vmx.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. /*
  52. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  53. * ple_gap: upper bound on the amount of time between two successive
  54. * executions of PAUSE in a loop. Also indicate if ple enabled.
  55. * According to test, this time is usually small than 41 cycles.
  56. * ple_window: upper bound on the amount of time a guest is allowed to execute
  57. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  58. * less than 2^12 cycles
  59. * Time is measured based on a counter that runs at the same rate as the TSC,
  60. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  61. */
  62. #define KVM_VMX_DEFAULT_PLE_GAP 41
  63. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  64. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  65. module_param(ple_gap, int, S_IRUGO);
  66. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  67. module_param(ple_window, int, S_IRUGO);
  68. struct vmcs {
  69. u32 revision_id;
  70. u32 abort;
  71. char data[0];
  72. };
  73. struct vcpu_vmx {
  74. struct kvm_vcpu vcpu;
  75. struct list_head local_vcpus_link;
  76. unsigned long host_rsp;
  77. int launched;
  78. u8 fail;
  79. u32 idt_vectoring_info;
  80. struct kvm_msr_entry *guest_msrs;
  81. struct kvm_msr_entry *host_msrs;
  82. int nmsrs;
  83. int save_nmsrs;
  84. int msr_offset_efer;
  85. #ifdef CONFIG_X86_64
  86. int msr_offset_kernel_gs_base;
  87. #endif
  88. struct vmcs *vmcs;
  89. struct {
  90. int loaded;
  91. u16 fs_sel, gs_sel, ldt_sel;
  92. int gs_ldt_reload_needed;
  93. int fs_reload_needed;
  94. int guest_efer_loaded;
  95. } host_state;
  96. struct {
  97. int vm86_active;
  98. u8 save_iopl;
  99. struct kvm_save_segment {
  100. u16 selector;
  101. unsigned long base;
  102. u32 limit;
  103. u32 ar;
  104. } tr, es, ds, fs, gs;
  105. struct {
  106. bool pending;
  107. u8 vector;
  108. unsigned rip;
  109. } irq;
  110. } rmode;
  111. int vpid;
  112. bool emulation_required;
  113. /* Support for vnmi-less CPUs */
  114. int soft_vnmi_blocked;
  115. ktime_t entry_time;
  116. s64 vnmi_blocked_time;
  117. u32 exit_reason;
  118. };
  119. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  120. {
  121. return container_of(vcpu, struct vcpu_vmx, vcpu);
  122. }
  123. static int init_rmode(struct kvm *kvm);
  124. static u64 construct_eptp(unsigned long root_hpa);
  125. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  126. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  127. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  128. static unsigned long *vmx_io_bitmap_a;
  129. static unsigned long *vmx_io_bitmap_b;
  130. static unsigned long *vmx_msr_bitmap_legacy;
  131. static unsigned long *vmx_msr_bitmap_longmode;
  132. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  133. static DEFINE_SPINLOCK(vmx_vpid_lock);
  134. static struct vmcs_config {
  135. int size;
  136. int order;
  137. u32 revision_id;
  138. u32 pin_based_exec_ctrl;
  139. u32 cpu_based_exec_ctrl;
  140. u32 cpu_based_2nd_exec_ctrl;
  141. u32 vmexit_ctrl;
  142. u32 vmentry_ctrl;
  143. } vmcs_config;
  144. static struct vmx_capability {
  145. u32 ept;
  146. u32 vpid;
  147. } vmx_capability;
  148. #define VMX_SEGMENT_FIELD(seg) \
  149. [VCPU_SREG_##seg] = { \
  150. .selector = GUEST_##seg##_SELECTOR, \
  151. .base = GUEST_##seg##_BASE, \
  152. .limit = GUEST_##seg##_LIMIT, \
  153. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  154. }
  155. static struct kvm_vmx_segment_field {
  156. unsigned selector;
  157. unsigned base;
  158. unsigned limit;
  159. unsigned ar_bytes;
  160. } kvm_vmx_segment_fields[] = {
  161. VMX_SEGMENT_FIELD(CS),
  162. VMX_SEGMENT_FIELD(DS),
  163. VMX_SEGMENT_FIELD(ES),
  164. VMX_SEGMENT_FIELD(FS),
  165. VMX_SEGMENT_FIELD(GS),
  166. VMX_SEGMENT_FIELD(SS),
  167. VMX_SEGMENT_FIELD(TR),
  168. VMX_SEGMENT_FIELD(LDTR),
  169. };
  170. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  171. /*
  172. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  173. * away by decrementing the array size.
  174. */
  175. static const u32 vmx_msr_index[] = {
  176. #ifdef CONFIG_X86_64
  177. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  178. #endif
  179. MSR_EFER, MSR_K6_STAR,
  180. };
  181. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  182. static void load_msrs(struct kvm_msr_entry *e, int n)
  183. {
  184. int i;
  185. for (i = 0; i < n; ++i)
  186. wrmsrl(e[i].index, e[i].data);
  187. }
  188. static void save_msrs(struct kvm_msr_entry *e, int n)
  189. {
  190. int i;
  191. for (i = 0; i < n; ++i)
  192. rdmsrl(e[i].index, e[i].data);
  193. }
  194. static inline int is_page_fault(u32 intr_info)
  195. {
  196. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  197. INTR_INFO_VALID_MASK)) ==
  198. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  199. }
  200. static inline int is_no_device(u32 intr_info)
  201. {
  202. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  203. INTR_INFO_VALID_MASK)) ==
  204. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  205. }
  206. static inline int is_invalid_opcode(u32 intr_info)
  207. {
  208. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  209. INTR_INFO_VALID_MASK)) ==
  210. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  211. }
  212. static inline int is_external_interrupt(u32 intr_info)
  213. {
  214. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  215. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  216. }
  217. static inline int is_machine_check(u32 intr_info)
  218. {
  219. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  220. INTR_INFO_VALID_MASK)) ==
  221. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  222. }
  223. static inline int cpu_has_vmx_msr_bitmap(void)
  224. {
  225. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  226. }
  227. static inline int cpu_has_vmx_tpr_shadow(void)
  228. {
  229. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  230. }
  231. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  232. {
  233. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  234. }
  235. static inline int cpu_has_secondary_exec_ctrls(void)
  236. {
  237. return vmcs_config.cpu_based_exec_ctrl &
  238. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  239. }
  240. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  241. {
  242. return vmcs_config.cpu_based_2nd_exec_ctrl &
  243. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  244. }
  245. static inline bool cpu_has_vmx_flexpriority(void)
  246. {
  247. return cpu_has_vmx_tpr_shadow() &&
  248. cpu_has_vmx_virtualize_apic_accesses();
  249. }
  250. static inline bool cpu_has_vmx_ept_execute_only(void)
  251. {
  252. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  253. }
  254. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  255. {
  256. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  257. }
  258. static inline bool cpu_has_vmx_eptp_writeback(void)
  259. {
  260. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  261. }
  262. static inline bool cpu_has_vmx_ept_2m_page(void)
  263. {
  264. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  265. }
  266. static inline int cpu_has_vmx_invept_individual_addr(void)
  267. {
  268. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  269. }
  270. static inline int cpu_has_vmx_invept_context(void)
  271. {
  272. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  273. }
  274. static inline int cpu_has_vmx_invept_global(void)
  275. {
  276. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  277. }
  278. static inline int cpu_has_vmx_ept(void)
  279. {
  280. return vmcs_config.cpu_based_2nd_exec_ctrl &
  281. SECONDARY_EXEC_ENABLE_EPT;
  282. }
  283. static inline int cpu_has_vmx_unrestricted_guest(void)
  284. {
  285. return vmcs_config.cpu_based_2nd_exec_ctrl &
  286. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  287. }
  288. static inline int cpu_has_vmx_ple(void)
  289. {
  290. return vmcs_config.cpu_based_2nd_exec_ctrl &
  291. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  292. }
  293. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  294. {
  295. return flexpriority_enabled &&
  296. (cpu_has_vmx_virtualize_apic_accesses()) &&
  297. (irqchip_in_kernel(kvm));
  298. }
  299. static inline int cpu_has_vmx_vpid(void)
  300. {
  301. return vmcs_config.cpu_based_2nd_exec_ctrl &
  302. SECONDARY_EXEC_ENABLE_VPID;
  303. }
  304. static inline int cpu_has_virtual_nmis(void)
  305. {
  306. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  307. }
  308. static inline bool report_flexpriority(void)
  309. {
  310. return flexpriority_enabled;
  311. }
  312. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  313. {
  314. int i;
  315. for (i = 0; i < vmx->nmsrs; ++i)
  316. if (vmx->guest_msrs[i].index == msr)
  317. return i;
  318. return -1;
  319. }
  320. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  321. {
  322. struct {
  323. u64 vpid : 16;
  324. u64 rsvd : 48;
  325. u64 gva;
  326. } operand = { vpid, 0, gva };
  327. asm volatile (__ex(ASM_VMX_INVVPID)
  328. /* CF==1 or ZF==1 --> rc = -1 */
  329. "; ja 1f ; ud2 ; 1:"
  330. : : "a"(&operand), "c"(ext) : "cc", "memory");
  331. }
  332. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  333. {
  334. struct {
  335. u64 eptp, gpa;
  336. } operand = {eptp, gpa};
  337. asm volatile (__ex(ASM_VMX_INVEPT)
  338. /* CF==1 or ZF==1 --> rc = -1 */
  339. "; ja 1f ; ud2 ; 1:\n"
  340. : : "a" (&operand), "c" (ext) : "cc", "memory");
  341. }
  342. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  343. {
  344. int i;
  345. i = __find_msr_index(vmx, msr);
  346. if (i >= 0)
  347. return &vmx->guest_msrs[i];
  348. return NULL;
  349. }
  350. static void vmcs_clear(struct vmcs *vmcs)
  351. {
  352. u64 phys_addr = __pa(vmcs);
  353. u8 error;
  354. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  355. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  356. : "cc", "memory");
  357. if (error)
  358. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  359. vmcs, phys_addr);
  360. }
  361. static void __vcpu_clear(void *arg)
  362. {
  363. struct vcpu_vmx *vmx = arg;
  364. int cpu = raw_smp_processor_id();
  365. if (vmx->vcpu.cpu == cpu)
  366. vmcs_clear(vmx->vmcs);
  367. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  368. per_cpu(current_vmcs, cpu) = NULL;
  369. rdtscll(vmx->vcpu.arch.host_tsc);
  370. list_del(&vmx->local_vcpus_link);
  371. vmx->vcpu.cpu = -1;
  372. vmx->launched = 0;
  373. }
  374. static void vcpu_clear(struct vcpu_vmx *vmx)
  375. {
  376. if (vmx->vcpu.cpu == -1)
  377. return;
  378. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  379. }
  380. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  381. {
  382. if (vmx->vpid == 0)
  383. return;
  384. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  385. }
  386. static inline void ept_sync_global(void)
  387. {
  388. if (cpu_has_vmx_invept_global())
  389. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  390. }
  391. static inline void ept_sync_context(u64 eptp)
  392. {
  393. if (enable_ept) {
  394. if (cpu_has_vmx_invept_context())
  395. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  396. else
  397. ept_sync_global();
  398. }
  399. }
  400. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  401. {
  402. if (enable_ept) {
  403. if (cpu_has_vmx_invept_individual_addr())
  404. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  405. eptp, gpa);
  406. else
  407. ept_sync_context(eptp);
  408. }
  409. }
  410. static unsigned long vmcs_readl(unsigned long field)
  411. {
  412. unsigned long value;
  413. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  414. : "=a"(value) : "d"(field) : "cc");
  415. return value;
  416. }
  417. static u16 vmcs_read16(unsigned long field)
  418. {
  419. return vmcs_readl(field);
  420. }
  421. static u32 vmcs_read32(unsigned long field)
  422. {
  423. return vmcs_readl(field);
  424. }
  425. static u64 vmcs_read64(unsigned long field)
  426. {
  427. #ifdef CONFIG_X86_64
  428. return vmcs_readl(field);
  429. #else
  430. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  431. #endif
  432. }
  433. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  434. {
  435. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  436. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  437. dump_stack();
  438. }
  439. static void vmcs_writel(unsigned long field, unsigned long value)
  440. {
  441. u8 error;
  442. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  443. : "=q"(error) : "a"(value), "d"(field) : "cc");
  444. if (unlikely(error))
  445. vmwrite_error(field, value);
  446. }
  447. static void vmcs_write16(unsigned long field, u16 value)
  448. {
  449. vmcs_writel(field, value);
  450. }
  451. static void vmcs_write32(unsigned long field, u32 value)
  452. {
  453. vmcs_writel(field, value);
  454. }
  455. static void vmcs_write64(unsigned long field, u64 value)
  456. {
  457. vmcs_writel(field, value);
  458. #ifndef CONFIG_X86_64
  459. asm volatile ("");
  460. vmcs_writel(field+1, value >> 32);
  461. #endif
  462. }
  463. static void vmcs_clear_bits(unsigned long field, u32 mask)
  464. {
  465. vmcs_writel(field, vmcs_readl(field) & ~mask);
  466. }
  467. static void vmcs_set_bits(unsigned long field, u32 mask)
  468. {
  469. vmcs_writel(field, vmcs_readl(field) | mask);
  470. }
  471. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  472. {
  473. u32 eb;
  474. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  475. if (!vcpu->fpu_active)
  476. eb |= 1u << NM_VECTOR;
  477. /*
  478. * Unconditionally intercept #DB so we can maintain dr6 without
  479. * reading it every exit.
