dcache.c 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082
  1. /*
  2. * fs/dcache.c
  3. *
  4. * Complete reimplementation
  5. * (C) 1997 Thomas Schoebel-Theuer,
  6. * with heavy changes by Linus Torvalds
  7. */
  8. /*
  9. * Notes on the allocation strategy:
  10. *
  11. * The dcache is a master of the icache - whenever a dcache entry
  12. * exists, the inode will always exist. "iput()" is done either when
  13. * the dcache entry is deleted or garbage collected.
  14. */
  15. #include <linux/syscalls.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/fsnotify.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/cache.h>
  24. #include <linux/module.h>
  25. #include <linux/mount.h>
  26. #include <linux/file.h>
  27. #include <asm/uaccess.h>
  28. #include <linux/security.h>
  29. #include <linux/seqlock.h>
  30. #include <linux/swap.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/fs_struct.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/bit_spinlock.h>
  35. #include <linux/rculist_bl.h>
  36. #include "internal.h"
  37. /*
  38. * Usage:
  39. * dcache->d_inode->i_lock protects:
  40. * - i_dentry, d_alias, d_inode of aliases
  41. * dcache_hash_bucket lock protects:
  42. * - the dcache hash table
  43. * s_anon bl list spinlock protects:
  44. * - the s_anon list (see __d_drop)
  45. * dcache_lru_lock protects:
  46. * - the dcache lru lists and counters
  47. * d_lock protects:
  48. * - d_flags
  49. * - d_name
  50. * - d_lru
  51. * - d_count
  52. * - d_unhashed()
  53. * - d_parent and d_subdirs
  54. * - childrens' d_child and d_parent
  55. * - d_alias, d_inode
  56. *
  57. * Ordering:
  58. * dentry->d_inode->i_lock
  59. * dentry->d_lock
  60. * dcache_lru_lock
  61. * dcache_hash_bucket lock
  62. * s_anon lock
  63. *
  64. * If there is an ancestor relationship:
  65. * dentry->d_parent->...->d_parent->d_lock
  66. * ...
  67. * dentry->d_parent->d_lock
  68. * dentry->d_lock
  69. *
  70. * If no ancestor relationship:
  71. * if (dentry1 < dentry2)
  72. * dentry1->d_lock
  73. * dentry2->d_lock
  74. */
  75. int sysctl_vfs_cache_pressure __read_mostly = 100;
  76. EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  77. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
  78. __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  79. EXPORT_SYMBOL(rename_lock);
  80. static struct kmem_cache *dentry_cache __read_mostly;
  81. /*
  82. * This is the single most critical data structure when it comes
  83. * to the dcache: the hashtable for lookups. Somebody should try
  84. * to make this good - I've just made it work.
  85. *
  86. * This hash-function tries to avoid losing too many bits of hash
  87. * information, yet avoid using a prime hash-size or similar.
  88. */
  89. #define D_HASHBITS d_hash_shift
  90. #define D_HASHMASK d_hash_mask
  91. static unsigned int d_hash_mask __read_mostly;
  92. static unsigned int d_hash_shift __read_mostly;
  93. struct dcache_hash_bucket {
  94. struct hlist_bl_head head;
  95. };
  96. static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
  97. static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
  98. unsigned long hash)
  99. {
  100. hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
  101. hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
  102. return dentry_hashtable + (hash & D_HASHMASK);
  103. }
  104. static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
  105. {
  106. bit_spin_lock(0, (unsigned long *)&b->head.first);
  107. }
  108. static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
  109. {
  110. __bit_spin_unlock(0, (unsigned long *)&b->head.first);
  111. }
  112. /* Statistics gathering. */
  113. struct dentry_stat_t dentry_stat = {
  114. .age_limit = 45,
  115. };
  116. static DEFINE_PER_CPU(unsigned int, nr_dentry);
  117. #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
  118. static int get_nr_dentry(void)
  119. {
  120. int i;
  121. int sum = 0;
  122. for_each_possible_cpu(i)
  123. sum += per_cpu(nr_dentry, i);
  124. return sum < 0 ? 0 : sum;
  125. }
  126. int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
  127. size_t *lenp, loff_t *ppos)
  128. {
  129. dentry_stat.nr_dentry = get_nr_dentry();
  130. return proc_dointvec(table, write, buffer, lenp, ppos);
  131. }
  132. #endif
  133. static void __d_free(struct rcu_head *head)
  134. {
  135. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  136. WARN_ON(!list_empty(&dentry->d_alias));
  137. if (dname_external(dentry))
  138. kfree(dentry->d_name.name);
  139. kmem_cache_free(dentry_cache, dentry);
  140. }
  141. /*
  142. * no locks, please.
  143. */
  144. static void d_free(struct dentry *dentry)
  145. {
  146. BUG_ON(dentry->d_count);
  147. this_cpu_dec(nr_dentry);
  148. if (dentry->d_op && dentry->d_op->d_release)
  149. dentry->d_op->d_release(dentry);
  150. /* if dentry was never inserted into hash, immediate free is OK */
  151. if (hlist_bl_unhashed(&dentry->d_hash))
  152. __d_free(&dentry->d_u.d_rcu);
  153. else
  154. call_rcu(&dentry->d_u.d_rcu, __d_free);
  155. }
  156. /**
  157. * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
  158. * After this call, in-progress rcu-walk path lookup will fail. This
  159. * should be called after unhashing, and after changing d_inode (if
  160. * the dentry has not already been unhashed).
  161. */
  162. static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
  163. {
  164. assert_spin_locked(&dentry->d_lock);
  165. /* Go through a barrier */
  166. write_seqcount_barrier(&dentry->d_seq);
  167. }
  168. /*
  169. * Release the dentry's inode, using the filesystem
  170. * d_iput() operation if defined. Dentry has no refcount
  171. * and is unhashed.
  172. */
  173. static void dentry_iput(struct dentry * dentry)
  174. __releases(dentry->d_lock)
  175. __releases(dentry->d_inode->i_lock)
  176. {
  177. struct inode *inode = dentry->d_inode;
  178. if (inode) {
  179. dentry->d_inode = NULL;
  180. list_del_init(&dentry->d_alias);
  181. spin_unlock(&dentry->d_lock);
  182. spin_unlock(&inode->i_lock);
  183. if (!inode->i_nlink)
  184. fsnotify_inoderemove(inode);
  185. if (dentry->d_op && dentry->d_op->d_iput)
  186. dentry->d_op->d_iput(dentry, inode);
  187. else
  188. iput(inode);
  189. } else {
  190. spin_unlock(&dentry->d_lock);
  191. }
  192. }
  193. /*
  194. * Release the dentry's inode, using the filesystem
  195. * d_iput() operation if defined. dentry remains in-use.
  196. */
  197. static void dentry_unlink_inode(struct dentry * dentry)
  198. __releases(dentry->d_lock)
  199. __releases(dentry->d_inode->i_lock)
  200. {
  201. struct inode *inode = dentry->d_inode;
  202. dentry->d_inode = NULL;
  203. list_del_init(&dentry->d_alias);
  204. dentry_rcuwalk_barrier(dentry);
  205. spin_unlock(&dentry->d_lock);
  206. spin_unlock(&inode->i_lock);
  207. if (!inode->i_nlink)
  208. fsnotify_inoderemove(inode);
  209. if (dentry->d_op && dentry->d_op->d_iput)
  210. dentry->d_op->d_iput(dentry, inode);
  211. else
  212. iput(inode);
  213. }
  214. /*
  215. * dentry_lru_(add|del|move_tail) must be called with d_lock held.
  216. */
  217. static void dentry_lru_add(struct dentry *dentry)
  218. {
  219. if (list_empty(&dentry->d_lru)) {
  220. spin_lock(&dcache_lru_lock);
  221. list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
  222. dentry->d_sb->s_nr_dentry_unused++;
  223. dentry_stat.nr_unused++;
  224. spin_unlock(&dcache_lru_lock);
  225. }
  226. }
  227. static void __dentry_lru_del(struct dentry *dentry)
  228. {
  229. list_del_init(&dentry->d_lru);
  230. dentry->d_sb->s_nr_dentry_unused--;
  231. dentry_stat.nr_unused--;
  232. }
  233. static void dentry_lru_del(struct dentry *dentry)
  234. {
  235. if (!list_empty(&dentry->d_lru)) {
  236. spin_lock(&dcache_lru_lock);
  237. __dentry_lru_del(dentry);
  238. spin_unlock(&dcache_lru_lock);
  239. }
  240. }
  241. static void dentry_lru_move_tail(struct dentry *dentry)
  242. {
  243. spin_lock(&dcache_lru_lock);
  244. if (list_empty(&dentry->d_lru)) {
  245. list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
  246. dentry->d_sb->s_nr_dentry_unused++;
  247. dentry_stat.nr_unused++;
  248. } else {
  249. list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
  250. }
  251. spin_unlock(&dcache_lru_lock);
  252. }
  253. /**
  254. * d_kill - kill dentry and return parent
  255. * @dentry: dentry to kill
  256. *
  257. * The dentry must already be unhashed and removed from the LRU.
  258. *
  259. * If this is the root of the dentry tree, return NULL.
  260. *
  261. * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
  262. * d_kill.
  263. */
  264. static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
  265. __releases(dentry->d_lock)
  266. __releases(parent->d_lock)
  267. __releases(dentry->d_inode->i_lock)
  268. {
  269. dentry->d_parent = NULL;
  270. list_del(&dentry->d_u.d_child);
  271. if (parent)
  272. spin_unlock(&parent->d_lock);
  273. dentry_iput(dentry);
  274. /*
  275. * dentry_iput drops the locks, at which point nobody (except
  276. * transient RCU lookups) can reach this dentry.
  277. */
  278. d_free(dentry);
  279. return parent;
  280. }
  281. /**
  282. * d_drop - drop a dentry
  283. * @dentry: dentry to drop
  284. *
  285. * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
  286. * be found through a VFS lookup any more. Note that this is different from
  287. * deleting the dentry - d_delete will try to mark the dentry negative if
  288. * possible, giving a successful _negative_ lookup, while d_drop will
  289. * just make the cache lookup fail.
  290. *
  291. * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
  292. * reason (NFS timeouts or autofs deletes).
  293. *
  294. * __d_drop requires dentry->d_lock.
  295. */
  296. void __d_drop(struct dentry *dentry)
  297. {
  298. if (!(dentry->d_flags & DCACHE_UNHASHED)) {
  299. if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
  300. bit_spin_lock(0,
  301. (unsigned long *)&dentry->d_sb->s_anon.first);
  302. dentry->d_flags |= DCACHE_UNHASHED;
  303. hlist_bl_del_init(&dentry->d_hash);
  304. __bit_spin_unlock(0,
  305. (unsigned long *)&dentry->d_sb->s_anon.first);
  306. } else {
  307. struct dcache_hash_bucket *b;
  308. b = d_hash(dentry->d_parent, dentry->d_name.hash);
  309. spin_lock_bucket(b);
  310. /*
  311. * We may not actually need to put DCACHE_UNHASHED
  312. * manipulations under the hash lock, but follow
  313. * the principle of least surprise.
  314. */
  315. dentry->d_flags |= DCACHE_UNHASHED;
  316. hlist_bl_del_rcu(&dentry->d_hash);
  317. spin_unlock_bucket(b);
  318. dentry_rcuwalk_barrier(dentry);
  319. }
  320. }
  321. }
  322. EXPORT_SYMBOL(__d_drop);
  323. void d_drop(struct dentry *dentry)
  324. {
  325. spin_lock(&dentry->d_lock);
  326. __d_drop(dentry);
  327. spin_unlock(&dentry->d_lock);
  328. }
  329. EXPORT_SYMBOL(d_drop);
  330. /*
  331. * Finish off a dentry we've decided to kill.
  332. * dentry->d_lock must be held, returns with it unlocked.
  333. * If ref is non-zero, then decrement the refcount too.
  334. * Returns dentry requiring refcount drop, or NULL if we're done.
  335. */
  336. static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
  337. __releases(dentry->d_lock)
  338. {
  339. struct inode *inode;
  340. struct dentry *parent;
  341. inode = dentry->d_inode;
  342. if (inode && !spin_trylock(&inode->i_lock)) {
  343. relock:
  344. spin_unlock(&dentry->d_lock);
  345. cpu_relax();
  346. return dentry; /* try again with same dentry */
  347. }
  348. if (IS_ROOT(dentry))
  349. parent = NULL;
  350. else
  351. parent = dentry->d_parent;
  352. if (parent && !spin_trylock(&parent->d_lock)) {
  353. if (inode)
  354. spin_unlock(&inode->i_lock);
  355. goto relock;
  356. }
  357. if (ref)
  358. dentry->d_count--;
  359. /* if dentry was on the d_lru list delete it from there */
  360. dentry_lru_del(dentry);
  361. /* if it was on the hash then remove it */
  362. __d_drop(dentry);
  363. return d_kill(dentry, parent);
  364. }
  365. /*
  366. * This is dput
  367. *
  368. * This is complicated by the fact that we do not want to put
  369. * dentries that are no longer on any hash chain on the unused
  370. * list: we'd much rather just get rid of them immediately.
