disk-io.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. static struct extent_io_ops btree_extent_io_ops;
  46. static void end_workqueue_fn(struct btrfs_work *work);
  47. static void free_fs_root(struct btrfs_root *root);
  48. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  49. int read_only);
  50. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  51. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  52. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  53. struct btrfs_root *root);
  54. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  55. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  56. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  57. struct extent_io_tree *dirty_pages,
  58. int mark);
  59. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  60. struct extent_io_tree *pinned_extents);
  61. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. };
  98. /*
  99. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  100. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  101. * the level the eb occupies in the tree.
  102. *
  103. * Different roots are used for different purposes and may nest inside each
  104. * other and they require separate keysets. As lockdep keys should be
  105. * static, assign keysets according to the purpose of the root as indicated
  106. * by btrfs_root->objectid. This ensures that all special purpose roots
  107. * have separate keysets.
  108. *
  109. * Lock-nesting across peer nodes is always done with the immediate parent
  110. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  111. * subclass to avoid triggering lockdep warning in such cases.
  112. *
  113. * The key is set by the readpage_end_io_hook after the buffer has passed
  114. * csum validation but before the pages are unlocked. It is also set by
  115. * btrfs_init_new_buffer on freshly allocated blocks.
  116. *
  117. * We also add a check to make sure the highest level of the tree is the
  118. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  119. * needs update as well.
  120. */
  121. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  122. # if BTRFS_MAX_LEVEL != 8
  123. # error
  124. # endif
  125. static struct btrfs_lockdep_keyset {
  126. u64 id; /* root objectid */
  127. const char *name_stem; /* lock name stem */
  128. char names[BTRFS_MAX_LEVEL + 1][20];
  129. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  130. } btrfs_lockdep_keysets[] = {
  131. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  132. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  133. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  134. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  135. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  136. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  137. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  138. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  139. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  140. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  141. { .id = 0, .name_stem = "tree" },
  142. };
  143. void __init btrfs_init_lockdep(void)
  144. {
  145. int i, j;
  146. /* initialize lockdep class names */
  147. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  148. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  149. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  150. snprintf(ks->names[j], sizeof(ks->names[j]),
  151. "btrfs-%s-%02d", ks->name_stem, j);
  152. }
  153. }
  154. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  155. int level)
  156. {
  157. struct btrfs_lockdep_keyset *ks;
  158. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  159. /* find the matching keyset, id 0 is the default entry */
  160. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  161. if (ks->id == objectid)
  162. break;
  163. lockdep_set_class_and_name(&eb->lock,
  164. &ks->keys[level], ks->names[level]);
  165. }
  166. #endif
  167. /*
  168. * extents on the btree inode are pretty simple, there's one extent
  169. * that covers the entire device
  170. */
  171. static struct extent_map *btree_get_extent(struct inode *inode,
  172. struct page *page, size_t pg_offset, u64 start, u64 len,
  173. int create)
  174. {
  175. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  176. struct extent_map *em;
  177. int ret;
  178. read_lock(&em_tree->lock);
  179. em = lookup_extent_mapping(em_tree, start, len);
  180. if (em) {
  181. em->bdev =
  182. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  183. read_unlock(&em_tree->lock);
  184. goto out;
  185. }
  186. read_unlock(&em_tree->lock);
  187. em = alloc_extent_map();
  188. if (!em) {
  189. em = ERR_PTR(-ENOMEM);
  190. goto out;
  191. }
  192. em->start = 0;
  193. em->len = (u64)-1;
  194. em->block_len = (u64)-1;
  195. em->block_start = 0;
  196. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  197. write_lock(&em_tree->lock);
  198. ret = add_extent_mapping(em_tree, em);
  199. if (ret == -EEXIST) {
  200. u64 failed_start = em->start;
  201. u64 failed_len = em->len;
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (em) {
  205. ret = 0;
  206. } else {
  207. em = lookup_extent_mapping(em_tree, failed_start,
  208. failed_len);
  209. ret = -EIO;
  210. }
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = NULL;
  214. }
  215. write_unlock(&em_tree->lock);
  216. if (ret)
  217. em = ERR_PTR(ret);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size =
  237. btrfs_super_csum_size(&root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state, GFP_NOFS);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret &&
  342. !verify_parent_transid(io_tree, eb, parent_transid))
  343. return ret;
  344. /*
  345. * This buffer's crc is fine, but its contents are corrupted, so
  346. * there is no reason to read the other copies, they won't be
  347. * any less wrong.
  348. */
  349. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  350. return ret;
  351. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  352. eb->start, eb->len);
  353. if (num_copies == 1)
  354. return ret;
  355. mirror_num++;
  356. if (mirror_num > num_copies)
  357. return ret;
  358. }
  359. return -EIO;
  360. }
  361. /*
  362. * checksum a dirty tree block before IO. This has extra checks to make sure
  363. * we only fill in the checksum field in the first page of a multi-page block
  364. */
  365. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  366. {
  367. struct extent_io_tree *tree;
  368. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  369. u64 found_start;
  370. unsigned long len;
  371. struct extent_buffer *eb;
  372. int ret;
  373. tree = &BTRFS_I(page->mapping->host)->io_tree;
  374. if (page->private == EXTENT_PAGE_PRIVATE) {
  375. WARN_ON(1);
  376. goto out;
  377. }
  378. if (!page->private) {
  379. WARN_ON(1);
  380. goto out;
  381. }
  382. len = page->private >> 2;
  383. WARN_ON(len == 0);
  384. eb = alloc_extent_buffer(tree, start, len, page);
  385. if (eb == NULL) {
  386. WARN_ON(1);
  387. goto out;
  388. }
  389. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  390. btrfs_header_generation(eb));
  391. BUG_ON(ret);
  392. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  393. found_start = btrfs_header_bytenr(eb);
  394. if (found_start != start) {
  395. WARN_ON(1);
  396. goto err;
  397. }
  398. if (eb->first_page != page) {
  399. WARN_ON(1);
  400. goto err;
  401. }
  402. if (!PageUptodate(page)) {
  403. WARN_ON(1);
  404. goto err;
  405. }
  406. csum_tree_block(root, eb, 0);
  407. err:
  408. free_extent_buffer(eb);
  409. out:
  410. return 0;
  411. }
  412. static int check_tree_block_fsid(struct btrfs_root *root,
  413. struct extent_buffer *eb)
  414. {
  415. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  416. u8 fsid[BTRFS_UUID_SIZE];
  417. int ret = 1;
  418. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  419. BTRFS_FSID_SIZE);
  420. while (fs_devices) {
  421. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  422. ret = 0;
  423. break;
  424. }
  425. fs_devices = fs_devices->seed;
  426. }
  427. return ret;
  428. }
  429. #define CORRUPT(reason, eb, root, slot) \
  430. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  431. "root=%llu, slot=%d\n", reason, \
  432. (unsigned long long)btrfs_header_bytenr(eb), \
  433. (unsigned long long)root->objectid, slot)
  434. static noinline int check_leaf(struct btrfs_root *root,
  435. struct extent_buffer *leaf)
  436. {
  437. struct btrfs_key key;
  438. struct btrfs_key leaf_key;
  439. u32 nritems = btrfs_header_nritems(leaf);
  440. int slot;
  441. if (nritems == 0)
  442. return 0;
  443. /* Check the 0 item */
  444. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  445. BTRFS_LEAF_DATA_SIZE(root)) {
  446. CORRUPT("invalid item offset size pair", leaf, root, 0);
  447. return -EIO;
  448. }
  449. /*
  450. * Check to make sure each items keys are in the correct order and their
  451. * offsets make sense. We only have to loop through nritems-1 because
  452. * we check the current slot against the next slot, which verifies the
  453. * next slot's offset+size makes sense and that the current's slot
  454. * offset is correct.
  455. */
  456. for (slot = 0; slot < nritems - 1; slot++) {
  457. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  458. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  459. /* Make sure the keys are in the right order */
  460. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  461. CORRUPT("bad key order", leaf, root, slot);
  462. return -EIO;
  463. }
  464. /*
  465. * Make sure the offset and ends are right, remember that the
  466. * item data starts at the end of the leaf and grows towards the
  467. * front.
  468. */
  469. if (btrfs_item_offset_nr(leaf, slot) !=
  470. btrfs_item_end_nr(leaf, slot + 1)) {
  471. CORRUPT("slot offset bad", leaf, root, slot);
  472. return -EIO;
  473. }
  474. /*
  475. * Check to make sure that we don't point outside of the leaf,
  476. * just incase all the items are consistent to eachother, but
  477. * all point outside of the leaf.
  478. */
  479. if (btrfs_item_end_nr(leaf, slot) >
  480. BTRFS_LEAF_DATA_SIZE(root)) {
  481. CORRUPT("slot end outside of leaf", leaf, root, slot);
  482. return -EIO;
  483. }
  484. }
  485. return 0;
  486. }
  487. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  488. struct extent_state *state)
  489. {
  490. struct extent_io_tree *tree;
  491. u64 found_start;
  492. int found_level;
  493. unsigned long len;
  494. struct extent_buffer *eb;
  495. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  496. int ret = 0;
  497. tree = &BTRFS_I(page->mapping->host)->io_tree;
  498. if (page->private == EXTENT_PAGE_PRIVATE)
  499. goto out;
  500. if (!page->private)
  501. goto out;
  502. len = page->private >> 2;
  503. WARN_ON(len == 0);
  504. eb = alloc_extent_buffer(tree, start, len, page);
  505. if (eb == NULL) {
  506. ret = -EIO;
  507. goto out;
  508. }
  509. found_start = btrfs_header_bytenr(eb);
  510. if (found_start != start) {
  511. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  512. "%llu %llu\n",
  513. (unsigned long long)found_start,
  514. (unsigned long long)eb->start);
  515. ret = -EIO;
  516. goto err;
  517. }
  518. if (eb->first_page != page) {
  519. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  520. eb->first_page->index, page->index);
  521. WARN_ON(1);
  522. ret = -EIO;
  523. goto err;
  524. }
  525. if (check_tree_block_fsid(root, eb)) {
  526. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  527. (unsigned long long)eb->start);
  528. ret = -EIO;
  529. goto err;
  530. }
  531. found_level = btrfs_header_level(eb);
  532. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  533. eb, found_level);
  534. ret = csum_tree_block(root, eb, 1);
  535. if (ret) {
  536. ret = -EIO;
  537. goto err;
  538. }
  539. /*
  540. * If this is a leaf block and it is corrupt, set the corrupt bit so
  541. * that we don't try and read the other copies of this block, just
  542. * return -EIO.