  480. */
  481. eb |= 1u << DB_VECTOR;
  482. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  483. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  484. eb |= 1u << BP_VECTOR;
  485. }
  486. if (to_vmx(vcpu)->rmode.vm86_active)
  487. eb = ~0;
  488. if (enable_ept)
  489. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  490. vmcs_write32(EXCEPTION_BITMAP, eb);
  491. }
  492. static void reload_tss(void)
  493. {
  494. /*
  495. * VT restores TR but not its size. Useless.
  496. */
  497. struct descriptor_table gdt;
  498. struct desc_struct *descs;
  499. kvm_get_gdt(&gdt);
  500. descs = (void *)gdt.base;
  501. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  502. load_TR_desc();
  503. }
  504. static void load_transition_efer(struct vcpu_vmx *vmx)
  505. {
  506. int efer_offset = vmx->msr_offset_efer;
  507. u64 host_efer;
  508. u64 guest_efer;
  509. u64 ignore_bits;
  510. if (efer_offset < 0)
  511. return;
  512. host_efer = vmx->host_msrs[efer_offset].data;
  513. guest_efer = vmx->guest_msrs[efer_offset].data;
  514. /*
  515. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  516. * outside long mode
  517. */
  518. ignore_bits = EFER_NX | EFER_SCE;
  519. #ifdef CONFIG_X86_64
  520. ignore_bits |= EFER_LMA | EFER_LME;
  521. /* SCE is meaningful only in long mode on Intel */
  522. if (guest_efer & EFER_LMA)
  523. ignore_bits &= ~(u64)EFER_SCE;
  524. #endif
  525. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  526. return;
  527. vmx->host_state.guest_efer_loaded = 1;
  528. guest_efer &= ~ignore_bits;
  529. guest_efer |= host_efer & ignore_bits;
  530. wrmsrl(MSR_EFER, guest_efer);
  531. vmx->vcpu.stat.efer_reload++;
  532. }
  533. static void reload_host_efer(struct vcpu_vmx *vmx)
  534. {
  535. if (vmx->host_state.guest_efer_loaded) {
  536. vmx->host_state.guest_efer_loaded = 0;
  537. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  538. }
  539. }
  540. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  541. {
  542. struct vcpu_vmx *vmx = to_vmx(vcpu);
  543. if (vmx->host_state.loaded)
  544. return;
  545. vmx->host_state.loaded = 1;
  546. /*
  547. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  548. * allow segment selectors with cpl > 0 or ti == 1.
  549. */
  550. vmx->host_state.ldt_sel = kvm_read_ldt();
  551. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  552. vmx->host_state.fs_sel = kvm_read_fs();
  553. if (!(vmx->host_state.fs_sel & 7)) {
  554. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  555. vmx->host_state.fs_reload_needed = 0;
  556. } else {
  557. vmcs_write16(HOST_FS_SELECTOR, 0);
  558. vmx->host_state.fs_reload_needed = 1;
  559. }
  560. vmx->host_state.gs_sel = kvm_read_gs();
  561. if (!(vmx->host_state.gs_sel & 7))
  562. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  563. else {
  564. vmcs_write16(HOST_GS_SELECTOR, 0);
  565. vmx->host_state.gs_ldt_reload_needed = 1;
  566. }
  567. #ifdef CONFIG_X86_64
  568. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  569. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  570. #else
  571. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  572. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  573. #endif
  574. #ifdef CONFIG_X86_64
  575. if (is_long_mode(&vmx->vcpu))
  576. save_msrs(vmx->host_msrs +
  577. vmx->msr_offset_kernel_gs_base, 1);
  578. #endif
  579. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  580. load_transition_efer(vmx);
  581. }
  582. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  583. {
  584. unsigned long flags;
  585. if (!vmx->host_state.loaded)
  586. return;
  587. ++vmx->vcpu.stat.host_state_reload;
  588. vmx->host_state.loaded = 0;
  589. if (vmx->host_state.fs_reload_needed)
  590. kvm_load_fs(vmx->host_state.fs_sel);
  591. if (vmx->host_state.gs_ldt_reload_needed) {
  592. kvm_load_ldt(vmx->host_state.ldt_sel);
  593. /*
  594. * If we have to reload gs, we must take care to
  595. * preserve our gs base.
  596. */
  597. local_irq_save(flags);
  598. kvm_load_gs(vmx->host_state.gs_sel);
  599. #ifdef CONFIG_X86_64
  600. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  601. #endif
  602. local_irq_restore(flags);
  603. }
  604. reload_tss();
  605. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  606. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  607. reload_host_efer(vmx);
  608. }
  609. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  610. {
  611. preempt_disable();
  612. __vmx_load_host_state(vmx);
  613. preempt_enable();
  614. }
  615. /*
  616. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  617. * vcpu mutex is already taken.
  618. */
  619. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  620. {
  621. struct vcpu_vmx *vmx = to_vmx(vcpu);
  622. u64 phys_addr = __pa(vmx->vmcs);
  623. u64 tsc_this, delta, new_offset;
  624. if (vcpu->cpu != cpu) {
  625. vcpu_clear(vmx);
  626. kvm_migrate_timers(vcpu);
  627. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  628. local_irq_disable();
  629. list_add(&vmx->local_vcpus_link,
  630. &per_cpu(vcpus_on_cpu, cpu));
  631. local_irq_enable();
  632. }
  633. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  634. u8 error;
  635. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  636. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  637. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  638. : "cc");
  639. if (error)
  640. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  641. vmx->vmcs, phys_addr);
  642. }
  643. if (vcpu->cpu != cpu) {
  644. struct descriptor_table dt;
  645. unsigned long sysenter_esp;
  646. vcpu->cpu = cpu;
  647. /*
  648. * Linux uses per-cpu TSS and GDT, so set these when switching
  649. * processors.
  650. */
  651. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  652. kvm_get_gdt(&dt);
  653. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  654. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  655. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  656. /*
  657. * Make sure the time stamp counter is monotonous.
  658. */
  659. rdtscll(tsc_this);
  660. if (tsc_this < vcpu->arch.host_tsc) {
  661. delta = vcpu->arch.host_tsc - tsc_this;
  662. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  663. vmcs_write64(TSC_OFFSET, new_offset);
  664. }
  665. }
  666. }
  667. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  668. {
  669. __vmx_load_host_state(to_vmx(vcpu));
  670. }
  671. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  672. {
  673. if (vcpu->fpu_active)
  674. return;
  675. vcpu->fpu_active = 1;
  676. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  677. if (vcpu->arch.cr0 & X86_CR0_TS)
  678. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  679. update_exception_bitmap(vcpu);
  680. }
  681. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  682. {
  683. if (!vcpu->fpu_active)
  684. return;
  685. vcpu->fpu_active = 0;
  686. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  687. update_exception_bitmap(vcpu);
  688. }
  689. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  690. {
  691. unsigned long rflags;
  692. rflags = vmcs_readl(GUEST_RFLAGS);
  693. if (to_vmx(vcpu)->rmode.vm86_active)
  694. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  695. return rflags;
  696. }
  697. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  698. {
  699. if (to_vmx(vcpu)->rmode.vm86_active)
  700. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  701. vmcs_writel(GUEST_RFLAGS, rflags);
  702. }
  703. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  704. {
  705. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  706. int ret = 0;
  707. if (interruptibility & GUEST_INTR_STATE_STI)
  708. ret |= X86_SHADOW_INT_STI;
  709. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  710. ret |= X86_SHADOW_INT_MOV_SS;
  711. return ret & mask;
  712. }
  713. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  714. {
  715. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  716. u32 interruptibility = interruptibility_old;
  717. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  718. if (mask & X86_SHADOW_INT_MOV_SS)
  719. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  720. if (mask & X86_SHADOW_INT_STI)
  721. interruptibility |= GUEST_INTR_STATE_STI;
  722. if ((interruptibility != interruptibility_old))
  723. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  724. }
  725. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  726. {
  727. unsigned long rip;
  728. rip = kvm_rip_read(vcpu);
  729. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  730. kvm_rip_write(vcpu, rip);
  731. /* skipping an emulated instruction also counts */
  732. vmx_set_interrupt_shadow(vcpu, 0);
  733. }
  734. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  735. bool has_error_code, u32 error_code)
  736. {
  737. struct vcpu_vmx *vmx = to_vmx(vcpu);
  738. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  739. if (has_error_code) {
  740. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  741. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  742. }
  743. if (vmx->rmode.vm86_active) {
  744. vmx->rmode.irq.pending = true;
  745. vmx->rmode.irq.vector = nr;
  746. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  747. if (kvm_exception_is_soft(nr))
  748. vmx->rmode.irq.rip +=
  749. vmx->vcpu.arch.event_exit_inst_len;
  750. intr_info |= INTR_TYPE_SOFT_INTR;
  751. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  752. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  753. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  754. return;
  755. }
  756. if (kvm_exception_is_soft(nr)) {
  757. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  758. vmx->vcpu.arch.event_exit_inst_len);
  759. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  760. } else
  761. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  762. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  763. }
  764. /*
  765. * Swap MSR entry in host/guest MSR entry array.
  766. */
  767. #ifdef CONFIG_X86_64
  768. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  769. {
  770. struct kvm_msr_entry tmp;
  771. tmp = vmx->guest_msrs[to];
  772. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  773. vmx->guest_msrs[from] = tmp;
  774. tmp = vmx->host_msrs[to];
  775. vmx->host_msrs[to] = vmx->host_msrs[from];
  776. vmx->host_msrs[from] = tmp;
  777. }
  778. #endif
  779. /*
  780. * Set up the vmcs to automatically save and restore system
  781. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  782. * mode, as fiddling with msrs is very expensive.
  783. */
  784. static void setup_msrs(struct vcpu_vmx *vmx)
  785. {
  786. int save_nmsrs;
  787. unsigned long *msr_bitmap;
  788. vmx_load_host_state(vmx);
  789. save_nmsrs = 0;
  790. #ifdef CONFIG_X86_64
  791. if (is_long_mode(&vmx->vcpu)) {
  792. int index;
  793. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  794. if (index >= 0)
  795. move_msr_up(vmx, index, save_nmsrs++);
  796. index = __find_msr_index(vmx, MSR_LSTAR);
  797. if (index >= 0)
  798. move_msr_up(vmx, index, save_nmsrs++);
  799. index = __find_msr_index(vmx, MSR_CSTAR);
  800. if (index >= 0)
  801. move_msr_up(vmx, index, save_nmsrs++);
  802. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  803. if (index >= 0)
  804. move_msr_up(vmx, index, save_nmsrs++);
  805. /*
  806. * MSR_K6_STAR is only needed on long mode guests, and only
  807. * if efer.sce is enabled.
  808. */
  809. index = __find_msr_index(vmx, MSR_K6_STAR);
  810. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  811. move_msr_up(vmx, index, save_nmsrs++);
  812. }
  813. #endif
  814. vmx->save_nmsrs = save_nmsrs;
  815. #ifdef CONFIG_X86_64
  816. vmx->msr_offset_kernel_gs_base =
  817. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  818. #endif
  819. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  820. if (cpu_has_vmx_msr_bitmap()) {
  821. if (is_long_mode(&vmx->vcpu))
  822. msr_bitmap = vmx_msr_bitmap_longmode;
  823. else
  824. msr_bitmap = vmx_msr_bitmap_legacy;
  825. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  826. }
  827. }
  828. /*
  829. * reads and returns guest's timestamp counter "register"
  830. * guest_tsc = host_tsc + tsc_offset -- 21.3
  831. */
  832. static u64 guest_read_tsc(void)
  833. {
  834. u64 host_tsc, tsc_offset;
  835. rdtscll(host_tsc);
  836. tsc_offset = vmcs_read64(TSC_OFFSET);
  837. return host_tsc + tsc_offset;
  838. }
  839. /*
  840. * writes 'guest_tsc' into guest's timestamp counter "register"
  841. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  842. */
  843. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  844. {
  845. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  846. }
  847. /*
  848. * Reads an msr value (of 'msr_index') into 'pdata'.
  849. * Returns 0 on success, non-0 otherwise.
  850. * Assumes vcpu_load() was already called.
  851. */
  852. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  853. {
  854. u64 data;
  855. struct kvm_msr_entry *msr;
  856. if (!pdata) {
  857. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  858. return -EINVAL;
  859. }
  860. switch (msr_index) {
  861. #ifdef CONFIG_X86_64
  862. case MSR_FS_BASE:
  863. data = vmcs_readl(GUEST_FS_BASE);
  864. break;
  865. case MSR_GS_BASE:
  866. data = vmcs_readl(GUEST_GS_BASE);
  867. break;
  868. case MSR_EFER:
  869. return kvm_get_msr_common(vcpu, msr_index, pdata);
  870. #endif
  871. case MSR_IA32_TSC:
  872. data = guest_read_tsc();
  873. break;
  874. case MSR_IA32_SYSENTER_CS:
  875. data = vmcs_read32(GUEST_SYSENTER_CS);
  876. break;
  877. case MSR_IA32_SYSENTER_EIP:
  878. data = vmcs_readl(GUEST_SYSENTER_EIP);
  879. break;
  880. case MSR_IA32_SYSENTER_ESP:
  881. data = vmcs_readl(GUEST_SYSENTER_ESP);
  882. break;
  883. default:
  884. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  885. if (msr) {
  886. vmx_load_host_state(to_vmx(vcpu));
  887. data = msr->data;
  888. break;
  889. }
  890. return kvm_get_msr_common(vcpu, msr_index, pdata);
  891. }
  892. *pdata = data;
  893. return 0;
  894. }
  895. /*
  896. * Writes msr value into into the appropriate "register".
  897. * Returns 0 on success, non-0 otherwise.
  898. * Assumes vcpu_load() was already called.
