mm.h 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. struct mempolicy;
  13. struct anon_vma;
  14. struct file_ra_state;
  15. struct user_struct;
  16. struct writeback_control;
  17. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  18. extern unsigned long max_mapnr;
  19. #endif
  20. extern unsigned long num_physpages;
  21. extern void * high_memory;
  22. extern int page_cluster;
  23. #ifdef CONFIG_SYSCTL
  24. extern int sysctl_legacy_va_layout;
  25. #else
  26. #define sysctl_legacy_va_layout 0
  27. #endif
  28. #include <asm/page.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/processor.h>
  31. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  32. /*
  33. * Linux kernel virtual memory manager primitives.
  34. * The idea being to have a "virtual" mm in the same way
  35. * we have a virtual fs - giving a cleaner interface to the
  36. * mm details, and allowing different kinds of memory mappings
  37. * (from shared memory to executable loading to arbitrary
  38. * mmap() functions).
  39. */
  40. extern struct kmem_cache *vm_area_cachep;
  41. /*
  42. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  43. * disabled, then there's a single shared list of VMAs maintained by the
  44. * system, and mm's subscribe to these individually
  45. */
  46. struct vm_list_struct {
  47. struct vm_list_struct *next;
  48. struct vm_area_struct *vma;
  49. };
  50. #ifndef CONFIG_MMU
  51. extern struct rb_root nommu_vma_tree;
  52. extern struct rw_semaphore nommu_vma_sem;
  53. extern unsigned int kobjsize(const void *objp);
  54. #endif
  55. /*
  56. * vm_flags..
  57. */
  58. #define VM_READ 0x00000001 /* currently active flags */
  59. #define VM_WRITE 0x00000002
  60. #define VM_EXEC 0x00000004
  61. #define VM_SHARED 0x00000008
  62. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  63. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  64. #define VM_MAYWRITE 0x00000020
  65. #define VM_MAYEXEC 0x00000040
  66. #define VM_MAYSHARE 0x00000080
  67. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  68. #define VM_GROWSUP 0x00000200
  69. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  70. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  71. #define VM_EXECUTABLE 0x00001000
  72. #define VM_LOCKED 0x00002000
  73. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  74. /* Used by sys_madvise() */
  75. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  76. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  77. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  78. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  79. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  80. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  81. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  82. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  83. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  84. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  85. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  86. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  87. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  88. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  89. #endif
  90. #ifdef CONFIG_STACK_GROWSUP
  91. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  92. #else
  93. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  94. #endif
  95. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  96. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  97. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  98. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  99. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  100. /*
  101. * mapping from the currently active vm_flags protection bits (the
  102. * low four bits) to a page protection mask..
  103. */
  104. extern pgprot_t protection_map[16];
  105. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  106. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  107. /*
  108. * vm_fault is filled by the the pagefault handler and passed to the vma's
  109. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  110. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  111. *
  112. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  113. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  114. * mapping support.
  115. */
  116. struct vm_fault {
  117. unsigned int flags; /* FAULT_FLAG_xxx flags */
  118. pgoff_t pgoff; /* Logical page offset based on vma */
  119. void __user *virtual_address; /* Faulting virtual address */
  120. struct page *page; /* ->fault handlers should return a
  121. * page here, unless VM_FAULT_NOPAGE
  122. * is set (which is also implied by
  123. * VM_FAULT_ERROR).
  124. */
  125. };
  126. /*
  127. * These are the virtual MM functions - opening of an area, closing and
  128. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  129. * to the functions called when a no-page or a wp-page exception occurs.