  543. */
  544. if (found_level == 0 && check_leaf(root, eb)) {
  545. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  546. ret = -EIO;
  547. }
  548. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  549. end = eb->start + end - 1;
  550. err:
  551. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  552. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  553. btree_readahead_hook(root, eb, eb->start, ret);
  554. }
  555. free_extent_buffer(eb);
  556. out:
  557. return ret;
  558. }
  559. static int btree_io_failed_hook(struct bio *failed_bio,
  560. struct page *page, u64 start, u64 end,
  561. struct extent_state *state)
  562. {
  563. struct extent_io_tree *tree;
  564. unsigned long len;
  565. struct extent_buffer *eb;
  566. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  567. tree = &BTRFS_I(page->mapping->host)->io_tree;
  568. if (page->private == EXTENT_PAGE_PRIVATE)
  569. goto out;
  570. if (!page->private)
  571. goto out;
  572. len = page->private >> 2;
  573. WARN_ON(len == 0);
  574. eb = alloc_extent_buffer(tree, start, len, page);
  575. if (eb == NULL)
  576. goto out;
  577. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  578. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  579. btree_readahead_hook(root, eb, eb->start, -EIO);
  580. }
  581. out:
  582. return -EIO; /* we fixed nothing */
  583. }
  584. static void end_workqueue_bio(struct bio *bio, int err)
  585. {
  586. struct end_io_wq *end_io_wq = bio->bi_private;
  587. struct btrfs_fs_info *fs_info;
  588. fs_info = end_io_wq->info;
  589. end_io_wq->error = err;
  590. end_io_wq->work.func = end_workqueue_fn;
  591. end_io_wq->work.flags = 0;
  592. if (bio->bi_rw & REQ_WRITE) {
  593. if (end_io_wq->metadata == 1)
  594. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  595. &end_io_wq->work);
  596. else if (end_io_wq->metadata == 2)
  597. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  598. &end_io_wq->work);
  599. else
  600. btrfs_queue_worker(&fs_info->endio_write_workers,
  601. &end_io_wq->work);
  602. } else {
  603. if (end_io_wq->metadata)
  604. btrfs_queue_worker(&fs_info->endio_meta_workers,
  605. &end_io_wq->work);
  606. else
  607. btrfs_queue_worker(&fs_info->endio_workers,
  608. &end_io_wq->work);
  609. }
  610. }
  611. /*
  612. * For the metadata arg you want
  613. *
  614. * 0 - if data
  615. * 1 - if normal metadta
  616. * 2 - if writing to the free space cache area
  617. */
  618. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  619. int metadata)
  620. {
  621. struct end_io_wq *end_io_wq;
  622. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  623. if (!end_io_wq)
  624. return -ENOMEM;
  625. end_io_wq->private = bio->bi_private;
  626. end_io_wq->end_io = bio->bi_end_io;
  627. end_io_wq->info = info;
  628. end_io_wq->error = 0;
  629. end_io_wq->bio = bio;
  630. end_io_wq->metadata = metadata;
  631. bio->bi_private = end_io_wq;
  632. bio->bi_end_io = end_workqueue_bio;
  633. return 0;
  634. }
  635. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  636. {
  637. unsigned long limit = min_t(unsigned long,
  638. info->workers.max_workers,
  639. info->fs_devices->open_devices);
  640. return 256 * limit;
  641. }
  642. static void run_one_async_start(struct btrfs_work *work)
  643. {
  644. struct async_submit_bio *async;
  645. async = container_of(work, struct async_submit_bio, work);
  646. async->submit_bio_start(async->inode, async->rw, async->bio,
  647. async->mirror_num, async->bio_flags,
  648. async->bio_offset);
  649. }
  650. static void run_one_async_done(struct btrfs_work *work)
  651. {
  652. struct btrfs_fs_info *fs_info;
  653. struct async_submit_bio *async;
  654. int limit;
  655. async = container_of(work, struct async_submit_bio, work);
  656. fs_info = BTRFS_I(async->inode)->root->fs_info;
  657. limit = btrfs_async_submit_limit(fs_info);
  658. limit = limit * 2 / 3;
  659. atomic_dec(&fs_info->nr_async_submits);
  660. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  661. waitqueue_active(&fs_info->async_submit_wait))
  662. wake_up(&fs_info->async_submit_wait);
  663. async->submit_bio_done(async->inode, async->rw, async->bio,
  664. async->mirror_num, async->bio_flags,
  665. async->bio_offset);
  666. }
  667. static void run_one_async_free(struct btrfs_work *work)
  668. {
  669. struct async_submit_bio *async;
  670. async = container_of(work, struct async_submit_bio, work);
  671. kfree(async);
  672. }
  673. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  674. int rw, struct bio *bio, int mirror_num,
  675. unsigned long bio_flags,
  676. u64 bio_offset,
  677. extent_submit_bio_hook_t *submit_bio_start,
  678. extent_submit_bio_hook_t *submit_bio_done)
  679. {
  680. struct async_submit_bio *async;
  681. async = kmalloc(sizeof(*async), GFP_NOFS);
  682. if (!async)
  683. return -ENOMEM;
  684. async->inode = inode;
  685. async->rw = rw;
  686. async->bio = bio;
  687. async->mirror_num = mirror_num;
  688. async->submit_bio_start = submit_bio_start;
  689. async->submit_bio_done = submit_bio_done;
  690. async->work.func = run_one_async_start;
  691. async->work.ordered_func = run_one_async_done;
  692. async->work.ordered_free = run_one_async_free;
  693. async->work.flags = 0;
  694. async->bio_flags = bio_flags;
  695. async->bio_offset = bio_offset;
  696. atomic_inc(&fs_info->nr_async_submits);
  697. if (rw & REQ_SYNC)
  698. btrfs_set_work_high_prio(&async->work);
  699. btrfs_queue_worker(&fs_info->workers, &async->work);
  700. while (atomic_read(&fs_info->async_submit_draining) &&
  701. atomic_read(&fs_info->nr_async_submits)) {
  702. wait_event(fs_info->async_submit_wait,
  703. (atomic_read(&fs_info->nr_async_submits) == 0));
  704. }
  705. return 0;
  706. }
  707. static int btree_csum_one_bio(struct bio *bio)
  708. {
  709. struct bio_vec *bvec = bio->bi_io_vec;
  710. int bio_index = 0;
  711. struct btrfs_root *root;
  712. WARN_ON(bio->bi_vcnt <= 0);
  713. while (bio_index < bio->bi_vcnt) {
  714. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  715. csum_dirty_buffer(root, bvec->bv_page);
  716. bio_index++;
  717. bvec++;
  718. }
  719. return 0;
  720. }
  721. static int __btree_submit_bio_start(struct inode *inode, int rw,
  722. struct bio *bio, int mirror_num,
  723. unsigned long bio_flags,
  724. u64 bio_offset)
  725. {
  726. /*
  727. * when we're called for a write, we're already in the async
  728. * submission context. Just jump into btrfs_map_bio
  729. */
  730. btree_csum_one_bio(bio);
  731. return 0;
  732. }
  733. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  734. int mirror_num, unsigned long bio_flags,
  735. u64 bio_offset)
  736. {
  737. /*
  738. * when we're called for a write, we're already in the async
  739. * submission context. Just jump into btrfs_map_bio
  740. */
  741. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  742. }
  743. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  744. int mirror_num, unsigned long bio_flags,
  745. u64 bio_offset)
  746. {
  747. int ret;
  748. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  749. bio, 1);
  750. BUG_ON(ret);
  751. if (!(rw & REQ_WRITE)) {
  752. /*
  753. * called for a read, do the setup so that checksum validation
  754. * can happen in the async kernel threads
  755. */
  756. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  757. mirror_num, 0);
  758. }
  759. /*
  760. * kthread helpers are used to submit writes so that checksumming
  761. * can happen in parallel across all CPUs
  762. */
  763. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  764. inode, rw, bio, mirror_num, 0,
  765. bio_offset,
  766. __btree_submit_bio_start,
  767. __btree_submit_bio_done);
  768. }
  769. #ifdef CONFIG_MIGRATION
  770. static int btree_migratepage(struct address_space *mapping,
  771. struct page *newpage, struct page *page)
  772. {
  773. /*
  774. * we can't safely write a btree page from here,
  775. * we haven't done the locking hook
  776. */
  777. if (PageDirty(page))
  778. return -EAGAIN;
  779. /*
  780. * Buffers may be managed in a filesystem specific way.
  781. * We must have no buffers or drop them.
  782. */
  783. if (page_has_private(page) &&
  784. !try_to_release_page(page, GFP_KERNEL))
  785. return -EAGAIN;
  786. return migrate_page(mapping, newpage, page);
  787. }
  788. #endif
  789. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  790. {
  791. struct extent_io_tree *tree;
  792. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  793. struct extent_buffer *eb;
  794. int was_dirty;
  795. tree = &BTRFS_I(page->mapping->host)->io_tree;
  796. if (!(current->flags & PF_MEMALLOC)) {
  797. return extent_write_full_page(tree, page,
  798. btree_get_extent, wbc);
  799. }
  800. redirty_page_for_writepage(wbc, page);
  801. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  802. WARN_ON(!eb);
  803. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  804. if (!was_dirty) {
  805. spin_lock(&root->fs_info->delalloc_lock);
  806. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  807. spin_unlock(&root->fs_info->delalloc_lock);
  808. }
  809. free_extent_buffer(eb);
  810. unlock_page(page);
  811. return 0;
  812. }
  813. static int btree_writepages(struct address_space *mapping,
  814. struct writeback_control *wbc)
  815. {
  816. struct extent_io_tree *tree;
  817. tree = &BTRFS_I(mapping->host)->io_tree;
  818. if (wbc->sync_mode == WB_SYNC_NONE) {
  819. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  820. u64 num_dirty;
  821. unsigned long thresh = 32 * 1024 * 1024;
  822. if (wbc->for_kupdate)
  823. return 0;
  824. /* this is a bit racy, but that's ok */
  825. num_dirty = root->fs_info->dirty_metadata_bytes;
  826. if (num_dirty < thresh)
  827. return 0;
  828. }
  829. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  830. }
  831. static int btree_readpage(struct file *file, struct page *page)
  832. {
  833. struct extent_io_tree *tree;
  834. tree = &BTRFS_I(page->mapping->host)->io_tree;
  835. return extent_read_full_page(tree, page, btree_get_extent);
  836. }
  837. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  838. {
  839. struct extent_io_tree *tree;
  840. struct extent_map_tree *map;
  841. int ret;
  842. if (PageWriteback(page) || PageDirty(page))
  843. return 0;
  844. tree = &BTRFS_I(page->mapping->host)->io_tree;
  845. map = &BTRFS_I(page->mapping->host)->extent_tree;
  846. ret = try_release_extent_state(map, tree, page, gfp_flags);
  847. if (!ret)
  848. return 0;
  849. ret = try_release_extent_buffer(tree, page);
  850. if (ret == 1) {
  851. ClearPagePrivate(page);
  852. set_page_private(page, 0);
  853. page_cache_release(page);
  854. }
  855. return ret;
  856. }
  857. static void btree_invalidatepage(struct page *page, unsigned long offset)
  858. {
  859. struct extent_io_tree *tree;
  860. tree = &BTRFS_I(page->mapping->host)->io_tree;
  861. extent_invalidatepage(tree, page, offset);
  862. btree_releasepage(page, GFP_NOFS);
  863. if (PagePrivate(page)) {
  864. printk(KERN_WARNING "btrfs warning page private not zero "
  865. "on page %llu\n", (unsigned long long)page_offset(page));
  866. ClearPagePrivate(page);
  867. set_page_private(page, 0);
  868. page_cache_release(page);
  869. }
  870. }
  871. static const struct address_space_operations btree_aops = {
  872. .readpage = btree_readpage,
  873. .writepage = btree_writepage,
  874. .writepages = btree_writepages,
  875. .releasepage = btree_releasepage,
  876. .invalidatepage = btree_invalidatepage,
  877. #ifdef CONFIG_MIGRATION
  878. .migratepage = btree_migratepage,
  879. #endif
  880. };
  881. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  882. u64 parent_transid)
  883. {
  884. struct extent_buffer *buf = NULL;
  885. struct inode *btree_inode = root->fs_info->btree_inode;
  886. int ret = 0;
  887. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  888. if (!buf)
  889. return 0;
  890. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  891. buf, 0, WAIT_NONE, btree_get_extent, 0);
  892. free_extent_buffer(buf);
  893. return ret;
  894. }
  895. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  896. int mirror_num, struct extent_buffer **eb)
  897. {
  898. struct extent_buffer *buf = NULL;
  899. struct inode *btree_inode = root->fs_info->btree_inode;
  900. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  901. int ret;
  902. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  903. if (!buf)
  904. return 0;
  905. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  906. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  907. btree_get_extent, mirror_num);
  908. if (ret) {
  909. free_extent_buffer(buf);
  910. return ret;
  911. }
  912. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  913. free_extent_buffer(buf);
  914. return -EIO;
  915. } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
  916. *eb = buf;
  917. } else {
  918. free_extent_buffer(buf);
  919. }
  920. return 0;
  921. }
  922. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  923. u64 bytenr, u32 blocksize)
  924. {
  925. struct inode *btree_inode = root->fs_info->btree_inode;
  926. struct extent_buffer *eb;