  899. */
  900. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  901. {
  902. struct vcpu_vmx *vmx = to_vmx(vcpu);
  903. struct kvm_msr_entry *msr;
  904. u64 host_tsc;
  905. int ret = 0;
  906. switch (msr_index) {
  907. case MSR_EFER:
  908. vmx_load_host_state(vmx);
  909. ret = kvm_set_msr_common(vcpu, msr_index, data);
  910. break;
  911. #ifdef CONFIG_X86_64
  912. case MSR_FS_BASE:
  913. vmcs_writel(GUEST_FS_BASE, data);
  914. break;
  915. case MSR_GS_BASE:
  916. vmcs_writel(GUEST_GS_BASE, data);
  917. break;
  918. #endif
  919. case MSR_IA32_SYSENTER_CS:
  920. vmcs_write32(GUEST_SYSENTER_CS, data);
  921. break;
  922. case MSR_IA32_SYSENTER_EIP:
  923. vmcs_writel(GUEST_SYSENTER_EIP, data);
  924. break;
  925. case MSR_IA32_SYSENTER_ESP:
  926. vmcs_writel(GUEST_SYSENTER_ESP, data);
  927. break;
  928. case MSR_IA32_TSC:
  929. rdtscll(host_tsc);
  930. guest_write_tsc(data, host_tsc);
  931. break;
  932. case MSR_IA32_CR_PAT:
  933. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  934. vmcs_write64(GUEST_IA32_PAT, data);
  935. vcpu->arch.pat = data;
  936. break;
  937. }
  938. /* Otherwise falls through to kvm_set_msr_common */
  939. default:
  940. msr = find_msr_entry(vmx, msr_index);
  941. if (msr) {
  942. vmx_load_host_state(vmx);
  943. msr->data = data;
  944. break;
  945. }
  946. ret = kvm_set_msr_common(vcpu, msr_index, data);
  947. }
  948. return ret;
  949. }
  950. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  951. {
  952. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  953. switch (reg) {
  954. case VCPU_REGS_RSP:
  955. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  956. break;
  957. case VCPU_REGS_RIP:
  958. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  959. break;
  960. case VCPU_EXREG_PDPTR:
  961. if (enable_ept)
  962. ept_save_pdptrs(vcpu);
  963. break;
  964. default:
  965. break;
  966. }
  967. }
  968. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  969. {
  970. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  971. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  972. else
  973. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  974. update_exception_bitmap(vcpu);
  975. }
  976. static __init int cpu_has_kvm_support(void)
  977. {
  978. return cpu_has_vmx();
  979. }
  980. static __init int vmx_disabled_by_bios(void)
  981. {
  982. u64 msr;
  983. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  984. return (msr & (FEATURE_CONTROL_LOCKED |
  985. FEATURE_CONTROL_VMXON_ENABLED))
  986. == FEATURE_CONTROL_LOCKED;
  987. /* locked but not enabled */
  988. }
  989. static int hardware_enable(void *garbage)
  990. {
  991. int cpu = raw_smp_processor_id();
  992. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  993. u64 old;
  994. if (read_cr4() & X86_CR4_VMXE)
  995. return -EBUSY;
  996. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  997. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  998. if ((old & (FEATURE_CONTROL_LOCKED |
  999. FEATURE_CONTROL_VMXON_ENABLED))
  1000. != (FEATURE_CONTROL_LOCKED |
  1001. FEATURE_CONTROL_VMXON_ENABLED))
  1002. /* enable and lock */
  1003. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1004. FEATURE_CONTROL_LOCKED |
  1005. FEATURE_CONTROL_VMXON_ENABLED);
  1006. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1007. asm volatile (ASM_VMX_VMXON_RAX
  1008. : : "a"(&phys_addr), "m"(phys_addr)
  1009. : "memory", "cc");
  1010. ept_sync_global();
  1011. return 0;
  1012. }
  1013. static void vmclear_local_vcpus(void)
  1014. {
  1015. int cpu = raw_smp_processor_id();
  1016. struct vcpu_vmx *vmx, *n;
  1017. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1018. local_vcpus_link)
  1019. __vcpu_clear(vmx);
  1020. }
  1021. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1022. * tricks.
  1023. */
  1024. static void kvm_cpu_vmxoff(void)
  1025. {
  1026. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1027. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1028. }
  1029. static void hardware_disable(void *garbage)
  1030. {
  1031. vmclear_local_vcpus();
  1032. kvm_cpu_vmxoff();
  1033. }
  1034. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1035. u32 msr, u32 *result)
  1036. {
  1037. u32 vmx_msr_low, vmx_msr_high;
  1038. u32 ctl = ctl_min | ctl_opt;
  1039. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1040. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1041. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1042. /* Ensure minimum (required) set of control bits are supported. */
  1043. if (ctl_min & ~ctl)
  1044. return -EIO;
  1045. *result = ctl;
  1046. return 0;
  1047. }
  1048. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1049. {
  1050. u32 vmx_msr_low, vmx_msr_high;
  1051. u32 min, opt, min2, opt2;
  1052. u32 _pin_based_exec_control = 0;
  1053. u32 _cpu_based_exec_control = 0;
  1054. u32 _cpu_based_2nd_exec_control = 0;
  1055. u32 _vmexit_control = 0;
  1056. u32 _vmentry_control = 0;
  1057. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1058. opt = PIN_BASED_VIRTUAL_NMIS;
  1059. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1060. &_pin_based_exec_control) < 0)
  1061. return -EIO;
  1062. min = CPU_BASED_HLT_EXITING |
  1063. #ifdef CONFIG_X86_64
  1064. CPU_BASED_CR8_LOAD_EXITING |
  1065. CPU_BASED_CR8_STORE_EXITING |
  1066. #endif
  1067. CPU_BASED_CR3_LOAD_EXITING |
  1068. CPU_BASED_CR3_STORE_EXITING |
  1069. CPU_BASED_USE_IO_BITMAPS |
  1070. CPU_BASED_MOV_DR_EXITING |
  1071. CPU_BASED_USE_TSC_OFFSETING |
  1072. CPU_BASED_INVLPG_EXITING;
  1073. opt = CPU_BASED_TPR_SHADOW |
  1074. CPU_BASED_USE_MSR_BITMAPS |
  1075. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1076. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1077. &_cpu_based_exec_control) < 0)
  1078. return -EIO;
  1079. #ifdef CONFIG_X86_64
  1080. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1081. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1082. ~CPU_BASED_CR8_STORE_EXITING;
  1083. #endif
  1084. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1085. min2 = 0;
  1086. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1087. SECONDARY_EXEC_WBINVD_EXITING |
  1088. SECONDARY_EXEC_ENABLE_VPID |
  1089. SECONDARY_EXEC_ENABLE_EPT |
  1090. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1091. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1092. if (adjust_vmx_controls(min2, opt2,
  1093. MSR_IA32_VMX_PROCBASED_CTLS2,
  1094. &_cpu_based_2nd_exec_control) < 0)
  1095. return -EIO;
  1096. }
  1097. #ifndef CONFIG_X86_64
  1098. if (!(_cpu_based_2nd_exec_control &
  1099. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1100. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1101. #endif
  1102. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1103. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1104. enabled */
  1105. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1106. CPU_BASED_CR3_STORE_EXITING |
  1107. CPU_BASED_INVLPG_EXITING);
  1108. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1109. vmx_capability.ept, vmx_capability.vpid);
  1110. }
  1111. min = 0;
  1112. #ifdef CONFIG_X86_64
  1113. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1114. #endif
  1115. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1116. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1117. &_vmexit_control) < 0)
  1118. return -EIO;
  1119. min = 0;
  1120. opt = VM_ENTRY_LOAD_IA32_PAT;
  1121. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1122. &_vmentry_control) < 0)
  1123. return -EIO;
  1124. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1125. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1126. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1127. return -EIO;
  1128. #ifdef CONFIG_X86_64
  1129. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1130. if (vmx_msr_high & (1u<<16))
  1131. return -EIO;
  1132. #endif
  1133. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1134. if (((vmx_msr_high >> 18) & 15) != 6)
  1135. return -EIO;
  1136. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1137. vmcs_conf->order = get_order(vmcs_config.size);
  1138. vmcs_conf->revision_id = vmx_msr_low;
  1139. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1140. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1141. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1142. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1143. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1144. return 0;
  1145. }
  1146. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1147. {
  1148. int node = cpu_to_node(cpu);
  1149. struct page *pages;
  1150. struct vmcs *vmcs;
  1151. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1152. if (!pages)
  1153. return NULL;
  1154. vmcs = page_address(pages);
  1155. memset(vmcs, 0, vmcs_config.size);
  1156. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1157. return vmcs;
  1158. }
  1159. static struct vmcs *alloc_vmcs(void)
  1160. {
  1161. return alloc_vmcs_cpu(raw_smp_processor_id());
  1162. }
  1163. static void free_vmcs(struct vmcs *vmcs)
  1164. {
  1165. free_pages((unsigned long)vmcs, vmcs_config.order);
  1166. }
  1167. static void free_kvm_area(void)
  1168. {
  1169. int cpu;
  1170. for_each_possible_cpu(cpu) {
  1171. free_vmcs(per_cpu(vmxarea, cpu));
  1172. per_cpu(vmxarea, cpu) = NULL;
  1173. }
  1174. }
  1175. static __init int alloc_kvm_area(void)
  1176. {
  1177. int cpu;
  1178. for_each_possible_cpu(cpu) {
  1179. struct vmcs *vmcs;
  1180. vmcs = alloc_vmcs_cpu(cpu);
  1181. if (!vmcs) {
  1182. free_kvm_area();
  1183. return -ENOMEM;
  1184. }
  1185. per_cpu(vmxarea, cpu) = vmcs;
  1186. }
  1187. return 0;
  1188. }
  1189. static __init int hardware_setup(void)
  1190. {
  1191. if (setup_vmcs_config(&vmcs_config) < 0)
  1192. return -EIO;
  1193. if (boot_cpu_has(X86_FEATURE_NX))
  1194. kvm_enable_efer_bits(EFER_NX);
  1195. if (!cpu_has_vmx_vpid())
  1196. enable_vpid = 0;
  1197. if (!cpu_has_vmx_ept()) {
  1198. enable_ept = 0;
  1199. enable_unrestricted_guest = 0;
  1200. }
  1201. if (!cpu_has_vmx_unrestricted_guest())
  1202. enable_unrestricted_guest = 0;
  1203. if (!cpu_has_vmx_flexpriority())
  1204. flexpriority_enabled = 0;
  1205. if (!cpu_has_vmx_tpr_shadow())
  1206. kvm_x86_ops->update_cr8_intercept = NULL;
  1207. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1208. kvm_disable_largepages();
  1209. if (!cpu_has_vmx_ple())
  1210. ple_gap = 0;
  1211. return alloc_kvm_area();
  1212. }
  1213. static __exit void hardware_unsetup(void)
  1214. {
  1215. free_kvm_area();
  1216. }
  1217. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1218. {
  1219. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1220. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1221. vmcs_write16(sf->selector, save->selector);
  1222. vmcs_writel(sf->base, save->base);
  1223. vmcs_write32(sf->limit, save->limit);
  1224. vmcs_write32(sf->ar_bytes, save->ar);
  1225. } else {
  1226. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1227. << AR_DPL_SHIFT;
  1228. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1229. }
  1230. }
  1231. static void enter_pmode(struct kvm_vcpu *vcpu)
  1232. {
  1233. unsigned long flags;
  1234. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1235. vmx->emulation_required = 1;
  1236. vmx->rmode.vm86_active = 0;
  1237. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1238. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1239. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1240. flags = vmcs_readl(GUEST_RFLAGS);
  1241. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1242. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1243. vmcs_writel(GUEST_RFLAGS, flags);
  1244. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1245. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1246. update_exception_bitmap(vcpu);
  1247. if (emulate_invalid_guest_state)
  1248. return;
  1249. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1250. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1251. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1252. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1253. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1254. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1255. vmcs_write16(GUEST_CS_SELECTOR,
  1256. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1257. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1258. }
  1259. static gva_t rmode_tss_base(struct kvm *kvm)
  1260. {
  1261. if (!kvm->arch.tss_addr) {
  1262. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1263. kvm->memslots[0].npages - 3;
  1264. return base_gfn << PAGE_SHIFT;
  1265. }
  1266. return kvm->arch.tss_addr;
  1267. }
  1268. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1269. {
  1270. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1271. save->selector = vmcs_read16(sf->selector);
  1272. save->base = vmcs_readl(sf->base);
  1273. save->limit = vmcs_read32(sf->limit);
  1274. save->ar = vmcs_read32(sf->ar_bytes);
  1275. vmcs_write16(sf->selector, save->base >> 4);
  1276. vmcs_write32(sf->base, save->base & 0xfffff);
  1277. vmcs_write32(sf->limit, 0xffff);
  1278. vmcs_write32(sf->ar_bytes, 0xf3);
  1279. }
  1280. static void enter_rmode(struct kvm_vcpu *vcpu)
  1281. {
  1282. unsigned long flags;
  1283. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1284. if (enable_unrestricted_guest)
  1285. return;
  1286. vmx->emulation_required = 1;
  1287. vmx->rmode.vm86_active = 1;
  1288. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1289. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1290. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1291. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1292. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1293. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1294. flags = vmcs_readl(GUEST_RFLAGS);
  1295. vmx->rmode.save_iopl
  1296. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1297. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1298. vmcs_writel(GUEST_RFLAGS, flags);
  1299. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1300. update_exception_bitmap(vcpu);
  1301. if (emulate_invalid_guest_state)
  1302. goto continue_rmode;
  1303. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1304. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1305. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1306. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1307. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1308. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1309. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1310. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1311. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1312. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1313. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1314. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1315. continue_rmode:
