CFG, (mask | value));
  217. /*
  218. * Wait for the bit to clear after signaling hw.
  219. */
  220. status = ql_wait_cfg(qdev, bit);
  221. exit:
  222. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  223. pci_unmap_single(qdev->pdev, map, size, direction);
  224. return status;
  225. }
  226. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  227. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  228. u32 *value)
  229. {
  230. u32 offset = 0;
  231. int status;
  232. switch (type) {
  233. case MAC_ADDR_TYPE_MULTI_MAC:
  234. case MAC_ADDR_TYPE_CAM_MAC:
  235. {
  236. status =
  237. ql_wait_reg_rdy(qdev,
  238. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  239. if (status)
  240. goto exit;
  241. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  242. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  243. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  244. status =
  245. ql_wait_reg_rdy(qdev,
  246. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  247. if (status)
  248. goto exit;
  249. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  250. status =
  251. ql_wait_reg_rdy(qdev,
  252. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  253. if (status)
  254. goto exit;
  255. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  256. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  257. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  258. status =
  259. ql_wait_reg_rdy(qdev,
  260. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  261. if (status)
  262. goto exit;
  263. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  264. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  265. status =
  266. ql_wait_reg_rdy(qdev,
  267. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  268. if (status)
  269. goto exit;
  270. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  271. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  272. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  273. status =
  274. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  275. MAC_ADDR_MR, 0);
  276. if (status)
  277. goto exit;
  278. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  279. }
  280. break;
  281. }
  282. case MAC_ADDR_TYPE_VLAN:
  283. case MAC_ADDR_TYPE_MULTI_FLTR:
  284. default:
  285. QPRINTK(qdev, IFUP, CRIT,
  286. "Address type %d not yet supported.\n", type);
  287. status = -EPERM;
  288. }
  289. exit:
  290. return status;
  291. }
  292. /* Set up a MAC, multicast or VLAN address for the
  293. * inbound frame matching.
  294. */
  295. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  296. u16 index)
  297. {
  298. u32 offset = 0;
  299. int status = 0;
  300. switch (type) {
  301. case MAC_ADDR_TYPE_MULTI_MAC:
  302. {
  303. u32 upper = (addr[0] << 8) | addr[1];
  304. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  305. (addr[4] << 8) | (addr[5]);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  312. (index << MAC_ADDR_IDX_SHIFT) |
  313. type | MAC_ADDR_E);
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  321. (index << MAC_ADDR_IDX_SHIFT) |
  322. type | MAC_ADDR_E);
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. break;
  330. }
  331. case MAC_ADDR_TYPE_CAM_MAC:
  332. {
  333. u32 cam_output;
  334. u32 upper = (addr[0] << 8) | addr[1];
  335. u32 lower =
  336. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  337. (addr[5]);
  338. QPRINTK(qdev, IFUP, DEBUG,
  339. "Adding %s address %pM"
  340. " at index %d in the CAM.\n",
  341. ((type ==
  342. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  343. "UNICAST"), addr, index);
  344. status =
  345. ql_wait_reg_rdy(qdev,
  346. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  347. if (status)
  348. goto exit;
  349. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  350. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  351. type); /* type */
  352. ql_write32(qdev, MAC_ADDR_DATA, lower);
  353. status =
  354. ql_wait_reg_rdy(qdev,
  355. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  356. if (status)
  357. goto exit;
  358. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  359. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  360. type); /* type */
  361. ql_write32(qdev, MAC_ADDR_DATA, upper);
  362. status =
  363. ql_wait_reg_rdy(qdev,
  364. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  365. if (status)
  366. goto exit;
  367. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  368. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  369. type); /* type */
  370. /* This field should also include the queue id
  371. and possibly the function id. Right now we hardcode
  372. the route field to NIC core.
  373. */
  374. cam_output = (CAM_OUT_ROUTE_NIC |
  375. (qdev->
  376. func << CAM_OUT_FUNC_SHIFT) |
  377. (0 << CAM_OUT_CQ_ID_SHIFT));
  378. if (qdev->vlgrp)
  379. cam_output |= CAM_OUT_RV;
  380. /* route to NIC core */
  381. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  382. break;
  383. }
  384. case MAC_ADDR_TYPE_VLAN:
  385. {
  386. u32 enable_bit = *((u32 *) &addr[0]);
  387. /* For VLAN, the addr actually holds a bit that
  388. * either enables or disables the vlan id we are
  389. * addressing. It's either MAC_ADDR_E on or off.
  390. * That's bit-27 we're talking about.
  391. */
  392. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  393. (enable_bit ? "Adding" : "Removing"),
  394. index, (enable_bit ? "to" : "from"));
  395. status =
  396. ql_wait_reg_rdy(qdev,
  397. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  398. if (status)
  399. goto exit;
  400. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  401. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  402. type | /* type */
  403. enable_bit); /* enable/disable */
  404. break;
  405. }
  406. case MAC_ADDR_TYPE_MULTI_FLTR:
  407. default:
  408. QPRINTK(qdev, IFUP, CRIT,
  409. "Address type %d not yet supported.\n", type);
  410. status = -EPERM;
  411. }
  412. exit:
  413. return status;
  414. }
  415. /* Set or clear MAC address in hardware. We sometimes
  416. * have to clear it to prevent wrong frame routing
  417. * especially in a bonding environment.
  418. */
  419. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  420. {
  421. int status;
  422. char zero_mac_addr[ETH_ALEN];
  423. char *addr;
  424. if (set) {
  425. addr = &qdev->ndev->dev_addr[0];
  426. QPRINTK(qdev, IFUP, DEBUG,
  427. "Set Mac addr %pM\n", addr);
  428. } else {
  429. memset(zero_mac_addr, 0, ETH_ALEN);
  430. addr = &zero_mac_addr[0];
  431. QPRINTK(qdev, IFUP, DEBUG,
  432. "Clearing MAC address on %s\n",
  433. qdev->ndev->name);
  434. }
  435. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  436. if (status)
  437. return status;
  438. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  439. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  440. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  441. if (status)
  442. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  443. "address.\n");
  444. return status;
  445. }
  446. void ql_link_on(struct ql_adapter *qdev)
  447. {
  448. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  449. qdev->ndev->name);
  450. netif_carrier_on(qdev->ndev);
  451. ql_set_mac_addr(qdev, 1);
  452. }
  453. void ql_link_off(struct ql_adapter *qdev)
  454. {
  455. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  456. qdev->ndev->name);
  457. netif_carrier_off(qdev->ndev);
  458. ql_set_mac_addr(qdev, 0);
  459. }
  460. /* Get a specific frame routing value from the CAM.
  461. * Used for debug and reg dump.
  462. */
  463. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  464. {
  465. int status = 0;
  466. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  467. if (status)
  468. goto exit;
  469. ql_write32(qdev, RT_IDX,
  470. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  471. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  472. if (status)
  473. goto exit;
  474. *value = ql_read32(qdev, RT_DATA);
  475. exit:
  476. return status;
  477. }
  478. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  479. * to route different frame types to various inbound queues. We send broadcast/
  480. * multicast/error frames to the default queue for slow handling,
  481. * and CAM hit/RSS frames to the fast handling queues.
  482. */
  483. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  484. int enable)
  485. {
  486. int status = -EINVAL; /* Return error if no mask match. */
  487. u32 value = 0;
  488. QPRINTK(qdev, IFUP, DEBUG,
  489. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  490. (enable ? "Adding" : "Removing"),
  491. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  492. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  493. ((index ==
  494. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  495. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  496. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  497. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  498. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  499. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  500. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  501. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  502. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  503. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  504. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  505. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  506. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  507. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  508. (enable ? "to" : "from"));
  509. switch (mask) {
  510. case RT_IDX_CAM_HIT:
  511. {
  512. value = RT_IDX_DST_CAM_Q | /* dest */
  513. RT_IDX_TYPE_NICQ | /* type */
  514. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  515. break;
  516. }
  517. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  518. {
  519. value = RT_IDX_DST_DFLT_Q | /* dest */
  520. RT_IDX_TYPE_NICQ | /* type */
  521. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  522. break;
  523. }
  524. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  525. {
  526. value = RT_IDX_DST_DFLT_Q | /* dest */
  527. RT_IDX_TYPE_NICQ | /* type */
  528. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  529. break;
  530. }
  531. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  532. {
  533. value = RT_IDX_DST_DFLT_Q | /* dest */
  534. RT_IDX_TYPE_NICQ | /* type */
  535. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  536. break;
  537. }
  538. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  539. {
  540. value = RT_IDX_DST_DFLT_Q | /* dest */
  541. RT_IDX_TYPE_NICQ | /* type */
  542. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  543. break;
  544. }
  545. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  546. {
  547. value = RT_IDX_DST_DFLT_Q | /* dest */
  548. RT_IDX_TYPE_NICQ | /* type */
  549. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  550. break;
  551. }
  552. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  553. {
  554. value = RT_IDX_DST_RSS | /* dest */
  555. RT_IDX_TYPE_NICQ | /* type */
  556. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  557. break;
  558. }
  559. case 0: /* Clear the E-bit on an entry. */
  560. {
  561. value = RT_IDX_DST_DFLT_Q | /* dest */
  562. RT_IDX_TYPE_NICQ | /* type */
  563. (index << RT_IDX_IDX_SHIFT);/* index */
  564. break;
  565. }
  566. default:
  567. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  568. mask);
  569. status = -EPERM;
  570. goto exit;
  571. }
  572. if (value) {
  573. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  574. if (status)
  575. goto exit;
  576. value |= (enable ? RT_IDX_E : 0);
  577. ql_write32(qdev, RT_IDX, value);
  578. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  579. }
  580. exit:
  581. return status;
  582. }
  583. static void ql_enable_interrupts(struct ql_adapter *qdev)
  584. {
  585. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  586. }
  587. static void ql_disable_interrupts(struct ql_adapter *qdev)
  588. {
  589. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  590. }
  591. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  592. * Otherwise, we may have multiple outstanding workers and don't want to
  593. * enable until the last one finishes. In this case, the irq_cnt gets
  594. * incremented everytime we queue a worker and decremented everytime
  595. * a worker finishes. Once it hits zero we enable the interrupt.
  596. */
  597. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  598. {
  599. u32 var = 0;
  600. unsigned long hw_flags = 0;
  601. struct intr_context *ctx = qdev->intr_context + intr;
  602. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  603. /* Always enable if we're MSIX multi interrupts and
  604. * it's not the default (zeroeth) interrupt.
  605. */
  606. ql_write32(qdev, INTR_EN,
  607. ctx->intr_en_mask);
  608. var = ql_read32(qdev, STS);
  609. return var;
  610. }
  611. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  612. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  613. ql_write32(qdev, INTR_EN,
  614. ctx->intr_en_mask);
  615. var = ql_read32(qdev, STS);
  616. }
  617. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  618. return var;
  619. }
  620. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  621. {
  622. u32 var = 0;
  623. struct intr_context *ctx;
  624. /* HW disables for us if we're MSIX multi interrupts and
  625. * it's not the default (zeroeth) interrupt.
  626. */
  627. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  628. return 0;
  629. ctx = qdev->intr_context + intr;
  630. spin_lock(&qdev->hw_lock);
  631. if (!atomic_read(&ctx->irq_cnt)) {
  632. ql_write32(qdev, INTR_EN,
  633. ctx->intr_dis_mask);
  634. var = ql_read32(qdev, STS);
  635. }
  636. atomic_inc(&ctx->irq_cnt);
  637. spin_unlock(&qdev->hw_lock);
  638. return var;
  639. }
  640. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  641. {
  642. int i;
  643. for (i = 0; i < qdev->intr_count; i++) {
  644. /* The enable call does a atomic_dec_and_test
  645. * and enables only if the result is zero.
  646. * So we precharge it here.
  647. */
  648. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  649. i == 0))
  650. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  651. ql_enable_completion_interrupt(qdev, i);
  652. }
  653. }
  654. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  655. {
  656. int status, i;
  657. u16 csum = 0;
  658. __le16 *flash = (__le16 *)&qdev->flash;
  659. status = strncmp((char *)&qdev->flash, str, 4);
  660. if (status) {
  661. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  662. return status;
  663. }
  664. for (i = 0; i < size; i++)
  665. csum += le16_to_cpu(*flash++);
  666. if (csum)
  667. QPRINTK(qdev, IFUP, ERR,
  668. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  669. return csum;
  670. }
  671. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  672. {
  673. int status = 0;
  674. /* wait for reg to come ready */
  675. status = ql_wait_reg_rdy(qdev,
  676. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  677. if (status)
  678. goto exit;
  679. /* set up for reg read */
  680. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  681. /* wait for reg to come ready */
  682. status = ql_wait_reg_rdy(qdev,
  683. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  684. if (status)
  685. goto exit;
  686. /* This data is stored on flash as an array of
  687. * __le32. Since ql_read32() returns cpu endian
  688. * we need to swap it back.
  689. */
  690. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  691. exit:
  692. return status;
  693. }
  694. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  695. {
  696. u32 i, size;
  697. int status;
  698. __le32 *p = (__le32 *)&qdev->flash;
  699. u32 offset;
  700. u8 mac_addr[6];
  701. /* Get flash offset for function and adjust
  702. * for dword access.
  703. */
  704. if (!qdev->port)
  705. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  706. else
  707. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  708. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  709. return -ETIMEDOUT;
  710. size = sizeof(struct flash_params_8000) / sizeof(u32);
  711. for (i = 0; i < size; i++, p++) {
  712. status = ql_read_flash_word(qdev, i+offset, p);
  713. if (status) {
  714. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  715. goto exit;
  716. }
  717. }
  718. status = ql_validate_flash(qdev,
  719. sizeof(struct flash_params_8000) / sizeof(u16),
  720. "8000");
  721. if (status) {
  722. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  723. status = -EINVAL;
  724. goto exit;
  725. }
  726. /* Extract either manufacturer or BOFM modified
  727. * MAC address.
  728. */
  729. if (qdev->flash.flash_params_8000.data_type1 == 2)
  730. memcpy(mac_addr,
  731. qdev->flash.flash_params_8000.mac_addr1,
  732. qdev->ndev->addr_len);
  733. else
  734. memcpy(mac_addr,
  735. qdev->flash.flash_params_8000.mac_addr,
  736. qdev->ndev->addr_len);
  737. if (!is_valid_ether_addr(mac_addr)) {
  738. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  739. status = -EINVAL;
  740. goto exit;
  741. }
  742. memcpy(qdev->ndev->dev_addr,
  743. mac_addr,
  744. qdev->ndev->addr_len);
  745. exit:
  746. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  747. return status;
  748. }
  749. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  750. {
  751. int i;
  752. int status;
  753. __le32 *p = (__le32 *)&qdev->flash;
  754. u32 offset = 0;
  755. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  756. /* Second function's parameters follow the first
  757. * function's.
  758. */
  759. if (qdev->port)
  760. offset = size;
  761. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  762. return -ETIMEDOUT;
  763. for (i = 0; i < size; i++, p++) {
  764. status = ql_read_flash_word(qdev, i+offset, p);
  765. if (status) {
  766. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  767. goto exit;
  768. }
  769. }
  770. status = ql_validate_flash(qdev,
  771. sizeof(struct flash_params_8012) / sizeof(u16),
  772. "8012");
  773. if (status) {
  774. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  775. status = -EINVAL;
  776. goto exit;
  777. }
  778. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  779. status = -EINVAL;
  780. goto exit;
  781. }
  782. memcpy(qdev->ndev->dev_addr,
  783. qdev->flash.flash_params_8012.mac_addr,
  784. qdev->ndev->addr_len);
  785. exit:
  786. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  787. return status;
  788. }
  789. /* xgmac register are located behind the xgmac_addr and xgmac_data
  790. * register pair. Each read/write requires us to wait for the ready
  791. * bit before reading/writing the data.
  792. */
  793. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  794. {
  795. int status;
  796. /* wait for reg to come ready */
  797. status = ql_wait_reg_rdy(qdev,
  798. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  799. if (status)
  800. return status;
  801. /* write the data to the data reg */
  802. ql_write32(qdev, XGMAC_DATA, data);
  803. /* trigger the write */
  804. ql_write32(qdev, XGMAC_ADDR, reg);
  805. return status;
  806. }
  807. /* xgmac register are located behind the xgmac_addr and xgmac_data
  808. * register pair. Each read/write requires us to wait for the ready
  809. * bit before reading/writing the data.
  810. */
  811. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  812. {
  813. int status = 0;
  814. /* wait for reg to come ready */
  815. status = ql_wait_reg_rdy(qdev,
  816. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  817. if (status)
  818. goto exit;
  819. /* set up for reg read */
  820. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  821. /* wait for reg to come ready */
  822. status = ql_wait_reg_rdy(qdev,
  823. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  824. if (status)
  825. goto exit;
  826. /* get the data */
  827. *data = ql_read32(qdev, XGMAC_DATA);
  828. exit:
  829. return status;
  830. }
  831. /* This is used for reading the 64-bit statistics regs. */
  832. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  833. {
  834. int status = 0;
  835. u32 hi = 0;
  836. u32 lo = 0;
  837. status = ql_read_xgmac_reg(qdev, reg, &lo);
  838. if (status)
  839. goto exit;
  840. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  841. if (status)
  842. goto exit;
  843. *data = (u64) lo | ((u64) hi << 32);
  844. exit:
  845. return status;
  846. }
  847. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  848. {
  849. int status;
  850. /*
  851. * Get MPI firmware version for driver banner
  852. * and ethool info.