  927. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  928. bytenr, blocksize);
  929. return eb;
  930. }
  931. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  932. u64 bytenr, u32 blocksize)
  933. {
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. struct extent_buffer *eb;
  936. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  937. bytenr, blocksize, NULL);
  938. return eb;
  939. }
  940. int btrfs_write_tree_block(struct extent_buffer *buf)
  941. {
  942. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  943. buf->start + buf->len - 1);
  944. }
  945. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  946. {
  947. return filemap_fdatawait_range(buf->first_page->mapping,
  948. buf->start, buf->start + buf->len - 1);
  949. }
  950. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  951. u32 blocksize, u64 parent_transid)
  952. {
  953. struct extent_buffer *buf = NULL;
  954. int ret;
  955. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  956. if (!buf)
  957. return NULL;
  958. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  959. if (ret == 0)
  960. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  961. return buf;
  962. }
  963. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  964. struct extent_buffer *buf)
  965. {
  966. struct inode *btree_inode = root->fs_info->btree_inode;
  967. if (btrfs_header_generation(buf) ==
  968. root->fs_info->running_transaction->transid) {
  969. btrfs_assert_tree_locked(buf);
  970. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  971. spin_lock(&root->fs_info->delalloc_lock);
  972. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  973. root->fs_info->dirty_metadata_bytes -= buf->len;
  974. else
  975. WARN_ON(1);
  976. spin_unlock(&root->fs_info->delalloc_lock);
  977. }
  978. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  979. btrfs_set_lock_blocking(buf);
  980. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  981. buf);
  982. }
  983. return 0;
  984. }
  985. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  986. u32 stripesize, struct btrfs_root *root,
  987. struct btrfs_fs_info *fs_info,
  988. u64 objectid)
  989. {
  990. root->node = NULL;
  991. root->commit_root = NULL;
  992. root->sectorsize = sectorsize;
  993. root->nodesize = nodesize;
  994. root->leafsize = leafsize;
  995. root->stripesize = stripesize;
  996. root->ref_cows = 0;
  997. root->track_dirty = 0;
  998. root->in_radix = 0;
  999. root->orphan_item_inserted = 0;
  1000. root->orphan_cleanup_state = 0;
  1001. root->fs_info = fs_info;
  1002. root->objectid = objectid;
  1003. root->last_trans = 0;
  1004. root->highest_objectid = 0;
  1005. root->name = NULL;
  1006. root->inode_tree = RB_ROOT;
  1007. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1008. root->block_rsv = NULL;
  1009. root->orphan_block_rsv = NULL;
  1010. INIT_LIST_HEAD(&root->dirty_list);
  1011. INIT_LIST_HEAD(&root->orphan_list);
  1012. INIT_LIST_HEAD(&root->root_list);
  1013. spin_lock_init(&root->orphan_lock);
  1014. spin_lock_init(&root->inode_lock);
  1015. spin_lock_init(&root->accounting_lock);
  1016. mutex_init(&root->objectid_mutex);
  1017. mutex_init(&root->log_mutex);
  1018. init_waitqueue_head(&root->log_writer_wait);
  1019. init_waitqueue_head(&root->log_commit_wait[0]);
  1020. init_waitqueue_head(&root->log_commit_wait[1]);
  1021. atomic_set(&root->log_commit[0], 0);
  1022. atomic_set(&root->log_commit[1], 0);
  1023. atomic_set(&root->log_writers, 0);
  1024. root->log_batch = 0;
  1025. root->log_transid = 0;
  1026. root->last_log_commit = 0;
  1027. extent_io_tree_init(&root->dirty_log_pages,
  1028. fs_info->btree_inode->i_mapping);
  1029. memset(&root->root_key, 0, sizeof(root->root_key));
  1030. memset(&root->root_item, 0, sizeof(root->root_item));
  1031. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1032. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1033. root->defrag_trans_start = fs_info->generation;
  1034. init_completion(&root->kobj_unregister);
  1035. root->defrag_running = 0;
  1036. root->root_key.objectid = objectid;
  1037. root->anon_dev = 0;
  1038. return 0;
  1039. }
  1040. static int find_and_setup_root(struct btrfs_root *tree_root,
  1041. struct btrfs_fs_info *fs_info,
  1042. u64 objectid,
  1043. struct btrfs_root *root)
  1044. {
  1045. int ret;
  1046. u32 blocksize;
  1047. u64 generation;
  1048. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1049. tree_root->sectorsize, tree_root->stripesize,
  1050. root, fs_info, objectid);
  1051. ret = btrfs_find_last_root(tree_root, objectid,
  1052. &root->root_item, &root->root_key);
  1053. if (ret > 0)
  1054. return -ENOENT;
  1055. BUG_ON(ret);
  1056. generation = btrfs_root_generation(&root->root_item);
  1057. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1058. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1059. blocksize, generation);
  1060. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1061. free_extent_buffer(root->node);
  1062. return -EIO;
  1063. }
  1064. root->commit_root = btrfs_root_node(root);
  1065. return 0;
  1066. }
  1067. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1068. struct btrfs_fs_info *fs_info)
  1069. {
  1070. struct btrfs_root *root;
  1071. struct btrfs_root *tree_root = fs_info->tree_root;
  1072. struct extent_buffer *leaf;
  1073. root = kzalloc(sizeof(*root), GFP_NOFS);
  1074. if (!root)
  1075. return ERR_PTR(-ENOMEM);
  1076. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1077. tree_root->sectorsize, tree_root->stripesize,
  1078. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1079. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1080. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1081. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1082. /*
  1083. * log trees do not get reference counted because they go away
  1084. * before a real commit is actually done. They do store pointers
  1085. * to file data extents, and those reference counts still get
  1086. * updated (along with back refs to the log tree).
  1087. */
  1088. root->ref_cows = 0;
  1089. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1090. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1091. if (IS_ERR(leaf)) {
  1092. kfree(root);
  1093. return ERR_CAST(leaf);
  1094. }
  1095. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1096. btrfs_set_header_bytenr(leaf, leaf->start);
  1097. btrfs_set_header_generation(leaf, trans->transid);
  1098. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1099. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1100. root->node = leaf;
  1101. write_extent_buffer(root->node, root->fs_info->fsid,
  1102. (unsigned long)btrfs_header_fsid(root->node),
  1103. BTRFS_FSID_SIZE);
  1104. btrfs_mark_buffer_dirty(root->node);
  1105. btrfs_tree_unlock(root->node);
  1106. return root;
  1107. }
  1108. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1109. struct btrfs_fs_info *fs_info)
  1110. {
  1111. struct btrfs_root *log_root;
  1112. log_root = alloc_log_tree(trans, fs_info);
  1113. if (IS_ERR(log_root))
  1114. return PTR_ERR(log_root);
  1115. WARN_ON(fs_info->log_root_tree);
  1116. fs_info->log_root_tree = log_root;
  1117. return 0;
  1118. }
  1119. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1120. struct btrfs_root *root)
  1121. {
  1122. struct btrfs_root *log_root;
  1123. struct btrfs_inode_item *inode_item;
  1124. log_root = alloc_log_tree(trans, root->fs_info);
  1125. if (IS_ERR(log_root))
  1126. return PTR_ERR(log_root);
  1127. log_root->last_trans = trans->transid;
  1128. log_root->root_key.offset = root->root_key.objectid;
  1129. inode_item = &log_root->root_item.inode;
  1130. inode_item->generation = cpu_to_le64(1);
  1131. inode_item->size = cpu_to_le64(3);
  1132. inode_item->nlink = cpu_to_le32(1);
  1133. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1134. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1135. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1136. WARN_ON(root->log_root);
  1137. root->log_root = log_root;
  1138. root->log_transid = 0;
  1139. root->last_log_commit = 0;
  1140. return 0;
  1141. }
  1142. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1143. struct btrfs_key *location)
  1144. {
  1145. struct btrfs_root *root;
  1146. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1147. struct btrfs_path *path;
  1148. struct extent_buffer *l;
  1149. u64 generation;
  1150. u32 blocksize;
  1151. int ret = 0;
  1152. root = kzalloc(sizeof(*root), GFP_NOFS);
  1153. if (!root)
  1154. return ERR_PTR(-ENOMEM);
  1155. if (location->offset == (u64)-1) {
  1156. ret = find_and_setup_root(tree_root, fs_info,
  1157. location->objectid, root);
  1158. if (ret) {
  1159. kfree(root);
  1160. return ERR_PTR(ret);
  1161. }
  1162. goto out;
  1163. }
  1164. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1165. tree_root->sectorsize, tree_root->stripesize,
  1166. root, fs_info, location->objectid);
  1167. path = btrfs_alloc_path();
  1168. if (!path) {
  1169. kfree(root);
  1170. return ERR_PTR(-ENOMEM);
  1171. }
  1172. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1173. if (ret == 0) {
  1174. l = path->nodes[0];
  1175. read_extent_buffer(l, &root->root_item,
  1176. btrfs_item_ptr_offset(l, path->slots[0]),
  1177. sizeof(root->root_item));
  1178. memcpy(&root->root_key, location, sizeof(*location));
  1179. }
  1180. btrfs_free_path(path);
  1181. if (ret) {
  1182. kfree(root);
  1183. if (ret > 0)
  1184. ret = -ENOENT;
  1185. return ERR_PTR(ret);
  1186. }
  1187. generation = btrfs_root_generation(&root->root_item);
  1188. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1189. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1190. blocksize, generation);
  1191. root->commit_root = btrfs_root_node(root);
  1192. BUG_ON(!root->node);
  1193. out:
  1194. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1195. root->ref_cows = 1;
  1196. btrfs_check_and_init_root_item(&root->root_item);
  1197. }
  1198. return root;
  1199. }
  1200. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1201. struct btrfs_key *location)
  1202. {
  1203. struct btrfs_root *root;
  1204. int ret;
  1205. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1206. return fs_info->tree_root;
  1207. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1208. return fs_info->extent_root;
  1209. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1210. return fs_info->chunk_root;
  1211. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1212. return fs_info->dev_root;
  1213. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1214. return fs_info->csum_root;
  1215. again:
  1216. spin_lock(&fs_info->fs_roots_radix_lock);
  1217. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1218. (unsigned long)location->objectid);
  1219. spin_unlock(&fs_info->fs_roots_radix_lock);
  1220. if (root)
  1221. return root;
  1222. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1223. if (IS_ERR(root))
  1224. return root;
  1225. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1226. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1227. GFP_NOFS);
  1228. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1229. ret = -ENOMEM;
  1230. goto fail;
  1231. }
  1232. btrfs_init_free_ino_ctl(root);
  1233. mutex_init(&root->fs_commit_mutex);
  1234. spin_lock_init(&root->cache_lock);
  1235. init_waitqueue_head(&root->cache_wait);
  1236. ret = get_anon_bdev(&root->anon_dev);
  1237. if (ret)
  1238. goto fail;
  1239. if (btrfs_root_refs(&root->root_item) == 0) {
  1240. ret = -ENOENT;
  1241. goto fail;
  1242. }
  1243. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1244. if (ret < 0)
  1245. goto fail;
  1246. if (ret == 0)
  1247. root->orphan_item_inserted = 1;
  1248. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1249. if (ret)
  1250. goto fail;
  1251. spin_lock(&fs_info->fs_roots_radix_lock);
  1252. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1253. (unsigned long)root->root_key.objectid,
  1254. root);
  1255. if (ret == 0)
  1256. root->in_radix = 1;
  1257. spin_unlock(&fs_info->fs_roots_radix_lock);
  1258. radix_tree_preload_end();
  1259. if (ret) {
  1260. if (ret == -EEXIST) {
  1261. free_fs_root(root);
  1262. goto again;
  1263. }
  1264. goto fail;
  1265. }
  1266. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1267. root->root_key.objectid);
  1268. WARN_ON(ret);
  1269. return root;
  1270. fail:
  1271. free_fs_root(root);
  1272. return ERR_PTR(ret);
  1273. }
  1274. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1275. {
  1276. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1277. int ret = 0;
  1278. struct btrfs_device *device;
  1279. struct backing_dev_info *bdi;
  1280. rcu_read_lock();
  1281. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1282. if (!device->bdev)
  1283. continue;
  1284. bdi = blk_get_backing_dev_info(device->bdev);
  1285. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1286. ret = 1;
  1287. break;
  1288. }
  1289. }
  1290. rcu_read_unlock();
  1291. return ret;
  1292. }
  1293. /*
  1294. * If this fails, caller must call bdi_destroy() to get rid of the
  1295. * bdi again.