  1316. kvm_mmu_reset_context(vcpu);
  1317. init_rmode(vcpu->kvm);
  1318. }
  1319. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1320. {
  1321. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1322. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1323. vcpu->arch.shadow_efer = efer;
  1324. if (!msr)
  1325. return;
  1326. if (efer & EFER_LMA) {
  1327. vmcs_write32(VM_ENTRY_CONTROLS,
  1328. vmcs_read32(VM_ENTRY_CONTROLS) |
  1329. VM_ENTRY_IA32E_MODE);
  1330. msr->data = efer;
  1331. } else {
  1332. vmcs_write32(VM_ENTRY_CONTROLS,
  1333. vmcs_read32(VM_ENTRY_CONTROLS) &
  1334. ~VM_ENTRY_IA32E_MODE);
  1335. msr->data = efer & ~EFER_LME;
  1336. }
  1337. setup_msrs(vmx);
  1338. }
  1339. #ifdef CONFIG_X86_64
  1340. static void enter_lmode(struct kvm_vcpu *vcpu)
  1341. {
  1342. u32 guest_tr_ar;
  1343. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1344. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1345. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1346. __func__);
  1347. vmcs_write32(GUEST_TR_AR_BYTES,
  1348. (guest_tr_ar & ~AR_TYPE_MASK)
  1349. | AR_TYPE_BUSY_64_TSS);
  1350. }
  1351. vcpu->arch.shadow_efer |= EFER_LMA;
  1352. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1353. }
  1354. static void exit_lmode(struct kvm_vcpu *vcpu)
  1355. {
  1356. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1357. vmcs_write32(VM_ENTRY_CONTROLS,
  1358. vmcs_read32(VM_ENTRY_CONTROLS)
  1359. & ~VM_ENTRY_IA32E_MODE);
  1360. }
  1361. #endif
  1362. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1363. {
  1364. vpid_sync_vcpu_all(to_vmx(vcpu));
  1365. if (enable_ept)
  1366. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1367. }
  1368. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1369. {
  1370. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1371. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1372. }
  1373. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1374. {
  1375. if (!test_bit(VCPU_EXREG_PDPTR,
  1376. (unsigned long *)&vcpu->arch.regs_dirty))
  1377. return;
  1378. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1379. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1380. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1381. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1382. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1383. }
  1384. }
  1385. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1386. {
  1387. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1388. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1389. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1390. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1391. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1392. }
  1393. __set_bit(VCPU_EXREG_PDPTR,
  1394. (unsigned long *)&vcpu->arch.regs_avail);
  1395. __set_bit(VCPU_EXREG_PDPTR,
  1396. (unsigned long *)&vcpu->arch.regs_dirty);
  1397. }
  1398. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1399. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1400. unsigned long cr0,
  1401. struct kvm_vcpu *vcpu)
  1402. {
  1403. if (!(cr0 & X86_CR0_PG)) {
  1404. /* From paging/starting to nonpaging */
  1405. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1406. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1407. (CPU_BASED_CR3_LOAD_EXITING |
  1408. CPU_BASED_CR3_STORE_EXITING));
  1409. vcpu->arch.cr0 = cr0;
  1410. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1411. } else if (!is_paging(vcpu)) {
  1412. /* From nonpaging to paging */
  1413. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1414. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1415. ~(CPU_BASED_CR3_LOAD_EXITING |
  1416. CPU_BASED_CR3_STORE_EXITING));
  1417. vcpu->arch.cr0 = cr0;
  1418. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1419. }
  1420. if (!(cr0 & X86_CR0_WP))
  1421. *hw_cr0 &= ~X86_CR0_WP;
  1422. }
  1423. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1424. struct kvm_vcpu *vcpu)
  1425. {
  1426. if (!is_paging(vcpu)) {
  1427. *hw_cr4 &= ~X86_CR4_PAE;
  1428. *hw_cr4 |= X86_CR4_PSE;
  1429. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1430. *hw_cr4 &= ~X86_CR4_PAE;
  1431. }
  1432. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1433. {
  1434. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1435. unsigned long hw_cr0;
  1436. if (enable_unrestricted_guest)
  1437. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1438. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1439. else
  1440. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1441. vmx_fpu_deactivate(vcpu);
  1442. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1443. enter_pmode(vcpu);
  1444. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1445. enter_rmode(vcpu);
  1446. #ifdef CONFIG_X86_64
  1447. if (vcpu->arch.shadow_efer & EFER_LME) {
  1448. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1449. enter_lmode(vcpu);
  1450. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1451. exit_lmode(vcpu);
  1452. }
  1453. #endif
  1454. if (enable_ept)
  1455. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1456. vmcs_writel(CR0_READ_SHADOW, cr0);
  1457. vmcs_writel(GUEST_CR0, hw_cr0);
  1458. vcpu->arch.cr0 = cr0;
  1459. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1460. vmx_fpu_activate(vcpu);
  1461. }
  1462. static u64 construct_eptp(unsigned long root_hpa)
  1463. {
  1464. u64 eptp;
  1465. /* TODO write the value reading from MSR */
  1466. eptp = VMX_EPT_DEFAULT_MT |
  1467. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1468. eptp |= (root_hpa & PAGE_MASK);
  1469. return eptp;
  1470. }
  1471. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1472. {
  1473. unsigned long guest_cr3;
  1474. u64 eptp;
  1475. guest_cr3 = cr3;
  1476. if (enable_ept) {
  1477. eptp = construct_eptp(cr3);
  1478. vmcs_write64(EPT_POINTER, eptp);
  1479. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1480. vcpu->kvm->arch.ept_identity_map_addr;
  1481. }
  1482. vmx_flush_tlb(vcpu);
  1483. vmcs_writel(GUEST_CR3, guest_cr3);
  1484. if (vcpu->arch.cr0 & X86_CR0_PE)
  1485. vmx_fpu_deactivate(vcpu);
  1486. }
  1487. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1488. {
  1489. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1490. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1491. vcpu->arch.cr4 = cr4;
  1492. if (enable_ept)
  1493. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1494. vmcs_writel(CR4_READ_SHADOW, cr4);
  1495. vmcs_writel(GUEST_CR4, hw_cr4);
  1496. }
  1497. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1498. {
  1499. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1500. return vmcs_readl(sf->base);
  1501. }
  1502. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1503. struct kvm_segment *var, int seg)
  1504. {
  1505. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1506. u32 ar;
  1507. var->base = vmcs_readl(sf->base);
  1508. var->limit = vmcs_read32(sf->limit);
  1509. var->selector = vmcs_read16(sf->selector);
  1510. ar = vmcs_read32(sf->ar_bytes);
  1511. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1512. ar = 0;
  1513. var->type = ar & 15;
  1514. var->s = (ar >> 4) & 1;
  1515. var->dpl = (ar >> 5) & 3;
  1516. var->present = (ar >> 7) & 1;
  1517. var->avl = (ar >> 12) & 1;
  1518. var->l = (ar >> 13) & 1;
  1519. var->db = (ar >> 14) & 1;
  1520. var->g = (ar >> 15) & 1;
  1521. var->unusable = (ar >> 16) & 1;
  1522. }
  1523. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1524. {
  1525. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1526. return 0;
  1527. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1528. return 3;
  1529. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1530. }
  1531. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1532. {
  1533. u32 ar;
  1534. if (var->unusable)
  1535. ar = 1 << 16;
  1536. else {
  1537. ar = var->type & 15;
  1538. ar |= (var->s & 1) << 4;
  1539. ar |= (var->dpl & 3) << 5;
  1540. ar |= (var->present & 1) << 7;
  1541. ar |= (var->avl & 1) << 12;
  1542. ar |= (var->l & 1) << 13;
  1543. ar |= (var->db & 1) << 14;
  1544. ar |= (var->g & 1) << 15;
  1545. }
  1546. if (ar == 0) /* a 0 value means unusable */
  1547. ar = AR_UNUSABLE_MASK;
  1548. return ar;
  1549. }
  1550. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1551. struct kvm_segment *var, int seg)
  1552. {
  1553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1554. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1555. u32 ar;
  1556. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1557. vmx->rmode.tr.selector = var->selector;
  1558. vmx->rmode.tr.base = var->base;
  1559. vmx->rmode.tr.limit = var->limit;
  1560. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1561. return;
  1562. }
  1563. vmcs_writel(sf->base, var->base);
  1564. vmcs_write32(sf->limit, var->limit);
  1565. vmcs_write16(sf->selector, var->selector);
  1566. if (vmx->rmode.vm86_active && var->s) {
  1567. /*
  1568. * Hack real-mode segments into vm86 compatibility.
  1569. */
  1570. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1571. vmcs_writel(sf->base, 0xf0000);
  1572. ar = 0xf3;
  1573. } else
  1574. ar = vmx_segment_access_rights(var);
  1575. /*
  1576. * Fix the "Accessed" bit in AR field of segment registers for older
  1577. * qemu binaries.
  1578. * IA32 arch specifies that at the time of processor reset the
  1579. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1580. * is setting it to 0 in the usedland code. This causes invalid guest
  1581. * state vmexit when "unrestricted guest" mode is turned on.
  1582. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1583. * tree. Newer qemu binaries with that qemu fix would not need this
  1584. * kvm hack.
  1585. */
  1586. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1587. ar |= 0x1; /* Accessed */
  1588. vmcs_write32(sf->ar_bytes, ar);
  1589. }
  1590. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1591. {
  1592. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1593. *db = (ar >> 14) & 1;
  1594. *l = (ar >> 13) & 1;
  1595. }
  1596. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1597. {
  1598. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1599. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1600. }
  1601. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1602. {
  1603. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1604. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1605. }
  1606. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1607. {
  1608. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1609. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1610. }
  1611. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1612. {
  1613. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1614. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1615. }
  1616. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1617. {
  1618. struct kvm_segment var;
  1619. u32 ar;
  1620. vmx_get_segment(vcpu, &var, seg);
  1621. ar = vmx_segment_access_rights(&var);
  1622. if (var.base != (var.selector << 4))
  1623. return false;
  1624. if (var.limit != 0xffff)
  1625. return false;
  1626. if (ar != 0xf3)
  1627. return false;
  1628. return true;
  1629. }
  1630. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1631. {
  1632. struct kvm_segment cs;
  1633. unsigned int cs_rpl;
  1634. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1635. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1636. if (cs.unusable)
  1637. return false;
  1638. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1639. return false;
  1640. if (!cs.s)
  1641. return false;
  1642. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1643. if (cs.dpl > cs_rpl)
  1644. return false;
  1645. } else {
  1646. if (cs.dpl != cs_rpl)
  1647. return false;
  1648. }
  1649. if (!cs.present)
  1650. return false;
  1651. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1652. return true;
  1653. }
  1654. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1655. {
  1656. struct kvm_segment ss;
  1657. unsigned int ss_rpl;
  1658. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1659. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1660. if (ss.unusable)
  1661. return true;
  1662. if (ss.type != 3 && ss.type != 7)
  1663. return false;
  1664. if (!ss.s)
  1665. return false;
  1666. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1667. return false;
  1668. if (!ss.present)
  1669. return false;
  1670. return true;
  1671. }
  1672. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1673. {
  1674. struct kvm_segment var;
  1675. unsigned int rpl;
  1676. vmx_get_segment(vcpu, &var, seg);
  1677. rpl = var.selector & SELECTOR_RPL_MASK;
  1678. if (var.unusable)
  1679. return true;
  1680. if (!var.s)
  1681. return false;
  1682. if (!var.present)
  1683. return false;
  1684. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1685. if (var.dpl < rpl) /* DPL < RPL */
  1686. return false;
  1687. }
  1688. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1689. * rights flags
  1690. */
  1691. return true;
  1692. }
  1693. static bool tr_valid(struct kvm_vcpu *vcpu)
  1694. {
  1695. struct kvm_segment tr;
  1696. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1697. if (tr.unusable)
  1698. return false;
  1699. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1700. return false;
  1701. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1702. return false;
  1703. if (!tr.present)
  1704. return false;
  1705. return true;
  1706. }
  1707. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1708. {
  1709. struct kvm_segment ldtr;
  1710. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1711. if (ldtr.unusable)
  1712. return true;
  1713. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1714. return false;
  1715. if (ldtr.type != 2)
  1716. return false;
  1717. if (!ldtr.present)
  1718. return false;
  1719. return true;
  1720. }
  1721. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1722. {
  1723. struct kvm_segment cs, ss;
  1724. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1725. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1726. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1727. (ss.selector & SELECTOR_RPL_MASK));
  1728. }
  1729. /*
  1730. * Check if guest state is valid. Returns true if valid, false if
  1731. * not.