  853. */
  854. status = ql_mb_about_fw(qdev);
  855. if (status)
  856. goto exit;
  857. status = ql_mb_get_fw_state(qdev);
  858. if (status)
  859. goto exit;
  860. /* Wake up a worker to get/set the TX/RX frame sizes. */
  861. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  862. exit:
  863. return status;
  864. }
  865. /* Take the MAC Core out of reset.
  866. * Enable statistics counting.
  867. * Take the transmitter/receiver out of reset.
  868. * This functionality may be done in the MPI firmware at a
  869. * later date.
  870. */
  871. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  872. {
  873. int status = 0;
  874. u32 data;
  875. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  876. /* Another function has the semaphore, so
  877. * wait for the port init bit to come ready.
  878. */
  879. QPRINTK(qdev, LINK, INFO,
  880. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  881. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  882. if (status) {
  883. QPRINTK(qdev, LINK, CRIT,
  884. "Port initialize timed out.\n");
  885. }
  886. return status;
  887. }
  888. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  889. /* Set the core reset. */
  890. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  891. if (status)
  892. goto end;
  893. data |= GLOBAL_CFG_RESET;
  894. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  895. if (status)
  896. goto end;
  897. /* Clear the core reset and turn on jumbo for receiver. */
  898. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  899. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  900. data |= GLOBAL_CFG_TX_STAT_EN;
  901. data |= GLOBAL_CFG_RX_STAT_EN;
  902. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  903. if (status)
  904. goto end;
  905. /* Enable transmitter, and clear it's reset. */
  906. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  907. if (status)
  908. goto end;
  909. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  910. data |= TX_CFG_EN; /* Enable the transmitter. */
  911. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  912. if (status)
  913. goto end;
  914. /* Enable receiver and clear it's reset. */
  915. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  916. if (status)
  917. goto end;
  918. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  919. data |= RX_CFG_EN; /* Enable the receiver. */
  920. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  921. if (status)
  922. goto end;
  923. /* Turn on jumbo. */
  924. status =
  925. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  926. if (status)
  927. goto end;
  928. status =
  929. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  930. if (status)
  931. goto end;
  932. /* Signal to the world that the port is enabled. */
  933. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  934. end:
  935. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  936. return status;
  937. }
  938. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  939. {
  940. return PAGE_SIZE << qdev->lbq_buf_order;
  941. }
  942. /* Get the next large buffer. */
  943. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  944. {
  945. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  946. rx_ring->lbq_curr_idx++;
  947. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  948. rx_ring->lbq_curr_idx = 0;
  949. rx_ring->lbq_free_cnt++;
  950. return lbq_desc;
  951. }
  952. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  953. struct rx_ring *rx_ring)
  954. {
  955. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  956. pci_dma_sync_single_for_cpu(qdev->pdev,
  957. pci_unmap_addr(lbq_desc, mapaddr),
  958. rx_ring->lbq_buf_size,
  959. PCI_DMA_FROMDEVICE);
  960. /* If it's the last chunk of our master page then
  961. * we unmap it.
  962. */
  963. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  964. == ql_lbq_block_size(qdev))
  965. pci_unmap_page(qdev->pdev,
  966. lbq_desc->p.pg_chunk.map,
  967. ql_lbq_block_size(qdev),
  968. PCI_DMA_FROMDEVICE);
  969. return lbq_desc;
  970. }
  971. /* Get the next small buffer. */
  972. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  973. {
  974. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  975. rx_ring->sbq_curr_idx++;
  976. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  977. rx_ring->sbq_curr_idx = 0;
  978. rx_ring->sbq_free_cnt++;
  979. return sbq_desc;
  980. }
  981. /* Update an rx ring index. */
  982. static void ql_update_cq(struct rx_ring *rx_ring)
  983. {
  984. rx_ring->cnsmr_idx++;
  985. rx_ring->curr_entry++;
  986. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  987. rx_ring->cnsmr_idx = 0;
  988. rx_ring->curr_entry = rx_ring->cq_base;
  989. }
  990. }
  991. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  992. {
  993. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  994. }
  995. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  996. struct bq_desc *lbq_desc)
  997. {
  998. if (!rx_ring->pg_chunk.page) {
  999. u64 map;
  1000. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  1001. GFP_ATOMIC,
  1002. qdev->lbq_buf_order);
  1003. if (unlikely(!rx_ring->pg_chunk.page)) {
  1004. QPRINTK(qdev, DRV, ERR,
  1005. "page allocation failed.\n");
  1006. return -ENOMEM;
  1007. }
  1008. rx_ring->pg_chunk.offset = 0;
  1009. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1010. 0, ql_lbq_block_size(qdev),
  1011. PCI_DMA_FROMDEVICE);
  1012. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1013. __free_pages(rx_ring->pg_chunk.page,
  1014. qdev->lbq_buf_order);
  1015. QPRINTK(qdev, DRV, ERR,
  1016. "PCI mapping failed.\n");
  1017. return -ENOMEM;
  1018. }
  1019. rx_ring->pg_chunk.map = map;
  1020. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1021. }
  1022. /* Copy the current master pg_chunk info
  1023. * to the current descriptor.
  1024. */
  1025. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1026. /* Adjust the master page chunk for next
  1027. * buffer get.
  1028. */
  1029. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1030. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1031. rx_ring->pg_chunk.page = NULL;
  1032. lbq_desc->p.pg_chunk.last_flag = 1;
  1033. } else {
  1034. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1035. get_page(rx_ring->pg_chunk.page);
  1036. lbq_desc->p.pg_chunk.last_flag = 0;
  1037. }
  1038. return 0;
  1039. }
  1040. /* Process (refill) a large buffer queue. */
  1041. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1042. {
  1043. u32 clean_idx = rx_ring->lbq_clean_idx;
  1044. u32 start_idx = clean_idx;
  1045. struct bq_desc *lbq_desc;
  1046. u64 map;
  1047. int i;
  1048. while (rx_ring->lbq_free_cnt > 32) {
  1049. for (i = 0; i < 16; i++) {
  1050. QPRINTK(qdev, RX_STATUS, DEBUG,
  1051. "lbq: try cleaning clean_idx = %d.\n",
  1052. clean_idx);
  1053. lbq_desc = &rx_ring->lbq[clean_idx];
  1054. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1055. QPRINTK(qdev, IFUP, ERR,
  1056. "Could not get a page chunk.\n");
  1057. return;
  1058. }
  1059. map = lbq_desc->p.pg_chunk.map +
  1060. lbq_desc->p.pg_chunk.offset;
  1061. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1062. pci_unmap_len_set(lbq_desc, maplen,
  1063. rx_ring->lbq_buf_size);
  1064. *lbq_desc->addr = cpu_to_le64(map);
  1065. pci_dma_sync_single_for_device(qdev->pdev, map,
  1066. rx_ring->lbq_buf_size,
  1067. PCI_DMA_FROMDEVICE);
  1068. clean_idx++;
  1069. if (clean_idx == rx_ring->lbq_len)
  1070. clean_idx = 0;
  1071. }
  1072. rx_ring->lbq_clean_idx = clean_idx;
  1073. rx_ring->lbq_prod_idx += 16;
  1074. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1075. rx_ring->lbq_prod_idx = 0;
  1076. rx_ring->lbq_free_cnt -= 16;
  1077. }
  1078. if (start_idx != clean_idx) {
  1079. QPRINTK(qdev, RX_STATUS, DEBUG,
  1080. "lbq: updating prod idx = %d.\n",
  1081. rx_ring->lbq_prod_idx);
  1082. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1083. rx_ring->lbq_prod_idx_db_reg);
  1084. }
  1085. }
  1086. /* Process (refill) a small buffer queue. */
  1087. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1088. {
  1089. u32 clean_idx = rx_ring->sbq_clean_idx;
  1090. u32 start_idx = clean_idx;
  1091. struct bq_desc *sbq_desc;
  1092. u64 map;
  1093. int i;
  1094. while (rx_ring->sbq_free_cnt > 16) {
  1095. for (i = 0; i < 16; i++) {
  1096. sbq_desc = &rx_ring->sbq[clean_idx];
  1097. QPRINTK(qdev, RX_STATUS, DEBUG,
  1098. "sbq: try cleaning clean_idx = %d.\n",
  1099. clean_idx);
  1100. if (sbq_desc->p.skb == NULL) {
  1101. QPRINTK(qdev, RX_STATUS, DEBUG,
  1102. "sbq: getting new skb for index %d.\n",
  1103. sbq_desc->index);
  1104. sbq_desc->p.skb =
  1105. netdev_alloc_skb(qdev->ndev,
  1106. SMALL_BUFFER_SIZE);
  1107. if (sbq_desc->p.skb == NULL) {
  1108. QPRINTK(qdev, PROBE, ERR,
  1109. "Couldn't get an skb.\n");
  1110. rx_ring->sbq_clean_idx = clean_idx;
  1111. return;
  1112. }
  1113. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1114. map = pci_map_single(qdev->pdev,
  1115. sbq_desc->p.skb->data,
  1116. rx_ring->sbq_buf_size,
  1117. PCI_DMA_FROMDEVICE);
  1118. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1119. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1120. rx_ring->sbq_clean_idx = clean_idx;
  1121. dev_kfree_skb_any(sbq_desc->p.skb);
  1122. sbq_desc->p.skb = NULL;
  1123. return;
  1124. }
  1125. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1126. pci_unmap_len_set(sbq_desc, maplen,
  1127. rx_ring->sbq_buf_size);
  1128. *sbq_desc->addr = cpu_to_le64(map);
  1129. }
  1130. clean_idx++;
  1131. if (clean_idx == rx_ring->sbq_len)
  1132. clean_idx = 0;
  1133. }
  1134. rx_ring->sbq_clean_idx = clean_idx;
  1135. rx_ring->sbq_prod_idx += 16;
  1136. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1137. rx_ring->sbq_prod_idx = 0;
  1138. rx_ring->sbq_free_cnt -= 16;
  1139. }
  1140. if (start_idx != clean_idx) {
  1141. QPRINTK(qdev, RX_STATUS, DEBUG,
  1142. "sbq: updating prod idx = %d.\n",
  1143. rx_ring->sbq_prod_idx);
  1144. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1145. rx_ring->sbq_prod_idx_db_reg);
  1146. }
  1147. }
  1148. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1149. struct rx_ring *rx_ring)
  1150. {
  1151. ql_update_sbq(qdev, rx_ring);
  1152. ql_update_lbq(qdev, rx_ring);
  1153. }
  1154. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1155. * fails at some stage, or from the interrupt when a tx completes.
  1156. */
  1157. static void ql_unmap_send(struct ql_adapter *qdev,
  1158. struct tx_ring_desc *tx_ring_desc, int mapped)
  1159. {
  1160. int i;
  1161. for (i = 0; i < mapped; i++) {
  1162. if (i == 0 || (i == 7 && mapped > 7)) {
  1163. /*
  1164. * Unmap the skb->data area, or the
  1165. * external sglist (AKA the Outbound
  1166. * Address List (OAL)).
  1167. * If its the zeroeth element, then it's
  1168. * the skb->data area. If it's the 7th
  1169. * element and there is more than 6 frags,
  1170. * then its an OAL.
  1171. */
  1172. if (i == 7) {
  1173. QPRINTK(qdev, TX_DONE, DEBUG,
  1174. "unmapping OAL area.\n");
  1175. }
  1176. pci_unmap_single(qdev->pdev,
  1177. pci_unmap_addr(&tx_ring_desc->map[i],
  1178. mapaddr),
  1179. pci_unmap_len(&tx_ring_desc->map[i],
  1180. maplen),
  1181. PCI_DMA_TODEVICE);
  1182. } else {
  1183. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1184. i);
  1185. pci_unmap_page(qdev->pdev,
  1186. pci_unmap_addr(&tx_ring_desc->map[i],
  1187. mapaddr),
  1188. pci_unmap_len(&tx_ring_desc->map[i],
  1189. maplen), PCI_DMA_TODEVICE);
  1190. }
  1191. }
  1192. }
  1193. /* Map the buffers for this transmit. This will return
  1194. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1195. */
  1196. static int ql_map_send(struct ql_adapter *qdev,
  1197. struct ob_mac_iocb_req *mac_iocb_ptr,
  1198. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1199. {
  1200. int len = skb_headlen(skb);
  1201. dma_addr_t map;
  1202. int frag_idx, err, map_idx = 0;
  1203. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1204. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1205. if (frag_cnt) {
  1206. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1207. }
  1208. /*
  1209. * Map the skb buffer first.
  1210. */
  1211. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1212. err = pci_dma_mapping_error(qdev->pdev, map);
  1213. if (err) {
  1214. QPRINTK(qdev, TX_QUEUED, ERR,
  1215. "PCI mapping failed with error: %d\n", err);
  1216. return NETDEV_TX_BUSY;
  1217. }
  1218. tbd->len = cpu_to_le32(len);
  1219. tbd->addr = cpu_to_le64(map);
  1220. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1221. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1222. map_idx++;
  1223. /*
  1224. * This loop fills the remainder of the 8 address descriptors
  1225. * in the IOCB. If there are more than 7 fragments, then the
  1226. * eighth address desc will point to an external list (OAL).
  1227. * When this happens, the remainder of the frags will be stored
  1228. * in this list.
  1229. */
  1230. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1231. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1232. tbd++;
  1233. if (frag_idx == 6 && frag_cnt > 7) {
  1234. /* Let's tack on an sglist.
  1235. * Our control block will now
  1236. * look like this:
  1237. * iocb->seg[0] = skb->data
  1238. * iocb->seg[1] = frag[0]
  1239. * iocb->seg[2] = frag[1]
  1240. * iocb->seg[3] = frag[2]
  1241. * iocb->seg[4] = frag[3]
  1242. * iocb->seg[5] = frag[4]
  1243. * iocb->seg[6] = frag[5]
  1244. * iocb->seg[7] = ptr to OAL (external sglist)
  1245. * oal->seg[0] = frag[6]
  1246. * oal->seg[1] = frag[7]
  1247. * oal->seg[2] = frag[8]
  1248. * oal->seg[3] = frag[9]
  1249. * oal->seg[4] = frag[10]
  1250. * etc...
  1251. */
  1252. /* Tack on the OAL in the eighth segment of IOCB. */
  1253. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1254. sizeof(struct oal),
  1255. PCI_DMA_TODEVICE);
  1256. err = pci_dma_mapping_error(qdev->pdev, map);
  1257. if (err) {
  1258. QPRINTK(qdev, TX_QUEUED, ERR,
  1259. "PCI mapping outbound address list with error: %d\n",
  1260. err);
  1261. goto map_error;
  1262. }
  1263. tbd->addr = cpu_to_le64(map);
  1264. /*
  1265. * The length is the number of fragments
  1266. * that remain to be mapped times the length
  1267. * of our sglist (OAL).
  1268. */
  1269. tbd->len =
  1270. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1271. (frag_cnt - frag_idx)) | TX_DESC_C);
  1272. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1273. map);
  1274. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1275. sizeof(struct oal));
  1276. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1277. map_idx++;
  1278. }
  1279. map =
  1280. pci_map_page(qdev->pdev, frag->page,
  1281. frag->page_offset, frag->size,
  1282. PCI_DMA_TODEVICE);
  1283. err = pci_dma_mapping_error(qdev->pdev, map);
  1284. if (err) {
  1285. QPRINTK(qdev, TX_QUEUED, ERR,
  1286. "PCI mapping frags failed with error: %d.\n",
  1287. err);
  1288. goto map_error;
  1289. }
  1290. tbd->addr = cpu_to_le64(map);
  1291. tbd->len = cpu_to_le32(frag->size);
  1292. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1293. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1294. frag->size);
  1295. }
  1296. /* Save the number of segments we've mapped. */
  1297. tx_ring_desc->map_cnt = map_idx;
  1298. /* Terminate the last segment. */
  1299. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1300. return NETDEV_TX_OK;
  1301. map_error:
  1302. /*
  1303. * If the first frag mapping failed, then i will be zero.
  1304. * This causes the unmap of the skb->data area. Otherwise
  1305. * we pass in the number of frags that mapped successfully
  1306. * so they can be umapped.
