time.c 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. #include <linux/types.h>
  2. #include <linux/interrupt.h>
  3. #include <linux/time.h>
  4. #include <asm/sni.h>
  5. #include <asm/time.h>
  6. #include <asm-generic/rtc.h>
  7. #define SNI_CLOCK_TICK_RATE 3686400
  8. #define SNI_COUNTER2_DIV 64
  9. #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
  10. static void sni_a20r_timer_ack(void)
  11. {
  12. *(volatile u8 *)A20R_PT_TIM0_ACK = 0x0; wmb();
  13. }
  14. /*
  15. * a20r platform uses 2 counters to divide the input frequency.
  16. * Counter 2 output is connected to Counter 0 & 1 input.
  17. */
  18. static void __init sni_a20r_timer_setup(struct irqaction *irq)
  19. {
  20. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; wmb();
  21. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV) & 0xff; wmb();
  22. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV >> 8) & 0xff; wmb();
  23. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; wmb();
  24. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV) & 0xff; wmb();
  25. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV >> 8) & 0xff; wmb();
  26. setup_irq(SNI_A20R_IRQ_TIMER, irq);
  27. mips_timer_ack = sni_a20r_timer_ack;
  28. }
  29. #define SNI_8254_TICK_RATE 1193182UL
  30. #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
  31. static __init unsigned long dosample(void)
  32. {
  33. u32 ct0, ct1;
  34. volatile u8 msb, lsb;
  35. /* Start the counter. */
  36. outb_p (0x34, 0x43);
  37. outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
  38. outb (SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
  39. /* Get initial counter invariant */
  40. ct0 = read_c0_count();
  41. /* Latch and spin until top byte of counter0 is zero */
  42. do {
  43. outb (0x00, 0x43);
  44. lsb = inb (0x40);
  45. msb = inb (0x40);
  46. ct1 = read_c0_count();
  47. } while (msb);
  48. /* Stop the counter. */
  49. outb (0x38, 0x43);
  50. /*
  51. * Return the difference, this is how far the r4k counter increments
  52. * for every 1/HZ seconds. We round off the nearest 1 MHz of master
  53. * clock (= 1000000 / HZ / 2).
  54. */
  55. /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
  56. return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
  57. }
  58. /*
  59. * Here we need to calibrate the cycle counter to at least be close.
  60. */
  61. void __init plat_time_init(void)
  62. {
  63. unsigned long r4k_ticks[3];
  64. unsigned long r4k_tick;
  65. /*
  66. * Figure out the r4k offset, the algorithm is very simple and works in
  67. * _all_ cases as long as the 8254 counter register itself works ok (as
  68. * an interrupt driving timer it does not because of bug, this is why
  69. * we are using the onchip r4k counter/compare register to serve this
  70. * purpose, but for r4k_offset calculation it will work ok for us).
  71. * There are other very complicated ways of performing this calculation
  72. * but this one works just fine so I am not going to futz around. ;-)
  73. */
  74. printk(KERN_INFO "Calibrating system timer... ");
  75. dosample(); /* Prime cache. */
  76. dosample(); /* Prime cache. */
  77. /* Zero is NOT an option. */
  78. do {
  79. r4k_ticks[0] = dosample();
  80. } while (!r4k_ticks[0]);
  81. do {
  82. r4k_ticks[1] = dosample();
  83. } while (!r4k_ticks[1]);
  84. if (r4k_ticks[0] != r4k_ticks[1]) {
  85. printk("warning: timer counts differ, retrying... ");
  86. r4k_ticks[2] = dosample();
  87. if (r4k_ticks[2] == r4k_ticks[0]
  88. || r4k_ticks[2] == r4k_ticks[1])
  89. r4k_tick = r4k_ticks[2];
  90. else {
  91. printk("disagreement, using average... ");
  92. r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
  93. + r4k_ticks[2]) / 3;
  94. }
  95. } else
  96. r4k_tick = r4k_ticks[0];
  97. printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
  98. (int) (r4k_tick / (500000 / HZ)),
  99. (int) (r4k_tick % (500000 / HZ)));
  100. mips_hpt_frequency = r4k_tick * HZ;
  101. }
  102. /*
  103. * R4k counter based timer interrupt. Works on RM200-225 and possibly
  104. * others but not on RM400
  105. */
  106. static void __init sni_cpu_timer_setup(struct irqaction *irq)
  107. {
  108. setup_irq(SNI_MIPS_IRQ_CPU_TIMER, irq);
  109. }
  110. void __init plat_timer_setup(struct irqaction *irq)
  111. {
  112. switch (sni_brd_type) {
  113. case SNI_BRD_10:
  114. case SNI_BRD_10NEW:
  115. case SNI_BRD_TOWER_OASIC:
  116. case SNI_BRD_MINITOWER:
  117. sni_a20r_timer_setup (irq);
  118. break;
  119. case SNI_BRD_PCI_TOWER:
  120. case SNI_BRD_RM200:
  121. case SNI_BRD_PCI_MTOWER:
  122. case SNI_BRD_PCI_DESKTOP:
  123. case SNI_BRD_PCI_TOWER_CPLUS:
  124. case SNI_BRD_PCI_MTOWER_CPLUS:
  125. sni_cpu_timer_setup (irq);
  126. break;
  127. }
  128. }
  129. unsigned long read_persistent_clock(void)
  130. {
  131. return -1;
  132. }