  1732. * We assume that registers are always usable
  1733. */
  1734. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1735. {
  1736. /* real mode guest state checks */
  1737. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1738. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1739. return false;
  1740. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1741. return false;
  1742. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1743. return false;
  1744. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1745. return false;
  1746. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1747. return false;
  1748. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1749. return false;
  1750. } else {
  1751. /* protected mode guest state checks */
  1752. if (!cs_ss_rpl_check(vcpu))
  1753. return false;
  1754. if (!code_segment_valid(vcpu))
  1755. return false;
  1756. if (!stack_segment_valid(vcpu))
  1757. return false;
  1758. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1759. return false;
  1760. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1761. return false;
  1762. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1763. return false;
  1764. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1765. return false;
  1766. if (!tr_valid(vcpu))
  1767. return false;
  1768. if (!ldtr_valid(vcpu))
  1769. return false;
  1770. }
  1771. /* TODO:
  1772. * - Add checks on RIP
  1773. * - Add checks on RFLAGS
  1774. */
  1775. return true;
  1776. }
  1777. static int init_rmode_tss(struct kvm *kvm)
  1778. {
  1779. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1780. u16 data = 0;
  1781. int ret = 0;
  1782. int r;
  1783. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1784. if (r < 0)
  1785. goto out;
  1786. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1787. r = kvm_write_guest_page(kvm, fn++, &data,
  1788. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1789. if (r < 0)
  1790. goto out;
  1791. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1792. if (r < 0)
  1793. goto out;
  1794. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1795. if (r < 0)
  1796. goto out;
  1797. data = ~0;
  1798. r = kvm_write_guest_page(kvm, fn, &data,
  1799. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1800. sizeof(u8));
  1801. if (r < 0)
  1802. goto out;
  1803. ret = 1;
  1804. out:
  1805. return ret;
  1806. }
  1807. static int init_rmode_identity_map(struct kvm *kvm)
  1808. {
  1809. int i, r, ret;
  1810. pfn_t identity_map_pfn;
  1811. u32 tmp;
  1812. if (!enable_ept)
  1813. return 1;
  1814. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1815. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1816. "haven't been allocated!\n");
  1817. return 0;
  1818. }
  1819. if (likely(kvm->arch.ept_identity_pagetable_done))
  1820. return 1;
  1821. ret = 0;
  1822. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1823. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1824. if (r < 0)
  1825. goto out;
  1826. /* Set up identity-mapping pagetable for EPT in real mode */
  1827. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1828. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1829. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1830. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1831. &tmp, i * sizeof(tmp), sizeof(tmp));
  1832. if (r < 0)
  1833. goto out;
  1834. }
  1835. kvm->arch.ept_identity_pagetable_done = true;
  1836. ret = 1;
  1837. out:
  1838. return ret;
  1839. }
  1840. static void seg_setup(int seg)
  1841. {
  1842. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1843. unsigned int ar;
  1844. vmcs_write16(sf->selector, 0);
  1845. vmcs_writel(sf->base, 0);
  1846. vmcs_write32(sf->limit, 0xffff);
  1847. if (enable_unrestricted_guest) {
  1848. ar = 0x93;
  1849. if (seg == VCPU_SREG_CS)
  1850. ar |= 0x08; /* code segment */
  1851. } else
  1852. ar = 0xf3;
  1853. vmcs_write32(sf->ar_bytes, ar);
  1854. }
  1855. static int alloc_apic_access_page(struct kvm *kvm)
  1856. {
  1857. struct kvm_userspace_memory_region kvm_userspace_mem;
  1858. int r = 0;
  1859. down_write(&kvm->slots_lock);
  1860. if (kvm->arch.apic_access_page)
  1861. goto out;
  1862. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1863. kvm_userspace_mem.flags = 0;
  1864. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1865. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1866. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1867. if (r)
  1868. goto out;
  1869. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1870. out:
  1871. up_write(&kvm->slots_lock);
  1872. return r;
  1873. }
  1874. static int alloc_identity_pagetable(struct kvm *kvm)
  1875. {
  1876. struct kvm_userspace_memory_region kvm_userspace_mem;
  1877. int r = 0;
  1878. down_write(&kvm->slots_lock);
  1879. if (kvm->arch.ept_identity_pagetable)
  1880. goto out;
  1881. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1882. kvm_userspace_mem.flags = 0;
  1883. kvm_userspace_mem.guest_phys_addr =
  1884. kvm->arch.ept_identity_map_addr;
  1885. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1886. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1887. if (r)
  1888. goto out;
  1889. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1890. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1891. out:
  1892. up_write(&kvm->slots_lock);
  1893. return r;
  1894. }
  1895. static void allocate_vpid(struct vcpu_vmx *vmx)
  1896. {
  1897. int vpid;
  1898. vmx->vpid = 0;
  1899. if (!enable_vpid)
  1900. return;
  1901. spin_lock(&vmx_vpid_lock);
  1902. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1903. if (vpid < VMX_NR_VPIDS) {
  1904. vmx->vpid = vpid;
  1905. __set_bit(vpid, vmx_vpid_bitmap);
  1906. }
  1907. spin_unlock(&vmx_vpid_lock);
  1908. }
  1909. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1910. {
  1911. int f = sizeof(unsigned long);
  1912. if (!cpu_has_vmx_msr_bitmap())
  1913. return;
  1914. /*
  1915. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1916. * have the write-low and read-high bitmap offsets the wrong way round.
  1917. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1918. */
  1919. if (msr <= 0x1fff) {
  1920. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1921. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1922. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1923. msr &= 0x1fff;
  1924. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1925. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1926. }
  1927. }
  1928. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1929. {
  1930. if (!longmode_only)
  1931. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1932. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1933. }
  1934. /*
  1935. * Sets up the vmcs for emulated real mode.
  1936. */
  1937. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1938. {
  1939. u32 host_sysenter_cs, msr_low, msr_high;
  1940. u32 junk;
  1941. u64 host_pat, tsc_this, tsc_base;
  1942. unsigned long a;
  1943. struct descriptor_table dt;
  1944. int i;
  1945. unsigned long kvm_vmx_return;
  1946. u32 exec_control;
  1947. /* I/O */
  1948. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1949. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1950. if (cpu_has_vmx_msr_bitmap())
  1951. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1952. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1953. /* Control */
  1954. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1955. vmcs_config.pin_based_exec_ctrl);
  1956. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1957. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1958. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1959. #ifdef CONFIG_X86_64
  1960. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1961. CPU_BASED_CR8_LOAD_EXITING;
  1962. #endif
  1963. }
  1964. if (!enable_ept)
  1965. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1966. CPU_BASED_CR3_LOAD_EXITING |
  1967. CPU_BASED_INVLPG_EXITING;
  1968. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1969. if (cpu_has_secondary_exec_ctrls()) {
  1970. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1971. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1972. exec_control &=
  1973. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1974. if (vmx->vpid == 0)
  1975. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1976. if (!enable_ept)
  1977. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1978. if (!enable_unrestricted_guest)
  1979. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1980. if (!ple_gap)
  1981. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1982. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1983. }
  1984. if (ple_gap) {
  1985. vmcs_write32(PLE_GAP, ple_gap);
  1986. vmcs_write32(PLE_WINDOW, ple_window);
  1987. }
  1988. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1989. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1990. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1991. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1992. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1993. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1994. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1995. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1996. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1997. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1998. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1999. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2000. #ifdef CONFIG_X86_64
  2001. rdmsrl(MSR_FS_BASE, a);
  2002. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2003. rdmsrl(MSR_GS_BASE, a);
  2004. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2005. #else
  2006. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2007. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2008. #endif
  2009. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2010. kvm_get_idt(&dt);
  2011. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2012. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2013. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2014. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2015. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2016. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2017. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2018. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2019. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2020. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2021. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2022. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2023. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2024. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2025. host_pat = msr_low | ((u64) msr_high << 32);
  2026. vmcs_write64(HOST_IA32_PAT, host_pat);
  2027. }
  2028. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2029. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2030. host_pat = msr_low | ((u64) msr_high << 32);
  2031. /* Write the default value follow host pat */
  2032. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2033. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2034. vmx->vcpu.arch.pat = host_pat;
  2035. }
  2036. for (i = 0; i < NR_VMX_MSR; ++i) {
  2037. u32 index = vmx_msr_index[i];
  2038. u32 data_low, data_high;
  2039. u64 data;
  2040. int j = vmx->nmsrs;
  2041. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2042. continue;
  2043. if (wrmsr_safe(index, data_low, data_high) < 0)
  2044. continue;
  2045. data = data_low | ((u64)data_high << 32);
  2046. vmx->host_msrs[j].index = index;
  2047. vmx->host_msrs[j].reserved = 0;
  2048. vmx->host_msrs[j].data = data;
  2049. vmx->guest_msrs[j] = vmx->host_msrs[j];
  2050. ++vmx->nmsrs;
  2051. }
  2052. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2053. /* 22.2.1, 20.8.1 */
  2054. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2055. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2056. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2057. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2058. rdtscll(tsc_this);
  2059. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2060. tsc_base = tsc_this;
  2061. guest_write_tsc(0, tsc_base);
  2062. return 0;
  2063. }
  2064. static int init_rmode(struct kvm *kvm)
  2065. {
  2066. if (!init_rmode_tss(kvm))
  2067. return 0;
  2068. if (!init_rmode_identity_map(kvm))
  2069. return 0;
  2070. return 1;
  2071. }
  2072. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2073. {
  2074. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2075. u64 msr;
  2076. int ret;
  2077. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2078. down_read(&vcpu->kvm->slots_lock);
  2079. if (!init_rmode(vmx->vcpu.kvm)) {
  2080. ret = -ENOMEM;
  2081. goto out;
  2082. }
  2083. vmx->rmode.vm86_active = 0;
  2084. vmx->soft_vnmi_blocked = 0;
  2085. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2086. kvm_set_cr8(&vmx->vcpu, 0);
  2087. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2088. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2089. msr |= MSR_IA32_APICBASE_BSP;
  2090. kvm_set_apic_base(&vmx->vcpu, msr);
  2091. fx_init(&vmx->vcpu);
  2092. seg_setup(VCPU_SREG_CS);
  2093. /*
  2094. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2095. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2096. */
  2097. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2098. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2099. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2100. } else {
  2101. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2102. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2103. }
  2104. seg_setup(VCPU_SREG_DS);
  2105. seg_setup(VCPU_SREG_ES);
  2106. seg_setup(VCPU_SREG_FS);
  2107. seg_setup(VCPU_SREG_GS);
  2108. seg_setup(VCPU_SREG_SS);
  2109. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2110. vmcs_writel(GUEST_TR_BASE, 0);
  2111. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2112. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2113. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2114. vmcs_writel(GUEST_LDTR_BASE, 0);
  2115. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2116. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2117. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2118. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2119. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2120. vmcs_writel(GUEST_RFLAGS, 0x02);
  2121. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2122. kvm_rip_write(vcpu, 0xfff0);
  2123. else
  2124. kvm_rip_write(vcpu, 0);
  2125. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2126. vmcs_writel(GUEST_DR7, 0x400);
  2127. vmcs_writel(GUEST_GDTR_BASE, 0);
  2128. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2129. vmcs_writel(GUEST_IDTR_BASE, 0);
  2130. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2131. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2132. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2133. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2134. /* Special registers */
  2135. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2136. setup_msrs(vmx);
  2137. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2138. if (cpu_has_vmx_tpr_shadow()) {
  2139. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2140. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2141. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2142. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2143. vmcs_write32(TPR_THRESHOLD, 0);
  2144. }
  2145. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2146. vmcs_write64(APIC_ACCESS_ADDR,
  2147. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2148. if (vmx->vpid != 0)
  2149. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2150. vmx->vcpu.arch.cr0 = 0x60000010;
  2151. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2152. vmx_set_cr4(&vmx->vcpu, 0);
  2153. vmx_set_efer(&vmx->vcpu, 0);
  2154. vmx_fpu_activate(&vmx->vcpu);
  2155. update_exception_bitmap(&vmx->vcpu);
  2156. vpid_sync_vcpu_all(vmx);
  2157. ret = 0;
  2158. /* HACK: Don't enable emulation on guest boot/reset */
  2159. vmx->emulation_required = 0;
  2160. out:
  2161. up_read(&vcpu->kvm->slots_lock);
  2162. return ret;
  2163. }
  2164. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2165. {
  2166. u32 cpu_based_vm_exec_control;
  2167. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2168. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2169. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2170. }
  2171. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2172. {
  2173. u32 cpu_based_vm_exec_control;
  2174. if (!cpu_has_virtual_nmis()) {
  2175. enable_irq_window(vcpu);
  2176. return;
  2177. }
  2178. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2179. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2180. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2181. }
  2182. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2183. {
  2184. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2185. uint32_t intr;
  2186. int irq = vcpu->arch.interrupt.nr;
  2187. trace_kvm_inj_virq(irq);
  2188. ++vcpu->stat.irq_injections;
  2189. if (vmx->rmode.vm86_active) {
  2190. vmx->rmode.irq.pending = true;
  2191. vmx->rmode.irq.vector = irq;
  2192. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2193. if (vcpu->arch.interrupt.soft)
  2194. vmx->rmode.irq.rip +=
  2195. vmx->vcpu.arch.event_exit_inst_len;
  2196. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2197. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2198. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2199. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2200. return;
  2201. }
  2202. intr = irq | INTR_INFO_VALID_MASK;
  2203. if (vcpu->arch.interrupt.soft) {
  2204. intr |= INTR_TYPE_SOFT_INTR;
  2205. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2206. vmx->vcpu.arch.event_exit_inst_len);
  2207. } else
  2208. intr |= INTR_TYPE_EXT_INTR;
  2209. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2210. }
  2211. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2212. {
  2213. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2214. if (!cpu_has_virtual_nmis()) {
  2215. /*
  2216. * Tracking the NMI-blocked state in software is built upon
  2217. * finding the next open IRQ window. This, in turn, depends on
  2218. * well-behaving guests: They have to keep IRQs disabled at
  2219. * least as long as the NMI handler runs. Otherwise we may
  2220. * cause NMI nesting, maybe breaking the guest. But as this is
  2221. * highly unlikely, we can live with the residual risk.
  2222. */
  2223. vmx->soft_vnmi_blocked = 1;
  2224. vmx->vnmi_blocked_time = 0;
  2225. }
  2226. ++vcpu->stat.nmi_injections;
  2227. if (vmx->rmode.vm86_active) {
  2228. vmx->rmode.irq.pending = true;
  2229. vmx->rmode.irq.vector = NMI_VECTOR;
  2230. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2231. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2232. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2233. INTR_INFO_VALID_MASK);
  2234. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2235. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2236. return;
  2237. }
  2238. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2239. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2240. }
  2241. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2242. {
  2243. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2244. return 0;
  2245. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2246. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2247. GUEST_INTR_STATE_NMI));
  2248. }
  2249. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2250. {
  2251. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2252. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2253. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2254. }
  2255. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2256. {
  2257. int ret;
  2258. struct kvm_userspace_memory_region tss_mem = {
  2259. .slot = TSS_PRIVATE_MEMSLOT,
  2260. .guest_phys_addr = addr,
  2261. .memory_size = PAGE_SIZE * 3,
  2262. .flags = 0,
  2263. };
  2264. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2265. if (ret)
  2266. return ret;
  2267. kvm->arch.tss_addr = addr;
  2268. return 0;
  2269. }
  2270. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2271. int vec, u32 err_code)
  2272. {
  2273. /*
  2274. * Instruction with address size override prefix opcode 0x67
  2275. * Cause the #SS fault with 0 error code in VM86 mode.