  1307. */
  1308. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1309. return NETDEV_TX_BUSY;
  1310. }
  1311. /* Process an inbound completion from an rx ring. */
  1312. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1313. struct rx_ring *rx_ring,
  1314. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1315. u32 length,
  1316. u16 vlan_id)
  1317. {
  1318. struct sk_buff *skb;
  1319. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1320. struct skb_frag_struct *rx_frag;
  1321. int nr_frags;
  1322. struct napi_struct *napi = &rx_ring->napi;
  1323. napi->dev = qdev->ndev;
  1324. skb = napi_get_frags(napi);
  1325. if (!skb) {
  1326. QPRINTK(qdev, DRV, ERR, "Couldn't get an skb, exiting.\n");
  1327. rx_ring->rx_dropped++;
  1328. put_page(lbq_desc->p.pg_chunk.page);
  1329. return;
  1330. }
  1331. prefetch(lbq_desc->p.pg_chunk.va);
  1332. rx_frag = skb_shinfo(skb)->frags;
  1333. nr_frags = skb_shinfo(skb)->nr_frags;
  1334. rx_frag += nr_frags;
  1335. rx_frag->page = lbq_desc->p.pg_chunk.page;
  1336. rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
  1337. rx_frag->size = length;
  1338. skb->len += length;
  1339. skb->data_len += length;
  1340. skb->truesize += length;
  1341. skb_shinfo(skb)->nr_frags++;
  1342. rx_ring->rx_packets++;
  1343. rx_ring->rx_bytes += length;
  1344. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1345. skb_record_rx_queue(skb, rx_ring->cq_id);
  1346. if (qdev->vlgrp && (vlan_id != 0xffff))
  1347. vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
  1348. else
  1349. napi_gro_frags(napi);
  1350. }
  1351. /* Process an inbound completion from an rx ring. */
  1352. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1353. struct rx_ring *rx_ring,
  1354. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1355. u32 length,
  1356. u16 vlan_id)
  1357. {
  1358. struct net_device *ndev = qdev->ndev;
  1359. struct sk_buff *skb = NULL;
  1360. void *addr;
  1361. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1362. struct napi_struct *napi = &rx_ring->napi;
  1363. skb = netdev_alloc_skb(ndev, length);
  1364. if (!skb) {
  1365. QPRINTK(qdev, DRV, ERR, "Couldn't get an skb, "
  1366. "need to unwind!.\n");
  1367. rx_ring->rx_dropped++;
  1368. put_page(lbq_desc->p.pg_chunk.page);
  1369. return;
  1370. }
  1371. addr = lbq_desc->p.pg_chunk.va;
  1372. prefetch(addr);
  1373. /* Frame error, so drop the packet. */
  1374. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1375. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1376. ib_mac_rsp->flags2);
  1377. rx_ring->rx_errors++;
  1378. goto err_out;
  1379. }
  1380. /* The max framesize filter on this chip is set higher than
  1381. * MTU since FCoE uses 2k frames.
  1382. */
  1383. if (skb->len > ndev->mtu + ETH_HLEN) {
  1384. QPRINTK(qdev, DRV, ERR, "Segment too small, dropping.\n");
  1385. rx_ring->rx_dropped++;
  1386. goto err_out;
  1387. }
  1388. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1389. QPRINTK(qdev, RX_STATUS, DEBUG,
  1390. "%d bytes of headers and data in large. Chain "
  1391. "page to new skb and pull tail.\n", length);
  1392. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1393. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1394. length-ETH_HLEN);
  1395. skb->len += length-ETH_HLEN;
  1396. skb->data_len += length-ETH_HLEN;
  1397. skb->truesize += length-ETH_HLEN;
  1398. rx_ring->rx_packets++;
  1399. rx_ring->rx_bytes += skb->len;
  1400. skb->protocol = eth_type_trans(skb, ndev);
  1401. skb->ip_summed = CHECKSUM_NONE;
  1402. if (qdev->rx_csum &&
  1403. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1404. /* TCP frame. */
  1405. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1406. QPRINTK(qdev, RX_STATUS, DEBUG,
  1407. "TCP checksum done!\n");
  1408. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1409. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1410. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1411. /* Unfragmented ipv4 UDP frame. */
  1412. struct iphdr *iph = (struct iphdr *) skb->data;
  1413. if (!(iph->frag_off &
  1414. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1415. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1416. QPRINTK(qdev, RX_STATUS, DEBUG,
  1417. "TCP checksum done!\n");
  1418. }
  1419. }
  1420. }
  1421. skb_record_rx_queue(skb, rx_ring->cq_id);
  1422. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1423. if (qdev->vlgrp && (vlan_id != 0xffff))
  1424. vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
  1425. else
  1426. napi_gro_receive(napi, skb);
  1427. } else {
  1428. if (qdev->vlgrp && (vlan_id != 0xffff))
  1429. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1430. else
  1431. netif_receive_skb(skb);
  1432. }
  1433. return;
  1434. err_out:
  1435. dev_kfree_skb_any(skb);
  1436. put_page(lbq_desc->p.pg_chunk.page);
  1437. }
  1438. /* Process an inbound completion from an rx ring. */
  1439. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1440. struct rx_ring *rx_ring,
  1441. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1442. u32 length,
  1443. u16 vlan_id)
  1444. {
  1445. struct net_device *ndev = qdev->ndev;
  1446. struct sk_buff *skb = NULL;
  1447. struct sk_buff *new_skb = NULL;
  1448. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1449. skb = sbq_desc->p.skb;
  1450. /* Allocate new_skb and copy */
  1451. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1452. if (new_skb == NULL) {
  1453. QPRINTK(qdev, PROBE, ERR,
  1454. "No skb available, drop the packet.\n");
  1455. rx_ring->rx_dropped++;
  1456. return;
  1457. }
  1458. skb_reserve(new_skb, NET_IP_ALIGN);
  1459. memcpy(skb_put(new_skb, length), skb->data, length);
  1460. skb = new_skb;
  1461. /* Frame error, so drop the packet. */
  1462. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1463. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1464. ib_mac_rsp->flags2);
  1465. dev_kfree_skb_any(skb);
  1466. rx_ring->rx_errors++;
  1467. return;
  1468. }
  1469. /* loopback self test for ethtool */
  1470. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1471. ql_check_lb_frame(qdev, skb);
  1472. dev_kfree_skb_any(skb);
  1473. return;
  1474. }
  1475. /* The max framesize filter on this chip is set higher than
  1476. * MTU since FCoE uses 2k frames.
  1477. */
  1478. if (skb->len > ndev->mtu + ETH_HLEN) {
  1479. dev_kfree_skb_any(skb);
  1480. rx_ring->rx_dropped++;
  1481. return;
  1482. }
  1483. prefetch(skb->data);
  1484. skb->dev = ndev;
  1485. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1486. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1487. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1488. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1489. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1490. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1491. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1492. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1493. }
  1494. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1495. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1496. rx_ring->rx_packets++;
  1497. rx_ring->rx_bytes += skb->len;
  1498. skb->protocol = eth_type_trans(skb, ndev);
  1499. skb->ip_summed = CHECKSUM_NONE;
  1500. /* If rx checksum is on, and there are no
  1501. * csum or frame errors.
  1502. */
  1503. if (qdev->rx_csum &&
  1504. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1505. /* TCP frame. */
  1506. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1507. QPRINTK(qdev, RX_STATUS, DEBUG,
  1508. "TCP checksum done!\n");
  1509. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1510. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1511. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1512. /* Unfragmented ipv4 UDP frame. */
  1513. struct iphdr *iph = (struct iphdr *) skb->data;
  1514. if (!(iph->frag_off &
  1515. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1516. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1517. QPRINTK(qdev, RX_STATUS, DEBUG,
  1518. "TCP checksum done!\n");
  1519. }
  1520. }
  1521. }
  1522. skb_record_rx_queue(skb, rx_ring->cq_id);
  1523. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1524. if (qdev->vlgrp && (vlan_id != 0xffff))
  1525. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1526. vlan_id, skb);
  1527. else
  1528. napi_gro_receive(&rx_ring->napi, skb);
  1529. } else {
  1530. if (qdev->vlgrp && (vlan_id != 0xffff))
  1531. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1532. else
  1533. netif_receive_skb(skb);
  1534. }
  1535. }
  1536. static void ql_realign_skb(struct sk_buff *skb, int len)
  1537. {
  1538. void *temp_addr = skb->data;
  1539. /* Undo the skb_reserve(skb,32) we did before
  1540. * giving to hardware, and realign data on
  1541. * a 2-byte boundary.
  1542. */
  1543. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1544. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1545. skb_copy_to_linear_data(skb, temp_addr,
  1546. (unsigned int)len);
  1547. }
  1548. /*
  1549. * This function builds an skb for the given inbound
  1550. * completion. It will be rewritten for readability in the near
  1551. * future, but for not it works well.
  1552. */
  1553. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1554. struct rx_ring *rx_ring,
  1555. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1556. {
  1557. struct bq_desc *lbq_desc;
  1558. struct bq_desc *sbq_desc;
  1559. struct sk_buff *skb = NULL;
  1560. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1561. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1562. /*
  1563. * Handle the header buffer if present.
  1564. */
  1565. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1566. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1567. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1568. /*
  1569. * Headers fit nicely into a small buffer.
  1570. */
  1571. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1572. pci_unmap_single(qdev->pdev,
  1573. pci_unmap_addr(sbq_desc, mapaddr),
  1574. pci_unmap_len(sbq_desc, maplen),
  1575. PCI_DMA_FROMDEVICE);
  1576. skb = sbq_desc->p.skb;
  1577. ql_realign_skb(skb, hdr_len);
  1578. skb_put(skb, hdr_len);
  1579. sbq_desc->p.skb = NULL;
  1580. }
  1581. /*
  1582. * Handle the data buffer(s).
  1583. */
  1584. if (unlikely(!length)) { /* Is there data too? */
  1585. QPRINTK(qdev, RX_STATUS, DEBUG,
  1586. "No Data buffer in this packet.\n");
  1587. return skb;
  1588. }
  1589. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1590. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1591. QPRINTK(qdev, RX_STATUS, DEBUG,
  1592. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1593. /*
  1594. * Data is less than small buffer size so it's
  1595. * stuffed in a small buffer.
  1596. * For this case we append the data
  1597. * from the "data" small buffer to the "header" small
  1598. * buffer.
  1599. */
  1600. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1601. pci_dma_sync_single_for_cpu(qdev->pdev,
  1602. pci_unmap_addr
  1603. (sbq_desc, mapaddr),
  1604. pci_unmap_len
  1605. (sbq_desc, maplen),
  1606. PCI_DMA_FROMDEVICE);
  1607. memcpy(skb_put(skb, length),
  1608. sbq_desc->p.skb->data, length);
  1609. pci_dma_sync_single_for_device(qdev->pdev,
  1610. pci_unmap_addr
  1611. (sbq_desc,
  1612. mapaddr),
  1613. pci_unmap_len
  1614. (sbq_desc,
  1615. maplen),
  1616. PCI_DMA_FROMDEVICE);
  1617. } else {
  1618. QPRINTK(qdev, RX_STATUS, DEBUG,
  1619. "%d bytes in a single small buffer.\n", length);
  1620. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1621. skb = sbq_desc->p.skb;
  1622. ql_realign_skb(skb, length);
  1623. skb_put(skb, length);
  1624. pci_unmap_single(qdev->pdev,
  1625. pci_unmap_addr(sbq_desc,
  1626. mapaddr),
  1627. pci_unmap_len(sbq_desc,
  1628. maplen),
  1629. PCI_DMA_FROMDEVICE);
  1630. sbq_desc->p.skb = NULL;
  1631. }
  1632. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1633. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1634. QPRINTK(qdev, RX_STATUS, DEBUG,
  1635. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1636. /*
  1637. * The data is in a single large buffer. We
  1638. * chain it to the header buffer's skb and let
  1639. * it rip.
  1640. */
  1641. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1642. QPRINTK(qdev, RX_STATUS, DEBUG,
  1643. "Chaining page at offset = %d,"
  1644. "for %d bytes to skb.\n",
  1645. lbq_desc->p.pg_chunk.offset, length);
  1646. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1647. lbq_desc->p.pg_chunk.offset,
  1648. length);
  1649. skb->len += length;
  1650. skb->data_len += length;
  1651. skb->truesize += length;
  1652. } else {
  1653. /*
  1654. * The headers and data are in a single large buffer. We
  1655. * copy it to a new skb and let it go. This can happen with
  1656. * jumbo mtu on a non-TCP/UDP frame.
  1657. */
  1658. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1659. skb = netdev_alloc_skb(qdev->ndev, length);
  1660. if (skb == NULL) {
  1661. QPRINTK(qdev, PROBE, DEBUG,
  1662. "No skb available, drop the packet.\n");
  1663. return NULL;
  1664. }
  1665. pci_unmap_page(qdev->pdev,
  1666. pci_unmap_addr(lbq_desc,
  1667. mapaddr),
  1668. pci_unmap_len(lbq_desc, maplen),
  1669. PCI_DMA_FROMDEVICE);
  1670. skb_reserve(skb, NET_IP_ALIGN);
  1671. QPRINTK(qdev, RX_STATUS, DEBUG,
  1672. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1673. skb_fill_page_desc(skb, 0,
  1674. lbq_desc->p.pg_chunk.page,
  1675. lbq_desc->p.pg_chunk.offset,
  1676. length);
  1677. skb->len += length;
  1678. skb->data_len += length;
  1679. skb->truesize += length;
  1680. length -= length;
  1681. __pskb_pull_tail(skb,
  1682. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1683. VLAN_ETH_HLEN : ETH_HLEN);
  1684. }
  1685. } else {
  1686. /*
  1687. * The data is in a chain of large buffers
  1688. * pointed to by a small buffer. We loop
  1689. * thru and chain them to the our small header
  1690. * buffer's skb.
  1691. * frags: There are 18 max frags and our small
  1692. * buffer will hold 32 of them. The thing is,
  1693. * we'll use 3 max for our 9000 byte jumbo
  1694. * frames. If the MTU goes up we could
  1695. * eventually be in trouble.
  1696. */
  1697. int size, i = 0;
  1698. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1699. pci_unmap_single(qdev->pdev,
  1700. pci_unmap_addr(sbq_desc, mapaddr),
  1701. pci_unmap_len(sbq_desc, maplen),
  1702. PCI_DMA_FROMDEVICE);
  1703. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1704. /*
  1705. * This is an non TCP/UDP IP frame, so
  1706. * the headers aren't split into a small
  1707. * buffer. We have to use the small buffer
  1708. * that contains our sg list as our skb to
  1709. * send upstairs. Copy the sg list here to
  1710. * a local buffer and use it to find the
  1711. * pages to chain.
  1712. */
  1713. QPRINTK(qdev, RX_STATUS, DEBUG,
  1714. "%d bytes of headers & data in chain of large.\n", length);
  1715. skb = sbq_desc->p.skb;
  1716. sbq_desc->p.skb = NULL;
  1717. skb_reserve(skb, NET_IP_ALIGN);
  1718. }
  1719. while (length > 0) {
  1720. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1721. size = (length < rx_ring->lbq_buf_size) ? length :
  1722. rx_ring->lbq_buf_size;
  1723. QPRINTK(qdev, RX_STATUS, DEBUG,
  1724. "Adding page %d to skb for %d bytes.\n",
  1725. i, size);
  1726. skb_fill_page_desc(skb, i,
  1727. lbq_desc->p.pg_chunk.page,
  1728. lbq_desc->p.pg_chunk.offset,
  1729. size);
  1730. skb->len += size;
  1731. skb->data_len += size;
  1732. skb->truesize += size;
  1733. length -= size;
  1734. i++;
  1735. }
  1736. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1737. VLAN_ETH_HLEN : ETH_HLEN);
  1738. }
  1739. return skb;
  1740. }
  1741. /* Process an inbound completion from an rx ring. */
  1742. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1743. struct rx_ring *rx_ring,
  1744. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1745. u16 vlan_id)
  1746. {
  1747. struct net_device *ndev = qdev->ndev;
  1748. struct sk_buff *skb = NULL;
  1749. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1750. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1751. if (unlikely(!skb)) {
  1752. QPRINTK(qdev, RX_STATUS, DEBUG,
  1753. "No skb available, drop packet.\n");
  1754. rx_ring->rx_dropped++;
  1755. return;
  1756. }
  1757. /* Frame error, so drop the packet. */
  1758. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1759. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1760. ib_mac_rsp->flags2);
  1761. dev_kfree_skb_any(skb);
  1762. rx_ring->rx_errors++;
  1763. return;
  1764. }
  1765. /* The max framesize filter on this chip is set higher than
  1766. * MTU since FCoE uses 2k frames.
  1767. */
  1768. if (skb->len > ndev->mtu + ETH_HLEN) {
  1769. dev_kfree_skb_any(skb);
  1770. rx_ring->rx_dropped++;
  1771. return;
  1772. }
  1773. /* loopback self test for ethtool */
  1774. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1775. ql_check_lb_frame(qdev, skb);
  1776. dev_kfree_skb_any(skb);
  1777. return;
  1778. }
  1779. prefetch(skb->data);
  1780. skb->dev = ndev;
  1781. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1782. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1783. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1784. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1785. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1786. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1787. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1788. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1789. rx_ring->rx_multicast++;
  1790. }
  1791. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1792. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1793. }
  1794. skb->protocol = eth_type_trans(skb, ndev);
  1795. skb->ip_summed = CHECKSUM_NONE;
  1796. /* If rx checksum is on, and there are no
  1797. * csum or frame errors.