  371. *
  372. * However, that implies that we have to traverse the dentry
  373. * tree upwards to the parents which might _also_ now be
  374. * scheduled for deletion (it may have been only waiting for
  375. * its last child to go away).
  376. *
  377. * This tail recursion is done by hand as we don't want to depend
  378. * on the compiler to always get this right (gcc generally doesn't).
  379. * Real recursion would eat up our stack space.
  380. */
  381. /*
  382. * dput - release a dentry
  383. * @dentry: dentry to release
  384. *
  385. * Release a dentry. This will drop the usage count and if appropriate
  386. * call the dentry unlink method as well as removing it from the queues and
  387. * releasing its resources. If the parent dentries were scheduled for release
  388. * they too may now get deleted.
  389. */
  390. void dput(struct dentry *dentry)
  391. {
  392. if (!dentry)
  393. return;
  394. repeat:
  395. if (dentry->d_count == 1)
  396. might_sleep();
  397. spin_lock(&dentry->d_lock);
  398. BUG_ON(!dentry->d_count);
  399. if (dentry->d_count > 1) {
  400. dentry->d_count--;
  401. spin_unlock(&dentry->d_lock);
  402. return;
  403. }
  404. if (dentry->d_flags & DCACHE_OP_DELETE) {
  405. if (dentry->d_op->d_delete(dentry))
  406. goto kill_it;
  407. }
  408. /* Unreachable? Get rid of it */
  409. if (d_unhashed(dentry))
  410. goto kill_it;
  411. /* Otherwise leave it cached and ensure it's on the LRU */
  412. dentry->d_flags |= DCACHE_REFERENCED;
  413. dentry_lru_add(dentry);
  414. dentry->d_count--;
  415. spin_unlock(&dentry->d_lock);
  416. return;
  417. kill_it:
  418. dentry = dentry_kill(dentry, 1);
  419. if (dentry)
  420. goto repeat;
  421. }
  422. EXPORT_SYMBOL(dput);
  423. /**
  424. * d_invalidate - invalidate a dentry
  425. * @dentry: dentry to invalidate
  426. *
  427. * Try to invalidate the dentry if it turns out to be
  428. * possible. If there are other dentries that can be
  429. * reached through this one we can't delete it and we
  430. * return -EBUSY. On success we return 0.
  431. *
  432. * no dcache lock.
  433. */
  434. int d_invalidate(struct dentry * dentry)
  435. {
  436. /*
  437. * If it's already been dropped, return OK.
  438. */
  439. spin_lock(&dentry->d_lock);
  440. if (d_unhashed(dentry)) {
  441. spin_unlock(&dentry->d_lock);
  442. return 0;
  443. }
  444. /*
  445. * Check whether to do a partial shrink_dcache
  446. * to get rid of unused child entries.
  447. */
  448. if (!list_empty(&dentry->d_subdirs)) {
  449. spin_unlock(&dentry->d_lock);
  450. shrink_dcache_parent(dentry);
  451. spin_lock(&dentry->d_lock);
  452. }
  453. /*
  454. * Somebody else still using it?
  455. *
  456. * If it's a directory, we can't drop it
  457. * for fear of somebody re-populating it
  458. * with children (even though dropping it
  459. * would make it unreachable from the root,
  460. * we might still populate it if it was a
  461. * working directory or similar).
  462. */
  463. if (dentry->d_count > 1) {
  464. if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
  465. spin_unlock(&dentry->d_lock);
  466. return -EBUSY;
  467. }
  468. }
  469. __d_drop(dentry);
  470. spin_unlock(&dentry->d_lock);
  471. return 0;
  472. }
  473. EXPORT_SYMBOL(d_invalidate);
  474. /* This must be called with d_lock held */
  475. static inline void __dget_dlock(struct dentry *dentry)
  476. {
  477. dentry->d_count++;
  478. }
  479. static inline void __dget(struct dentry *dentry)
  480. {
  481. spin_lock(&dentry->d_lock);
  482. __dget_dlock(dentry);
  483. spin_unlock(&dentry->d_lock);
  484. }
  485. struct dentry *dget_parent(struct dentry *dentry)
  486. {
  487. struct dentry *ret;
  488. repeat:
  489. /*
  490. * Don't need rcu_dereference because we re-check it was correct under
  491. * the lock.
  492. */
  493. rcu_read_lock();
  494. ret = dentry->d_parent;
  495. if (!ret) {
  496. rcu_read_unlock();
  497. goto out;
  498. }
  499. spin_lock(&ret->d_lock);
  500. if (unlikely(ret != dentry->d_parent)) {
  501. spin_unlock(&ret->d_lock);
  502. rcu_read_unlock();
  503. goto repeat;
  504. }
  505. rcu_read_unlock();
  506. BUG_ON(!ret->d_count);
  507. ret->d_count++;
  508. spin_unlock(&ret->d_lock);
  509. out:
  510. return ret;
  511. }
  512. EXPORT_SYMBOL(dget_parent);
  513. /**
  514. * d_find_alias - grab a hashed alias of inode
  515. * @inode: inode in question
  516. * @want_discon: flag, used by d_splice_alias, to request
  517. * that only a DISCONNECTED alias be returned.
  518. *
  519. * If inode has a hashed alias, or is a directory and has any alias,
  520. * acquire the reference to alias and return it. Otherwise return NULL.
  521. * Notice that if inode is a directory there can be only one alias and
  522. * it can be unhashed only if it has no children, or if it is the root
  523. * of a filesystem.
  524. *
  525. * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
  526. * any other hashed alias over that one unless @want_discon is set,
  527. * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
  528. */
  529. static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
  530. {
  531. struct dentry *alias, *discon_alias;
  532. again:
  533. discon_alias = NULL;
  534. list_for_each_entry(alias, &inode->i_dentry, d_alias) {
  535. spin_lock(&alias->d_lock);
  536. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  537. if (IS_ROOT(alias) &&
  538. (alias->d_flags & DCACHE_DISCONNECTED)) {
  539. discon_alias = alias;
  540. } else if (!want_discon) {
  541. __dget_dlock(alias);
  542. spin_unlock(&alias->d_lock);
  543. return alias;
  544. }
  545. }
  546. spin_unlock(&alias->d_lock);
  547. }
  548. if (discon_alias) {
  549. alias = discon_alias;
  550. spin_lock(&alias->d_lock);
  551. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  552. if (IS_ROOT(alias) &&
  553. (alias->d_flags & DCACHE_DISCONNECTED)) {
  554. __dget_dlock(alias);
  555. spin_unlock(&alias->d_lock);
  556. return alias;
  557. }
  558. }
  559. spin_unlock(&alias->d_lock);
  560. goto again;
  561. }
  562. return NULL;
  563. }
  564. struct dentry *d_find_alias(struct inode *inode)
  565. {
  566. struct dentry *de = NULL;
  567. if (!list_empty(&inode->i_dentry)) {
  568. spin_lock(&inode->i_lock);
  569. de = __d_find_alias(inode, 0);
  570. spin_unlock(&inode->i_lock);
  571. }
  572. return de;
  573. }
  574. EXPORT_SYMBOL(d_find_alias);
  575. /*
  576. * Try to kill dentries associated with this inode.
  577. * WARNING: you must own a reference to inode.
  578. */
  579. void d_prune_aliases(struct inode *inode)
  580. {
  581. struct dentry *dentry;
  582. restart:
  583. spin_lock(&inode->i_lock);
  584. list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
  585. spin_lock(&dentry->d_lock);
  586. if (!dentry->d_count) {
  587. __dget_dlock(dentry);
  588. __d_drop(dentry);
  589. spin_unlock(&dentry->d_lock);
  590. spin_unlock(&inode->i_lock);
  591. dput(dentry);
  592. goto restart;
  593. }
  594. spin_unlock(&dentry->d_lock);
  595. }
  596. spin_unlock(&inode->i_lock);
  597. }
  598. EXPORT_SYMBOL(d_prune_aliases);
  599. /*
  600. * Try to throw away a dentry - free the inode, dput the parent.
  601. * Requires dentry->d_lock is held, and dentry->d_count == 0.
  602. * Releases dentry->d_lock.
  603. *
  604. * This may fail if locks cannot be acquired no problem, just try again.
  605. */
  606. static void try_prune_one_dentry(struct dentry *dentry)
  607. __releases(dentry->d_lock)
  608. {
  609. struct dentry *parent;
  610. parent = dentry_kill(dentry, 0);
  611. /*
  612. * If dentry_kill returns NULL, we have nothing more to do.
  613. * if it returns the same dentry, trylocks failed. In either
  614. * case, just loop again.
  615. *
  616. * Otherwise, we need to prune ancestors too. This is necessary
  617. * to prevent quadratic behavior of shrink_dcache_parent(), but
  618. * is also expected to be beneficial in reducing dentry cache
  619. * fragmentation.
  620. */
  621. if (!parent)
  622. return;
  623. if (parent == dentry)
  624. return;
  625. /* Prune ancestors. */
  626. dentry = parent;
  627. while (dentry) {
  628. spin_lock(&dentry->d_lock);
  629. if (dentry->d_count > 1) {
  630. dentry->d_count--;
  631. spin_unlock(&dentry->d_lock);
  632. return;
  633. }
  634. dentry = dentry_kill(dentry, 1);
  635. }
  636. }
  637. static void shrink_dentry_list(struct list_head *list)
  638. {
  639. struct dentry *dentry;
  640. rcu_read_lock();
  641. for (;;) {
  642. dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
  643. if (&dentry->d_lru == list)
  644. break; /* empty */
  645. spin_lock(&dentry->d_lock);
  646. if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
  647. spin_unlock(&dentry->d_lock);
  648. continue;
  649. }
  650. /*
  651. * We found an inuse dentry which was not removed from
  652. * the LRU because of laziness during lookup. Do not free
  653. * it - just keep it off the LRU list.
  654. */
  655. if (dentry->d_count) {
  656. dentry_lru_del(dentry);
  657. spin_unlock(&dentry->d_lock);
  658. continue;
  659. }
  660. rcu_read_unlock();
  661. try_prune_one_dentry(dentry);
  662. rcu_read_lock();
  663. }
  664. rcu_read_unlock();
  665. }
  666. /**
  667. * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
  668. * @sb: superblock to shrink dentry LRU.
  669. * @count: number of entries to prune
  670. * @flags: flags to control the dentry processing
  671. *
  672. * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
  673. */
  674. static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
  675. {
  676. /* called from prune_dcache() and shrink_dcache_parent() */
  677. struct dentry *dentry;
  678. LIST_HEAD(referenced);
  679. LIST_HEAD(tmp);
  680. int cnt = *count;
  681. relock:
  682. spin_lock(&dcache_lru_lock);
  683. while (!list_empty(&sb->s_dentry_lru)) {
  684. dentry = list_entry(sb->s_dentry_lru.prev,
  685. struct dentry, d_lru);
  686. BUG_ON(dentry->d_sb != sb);
  687. if (!spin_trylock(&dentry->d_lock)) {
  688. spin_unlock(&dcache_lru_lock);
  689. cpu_relax();
  690. goto relock;
  691. }
  692. /*
  693. * If we are honouring the DCACHE_REFERENCED flag and the
  694. * dentry has this flag set, don't free it. Clear the flag
  695. * and put it back on the LRU.
  696. */
  697. if (flags & DCACHE_REFERENCED &&
  698. dentry->d_flags & DCACHE_REFERENCED) {
  699. dentry->d_flags &= ~DCACHE_REFERENCED;
  700. list_move(&dentry->d_lru, &referenced);
  701. spin_unlock(&dentry->d_lock);
  702. } else {
  703. list_move_tail(&dentry->d_lru, &tmp);
  704. spin_unlock(&dentry->d_lock);
  705. if (!--cnt)
  706. break;
  707. }
  708. cond_resched_lock(&dcache_lru_lock);
  709. }
  710. if (!list_empty(&referenced))
  711. list_splice(&referenced, &sb->s_dentry_lru);
  712. spin_unlock(&dcache_lru_lock);
  713. shrink_dentry_list(&tmp);
  714. *count = cnt;
  715. }
  716. /**
  717. * prune_dcache - shrink the dcache
  718. * @count: number of entries to try to free
  719. *
  720. * Shrink the dcache. This is done when we need more memory, or simply when we
  721. * need to unmount something (at which point we need to unuse all dentries).
  722. *
  723. * This function may fail to free any resources if all the dentries are in use.