  2276. */
  2277. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2278. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2279. return 1;
  2280. /*
  2281. * Forward all other exceptions that are valid in real mode.
  2282. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2283. * the required debugging infrastructure rework.
  2284. */
  2285. switch (vec) {
  2286. case DB_VECTOR:
  2287. if (vcpu->guest_debug &
  2288. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2289. return 0;
  2290. kvm_queue_exception(vcpu, vec);
  2291. return 1;
  2292. case BP_VECTOR:
  2293. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2294. return 0;
  2295. /* fall through */
  2296. case DE_VECTOR:
  2297. case OF_VECTOR:
  2298. case BR_VECTOR:
  2299. case UD_VECTOR:
  2300. case DF_VECTOR:
  2301. case SS_VECTOR:
  2302. case GP_VECTOR:
  2303. case MF_VECTOR:
  2304. kvm_queue_exception(vcpu, vec);
  2305. return 1;
  2306. }
  2307. return 0;
  2308. }
  2309. /*
  2310. * Trigger machine check on the host. We assume all the MSRs are already set up
  2311. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2312. * We pass a fake environment to the machine check handler because we want
  2313. * the guest to be always treated like user space, no matter what context
  2314. * it used internally.
  2315. */
  2316. static void kvm_machine_check(void)
  2317. {
  2318. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2319. struct pt_regs regs = {
  2320. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2321. .flags = X86_EFLAGS_IF,
  2322. };
  2323. do_machine_check(&regs, 0);
  2324. #endif
  2325. }
  2326. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2327. {
  2328. /* already handled by vcpu_run */
  2329. return 1;
  2330. }
  2331. static int handle_exception(struct kvm_vcpu *vcpu)
  2332. {
  2333. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2334. struct kvm_run *kvm_run = vcpu->run;
  2335. u32 intr_info, ex_no, error_code;
  2336. unsigned long cr2, rip, dr6;
  2337. u32 vect_info;
  2338. enum emulation_result er;
  2339. vect_info = vmx->idt_vectoring_info;
  2340. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2341. if (is_machine_check(intr_info))
  2342. return handle_machine_check(vcpu);
  2343. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2344. !is_page_fault(intr_info))
  2345. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2346. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2347. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2348. return 1; /* already handled by vmx_vcpu_run() */
  2349. if (is_no_device(intr_info)) {
  2350. vmx_fpu_activate(vcpu);
  2351. return 1;
  2352. }
  2353. if (is_invalid_opcode(intr_info)) {
  2354. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2355. if (er != EMULATE_DONE)
  2356. kvm_queue_exception(vcpu, UD_VECTOR);
  2357. return 1;
  2358. }
  2359. error_code = 0;
  2360. rip = kvm_rip_read(vcpu);
  2361. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2362. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2363. if (is_page_fault(intr_info)) {
  2364. /* EPT won't cause page fault directly */
  2365. if (enable_ept)
  2366. BUG();
  2367. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2368. trace_kvm_page_fault(cr2, error_code);
  2369. if (kvm_event_needs_reinjection(vcpu))
  2370. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2371. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2372. }
  2373. if (vmx->rmode.vm86_active &&
  2374. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2375. error_code)) {
  2376. if (vcpu->arch.halt_request) {
  2377. vcpu->arch.halt_request = 0;
  2378. return kvm_emulate_halt(vcpu);
  2379. }
  2380. return 1;
  2381. }
  2382. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2383. switch (ex_no) {
  2384. case DB_VECTOR:
  2385. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2386. if (!(vcpu->guest_debug &
  2387. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2388. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2389. kvm_queue_exception(vcpu, DB_VECTOR);
  2390. return 1;
  2391. }
  2392. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2393. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2394. /* fall through */
  2395. case BP_VECTOR:
  2396. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2397. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2398. kvm_run->debug.arch.exception = ex_no;
  2399. break;
  2400. default:
  2401. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2402. kvm_run->ex.exception = ex_no;
  2403. kvm_run->ex.error_code = error_code;
  2404. break;
  2405. }
  2406. return 0;
  2407. }
  2408. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2409. {
  2410. ++vcpu->stat.irq_exits;
  2411. return 1;
  2412. }
  2413. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2414. {
  2415. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2416. return 0;
  2417. }
  2418. static int handle_io(struct kvm_vcpu *vcpu)
  2419. {
  2420. unsigned long exit_qualification;
  2421. int size, in, string;
  2422. unsigned port;
  2423. ++vcpu->stat.io_exits;
  2424. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2425. string = (exit_qualification & 16) != 0;
  2426. if (string) {
  2427. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2428. return 0;
  2429. return 1;
  2430. }
  2431. size = (exit_qualification & 7) + 1;
  2432. in = (exit_qualification & 8) != 0;
  2433. port = exit_qualification >> 16;
  2434. skip_emulated_instruction(vcpu);
  2435. return kvm_emulate_pio(vcpu, in, size, port);
  2436. }
  2437. static void
  2438. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2439. {
  2440. /*
  2441. * Patch in the VMCALL instruction:
  2442. */
  2443. hypercall[0] = 0x0f;
  2444. hypercall[1] = 0x01;
  2445. hypercall[2] = 0xc1;
  2446. }
  2447. static int handle_cr(struct kvm_vcpu *vcpu)
  2448. {
  2449. unsigned long exit_qualification, val;
  2450. int cr;
  2451. int reg;
  2452. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2453. cr = exit_qualification & 15;
  2454. reg = (exit_qualification >> 8) & 15;
  2455. switch ((exit_qualification >> 4) & 3) {
  2456. case 0: /* mov to cr */
  2457. val = kvm_register_read(vcpu, reg);
  2458. trace_kvm_cr_write(cr, val);
  2459. switch (cr) {
  2460. case 0:
  2461. kvm_set_cr0(vcpu, val);
  2462. skip_emulated_instruction(vcpu);
  2463. return 1;
  2464. case 3:
  2465. kvm_set_cr3(vcpu, val);
  2466. skip_emulated_instruction(vcpu);
  2467. return 1;
  2468. case 4:
  2469. kvm_set_cr4(vcpu, val);
  2470. skip_emulated_instruction(vcpu);
  2471. return 1;
  2472. case 8: {
  2473. u8 cr8_prev = kvm_get_cr8(vcpu);
  2474. u8 cr8 = kvm_register_read(vcpu, reg);
  2475. kvm_set_cr8(vcpu, cr8);
  2476. skip_emulated_instruction(vcpu);
  2477. if (irqchip_in_kernel(vcpu->kvm))
  2478. return 1;
  2479. if (cr8_prev <= cr8)
  2480. return 1;
  2481. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2482. return 0;
  2483. }
  2484. };
  2485. break;
  2486. case 2: /* clts */
  2487. vmx_fpu_deactivate(vcpu);
  2488. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2489. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2490. vmx_fpu_activate(vcpu);
  2491. skip_emulated_instruction(vcpu);
  2492. return 1;
  2493. case 1: /*mov from cr*/
  2494. switch (cr) {
  2495. case 3:
  2496. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2497. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2498. skip_emulated_instruction(vcpu);
  2499. return 1;
  2500. case 8:
  2501. val = kvm_get_cr8(vcpu);
  2502. kvm_register_write(vcpu, reg, val);
  2503. trace_kvm_cr_read(cr, val);
  2504. skip_emulated_instruction(vcpu);
  2505. return 1;
  2506. }
  2507. break;
  2508. case 3: /* lmsw */
  2509. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2510. skip_emulated_instruction(vcpu);
  2511. return 1;
  2512. default:
  2513. break;
  2514. }
  2515. vcpu->run->exit_reason = 0;
  2516. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2517. (int)(exit_qualification >> 4) & 3, cr);
  2518. return 0;
  2519. }
  2520. static int handle_dr(struct kvm_vcpu *vcpu)
  2521. {
  2522. unsigned long exit_qualification;
  2523. unsigned long val;
  2524. int dr, reg;
  2525. if (!kvm_require_cpl(vcpu, 0))
  2526. return 1;
  2527. dr = vmcs_readl(GUEST_DR7);
  2528. if (dr & DR7_GD) {
  2529. /*
  2530. * As the vm-exit takes precedence over the debug trap, we
  2531. * need to emulate the latter, either for the host or the
  2532. * guest debugging itself.
  2533. */
  2534. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2535. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2536. vcpu->run->debug.arch.dr7 = dr;
  2537. vcpu->run->debug.arch.pc =
  2538. vmcs_readl(GUEST_CS_BASE) +
  2539. vmcs_readl(GUEST_RIP);
  2540. vcpu->run->debug.arch.exception = DB_VECTOR;
  2541. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2542. return 0;
  2543. } else {
  2544. vcpu->arch.dr7 &= ~DR7_GD;
  2545. vcpu->arch.dr6 |= DR6_BD;
  2546. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2547. kvm_queue_exception(vcpu, DB_VECTOR);
  2548. return 1;
  2549. }
  2550. }
  2551. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2552. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2553. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2554. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2555. switch (dr) {
  2556. case 0 ... 3:
  2557. val = vcpu->arch.db[dr];
  2558. break;
  2559. case 6:
  2560. val = vcpu->arch.dr6;
  2561. break;
  2562. case 7:
  2563. val = vcpu->arch.dr7;
  2564. break;
  2565. default:
  2566. val = 0;
  2567. }
  2568. kvm_register_write(vcpu, reg, val);
  2569. } else {
  2570. val = vcpu->arch.regs[reg];
  2571. switch (dr) {
  2572. case 0 ... 3:
  2573. vcpu->arch.db[dr] = val;
  2574. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2575. vcpu->arch.eff_db[dr] = val;
  2576. break;
  2577. case 4 ... 5:
  2578. if (vcpu->arch.cr4 & X86_CR4_DE)
  2579. kvm_queue_exception(vcpu, UD_VECTOR);
  2580. break;
  2581. case 6:
  2582. if (val & 0xffffffff00000000ULL) {
  2583. kvm_queue_exception(vcpu, GP_VECTOR);
  2584. break;
  2585. }
  2586. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2587. break;
  2588. case 7:
  2589. if (val & 0xffffffff00000000ULL) {
  2590. kvm_queue_exception(vcpu, GP_VECTOR);
  2591. break;
  2592. }
  2593. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2594. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2595. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2596. vcpu->arch.switch_db_regs =
  2597. (val & DR7_BP_EN_MASK);
  2598. }
  2599. break;
  2600. }
  2601. }
  2602. skip_emulated_instruction(vcpu);
  2603. return 1;
  2604. }
  2605. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2606. {
  2607. kvm_emulate_cpuid(vcpu);
  2608. return 1;
  2609. }
  2610. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2611. {
  2612. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2613. u64 data;
  2614. if (vmx_get_msr(vcpu, ecx, &data)) {
  2615. kvm_inject_gp(vcpu, 0);
  2616. return 1;
  2617. }
  2618. trace_kvm_msr_read(ecx, data);
  2619. /* FIXME: handling of bits 32:63 of rax, rdx */
  2620. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2621. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2622. skip_emulated_instruction(vcpu);
  2623. return 1;
  2624. }
  2625. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2626. {
  2627. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2628. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2629. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2630. trace_kvm_msr_write(ecx, data);
  2631. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2632. kvm_inject_gp(vcpu, 0);
  2633. return 1;
  2634. }
  2635. skip_emulated_instruction(vcpu);
  2636. return 1;
  2637. }
  2638. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2639. {
  2640. return 1;
  2641. }
  2642. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2643. {
  2644. u32 cpu_based_vm_exec_control;
  2645. /* clear pending irq */
  2646. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2647. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2648. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2649. ++vcpu->stat.irq_window_exits;
  2650. /*
  2651. * If the user space waits to inject interrupts, exit as soon as
  2652. * possible
  2653. */
  2654. if (!irqchip_in_kernel(vcpu->kvm) &&
  2655. vcpu->run->request_interrupt_window &&
  2656. !kvm_cpu_has_interrupt(vcpu)) {
  2657. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2658. return 0;
  2659. }
  2660. return 1;
  2661. }
  2662. static int handle_halt(struct kvm_vcpu *vcpu)
  2663. {
  2664. skip_emulated_instruction(vcpu);
  2665. return kvm_emulate_halt(vcpu);
  2666. }
  2667. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2668. {
  2669. skip_emulated_instruction(vcpu);
  2670. kvm_emulate_hypercall(vcpu);
  2671. return 1;
  2672. }
  2673. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2674. {
  2675. kvm_queue_exception(vcpu, UD_VECTOR);
  2676. return 1;
  2677. }
  2678. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2679. {
  2680. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2681. kvm_mmu_invlpg(vcpu, exit_qualification);
  2682. skip_emulated_instruction(vcpu);
  2683. return 1;
  2684. }
  2685. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2686. {
  2687. skip_emulated_instruction(vcpu);
  2688. /* TODO: Add support for VT-d/pass-through device */
  2689. return 1;
  2690. }
  2691. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2692. {
  2693. unsigned long exit_qualification;
  2694. enum emulation_result er;
  2695. unsigned long offset;
  2696. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2697. offset = exit_qualification & 0xffful;
  2698. er = emulate_instruction(vcpu, 0, 0, 0);
  2699. if (er != EMULATE_DONE) {
  2700. printk(KERN_ERR
  2701. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2702. offset);
  2703. return -ENOEXEC;
  2704. }
  2705. return 1;
  2706. }
  2707. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2708. {
  2709. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2710. unsigned long exit_qualification;
  2711. u16 tss_selector;
  2712. int reason, type, idt_v;
  2713. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2714. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2715. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2716. reason = (u32)exit_qualification >> 30;
  2717. if (reason == TASK_SWITCH_GATE && idt_v) {
  2718. switch (type) {
  2719. case INTR_TYPE_NMI_INTR:
  2720. vcpu->arch.nmi_injected = false;
  2721. if (cpu_has_virtual_nmis())
  2722. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2723. GUEST_INTR_STATE_NMI);
  2724. break;
  2725. case INTR_TYPE_EXT_INTR:
  2726. case INTR_TYPE_SOFT_INTR:
  2727. kvm_clear_interrupt_queue(vcpu);
  2728. break;
  2729. case INTR_TYPE_HARD_EXCEPTION:
  2730. case INTR_TYPE_SOFT_EXCEPTION:
  2731. kvm_clear_exception_queue(vcpu);
  2732. break;
  2733. default:
  2734. break;
  2735. }
  2736. }
  2737. tss_selector = exit_qualification;
  2738. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2739. type != INTR_TYPE_EXT_INTR &&
  2740. type != INTR_TYPE_NMI_INTR))
  2741. skip_emulated_instruction(vcpu);
  2742. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2743. return 0;
  2744. /* clear all local breakpoint enable flags */
  2745. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2746. /*
  2747. * TODO: What about debug traps on tss switch?