  1798. */
  1799. if (qdev->rx_csum &&
  1800. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1801. /* TCP frame. */
  1802. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1803. QPRINTK(qdev, RX_STATUS, DEBUG,
  1804. "TCP checksum done!\n");
  1805. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1806. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1807. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1808. /* Unfragmented ipv4 UDP frame. */
  1809. struct iphdr *iph = (struct iphdr *) skb->data;
  1810. if (!(iph->frag_off &
  1811. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1812. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1813. QPRINTK(qdev, RX_STATUS, DEBUG,
  1814. "TCP checksum done!\n");
  1815. }
  1816. }
  1817. }
  1818. rx_ring->rx_packets++;
  1819. rx_ring->rx_bytes += skb->len;
  1820. skb_record_rx_queue(skb, rx_ring->cq_id);
  1821. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1822. if (qdev->vlgrp &&
  1823. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1824. (vlan_id != 0))
  1825. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1826. vlan_id, skb);
  1827. else
  1828. napi_gro_receive(&rx_ring->napi, skb);
  1829. } else {
  1830. if (qdev->vlgrp &&
  1831. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1832. (vlan_id != 0))
  1833. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1834. else
  1835. netif_receive_skb(skb);
  1836. }
  1837. }
  1838. /* Process an inbound completion from an rx ring. */
  1839. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1840. struct rx_ring *rx_ring,
  1841. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1842. {
  1843. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1844. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1845. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1846. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1847. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1848. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1849. /* The data and headers are split into
  1850. * separate buffers.
  1851. */
  1852. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1853. vlan_id);
  1854. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1855. /* The data fit in a single small buffer.
  1856. * Allocate a new skb, copy the data and
  1857. * return the buffer to the free pool.
  1858. */
  1859. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1860. length, vlan_id);
  1861. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1862. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1863. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1864. /* TCP packet in a page chunk that's been checksummed.
  1865. * Tack it on to our GRO skb and let it go.
  1866. */
  1867. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1868. length, vlan_id);
  1869. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1870. /* Non-TCP packet in a page chunk. Allocate an
  1871. * skb, tack it on frags, and send it up.
  1872. */
  1873. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1874. length, vlan_id);
  1875. } else {
  1876. struct bq_desc *lbq_desc;
  1877. /* Free small buffer that holds the IAL */
  1878. lbq_desc = ql_get_curr_sbuf(rx_ring);
  1879. QPRINTK(qdev, RX_ERR, ERR, "Dropping frame, len %d > mtu %d\n",
  1880. length, qdev->ndev->mtu);
  1881. /* Unwind the large buffers for this frame. */
  1882. while (length > 0) {
  1883. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1884. length -= (length < rx_ring->lbq_buf_size) ?
  1885. length : rx_ring->lbq_buf_size;
  1886. put_page(lbq_desc->p.pg_chunk.page);
  1887. }
  1888. }
  1889. return (unsigned long)length;
  1890. }
  1891. /* Process an outbound completion from an rx ring. */
  1892. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1893. struct ob_mac_iocb_rsp *mac_rsp)
  1894. {
  1895. struct tx_ring *tx_ring;
  1896. struct tx_ring_desc *tx_ring_desc;
  1897. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1898. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1899. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1900. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1901. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1902. tx_ring->tx_packets++;
  1903. dev_kfree_skb(tx_ring_desc->skb);
  1904. tx_ring_desc->skb = NULL;
  1905. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1906. OB_MAC_IOCB_RSP_S |
  1907. OB_MAC_IOCB_RSP_L |
  1908. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1909. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1910. QPRINTK(qdev, TX_DONE, WARNING,
  1911. "Total descriptor length did not match transfer length.\n");
  1912. }
  1913. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1914. QPRINTK(qdev, TX_DONE, WARNING,
  1915. "Frame too short to be legal, not sent.\n");
  1916. }
  1917. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1918. QPRINTK(qdev, TX_DONE, WARNING,
  1919. "Frame too long, but sent anyway.\n");
  1920. }
  1921. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1922. QPRINTK(qdev, TX_DONE, WARNING,
  1923. "PCI backplane error. Frame not sent.\n");
  1924. }
  1925. }
  1926. atomic_inc(&tx_ring->tx_count);
  1927. }
  1928. /* Fire up a handler to reset the MPI processor. */
  1929. void ql_queue_fw_error(struct ql_adapter *qdev)
  1930. {
  1931. ql_link_off(qdev);
  1932. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1933. }
  1934. void ql_queue_asic_error(struct ql_adapter *qdev)
  1935. {
  1936. ql_link_off(qdev);
  1937. ql_disable_interrupts(qdev);
  1938. /* Clear adapter up bit to signal the recovery
  1939. * process that it shouldn't kill the reset worker
  1940. * thread
  1941. */
  1942. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1943. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1944. }
  1945. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1946. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1947. {
  1948. switch (ib_ae_rsp->event) {
  1949. case MGMT_ERR_EVENT:
  1950. QPRINTK(qdev, RX_ERR, ERR,
  1951. "Management Processor Fatal Error.\n");
  1952. ql_queue_fw_error(qdev);
  1953. return;
  1954. case CAM_LOOKUP_ERR_EVENT:
  1955. QPRINTK(qdev, LINK, ERR,
  1956. "Multiple CAM hits lookup occurred.\n");
  1957. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1958. ql_queue_asic_error(qdev);
  1959. return;
  1960. case SOFT_ECC_ERROR_EVENT:
  1961. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1962. ql_queue_asic_error(qdev);
  1963. break;
  1964. case PCI_ERR_ANON_BUF_RD:
  1965. QPRINTK(qdev, RX_ERR, ERR,
  1966. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1967. ib_ae_rsp->q_id);
  1968. ql_queue_asic_error(qdev);
  1969. break;
  1970. default:
  1971. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1972. ib_ae_rsp->event);
  1973. ql_queue_asic_error(qdev);
  1974. break;
  1975. }
  1976. }
  1977. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1978. {
  1979. struct ql_adapter *qdev = rx_ring->qdev;
  1980. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1981. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1982. int count = 0;
  1983. struct tx_ring *tx_ring;
  1984. /* While there are entries in the completion queue. */
  1985. while (prod != rx_ring->cnsmr_idx) {
  1986. QPRINTK(qdev, RX_STATUS, DEBUG,
  1987. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1988. prod, rx_ring->cnsmr_idx);
  1989. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1990. rmb();
  1991. switch (net_rsp->opcode) {
  1992. case OPCODE_OB_MAC_TSO_IOCB:
  1993. case OPCODE_OB_MAC_IOCB:
  1994. ql_process_mac_tx_intr(qdev, net_rsp);
  1995. break;
  1996. default:
  1997. QPRINTK(qdev, RX_STATUS, DEBUG,
  1998. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1999. net_rsp->opcode);
  2000. }
  2001. count++;
  2002. ql_update_cq(rx_ring);
  2003. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2004. }
  2005. ql_write_cq_idx(rx_ring);
  2006. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2007. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  2008. net_rsp != NULL) {
  2009. if (atomic_read(&tx_ring->queue_stopped) &&
  2010. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2011. /*
  2012. * The queue got stopped because the tx_ring was full.
  2013. * Wake it up, because it's now at least 25% empty.
  2014. */
  2015. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2016. }
  2017. return count;
  2018. }
  2019. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2020. {
  2021. struct ql_adapter *qdev = rx_ring->qdev;
  2022. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2023. struct ql_net_rsp_iocb *net_rsp;
  2024. int count = 0;
  2025. /* While there are entries in the completion queue. */
  2026. while (prod != rx_ring->cnsmr_idx) {
  2027. QPRINTK(qdev, RX_STATUS, DEBUG,
  2028. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  2029. prod, rx_ring->cnsmr_idx);
  2030. net_rsp = rx_ring->curr_entry;
  2031. rmb();
  2032. switch (net_rsp->opcode) {
  2033. case OPCODE_IB_MAC_IOCB:
  2034. ql_process_mac_rx_intr(qdev, rx_ring,
  2035. (struct ib_mac_iocb_rsp *)
  2036. net_rsp);
  2037. break;
  2038. case OPCODE_IB_AE_IOCB:
  2039. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2040. net_rsp);
  2041. break;
  2042. default:
  2043. {
  2044. QPRINTK(qdev, RX_STATUS, DEBUG,
  2045. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2046. net_rsp->opcode);
  2047. }
  2048. }
  2049. count++;
  2050. ql_update_cq(rx_ring);
  2051. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2052. if (count == budget)
  2053. break;
  2054. }
  2055. ql_update_buffer_queues(qdev, rx_ring);
  2056. ql_write_cq_idx(rx_ring);
  2057. return count;
  2058. }
  2059. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2060. {
  2061. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2062. struct ql_adapter *qdev = rx_ring->qdev;
  2063. struct rx_ring *trx_ring;
  2064. int i, work_done = 0;
  2065. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2066. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  2067. rx_ring->cq_id);
  2068. /* Service the TX rings first. They start
  2069. * right after the RSS rings. */
  2070. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2071. trx_ring = &qdev->rx_ring[i];
  2072. /* If this TX completion ring belongs to this vector and
  2073. * it's not empty then service it.
  2074. */
  2075. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2076. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2077. trx_ring->cnsmr_idx)) {
  2078. QPRINTK(qdev, INTR, DEBUG,
  2079. "%s: Servicing TX completion ring %d.\n",
  2080. __func__, trx_ring->cq_id);
  2081. ql_clean_outbound_rx_ring(trx_ring);
  2082. }
  2083. }
  2084. /*
  2085. * Now service the RSS ring if it's active.
  2086. */
  2087. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2088. rx_ring->cnsmr_idx) {
  2089. QPRINTK(qdev, INTR, DEBUG,
  2090. "%s: Servicing RX completion ring %d.\n",
  2091. __func__, rx_ring->cq_id);
  2092. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2093. }
  2094. if (work_done < budget) {
  2095. napi_complete(napi);
  2096. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2097. }
  2098. return work_done;
  2099. }
  2100. static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  2101. {
  2102. struct ql_adapter *qdev = netdev_priv(ndev);
  2103. qdev->vlgrp = grp;
  2104. if (grp) {
  2105. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  2106. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2107. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2108. } else {
  2109. QPRINTK(qdev, IFUP, DEBUG,
  2110. "Turning off VLAN in NIC_RCV_CFG.\n");
  2111. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2112. }
  2113. }
  2114. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2115. {
  2116. struct ql_adapter *qdev = netdev_priv(ndev);
  2117. u32 enable_bit = MAC_ADDR_E;
  2118. int status;
  2119. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2120. if (status)
  2121. return;
  2122. if (ql_set_mac_addr_reg
  2123. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2124. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  2125. }
  2126. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2127. }
  2128. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2129. {
  2130. struct ql_adapter *qdev = netdev_priv(ndev);
  2131. u32 enable_bit = 0;
  2132. int status;
  2133. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2134. if (status)
  2135. return;
  2136. if (ql_set_mac_addr_reg
  2137. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2138. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  2139. }
  2140. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2141. }
  2142. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2143. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2144. {
  2145. struct rx_ring *rx_ring = dev_id;
  2146. napi_schedule(&rx_ring->napi);
  2147. return IRQ_HANDLED;
  2148. }
  2149. /* This handles a fatal error, MPI activity, and the default
  2150. * rx_ring in an MSI-X multiple vector environment.
  2151. * In MSI/Legacy environment it also process the rest of
  2152. * the rx_rings.
  2153. */
  2154. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2155. {
  2156. struct rx_ring *rx_ring = dev_id;
  2157. struct ql_adapter *qdev = rx_ring->qdev;
  2158. struct intr_context *intr_context = &qdev->intr_context[0];
  2159. u32 var;
  2160. int work_done = 0;
  2161. spin_lock(&qdev->hw_lock);
  2162. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2163. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  2164. spin_unlock(&qdev->hw_lock);
  2165. return IRQ_NONE;
  2166. }
  2167. spin_unlock(&qdev->hw_lock);
  2168. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2169. /*
  2170. * Check for fatal error.
  2171. */
  2172. if (var & STS_FE) {
  2173. ql_queue_asic_error(qdev);
  2174. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  2175. var = ql_read32(qdev, ERR_STS);
  2176. QPRINTK(qdev, INTR, ERR,
  2177. "Resetting chip. Error Status Register = 0x%x\n", var);
  2178. return IRQ_HANDLED;
  2179. }
  2180. /*
  2181. * Check MPI processor activity.
  2182. */
  2183. if ((var & STS_PI) &&
  2184. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2185. /*
  2186. * We've got an async event or mailbox completion.
  2187. * Handle it and clear the source of the interrupt.
  2188. */
  2189. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  2190. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2191. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2192. queue_delayed_work_on(smp_processor_id(),
  2193. qdev->workqueue, &qdev->mpi_work, 0);
  2194. work_done++;
  2195. }
  2196. /*
  2197. * Get the bit-mask that shows the active queues for this
  2198. * pass. Compare it to the queues that this irq services
  2199. * and call napi if there's a match.
  2200. */
  2201. var = ql_read32(qdev, ISR1);
  2202. if (var & intr_context->irq_mask) {
  2203. QPRINTK(qdev, INTR, INFO,
  2204. "Waking handler for rx_ring[0].\n");
  2205. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2206. napi_schedule(&rx_ring->napi);
  2207. work_done++;
  2208. }
  2209. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2210. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2211. }
  2212. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2213. {
  2214. if (skb_is_gso(skb)) {
  2215. int err;
  2216. if (skb_header_cloned(skb)) {
  2217. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2218. if (err)
  2219. return err;
  2220. }
  2221. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2222. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2223. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2224. mac_iocb_ptr->total_hdrs_len =
  2225. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2226. mac_iocb_ptr->net_trans_offset =
  2227. cpu_to_le16(skb_network_offset(skb) |
  2228. skb_transport_offset(skb)
  2229. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2230. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2231. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2232. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2233. struct iphdr *iph = ip_hdr(skb);
  2234. iph->check = 0;
  2235. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2236. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2237. iph->daddr, 0,
  2238. IPPROTO_TCP,
  2239. 0);
  2240. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2241. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2242. tcp_hdr(skb)->check =
  2243. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2244. &ipv6_hdr(skb)->daddr,
  2245. 0, IPPROTO_TCP, 0);
  2246. }
  2247. return 1;
  2248. }
  2249. return 0;
  2250. }
  2251. static void ql_hw_csum_setup(struct sk_buff *skb,
  2252. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2253. {
  2254. int len;
  2255. struct iphdr *iph = ip_hdr(skb);
  2256. __sum16 *check;
  2257. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2258. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2259. mac_iocb_ptr->net_trans_offset =
  2260. cpu_to_le16(skb_network_offset(skb) |
  2261. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2262. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2263. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2264. if (likely(iph->protocol == IPPROTO_TCP)) {
  2265. check = &(tcp_hdr(skb)->check);
  2266. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2267. mac_iocb_ptr->total_hdrs_len =
  2268. cpu_to_le16(skb_transport_offset(skb) +
  2269. (tcp_hdr(skb)->doff << 2));
  2270. } else {
  2271. check = &(udp_hdr(skb)->check);
  2272. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2273. mac_iocb_ptr->total_hdrs_len =
  2274. cpu_to_le16(skb_transport_offset(skb) +
  2275. sizeof(struct udphdr));
  2276. }
  2277. *check = ~csum_tcpudp_magic(iph->saddr,
  2278. iph->daddr, len, iph->protocol, 0);
  2279. }
  2280. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2281. {
  2282. struct tx_ring_desc *tx_ring_desc;
  2283. struct ob_mac_iocb_req *mac_iocb_ptr;
  2284. struct ql_adapter *qdev = netdev_priv(ndev);
  2285. int tso;
  2286. struct tx_ring *tx_ring;
  2287. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2288. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2289. if (skb_padto(skb, ETH_ZLEN))
  2290. return NETDEV_TX_OK;
  2291. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2292. QPRINTK(qdev, TX_QUEUED, INFO,
  2293. "%s: shutting down tx queue %d du to lack of resources.\n",
  2294. __func__, tx_ring_idx);
  2295. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2296. atomic_inc(&tx_ring->queue_stopped);
  2297. tx_ring->tx_errors++;
  2298. return NETDEV_TX_BUSY;
  2299. }
  2300. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2301. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2302. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2303. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2304. mac_iocb_ptr->tid = tx_ring_desc->index;
  2305. /* We use the upper 32-bits to store the tx queue for this IO.
  2306. * When we get the completion we can use it to establish the context.