  724. */
  725. static void prune_dcache(int count)
  726. {
  727. struct super_block *sb, *p = NULL;
  728. int w_count;
  729. int unused = dentry_stat.nr_unused;
  730. int prune_ratio;
  731. int pruned;
  732. if (unused == 0 || count == 0)
  733. return;
  734. if (count >= unused)
  735. prune_ratio = 1;
  736. else
  737. prune_ratio = unused / count;
  738. spin_lock(&sb_lock);
  739. list_for_each_entry(sb, &super_blocks, s_list) {
  740. if (list_empty(&sb->s_instances))
  741. continue;
  742. if (sb->s_nr_dentry_unused == 0)
  743. continue;
  744. sb->s_count++;
  745. /* Now, we reclaim unused dentrins with fairness.
  746. * We reclaim them same percentage from each superblock.
  747. * We calculate number of dentries to scan on this sb
  748. * as follows, but the implementation is arranged to avoid
  749. * overflows:
  750. * number of dentries to scan on this sb =
  751. * count * (number of dentries on this sb /
  752. * number of dentries in the machine)
  753. */
  754. spin_unlock(&sb_lock);
  755. if (prune_ratio != 1)
  756. w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
  757. else
  758. w_count = sb->s_nr_dentry_unused;
  759. pruned = w_count;
  760. /*
  761. * We need to be sure this filesystem isn't being unmounted,
  762. * otherwise we could race with generic_shutdown_super(), and
  763. * end up holding a reference to an inode while the filesystem
  764. * is unmounted. So we try to get s_umount, and make sure
  765. * s_root isn't NULL.
  766. */
  767. if (down_read_trylock(&sb->s_umount)) {
  768. if ((sb->s_root != NULL) &&
  769. (!list_empty(&sb->s_dentry_lru))) {
  770. __shrink_dcache_sb(sb, &w_count,
  771. DCACHE_REFERENCED);
  772. pruned -= w_count;
  773. }
  774. up_read(&sb->s_umount);
  775. }
  776. spin_lock(&sb_lock);
  777. if (p)
  778. __put_super(p);
  779. count -= pruned;
  780. p = sb;
  781. /* more work left to do? */
  782. if (count <= 0)
  783. break;
  784. }
  785. if (p)
  786. __put_super(p);
  787. spin_unlock(&sb_lock);
  788. }
  789. /**
  790. * shrink_dcache_sb - shrink dcache for a superblock
  791. * @sb: superblock
  792. *
  793. * Shrink the dcache for the specified super block. This is used to free
  794. * the dcache before unmounting a file system.
  795. */
  796. void shrink_dcache_sb(struct super_block *sb)
  797. {
  798. LIST_HEAD(tmp);
  799. spin_lock(&dcache_lru_lock);
  800. while (!list_empty(&sb->s_dentry_lru)) {
  801. list_splice_init(&sb->s_dentry_lru, &tmp);
  802. spin_unlock(&dcache_lru_lock);
  803. shrink_dentry_list(&tmp);
  804. spin_lock(&dcache_lru_lock);
  805. }
  806. spin_unlock(&dcache_lru_lock);
  807. }
  808. EXPORT_SYMBOL(shrink_dcache_sb);
  809. /*
  810. * destroy a single subtree of dentries for unmount
  811. * - see the comments on shrink_dcache_for_umount() for a description of the
  812. * locking
  813. */
  814. static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
  815. {
  816. struct dentry *parent;
  817. unsigned detached = 0;
  818. BUG_ON(!IS_ROOT(dentry));
  819. /* detach this root from the system */
  820. spin_lock(&dentry->d_lock);
  821. dentry_lru_del(dentry);
  822. __d_drop(dentry);
  823. spin_unlock(&dentry->d_lock);
  824. for (;;) {
  825. /* descend to the first leaf in the current subtree */
  826. while (!list_empty(&dentry->d_subdirs)) {
  827. struct dentry *loop;
  828. /* this is a branch with children - detach all of them
  829. * from the system in one go */
  830. spin_lock(&dentry->d_lock);
  831. list_for_each_entry(loop, &dentry->d_subdirs,
  832. d_u.d_child) {
  833. spin_lock_nested(&loop->d_lock,
  834. DENTRY_D_LOCK_NESTED);
  835. dentry_lru_del(loop);
  836. __d_drop(loop);
  837. spin_unlock(&loop->d_lock);
  838. }
  839. spin_unlock(&dentry->d_lock);
  840. /* move to the first child */
  841. dentry = list_entry(dentry->d_subdirs.next,
  842. struct dentry, d_u.d_child);
  843. }
  844. /* consume the dentries from this leaf up through its parents
  845. * until we find one with children or run out altogether */
  846. do {
  847. struct inode *inode;
  848. if (dentry->d_count != 0) {
  849. printk(KERN_ERR
  850. "BUG: Dentry %p{i=%lx,n=%s}"
  851. " still in use (%d)"
  852. " [unmount of %s %s]\n",
  853. dentry,
  854. dentry->d_inode ?
  855. dentry->d_inode->i_ino : 0UL,
  856. dentry->d_name.name,
  857. dentry->d_count,
  858. dentry->d_sb->s_type->name,
  859. dentry->d_sb->s_id);
  860. BUG();
  861. }
  862. if (IS_ROOT(dentry)) {
  863. parent = NULL;
  864. list_del(&dentry->d_u.d_child);
  865. } else {
  866. parent = dentry->d_parent;
  867. spin_lock(&parent->d_lock);
  868. parent->d_count--;
  869. list_del(&dentry->d_u.d_child);
  870. spin_unlock(&parent->d_lock);
  871. }
  872. detached++;
  873. inode = dentry->d_inode;
  874. if (inode) {
  875. dentry->d_inode = NULL;
  876. list_del_init(&dentry->d_alias);
  877. if (dentry->d_op && dentry->d_op->d_iput)
  878. dentry->d_op->d_iput(dentry, inode);
  879. else
  880. iput(inode);
  881. }
  882. d_free(dentry);
  883. /* finished when we fall off the top of the tree,
  884. * otherwise we ascend to the parent and move to the
  885. * next sibling if there is one */
  886. if (!parent)
  887. return;
  888. dentry = parent;
  889. } while (list_empty(&dentry->d_subdirs));
  890. dentry = list_entry(dentry->d_subdirs.next,
  891. struct dentry, d_u.d_child);
  892. }
  893. }
  894. /*
  895. * destroy the dentries attached to a superblock on unmounting
  896. * - we don't need to use dentry->d_lock because:
  897. * - the superblock is detached from all mountings and open files, so the
  898. * dentry trees will not be rearranged by the VFS
  899. * - s_umount is write-locked, so the memory pressure shrinker will ignore
  900. * any dentries belonging to this superblock that it comes across
  901. * - the filesystem itself is no longer permitted to rearrange the dentries
  902. * in this superblock
  903. */
  904. void shrink_dcache_for_umount(struct super_block *sb)
  905. {
  906. struct dentry *dentry;
  907. if (down_read_trylock(&sb->s_umount))
  908. BUG();
  909. dentry = sb->s_root;
  910. sb->s_root = NULL;
  911. spin_lock(&dentry->d_lock);
  912. dentry->d_count--;
  913. spin_unlock(&dentry->d_lock);
  914. shrink_dcache_for_umount_subtree(dentry);
  915. while (!hlist_bl_empty(&sb->s_anon)) {
  916. dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
  917. shrink_dcache_for_umount_subtree(dentry);
  918. }
  919. }
  920. /*
  921. * Search for at least 1 mount point in the dentry's subdirs.
  922. * We descend to the next level whenever the d_subdirs
  923. * list is non-empty and continue searching.
  924. */
  925. /**
  926. * have_submounts - check for mounts over a dentry
  927. * @parent: dentry to check.
  928. *
  929. * Return true if the parent or its subdirectories contain
  930. * a mount point
  931. */
  932. int have_submounts(struct dentry *parent)
  933. {
  934. struct dentry *this_parent;
  935. struct list_head *next;
  936. unsigned seq;
  937. int locked = 0;
  938. seq = read_seqbegin(&rename_lock);
  939. again:
  940. this_parent = parent;
  941. if (d_mountpoint(parent))
  942. goto positive;
  943. spin_lock(&this_parent->d_lock);
  944. repeat:
  945. next = this_parent->d_subdirs.next;
  946. resume:
  947. while (next != &this_parent->d_subdirs) {
  948. struct list_head *tmp = next;
  949. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  950. next = tmp->next;
  951. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  952. /* Have we found a mount point ? */
  953. if (d_mountpoint(dentry)) {
  954. spin_unlock(&dentry->d_lock);
  955. spin_unlock(&this_parent->d_lock);
  956. goto positive;
  957. }
  958. if (!list_empty(&dentry->d_subdirs)) {
  959. spin_unlock(&this_parent->d_lock);
  960. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  961. this_parent = dentry;
  962. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  963. goto repeat;
  964. }
  965. spin_unlock(&dentry->d_lock);
  966. }
  967. /*
  968. * All done at this level ... ascend and resume the search.
  969. */
  970. if (this_parent != parent) {
  971. struct dentry *tmp;
  972. struct dentry *child;
  973. tmp = this_parent->d_parent;
  974. rcu_read_lock();
  975. spin_unlock(&this_parent->d_lock);
  976. child = this_parent;
  977. this_parent = tmp;
  978. spin_lock(&this_parent->d_lock);
  979. /* might go back up the wrong parent if we have had a rename
  980. * or deletion */
  981. if (this_parent != child->d_parent ||
  982. (!locked && read_seqretry(&rename_lock, seq))) {
  983. spin_unlock(&this_parent->d_lock);
  984. rcu_read_unlock();
  985. goto rename_retry;
  986. }
  987. rcu_read_unlock();
  988. next = child->d_u.d_child.next;
  989. goto resume;
  990. }
  991. spin_unlock(&this_parent->d_lock);
  992. if (!locked && read_seqretry(&rename_lock, seq))
  993. goto rename_retry;
  994. if (locked)
  995. write_sequnlock(&rename_lock);
  996. return 0; /* No mount points found in tree */
  997. positive:
  998. if (!locked && read_seqretry(&rename_lock, seq))
  999. goto rename_retry;
  1000. if (locked)
  1001. write_sequnlock(&rename_lock);
  1002. return 1;
  1003. rename_retry:
  1004. locked = 1;
  1005. write_seqlock(&rename_lock);
  1006. goto again;
  1007. }
  1008. EXPORT_SYMBOL(have_submounts);
  1009. /*
  1010. * Search the dentry child list for the specified parent,
  1011. * and move any unused dentries to the end of the unused
  1012. * list for prune_dcache(). We descend to the next level
  1013. * whenever the d_subdirs list is non-empty and continue
  1014. * searching.
  1015. *
  1016. * It returns zero iff there are no unused children,
  1017. * otherwise it returns the number of children moved to
  1018. * the end of the unused list. This may not be the total
  1019. * number of unused children, because select_parent can
  1020. * drop the lock and return early due to latency
  1021. * constraints.
  1022. */
  1023. static int select_parent(struct dentry * parent)
  1024. {
  1025. struct dentry *this_parent;
  1026. struct list_head *next;
  1027. unsigned seq;
  1028. int found = 0;
  1029. int locked = 0;
  1030. seq = read_seqbegin(&rename_lock);
  1031. again:
  1032. this_parent = parent;
  1033. spin_lock(&this_parent->d_lock);
  1034. repeat:
  1035. next = this_parent->d_subdirs.next;
  1036. resume:
  1037. while (next != &this_parent->d_subdirs) {
  1038. struct list_head *tmp = next;
  1039. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  1040. next = tmp->next;
  1041. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1042. /*
  1043. * move only zero ref count dentries to the end
  1044. * of the unused list for prune_dcache
  1045. */
  1046. if (!dentry->d_count) {
  1047. dentry_lru_move_tail(dentry);
  1048. found++;
  1049. } else {
  1050. dentry_lru_del(dentry);
  1051. }
  1052. /*
  1053. * We can return to the caller if we have found some (this
  1054. * ensures forward progress). We'll be coming back to find
  1055. * the rest.
  1056. */
  1057. if (found && need_resched()) {
  1058. spin_unlock(&dentry->d_lock);
  1059. goto out;
  1060. }
  1061. /*
  1062. * Descend a level if the d_subdirs list is non-empty.
  1063. */
  1064. if (!list_empty(&dentry->d_subdirs)) {
  1065. spin_unlock(&this_parent->d_lock);
  1066. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  1067. this_parent = dentry;
  1068. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1069. goto repeat;
  1070. }
  1071. spin_unlock(&dentry->d_lock);
  1072. }
  1073. /*
  1074. * All done at this level ... ascend and resume the search.