  2748. * Are we supposed to inject them and update dr6?
  2749. */
  2750. return 1;
  2751. }
  2752. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2753. {
  2754. unsigned long exit_qualification;
  2755. gpa_t gpa;
  2756. int gla_validity;
  2757. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2758. if (exit_qualification & (1 << 6)) {
  2759. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2760. return -EINVAL;
  2761. }
  2762. gla_validity = (exit_qualification >> 7) & 0x3;
  2763. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2764. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2765. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2766. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2767. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2768. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2769. (long unsigned int)exit_qualification);
  2770. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2771. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2772. return 0;
  2773. }
  2774. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2775. trace_kvm_page_fault(gpa, exit_qualification);
  2776. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2777. }
  2778. static u64 ept_rsvd_mask(u64 spte, int level)
  2779. {
  2780. int i;
  2781. u64 mask = 0;
  2782. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2783. mask |= (1ULL << i);
  2784. if (level > 2)
  2785. /* bits 7:3 reserved */
  2786. mask |= 0xf8;
  2787. else if (level == 2) {
  2788. if (spte & (1ULL << 7))
  2789. /* 2MB ref, bits 20:12 reserved */
  2790. mask |= 0x1ff000;
  2791. else
  2792. /* bits 6:3 reserved */
  2793. mask |= 0x78;
  2794. }
  2795. return mask;
  2796. }
  2797. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2798. int level)
  2799. {
  2800. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2801. /* 010b (write-only) */
  2802. WARN_ON((spte & 0x7) == 0x2);
  2803. /* 110b (write/execute) */
  2804. WARN_ON((spte & 0x7) == 0x6);
  2805. /* 100b (execute-only) and value not supported by logical processor */
  2806. if (!cpu_has_vmx_ept_execute_only())
  2807. WARN_ON((spte & 0x7) == 0x4);
  2808. /* not 000b */
  2809. if ((spte & 0x7)) {
  2810. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2811. if (rsvd_bits != 0) {
  2812. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2813. __func__, rsvd_bits);
  2814. WARN_ON(1);
  2815. }
  2816. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2817. u64 ept_mem_type = (spte & 0x38) >> 3;
  2818. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2819. ept_mem_type == 7) {
  2820. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2821. __func__, ept_mem_type);
  2822. WARN_ON(1);
  2823. }
  2824. }
  2825. }
  2826. }
  2827. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2828. {
  2829. u64 sptes[4];
  2830. int nr_sptes, i;
  2831. gpa_t gpa;
  2832. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2833. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2834. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2835. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2836. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2837. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2838. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2839. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2840. return 0;
  2841. }
  2842. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2843. {
  2844. u32 cpu_based_vm_exec_control;
  2845. /* clear pending NMI */
  2846. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2847. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2848. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2849. ++vcpu->stat.nmi_window_exits;
  2850. return 1;
  2851. }
  2852. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2853. {
  2854. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2855. enum emulation_result err = EMULATE_DONE;
  2856. int ret = 1;
  2857. while (!guest_state_valid(vcpu)) {
  2858. err = emulate_instruction(vcpu, 0, 0, 0);
  2859. if (err == EMULATE_DO_MMIO) {
  2860. ret = 0;
  2861. goto out;
  2862. }
  2863. if (err != EMULATE_DONE) {
  2864. kvm_report_emulation_failure(vcpu, "emulation failure");
  2865. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2866. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2867. ret = 0;
  2868. goto out;
  2869. }
  2870. if (signal_pending(current))
  2871. goto out;
  2872. if (need_resched())
  2873. schedule();
  2874. }
  2875. vmx->emulation_required = 0;
  2876. out:
  2877. return ret;
  2878. }
  2879. /*
  2880. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2881. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2882. */
  2883. static int handle_pause(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2884. {
  2885. skip_emulated_instruction(vcpu);
  2886. kvm_vcpu_on_spin(vcpu);
  2887. return 1;
  2888. }
  2889. /*
  2890. * The exit handlers return 1 if the exit was handled fully and guest execution
  2891. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2892. * to be done to userspace and return 0.
  2893. */
  2894. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2895. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2896. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2897. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2898. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2899. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2900. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2901. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2902. [EXIT_REASON_CPUID] = handle_cpuid,
  2903. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2904. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2905. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2906. [EXIT_REASON_HLT] = handle_halt,
  2907. [EXIT_REASON_INVLPG] = handle_invlpg,
  2908. [EXIT_REASON_VMCALL] = handle_vmcall,
  2909. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2910. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2911. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2912. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2913. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2914. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2915. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2916. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2917. [EXIT_REASON_VMON] = handle_vmx_insn,
  2918. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2919. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2920. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2921. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2922. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2923. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2924. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2925. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2926. };
  2927. static const int kvm_vmx_max_exit_handlers =
  2928. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2929. /*
  2930. * The guest has exited. See if we can fix it or if we need userspace
  2931. * assistance.
  2932. */
  2933. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2934. {
  2935. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2936. u32 exit_reason = vmx->exit_reason;
  2937. u32 vectoring_info = vmx->idt_vectoring_info;
  2938. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2939. /* If guest state is invalid, start emulating */
  2940. if (vmx->emulation_required && emulate_invalid_guest_state)
  2941. return handle_invalid_guest_state(vcpu);
  2942. /* Access CR3 don't cause VMExit in paging mode, so we need
  2943. * to sync with guest real CR3. */
  2944. if (enable_ept && is_paging(vcpu))
  2945. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2946. if (unlikely(vmx->fail)) {
  2947. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2948. vcpu->run->fail_entry.hardware_entry_failure_reason
  2949. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2950. return 0;
  2951. }
  2952. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2953. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2954. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2955. exit_reason != EXIT_REASON_TASK_SWITCH))
  2956. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2957. "(0x%x) and exit reason is 0x%x\n",
  2958. __func__, vectoring_info, exit_reason);
  2959. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2960. if (vmx_interrupt_allowed(vcpu)) {
  2961. vmx->soft_vnmi_blocked = 0;
  2962. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2963. vcpu->arch.nmi_pending) {
  2964. /*
  2965. * This CPU don't support us in finding the end of an
  2966. * NMI-blocked window if the guest runs with IRQs
  2967. * disabled. So we pull the trigger after 1 s of
  2968. * futile waiting, but inform the user about this.
  2969. */
  2970. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2971. "state on VCPU %d after 1 s timeout\n",
  2972. __func__, vcpu->vcpu_id);
  2973. vmx->soft_vnmi_blocked = 0;
  2974. }
  2975. }
  2976. if (exit_reason < kvm_vmx_max_exit_handlers
  2977. && kvm_vmx_exit_handlers[exit_reason])
  2978. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  2979. else {
  2980. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2981. vcpu->run->hw.hardware_exit_reason = exit_reason;
  2982. }
  2983. return 0;
  2984. }
  2985. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2986. {
  2987. if (irr == -1 || tpr < irr) {
  2988. vmcs_write32(TPR_THRESHOLD, 0);
  2989. return;
  2990. }
  2991. vmcs_write32(TPR_THRESHOLD, irr);
  2992. }
  2993. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2994. {
  2995. u32 exit_intr_info;
  2996. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2997. bool unblock_nmi;
  2998. u8 vector;
  2999. int type;
  3000. bool idtv_info_valid;
  3001. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3002. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3003. /* Handle machine checks before interrupts are enabled */
  3004. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3005. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3006. && is_machine_check(exit_intr_info)))
  3007. kvm_machine_check();
  3008. /* We need to handle NMIs before interrupts are enabled */
  3009. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3010. (exit_intr_info & INTR_INFO_VALID_MASK))
  3011. asm("int $2");
  3012. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3013. if (cpu_has_virtual_nmis()) {
  3014. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3015. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3016. /*
  3017. * SDM 3: 27.7.1.2 (September 2008)
  3018. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3019. * a guest IRET fault.
  3020. * SDM 3: 23.2.2 (September 2008)
  3021. * Bit 12 is undefined in any of the following cases:
  3022. * If the VM exit sets the valid bit in the IDT-vectoring
  3023. * information field.
  3024. * If the VM exit is due to a double fault.
  3025. */
  3026. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3027. vector != DF_VECTOR && !idtv_info_valid)
  3028. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3029. GUEST_INTR_STATE_NMI);
  3030. } else if (unlikely(vmx->soft_vnmi_blocked))
  3031. vmx->vnmi_blocked_time +=
  3032. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3033. vmx->vcpu.arch.nmi_injected = false;
  3034. kvm_clear_exception_queue(&vmx->vcpu);
  3035. kvm_clear_interrupt_queue(&vmx->vcpu);
  3036. if (!idtv_info_valid)
  3037. return;
  3038. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3039. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3040. switch (type) {
  3041. case INTR_TYPE_NMI_INTR:
  3042. vmx->vcpu.arch.nmi_injected = true;
  3043. /*
  3044. * SDM 3: 27.7.1.2 (September 2008)
  3045. * Clear bit "block by NMI" before VM entry if a NMI
  3046. * delivery faulted.
  3047. */
  3048. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3049. GUEST_INTR_STATE_NMI);
  3050. break;
  3051. case INTR_TYPE_SOFT_EXCEPTION:
  3052. vmx->vcpu.arch.event_exit_inst_len =
  3053. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3054. /* fall through */
  3055. case INTR_TYPE_HARD_EXCEPTION:
  3056. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3057. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3058. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3059. } else
  3060. kvm_queue_exception(&vmx->vcpu, vector);
  3061. break;
  3062. case INTR_TYPE_SOFT_INTR:
  3063. vmx->vcpu.arch.event_exit_inst_len =
  3064. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3065. /* fall through */
  3066. case INTR_TYPE_EXT_INTR:
  3067. kvm_queue_interrupt(&vmx->vcpu, vector,
  3068. type == INTR_TYPE_SOFT_INTR);
  3069. break;
  3070. default:
  3071. break;
  3072. }
  3073. }
  3074. /*
  3075. * Failure to inject an interrupt should give us the information
  3076. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3077. * when fetching the interrupt redirection bitmap in the real-mode
  3078. * tss, this doesn't happen. So we do it ourselves.