  130. */
  131. struct vm_operations_struct {
  132. void (*open)(struct vm_area_struct * area);
  133. void (*close)(struct vm_area_struct * area);
  134. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  135. struct page *(*nopage)(struct vm_area_struct *area,
  136. unsigned long address, int *type);
  137. unsigned long (*nopfn)(struct vm_area_struct *area,
  138. unsigned long address);
  139. /* notification that a previously read-only page is about to become
  140. * writable, if an error is returned it will cause a SIGBUS */
  141. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  142. #ifdef CONFIG_NUMA
  143. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  144. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  145. unsigned long addr);
  146. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  147. const nodemask_t *to, unsigned long flags);
  148. #endif
  149. };
  150. struct mmu_gather;
  151. struct inode;
  152. #define page_private(page) ((page)->private)
  153. #define set_page_private(page, v) ((page)->private = (v))
  154. /*
  155. * FIXME: take this include out, include page-flags.h in
  156. * files which need it (119 of them)
  157. */
  158. #include <linux/page-flags.h>
  159. #ifdef CONFIG_DEBUG_VM
  160. #define VM_BUG_ON(cond) BUG_ON(cond)
  161. #else
  162. #define VM_BUG_ON(condition) do { } while(0)
  163. #endif
  164. /*
  165. * Methods to modify the page usage count.
  166. *
  167. * What counts for a page usage:
  168. * - cache mapping (page->mapping)
  169. * - private data (page->private)
  170. * - page mapped in a task's page tables, each mapping
  171. * is counted separately
  172. *
  173. * Also, many kernel routines increase the page count before a critical
  174. * routine so they can be sure the page doesn't go away from under them.
  175. */
  176. /*
  177. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  178. */
  179. static inline int put_page_testzero(struct page *page)
  180. {
  181. VM_BUG_ON(atomic_read(&page->_count) == 0);
  182. return atomic_dec_and_test(&page->_count);
  183. }
  184. /*
  185. * Try to grab a ref unless the page has a refcount of zero, return false if
  186. * that is the case.
  187. */
  188. static inline int get_page_unless_zero(struct page *page)
  189. {
  190. VM_BUG_ON(PageCompound(page));
  191. return atomic_inc_not_zero(&page->_count);
  192. }
  193. static inline struct page *compound_head(struct page *page)
  194. {
  195. if (unlikely(PageTail(page)))
  196. return page->first_page;
  197. return page;
  198. }
  199. static inline int page_count(struct page *page)
  200. {
  201. return atomic_read(&compound_head(page)->_count);
  202. }
  203. static inline void get_page(struct page *page)
  204. {
  205. page = compound_head(page);
  206. VM_BUG_ON(atomic_read(&page->_count) == 0);
  207. atomic_inc(&page->_count);
  208. }
  209. static inline struct page *virt_to_head_page(const void *x)
  210. {
  211. struct page *page = virt_to_page(x);
  212. return compound_head(page);
  213. }
  214. /*
  215. * Setup the page count before being freed into the page allocator for
  216. * the first time (boot or memory hotplug)
  217. */
  218. static inline void init_page_count(struct page *page)
  219. {
  220. atomic_set(&page->_count, 1);
  221. }
  222. void put_page(struct page *page);
  223. void put_pages_list(struct list_head *pages);
  224. void split_page(struct page *page, unsigned int order);
  225. /*
  226. * Compound pages have a destructor function. Provide a
  227. * prototype for that function and accessor functions.
  228. * These are _only_ valid on the head of a PG_compound page.
  229. */
  230. typedef void compound_page_dtor(struct page *);
  231. static inline void set_compound_page_dtor(struct page *page,
  232. compound_page_dtor *dtor)
  233. {
  234. page[1].lru.next = (void *)dtor;
  235. }
  236. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  237. {
  238. return (compound_page_dtor *)page[1].lru.next;
  239. }
  240. static inline int compound_order(struct page *page)
  241. {
  242. if (!PageHead(page))
  243. return 0;
  244. return (unsigned long)page[1].lru.prev;
  245. }
  246. static inline void set_compound_order(struct page *page, unsigned long order)
  247. {
  248. page[1].lru.prev = (void *)order;
  249. }
  250. /*
  251. * Multiple processes may "see" the same page. E.g. for untouched
  252. * mappings of /dev/null, all processes see the same page full of
  253. * zeroes, and text pages of executables and shared libraries have
  254. * only one copy in memory, at most, normally.