  2307. */
  2308. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2309. tx_ring_desc->skb = skb;
  2310. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2311. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  2312. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  2313. vlan_tx_tag_get(skb));
  2314. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2315. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2316. }
  2317. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2318. if (tso < 0) {
  2319. dev_kfree_skb_any(skb);
  2320. return NETDEV_TX_OK;
  2321. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2322. ql_hw_csum_setup(skb,
  2323. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2324. }
  2325. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2326. NETDEV_TX_OK) {
  2327. QPRINTK(qdev, TX_QUEUED, ERR,
  2328. "Could not map the segments.\n");
  2329. tx_ring->tx_errors++;
  2330. return NETDEV_TX_BUSY;
  2331. }
  2332. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2333. tx_ring->prod_idx++;
  2334. if (tx_ring->prod_idx == tx_ring->wq_len)
  2335. tx_ring->prod_idx = 0;
  2336. wmb();
  2337. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2338. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  2339. tx_ring->prod_idx, skb->len);
  2340. atomic_dec(&tx_ring->tx_count);
  2341. return NETDEV_TX_OK;
  2342. }
  2343. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2344. {
  2345. if (qdev->rx_ring_shadow_reg_area) {
  2346. pci_free_consistent(qdev->pdev,
  2347. PAGE_SIZE,
  2348. qdev->rx_ring_shadow_reg_area,
  2349. qdev->rx_ring_shadow_reg_dma);
  2350. qdev->rx_ring_shadow_reg_area = NULL;
  2351. }
  2352. if (qdev->tx_ring_shadow_reg_area) {
  2353. pci_free_consistent(qdev->pdev,
  2354. PAGE_SIZE,
  2355. qdev->tx_ring_shadow_reg_area,
  2356. qdev->tx_ring_shadow_reg_dma);
  2357. qdev->tx_ring_shadow_reg_area = NULL;
  2358. }
  2359. }
  2360. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2361. {
  2362. qdev->rx_ring_shadow_reg_area =
  2363. pci_alloc_consistent(qdev->pdev,
  2364. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2365. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2366. QPRINTK(qdev, IFUP, ERR,
  2367. "Allocation of RX shadow space failed.\n");
  2368. return -ENOMEM;
  2369. }
  2370. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2371. qdev->tx_ring_shadow_reg_area =
  2372. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2373. &qdev->tx_ring_shadow_reg_dma);
  2374. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2375. QPRINTK(qdev, IFUP, ERR,
  2376. "Allocation of TX shadow space failed.\n");
  2377. goto err_wqp_sh_area;
  2378. }
  2379. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2380. return 0;
  2381. err_wqp_sh_area:
  2382. pci_free_consistent(qdev->pdev,
  2383. PAGE_SIZE,
  2384. qdev->rx_ring_shadow_reg_area,
  2385. qdev->rx_ring_shadow_reg_dma);
  2386. return -ENOMEM;
  2387. }
  2388. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2389. {
  2390. struct tx_ring_desc *tx_ring_desc;
  2391. int i;
  2392. struct ob_mac_iocb_req *mac_iocb_ptr;
  2393. mac_iocb_ptr = tx_ring->wq_base;
  2394. tx_ring_desc = tx_ring->q;
  2395. for (i = 0; i < tx_ring->wq_len; i++) {
  2396. tx_ring_desc->index = i;
  2397. tx_ring_desc->skb = NULL;
  2398. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2399. mac_iocb_ptr++;
  2400. tx_ring_desc++;
  2401. }
  2402. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2403. atomic_set(&tx_ring->queue_stopped, 0);
  2404. }
  2405. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2406. struct tx_ring *tx_ring)
  2407. {
  2408. if (tx_ring->wq_base) {
  2409. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2410. tx_ring->wq_base, tx_ring->wq_base_dma);
  2411. tx_ring->wq_base = NULL;
  2412. }
  2413. kfree(tx_ring->q);
  2414. tx_ring->q = NULL;
  2415. }
  2416. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2417. struct tx_ring *tx_ring)
  2418. {
  2419. tx_ring->wq_base =
  2420. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2421. &tx_ring->wq_base_dma);
  2422. if ((tx_ring->wq_base == NULL) ||
  2423. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2424. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2425. return -ENOMEM;
  2426. }
  2427. tx_ring->q =
  2428. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2429. if (tx_ring->q == NULL)
  2430. goto err;
  2431. return 0;
  2432. err:
  2433. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2434. tx_ring->wq_base, tx_ring->wq_base_dma);
  2435. return -ENOMEM;
  2436. }
  2437. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2438. {
  2439. struct bq_desc *lbq_desc;
  2440. uint32_t curr_idx, clean_idx;
  2441. curr_idx = rx_ring->lbq_curr_idx;
  2442. clean_idx = rx_ring->lbq_clean_idx;
  2443. while (curr_idx != clean_idx) {
  2444. lbq_desc = &rx_ring->lbq[curr_idx];
  2445. if (lbq_desc->p.pg_chunk.last_flag) {
  2446. pci_unmap_page(qdev->pdev,
  2447. lbq_desc->p.pg_chunk.map,
  2448. ql_lbq_block_size(qdev),
  2449. PCI_DMA_FROMDEVICE);
  2450. lbq_desc->p.pg_chunk.last_flag = 0;
  2451. }
  2452. put_page(lbq_desc->p.pg_chunk.page);
  2453. lbq_desc->p.pg_chunk.page = NULL;
  2454. if (++curr_idx == rx_ring->lbq_len)
  2455. curr_idx = 0;
  2456. }
  2457. }
  2458. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2459. {
  2460. int i;
  2461. struct bq_desc *sbq_desc;
  2462. for (i = 0; i < rx_ring->sbq_len; i++) {
  2463. sbq_desc = &rx_ring->sbq[i];
  2464. if (sbq_desc == NULL) {
  2465. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2466. return;
  2467. }
  2468. if (sbq_desc->p.skb) {
  2469. pci_unmap_single(qdev->pdev,
  2470. pci_unmap_addr(sbq_desc, mapaddr),
  2471. pci_unmap_len(sbq_desc, maplen),
  2472. PCI_DMA_FROMDEVICE);
  2473. dev_kfree_skb(sbq_desc->p.skb);
  2474. sbq_desc->p.skb = NULL;
  2475. }
  2476. }
  2477. }
  2478. /* Free all large and small rx buffers associated
  2479. * with the completion queues for this device.
  2480. */
  2481. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2482. {
  2483. int i;
  2484. struct rx_ring *rx_ring;
  2485. for (i = 0; i < qdev->rx_ring_count; i++) {
  2486. rx_ring = &qdev->rx_ring[i];
  2487. if (rx_ring->lbq)
  2488. ql_free_lbq_buffers(qdev, rx_ring);
  2489. if (rx_ring->sbq)
  2490. ql_free_sbq_buffers(qdev, rx_ring);
  2491. }
  2492. }
  2493. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2494. {
  2495. struct rx_ring *rx_ring;
  2496. int i;
  2497. for (i = 0; i < qdev->rx_ring_count; i++) {
  2498. rx_ring = &qdev->rx_ring[i];
  2499. if (rx_ring->type != TX_Q)
  2500. ql_update_buffer_queues(qdev, rx_ring);
  2501. }
  2502. }
  2503. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2504. struct rx_ring *rx_ring)
  2505. {
  2506. int i;
  2507. struct bq_desc *lbq_desc;
  2508. __le64 *bq = rx_ring->lbq_base;
  2509. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2510. for (i = 0; i < rx_ring->lbq_len; i++) {
  2511. lbq_desc = &rx_ring->lbq[i];
  2512. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2513. lbq_desc->index = i;
  2514. lbq_desc->addr = bq;
  2515. bq++;
  2516. }
  2517. }
  2518. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2519. struct rx_ring *rx_ring)
  2520. {
  2521. int i;
  2522. struct bq_desc *sbq_desc;
  2523. __le64 *bq = rx_ring->sbq_base;
  2524. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2525. for (i = 0; i < rx_ring->sbq_len; i++) {
  2526. sbq_desc = &rx_ring->sbq[i];
  2527. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2528. sbq_desc->index = i;
  2529. sbq_desc->addr = bq;
  2530. bq++;
  2531. }
  2532. }
  2533. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2534. struct rx_ring *rx_ring)
  2535. {
  2536. /* Free the small buffer queue. */
  2537. if (rx_ring->sbq_base) {
  2538. pci_free_consistent(qdev->pdev,
  2539. rx_ring->sbq_size,
  2540. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2541. rx_ring->sbq_base = NULL;
  2542. }
  2543. /* Free the small buffer queue control blocks. */
  2544. kfree(rx_ring->sbq);
  2545. rx_ring->sbq = NULL;
  2546. /* Free the large buffer queue. */
  2547. if (rx_ring->lbq_base) {
  2548. pci_free_consistent(qdev->pdev,
  2549. rx_ring->lbq_size,
  2550. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2551. rx_ring->lbq_base = NULL;
  2552. }
  2553. /* Free the large buffer queue control blocks. */
  2554. kfree(rx_ring->lbq);
  2555. rx_ring->lbq = NULL;
  2556. /* Free the rx queue. */
  2557. if (rx_ring->cq_base) {
  2558. pci_free_consistent(qdev->pdev,
  2559. rx_ring->cq_size,
  2560. rx_ring->cq_base, rx_ring->cq_base_dma);
  2561. rx_ring->cq_base = NULL;
  2562. }
  2563. }
  2564. /* Allocate queues and buffers for this completions queue based
  2565. * on the values in the parameter structure. */
  2566. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2567. struct rx_ring *rx_ring)
  2568. {
  2569. /*
  2570. * Allocate the completion queue for this rx_ring.
  2571. */
  2572. rx_ring->cq_base =
  2573. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2574. &rx_ring->cq_base_dma);
  2575. if (rx_ring->cq_base == NULL) {
  2576. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2577. return -ENOMEM;
  2578. }
  2579. if (rx_ring->sbq_len) {
  2580. /*
  2581. * Allocate small buffer queue.
  2582. */
  2583. rx_ring->sbq_base =
  2584. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2585. &rx_ring->sbq_base_dma);
  2586. if (rx_ring->sbq_base == NULL) {
  2587. QPRINTK(qdev, IFUP, ERR,
  2588. "Small buffer queue allocation failed.\n");
  2589. goto err_mem;
  2590. }
  2591. /*
  2592. * Allocate small buffer queue control blocks.
  2593. */
  2594. rx_ring->sbq =
  2595. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2596. GFP_KERNEL);
  2597. if (rx_ring->sbq == NULL) {
  2598. QPRINTK(qdev, IFUP, ERR,
  2599. "Small buffer queue control block allocation failed.\n");
  2600. goto err_mem;
  2601. }
  2602. ql_init_sbq_ring(qdev, rx_ring);
  2603. }
  2604. if (rx_ring->lbq_len) {
  2605. /*
  2606. * Allocate large buffer queue.
  2607. */
  2608. rx_ring->lbq_base =
  2609. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2610. &rx_ring->lbq_base_dma);
  2611. if (rx_ring->lbq_base == NULL) {
  2612. QPRINTK(qdev, IFUP, ERR,
  2613. "Large buffer queue allocation failed.\n");
  2614. goto err_mem;
  2615. }
  2616. /*
  2617. * Allocate large buffer queue control blocks.
  2618. */
  2619. rx_ring->lbq =
  2620. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2621. GFP_KERNEL);
  2622. if (rx_ring->lbq == NULL) {
  2623. QPRINTK(qdev, IFUP, ERR,
  2624. "Large buffer queue control block allocation failed.\n");
  2625. goto err_mem;
  2626. }
  2627. ql_init_lbq_ring(qdev, rx_ring);
  2628. }
  2629. return 0;
  2630. err_mem:
  2631. ql_free_rx_resources(qdev, rx_ring);
  2632. return -ENOMEM;
  2633. }
  2634. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2635. {
  2636. struct tx_ring *tx_ring;
  2637. struct tx_ring_desc *tx_ring_desc;
  2638. int i, j;
  2639. /*
  2640. * Loop through all queues and free
  2641. * any resources.
  2642. */
  2643. for (j = 0; j < qdev->tx_ring_count; j++) {
  2644. tx_ring = &qdev->tx_ring[j];
  2645. for (i = 0; i < tx_ring->wq_len; i++) {
  2646. tx_ring_desc = &tx_ring->q[i];
  2647. if (tx_ring_desc && tx_ring_desc->skb) {
  2648. QPRINTK(qdev, IFDOWN, ERR,
  2649. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2650. tx_ring_desc->skb, j,
  2651. tx_ring_desc->index);
  2652. ql_unmap_send(qdev, tx_ring_desc,
  2653. tx_ring_desc->map_cnt);
  2654. dev_kfree_skb(tx_ring_desc->skb);
  2655. tx_ring_desc->skb = NULL;
  2656. }
  2657. }
  2658. }
  2659. }
  2660. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2661. {
  2662. int i;
  2663. for (i = 0; i < qdev->tx_ring_count; i++)
  2664. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2665. for (i = 0; i < qdev->rx_ring_count; i++)
  2666. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2667. ql_free_shadow_space(qdev);
  2668. }
  2669. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2670. {
  2671. int i;
  2672. /* Allocate space for our shadow registers and such. */
  2673. if (ql_alloc_shadow_space(qdev))
  2674. return -ENOMEM;
  2675. for (i = 0; i < qdev->rx_ring_count; i++) {
  2676. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2677. QPRINTK(qdev, IFUP, ERR,
  2678. "RX resource allocation failed.\n");
  2679. goto err_mem;
  2680. }
  2681. }
  2682. /* Allocate tx queue resources */
  2683. for (i = 0; i < qdev->tx_ring_count; i++) {
  2684. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2685. QPRINTK(qdev, IFUP, ERR,
  2686. "TX resource allocation failed.\n");
  2687. goto err_mem;
  2688. }
  2689. }
  2690. return 0;
  2691. err_mem:
  2692. ql_free_mem_resources(qdev);
  2693. return -ENOMEM;
  2694. }
  2695. /* Set up the rx ring control block and pass it to the chip.
  2696. * The control block is defined as
  2697. * "Completion Queue Initialization Control Block", or cqicb.
  2698. */
  2699. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2700. {
  2701. struct cqicb *cqicb = &rx_ring->cqicb;
  2702. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2703. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2704. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2705. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2706. void __iomem *doorbell_area =
  2707. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2708. int err = 0;
  2709. u16 bq_len;
  2710. u64 tmp;
  2711. __le64 *base_indirect_ptr;
  2712. int page_entries;
  2713. /* Set up the shadow registers for this ring. */
  2714. rx_ring->prod_idx_sh_reg = shadow_reg;
  2715. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2716. *rx_ring->prod_idx_sh_reg = 0;
  2717. shadow_reg += sizeof(u64);
  2718. shadow_reg_dma += sizeof(u64);
  2719. rx_ring->lbq_base_indirect = shadow_reg;
  2720. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2721. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2722. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2723. rx_ring->sbq_base_indirect = shadow_reg;
  2724. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2725. /* PCI doorbell mem area + 0x00 for consumer index register */
  2726. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2727. rx_ring->cnsmr_idx = 0;
  2728. rx_ring->curr_entry = rx_ring->cq_base;
  2729. /* PCI doorbell mem area + 0x04 for valid register */
  2730. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2731. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2732. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2733. /* PCI doorbell mem area + 0x1c */
  2734. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2735. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2736. cqicb->msix_vect = rx_ring->irq;
  2737. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2738. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2739. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2740. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2741. /*
  2742. * Set up the control block load flags.
  2743. */
  2744. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2745. FLAGS_LV | /* Load MSI-X vector */
  2746. FLAGS_LI; /* Load irq delay values */
  2747. if (rx_ring->lbq_len) {
  2748. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2749. tmp = (u64)rx_ring->lbq_base_dma;
  2750. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2751. page_entries = 0;
  2752. do {
  2753. *base_indirect_ptr = cpu_to_le64(tmp);
  2754. tmp += DB_PAGE_SIZE;
  2755. base_indirect_ptr++;
  2756. page_entries++;
  2757. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2758. cqicb->lbq_addr =
  2759. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2760. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2761. (u16) rx_ring->lbq_buf_size;
  2762. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2763. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2764. (u16) rx_ring->lbq_len;
  2765. cqicb->lbq_len = cpu_to_le16(bq_len);
  2766. rx_ring->lbq_prod_idx = 0;
  2767. rx_ring->lbq_curr_idx = 0;
  2768. rx_ring->lbq_clean_idx = 0;
  2769. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2770. }
  2771. if (rx_ring->sbq_len) {
  2772. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2773. tmp = (u64)rx_ring->sbq_base_dma;
  2774. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2775. page_entries = 0;
  2776. do {
  2777. *base_indirect_ptr = cpu_to_le64(tmp);
  2778. tmp += DB_PAGE_SIZE;
  2779. base_indirect_ptr++;
  2780. page_entries++;
  2781. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2782. cqicb->sbq_addr =
  2783. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2784. cqicb->sbq_buf_size =
  2785. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2786. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2787. (u16) rx_ring->sbq_len;
  2788. cqicb->sbq_len = cpu_to_le16(bq_len);
  2789. rx_ring->sbq_prod_idx = 0;
  2790. rx_ring->sbq_curr_idx = 0;
  2791. rx_ring->sbq_clean_idx = 0;
  2792. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2793. }
  2794. switch (rx_ring->type) {
  2795. case TX_Q:
  2796. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2797. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2798. break;
  2799. case RX_Q:
  2800. /* Inbound completion handling rx_rings run in
  2801. * separate NAPI contexts.
  2802. */
  2803. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2804. 64);
  2805. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2806. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2807. break;
  2808. default:
  2809. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2810. rx_ring->type);
  2811. }
  2812. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2813. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2814. CFG_LCQ, rx_ring->cq_id);
  2815. if (err) {
  2816. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2817. return err;
  2818. }
  2819. return err;
  2820. }
  2821. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2822. {
  2823. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2824. void __iomem *doorbell_area =
  2825. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2826. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2827. (tx_ring->wq_id * sizeof(u64));
  2828. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2829. (tx_ring->wq_id * sizeof(u64));
  2830. int err = 0;
  2831. /*
  2832. * Assign doorbell registers for this tx_ring.
  2833. */
  2834. /* TX PCI doorbell mem area for tx producer index */
  2835. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2836. tx_ring->prod_idx = 0;
  2837. /* TX PCI doorbell mem area + 0x04 */
  2838. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2839. /*
  2840. * Assign shadow registers for this tx_ring.