  1296. */
  1297. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1298. {
  1299. int err;
  1300. bdi->capabilities = BDI_CAP_MAP_COPY;
  1301. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1302. if (err)
  1303. return err;
  1304. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1305. bdi->congested_fn = btrfs_congested_fn;
  1306. bdi->congested_data = info;
  1307. return 0;
  1308. }
  1309. static int bio_ready_for_csum(struct bio *bio)
  1310. {
  1311. u64 length = 0;
  1312. u64 buf_len = 0;
  1313. u64 start = 0;
  1314. struct page *page;
  1315. struct extent_io_tree *io_tree = NULL;
  1316. struct bio_vec *bvec;
  1317. int i;
  1318. int ret;
  1319. bio_for_each_segment(bvec, bio, i) {
  1320. page = bvec->bv_page;
  1321. if (page->private == EXTENT_PAGE_PRIVATE) {
  1322. length += bvec->bv_len;
  1323. continue;
  1324. }
  1325. if (!page->private) {
  1326. length += bvec->bv_len;
  1327. continue;
  1328. }
  1329. length = bvec->bv_len;
  1330. buf_len = page->private >> 2;
  1331. start = page_offset(page) + bvec->bv_offset;
  1332. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1333. }
  1334. /* are we fully contained in this bio? */
  1335. if (buf_len <= length)
  1336. return 1;
  1337. ret = extent_range_uptodate(io_tree, start + length,
  1338. start + buf_len - 1);
  1339. return ret;
  1340. }
  1341. /*
  1342. * called by the kthread helper functions to finally call the bio end_io
  1343. * functions. This is where read checksum verification actually happens
  1344. */
  1345. static void end_workqueue_fn(struct btrfs_work *work)
  1346. {
  1347. struct bio *bio;
  1348. struct end_io_wq *end_io_wq;
  1349. struct btrfs_fs_info *fs_info;
  1350. int error;
  1351. end_io_wq = container_of(work, struct end_io_wq, work);
  1352. bio = end_io_wq->bio;
  1353. fs_info = end_io_wq->info;
  1354. /* metadata bio reads are special because the whole tree block must
  1355. * be checksummed at once. This makes sure the entire block is in
  1356. * ram and up to date before trying to verify things. For
  1357. * blocksize <= pagesize, it is basically a noop
  1358. */
  1359. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1360. !bio_ready_for_csum(bio)) {
  1361. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1362. &end_io_wq->work);
  1363. return;
  1364. }
  1365. error = end_io_wq->error;
  1366. bio->bi_private = end_io_wq->private;
  1367. bio->bi_end_io = end_io_wq->end_io;
  1368. kfree(end_io_wq);
  1369. bio_endio(bio, error);
  1370. }
  1371. static int cleaner_kthread(void *arg)
  1372. {
  1373. struct btrfs_root *root = arg;
  1374. do {
  1375. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1376. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1377. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1378. btrfs_run_delayed_iputs(root);
  1379. btrfs_clean_old_snapshots(root);
  1380. mutex_unlock(&root->fs_info->cleaner_mutex);
  1381. btrfs_run_defrag_inodes(root->fs_info);
  1382. }
  1383. if (freezing(current)) {
  1384. refrigerator();
  1385. } else {
  1386. set_current_state(TASK_INTERRUPTIBLE);
  1387. if (!kthread_should_stop())
  1388. schedule();
  1389. __set_current_state(TASK_RUNNING);
  1390. }
  1391. } while (!kthread_should_stop());
  1392. return 0;
  1393. }
  1394. static int transaction_kthread(void *arg)
  1395. {
  1396. struct btrfs_root *root = arg;
  1397. struct btrfs_trans_handle *trans;
  1398. struct btrfs_transaction *cur;
  1399. u64 transid;
  1400. unsigned long now;
  1401. unsigned long delay;
  1402. int ret;
  1403. do {
  1404. delay = HZ * 30;
  1405. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1406. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1407. spin_lock(&root->fs_info->trans_lock);
  1408. cur = root->fs_info->running_transaction;
  1409. if (!cur) {
  1410. spin_unlock(&root->fs_info->trans_lock);
  1411. goto sleep;
  1412. }
  1413. now = get_seconds();
  1414. if (!cur->blocked &&
  1415. (now < cur->start_time || now - cur->start_time < 30)) {
  1416. spin_unlock(&root->fs_info->trans_lock);
  1417. delay = HZ * 5;
  1418. goto sleep;
  1419. }
  1420. transid = cur->transid;
  1421. spin_unlock(&root->fs_info->trans_lock);
  1422. trans = btrfs_join_transaction(root);
  1423. BUG_ON(IS_ERR(trans));
  1424. if (transid == trans->transid) {
  1425. ret = btrfs_commit_transaction(trans, root);
  1426. BUG_ON(ret);
  1427. } else {
  1428. btrfs_end_transaction(trans, root);
  1429. }
  1430. sleep:
  1431. wake_up_process(root->fs_info->cleaner_kthread);
  1432. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1433. if (freezing(current)) {
  1434. refrigerator();
  1435. } else {
  1436. set_current_state(TASK_INTERRUPTIBLE);
  1437. if (!kthread_should_stop() &&
  1438. !btrfs_transaction_blocked(root->fs_info))
  1439. schedule_timeout(delay);
  1440. __set_current_state(TASK_RUNNING);
  1441. }
  1442. } while (!kthread_should_stop());
  1443. return 0;
  1444. }
  1445. struct btrfs_root *open_ctree(struct super_block *sb,
  1446. struct btrfs_fs_devices *fs_devices,
  1447. char *options)
  1448. {
  1449. u32 sectorsize;
  1450. u32 nodesize;
  1451. u32 leafsize;
  1452. u32 blocksize;
  1453. u32 stripesize;
  1454. u64 generation;
  1455. u64 features;
  1456. struct btrfs_key location;
  1457. struct buffer_head *bh;
  1458. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1459. GFP_NOFS);
  1460. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1461. GFP_NOFS);
  1462. struct btrfs_root *tree_root = btrfs_sb(sb);
  1463. struct btrfs_fs_info *fs_info = NULL;
  1464. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1465. GFP_NOFS);
  1466. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1467. GFP_NOFS);
  1468. struct btrfs_root *log_tree_root;
  1469. int ret;
  1470. int err = -EINVAL;
  1471. struct btrfs_super_block *disk_super;
  1472. if (!extent_root || !tree_root || !tree_root->fs_info ||
  1473. !chunk_root || !dev_root || !csum_root) {
  1474. err = -ENOMEM;
  1475. goto fail;
  1476. }
  1477. fs_info = tree_root->fs_info;
  1478. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1479. if (ret) {
  1480. err = ret;
  1481. goto fail;
  1482. }
  1483. ret = setup_bdi(fs_info, &fs_info->bdi);
  1484. if (ret) {
  1485. err = ret;
  1486. goto fail_srcu;
  1487. }
  1488. fs_info->btree_inode = new_inode(sb);
  1489. if (!fs_info->btree_inode) {
  1490. err = -ENOMEM;
  1491. goto fail_bdi;
  1492. }
  1493. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1494. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1495. INIT_LIST_HEAD(&fs_info->trans_list);
  1496. INIT_LIST_HEAD(&fs_info->dead_roots);
  1497. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1498. INIT_LIST_HEAD(&fs_info->hashers);
  1499. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1500. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1501. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1502. spin_lock_init(&fs_info->delalloc_lock);
  1503. spin_lock_init(&fs_info->trans_lock);
  1504. spin_lock_init(&fs_info->ref_cache_lock);
  1505. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1506. spin_lock_init(&fs_info->delayed_iput_lock);
  1507. spin_lock_init(&fs_info->defrag_inodes_lock);
  1508. mutex_init(&fs_info->reloc_mutex);
  1509. init_completion(&fs_info->kobj_unregister);
  1510. fs_info->tree_root = tree_root;
  1511. fs_info->extent_root = extent_root;
  1512. fs_info->csum_root = csum_root;
  1513. fs_info->chunk_root = chunk_root;
  1514. fs_info->dev_root = dev_root;
  1515. fs_info->fs_devices = fs_devices;
  1516. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1517. INIT_LIST_HEAD(&fs_info->space_info);
  1518. btrfs_mapping_init(&fs_info->mapping_tree);
  1519. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1520. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1521. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1522. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1523. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1524. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1525. mutex_init(&fs_info->durable_block_rsv_mutex);
  1526. atomic_set(&fs_info->nr_async_submits, 0);
  1527. atomic_set(&fs_info->async_delalloc_pages, 0);
  1528. atomic_set(&fs_info->async_submit_draining, 0);
  1529. atomic_set(&fs_info->nr_async_bios, 0);
  1530. atomic_set(&fs_info->defrag_running, 0);
  1531. fs_info->sb = sb;
  1532. fs_info->max_inline = 8192 * 1024;
  1533. fs_info->metadata_ratio = 0;
  1534. fs_info->defrag_inodes = RB_ROOT;
  1535. fs_info->trans_no_join = 0;
  1536. /* readahead state */
  1537. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1538. spin_lock_init(&fs_info->reada_lock);
  1539. fs_info->thread_pool_size = min_t(unsigned long,
  1540. num_online_cpus() + 2, 8);
  1541. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1542. spin_lock_init(&fs_info->ordered_extent_lock);
  1543. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1544. GFP_NOFS);
  1545. if (!fs_info->delayed_root) {
  1546. err = -ENOMEM;
  1547. goto fail_iput;
  1548. }
  1549. btrfs_init_delayed_root(fs_info->delayed_root);
  1550. mutex_init(&fs_info->scrub_lock);
  1551. atomic_set(&fs_info->scrubs_running, 0);
  1552. atomic_set(&fs_info->scrub_pause_req, 0);
  1553. atomic_set(&fs_info->scrubs_paused, 0);
  1554. atomic_set(&fs_info->scrub_cancel_req, 0);
  1555. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1556. init_rwsem(&fs_info->scrub_super_lock);
  1557. fs_info->scrub_workers_refcnt = 0;
  1558. sb->s_blocksize = 4096;
  1559. sb->s_blocksize_bits = blksize_bits(4096);
  1560. sb->s_bdi = &fs_info->bdi;
  1561. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1562. fs_info->btree_inode->i_nlink = 1;
  1563. /*
  1564. * we set the i_size on the btree inode to the max possible int.