  1075. */
  1076. if (this_parent != parent) {
  1077. struct dentry *tmp;
  1078. struct dentry *child;
  1079. tmp = this_parent->d_parent;
  1080. rcu_read_lock();
  1081. spin_unlock(&this_parent->d_lock);
  1082. child = this_parent;
  1083. this_parent = tmp;
  1084. spin_lock(&this_parent->d_lock);
  1085. /* might go back up the wrong parent if we have had a rename
  1086. * or deletion */
  1087. if (this_parent != child->d_parent ||
  1088. (!locked && read_seqretry(&rename_lock, seq))) {
  1089. spin_unlock(&this_parent->d_lock);
  1090. rcu_read_unlock();
  1091. goto rename_retry;
  1092. }
  1093. rcu_read_unlock();
  1094. next = child->d_u.d_child.next;
  1095. goto resume;
  1096. }
  1097. out:
  1098. spin_unlock(&this_parent->d_lock);
  1099. if (!locked && read_seqretry(&rename_lock, seq))
  1100. goto rename_retry;
  1101. if (locked)
  1102. write_sequnlock(&rename_lock);
  1103. return found;
  1104. rename_retry:
  1105. if (found)
  1106. return found;
  1107. locked = 1;
  1108. write_seqlock(&rename_lock);
  1109. goto again;
  1110. }
  1111. /**
  1112. * shrink_dcache_parent - prune dcache
  1113. * @parent: parent of entries to prune
  1114. *
  1115. * Prune the dcache to remove unused children of the parent dentry.
  1116. */
  1117. void shrink_dcache_parent(struct dentry * parent)
  1118. {
  1119. struct super_block *sb = parent->d_sb;
  1120. int found;
  1121. while ((found = select_parent(parent)) != 0)
  1122. __shrink_dcache_sb(sb, &found, 0);
  1123. }
  1124. EXPORT_SYMBOL(shrink_dcache_parent);
  1125. /*
  1126. * Scan `nr' dentries and return the number which remain.
  1127. *
  1128. * We need to avoid reentering the filesystem if the caller is performing a
  1129. * GFP_NOFS allocation attempt. One example deadlock is:
  1130. *
  1131. * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
  1132. * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
  1133. * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
  1134. *
  1135. * In this case we return -1 to tell the caller that we baled.
  1136. */
  1137. static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
  1138. {
  1139. if (nr) {
  1140. if (!(gfp_mask & __GFP_FS))
  1141. return -1;
  1142. prune_dcache(nr);
  1143. }
  1144. return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
  1145. }
  1146. static struct shrinker dcache_shrinker = {
  1147. .shrink = shrink_dcache_memory,
  1148. .seeks = DEFAULT_SEEKS,
  1149. };
  1150. /**
  1151. * d_alloc - allocate a dcache entry
  1152. * @parent: parent of entry to allocate
  1153. * @name: qstr of the name
  1154. *
  1155. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1156. * available. On a success the dentry is returned. The name passed in is
  1157. * copied and the copy passed in may be reused after this call.
  1158. */
  1159. struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
  1160. {
  1161. struct dentry *dentry;
  1162. char *dname;
  1163. dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
  1164. if (!dentry)
  1165. return NULL;
  1166. if (name->len > DNAME_INLINE_LEN-1) {
  1167. dname = kmalloc(name->len + 1, GFP_KERNEL);
  1168. if (!dname) {
  1169. kmem_cache_free(dentry_cache, dentry);
  1170. return NULL;
  1171. }
  1172. } else {
  1173. dname = dentry->d_iname;
  1174. }
  1175. dentry->d_name.name = dname;
  1176. dentry->d_name.len = name->len;
  1177. dentry->d_name.hash = name->hash;
  1178. memcpy(dname, name->name, name->len);
  1179. dname[name->len] = 0;
  1180. dentry->d_count = 1;
  1181. dentry->d_flags = DCACHE_UNHASHED;
  1182. spin_lock_init(&dentry->d_lock);
  1183. seqcount_init(&dentry->d_seq);
  1184. dentry->d_inode = NULL;
  1185. dentry->d_parent = NULL;
  1186. dentry->d_sb = NULL;
  1187. dentry->d_op = NULL;
  1188. dentry->d_fsdata = NULL;
  1189. INIT_HLIST_BL_NODE(&dentry->d_hash);
  1190. INIT_LIST_HEAD(&dentry->d_lru);
  1191. INIT_LIST_HEAD(&dentry->d_subdirs);
  1192. INIT_LIST_HEAD(&dentry->d_alias);
  1193. INIT_LIST_HEAD(&dentry->d_u.d_child);
  1194. if (parent) {
  1195. spin_lock(&parent->d_lock);
  1196. /*
  1197. * don't need child lock because it is not subject
  1198. * to concurrency here
  1199. */
  1200. __dget_dlock(parent);
  1201. dentry->d_parent = parent;
  1202. dentry->d_sb = parent->d_sb;
  1203. list_add(&dentry->d_u.d_child, &parent->d_subdirs);
  1204. spin_unlock(&parent->d_lock);
  1205. }
  1206. this_cpu_inc(nr_dentry);
  1207. return dentry;
  1208. }
  1209. EXPORT_SYMBOL(d_alloc);
  1210. struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
  1211. {
  1212. struct dentry *dentry = d_alloc(NULL, name);
  1213. if (dentry) {
  1214. dentry->d_sb = sb;
  1215. dentry->d_parent = dentry;
  1216. dentry->d_flags |= DCACHE_DISCONNECTED;
  1217. }
  1218. return dentry;
  1219. }
  1220. EXPORT_SYMBOL(d_alloc_pseudo);
  1221. struct dentry *d_alloc_name(struct dentry *parent, const char *name)
  1222. {
  1223. struct qstr q;
  1224. q.name = name;
  1225. q.len = strlen(name);
  1226. q.hash = full_name_hash(q.name, q.len);
  1227. return d_alloc(parent, &q);
  1228. }
  1229. EXPORT_SYMBOL(d_alloc_name);
  1230. void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
  1231. {
  1232. BUG_ON(dentry->d_op);
  1233. BUG_ON(dentry->d_flags & (DCACHE_OP_HASH |
  1234. DCACHE_OP_COMPARE |
  1235. DCACHE_OP_REVALIDATE |
  1236. DCACHE_OP_DELETE ));
  1237. dentry->d_op = op;
  1238. if (!op)
  1239. return;
  1240. if (op->d_hash)
  1241. dentry->d_flags |= DCACHE_OP_HASH;
  1242. if (op->d_compare)
  1243. dentry->d_flags |= DCACHE_OP_COMPARE;
  1244. if (op->d_revalidate)
  1245. dentry->d_flags |= DCACHE_OP_REVALIDATE;
  1246. if (op->d_delete)
  1247. dentry->d_flags |= DCACHE_OP_DELETE;
  1248. }
  1249. EXPORT_SYMBOL(d_set_d_op);
  1250. static void __d_instantiate(struct dentry *dentry, struct inode *inode)
  1251. {
  1252. spin_lock(&dentry->d_lock);
  1253. if (inode)
  1254. list_add(&dentry->d_alias, &inode->i_dentry);
  1255. dentry->d_inode = inode;
  1256. dentry_rcuwalk_barrier(dentry);
  1257. spin_unlock(&dentry->d_lock);
  1258. fsnotify_d_instantiate(dentry, inode);
  1259. }
  1260. /**
  1261. * d_instantiate - fill in inode information for a dentry
  1262. * @entry: dentry to complete
  1263. * @inode: inode to attach to this dentry
  1264. *
  1265. * Fill in inode information in the entry.
  1266. *
  1267. * This turns negative dentries into productive full members
  1268. * of society.
  1269. *
  1270. * NOTE! This assumes that the inode count has been incremented
  1271. * (or otherwise set) by the caller to indicate that it is now
  1272. * in use by the dcache.
  1273. */
  1274. void d_instantiate(struct dentry *entry, struct inode * inode)
  1275. {
  1276. BUG_ON(!list_empty(&entry->d_alias));
  1277. if (inode)
  1278. spin_lock(&inode->i_lock);
  1279. __d_instantiate(entry, inode);
  1280. if (inode)
  1281. spin_unlock(&inode->i_lock);
  1282. security_d_instantiate(entry, inode);
  1283. }
  1284. EXPORT_SYMBOL(d_instantiate);
  1285. /**
  1286. * d_instantiate_unique - instantiate a non-aliased dentry
  1287. * @entry: dentry to instantiate
  1288. * @inode: inode to attach to this dentry
  1289. *
  1290. * Fill in inode information in the entry. On success, it returns NULL.
  1291. * If an unhashed alias of "entry" already exists, then we return the
  1292. * aliased dentry instead and drop one reference to inode.
  1293. *
  1294. * Note that in order to avoid conflicts with rename() etc, the caller
  1295. * had better be holding the parent directory semaphore.
  1296. *
  1297. * This also assumes that the inode count has been incremented
  1298. * (or otherwise set) by the caller to indicate that it is now
  1299. * in use by the dcache.
  1300. */
  1301. static struct dentry *__d_instantiate_unique(struct dentry *entry,
  1302. struct inode *inode)
  1303. {
  1304. struct dentry *alias;
  1305. int len = entry->d_name.len;
  1306. const char *name = entry->d_name.name;
  1307. unsigned int hash = entry->d_name.hash;
  1308. if (!inode) {
  1309. __d_instantiate(entry, NULL);
  1310. return NULL;
  1311. }
  1312. list_for_each_entry(alias, &inode->i_dentry, d_alias) {
  1313. struct qstr *qstr = &alias->d_name;
  1314. /*
  1315. * Don't need alias->d_lock here, because aliases with
  1316. * d_parent == entry->d_parent are not subject to name or
  1317. * parent changes, because the parent inode i_mutex is held.
  1318. */
  1319. if (qstr->hash != hash)
  1320. continue;
  1321. if (alias->d_parent != entry->d_parent)
  1322. continue;
  1323. if (qstr->len != len)
  1324. continue;
  1325. if (memcmp(qstr->name, name, len))
  1326. continue;
  1327. __dget(alias);
  1328. return alias;
  1329. }
  1330. __d_instantiate(entry, inode);
  1331. return NULL;
  1332. }
  1333. struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
  1334. {
  1335. struct dentry *result;
  1336. BUG_ON(!list_empty(&entry->d_alias));
  1337. if (inode)
  1338. spin_lock(&inode->i_lock);
  1339. result = __d_instantiate_unique(entry, inode);
  1340. if (inode)
  1341. spin_unlock(&inode->i_lock);
  1342. if (!result) {
  1343. security_d_instantiate(entry, inode);
  1344. return NULL;
  1345. }
  1346. BUG_ON(!d_unhashed(result));
  1347. iput(inode);
  1348. return result;
  1349. }
  1350. EXPORT_SYMBOL(d_instantiate_unique);
  1351. /**
  1352. * d_alloc_root - allocate root dentry
  1353. * @root_inode: inode to allocate the root for
  1354. *
  1355. * Allocate a root ("/") dentry for the inode given. The inode is
  1356. * instantiated and returned. %NULL is returned if there is insufficient
  1357. * memory or the inode passed is %NULL.
  1358. */
  1359. struct dentry * d_alloc_root(struct inode * root_inode)
  1360. {
  1361. struct dentry *res = NULL;
  1362. if (root_inode) {
  1363. static const struct qstr name = { .name = "/", .len = 1 };
  1364. res = d_alloc(NULL, &name);
  1365. if (res) {
  1366. res->d_sb = root_inode->i_sb;
  1367. res->d_parent = res;
  1368. d_instantiate(res, root_inode);
  1369. }
  1370. }
  1371. return res;
  1372. }
  1373. EXPORT_SYMBOL(d_alloc_root);
  1374. /**
  1375. * d_obtain_alias - find or allocate a dentry for a given inode
  1376. * @inode: inode to allocate the dentry for
  1377. *
  1378. * Obtain a dentry for an inode resulting from NFS filehandle conversion or
  1379. * similar open by handle operations. The returned dentry may be anonymous,
  1380. * or may have a full name (if the inode was already in the cache).
  1381. *
  1382. * When called on a directory inode, we must ensure that the inode only ever
  1383. * has one dentry. If a dentry is found, that is returned instead of
  1384. * allocating a new one.
  1385. *
  1386. * On successful return, the reference to the inode has been transferred
  1387. * to the dentry. In case of an error the reference on the inode is released.