  2841. */
  2842. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2843. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2844. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2845. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2846. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2847. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2848. wqicb->rid = 0;
  2849. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2850. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2851. ql_init_tx_ring(qdev, tx_ring);
  2852. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2853. (u16) tx_ring->wq_id);
  2854. if (err) {
  2855. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2856. return err;
  2857. }
  2858. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2859. return err;
  2860. }
  2861. static void ql_disable_msix(struct ql_adapter *qdev)
  2862. {
  2863. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2864. pci_disable_msix(qdev->pdev);
  2865. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2866. kfree(qdev->msi_x_entry);
  2867. qdev->msi_x_entry = NULL;
  2868. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2869. pci_disable_msi(qdev->pdev);
  2870. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2871. }
  2872. }
  2873. /* We start by trying to get the number of vectors
  2874. * stored in qdev->intr_count. If we don't get that
  2875. * many then we reduce the count and try again.
  2876. */
  2877. static void ql_enable_msix(struct ql_adapter *qdev)
  2878. {
  2879. int i, err;
  2880. /* Get the MSIX vectors. */
  2881. if (qlge_irq_type == MSIX_IRQ) {
  2882. /* Try to alloc space for the msix struct,
  2883. * if it fails then go to MSI/legacy.
  2884. */
  2885. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2886. sizeof(struct msix_entry),
  2887. GFP_KERNEL);
  2888. if (!qdev->msi_x_entry) {
  2889. qlge_irq_type = MSI_IRQ;
  2890. goto msi;
  2891. }
  2892. for (i = 0; i < qdev->intr_count; i++)
  2893. qdev->msi_x_entry[i].entry = i;
  2894. /* Loop to get our vectors. We start with
  2895. * what we want and settle for what we get.
  2896. */
  2897. do {
  2898. err = pci_enable_msix(qdev->pdev,
  2899. qdev->msi_x_entry, qdev->intr_count);
  2900. if (err > 0)
  2901. qdev->intr_count = err;
  2902. } while (err > 0);
  2903. if (err < 0) {
  2904. kfree(qdev->msi_x_entry);
  2905. qdev->msi_x_entry = NULL;
  2906. QPRINTK(qdev, IFUP, WARNING,
  2907. "MSI-X Enable failed, trying MSI.\n");
  2908. qdev->intr_count = 1;
  2909. qlge_irq_type = MSI_IRQ;
  2910. } else if (err == 0) {
  2911. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2912. QPRINTK(qdev, IFUP, INFO,
  2913. "MSI-X Enabled, got %d vectors.\n",
  2914. qdev->intr_count);
  2915. return;
  2916. }
  2917. }
  2918. msi:
  2919. qdev->intr_count = 1;
  2920. if (qlge_irq_type == MSI_IRQ) {
  2921. if (!pci_enable_msi(qdev->pdev)) {
  2922. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2923. QPRINTK(qdev, IFUP, INFO,
  2924. "Running with MSI interrupts.\n");
  2925. return;
  2926. }
  2927. }
  2928. qlge_irq_type = LEG_IRQ;
  2929. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2930. }
  2931. /* Each vector services 1 RSS ring and and 1 or more
  2932. * TX completion rings. This function loops through
  2933. * the TX completion rings and assigns the vector that
  2934. * will service it. An example would be if there are
  2935. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2936. * This would mean that vector 0 would service RSS ring 0
  2937. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2938. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2939. */
  2940. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2941. {
  2942. int i, j, vect;
  2943. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2944. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2945. /* Assign irq vectors to TX rx_rings.*/
  2946. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2947. i < qdev->rx_ring_count; i++) {
  2948. if (j == tx_rings_per_vector) {
  2949. vect++;
  2950. j = 0;
  2951. }
  2952. qdev->rx_ring[i].irq = vect;
  2953. j++;
  2954. }
  2955. } else {
  2956. /* For single vector all rings have an irq
  2957. * of zero.
  2958. */
  2959. for (i = 0; i < qdev->rx_ring_count; i++)
  2960. qdev->rx_ring[i].irq = 0;
  2961. }
  2962. }
  2963. /* Set the interrupt mask for this vector. Each vector
  2964. * will service 1 RSS ring and 1 or more TX completion
  2965. * rings. This function sets up a bit mask per vector
  2966. * that indicates which rings it services.
  2967. */
  2968. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2969. {
  2970. int j, vect = ctx->intr;
  2971. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2972. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2973. /* Add the RSS ring serviced by this vector
  2974. * to the mask.
  2975. */
  2976. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2977. /* Add the TX ring(s) serviced by this vector
  2978. * to the mask. */
  2979. for (j = 0; j < tx_rings_per_vector; j++) {
  2980. ctx->irq_mask |=
  2981. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2982. (vect * tx_rings_per_vector) + j].cq_id);
  2983. }
  2984. } else {
  2985. /* For single vector we just shift each queue's
  2986. * ID into the mask.
  2987. */
  2988. for (j = 0; j < qdev->rx_ring_count; j++)
  2989. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2990. }
  2991. }
  2992. /*
  2993. * Here we build the intr_context structures based on
  2994. * our rx_ring count and intr vector count.
  2995. * The intr_context structure is used to hook each vector
  2996. * to possibly different handlers.
  2997. */
  2998. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2999. {
  3000. int i = 0;
  3001. struct intr_context *intr_context = &qdev->intr_context[0];
  3002. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3003. /* Each rx_ring has it's
  3004. * own intr_context since we have separate
  3005. * vectors for each queue.
  3006. */
  3007. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3008. qdev->rx_ring[i].irq = i;
  3009. intr_context->intr = i;
  3010. intr_context->qdev = qdev;
  3011. /* Set up this vector's bit-mask that indicates
  3012. * which queues it services.
  3013. */
  3014. ql_set_irq_mask(qdev, intr_context);
  3015. /*
  3016. * We set up each vectors enable/disable/read bits so
  3017. * there's no bit/mask calculations in the critical path.
  3018. */
  3019. intr_context->intr_en_mask =
  3020. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3021. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3022. | i;
  3023. intr_context->intr_dis_mask =
  3024. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3025. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3026. INTR_EN_IHD | i;
  3027. intr_context->intr_read_mask =
  3028. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3029. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3030. i;
  3031. if (i == 0) {
  3032. /* The first vector/queue handles
  3033. * broadcast/multicast, fatal errors,
  3034. * and firmware events. This in addition
  3035. * to normal inbound NAPI processing.
  3036. */
  3037. intr_context->handler = qlge_isr;
  3038. sprintf(intr_context->name, "%s-rx-%d",
  3039. qdev->ndev->name, i);
  3040. } else {
  3041. /*
  3042. * Inbound queues handle unicast frames only.
  3043. */
  3044. intr_context->handler = qlge_msix_rx_isr;
  3045. sprintf(intr_context->name, "%s-rx-%d",
  3046. qdev->ndev->name, i);
  3047. }
  3048. }
  3049. } else {
  3050. /*
  3051. * All rx_rings use the same intr_context since
  3052. * there is only one vector.
  3053. */
  3054. intr_context->intr = 0;
  3055. intr_context->qdev = qdev;
  3056. /*
  3057. * We set up each vectors enable/disable/read bits so
  3058. * there's no bit/mask calculations in the critical path.
  3059. */
  3060. intr_context->intr_en_mask =
  3061. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3062. intr_context->intr_dis_mask =
  3063. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3064. INTR_EN_TYPE_DISABLE;
  3065. intr_context->intr_read_mask =
  3066. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3067. /*
  3068. * Single interrupt means one handler for all rings.
  3069. */
  3070. intr_context->handler = qlge_isr;
  3071. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3072. /* Set up this vector's bit-mask that indicates
  3073. * which queues it services. In this case there is
  3074. * a single vector so it will service all RSS and
  3075. * TX completion rings.
  3076. */
  3077. ql_set_irq_mask(qdev, intr_context);
  3078. }
  3079. /* Tell the TX completion rings which MSIx vector
  3080. * they will be using.
  3081. */
  3082. ql_set_tx_vect(qdev);
  3083. }
  3084. static void ql_free_irq(struct ql_adapter *qdev)
  3085. {
  3086. int i;
  3087. struct intr_context *intr_context = &qdev->intr_context[0];
  3088. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3089. if (intr_context->hooked) {
  3090. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3091. free_irq(qdev->msi_x_entry[i].vector,
  3092. &qdev->rx_ring[i]);
  3093. QPRINTK(qdev, IFDOWN, DEBUG,
  3094. "freeing msix interrupt %d.\n", i);
  3095. } else {
  3096. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3097. QPRINTK(qdev, IFDOWN, DEBUG,
  3098. "freeing msi interrupt %d.\n", i);
  3099. }
  3100. }
  3101. }
  3102. ql_disable_msix(qdev);
  3103. }
  3104. static int ql_request_irq(struct ql_adapter *qdev)
  3105. {
  3106. int i;
  3107. int status = 0;
  3108. struct pci_dev *pdev = qdev->pdev;
  3109. struct intr_context *intr_context = &qdev->intr_context[0];
  3110. ql_resolve_queues_to_irqs(qdev);
  3111. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3112. atomic_set(&intr_context->irq_cnt, 0);
  3113. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3114. status = request_irq(qdev->msi_x_entry[i].vector,
  3115. intr_context->handler,
  3116. 0,
  3117. intr_context->name,
  3118. &qdev->rx_ring[i]);
  3119. if (status) {
  3120. QPRINTK(qdev, IFUP, ERR,
  3121. "Failed request for MSIX interrupt %d.\n",
  3122. i);
  3123. goto err_irq;
  3124. } else {
  3125. QPRINTK(qdev, IFUP, DEBUG,
  3126. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  3127. i,
  3128. qdev->rx_ring[i].type ==
  3129. DEFAULT_Q ? "DEFAULT_Q" : "",
  3130. qdev->rx_ring[i].type ==
  3131. TX_Q ? "TX_Q" : "",
  3132. qdev->rx_ring[i].type ==
  3133. RX_Q ? "RX_Q" : "", intr_context->name);
  3134. }
  3135. } else {
  3136. QPRINTK(qdev, IFUP, DEBUG,
  3137. "trying msi or legacy interrupts.\n");
  3138. QPRINTK(qdev, IFUP, DEBUG,
  3139. "%s: irq = %d.\n", __func__, pdev->irq);
  3140. QPRINTK(qdev, IFUP, DEBUG,
  3141. "%s: context->name = %s.\n", __func__,
  3142. intr_context->name);
  3143. QPRINTK(qdev, IFUP, DEBUG,
  3144. "%s: dev_id = 0x%p.\n", __func__,
  3145. &qdev->rx_ring[0]);
  3146. status =
  3147. request_irq(pdev->irq, qlge_isr,
  3148. test_bit(QL_MSI_ENABLED,
  3149. &qdev->
  3150. flags) ? 0 : IRQF_SHARED,
  3151. intr_context->name, &qdev->rx_ring[0]);
  3152. if (status)
  3153. goto err_irq;
  3154. QPRINTK(qdev, IFUP, ERR,
  3155. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  3156. i,
  3157. qdev->rx_ring[0].type ==
  3158. DEFAULT_Q ? "DEFAULT_Q" : "",
  3159. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  3160. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3161. intr_context->name);
  3162. }
  3163. intr_context->hooked = 1;
  3164. }
  3165. return status;
  3166. err_irq:
  3167. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  3168. ql_free_irq(qdev);
  3169. return status;
  3170. }
  3171. static int ql_start_rss(struct ql_adapter *qdev)
  3172. {
  3173. u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3174. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
  3175. 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
  3176. 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
  3177. 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
  3178. 0xbe, 0xac, 0x01, 0xfa};
  3179. struct ricb *ricb = &qdev->ricb;
  3180. int status = 0;
  3181. int i;
  3182. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3183. memset((void *)ricb, 0, sizeof(*ricb));
  3184. ricb->base_cq = RSS_L4K;
  3185. ricb->flags =
  3186. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3187. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3188. /*
  3189. * Fill out the Indirection Table.
  3190. */
  3191. for (i = 0; i < 1024; i++)
  3192. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3193. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3194. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3195. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  3196. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3197. if (status) {
  3198. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  3199. return status;
  3200. }
  3201. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  3202. return status;
  3203. }
  3204. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3205. {
  3206. int i, status = 0;
  3207. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3208. if (status)
  3209. return status;
  3210. /* Clear all the entries in the routing table. */
  3211. for (i = 0; i < 16; i++) {
  3212. status = ql_set_routing_reg(qdev, i, 0, 0);
  3213. if (status) {
  3214. QPRINTK(qdev, IFUP, ERR,
  3215. "Failed to init routing register for CAM "
  3216. "packets.\n");
  3217. break;
  3218. }
  3219. }
  3220. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3221. return status;
  3222. }
  3223. /* Initialize the frame-to-queue routing. */
  3224. static int ql_route_initialize(struct ql_adapter *qdev)
  3225. {
  3226. int status = 0;
  3227. /* Clear all the entries in the routing table. */
  3228. status = ql_clear_routing_entries(qdev);
  3229. if (status)
  3230. return status;
  3231. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3232. if (status)
  3233. return status;
  3234. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  3235. if (status) {
  3236. QPRINTK(qdev, IFUP, ERR,
  3237. "Failed to init routing register for error packets.\n");
  3238. goto exit;
  3239. }
  3240. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3241. if (status) {
  3242. QPRINTK(qdev, IFUP, ERR,
  3243. "Failed to init routing register for broadcast packets.\n");
  3244. goto exit;
  3245. }
  3246. /* If we have more than one inbound queue, then turn on RSS in the
  3247. * routing block.
  3248. */
  3249. if (qdev->rss_ring_count > 1) {
  3250. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3251. RT_IDX_RSS_MATCH, 1);
  3252. if (status) {
  3253. QPRINTK(qdev, IFUP, ERR,
  3254. "Failed to init routing register for MATCH RSS packets.\n");
  3255. goto exit;
  3256. }
  3257. }
  3258. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3259. RT_IDX_CAM_HIT, 1);
  3260. if (status)
  3261. QPRINTK(qdev, IFUP, ERR,
  3262. "Failed to init routing register for CAM packets.\n");
  3263. exit:
  3264. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3265. return status;
  3266. }
  3267. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3268. {
  3269. int status, set;
  3270. /* If check if the link is up and use to
  3271. * determine if we are setting or clearing
  3272. * the MAC address in the CAM.
  3273. */
  3274. set = ql_read32(qdev, STS);
  3275. set &= qdev->port_link_up;
  3276. status = ql_set_mac_addr(qdev, set);
  3277. if (status) {
  3278. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  3279. return status;
  3280. }
  3281. status = ql_route_initialize(qdev);
  3282. if (status)
  3283. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  3284. return status;
  3285. }
  3286. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3287. {
  3288. u32 value, mask;
  3289. int i;
  3290. int status = 0;
  3291. /*
  3292. * Set up the System register to halt on errors.
  3293. */
  3294. value = SYS_EFE | SYS_FAE;
  3295. mask = value << 16;
  3296. ql_write32(qdev, SYS, mask | value);
  3297. /* Set the default queue, and VLAN behavior. */
  3298. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3299. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3300. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3301. /* Set the MPI interrupt to enabled. */
  3302. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3303. /* Enable the function, set pagesize, enable error checking. */
  3304. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3305. FSC_EC | FSC_VM_PAGE_4K;
  3306. value |= SPLT_SETTING;
  3307. /* Set/clear header splitting. */
  3308. mask = FSC_VM_PAGESIZE_MASK |
  3309. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3310. ql_write32(qdev, FSC, mask | value);
  3311. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3312. /* Set RX packet routing to use port/pci function on which the
  3313. * packet arrived on in addition to usual frame routing.
  3314. * This is helpful on bonding where both interfaces can have
  3315. * the same MAC address.
  3316. */
  3317. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3318. /* Reroute all packets to our Interface.
  3319. * They may have been routed to MPI firmware
  3320. * due to WOL.
  3321. */
  3322. value = ql_read32(qdev, MGMT_RCV_CFG);
  3323. value &= ~MGMT_RCV_CFG_RM;
  3324. mask = 0xffff0000;
  3325. /* Sticky reg needs clearing due to WOL. */
  3326. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3327. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3328. /* Default WOL is enable on Mezz cards */
  3329. if (qdev->pdev->subsystem_device == 0x0068 ||
  3330. qdev->pdev->subsystem_device == 0x0180)
  3331. qdev->wol = WAKE_MAGIC;
  3332. /* Start up the rx queues. */
  3333. for (i = 0; i < qdev->rx_ring_count; i++) {
  3334. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3335. if (status) {
  3336. QPRINTK(qdev, IFUP, ERR,
  3337. "Failed to start rx ring[%d].\n", i);
  3338. return status;
  3339. }
  3340. }
  3341. /* If there is more than one inbound completion queue
  3342. * then download a RICB to configure RSS.