  3079. */
  3080. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3081. {
  3082. vmx->rmode.irq.pending = 0;
  3083. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3084. return;
  3085. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3086. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3087. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3088. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3089. return;
  3090. }
  3091. vmx->idt_vectoring_info =
  3092. VECTORING_INFO_VALID_MASK
  3093. | INTR_TYPE_EXT_INTR
  3094. | vmx->rmode.irq.vector;
  3095. }
  3096. #ifdef CONFIG_X86_64
  3097. #define R "r"
  3098. #define Q "q"
  3099. #else
  3100. #define R "e"
  3101. #define Q "l"
  3102. #endif
  3103. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3104. {
  3105. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3106. if (enable_ept && is_paging(vcpu)) {
  3107. vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
  3108. ept_load_pdptrs(vcpu);
  3109. }
  3110. /* Record the guest's net vcpu time for enforced NMI injections. */
  3111. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3112. vmx->entry_time = ktime_get();
  3113. /* Don't enter VMX if guest state is invalid, let the exit handler
  3114. start emulation until we arrive back to a valid state */
  3115. if (vmx->emulation_required && emulate_invalid_guest_state)
  3116. return;
  3117. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3118. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3119. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3120. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3121. /* When single-stepping over STI and MOV SS, we must clear the
  3122. * corresponding interruptibility bits in the guest state. Otherwise
  3123. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3124. * exceptions being set, but that's not correct for the guest debugging
  3125. * case. */
  3126. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3127. vmx_set_interrupt_shadow(vcpu, 0);
  3128. /*
  3129. * Loading guest fpu may have cleared host cr0.ts
  3130. */
  3131. vmcs_writel(HOST_CR0, read_cr0());
  3132. if (vcpu->arch.switch_db_regs)
  3133. set_debugreg(vcpu->arch.dr6, 6);
  3134. asm(
  3135. /* Store host registers */
  3136. "push %%"R"dx; push %%"R"bp;"
  3137. "push %%"R"cx \n\t"
  3138. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3139. "je 1f \n\t"
  3140. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3141. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3142. "1: \n\t"
  3143. /* Reload cr2 if changed */
  3144. "mov %c[cr2](%0), %%"R"ax \n\t"
  3145. "mov %%cr2, %%"R"dx \n\t"
  3146. "cmp %%"R"ax, %%"R"dx \n\t"
  3147. "je 2f \n\t"
  3148. "mov %%"R"ax, %%cr2 \n\t"
  3149. "2: \n\t"
  3150. /* Check if vmlaunch of vmresume is needed */
  3151. "cmpl $0, %c[launched](%0) \n\t"
  3152. /* Load guest registers. Don't clobber flags. */
  3153. "mov %c[rax](%0), %%"R"ax \n\t"
  3154. "mov %c[rbx](%0), %%"R"bx \n\t"
  3155. "mov %c[rdx](%0), %%"R"dx \n\t"
  3156. "mov %c[rsi](%0), %%"R"si \n\t"
  3157. "mov %c[rdi](%0), %%"R"di \n\t"
  3158. "mov %c[rbp](%0), %%"R"bp \n\t"
  3159. #ifdef CONFIG_X86_64
  3160. "mov %c[r8](%0), %%r8 \n\t"
  3161. "mov %c[r9](%0), %%r9 \n\t"
  3162. "mov %c[r10](%0), %%r10 \n\t"
  3163. "mov %c[r11](%0), %%r11 \n\t"
  3164. "mov %c[r12](%0), %%r12 \n\t"
  3165. "mov %c[r13](%0), %%r13 \n\t"
  3166. "mov %c[r14](%0), %%r14 \n\t"
  3167. "mov %c[r15](%0), %%r15 \n\t"
  3168. #endif
  3169. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3170. /* Enter guest mode */
  3171. "jne .Llaunched \n\t"
  3172. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3173. "jmp .Lkvm_vmx_return \n\t"
  3174. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3175. ".Lkvm_vmx_return: "
  3176. /* Save guest registers, load host registers, keep flags */
  3177. "xchg %0, (%%"R"sp) \n\t"
  3178. "mov %%"R"ax, %c[rax](%0) \n\t"
  3179. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3180. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3181. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3182. "mov %%"R"si, %c[rsi](%0) \n\t"
  3183. "mov %%"R"di, %c[rdi](%0) \n\t"
  3184. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3185. #ifdef CONFIG_X86_64
  3186. "mov %%r8, %c[r8](%0) \n\t"
  3187. "mov %%r9, %c[r9](%0) \n\t"
  3188. "mov %%r10, %c[r10](%0) \n\t"
  3189. "mov %%r11, %c[r11](%0) \n\t"
  3190. "mov %%r12, %c[r12](%0) \n\t"
  3191. "mov %%r13, %c[r13](%0) \n\t"
  3192. "mov %%r14, %c[r14](%0) \n\t"
  3193. "mov %%r15, %c[r15](%0) \n\t"
  3194. #endif
  3195. "mov %%cr2, %%"R"ax \n\t"
  3196. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3197. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3198. "setbe %c[fail](%0) \n\t"
  3199. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3200. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3201. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3202. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3203. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3204. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3205. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3206. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3207. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3208. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3209. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3210. #ifdef CONFIG_X86_64
  3211. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3212. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3213. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3214. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3215. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3216. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3217. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3218. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3219. #endif
  3220. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3221. : "cc", "memory"
  3222. , R"bx", R"di", R"si"
  3223. #ifdef CONFIG_X86_64
  3224. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3225. #endif
  3226. );
  3227. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3228. | (1 << VCPU_EXREG_PDPTR));
  3229. vcpu->arch.regs_dirty = 0;
  3230. if (vcpu->arch.switch_db_regs)
  3231. get_debugreg(vcpu->arch.dr6, 6);
  3232. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3233. if (vmx->rmode.irq.pending)
  3234. fixup_rmode_irq(vmx);
  3235. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3236. vmx->launched = 1;
  3237. vmx_complete_interrupts(vmx);
  3238. }
  3239. #undef R
  3240. #undef Q
  3241. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3242. {
  3243. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3244. if (vmx->vmcs) {
  3245. vcpu_clear(vmx);
  3246. free_vmcs(vmx->vmcs);
  3247. vmx->vmcs = NULL;
  3248. }
  3249. }
  3250. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3251. {
  3252. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3253. spin_lock(&vmx_vpid_lock);
  3254. if (vmx->vpid != 0)
  3255. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3256. spin_unlock(&vmx_vpid_lock);
  3257. vmx_free_vmcs(vcpu);
  3258. kfree(vmx->host_msrs);
  3259. kfree(vmx->guest_msrs);
  3260. kvm_vcpu_uninit(vcpu);
  3261. kmem_cache_free(kvm_vcpu_cache, vmx);
  3262. }
  3263. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3264. {
  3265. int err;
  3266. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3267. int cpu;
  3268. if (!vmx)
  3269. return ERR_PTR(-ENOMEM);
  3270. allocate_vpid(vmx);
  3271. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3272. if (err)
  3273. goto free_vcpu;
  3274. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3275. if (!vmx->guest_msrs) {
  3276. err = -ENOMEM;
  3277. goto uninit_vcpu;
  3278. }
  3279. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3280. if (!vmx->host_msrs)
  3281. goto free_guest_msrs;
  3282. vmx->vmcs = alloc_vmcs();
  3283. if (!vmx->vmcs)
  3284. goto free_msrs;
  3285. vmcs_clear(vmx->vmcs);
  3286. cpu = get_cpu();
  3287. vmx_vcpu_load(&vmx->vcpu, cpu);
  3288. err = vmx_vcpu_setup(vmx);
  3289. vmx_vcpu_put(&vmx->vcpu);
  3290. put_cpu();
  3291. if (err)
  3292. goto free_vmcs;
  3293. if (vm_need_virtualize_apic_accesses(kvm))
  3294. if (alloc_apic_access_page(kvm) != 0)
  3295. goto free_vmcs;
  3296. if (enable_ept) {
  3297. if (!kvm->arch.ept_identity_map_addr)
  3298. kvm->arch.ept_identity_map_addr =
  3299. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3300. if (alloc_identity_pagetable(kvm) != 0)
  3301. goto free_vmcs;
  3302. }
  3303. return &vmx->vcpu;
  3304. free_vmcs:
  3305. free_vmcs(vmx->vmcs);
  3306. free_msrs:
  3307. kfree(vmx->host_msrs);
  3308. free_guest_msrs:
  3309. kfree(vmx->guest_msrs);
  3310. uninit_vcpu:
  3311. kvm_vcpu_uninit(&vmx->vcpu);
  3312. free_vcpu:
  3313. kmem_cache_free(kvm_vcpu_cache, vmx);
  3314. return ERR_PTR(err);
  3315. }
  3316. static void __init vmx_check_processor_compat(void *rtn)
  3317. {
  3318. struct vmcs_config vmcs_conf;
  3319. *(int *)rtn = 0;
  3320. if (setup_vmcs_config(&vmcs_conf) < 0)
  3321. *(int *)rtn = -EIO;
  3322. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3323. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3324. smp_processor_id());
  3325. *(int *)rtn = -EIO;
  3326. }
  3327. }
  3328. static int get_ept_level(void)
  3329. {
  3330. return VMX_EPT_DEFAULT_GAW + 1;
  3331. }
  3332. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3333. {
  3334. u64 ret;
  3335. /* For VT-d and EPT combination
  3336. * 1. MMIO: always map as UC
  3337. * 2. EPT with VT-d:
  3338. * a. VT-d without snooping control feature: can't guarantee the
  3339. * result, try to trust guest.
  3340. * b. VT-d with snooping control feature: snooping control feature of
  3341. * VT-d engine can guarantee the cache correctness. Just set it
  3342. * to WB to keep consistent with host. So the same as item 3.
  3343. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3344. * consistent with host MTRR
  3345. */
  3346. if (is_mmio)
  3347. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3348. else if (vcpu->kvm->arch.iommu_domain &&
  3349. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3350. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3351. VMX_EPT_MT_EPTE_SHIFT;
  3352. else
  3353. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3354. | VMX_EPT_IGMT_BIT;
  3355. return ret;
  3356. }
  3357. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3358. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3359. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3360. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3361. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3362. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3363. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3364. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3365. { EXIT_REASON_CPUID, "cpuid" },
  3366. { EXIT_REASON_MSR_READ, "rdmsr" },
  3367. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3368. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3369. { EXIT_REASON_HLT, "halt" },
  3370. { EXIT_REASON_INVLPG, "invlpg" },
  3371. { EXIT_REASON_VMCALL, "hypercall" },
  3372. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3373. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3374. { EXIT_REASON_WBINVD, "wbinvd" },
  3375. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3376. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3377. { -1, NULL }
  3378. };
  3379. static bool vmx_gb_page_enable(void)
  3380. {
  3381. return false;
  3382. }
  3383. static struct kvm_x86_ops vmx_x86_ops = {
  3384. .cpu_has_kvm_support = cpu_has_kvm_support,
  3385. .disabled_by_bios = vmx_disabled_by_bios,
  3386. .hardware_setup = hardware_setup,
  3387. .hardware_unsetup = hardware_unsetup,
  3388. .check_processor_compatibility = vmx_check_processor_compat,
  3389. .hardware_enable = hardware_enable,
  3390. .hardware_disable = hardware_disable,
  3391. .cpu_has_accelerated_tpr = report_flexpriority,
  3392. .vcpu_create = vmx_create_vcpu,
  3393. .vcpu_free = vmx_free_vcpu,
  3394. .vcpu_reset = vmx_vcpu_reset,
  3395. .prepare_guest_switch = vmx_save_host_state,
  3396. .vcpu_load = vmx_vcpu_load,
  3397. .vcpu_put = vmx_vcpu_put,
  3398. .set_guest_debug = set_guest_debug,
  3399. .get_msr = vmx_get_msr,
  3400. .set_msr = vmx_set_msr,
  3401. .get_segment_base = vmx_get_segment_base,
  3402. .get_segment = vmx_get_segment,
  3403. .set_segment = vmx_set_segment,
  3404. .get_cpl = vmx_get_cpl,
  3405. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3406. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3407. .set_cr0 = vmx_set_cr0,
  3408. .set_cr3 = vmx_set_cr3,
  3409. .set_cr4 = vmx_set_cr4,
  3410. .set_efer = vmx_set_efer,
  3411. .get_idt = vmx_get_idt,
  3412. .set_idt = vmx_set_idt,
  3413. .get_gdt = vmx_get_gdt,
  3414. .set_gdt = vmx_set_gdt,
  3415. .cache_reg = vmx_cache_reg,
  3416. .get_rflags = vmx_get_rflags,
  3417. .set_rflags = vmx_set_rflags,
  3418. .tlb_flush = vmx_flush_tlb,
  3419. .run = vmx_vcpu_run,
  3420. .handle_exit = vmx_handle_exit,
  3421. .skip_emulated_instruction = skip_emulated_instruction,
  3422. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3423. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3424. .patch_hypercall = vmx_patch_hypercall,
  3425. .set_irq = vmx_inject_irq,
  3426. .set_nmi = vmx_inject_nmi,
  3427. .queue_exception = vmx_queue_exception,
  3428. .interrupt_allowed = vmx_interrupt_allowed,
  3429. .nmi_allowed = vmx_nmi_allowed,
  3430. .enable_nmi_window = enable_nmi_window,
  3431. .enable_irq_window = enable_irq_window,
  3432. .update_cr8_intercept = update_cr8_intercept,
  3433. .set_tss_addr = vmx_set_tss_addr,
  3434. .get_tdp_level = get_ept_level,
  3435. .get_mt_mask = vmx_get_mt_mask,
  3436. .exit_reasons_str = vmx_exit_reasons_str,
  3437. .gb_page_enable = vmx_gb_page_enable,
  3438. };
  3439. static int __init vmx_init(void)
  3440. {
  3441. int r;
  3442. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3443. if (!vmx_io_bitmap_a)
  3444. return -ENOMEM;
  3445. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3446. if (!vmx_io_bitmap_b) {
  3447. r = -ENOMEM;
  3448. goto out;
  3449. }
  3450. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3451. if (!vmx_msr_bitmap_legacy) {
  3452. r = -ENOMEM;
  3453. goto out1;
  3454. }
  3455. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3456. if (!vmx_msr_bitmap_longmode) {
  3457. r = -ENOMEM;
  3458. goto out2;
  3459. }
  3460. /*
  3461. * Allow direct access to the PC debug port (it is often used for I/O
  3462. * delays, but the vmexits simply slow things down).
  3463. */
  3464. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3465. clear_bit(0x80, vmx_io_bitmap_a);
  3466. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3467. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3468. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3469. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3470. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3471. if (r)
  3472. goto out3;
  3473. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3474. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3475. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3476. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3477. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3478. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3479. if (enable_ept) {
  3480. bypass_guest_pf = 0;
  3481. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3482. VMX_EPT_WRITABLE_MASK);
  3483. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3484. VMX_EPT_EXECUTABLE_MASK);
  3485. kvm_enable_tdp();
  3486. } else
  3487. kvm_disable_tdp();
  3488. if (bypass_guest_pf)
  3489. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3490. return 0;
  3491. out3:
  3492. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3493. out2:
  3494. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3495. out1:
  3496. free_page((unsigned long)vmx_io_bitmap_b);
  3497. out:
  3498. free_page((unsigned long)vmx_io_bitmap_a);
  3499. return r;
  3500. }
  3501. static void __exit vmx_exit(void)
  3502. {
  3503. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3504. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3505. free_page((unsigned long)vmx_io_bitmap_b);
  3506. free_page((unsigned long)vmx_io_bitmap_a);
  3507. kvm_exit();
  3508. }
  3509. module_init(vmx_init)
  3510. module_exit(vmx_exit)