  1388. * To make it easier to use in export operations a %NULL or IS_ERR inode may
  1389. * be passed in and will be the error will be propagate to the return value,
  1390. * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
  1391. */
  1392. struct dentry *d_obtain_alias(struct inode *inode)
  1393. {
  1394. static const struct qstr anonstring = { .name = "" };
  1395. struct dentry *tmp;
  1396. struct dentry *res;
  1397. if (!inode)
  1398. return ERR_PTR(-ESTALE);
  1399. if (IS_ERR(inode))
  1400. return ERR_CAST(inode);
  1401. res = d_find_alias(inode);
  1402. if (res)
  1403. goto out_iput;
  1404. tmp = d_alloc(NULL, &anonstring);
  1405. if (!tmp) {
  1406. res = ERR_PTR(-ENOMEM);
  1407. goto out_iput;
  1408. }
  1409. tmp->d_parent = tmp; /* make sure dput doesn't croak */
  1410. spin_lock(&inode->i_lock);
  1411. res = __d_find_alias(inode, 0);
  1412. if (res) {
  1413. spin_unlock(&inode->i_lock);
  1414. dput(tmp);
  1415. goto out_iput;
  1416. }
  1417. /* attach a disconnected dentry */
  1418. spin_lock(&tmp->d_lock);
  1419. tmp->d_sb = inode->i_sb;
  1420. tmp->d_inode = inode;
  1421. tmp->d_flags |= DCACHE_DISCONNECTED;
  1422. list_add(&tmp->d_alias, &inode->i_dentry);
  1423. bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
  1424. tmp->d_flags &= ~DCACHE_UNHASHED;
  1425. hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
  1426. __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
  1427. spin_unlock(&tmp->d_lock);
  1428. spin_unlock(&inode->i_lock);
  1429. return tmp;
  1430. out_iput:
  1431. iput(inode);
  1432. return res;
  1433. }
  1434. EXPORT_SYMBOL(d_obtain_alias);
  1435. /**
  1436. * d_splice_alias - splice a disconnected dentry into the tree if one exists
  1437. * @inode: the inode which may have a disconnected dentry
  1438. * @dentry: a negative dentry which we want to point to the inode.
  1439. *
  1440. * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
  1441. * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
  1442. * and return it, else simply d_add the inode to the dentry and return NULL.
  1443. *
  1444. * This is needed in the lookup routine of any filesystem that is exportable
  1445. * (via knfsd) so that we can build dcache paths to directories effectively.
  1446. *
  1447. * If a dentry was found and moved, then it is returned. Otherwise NULL
  1448. * is returned. This matches the expected return value of ->lookup.
  1449. *
  1450. */
  1451. struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
  1452. {
  1453. struct dentry *new = NULL;
  1454. if (inode && S_ISDIR(inode->i_mode)) {
  1455. spin_lock(&inode->i_lock);
  1456. new = __d_find_alias(inode, 1);
  1457. if (new) {
  1458. BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
  1459. spin_unlock(&inode->i_lock);
  1460. security_d_instantiate(new, inode);
  1461. d_move(new, dentry);
  1462. iput(inode);
  1463. } else {
  1464. /* already taking inode->i_lock, so d_add() by hand */
  1465. __d_instantiate(dentry, inode);
  1466. spin_unlock(&inode->i_lock);
  1467. security_d_instantiate(dentry, inode);
  1468. d_rehash(dentry);
  1469. }
  1470. } else
  1471. d_add(dentry, inode);
  1472. return new;
  1473. }
  1474. EXPORT_SYMBOL(d_splice_alias);
  1475. /**
  1476. * d_add_ci - lookup or allocate new dentry with case-exact name
  1477. * @inode: the inode case-insensitive lookup has found
  1478. * @dentry: the negative dentry that was passed to the parent's lookup func
  1479. * @name: the case-exact name to be associated with the returned dentry
  1480. *
  1481. * This is to avoid filling the dcache with case-insensitive names to the
  1482. * same inode, only the actual correct case is stored in the dcache for
  1483. * case-insensitive filesystems.
  1484. *
  1485. * For a case-insensitive lookup match and if the the case-exact dentry
  1486. * already exists in in the dcache, use it and return it.
  1487. *
  1488. * If no entry exists with the exact case name, allocate new dentry with
  1489. * the exact case, and return the spliced entry.
  1490. */
  1491. struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
  1492. struct qstr *name)
  1493. {
  1494. int error;
  1495. struct dentry *found;
  1496. struct dentry *new;
  1497. /*
  1498. * First check if a dentry matching the name already exists,
  1499. * if not go ahead and create it now.
  1500. */
  1501. found = d_hash_and_lookup(dentry->d_parent, name);
  1502. if (!found) {
  1503. new = d_alloc(dentry->d_parent, name);
  1504. if (!new) {
  1505. error = -ENOMEM;
  1506. goto err_out;
  1507. }
  1508. found = d_splice_alias(inode, new);
  1509. if (found) {
  1510. dput(new);
  1511. return found;
  1512. }
  1513. return new;
  1514. }
  1515. /*
  1516. * If a matching dentry exists, and it's not negative use it.
  1517. *
  1518. * Decrement the reference count to balance the iget() done
  1519. * earlier on.
  1520. */
  1521. if (found->d_inode) {
  1522. if (unlikely(found->d_inode != inode)) {
  1523. /* This can't happen because bad inodes are unhashed. */
  1524. BUG_ON(!is_bad_inode(inode));
  1525. BUG_ON(!is_bad_inode(found->d_inode));
  1526. }
  1527. iput(inode);
  1528. return found;
  1529. }
  1530. /*
  1531. * Negative dentry: instantiate it unless the inode is a directory and
  1532. * already has a dentry.
  1533. */
  1534. spin_lock(&inode->i_lock);
  1535. if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
  1536. __d_instantiate(found, inode);
  1537. spin_unlock(&inode->i_lock);
  1538. security_d_instantiate(found, inode);
  1539. return found;
  1540. }
  1541. /*
  1542. * In case a directory already has a (disconnected) entry grab a
  1543. * reference to it, move it in place and use it.
  1544. */
  1545. new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
  1546. __dget(new);
  1547. spin_unlock(&inode->i_lock);
  1548. security_d_instantiate(found, inode);
  1549. d_move(new, found);
  1550. iput(inode);
  1551. dput(found);
  1552. return new;
  1553. err_out:
  1554. iput(inode);
  1555. return ERR_PTR(error);
  1556. }
  1557. EXPORT_SYMBOL(d_add_ci);
  1558. /**
  1559. * __d_lookup_rcu - search for a dentry (racy, store-free)
  1560. * @parent: parent dentry
  1561. * @name: qstr of name we wish to find
  1562. * @seq: returns d_seq value at the point where the dentry was found
  1563. * @inode: returns dentry->d_inode when the inode was found valid.
  1564. * Returns: dentry, or NULL
  1565. *
  1566. * __d_lookup_rcu is the dcache lookup function for rcu-walk name
  1567. * resolution (store-free path walking) design described in
  1568. * Documentation/filesystems/path-lookup.txt.
  1569. *
  1570. * This is not to be used outside core vfs.
  1571. *
  1572. * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
  1573. * held, and rcu_read_lock held. The returned dentry must not be stored into
  1574. * without taking d_lock and checking d_seq sequence count against @seq
  1575. * returned here.
  1576. *
  1577. * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
  1578. * function.
  1579. *
  1580. * Alternatively, __d_lookup_rcu may be called again to look up the child of
  1581. * the returned dentry, so long as its parent's seqlock is checked after the
  1582. * child is looked up. Thus, an interlocking stepping of sequence lock checks
  1583. * is formed, giving integrity down the path walk.
  1584. */
  1585. struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
  1586. unsigned *seq, struct inode **inode)
  1587. {
  1588. unsigned int len = name->len;
  1589. unsigned int hash = name->hash;
  1590. const unsigned char *str = name->name;
  1591. struct dcache_hash_bucket *b = d_hash(parent, hash);
  1592. struct hlist_bl_node *node;
  1593. struct dentry *dentry;
  1594. /*
  1595. * Note: There is significant duplication with __d_lookup_rcu which is
  1596. * required to prevent single threaded performance regressions
  1597. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1598. * Keep the two functions in sync.
  1599. */
  1600. /*
  1601. * The hash list is protected using RCU.
  1602. *
  1603. * Carefully use d_seq when comparing a candidate dentry, to avoid
  1604. * races with d_move().
  1605. *
  1606. * It is possible that concurrent renames can mess up our list
  1607. * walk here and result in missing our dentry, resulting in the
  1608. * false-negative result. d_lookup() protects against concurrent
  1609. * renames using rename_lock seqlock.
  1610. *
  1611. * See Documentation/vfs/dcache-locking.txt for more details.
  1612. */
  1613. hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
  1614. struct inode *i;
  1615. const char *tname;
  1616. int tlen;
  1617. if (dentry->d_name.hash != hash)
  1618. continue;
  1619. seqretry:
  1620. *seq = read_seqcount_begin(&dentry->d_seq);
  1621. if (dentry->d_parent != parent)
  1622. continue;
  1623. if (d_unhashed(dentry))
  1624. continue;
  1625. tlen = dentry->d_name.len;
  1626. tname = dentry->d_name.name;
  1627. i = dentry->d_inode;
  1628. /*
  1629. * This seqcount check is required to ensure name and
  1630. * len are loaded atomically, so as not to walk off the
  1631. * edge of memory when walking. If we could load this
  1632. * atomically some other way, we could drop this check.
  1633. */
  1634. if (read_seqcount_retry(&dentry->d_seq, *seq))
  1635. goto seqretry;
  1636. if (parent->d_flags & DCACHE_OP_COMPARE) {
  1637. if (parent->d_op->d_compare(parent, *inode,
  1638. dentry, i,
  1639. tlen, tname, name))
  1640. continue;
  1641. } else {
  1642. if (tlen != len)
  1643. continue;
  1644. if (memcmp(tname, str, tlen))
  1645. continue;
  1646. }
  1647. /*
  1648. * No extra seqcount check is required after the name
  1649. * compare. The caller must perform a seqcount check in
  1650. * order to do anything useful with the returned dentry
  1651. * anyway.
  1652. */
  1653. *inode = i;
  1654. return dentry;
  1655. }
  1656. return NULL;
  1657. }
  1658. /**
  1659. * d_lookup - search for a dentry
  1660. * @parent: parent dentry
  1661. * @name: qstr of name we wish to find
  1662. * Returns: dentry, or NULL
  1663. *
  1664. * d_lookup searches the children of the parent dentry for the name in
  1665. * question. If the dentry is found its reference count is incremented and the
  1666. * dentry is returned. The caller must use dput to free the entry when it has
  1667. * finished using it. %NULL is returned if the dentry does not exist.
  1668. */
  1669. struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
  1670. {
  1671. struct dentry *dentry;
  1672. unsigned seq;
  1673. do {
  1674. seq = read_seqbegin(&rename_lock);
  1675. dentry = __d_lookup(parent, name);
  1676. if (dentry)
  1677. break;
  1678. } while (read_seqretry(&rename_lock, seq));
  1679. return dentry;
  1680. }
  1681. EXPORT_SYMBOL(d_lookup);
  1682. /**
  1683. * __d_lookup - search for a dentry (racy)
  1684. * @parent: parent dentry
  1685. * @name: qstr of name we wish to find
  1686. * Returns: dentry, or NULL
  1687. *
  1688. * __d_lookup is like d_lookup, however it may (rarely) return a
  1689. * false-negative result due to unrelated rename activity.
  1690. *
  1691. * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
  1692. * however it must be used carefully, eg. with a following d_lookup in
  1693. * the case of failure.
  1694. *
  1695. * __d_lookup callers must be commented.
  1696. */
  1697. struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
  1698. {
  1699. unsigned int len = name->len;
  1700. unsigned int hash = name->hash;
  1701. const unsigned char *str = name->name;
  1702. struct dcache_hash_bucket *b = d_hash(parent, hash);
  1703. struct hlist_bl_node *node;
  1704. struct dentry *found = NULL;
  1705. struct dentry *dentry;
  1706. /*
  1707. * Note: There is significant duplication with __d_lookup_rcu which is
  1708. * required to prevent single threaded performance regressions
  1709. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1710. * Keep the two functions in sync.
  1711. */
  1712. /*
  1713. * The hash list is protected using RCU.
  1714. *
  1715. * Take d_lock when comparing a candidate dentry, to avoid races
  1716. * with d_move().
  1717. *
  1718. * It is possible that concurrent renames can mess up our list
  1719. * walk here and result in missing our dentry, resulting in the
  1720. * false-negative result. d_lookup() protects against concurrent
  1721. * renames using rename_lock seqlock.
  1722. *
  1723. * See Documentation/vfs/dcache-locking.txt for more details.
  1724. */
  1725. rcu_read_lock();
  1726. hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
  1727. const char *tname;
  1728. int tlen;
  1729. if (dentry->d_name.hash != hash)
  1730. continue;
  1731. spin_lock(&dentry->d_lock);
  1732. if (dentry->d_parent != parent)
  1733. goto next;
  1734. if (d_unhashed(dentry))
  1735. goto next;
  1736. /*
  1737. * It is safe to compare names since d_move() cannot
  1738. * change the qstr (protected by d_lock).