  1565. * the real end of the address space is determined by all of
  1566. * the devices in the system
  1567. */
  1568. fs_info->btree_inode->i_size = OFFSET_MAX;
  1569. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1570. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1571. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1572. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1573. fs_info->btree_inode->i_mapping);
  1574. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1575. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1576. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1577. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1578. sizeof(struct btrfs_key));
  1579. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1580. insert_inode_hash(fs_info->btree_inode);
  1581. spin_lock_init(&fs_info->block_group_cache_lock);
  1582. fs_info->block_group_cache_tree = RB_ROOT;
  1583. extent_io_tree_init(&fs_info->freed_extents[0],
  1584. fs_info->btree_inode->i_mapping);
  1585. extent_io_tree_init(&fs_info->freed_extents[1],
  1586. fs_info->btree_inode->i_mapping);
  1587. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1588. fs_info->do_barriers = 1;
  1589. mutex_init(&fs_info->ordered_operations_mutex);
  1590. mutex_init(&fs_info->tree_log_mutex);
  1591. mutex_init(&fs_info->chunk_mutex);
  1592. mutex_init(&fs_info->transaction_kthread_mutex);
  1593. mutex_init(&fs_info->cleaner_mutex);
  1594. mutex_init(&fs_info->volume_mutex);
  1595. init_rwsem(&fs_info->extent_commit_sem);
  1596. init_rwsem(&fs_info->cleanup_work_sem);
  1597. init_rwsem(&fs_info->subvol_sem);
  1598. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1599. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1600. init_waitqueue_head(&fs_info->transaction_throttle);
  1601. init_waitqueue_head(&fs_info->transaction_wait);
  1602. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1603. init_waitqueue_head(&fs_info->async_submit_wait);
  1604. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1605. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1606. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1607. if (!bh) {
  1608. err = -EINVAL;
  1609. goto fail_alloc;
  1610. }
  1611. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1612. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1613. sizeof(fs_info->super_for_commit));
  1614. brelse(bh);
  1615. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1616. disk_super = &fs_info->super_copy;
  1617. if (!btrfs_super_root(disk_super))
  1618. goto fail_alloc;
  1619. /* check FS state, whether FS is broken. */
  1620. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1621. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1622. /*
  1623. * In the long term, we'll store the compression type in the super
  1624. * block, and it'll be used for per file compression control.
  1625. */
  1626. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1627. ret = btrfs_parse_options(tree_root, options);
  1628. if (ret) {
  1629. err = ret;
  1630. goto fail_alloc;
  1631. }
  1632. features = btrfs_super_incompat_flags(disk_super) &
  1633. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1634. if (features) {
  1635. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1636. "unsupported optional features (%Lx).\n",
  1637. (unsigned long long)features);
  1638. err = -EINVAL;
  1639. goto fail_alloc;
  1640. }
  1641. features = btrfs_super_incompat_flags(disk_super);
  1642. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1643. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1644. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1645. btrfs_set_super_incompat_flags(disk_super, features);
  1646. features = btrfs_super_compat_ro_flags(disk_super) &
  1647. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1648. if (!(sb->s_flags & MS_RDONLY) && features) {
  1649. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1650. "unsupported option features (%Lx).\n",
  1651. (unsigned long long)features);
  1652. err = -EINVAL;
  1653. goto fail_alloc;
  1654. }
  1655. btrfs_init_workers(&fs_info->generic_worker,
  1656. "genwork", 1, NULL);
  1657. btrfs_init_workers(&fs_info->workers, "worker",
  1658. fs_info->thread_pool_size,
  1659. &fs_info->generic_worker);
  1660. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1661. fs_info->thread_pool_size,
  1662. &fs_info->generic_worker);
  1663. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1664. min_t(u64, fs_devices->num_devices,
  1665. fs_info->thread_pool_size),
  1666. &fs_info->generic_worker);
  1667. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1668. 2, &fs_info->generic_worker);
  1669. /* a higher idle thresh on the submit workers makes it much more
  1670. * likely that bios will be send down in a sane order to the
  1671. * devices
  1672. */
  1673. fs_info->submit_workers.idle_thresh = 64;
  1674. fs_info->workers.idle_thresh = 16;
  1675. fs_info->workers.ordered = 1;
  1676. fs_info->delalloc_workers.idle_thresh = 2;
  1677. fs_info->delalloc_workers.ordered = 1;
  1678. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1679. &fs_info->generic_worker);
  1680. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1681. fs_info->thread_pool_size,
  1682. &fs_info->generic_worker);
  1683. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1684. fs_info->thread_pool_size,
  1685. &fs_info->generic_worker);
  1686. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1687. "endio-meta-write", fs_info->thread_pool_size,
  1688. &fs_info->generic_worker);
  1689. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1690. fs_info->thread_pool_size,
  1691. &fs_info->generic_worker);
  1692. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1693. 1, &fs_info->generic_worker);
  1694. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1695. fs_info->thread_pool_size,
  1696. &fs_info->generic_worker);
  1697. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1698. fs_info->thread_pool_size,
  1699. &fs_info->generic_worker);
  1700. /*
  1701. * endios are largely parallel and should have a very
  1702. * low idle thresh
  1703. */
  1704. fs_info->endio_workers.idle_thresh = 4;
  1705. fs_info->endio_meta_workers.idle_thresh = 4;
  1706. fs_info->endio_write_workers.idle_thresh = 2;
  1707. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1708. fs_info->readahead_workers.idle_thresh = 2;
  1709. btrfs_start_workers(&fs_info->workers, 1);
  1710. btrfs_start_workers(&fs_info->generic_worker, 1);
  1711. btrfs_start_workers(&fs_info->submit_workers, 1);
  1712. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1713. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1714. btrfs_start_workers(&fs_info->endio_workers, 1);
  1715. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1716. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1717. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1718. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1719. btrfs_start_workers(&fs_info->delayed_workers, 1);
  1720. btrfs_start_workers(&fs_info->caching_workers, 1);
  1721. btrfs_start_workers(&fs_info->readahead_workers, 1);
  1722. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1723. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1724. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1725. nodesize = btrfs_super_nodesize(disk_super);
  1726. leafsize = btrfs_super_leafsize(disk_super);
  1727. sectorsize = btrfs_super_sectorsize(disk_super);
  1728. stripesize = btrfs_super_stripesize(disk_super);
  1729. tree_root->nodesize = nodesize;
  1730. tree_root->leafsize = leafsize;
  1731. tree_root->sectorsize = sectorsize;
  1732. tree_root->stripesize = stripesize;
  1733. sb->s_blocksize = sectorsize;
  1734. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1735. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1736. sizeof(disk_super->magic))) {
  1737. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1738. goto fail_sb_buffer;
  1739. }
  1740. mutex_lock(&fs_info->chunk_mutex);
  1741. ret = btrfs_read_sys_array(tree_root);
  1742. mutex_unlock(&fs_info->chunk_mutex);
  1743. if (ret) {
  1744. printk(KERN_WARNING "btrfs: failed to read the system "
  1745. "array on %s\n", sb->s_id);
  1746. goto fail_sb_buffer;
  1747. }
  1748. blocksize = btrfs_level_size(tree_root,
  1749. btrfs_super_chunk_root_level(disk_super));
  1750. generation = btrfs_super_chunk_root_generation(disk_super);
  1751. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1752. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1753. chunk_root->node = read_tree_block(chunk_root,
  1754. btrfs_super_chunk_root(disk_super),
  1755. blocksize, generation);
  1756. BUG_ON(!chunk_root->node);
  1757. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1758. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1759. sb->s_id);
  1760. goto fail_chunk_root;
  1761. }
  1762. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1763. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1764. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1765. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1766. BTRFS_UUID_SIZE);
  1767. mutex_lock(&fs_info->chunk_mutex);
  1768. ret = btrfs_read_chunk_tree(chunk_root);
  1769. mutex_unlock(&fs_info->chunk_mutex);
  1770. if (ret) {
  1771. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1772. sb->s_id);
  1773. goto fail_chunk_root;
  1774. }
  1775. btrfs_close_extra_devices(fs_devices);
  1776. blocksize = btrfs_level_size(tree_root,
  1777. btrfs_super_root_level(disk_super));
  1778. generation = btrfs_super_generation(disk_super);
  1779. tree_root->node = read_tree_block(tree_root,
  1780. btrfs_super_root(disk_super),
  1781. blocksize, generation);
  1782. if (!tree_root->node)
  1783. goto fail_chunk_root;
  1784. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1785. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1786. sb->s_id);
  1787. goto fail_tree_root;
  1788. }
  1789. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1790. tree_root->commit_root = btrfs_root_node(tree_root);
  1791. ret = find_and_setup_root(tree_root, fs_info,
  1792. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1793. if (ret)
  1794. goto fail_tree_root;
  1795. extent_root->track_dirty = 1;
  1796. ret = find_and_setup_root(tree_root, fs_info,
  1797. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1798. if (ret)
  1799. goto fail_extent_root;
  1800. dev_root->track_dirty = 1;
  1801. ret = find_and_setup_root(tree_root, fs_info,
  1802. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1803. if (ret)
  1804. goto fail_dev_root;
  1805. csum_root->track_dirty = 1;
  1806. fs_info->generation = generation;
  1807. fs_info->last_trans_committed = generation;
  1808. fs_info->data_alloc_profile = (u64)-1;
  1809. fs_info->metadata_alloc_profile = (u64)-1;
  1810. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1811. ret = btrfs_init_space_info(fs_info);
  1812. if (ret) {
  1813. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  1814. goto fail_block_groups;