  3343. */
  3344. if (qdev->rss_ring_count > 1) {
  3345. status = ql_start_rss(qdev);
  3346. if (status) {
  3347. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  3348. return status;
  3349. }
  3350. }
  3351. /* Start up the tx queues. */
  3352. for (i = 0; i < qdev->tx_ring_count; i++) {
  3353. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3354. if (status) {
  3355. QPRINTK(qdev, IFUP, ERR,
  3356. "Failed to start tx ring[%d].\n", i);
  3357. return status;
  3358. }
  3359. }
  3360. /* Initialize the port and set the max framesize. */
  3361. status = qdev->nic_ops->port_initialize(qdev);
  3362. if (status)
  3363. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  3364. /* Set up the MAC address and frame routing filter. */
  3365. status = ql_cam_route_initialize(qdev);
  3366. if (status) {
  3367. QPRINTK(qdev, IFUP, ERR,
  3368. "Failed to init CAM/Routing tables.\n");
  3369. return status;
  3370. }
  3371. /* Start NAPI for the RSS queues. */
  3372. for (i = 0; i < qdev->rss_ring_count; i++) {
  3373. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  3374. i);
  3375. napi_enable(&qdev->rx_ring[i].napi);
  3376. }
  3377. return status;
  3378. }
  3379. /* Issue soft reset to chip. */
  3380. static int ql_adapter_reset(struct ql_adapter *qdev)
  3381. {
  3382. u32 value;
  3383. int status = 0;
  3384. unsigned long end_jiffies;
  3385. /* Clear all the entries in the routing table. */
  3386. status = ql_clear_routing_entries(qdev);
  3387. if (status) {
  3388. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3389. return status;
  3390. }
  3391. end_jiffies = jiffies +
  3392. max((unsigned long)1, usecs_to_jiffies(30));
  3393. /* Stop management traffic. */
  3394. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3395. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3396. ql_wait_fifo_empty(qdev);
  3397. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3398. do {
  3399. value = ql_read32(qdev, RST_FO);
  3400. if ((value & RST_FO_FR) == 0)
  3401. break;
  3402. cpu_relax();
  3403. } while (time_before(jiffies, end_jiffies));
  3404. if (value & RST_FO_FR) {
  3405. QPRINTK(qdev, IFDOWN, ERR,
  3406. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3407. status = -ETIMEDOUT;
  3408. }
  3409. /* Resume management traffic. */
  3410. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3411. return status;
  3412. }
  3413. static void ql_display_dev_info(struct net_device *ndev)
  3414. {
  3415. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3416. QPRINTK(qdev, PROBE, INFO,
  3417. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3418. "XG Roll = %d, XG Rev = %d.\n",
  3419. qdev->func,
  3420. qdev->port,
  3421. qdev->chip_rev_id & 0x0000000f,
  3422. qdev->chip_rev_id >> 4 & 0x0000000f,
  3423. qdev->chip_rev_id >> 8 & 0x0000000f,
  3424. qdev->chip_rev_id >> 12 & 0x0000000f);
  3425. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3426. }
  3427. int ql_wol(struct ql_adapter *qdev)
  3428. {
  3429. int status = 0;
  3430. u32 wol = MB_WOL_DISABLE;
  3431. /* The CAM is still intact after a reset, but if we
  3432. * are doing WOL, then we may need to program the
  3433. * routing regs. We would also need to issue the mailbox
  3434. * commands to instruct the MPI what to do per the ethtool
  3435. * settings.
  3436. */
  3437. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3438. WAKE_MCAST | WAKE_BCAST)) {
  3439. QPRINTK(qdev, IFDOWN, ERR,
  3440. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3441. qdev->wol);
  3442. return -EINVAL;
  3443. }
  3444. if (qdev->wol & WAKE_MAGIC) {
  3445. status = ql_mb_wol_set_magic(qdev, 1);
  3446. if (status) {
  3447. QPRINTK(qdev, IFDOWN, ERR,
  3448. "Failed to set magic packet on %s.\n",
  3449. qdev->ndev->name);
  3450. return status;
  3451. } else
  3452. QPRINTK(qdev, DRV, INFO,
  3453. "Enabled magic packet successfully on %s.\n",
  3454. qdev->ndev->name);
  3455. wol |= MB_WOL_MAGIC_PKT;
  3456. }
  3457. if (qdev->wol) {
  3458. wol |= MB_WOL_MODE_ON;
  3459. status = ql_mb_wol_mode(qdev, wol);
  3460. QPRINTK(qdev, DRV, ERR, "WOL %s (wol code 0x%x) on %s\n",
  3461. (status == 0) ? "Sucessfully set" : "Failed", wol,
  3462. qdev->ndev->name);
  3463. }
  3464. return status;
  3465. }
  3466. static int ql_adapter_down(struct ql_adapter *qdev)
  3467. {
  3468. int i, status = 0;
  3469. ql_link_off(qdev);
  3470. /* Don't kill the reset worker thread if we
  3471. * are in the process of recovery.
  3472. */
  3473. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3474. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3475. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3476. cancel_delayed_work_sync(&qdev->mpi_work);
  3477. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3478. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3479. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3480. for (i = 0; i < qdev->rss_ring_count; i++)
  3481. napi_disable(&qdev->rx_ring[i].napi);
  3482. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3483. ql_disable_interrupts(qdev);
  3484. ql_tx_ring_clean(qdev);
  3485. /* Call netif_napi_del() from common point.
  3486. */
  3487. for (i = 0; i < qdev->rss_ring_count; i++)
  3488. netif_napi_del(&qdev->rx_ring[i].napi);
  3489. ql_free_rx_buffers(qdev);
  3490. status = ql_adapter_reset(qdev);
  3491. if (status)
  3492. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3493. qdev->func);
  3494. return status;
  3495. }
  3496. static int ql_adapter_up(struct ql_adapter *qdev)
  3497. {
  3498. int err = 0;
  3499. err = ql_adapter_initialize(qdev);
  3500. if (err) {
  3501. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3502. goto err_init;
  3503. }
  3504. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3505. ql_alloc_rx_buffers(qdev);
  3506. /* If the port is initialized and the
  3507. * link is up the turn on the carrier.
  3508. */
  3509. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3510. (ql_read32(qdev, STS) & qdev->port_link_up))
  3511. ql_link_on(qdev);
  3512. ql_enable_interrupts(qdev);
  3513. ql_enable_all_completion_interrupts(qdev);
  3514. netif_tx_start_all_queues(qdev->ndev);
  3515. return 0;
  3516. err_init:
  3517. ql_adapter_reset(qdev);
  3518. return err;
  3519. }
  3520. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3521. {
  3522. ql_free_mem_resources(qdev);
  3523. ql_free_irq(qdev);
  3524. }
  3525. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3526. {
  3527. int status = 0;
  3528. if (ql_alloc_mem_resources(qdev)) {
  3529. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3530. return -ENOMEM;
  3531. }
  3532. status = ql_request_irq(qdev);
  3533. return status;
  3534. }
  3535. static int qlge_close(struct net_device *ndev)
  3536. {
  3537. struct ql_adapter *qdev = netdev_priv(ndev);
  3538. /* If we hit pci_channel_io_perm_failure
  3539. * failure condition, then we already
  3540. * brought the adapter down.
  3541. */
  3542. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3543. QPRINTK(qdev, DRV, ERR, "EEH fatal did unload.\n");
  3544. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3545. return 0;
  3546. }
  3547. /*
  3548. * Wait for device to recover from a reset.
  3549. * (Rarely happens, but possible.)
  3550. */
  3551. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3552. msleep(1);
  3553. ql_adapter_down(qdev);
  3554. ql_release_adapter_resources(qdev);
  3555. return 0;
  3556. }
  3557. static int ql_configure_rings(struct ql_adapter *qdev)
  3558. {
  3559. int i;
  3560. struct rx_ring *rx_ring;
  3561. struct tx_ring *tx_ring;
  3562. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3563. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3564. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3565. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3566. /* In a perfect world we have one RSS ring for each CPU
  3567. * and each has it's own vector. To do that we ask for
  3568. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3569. * vector count to what we actually get. We then
  3570. * allocate an RSS ring for each.
  3571. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3572. */
  3573. qdev->intr_count = cpu_cnt;
  3574. ql_enable_msix(qdev);
  3575. /* Adjust the RSS ring count to the actual vector count. */
  3576. qdev->rss_ring_count = qdev->intr_count;
  3577. qdev->tx_ring_count = cpu_cnt;
  3578. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3579. for (i = 0; i < qdev->tx_ring_count; i++) {
  3580. tx_ring = &qdev->tx_ring[i];
  3581. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3582. tx_ring->qdev = qdev;
  3583. tx_ring->wq_id = i;
  3584. tx_ring->wq_len = qdev->tx_ring_size;
  3585. tx_ring->wq_size =
  3586. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3587. /*
  3588. * The completion queue ID for the tx rings start
  3589. * immediately after the rss rings.
  3590. */
  3591. tx_ring->cq_id = qdev->rss_ring_count + i;
  3592. }
  3593. for (i = 0; i < qdev->rx_ring_count; i++) {
  3594. rx_ring = &qdev->rx_ring[i];
  3595. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3596. rx_ring->qdev = qdev;
  3597. rx_ring->cq_id = i;
  3598. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3599. if (i < qdev->rss_ring_count) {
  3600. /*
  3601. * Inbound (RSS) queues.
  3602. */
  3603. rx_ring->cq_len = qdev->rx_ring_size;
  3604. rx_ring->cq_size =
  3605. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3606. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3607. rx_ring->lbq_size =
  3608. rx_ring->lbq_len * sizeof(__le64);
  3609. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3610. QPRINTK(qdev, IFUP, DEBUG,
  3611. "lbq_buf_size %d, order = %d\n",
  3612. rx_ring->lbq_buf_size, qdev->lbq_buf_order);
  3613. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3614. rx_ring->sbq_size =
  3615. rx_ring->sbq_len * sizeof(__le64);
  3616. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3617. rx_ring->type = RX_Q;
  3618. } else {
  3619. /*
  3620. * Outbound queue handles outbound completions only.
  3621. */
  3622. /* outbound cq is same size as tx_ring it services. */
  3623. rx_ring->cq_len = qdev->tx_ring_size;
  3624. rx_ring->cq_size =
  3625. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3626. rx_ring->lbq_len = 0;
  3627. rx_ring->lbq_size = 0;
  3628. rx_ring->lbq_buf_size = 0;
  3629. rx_ring->sbq_len = 0;
  3630. rx_ring->sbq_size = 0;
  3631. rx_ring->sbq_buf_size = 0;
  3632. rx_ring->type = TX_Q;
  3633. }
  3634. }
  3635. return 0;
  3636. }
  3637. static int qlge_open(struct net_device *ndev)
  3638. {
  3639. int err = 0;
  3640. struct ql_adapter *qdev = netdev_priv(ndev);
  3641. err = ql_adapter_reset(qdev);
  3642. if (err)
  3643. return err;
  3644. err = ql_configure_rings(qdev);
  3645. if (err)
  3646. return err;
  3647. err = ql_get_adapter_resources(qdev);
  3648. if (err)
  3649. goto error_up;
  3650. err = ql_adapter_up(qdev);
  3651. if (err)
  3652. goto error_up;
  3653. return err;
  3654. error_up:
  3655. ql_release_adapter_resources(qdev);
  3656. return err;
  3657. }
  3658. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3659. {
  3660. struct rx_ring *rx_ring;
  3661. int i, status;
  3662. u32 lbq_buf_len;
  3663. /* Wait for an oustanding reset to complete. */
  3664. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3665. int i = 3;
  3666. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3667. QPRINTK(qdev, IFUP, ERR,
  3668. "Waiting for adapter UP...\n");
  3669. ssleep(1);
  3670. }
  3671. if (!i) {
  3672. QPRINTK(qdev, IFUP, ERR,
  3673. "Timed out waiting for adapter UP\n");
  3674. return -ETIMEDOUT;
  3675. }
  3676. }
  3677. status = ql_adapter_down(qdev);
  3678. if (status)
  3679. goto error;
  3680. /* Get the new rx buffer size. */
  3681. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3682. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3683. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3684. for (i = 0; i < qdev->rss_ring_count; i++) {
  3685. rx_ring = &qdev->rx_ring[i];
  3686. /* Set the new size. */
  3687. rx_ring->lbq_buf_size = lbq_buf_len;
  3688. }
  3689. status = ql_adapter_up(qdev);
  3690. if (status)
  3691. goto error;
  3692. return status;
  3693. error:
  3694. QPRINTK(qdev, IFUP, ALERT,
  3695. "Driver up/down cycle failed, closing device.\n");
  3696. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3697. dev_close(qdev->ndev);
  3698. return status;
  3699. }
  3700. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3701. {
  3702. struct ql_adapter *qdev = netdev_priv(ndev);
  3703. int status;
  3704. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3705. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3706. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3707. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3708. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3709. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3710. return 0;
  3711. } else
  3712. return -EINVAL;
  3713. queue_delayed_work(qdev->workqueue,
  3714. &qdev->mpi_port_cfg_work, 3*HZ);
  3715. if (!netif_running(qdev->ndev)) {
  3716. ndev->mtu = new_mtu;
  3717. return 0;
  3718. }
  3719. ndev->mtu = new_mtu;
  3720. status = ql_change_rx_buffers(qdev);
  3721. if (status) {
  3722. QPRINTK(qdev, IFUP, ERR,
  3723. "Changing MTU failed.\n");
  3724. }
  3725. return status;
  3726. }
  3727. static struct net_device_stats *qlge_get_stats(struct net_device
  3728. *ndev)
  3729. {
  3730. struct ql_adapter *qdev = netdev_priv(ndev);
  3731. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3732. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3733. unsigned long pkts, mcast, dropped, errors, bytes;
  3734. int i;
  3735. /* Get RX stats. */
  3736. pkts = mcast = dropped = errors = bytes = 0;
  3737. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3738. pkts += rx_ring->rx_packets;
  3739. bytes += rx_ring->rx_bytes;
  3740. dropped += rx_ring->rx_dropped;
  3741. errors += rx_ring->rx_errors;
  3742. mcast += rx_ring->rx_multicast;
  3743. }
  3744. ndev->stats.rx_packets = pkts;
  3745. ndev->stats.rx_bytes = bytes;
  3746. ndev->stats.rx_dropped = dropped;
  3747. ndev->stats.rx_errors = errors;
  3748. ndev->stats.multicast = mcast;
  3749. /* Get TX stats. */
  3750. pkts = errors = bytes = 0;
  3751. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3752. pkts += tx_ring->tx_packets;
  3753. bytes += tx_ring->tx_bytes;
  3754. errors += tx_ring->tx_errors;
  3755. }
  3756. ndev->stats.tx_packets = pkts;
  3757. ndev->stats.tx_bytes = bytes;
  3758. ndev->stats.tx_errors = errors;
  3759. return &ndev->stats;
  3760. }
  3761. static void qlge_set_multicast_list(struct net_device *ndev)
  3762. {
  3763. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3764. struct dev_mc_list *mc_ptr;
  3765. int i, status;
  3766. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3767. if (status)
  3768. return;
  3769. /*
  3770. * Set or clear promiscuous mode if a
  3771. * transition is taking place.
  3772. */
  3773. if (ndev->flags & IFF_PROMISC) {
  3774. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3775. if (ql_set_routing_reg
  3776. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3777. QPRINTK(qdev, HW, ERR,
  3778. "Failed to set promiscous mode.\n");
  3779. } else {
  3780. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3781. }
  3782. }
  3783. } else {
  3784. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3785. if (ql_set_routing_reg
  3786. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3787. QPRINTK(qdev, HW, ERR,
  3788. "Failed to clear promiscous mode.\n");
  3789. } else {
  3790. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3791. }
  3792. }
  3793. }
  3794. /*
  3795. * Set or clear all multicast mode if a
  3796. * transition is taking place.
  3797. */
  3798. if ((ndev->flags & IFF_ALLMULTI) ||
  3799. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3800. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3801. if (ql_set_routing_reg
  3802. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3803. QPRINTK(qdev, HW, ERR,
  3804. "Failed to set all-multi mode.\n");
  3805. } else {
  3806. set_bit(QL_ALLMULTI, &qdev->flags);
  3807. }
  3808. }
  3809. } else {
  3810. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3811. if (ql_set_routing_reg
  3812. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3813. QPRINTK(qdev, HW, ERR,
  3814. "Failed to clear all-multi mode.\n");
  3815. } else {
  3816. clear_bit(QL_ALLMULTI, &qdev->flags);
  3817. }
  3818. }
  3819. }
  3820. if (ndev->mc_count) {
  3821. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3822. if (status)
  3823. goto exit;
  3824. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3825. i++, mc_ptr = mc_ptr->next)
  3826. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3827. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3828. QPRINTK(qdev, HW, ERR,
  3829. "Failed to loadmulticast address.\n");
  3830. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3831. goto exit;
  3832. }
  3833. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3834. if (ql_set_routing_reg
  3835. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3836. QPRINTK(qdev, HW, ERR,
  3837. "Failed to set multicast match mode.\n");
  3838. } else {
  3839. set_bit(QL_ALLMULTI, &qdev->flags);
  3840. }
  3841. }
  3842. exit:
  3843. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3844. }
  3845. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3846. {
  3847. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3848. struct sockaddr *addr = p;
  3849. int status;
  3850. if (!is_valid_ether_addr(addr->sa_data))
  3851. return -EADDRNOTAVAIL;
  3852. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3853. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3854. if (status)
  3855. return status;
  3856. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3857. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3858. if (status)
  3859. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3860. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3861. return status;
  3862. }
  3863. static void qlge_tx_timeout(struct net_device *ndev)
  3864. {
  3865. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3866. ql_queue_asic_error(qdev);
  3867. }
  3868. static void ql_asic_reset_work(struct work_struct *work)
  3869. {
  3870. struct ql_adapter *qdev =
  3871. container_of(work, struct ql_adapter, asic_reset_work.work);
  3872. int status;
  3873. rtnl_lock();
  3874. status = ql_adapter_down(qdev);
  3875. if (status)
  3876. goto error;
  3877. status = ql_adapter_up(qdev);
  3878. if (status)
  3879. goto error;
  3880. /* Restore rx mode. */
  3881. clear_bit(QL_ALLMULTI, &qdev->flags);
  3882. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3883. qlge_set_multicast_list(qdev->ndev);
  3884. rtnl_unlock();
  3885. return;
  3886. error:
  3887. QPRINTK(qdev, IFUP, ALERT,
  3888. "Driver up/down cycle failed, closing device\n");
  3889. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3890. dev_close(qdev->ndev);
  3891. rtnl_unlock();
  3892. }
  3893. static struct nic_operations qla8012_nic_ops = {
  3894. .get_flash = ql_get_8012_flash_params,
  3895. .port_initialize = ql_8012_port_initialize,
  3896. };
  3897. static struct nic_operations qla8000_nic_ops = {
  3898. .get_flash = ql_get_8000_flash_params,
  3899. .port_initialize = ql_8000_port_initialize,
  3900. };
  3901. /* Find the pcie function number for the other NIC
  3902. * on this chip. Since both NIC functions share a
  3903. * common firmware we have the lowest enabled function
  3904. * do any common work. Examples would be resetting
  3905. * after a fatal firmware error, or doing a firmware
  3906. * coredump.