  1739. */
  1740. tlen = dentry->d_name.len;
  1741. tname = dentry->d_name.name;
  1742. if (parent->d_flags & DCACHE_OP_COMPARE) {
  1743. if (parent->d_op->d_compare(parent, parent->d_inode,
  1744. dentry, dentry->d_inode,
  1745. tlen, tname, name))
  1746. goto next;
  1747. } else {
  1748. if (tlen != len)
  1749. goto next;
  1750. if (memcmp(tname, str, tlen))
  1751. goto next;
  1752. }
  1753. dentry->d_count++;
  1754. found = dentry;
  1755. spin_unlock(&dentry->d_lock);
  1756. break;
  1757. next:
  1758. spin_unlock(&dentry->d_lock);
  1759. }
  1760. rcu_read_unlock();
  1761. return found;
  1762. }
  1763. /**
  1764. * d_hash_and_lookup - hash the qstr then search for a dentry
  1765. * @dir: Directory to search in
  1766. * @name: qstr of name we wish to find
  1767. *
  1768. * On hash failure or on lookup failure NULL is returned.
  1769. */
  1770. struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
  1771. {
  1772. struct dentry *dentry = NULL;
  1773. /*
  1774. * Check for a fs-specific hash function. Note that we must
  1775. * calculate the standard hash first, as the d_op->d_hash()
  1776. * routine may choose to leave the hash value unchanged.
  1777. */
  1778. name->hash = full_name_hash(name->name, name->len);
  1779. if (dir->d_flags & DCACHE_OP_HASH) {
  1780. if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
  1781. goto out;
  1782. }
  1783. dentry = d_lookup(dir, name);
  1784. out:
  1785. return dentry;
  1786. }
  1787. /**
  1788. * d_validate - verify dentry provided from insecure source (deprecated)
  1789. * @dentry: The dentry alleged to be valid child of @dparent
  1790. * @dparent: The parent dentry (known to be valid)
  1791. *
  1792. * An insecure source has sent us a dentry, here we verify it and dget() it.
  1793. * This is used by ncpfs in its readdir implementation.
  1794. * Zero is returned in the dentry is invalid.
  1795. *
  1796. * This function is slow for big directories, and deprecated, do not use it.
  1797. */
  1798. int d_validate(struct dentry *dentry, struct dentry *dparent)
  1799. {
  1800. struct dentry *child;
  1801. spin_lock(&dparent->d_lock);
  1802. list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
  1803. if (dentry == child) {
  1804. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1805. __dget_dlock(dentry);
  1806. spin_unlock(&dentry->d_lock);
  1807. spin_unlock(&dparent->d_lock);
  1808. return 1;
  1809. }
  1810. }
  1811. spin_unlock(&dparent->d_lock);
  1812. return 0;
  1813. }
  1814. EXPORT_SYMBOL(d_validate);
  1815. /*
  1816. * When a file is deleted, we have two options:
  1817. * - turn this dentry into a negative dentry
  1818. * - unhash this dentry and free it.
  1819. *
  1820. * Usually, we want to just turn this into
  1821. * a negative dentry, but if anybody else is
  1822. * currently using the dentry or the inode
  1823. * we can't do that and we fall back on removing
  1824. * it from the hash queues and waiting for
  1825. * it to be deleted later when it has no users
  1826. */
  1827. /**
  1828. * d_delete - delete a dentry
  1829. * @dentry: The dentry to delete
  1830. *
  1831. * Turn the dentry into a negative dentry if possible, otherwise
  1832. * remove it from the hash queues so it can be deleted later
  1833. */
  1834. void d_delete(struct dentry * dentry)
  1835. {
  1836. struct inode *inode;
  1837. int isdir = 0;
  1838. /*
  1839. * Are we the only user?
  1840. */
  1841. again:
  1842. spin_lock(&dentry->d_lock);
  1843. inode = dentry->d_inode;
  1844. isdir = S_ISDIR(inode->i_mode);
  1845. if (dentry->d_count == 1) {
  1846. if (inode && !spin_trylock(&inode->i_lock)) {
  1847. spin_unlock(&dentry->d_lock);
  1848. cpu_relax();
  1849. goto again;
  1850. }
  1851. dentry->d_flags &= ~DCACHE_CANT_MOUNT;
  1852. dentry_unlink_inode(dentry);
  1853. fsnotify_nameremove(dentry, isdir);
  1854. return;
  1855. }
  1856. if (!d_unhashed(dentry))
  1857. __d_drop(dentry);
  1858. spin_unlock(&dentry->d_lock);
  1859. fsnotify_nameremove(dentry, isdir);
  1860. }
  1861. EXPORT_SYMBOL(d_delete);
  1862. static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
  1863. {
  1864. BUG_ON(!d_unhashed(entry));
  1865. spin_lock_bucket(b);
  1866. entry->d_flags &= ~DCACHE_UNHASHED;
  1867. hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
  1868. spin_unlock_bucket(b);
  1869. }
  1870. static void _d_rehash(struct dentry * entry)
  1871. {
  1872. __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
  1873. }
  1874. /**
  1875. * d_rehash - add an entry back to the hash
  1876. * @entry: dentry to add to the hash
  1877. *
  1878. * Adds a dentry to the hash according to its name.
  1879. */
  1880. void d_rehash(struct dentry * entry)
  1881. {
  1882. spin_lock(&entry->d_lock);
  1883. _d_rehash(entry);
  1884. spin_unlock(&entry->d_lock);
  1885. }
  1886. EXPORT_SYMBOL(d_rehash);
  1887. /**
  1888. * dentry_update_name_case - update case insensitive dentry with a new name
  1889. * @dentry: dentry to be updated
  1890. * @name: new name
  1891. *
  1892. * Update a case insensitive dentry with new case of name.
  1893. *
  1894. * dentry must have been returned by d_lookup with name @name. Old and new
  1895. * name lengths must match (ie. no d_compare which allows mismatched name
  1896. * lengths).
  1897. *
  1898. * Parent inode i_mutex must be held over d_lookup and into this call (to
  1899. * keep renames and concurrent inserts, and readdir(2) away).
  1900. */
  1901. void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
  1902. {
  1903. BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
  1904. BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
  1905. spin_lock(&dentry->d_lock);
  1906. write_seqcount_begin(&dentry->d_seq);
  1907. memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
  1908. write_seqcount_end(&dentry->d_seq);
  1909. spin_unlock(&dentry->d_lock);
  1910. }
  1911. EXPORT_SYMBOL(dentry_update_name_case);
  1912. static void switch_names(struct dentry *dentry, struct dentry *target)
  1913. {
  1914. if (dname_external(target)) {
  1915. if (dname_external(dentry)) {
  1916. /*
  1917. * Both external: swap the pointers
  1918. */
  1919. swap(target->d_name.name, dentry->d_name.name);
  1920. } else {
  1921. /*
  1922. * dentry:internal, target:external. Steal target's
  1923. * storage and make target internal.
  1924. */
  1925. memcpy(target->d_iname, dentry->d_name.name,
  1926. dentry->d_name.len + 1);
  1927. dentry->d_name.name = target->d_name.name;
  1928. target->d_name.name = target->d_iname;
  1929. }
  1930. } else {
  1931. if (dname_external(dentry)) {
  1932. /*
  1933. * dentry:external, target:internal. Give dentry's
  1934. * storage to target and make dentry internal
  1935. */
  1936. memcpy(dentry->d_iname, target->d_name.name,
  1937. target->d_name.len + 1);
  1938. target->d_name.name = dentry->d_name.name;
  1939. dentry->d_name.name = dentry->d_iname;
  1940. } else {
  1941. /*
  1942. * Both are internal. Just copy target to dentry
  1943. */
  1944. memcpy(dentry->d_iname, target->d_name.name,
  1945. target->d_name.len + 1);
  1946. dentry->d_name.len = target->d_name.len;
  1947. return;
  1948. }
  1949. }
  1950. swap(dentry->d_name.len, target->d_name.len);
  1951. }
  1952. static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
  1953. {
  1954. /*
  1955. * XXXX: do we really need to take target->d_lock?
  1956. */
  1957. if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
  1958. spin_lock(&target->d_parent->d_lock);
  1959. else {
  1960. if (d_ancestor(dentry->d_parent, target->d_parent)) {
  1961. spin_lock(&dentry->d_parent->d_lock);
  1962. spin_lock_nested(&target->d_parent->d_lock,
  1963. DENTRY_D_LOCK_NESTED);
  1964. } else {
  1965. spin_lock(&target->d_parent->d_lock);
  1966. spin_lock_nested(&dentry->d_parent->d_lock,
  1967. DENTRY_D_LOCK_NESTED);
  1968. }
  1969. }
  1970. if (target < dentry) {
  1971. spin_lock_nested(&target->d_lock, 2);
  1972. spin_lock_nested(&dentry->d_lock, 3);
  1973. } else {
  1974. spin_lock_nested(&dentry->d_lock, 2);
  1975. spin_lock_nested(&target->d_lock, 3);
  1976. }
  1977. }
  1978. static void dentry_unlock_parents_for_move(struct dentry *dentry,
  1979. struct dentry *target)
  1980. {
  1981. if (target->d_parent != dentry->d_parent)
  1982. spin_unlock(&dentry->d_parent->d_lock);
  1983. if (target->d_parent != target)
  1984. spin_unlock(&target->d_parent->d_lock);
  1985. }
  1986. /*
  1987. * When switching names, the actual string doesn't strictly have to
  1988. * be preserved in the target - because we're dropping the target
  1989. * anyway. As such, we can just do a simple memcpy() to copy over
  1990. * the new name before we switch.
  1991. *
  1992. * Note that we have to be a lot more careful about getting the hash
  1993. * switched - we have to switch the hash value properly even if it
  1994. * then no longer matches the actual (corrupted) string of the target.
  1995. * The hash value has to match the hash queue that the dentry is on..
  1996. */
  1997. /*
  1998. * d_move - move a dentry
  1999. * @dentry: entry to move
  2000. * @target: new dentry
  2001. *
  2002. * Update the dcache to reflect the move of a file name. Negative
  2003. * dcache entries should not be moved in this way.
  2004. */
  2005. void d_move(struct dentry * dentry, struct dentry * target)
  2006. {
  2007. if (!dentry->d_inode)
  2008. printk(KERN_WARNING "VFS: moving negative dcache entry\n");
  2009. BUG_ON(d_ancestor(dentry, target));
  2010. BUG_ON(d_ancestor(target, dentry));
  2011. write_seqlock(&rename_lock);
  2012. dentry_lock_for_move(dentry, target);
  2013. write_seqcount_begin(&dentry->d_seq);
  2014. write_seqcount_begin(&target->d_seq);
  2015. /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
  2016. /*
  2017. * Move the dentry to the target hash queue. Don't bother checking
  2018. * for the same hash queue because of how unlikely it is.
  2019. */
  2020. __d_drop(dentry);
  2021. __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
  2022. /* Unhash the target: dput() will then get rid of it */
  2023. __d_drop(target);
  2024. list_del(&dentry->d_u.d_child);
  2025. list_del(&target->d_u.d_child);
  2026. /* Switch the names.. */
  2027. switch_names(dentry, target);
  2028. swap(dentry->d_name.hash, target->d_name.hash);
  2029. /* ... and switch the parents */
  2030. if (IS_ROOT(dentry)) {
  2031. dentry->d_parent = target->d_parent;
  2032. target->d_parent = target;
  2033. INIT_LIST_HEAD(&target->d_u.d_child);
  2034. } else {
  2035. swap(dentry->d_parent, target->d_parent);
  2036. /* And add them back to the (new) parent lists */
  2037. list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
  2038. }
  2039. list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
  2040. write_seqcount_end(&target->d_seq);
  2041. write_seqcount_end(&dentry->d_seq);
  2042. dentry_unlock_parents_for_move(dentry, target);
  2043. spin_unlock(&target->d_lock);
  2044. fsnotify_d_move(dentry);
  2045. spin_unlock(&dentry->d_lock);
  2046. write_sequnlock(&rename_lock);
  2047. }
  2048. EXPORT_SYMBOL(d_move);
  2049. /**
  2050. * d_ancestor - search for an ancestor
  2051. * @p1: ancestor dentry
  2052. * @p2: child dentry
  2053. *
  2054. * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
  2055. * an ancestor of p2, else NULL.
  2056. */
  2057. struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
  2058. {
  2059. struct dentry *p;
  2060. for (p = p2; !IS_ROOT(p); p = p->d_parent) {
  2061. if (p->d_parent == p1)
  2062. return p;
  2063. }
  2064. return NULL;
  2065. }
  2066. /*
  2067. * This helper attempts to cope with remotely renamed directories
  2068. *
  2069. * It assumes that the caller is already holding
  2070. * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
  2071. *
  2072. * Note: If ever the locking in lock_rename() changes, then please
  2073. * remember to update this too...