  1815. }
  1816. ret = btrfs_read_block_groups(extent_root);
  1817. if (ret) {
  1818. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1819. goto fail_block_groups;
  1820. }
  1821. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1822. "btrfs-cleaner");
  1823. if (IS_ERR(fs_info->cleaner_kthread))
  1824. goto fail_block_groups;
  1825. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1826. tree_root,
  1827. "btrfs-transaction");
  1828. if (IS_ERR(fs_info->transaction_kthread))
  1829. goto fail_cleaner;
  1830. if (!btrfs_test_opt(tree_root, SSD) &&
  1831. !btrfs_test_opt(tree_root, NOSSD) &&
  1832. !fs_info->fs_devices->rotating) {
  1833. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1834. "mode\n");
  1835. btrfs_set_opt(fs_info->mount_opt, SSD);
  1836. }
  1837. /* do not make disk changes in broken FS */
  1838. if (btrfs_super_log_root(disk_super) != 0 &&
  1839. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1840. u64 bytenr = btrfs_super_log_root(disk_super);
  1841. if (fs_devices->rw_devices == 0) {
  1842. printk(KERN_WARNING "Btrfs log replay required "
  1843. "on RO media\n");
  1844. err = -EIO;
  1845. goto fail_trans_kthread;
  1846. }
  1847. blocksize =
  1848. btrfs_level_size(tree_root,
  1849. btrfs_super_log_root_level(disk_super));
  1850. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1851. if (!log_tree_root) {
  1852. err = -ENOMEM;
  1853. goto fail_trans_kthread;
  1854. }
  1855. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1856. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1857. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1858. blocksize,
  1859. generation + 1);
  1860. ret = btrfs_recover_log_trees(log_tree_root);
  1861. BUG_ON(ret);
  1862. if (sb->s_flags & MS_RDONLY) {
  1863. ret = btrfs_commit_super(tree_root);
  1864. BUG_ON(ret);
  1865. }
  1866. }
  1867. ret = btrfs_find_orphan_roots(tree_root);
  1868. BUG_ON(ret);
  1869. if (!(sb->s_flags & MS_RDONLY)) {
  1870. ret = btrfs_cleanup_fs_roots(fs_info);
  1871. BUG_ON(ret);
  1872. ret = btrfs_recover_relocation(tree_root);
  1873. if (ret < 0) {
  1874. printk(KERN_WARNING
  1875. "btrfs: failed to recover relocation\n");
  1876. err = -EINVAL;
  1877. goto fail_trans_kthread;
  1878. }
  1879. }
  1880. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1881. location.type = BTRFS_ROOT_ITEM_KEY;
  1882. location.offset = (u64)-1;
  1883. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1884. if (!fs_info->fs_root)
  1885. goto fail_trans_kthread;
  1886. if (IS_ERR(fs_info->fs_root)) {
  1887. err = PTR_ERR(fs_info->fs_root);
  1888. goto fail_trans_kthread;
  1889. }
  1890. if (!(sb->s_flags & MS_RDONLY)) {
  1891. down_read(&fs_info->cleanup_work_sem);
  1892. err = btrfs_orphan_cleanup(fs_info->fs_root);
  1893. if (!err)
  1894. err = btrfs_orphan_cleanup(fs_info->tree_root);
  1895. up_read(&fs_info->cleanup_work_sem);
  1896. if (err) {
  1897. close_ctree(tree_root);
  1898. return ERR_PTR(err);
  1899. }
  1900. }
  1901. return tree_root;
  1902. fail_trans_kthread:
  1903. kthread_stop(fs_info->transaction_kthread);
  1904. fail_cleaner:
  1905. kthread_stop(fs_info->cleaner_kthread);
  1906. /*
  1907. * make sure we're done with the btree inode before we stop our
  1908. * kthreads
  1909. */
  1910. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1911. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1912. fail_block_groups:
  1913. btrfs_free_block_groups(fs_info);
  1914. free_extent_buffer(csum_root->node);
  1915. free_extent_buffer(csum_root->commit_root);
  1916. fail_dev_root:
  1917. free_extent_buffer(dev_root->node);
  1918. free_extent_buffer(dev_root->commit_root);
  1919. fail_extent_root:
  1920. free_extent_buffer(extent_root->node);
  1921. free_extent_buffer(extent_root->commit_root);
  1922. fail_tree_root:
  1923. free_extent_buffer(tree_root->node);
  1924. free_extent_buffer(tree_root->commit_root);
  1925. fail_chunk_root:
  1926. free_extent_buffer(chunk_root->node);
  1927. free_extent_buffer(chunk_root->commit_root);
  1928. fail_sb_buffer:
  1929. btrfs_stop_workers(&fs_info->generic_worker);
  1930. btrfs_stop_workers(&fs_info->fixup_workers);
  1931. btrfs_stop_workers(&fs_info->delalloc_workers);
  1932. btrfs_stop_workers(&fs_info->workers);
  1933. btrfs_stop_workers(&fs_info->endio_workers);
  1934. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1935. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1936. btrfs_stop_workers(&fs_info->endio_write_workers);
  1937. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1938. btrfs_stop_workers(&fs_info->submit_workers);
  1939. btrfs_stop_workers(&fs_info->delayed_workers);
  1940. btrfs_stop_workers(&fs_info->caching_workers);
  1941. fail_alloc:
  1942. kfree(fs_info->delayed_root);
  1943. fail_iput:
  1944. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1945. iput(fs_info->btree_inode);
  1946. btrfs_close_devices(fs_info->fs_devices);
  1947. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1948. fail_bdi:
  1949. bdi_destroy(&fs_info->bdi);
  1950. fail_srcu:
  1951. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1952. fail:
  1953. kfree(extent_root);
  1954. kfree(tree_root);
  1955. kfree(fs_info);
  1956. kfree(chunk_root);
  1957. kfree(dev_root);
  1958. kfree(csum_root);
  1959. return ERR_PTR(err);
  1960. }
  1961. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1962. {
  1963. char b[BDEVNAME_SIZE];
  1964. if (uptodate) {
  1965. set_buffer_uptodate(bh);
  1966. } else {
  1967. printk_ratelimited(KERN_WARNING "lost page write due to "
  1968. "I/O error on %s\n",
  1969. bdevname(bh->b_bdev, b));
  1970. /* note, we dont' set_buffer_write_io_error because we have
  1971. * our own ways of dealing with the IO errors
  1972. */
  1973. clear_buffer_uptodate(bh);
  1974. }
  1975. unlock_buffer(bh);
  1976. put_bh(bh);
  1977. }
  1978. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1979. {
  1980. struct buffer_head *bh;
  1981. struct buffer_head *latest = NULL;
  1982. struct btrfs_super_block *super;
  1983. int i;
  1984. u64 transid = 0;
  1985. u64 bytenr;
  1986. /* we would like to check all the supers, but that would make
  1987. * a btrfs mount succeed after a mkfs from a different FS.
  1988. * So, we need to add a special mount option to scan for
  1989. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1990. */
  1991. for (i = 0; i < 1; i++) {
  1992. bytenr = btrfs_sb_offset(i);
  1993. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1994. break;
  1995. bh = __bread(bdev, bytenr / 4096, 4096);
  1996. if (!bh)
  1997. continue;
  1998. super = (struct btrfs_super_block *)bh->b_data;
  1999. if (btrfs_super_bytenr(super) != bytenr ||
  2000. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2001. sizeof(super->magic))) {
  2002. brelse(bh);
  2003. continue;
  2004. }
  2005. if (!latest || btrfs_super_generation(super) > transid) {
  2006. brelse(latest);
  2007. latest = bh;
  2008. transid = btrfs_super_generation(super);
  2009. } else {
  2010. brelse(bh);
  2011. }
  2012. }
  2013. return latest;
  2014. }
  2015. /*
  2016. * this should be called twice, once with wait == 0 and
  2017. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2018. * we write are pinned.
  2019. *
  2020. * They are released when wait == 1 is done.
  2021. * max_mirrors must be the same for both runs, and it indicates how
  2022. * many supers on this one device should be written.
  2023. *
  2024. * max_mirrors == 0 means to write them all.
  2025. */
  2026. static int write_dev_supers(struct btrfs_device *device,
  2027. struct btrfs_super_block *sb,
  2028. int do_barriers, int wait, int max_mirrors)
  2029. {
  2030. struct buffer_head *bh;
  2031. int i;
  2032. int ret;
  2033. int errors = 0;
  2034. u32 crc;
  2035. u64 bytenr;
  2036. int last_barrier = 0;
  2037. if (max_mirrors == 0)
  2038. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2039. /* make sure only the last submit_bh does a barrier */
  2040. if (do_barriers) {
  2041. for (i = 0; i < max_mirrors; i++) {
  2042. bytenr = btrfs_sb_offset(i);
  2043. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2044. device->total_bytes)
  2045. break;
  2046. last_barrier = i;
  2047. }
  2048. }
  2049. for (i = 0; i < max_mirrors; i++) {
  2050. bytenr = btrfs_sb_offset(i);
  2051. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2052. break;
  2053. if (wait) {
  2054. bh = __find_get_block(device->bdev, bytenr / 4096,
  2055. BTRFS_SUPER_INFO_SIZE);
  2056. BUG_ON(!bh);
  2057. wait_on_buffer(bh);
  2058. if (!buffer_uptodate(bh))
  2059. errors++;
  2060. /* drop our reference */
  2061. brelse(bh);
  2062. /* drop the reference from the wait == 0 run */
  2063. brelse(bh);
  2064. continue;
  2065. } else {
  2066. btrfs_set_super_bytenr(sb, bytenr);
  2067. crc = ~(u32)0;
  2068. crc = btrfs_csum_data(NULL, (char *)sb +
  2069. BTRFS_CSUM_SIZE, crc,
  2070. BTRFS_SUPER_INFO_SIZE -
  2071. BTRFS_CSUM_SIZE);
  2072. btrfs_csum_final(crc, sb->csum);
  2073. /*
  2074. * one reference for us, and we leave it for the
  2075. * caller
  2076. */
  2077. bh = __getblk(device->bdev, bytenr / 4096,
  2078. BTRFS_SUPER_INFO_SIZE);
  2079. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2080. /* one reference for submit_bh */
  2081. get_bh(bh);
  2082. set_buffer_uptodate(bh);
  2083. lock_buffer(bh);
  2084. bh->b_end_io = btrfs_end_buffer_write_sync;
  2085. }
  2086. if (i == last_barrier && do_barriers)
  2087. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  2088. else
  2089. ret = submit_bh(WRITE_SYNC, bh);
  2090. if (ret)
  2091. errors++;
  2092. }
  2093. return errors < i ? 0 : -1;
  2094. }
  2095. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2096. {
  2097. struct list_head *head;
  2098. struct btrfs_device *dev;
  2099. struct btrfs_super_block *sb;
  2100. struct btrfs_dev_item *dev_item;
  2101. int ret;
  2102. int do_barriers;
  2103. int max_errors;
  2104. int total_errors = 0;
  2105. u64 flags;
  2106. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  2107. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2108. sb = &root->fs_info->super_for_commit;
  2109. dev_item = &sb->dev_item;
  2110. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2111. head = &root->fs_info->fs_devices->devices;
  2112. list_for_each_entry_rcu(dev, head, dev_list) {
  2113. if (!dev->bdev) {
  2114. total_errors++;
  2115. continue;
  2116. }
  2117. if (!dev->in_fs_metadata || !dev->writeable)
  2118. continue;
  2119. btrfs_set_stack_device_generation(dev_item, 0);
  2120. btrfs_set_stack_device_type(dev_item, dev->type);
  2121. btrfs_set_stack_device_id(dev_item, dev->devid);
  2122. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2123. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2124. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2125. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2126. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2127. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2128. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2129. flags = btrfs_super_flags(sb);