  3907. */
  3908. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3909. {
  3910. int status = 0;
  3911. u32 temp;
  3912. u32 nic_func1, nic_func2;
  3913. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3914. &temp);
  3915. if (status)
  3916. return status;
  3917. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3918. MPI_TEST_NIC_FUNC_MASK);
  3919. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3920. MPI_TEST_NIC_FUNC_MASK);
  3921. if (qdev->func == nic_func1)
  3922. qdev->alt_func = nic_func2;
  3923. else if (qdev->func == nic_func2)
  3924. qdev->alt_func = nic_func1;
  3925. else
  3926. status = -EIO;
  3927. return status;
  3928. }
  3929. static int ql_get_board_info(struct ql_adapter *qdev)
  3930. {
  3931. int status;
  3932. qdev->func =
  3933. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3934. if (qdev->func > 3)
  3935. return -EIO;
  3936. status = ql_get_alt_pcie_func(qdev);
  3937. if (status)
  3938. return status;
  3939. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3940. if (qdev->port) {
  3941. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3942. qdev->port_link_up = STS_PL1;
  3943. qdev->port_init = STS_PI1;
  3944. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3945. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3946. } else {
  3947. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3948. qdev->port_link_up = STS_PL0;
  3949. qdev->port_init = STS_PI0;
  3950. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3951. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3952. }
  3953. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3954. qdev->device_id = qdev->pdev->device;
  3955. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3956. qdev->nic_ops = &qla8012_nic_ops;
  3957. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3958. qdev->nic_ops = &qla8000_nic_ops;
  3959. return status;
  3960. }
  3961. static void ql_release_all(struct pci_dev *pdev)
  3962. {
  3963. struct net_device *ndev = pci_get_drvdata(pdev);
  3964. struct ql_adapter *qdev = netdev_priv(ndev);
  3965. if (qdev->workqueue) {
  3966. destroy_workqueue(qdev->workqueue);
  3967. qdev->workqueue = NULL;
  3968. }
  3969. if (qdev->reg_base)
  3970. iounmap(qdev->reg_base);
  3971. if (qdev->doorbell_area)
  3972. iounmap(qdev->doorbell_area);
  3973. vfree(qdev->mpi_coredump);
  3974. pci_release_regions(pdev);
  3975. pci_set_drvdata(pdev, NULL);
  3976. }
  3977. static int __devinit ql_init_device(struct pci_dev *pdev,
  3978. struct net_device *ndev, int cards_found)
  3979. {
  3980. struct ql_adapter *qdev = netdev_priv(ndev);
  3981. int err = 0;
  3982. memset((void *)qdev, 0, sizeof(*qdev));
  3983. err = pci_enable_device(pdev);
  3984. if (err) {
  3985. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3986. return err;
  3987. }
  3988. qdev->ndev = ndev;
  3989. qdev->pdev = pdev;
  3990. pci_set_drvdata(pdev, ndev);
  3991. /* Set PCIe read request size */
  3992. err = pcie_set_readrq(pdev, 4096);
  3993. if (err) {
  3994. dev_err(&pdev->dev, "Set readrq failed.\n");
  3995. goto err_out1;
  3996. }
  3997. err = pci_request_regions(pdev, DRV_NAME);
  3998. if (err) {
  3999. dev_err(&pdev->dev, "PCI region request failed.\n");
  4000. return err;
  4001. }
  4002. pci_set_master(pdev);
  4003. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4004. set_bit(QL_DMA64, &qdev->flags);
  4005. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4006. } else {
  4007. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4008. if (!err)
  4009. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4010. }
  4011. if (err) {
  4012. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4013. goto err_out2;
  4014. }
  4015. /* Set PCIe reset type for EEH to fundamental. */
  4016. pdev->needs_freset = 1;
  4017. pci_save_state(pdev);
  4018. qdev->reg_base =
  4019. ioremap_nocache(pci_resource_start(pdev, 1),
  4020. pci_resource_len(pdev, 1));
  4021. if (!qdev->reg_base) {
  4022. dev_err(&pdev->dev, "Register mapping failed.\n");
  4023. err = -ENOMEM;
  4024. goto err_out2;
  4025. }
  4026. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4027. qdev->doorbell_area =
  4028. ioremap_nocache(pci_resource_start(pdev, 3),
  4029. pci_resource_len(pdev, 3));
  4030. if (!qdev->doorbell_area) {
  4031. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4032. err = -ENOMEM;
  4033. goto err_out2;
  4034. }
  4035. err = ql_get_board_info(qdev);
  4036. if (err) {
  4037. dev_err(&pdev->dev, "Register access failed.\n");
  4038. err = -EIO;
  4039. goto err_out2;
  4040. }
  4041. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4042. spin_lock_init(&qdev->hw_lock);
  4043. spin_lock_init(&qdev->stats_lock);
  4044. if (qlge_mpi_coredump) {
  4045. qdev->mpi_coredump =
  4046. vmalloc(sizeof(struct ql_mpi_coredump));
  4047. if (qdev->mpi_coredump == NULL) {
  4048. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4049. err = -ENOMEM;
  4050. goto err_out2;
  4051. }
  4052. if (qlge_force_coredump)
  4053. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4054. }
  4055. /* make sure the EEPROM is good */
  4056. err = qdev->nic_ops->get_flash(qdev);
  4057. if (err) {
  4058. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4059. goto err_out2;
  4060. }
  4061. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4062. /* Set up the default ring sizes. */
  4063. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4064. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4065. /* Set up the coalescing parameters. */
  4066. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4067. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4068. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4069. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4070. /*
  4071. * Set up the operating parameters.
  4072. */
  4073. qdev->rx_csum = 1;
  4074. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4075. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4076. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4077. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4078. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4079. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4080. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4081. init_completion(&qdev->ide_completion);
  4082. if (!cards_found) {
  4083. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4084. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4085. DRV_NAME, DRV_VERSION);
  4086. }
  4087. return 0;
  4088. err_out2:
  4089. ql_release_all(pdev);
  4090. err_out1:
  4091. pci_disable_device(pdev);
  4092. return err;
  4093. }
  4094. static const struct net_device_ops qlge_netdev_ops = {
  4095. .ndo_open = qlge_open,
  4096. .ndo_stop = qlge_close,
  4097. .ndo_start_xmit = qlge_send,
  4098. .ndo_change_mtu = qlge_change_mtu,
  4099. .ndo_get_stats = qlge_get_stats,
  4100. .ndo_set_multicast_list = qlge_set_multicast_list,
  4101. .ndo_set_mac_address = qlge_set_mac_address,
  4102. .ndo_validate_addr = eth_validate_addr,
  4103. .ndo_tx_timeout = qlge_tx_timeout,
  4104. .ndo_vlan_rx_register = qlge_vlan_rx_register,
  4105. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4106. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4107. };
  4108. static int __devinit qlge_probe(struct pci_dev *pdev,
  4109. const struct pci_device_id *pci_entry)
  4110. {
  4111. struct net_device *ndev = NULL;
  4112. struct ql_adapter *qdev = NULL;
  4113. static int cards_found = 0;
  4114. int err = 0;
  4115. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4116. min(MAX_CPUS, (int)num_online_cpus()));
  4117. if (!ndev)
  4118. return -ENOMEM;
  4119. err = ql_init_device(pdev, ndev, cards_found);
  4120. if (err < 0) {
  4121. free_netdev(ndev);
  4122. return err;
  4123. }
  4124. qdev = netdev_priv(ndev);
  4125. SET_NETDEV_DEV(ndev, &pdev->dev);
  4126. ndev->features = (0
  4127. | NETIF_F_IP_CSUM
  4128. | NETIF_F_SG
  4129. | NETIF_F_TSO
  4130. | NETIF_F_TSO6
  4131. | NETIF_F_TSO_ECN
  4132. | NETIF_F_HW_VLAN_TX
  4133. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  4134. ndev->features |= NETIF_F_GRO;
  4135. if (test_bit(QL_DMA64, &qdev->flags))
  4136. ndev->features |= NETIF_F_HIGHDMA;
  4137. /*
  4138. * Set up net_device structure.
  4139. */
  4140. ndev->tx_queue_len = qdev->tx_ring_size;
  4141. ndev->irq = pdev->irq;
  4142. ndev->netdev_ops = &qlge_netdev_ops;
  4143. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4144. ndev->watchdog_timeo = 10 * HZ;
  4145. err = register_netdev(ndev);
  4146. if (err) {
  4147. dev_err(&pdev->dev, "net device registration failed.\n");
  4148. ql_release_all(pdev);
  4149. pci_disable_device(pdev);
  4150. return err;
  4151. }
  4152. ql_link_off(qdev);
  4153. ql_display_dev_info(ndev);
  4154. atomic_set(&qdev->lb_count, 0);
  4155. cards_found++;
  4156. return 0;
  4157. }
  4158. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4159. {
  4160. return qlge_send(skb, ndev);
  4161. }
  4162. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4163. {
  4164. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4165. }
  4166. static void __devexit qlge_remove(struct pci_dev *pdev)
  4167. {
  4168. struct net_device *ndev = pci_get_drvdata(pdev);
  4169. unregister_netdev(ndev);
  4170. ql_release_all(pdev);
  4171. pci_disable_device(pdev);
  4172. free_netdev(ndev);
  4173. }
  4174. /* Clean up resources without touching hardware. */
  4175. static void ql_eeh_close(struct net_device *ndev)
  4176. {
  4177. int i;
  4178. struct ql_adapter *qdev = netdev_priv(ndev);
  4179. if (netif_carrier_ok(ndev)) {
  4180. netif_carrier_off(ndev);
  4181. netif_stop_queue(ndev);
  4182. }
  4183. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  4184. cancel_delayed_work_sync(&qdev->asic_reset_work);
  4185. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  4186. cancel_delayed_work_sync(&qdev->mpi_work);
  4187. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  4188. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  4189. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  4190. for (i = 0; i < qdev->rss_ring_count; i++)
  4191. netif_napi_del(&qdev->rx_ring[i].napi);
  4192. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4193. ql_tx_ring_clean(qdev);
  4194. ql_free_rx_buffers(qdev);
  4195. ql_release_adapter_resources(qdev);
  4196. }
  4197. /*
  4198. * This callback is called by the PCI subsystem whenever
  4199. * a PCI bus error is detected.
  4200. */
  4201. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4202. enum pci_channel_state state)
  4203. {
  4204. struct net_device *ndev = pci_get_drvdata(pdev);
  4205. struct ql_adapter *qdev = netdev_priv(ndev);
  4206. switch (state) {
  4207. case pci_channel_io_normal:
  4208. return PCI_ERS_RESULT_CAN_RECOVER;
  4209. case pci_channel_io_frozen:
  4210. netif_device_detach(ndev);
  4211. if (netif_running(ndev))
  4212. ql_eeh_close(ndev);
  4213. pci_disable_device(pdev);
  4214. return PCI_ERS_RESULT_NEED_RESET;
  4215. case pci_channel_io_perm_failure:
  4216. dev_err(&pdev->dev,
  4217. "%s: pci_channel_io_perm_failure.\n", __func__);
  4218. ql_eeh_close(ndev);
  4219. set_bit(QL_EEH_FATAL, &qdev->flags);
  4220. return PCI_ERS_RESULT_DISCONNECT;
  4221. }
  4222. /* Request a slot reset. */
  4223. return PCI_ERS_RESULT_NEED_RESET;
  4224. }
  4225. /*
  4226. * This callback is called after the PCI buss has been reset.
  4227. * Basically, this tries to restart the card from scratch.
  4228. * This is a shortened version of the device probe/discovery code,
  4229. * it resembles the first-half of the () routine.
  4230. */
  4231. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4232. {
  4233. struct net_device *ndev = pci_get_drvdata(pdev);
  4234. struct ql_adapter *qdev = netdev_priv(ndev);
  4235. pdev->error_state = pci_channel_io_normal;
  4236. pci_restore_state(pdev);
  4237. if (pci_enable_device(pdev)) {
  4238. QPRINTK(qdev, IFUP, ERR,
  4239. "Cannot re-enable PCI device after reset.\n");
  4240. return PCI_ERS_RESULT_DISCONNECT;
  4241. }
  4242. pci_set_master(pdev);
  4243. if (ql_adapter_reset(qdev)) {
  4244. QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
  4245. set_bit(QL_EEH_FATAL, &qdev->flags);
  4246. return PCI_ERS_RESULT_DISCONNECT;
  4247. }
  4248. return PCI_ERS_RESULT_RECOVERED;
  4249. }
  4250. static void qlge_io_resume(struct pci_dev *pdev)
  4251. {
  4252. struct net_device *ndev = pci_get_drvdata(pdev);
  4253. struct ql_adapter *qdev = netdev_priv(ndev);
  4254. int err = 0;
  4255. if (netif_running(ndev)) {
  4256. err = qlge_open(ndev);
  4257. if (err) {
  4258. QPRINTK(qdev, IFUP, ERR,
  4259. "Device initialization failed after reset.\n");
  4260. return;
  4261. }
  4262. } else {
  4263. QPRINTK(qdev, IFUP, ERR,
  4264. "Device was not running prior to EEH.\n");
  4265. }
  4266. netif_device_attach(ndev);
  4267. }
  4268. static struct pci_error_handlers qlge_err_handler = {
  4269. .error_detected = qlge_io_error_detected,
  4270. .slot_reset = qlge_io_slot_reset,
  4271. .resume = qlge_io_resume,
  4272. };
  4273. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4274. {
  4275. struct net_device *ndev = pci_get_drvdata(pdev);
  4276. struct ql_adapter *qdev = netdev_priv(ndev);
  4277. int err;
  4278. netif_device_detach(ndev);
  4279. if (netif_running(ndev)) {
  4280. err = ql_adapter_down(qdev);
  4281. if (!err)
  4282. return err;
  4283. }
  4284. ql_wol(qdev);
  4285. err = pci_save_state(pdev);
  4286. if (err)
  4287. return err;
  4288. pci_disable_device(pdev);
  4289. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4290. return 0;
  4291. }
  4292. #ifdef CONFIG_PM
  4293. static int qlge_resume(struct pci_dev *pdev)
  4294. {
  4295. struct net_device *ndev = pci_get_drvdata(pdev);
  4296. struct ql_adapter *qdev = netdev_priv(ndev);
  4297. int err;
  4298. pci_set_power_state(pdev, PCI_D0);
  4299. pci_restore_state(pdev);
  4300. err = pci_enable_device(pdev);
  4301. if (err) {
  4302. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  4303. return err;
  4304. }
  4305. pci_set_master(pdev);
  4306. pci_enable_wake(pdev, PCI_D3hot, 0);
  4307. pci_enable_wake(pdev, PCI_D3cold, 0);
  4308. if (netif_running(ndev)) {
  4309. err = ql_adapter_up(qdev);
  4310. if (err)
  4311. return err;
  4312. }
  4313. netif_device_attach(ndev);
  4314. return 0;
  4315. }
  4316. #endif /* CONFIG_PM */
  4317. static void qlge_shutdown(struct pci_dev *pdev)
  4318. {
  4319. qlge_suspend(pdev, PMSG_SUSPEND);
  4320. }
  4321. static struct pci_driver qlge_driver = {
  4322. .name = DRV_NAME,
  4323. .id_table = qlge_pci_tbl,
  4324. .probe = qlge_probe,
  4325. .remove = __devexit_p(qlge_remove),
  4326. #ifdef CONFIG_PM
  4327. .suspend = qlge_suspend,
  4328. .resume = qlge_resume,
  4329. #endif
  4330. .shutdown = qlge_shutdown,
  4331. .err_handler = &qlge_err_handler
  4332. };
  4333. static int __init qlge_init_module(void)
  4334. {
  4335. return pci_register_driver(&qlge_driver);
  4336. }
  4337. static void __exit qlge_exit(void)
  4338. {
  4339. pci_unregister_driver(&qlge_driver);
  4340. }
  4341. module_init(qlge_init_module);
  4342. module_exit(qlge_exit);