  2074. */
  2075. static struct dentry *__d_unalias(struct inode *inode,
  2076. struct dentry *dentry, struct dentry *alias)
  2077. {
  2078. struct mutex *m1 = NULL, *m2 = NULL;
  2079. struct dentry *ret;
  2080. /* If alias and dentry share a parent, then no extra locks required */
  2081. if (alias->d_parent == dentry->d_parent)
  2082. goto out_unalias;
  2083. /* Check for loops */
  2084. ret = ERR_PTR(-ELOOP);
  2085. if (d_ancestor(alias, dentry))
  2086. goto out_err;
  2087. /* See lock_rename() */
  2088. ret = ERR_PTR(-EBUSY);
  2089. if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
  2090. goto out_err;
  2091. m1 = &dentry->d_sb->s_vfs_rename_mutex;
  2092. if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
  2093. goto out_err;
  2094. m2 = &alias->d_parent->d_inode->i_mutex;
  2095. out_unalias:
  2096. d_move(alias, dentry);
  2097. ret = alias;
  2098. out_err:
  2099. spin_unlock(&inode->i_lock);
  2100. if (m2)
  2101. mutex_unlock(m2);
  2102. if (m1)
  2103. mutex_unlock(m1);
  2104. return ret;
  2105. }
  2106. /*
  2107. * Prepare an anonymous dentry for life in the superblock's dentry tree as a
  2108. * named dentry in place of the dentry to be replaced.
  2109. * returns with anon->d_lock held!
  2110. */
  2111. static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
  2112. {
  2113. struct dentry *dparent, *aparent;
  2114. dentry_lock_for_move(anon, dentry);
  2115. write_seqcount_begin(&dentry->d_seq);
  2116. write_seqcount_begin(&anon->d_seq);
  2117. dparent = dentry->d_parent;
  2118. aparent = anon->d_parent;
  2119. switch_names(dentry, anon);
  2120. swap(dentry->d_name.hash, anon->d_name.hash);
  2121. dentry->d_parent = (aparent == anon) ? dentry : aparent;
  2122. list_del(&dentry->d_u.d_child);
  2123. if (!IS_ROOT(dentry))
  2124. list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
  2125. else
  2126. INIT_LIST_HEAD(&dentry->d_u.d_child);
  2127. anon->d_parent = (dparent == dentry) ? anon : dparent;
  2128. list_del(&anon->d_u.d_child);
  2129. if (!IS_ROOT(anon))
  2130. list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
  2131. else
  2132. INIT_LIST_HEAD(&anon->d_u.d_child);
  2133. write_seqcount_end(&dentry->d_seq);
  2134. write_seqcount_end(&anon->d_seq);
  2135. dentry_unlock_parents_for_move(anon, dentry);
  2136. spin_unlock(&dentry->d_lock);
  2137. /* anon->d_lock still locked, returns locked */
  2138. anon->d_flags &= ~DCACHE_DISCONNECTED;
  2139. }
  2140. /**
  2141. * d_materialise_unique - introduce an inode into the tree
  2142. * @dentry: candidate dentry
  2143. * @inode: inode to bind to the dentry, to which aliases may be attached
  2144. *
  2145. * Introduces an dentry into the tree, substituting an extant disconnected
  2146. * root directory alias in its place if there is one
  2147. */
  2148. struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
  2149. {
  2150. struct dentry *actual;
  2151. BUG_ON(!d_unhashed(dentry));
  2152. if (!inode) {
  2153. actual = dentry;
  2154. __d_instantiate(dentry, NULL);
  2155. d_rehash(actual);
  2156. goto out_nolock;
  2157. }
  2158. spin_lock(&inode->i_lock);
  2159. if (S_ISDIR(inode->i_mode)) {
  2160. struct dentry *alias;
  2161. /* Does an aliased dentry already exist? */
  2162. alias = __d_find_alias(inode, 0);
  2163. if (alias) {
  2164. actual = alias;
  2165. /* Is this an anonymous mountpoint that we could splice
  2166. * into our tree? */
  2167. if (IS_ROOT(alias)) {
  2168. __d_materialise_dentry(dentry, alias);
  2169. __d_drop(alias);
  2170. goto found;
  2171. }
  2172. /* Nope, but we must(!) avoid directory aliasing */
  2173. actual = __d_unalias(inode, dentry, alias);
  2174. if (IS_ERR(actual))
  2175. dput(alias);
  2176. goto out_nolock;
  2177. }
  2178. }
  2179. /* Add a unique reference */
  2180. actual = __d_instantiate_unique(dentry, inode);
  2181. if (!actual)
  2182. actual = dentry;
  2183. else
  2184. BUG_ON(!d_unhashed(actual));
  2185. spin_lock(&actual->d_lock);
  2186. found:
  2187. _d_rehash(actual);
  2188. spin_unlock(&actual->d_lock);
  2189. spin_unlock(&inode->i_lock);
  2190. out_nolock:
  2191. if (actual == dentry) {
  2192. security_d_instantiate(dentry, inode);
  2193. return NULL;
  2194. }
  2195. iput(inode);
  2196. return actual;
  2197. }
  2198. EXPORT_SYMBOL_GPL(d_materialise_unique);
  2199. static int prepend(char **buffer, int *buflen, const char *str, int namelen)
  2200. {
  2201. *buflen -= namelen;
  2202. if (*buflen < 0)
  2203. return -ENAMETOOLONG;
  2204. *buffer -= namelen;
  2205. memcpy(*buffer, str, namelen);
  2206. return 0;
  2207. }
  2208. static int prepend_name(char **buffer, int *buflen, struct qstr *name)
  2209. {
  2210. return prepend(buffer, buflen, name->name, name->len);
  2211. }
  2212. /**
  2213. * Prepend path string to a buffer
  2214. *
  2215. * @path: the dentry/vfsmount to report
  2216. * @root: root vfsmnt/dentry (may be modified by this function)
  2217. * @buffer: pointer to the end of the buffer
  2218. * @buflen: pointer to buffer length
  2219. *
  2220. * Caller holds the rename_lock.
  2221. *
  2222. * If path is not reachable from the supplied root, then the value of
  2223. * root is changed (without modifying refcounts).
  2224. */
  2225. static int prepend_path(const struct path *path, struct path *root,
  2226. char **buffer, int *buflen)
  2227. {
  2228. struct dentry *dentry = path->dentry;
  2229. struct vfsmount *vfsmnt = path->mnt;
  2230. bool slash = false;
  2231. int error = 0;
  2232. br_read_lock(vfsmount_lock);
  2233. while (dentry != root->dentry || vfsmnt != root->mnt) {
  2234. struct dentry * parent;
  2235. if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
  2236. /* Global root? */
  2237. if (vfsmnt->mnt_parent == vfsmnt) {
  2238. goto global_root;
  2239. }
  2240. dentry = vfsmnt->mnt_mountpoint;
  2241. vfsmnt = vfsmnt->mnt_parent;
  2242. continue;
  2243. }
  2244. parent = dentry->d_parent;
  2245. prefetch(parent);
  2246. spin_lock(&dentry->d_lock);
  2247. error = prepend_name(buffer, buflen, &dentry->d_name);
  2248. spin_unlock(&dentry->d_lock);
  2249. if (!error)
  2250. error = prepend(buffer, buflen, "/", 1);
  2251. if (error)
  2252. break;
  2253. slash = true;
  2254. dentry = parent;
  2255. }
  2256. out:
  2257. if (!error && !slash)
  2258. error = prepend(buffer, buflen, "/", 1);
  2259. br_read_unlock(vfsmount_lock);
  2260. return error;
  2261. global_root:
  2262. /*
  2263. * Filesystems needing to implement special "root names"
  2264. * should do so with ->d_dname()
  2265. */
  2266. if (IS_ROOT(dentry) &&
  2267. (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
  2268. WARN(1, "Root dentry has weird name <%.*s>\n",
  2269. (int) dentry->d_name.len, dentry->d_name.name);
  2270. }
  2271. root->mnt = vfsmnt;
  2272. root->dentry = dentry;
  2273. goto out;
  2274. }
  2275. /**
  2276. * __d_path - return the path of a dentry
  2277. * @path: the dentry/vfsmount to report
  2278. * @root: root vfsmnt/dentry (may be modified by this function)
  2279. * @buf: buffer to return value in
  2280. * @buflen: buffer length
  2281. *
  2282. * Convert a dentry into an ASCII path name.
  2283. *
  2284. * Returns a pointer into the buffer or an error code if the
  2285. * path was too long.
  2286. *
  2287. * "buflen" should be positive.
  2288. *
  2289. * If path is not reachable from the supplied root, then the value of
  2290. * root is changed (without modifying refcounts).
  2291. */
  2292. char *__d_path(const struct path *path, struct path *root,
  2293. char *buf, int buflen)
  2294. {
  2295. char *res = buf + buflen;
  2296. int error;
  2297. prepend(&res, &buflen, "\0", 1);
  2298. write_seqlock(&rename_lock);
  2299. error = prepend_path(path, root, &res, &buflen);
  2300. write_sequnlock(&rename_lock);
  2301. if (error)
  2302. return ERR_PTR(error);
  2303. return res;
  2304. }
  2305. /*
  2306. * same as __d_path but appends "(deleted)" for unlinked files.
  2307. */
  2308. static int path_with_deleted(const struct path *path, struct path *root,
  2309. char **buf, int *buflen)
  2310. {
  2311. prepend(buf, buflen, "\0", 1);
  2312. if (d_unlinked(path->dentry)) {
  2313. int error = prepend(buf, buflen, " (deleted)", 10);
  2314. if (error)
  2315. return error;
  2316. }
  2317. return prepend_path(path, root, buf, buflen);
  2318. }
  2319. static int prepend_unreachable(char **buffer, int *buflen)
  2320. {
  2321. return prepend(buffer, buflen, "(unreachable)", 13);
  2322. }
  2323. /**
  2324. * d_path - return the path of a dentry
  2325. * @path: path to report
  2326. * @buf: buffer to return value in
  2327. * @buflen: buffer length
  2328. *
  2329. * Convert a dentry into an ASCII path name. If the entry has been deleted
  2330. * the string " (deleted)" is appended. Note that this is ambiguous.
  2331. *
  2332. * Returns a pointer into the buffer or an error code if the path was
  2333. * too long. Note: Callers should use the returned pointer, not the passed
  2334. * in buffer, to use the name! The implementation often starts at an offset
  2335. * into the buffer, and may leave 0 bytes at the start.
  2336. *
  2337. * "buflen" should be positive.
  2338. */
  2339. char *d_path(const struct path *path, char *buf, int buflen)
  2340. {
  2341. char *res = buf + buflen;
  2342. struct path root;
  2343. struct path tmp;
  2344. int error;
  2345. /*
  2346. * We have various synthetic filesystems that never get mounted. On
  2347. * these filesystems dentries are never used for lookup purposes, and
  2348. * thus don't need to be hashed. They also don't need a name until a
  2349. * user wants to identify the object in /proc/pid/fd/. The little hack
  2350. * below allows us to generate a name for these objects on demand:
  2351. */
  2352. if (path->dentry->d_op && path->dentry->d_op->d_dname)
  2353. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2354. get_fs_root(current->fs, &root);
  2355. write_seqlock(&rename_lock);
  2356. tmp = root;
  2357. error = path_with_deleted(path, &tmp, &res, &buflen);
  2358. if (error)
  2359. res = ERR_PTR(error);
  2360. write_sequnlock(&rename_lock);
  2361. path_put(&root);
  2362. return res;
  2363. }
  2364. EXPORT_SYMBOL(d_path);
  2365. /**
  2366. * d_path_with_unreachable - return the path of a dentry
  2367. * @path: path to report
  2368. * @buf: buffer to return value in
  2369. * @buflen: buffer length
  2370. *
  2371. * The difference from d_path() is that this prepends "(unreachable)"
  2372. * to paths which are unreachable from the current process' root.
  2373. */
  2374. char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
  2375. {
  2376. char *res = buf + buflen;
  2377. struct path root;
  2378. struct path tmp;
  2379. int error;
  2380. if (path->dentry->d_op && path->dentry->d_op->d_dname)
  2381. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2382. get_fs_root(current->fs, &root);
  2383. write_seqlock(&rename_lock);
  2384. tmp = root;
  2385. error = path_with_deleted(path, &tmp, &res, &buflen);
  2386. if (!error && !path_equal(&tmp, &root))
  2387. error = prepend_unreachable(&res, &buflen);
  2388. write_sequnlock(&rename_lock);
  2389. path_put(&root);
  2390. if (error)
  2391. res = ERR_PTR(error);
  2392. return res;
  2393. }
  2394. /*
  2395. * Helper function for dentry_operations.d_dname() members
  2396. */
  2397. char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
  2398. const char *fmt, ...)