  2130. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2131. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2132. if (ret)
  2133. total_errors++;
  2134. }
  2135. if (total_errors > max_errors) {
  2136. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2137. total_errors);
  2138. BUG();
  2139. }
  2140. total_errors = 0;
  2141. list_for_each_entry_rcu(dev, head, dev_list) {
  2142. if (!dev->bdev)
  2143. continue;
  2144. if (!dev->in_fs_metadata || !dev->writeable)
  2145. continue;
  2146. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2147. if (ret)
  2148. total_errors++;
  2149. }
  2150. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2151. if (total_errors > max_errors) {
  2152. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2153. total_errors);
  2154. BUG();
  2155. }
  2156. return 0;
  2157. }
  2158. int write_ctree_super(struct btrfs_trans_handle *trans,
  2159. struct btrfs_root *root, int max_mirrors)
  2160. {
  2161. int ret;
  2162. ret = write_all_supers(root, max_mirrors);
  2163. return ret;
  2164. }
  2165. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2166. {
  2167. spin_lock(&fs_info->fs_roots_radix_lock);
  2168. radix_tree_delete(&fs_info->fs_roots_radix,
  2169. (unsigned long)root->root_key.objectid);
  2170. spin_unlock(&fs_info->fs_roots_radix_lock);
  2171. if (btrfs_root_refs(&root->root_item) == 0)
  2172. synchronize_srcu(&fs_info->subvol_srcu);
  2173. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2174. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2175. free_fs_root(root);
  2176. return 0;
  2177. }
  2178. static void free_fs_root(struct btrfs_root *root)
  2179. {
  2180. iput(root->cache_inode);
  2181. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2182. if (root->anon_dev)
  2183. free_anon_bdev(root->anon_dev);
  2184. free_extent_buffer(root->node);
  2185. free_extent_buffer(root->commit_root);
  2186. kfree(root->free_ino_ctl);
  2187. kfree(root->free_ino_pinned);
  2188. kfree(root->name);
  2189. kfree(root);
  2190. }
  2191. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2192. {
  2193. int ret;
  2194. struct btrfs_root *gang[8];
  2195. int i;
  2196. while (!list_empty(&fs_info->dead_roots)) {
  2197. gang[0] = list_entry(fs_info->dead_roots.next,
  2198. struct btrfs_root, root_list);
  2199. list_del(&gang[0]->root_list);
  2200. if (gang[0]->in_radix) {
  2201. btrfs_free_fs_root(fs_info, gang[0]);
  2202. } else {
  2203. free_extent_buffer(gang[0]->node);
  2204. free_extent_buffer(gang[0]->commit_root);
  2205. kfree(gang[0]);
  2206. }
  2207. }
  2208. while (1) {
  2209. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2210. (void **)gang, 0,
  2211. ARRAY_SIZE(gang));
  2212. if (!ret)
  2213. break;
  2214. for (i = 0; i < ret; i++)
  2215. btrfs_free_fs_root(fs_info, gang[i]);
  2216. }
  2217. return 0;
  2218. }
  2219. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2220. {
  2221. u64 root_objectid = 0;
  2222. struct btrfs_root *gang[8];
  2223. int i;
  2224. int ret;
  2225. while (1) {
  2226. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2227. (void **)gang, root_objectid,
  2228. ARRAY_SIZE(gang));
  2229. if (!ret)
  2230. break;
  2231. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2232. for (i = 0; i < ret; i++) {
  2233. int err;
  2234. root_objectid = gang[i]->root_key.objectid;
  2235. err = btrfs_orphan_cleanup(gang[i]);
  2236. if (err)
  2237. return err;
  2238. }
  2239. root_objectid++;
  2240. }
  2241. return 0;
  2242. }
  2243. int btrfs_commit_super(struct btrfs_root *root)
  2244. {
  2245. struct btrfs_trans_handle *trans;
  2246. int ret;
  2247. mutex_lock(&root->fs_info->cleaner_mutex);
  2248. btrfs_run_delayed_iputs(root);
  2249. btrfs_clean_old_snapshots(root);
  2250. mutex_unlock(&root->fs_info->cleaner_mutex);
  2251. /* wait until ongoing cleanup work done */
  2252. down_write(&root->fs_info->cleanup_work_sem);
  2253. up_write(&root->fs_info->cleanup_work_sem);
  2254. trans = btrfs_join_transaction(root);
  2255. if (IS_ERR(trans))
  2256. return PTR_ERR(trans);
  2257. ret = btrfs_commit_transaction(trans, root);
  2258. BUG_ON(ret);
  2259. /* run commit again to drop the original snapshot */
  2260. trans = btrfs_join_transaction(root);
  2261. if (IS_ERR(trans))
  2262. return PTR_ERR(trans);
  2263. btrfs_commit_transaction(trans, root);
  2264. ret = btrfs_write_and_wait_transaction(NULL, root);
  2265. BUG_ON(ret);
  2266. ret = write_ctree_super(NULL, root, 0);
  2267. return ret;
  2268. }
  2269. int close_ctree(struct btrfs_root *root)
  2270. {
  2271. struct btrfs_fs_info *fs_info = root->fs_info;
  2272. int ret;
  2273. fs_info->closing = 1;
  2274. smp_mb();
  2275. btrfs_scrub_cancel(root);
  2276. /* wait for any defraggers to finish */
  2277. wait_event(fs_info->transaction_wait,
  2278. (atomic_read(&fs_info->defrag_running) == 0));
  2279. /* clear out the rbtree of defraggable inodes */
  2280. btrfs_run_defrag_inodes(root->fs_info);
  2281. btrfs_put_block_group_cache(fs_info);
  2282. /*
  2283. * Here come 2 situations when btrfs is broken to flip readonly:
  2284. *
  2285. * 1. when btrfs flips readonly somewhere else before
  2286. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2287. * and btrfs will skip to write sb directly to keep
  2288. * ERROR state on disk.
  2289. *
  2290. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2291. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2292. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2293. * btrfs will cleanup all FS resources first and write sb then.
  2294. */
  2295. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2296. ret = btrfs_commit_super(root);
  2297. if (ret)
  2298. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2299. }
  2300. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2301. ret = btrfs_error_commit_super(root);
  2302. if (ret)
  2303. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2304. }
  2305. kthread_stop(root->fs_info->transaction_kthread);
  2306. kthread_stop(root->fs_info->cleaner_kthread);
  2307. fs_info->closing = 2;
  2308. smp_mb();
  2309. if (fs_info->delalloc_bytes) {
  2310. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2311. (unsigned long long)fs_info->delalloc_bytes);
  2312. }
  2313. if (fs_info->total_ref_cache_size) {
  2314. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2315. (unsigned long long)fs_info->total_ref_cache_size);
  2316. }
  2317. free_extent_buffer(fs_info->extent_root->node);
  2318. free_extent_buffer(fs_info->extent_root->commit_root);
  2319. free_extent_buffer(fs_info->tree_root->node);
  2320. free_extent_buffer(fs_info->tree_root->commit_root);
  2321. free_extent_buffer(root->fs_info->chunk_root->node);
  2322. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2323. free_extent_buffer(root->fs_info->dev_root->node);
  2324. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2325. free_extent_buffer(root->fs_info->csum_root->node);
  2326. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2327. btrfs_free_block_groups(root->fs_info);
  2328. del_fs_roots(fs_info);
  2329. iput(fs_info->btree_inode);
  2330. kfree(fs_info->delayed_root);
  2331. btrfs_stop_workers(&fs_info->generic_worker);
  2332. btrfs_stop_workers(&fs_info->fixup_workers);
  2333. btrfs_stop_workers(&fs_info->delalloc_workers);
  2334. btrfs_stop_workers(&fs_info->workers);
  2335. btrfs_stop_workers(&fs_info->endio_workers);
  2336. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2337. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2338. btrfs_stop_workers(&fs_info->endio_write_workers);
  2339. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2340. btrfs_stop_workers(&fs_info->submit_workers);
  2341. btrfs_stop_workers(&fs_info->delayed_workers);
  2342. btrfs_stop_workers(&fs_info->caching_workers);
  2343. btrfs_stop_workers(&fs_info->readahead_workers);
  2344. btrfs_close_devices(fs_info->fs_devices);
  2345. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2346. bdi_destroy(&fs_info->bdi);
  2347. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2348. kfree(fs_info->extent_root);
  2349. kfree(fs_info->tree_root);
  2350. kfree(fs_info->chunk_root);
  2351. kfree(fs_info->dev_root);
  2352. kfree(fs_info->csum_root);
  2353. kfree(fs_info);
  2354. return 0;
  2355. }
  2356. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2357. {
  2358. int ret;
  2359. struct inode *btree_inode = buf->first_page->mapping->host;
  2360. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2361. NULL);
  2362. if (!ret)
  2363. return ret;
  2364. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2365. parent_transid);
  2366. return !ret;
  2367. }
  2368. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2369. {
  2370. struct inode *btree_inode = buf->first_page->mapping->host;
  2371. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2372. buf);
  2373. }
  2374. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2375. {
  2376. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2377. u64 transid = btrfs_header_generation(buf);
  2378. struct inode *btree_inode = root->fs_info->btree_inode;
  2379. int was_dirty;
  2380. btrfs_assert_tree_locked(buf);
  2381. if (transid != root->fs_info->generation) {
  2382. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2383. "found %llu running %llu\n",
  2384. (unsigned long long)buf->start,
  2385. (unsigned long long)transid,
  2386. (unsigned long long)root->fs_info->generation);
  2387. WARN_ON(1);
  2388. }
  2389. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2390. buf);
  2391. if (!was_dirty) {
  2392. spin_lock(&root->fs_info->delalloc_lock);
  2393. root->fs_info->dirty_metadata_bytes += buf->len;
  2394. spin_unlock(&root->fs_info->delalloc_lock);
  2395. }
  2396. }
  2397. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2398. {
  2399. /*
  2400. * looks as though older kernels can get into trouble with
  2401. * this code, they end up stuck in balance_dirty_pages forever
  2402. */
  2403. u64 num_dirty;
  2404. unsigned long thresh = 32 * 1024 * 1024;
  2405. if (current->flags & PF_MEMALLOC)
  2406. return;
  2407. btrfs_balance_delayed_items(root);
  2408. num_dirty = root->fs_info->dirty_metadata_bytes;
  2409. if (num_dirty > thresh) {
  2410. balance_dirty_pages_ratelimited_nr(
  2411. root->fs_info->btree_inode->i_mapping, 1);
  2412. }
  2413. return;
  2414. }
  2415. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2416. {
  2417. /*
  2418. * looks as though older kernels can get into trouble with
  2419. * this code, they end up stuck in balance_dirty_pages forever
  2420. */
  2421. u64 num_dirty;
  2422. unsigned long thresh = 32 * 1024 * 1024;
  2423. if (current->flags & PF_MEMALLOC)
  2424. return;
  2425. num_dirty = root->fs_info->dirty_metadata_bytes;
  2426. if (num_dirty > thresh) {
  2427. balance_dirty_pages_ratelimited_nr(
  2428. root->fs_info->btree_inode->i_mapping, 1);
  2429. }
  2430. return;
  2431. }
  2432. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2433. {