  2399. {
  2400. va_list args;
  2401. char temp[64];
  2402. int sz;
  2403. va_start(args, fmt);
  2404. sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
  2405. va_end(args);
  2406. if (sz > sizeof(temp) || sz > buflen)
  2407. return ERR_PTR(-ENAMETOOLONG);
  2408. buffer += buflen - sz;
  2409. return memcpy(buffer, temp, sz);
  2410. }
  2411. /*
  2412. * Write full pathname from the root of the filesystem into the buffer.
  2413. */
  2414. static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
  2415. {
  2416. char *end = buf + buflen;
  2417. char *retval;
  2418. prepend(&end, &buflen, "\0", 1);
  2419. if (buflen < 1)
  2420. goto Elong;
  2421. /* Get '/' right */
  2422. retval = end-1;
  2423. *retval = '/';
  2424. while (!IS_ROOT(dentry)) {
  2425. struct dentry *parent = dentry->d_parent;
  2426. int error;
  2427. prefetch(parent);
  2428. spin_lock(&dentry->d_lock);
  2429. error = prepend_name(&end, &buflen, &dentry->d_name);
  2430. spin_unlock(&dentry->d_lock);
  2431. if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
  2432. goto Elong;
  2433. retval = end;
  2434. dentry = parent;
  2435. }
  2436. return retval;
  2437. Elong:
  2438. return ERR_PTR(-ENAMETOOLONG);
  2439. }
  2440. char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
  2441. {
  2442. char *retval;
  2443. write_seqlock(&rename_lock);
  2444. retval = __dentry_path(dentry, buf, buflen);
  2445. write_sequnlock(&rename_lock);
  2446. return retval;
  2447. }
  2448. EXPORT_SYMBOL(dentry_path_raw);
  2449. char *dentry_path(struct dentry *dentry, char *buf, int buflen)
  2450. {
  2451. char *p = NULL;
  2452. char *retval;
  2453. write_seqlock(&rename_lock);
  2454. if (d_unlinked(dentry)) {
  2455. p = buf + buflen;
  2456. if (prepend(&p, &buflen, "//deleted", 10) != 0)
  2457. goto Elong;
  2458. buflen++;
  2459. }
  2460. retval = __dentry_path(dentry, buf, buflen);
  2461. write_sequnlock(&rename_lock);
  2462. if (!IS_ERR(retval) && p)
  2463. *p = '/'; /* restore '/' overriden with '\0' */
  2464. return retval;
  2465. Elong:
  2466. return ERR_PTR(-ENAMETOOLONG);
  2467. }
  2468. /*
  2469. * NOTE! The user-level library version returns a
  2470. * character pointer. The kernel system call just
  2471. * returns the length of the buffer filled (which
  2472. * includes the ending '\0' character), or a negative
  2473. * error value. So libc would do something like
  2474. *
  2475. * char *getcwd(char * buf, size_t size)
  2476. * {
  2477. * int retval;
  2478. *
  2479. * retval = sys_getcwd(buf, size);
  2480. * if (retval >= 0)
  2481. * return buf;
  2482. * errno = -retval;
  2483. * return NULL;
  2484. * }
  2485. */
  2486. SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
  2487. {
  2488. int error;
  2489. struct path pwd, root;
  2490. char *page = (char *) __get_free_page(GFP_USER);
  2491. if (!page)
  2492. return -ENOMEM;
  2493. get_fs_root_and_pwd(current->fs, &root, &pwd);
  2494. error = -ENOENT;
  2495. write_seqlock(&rename_lock);
  2496. if (!d_unlinked(pwd.dentry)) {
  2497. unsigned long len;
  2498. struct path tmp = root;
  2499. char *cwd = page + PAGE_SIZE;
  2500. int buflen = PAGE_SIZE;
  2501. prepend(&cwd, &buflen, "\0", 1);
  2502. error = prepend_path(&pwd, &tmp, &cwd, &buflen);
  2503. write_sequnlock(&rename_lock);
  2504. if (error)
  2505. goto out;
  2506. /* Unreachable from current root */
  2507. if (!path_equal(&tmp, &root)) {
  2508. error = prepend_unreachable(&cwd, &buflen);
  2509. if (error)
  2510. goto out;
  2511. }
  2512. error = -ERANGE;
  2513. len = PAGE_SIZE + page - cwd;
  2514. if (len <= size) {
  2515. error = len;
  2516. if (copy_to_user(buf, cwd, len))
  2517. error = -EFAULT;
  2518. }
  2519. } else {
  2520. write_sequnlock(&rename_lock);
  2521. }
  2522. out:
  2523. path_put(&pwd);
  2524. path_put(&root);
  2525. free_page((unsigned long) page);
  2526. return error;
  2527. }
  2528. /*
  2529. * Test whether new_dentry is a subdirectory of old_dentry.
  2530. *
  2531. * Trivially implemented using the dcache structure
  2532. */
  2533. /**
  2534. * is_subdir - is new dentry a subdirectory of old_dentry
  2535. * @new_dentry: new dentry
  2536. * @old_dentry: old dentry
  2537. *
  2538. * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
  2539. * Returns 0 otherwise.
  2540. * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
  2541. */
  2542. int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
  2543. {
  2544. int result;
  2545. unsigned seq;
  2546. if (new_dentry == old_dentry)
  2547. return 1;
  2548. do {
  2549. /* for restarting inner loop in case of seq retry */
  2550. seq = read_seqbegin(&rename_lock);
  2551. /*
  2552. * Need rcu_readlock to protect against the d_parent trashing
  2553. * due to d_move
  2554. */
  2555. rcu_read_lock();
  2556. if (d_ancestor(old_dentry, new_dentry))
  2557. result = 1;
  2558. else
  2559. result = 0;
  2560. rcu_read_unlock();
  2561. } while (read_seqretry(&rename_lock, seq));
  2562. return result;
  2563. }
  2564. int path_is_under(struct path *path1, struct path *path2)
  2565. {
  2566. struct vfsmount *mnt = path1->mnt;
  2567. struct dentry *dentry = path1->dentry;
  2568. int res;
  2569. br_read_lock(vfsmount_lock);
  2570. if (mnt != path2->mnt) {
  2571. for (;;) {
  2572. if (mnt->mnt_parent == mnt) {
  2573. br_read_unlock(vfsmount_lock);
  2574. return 0;
  2575. }
  2576. if (mnt->mnt_parent == path2->mnt)
  2577. break;
  2578. mnt = mnt->mnt_parent;
  2579. }
  2580. dentry = mnt->mnt_mountpoint;
  2581. }
  2582. res = is_subdir(dentry, path2->dentry);
  2583. br_read_unlock(vfsmount_lock);
  2584. return res;
  2585. }
  2586. EXPORT_SYMBOL(path_is_under);
  2587. void d_genocide(struct dentry *root)
  2588. {
  2589. struct dentry *this_parent;
  2590. struct list_head *next;
  2591. unsigned seq;
  2592. int locked = 0;
  2593. seq = read_seqbegin(&rename_lock);
  2594. again:
  2595. this_parent = root;
  2596. spin_lock(&this_parent->d_lock);
  2597. repeat:
  2598. next = this_parent->d_subdirs.next;
  2599. resume:
  2600. while (next != &this_parent->d_subdirs) {
  2601. struct list_head *tmp = next;
  2602. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  2603. next = tmp->next;
  2604. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  2605. if (d_unhashed(dentry) || !dentry->d_inode) {
  2606. spin_unlock(&dentry->d_lock);
  2607. continue;
  2608. }
  2609. if (!list_empty(&dentry->d_subdirs)) {
  2610. spin_unlock(&this_parent->d_lock);
  2611. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  2612. this_parent = dentry;
  2613. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  2614. goto repeat;
  2615. }
  2616. if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
  2617. dentry->d_flags |= DCACHE_GENOCIDE;
  2618. dentry->d_count--;
  2619. }
  2620. spin_unlock(&dentry->d_lock);
  2621. }
  2622. if (this_parent != root) {
  2623. struct dentry *tmp;
  2624. struct dentry *child;
  2625. tmp = this_parent->d_parent;
  2626. if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
  2627. this_parent->d_flags |= DCACHE_GENOCIDE;
  2628. this_parent->d_count--;
  2629. }
  2630. rcu_read_lock();
  2631. spin_unlock(&this_parent->d_lock);
  2632. child = this_parent;
  2633. this_parent = tmp;
  2634. spin_lock(&this_parent->d_lock);
  2635. /* might go back up the wrong parent if we have had a rename
  2636. * or deletion */
  2637. if (this_parent != child->d_parent ||
  2638. (!locked && read_seqretry(&rename_lock, seq))) {
  2639. spin_unlock(&this_parent->d_lock);
  2640. rcu_read_unlock();
  2641. goto rename_retry;
  2642. }
  2643. rcu_read_unlock();
  2644. next = child->d_u.d_child.next;
  2645. goto resume;
  2646. }
  2647. spin_unlock(&this_parent->d_lock);
  2648. if (!locked && read_seqretry(&rename_lock, seq))
  2649. goto rename_retry;
  2650. if (locked)
  2651. write_sequnlock(&rename_lock);
  2652. return;
  2653. rename_retry:
  2654. locked = 1;
  2655. write_seqlock(&rename_lock);
  2656. goto again;
  2657. }
  2658. /**
  2659. * find_inode_number - check for dentry with name
  2660. * @dir: directory to check
  2661. * @name: Name to find.
  2662. *
  2663. * Check whether a dentry already exists for the given name,
  2664. * and return the inode number if it has an inode. Otherwise
  2665. * 0 is returned.
  2666. *
  2667. * This routine is used to post-process directory listings for
  2668. * filesystems using synthetic inode numbers, and is necessary
  2669. * to keep getcwd() working.
  2670. */
  2671. ino_t find_inode_number(struct dentry *dir, struct qstr *name)
  2672. {
  2673. struct dentry * dentry;
  2674. ino_t ino = 0;
  2675. dentry = d_hash_and_lookup(dir, name);
  2676. if (dentry) {
  2677. if (dentry->d_inode)
  2678. ino = dentry->d_inode->i_ino;
  2679. dput(dentry);
  2680. }
  2681. return ino;
  2682. }
  2683. EXPORT_SYMBOL(find_inode_number);
  2684. static __initdata unsigned long dhash_entries;
  2685. static int __init set_dhash_entries(char *str)
  2686. {
  2687. if (!str)
  2688. return 0;
  2689. dhash_entries = simple_strtoul(str, &str, 0);
  2690. return 1;
  2691. }
  2692. __setup("dhash_entries=", set_dhash_entries);
  2693. static void __init dcache_init_early(void)
  2694. {
  2695. int loop;
  2696. /* If hashes are distributed across NUMA nodes, defer
  2697. * hash allocation until vmalloc space is available.
  2698. */
  2699. if (hashdist)
  2700. return;
  2701. dentry_hashtable =
  2702. alloc_large_system_hash("Dentry cache",
  2703. sizeof(struct dcache_hash_bucket),
  2704. dhash_entries,
  2705. 13,
  2706. HASH_EARLY,
  2707. &d_hash_shift,
  2708. &d_hash_mask,
  2709. 0);
  2710. for (loop = 0; loop < (1 << d_hash_shift); loop++)
  2711. INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
  2712. }
  2713. static void __init dcache_init(void)
  2714. {
  2715. int loop;
  2716. /*
  2717. * A constructor could be added for stable state like the lists,
  2718. * but it is probably not worth it because of the cache nature
  2719. * of the dcache.
  2720. */
  2721. dentry_cache = KMEM_CACHE(dentry,
  2722. SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
  2723. register_shrinker(&dcache_shrinker);
  2724. /* Hash may have been set up in dcache_init_early */
  2725. if (!hashdist)
  2726. return;
  2727. dentry_hashtable =
  2728. alloc_large_system_hash("Dentry cache",
  2729. sizeof(struct dcache_hash_bucket),
  2730. dhash_entries,
  2731. 13,
  2732. 0,
  2733. &d_hash_shift,
  2734. &d_hash_mask,
  2735. 0);
  2736. for (loop = 0; loop < (1 << d_hash_shift); loop++)
  2737. INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
  2738. }
  2739. /* SLAB cache for __getname() consumers */
  2740. struct kmem_cache *names_cachep __read_mostly;
  2741. EXPORT_SYMBOL(names_cachep);
  2742. EXPORT_SYMBOL(d_genocide);
  2743. void __init vfs_caches_init_early(void)
  2744. {
  2745. dcache_init_early();
  2746. inode_init_early();
  2747. }
  2748. void __init vfs_caches_init(unsigned long mempages)
  2749. {
  2750. unsigned long reserve;
  2751. /* Base hash sizes on available memory, with a reserve equal to
  2752. 150% of current kernel size */
  2753. reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
  2754. mempages -= reserve;
  2755. names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
  2756. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  2757. dcache_init();
  2758. inode_init();
  2759. files_init(mempages);
  2760. mnt_init();
  2761. bdev_cache_init();
  2762. chrdev_init();
  2763. }