  2434. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2435. int ret;
  2436. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2437. if (ret == 0)
  2438. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2439. return ret;
  2440. }
  2441. int btree_lock_page_hook(struct page *page)
  2442. {
  2443. struct inode *inode = page->mapping->host;
  2444. struct btrfs_root *root = BTRFS_I(inode)->root;
  2445. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2446. struct extent_buffer *eb;
  2447. unsigned long len;
  2448. u64 bytenr = page_offset(page);
  2449. if (page->private == EXTENT_PAGE_PRIVATE)
  2450. goto out;
  2451. len = page->private >> 2;
  2452. eb = find_extent_buffer(io_tree, bytenr, len);
  2453. if (!eb)
  2454. goto out;
  2455. btrfs_tree_lock(eb);
  2456. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2457. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2458. spin_lock(&root->fs_info->delalloc_lock);
  2459. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2460. root->fs_info->dirty_metadata_bytes -= eb->len;
  2461. else
  2462. WARN_ON(1);
  2463. spin_unlock(&root->fs_info->delalloc_lock);
  2464. }
  2465. btrfs_tree_unlock(eb);
  2466. free_extent_buffer(eb);
  2467. out:
  2468. lock_page(page);
  2469. return 0;
  2470. }
  2471. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2472. int read_only)
  2473. {
  2474. if (read_only)
  2475. return;
  2476. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2477. printk(KERN_WARNING "warning: mount fs with errors, "
  2478. "running btrfsck is recommended\n");
  2479. }
  2480. int btrfs_error_commit_super(struct btrfs_root *root)
  2481. {
  2482. int ret;
  2483. mutex_lock(&root->fs_info->cleaner_mutex);
  2484. btrfs_run_delayed_iputs(root);
  2485. mutex_unlock(&root->fs_info->cleaner_mutex);
  2486. down_write(&root->fs_info->cleanup_work_sem);
  2487. up_write(&root->fs_info->cleanup_work_sem);
  2488. /* cleanup FS via transaction */
  2489. btrfs_cleanup_transaction(root);
  2490. ret = write_ctree_super(NULL, root, 0);
  2491. return ret;
  2492. }
  2493. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2494. {
  2495. struct btrfs_inode *btrfs_inode;
  2496. struct list_head splice;
  2497. INIT_LIST_HEAD(&splice);
  2498. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2499. spin_lock(&root->fs_info->ordered_extent_lock);
  2500. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2501. while (!list_empty(&splice)) {
  2502. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2503. ordered_operations);
  2504. list_del_init(&btrfs_inode->ordered_operations);
  2505. btrfs_invalidate_inodes(btrfs_inode->root);
  2506. }
  2507. spin_unlock(&root->fs_info->ordered_extent_lock);
  2508. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2509. return 0;
  2510. }
  2511. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2512. {
  2513. struct list_head splice;
  2514. struct btrfs_ordered_extent *ordered;
  2515. struct inode *inode;
  2516. INIT_LIST_HEAD(&splice);
  2517. spin_lock(&root->fs_info->ordered_extent_lock);
  2518. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2519. while (!list_empty(&splice)) {
  2520. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2521. root_extent_list);
  2522. list_del_init(&ordered->root_extent_list);
  2523. atomic_inc(&ordered->refs);
  2524. /* the inode may be getting freed (in sys_unlink path). */
  2525. inode = igrab(ordered->inode);
  2526. spin_unlock(&root->fs_info->ordered_extent_lock);
  2527. if (inode)
  2528. iput(inode);
  2529. atomic_set(&ordered->refs, 1);
  2530. btrfs_put_ordered_extent(ordered);
  2531. spin_lock(&root->fs_info->ordered_extent_lock);
  2532. }
  2533. spin_unlock(&root->fs_info->ordered_extent_lock);
  2534. return 0;
  2535. }
  2536. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2537. struct btrfs_root *root)
  2538. {
  2539. struct rb_node *node;
  2540. struct btrfs_delayed_ref_root *delayed_refs;
  2541. struct btrfs_delayed_ref_node *ref;
  2542. int ret = 0;
  2543. delayed_refs = &trans->delayed_refs;
  2544. spin_lock(&delayed_refs->lock);
  2545. if (delayed_refs->num_entries == 0) {
  2546. spin_unlock(&delayed_refs->lock);
  2547. printk(KERN_INFO "delayed_refs has NO entry\n");
  2548. return ret;
  2549. }
  2550. node = rb_first(&delayed_refs->root);
  2551. while (node) {
  2552. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2553. node = rb_next(node);
  2554. ref->in_tree = 0;
  2555. rb_erase(&ref->rb_node, &delayed_refs->root);
  2556. delayed_refs->num_entries--;
  2557. atomic_set(&ref->refs, 1);
  2558. if (btrfs_delayed_ref_is_head(ref)) {
  2559. struct btrfs_delayed_ref_head *head;
  2560. head = btrfs_delayed_node_to_head(ref);
  2561. mutex_lock(&head->mutex);
  2562. kfree(head->extent_op);
  2563. delayed_refs->num_heads--;
  2564. if (list_empty(&head->cluster))
  2565. delayed_refs->num_heads_ready--;
  2566. list_del_init(&head->cluster);
  2567. mutex_unlock(&head->mutex);
  2568. }
  2569. spin_unlock(&delayed_refs->lock);
  2570. btrfs_put_delayed_ref(ref);
  2571. cond_resched();
  2572. spin_lock(&delayed_refs->lock);
  2573. }
  2574. spin_unlock(&delayed_refs->lock);
  2575. return ret;
  2576. }
  2577. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2578. {
  2579. struct btrfs_pending_snapshot *snapshot;
  2580. struct list_head splice;
  2581. INIT_LIST_HEAD(&splice);
  2582. list_splice_init(&t->pending_snapshots, &splice);
  2583. while (!list_empty(&splice)) {
  2584. snapshot = list_entry(splice.next,
  2585. struct btrfs_pending_snapshot,
  2586. list);
  2587. list_del_init(&snapshot->list);
  2588. kfree(snapshot);
  2589. }
  2590. return 0;
  2591. }
  2592. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2593. {
  2594. struct btrfs_inode *btrfs_inode;
  2595. struct list_head splice;
  2596. INIT_LIST_HEAD(&splice);
  2597. spin_lock(&root->fs_info->delalloc_lock);
  2598. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2599. while (!list_empty(&splice)) {
  2600. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2601. delalloc_inodes);
  2602. list_del_init(&btrfs_inode->delalloc_inodes);
  2603. btrfs_invalidate_inodes(btrfs_inode->root);
  2604. }
  2605. spin_unlock(&root->fs_info->delalloc_lock);
  2606. return 0;
  2607. }
  2608. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2609. struct extent_io_tree *dirty_pages,
  2610. int mark)
  2611. {
  2612. int ret;
  2613. struct page *page;
  2614. struct inode *btree_inode = root->fs_info->btree_inode;
  2615. struct extent_buffer *eb;
  2616. u64 start = 0;
  2617. u64 end;
  2618. u64 offset;
  2619. unsigned long index;
  2620. while (1) {
  2621. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2622. mark);
  2623. if (ret)
  2624. break;
  2625. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2626. while (start <= end) {
  2627. index = start >> PAGE_CACHE_SHIFT;
  2628. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2629. page = find_get_page(btree_inode->i_mapping, index);
  2630. if (!page)
  2631. continue;
  2632. offset = page_offset(page);
  2633. spin_lock(&dirty_pages->buffer_lock);
  2634. eb = radix_tree_lookup(
  2635. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2636. offset >> PAGE_CACHE_SHIFT);
  2637. spin_unlock(&dirty_pages->buffer_lock);
  2638. if (eb) {
  2639. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2640. &eb->bflags);
  2641. atomic_set(&eb->refs, 1);
  2642. }
  2643. if (PageWriteback(page))
  2644. end_page_writeback(page);
  2645. lock_page(page);
  2646. if (PageDirty(page)) {
  2647. clear_page_dirty_for_io(page);
  2648. spin_lock_irq(&page->mapping->tree_lock);
  2649. radix_tree_tag_clear(&page->mapping->page_tree,
  2650. page_index(page),
  2651. PAGECACHE_TAG_DIRTY);
  2652. spin_unlock_irq(&page->mapping->tree_lock);
  2653. }
  2654. page->mapping->a_ops->invalidatepage(page, 0);
  2655. unlock_page(page);
  2656. }
  2657. }
  2658. return ret;
  2659. }
  2660. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2661. struct extent_io_tree *pinned_extents)
  2662. {
  2663. struct extent_io_tree *unpin;
  2664. u64 start;
  2665. u64 end;
  2666. int ret;
  2667. unpin = pinned_extents;
  2668. while (1) {
  2669. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2670. EXTENT_DIRTY);
  2671. if (ret)
  2672. break;
  2673. /* opt_discard */
  2674. if (btrfs_test_opt(root, DISCARD))
  2675. ret = btrfs_error_discard_extent(root, start,
  2676. end + 1 - start,
  2677. NULL);
  2678. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2679. btrfs_error_unpin_extent_range(root, start, end);
  2680. cond_resched();
  2681. }
  2682. return 0;
  2683. }
  2684. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2685. {
  2686. struct btrfs_transaction *t;
  2687. LIST_HEAD(list);
  2688. WARN_ON(1);
  2689. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2690. spin_lock(&root->fs_info->trans_lock);
  2691. list_splice_init(&root->fs_info->trans_list, &list);
  2692. root->fs_info->trans_no_join = 1;
  2693. spin_unlock(&root->fs_info->trans_lock);
  2694. while (!list_empty(&list)) {
  2695. t = list_entry(list.next, struct btrfs_transaction, list);
  2696. if (!t)
  2697. break;
  2698. btrfs_destroy_ordered_operations(root);
  2699. btrfs_destroy_ordered_extents(root);
  2700. btrfs_destroy_delayed_refs(t, root);
  2701. btrfs_block_rsv_release(root,
  2702. &root->fs_info->trans_block_rsv,
  2703. t->dirty_pages.dirty_bytes);
  2704. /* FIXME: cleanup wait for commit */
  2705. t->in_commit = 1;
  2706. t->blocked = 1;
  2707. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2708. wake_up(&root->fs_info->transaction_blocked_wait);
  2709. t->blocked = 0;
  2710. if (waitqueue_active(&root->fs_info->transaction_wait))
  2711. wake_up(&root->fs_info->transaction_wait);
  2712. t->commit_done = 1;
  2713. if (waitqueue_active(&t->commit_wait))
  2714. wake_up(&t->commit_wait);
  2715. btrfs_destroy_pending_snapshots(t);
  2716. btrfs_destroy_delalloc_inodes(root);
  2717. spin_lock(&root->fs_info->trans_lock);
  2718. root->fs_info->running_transaction = NULL;
  2719. spin_unlock(&root->fs_info->trans_lock);
  2720. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2721. EXTENT_DIRTY);
  2722. btrfs_destroy_pinned_extent(root,
  2723. root->fs_info->pinned_extents);
  2724. atomic_set(&t->use_count, 0);
  2725. list_del_init(&t->list);
  2726. memset(t, 0, sizeof(*t));
  2727. kmem_cache_free(btrfs_transaction_cachep, t);
  2728. }
  2729. spin_lock(&root->fs_info->trans_lock);
  2730. root->fs_info->trans_no_join = 0;
  2731. spin_unlock(&root->fs_info->trans_lock);
  2732. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2733. return 0;
  2734. }
  2735. static struct extent_io_ops btree_extent_io_ops = {
  2736. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2737. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2738. .readpage_io_failed_hook = btree_io_failed_hook,
  2739. .submit_bio_hook = btree_submit_bio_hook,
  2740. /* note we're sharing with inode.c for the merge bio hook */
  2741. .merge_bio_hook = btrfs_merge_bio_hook,
  2742. };