  255. *
  256. * For the non-reserved pages, page_count(page) denotes a reference count.
  257. * page_count() == 0 means the page is free. page->lru is then used for
  258. * freelist management in the buddy allocator.
  259. * page_count() > 0 means the page has been allocated.
  260. *
  261. * Pages are allocated by the slab allocator in order to provide memory
  262. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  263. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  264. * unless a particular usage is carefully commented. (the responsibility of
  265. * freeing the kmalloc memory is the caller's, of course).
  266. *
  267. * A page may be used by anyone else who does a __get_free_page().
  268. * In this case, page_count still tracks the references, and should only
  269. * be used through the normal accessor functions. The top bits of page->flags
  270. * and page->virtual store page management information, but all other fields
  271. * are unused and could be used privately, carefully. The management of this
  272. * page is the responsibility of the one who allocated it, and those who have
  273. * subsequently been given references to it.
  274. *
  275. * The other pages (we may call them "pagecache pages") are completely
  276. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  277. * The following discussion applies only to them.
  278. *
  279. * A pagecache page contains an opaque `private' member, which belongs to the
  280. * page's address_space. Usually, this is the address of a circular list of
  281. * the page's disk buffers. PG_private must be set to tell the VM to call
  282. * into the filesystem to release these pages.
  283. *
  284. * A page may belong to an inode's memory mapping. In this case, page->mapping
  285. * is the pointer to the inode, and page->index is the file offset of the page,
  286. * in units of PAGE_CACHE_SIZE.
  287. *
  288. * If pagecache pages are not associated with an inode, they are said to be
  289. * anonymous pages. These may become associated with the swapcache, and in that
  290. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  291. *
  292. * In either case (swapcache or inode backed), the pagecache itself holds one
  293. * reference to the page. Setting PG_private should also increment the
  294. * refcount. The each user mapping also has a reference to the page.
  295. *
  296. * The pagecache pages are stored in a per-mapping radix tree, which is
  297. * rooted at mapping->page_tree, and indexed by offset.
  298. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  299. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  300. *
  301. * All pagecache pages may be subject to I/O:
  302. * - inode pages may need to be read from disk,
  303. * - inode pages which have been modified and are MAP_SHARED may need
  304. * to be written back to the inode on disk,
  305. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  306. * modified may need to be swapped out to swap space and (later) to be read
  307. * back into memory.
  308. */
  309. /*
  310. * The zone field is never updated after free_area_init_core()
  311. * sets it, so none of the operations on it need to be atomic.
  312. */
  313. /*
  314. * page->flags layout:
  315. *
  316. * There are three possibilities for how page->flags get
  317. * laid out. The first is for the normal case, without
  318. * sparsemem. The second is for sparsemem when there is
  319. * plenty of space for node and section. The last is when
  320. * we have run out of space and have to fall back to an
  321. * alternate (slower) way of determining the node.
  322. *
  323. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  324. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  325. * no space for node: | SECTION | ZONE | ... | FLAGS |
  326. */
  327. #ifdef CONFIG_SPARSEMEM
  328. #define SECTIONS_WIDTH SECTIONS_SHIFT
  329. #else
  330. #define SECTIONS_WIDTH 0
  331. #endif
  332. #define ZONES_WIDTH ZONES_SHIFT
  333. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  334. #define NODES_WIDTH NODES_SHIFT
  335. #else
  336. #define NODES_WIDTH 0
  337. #endif
  338. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  339. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  340. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  341. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  342. /*
  343. * We are going to use the flags for the page to node mapping if its in
  344. * there. This includes the case where there is no node, so it is implicit.
  345. */
  346. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  347. #define NODE_NOT_IN_PAGE_FLAGS
  348. #endif
  349. #ifndef PFN_SECTION_SHIFT
  350. #define PFN_SECTION_SHIFT 0
  351. #endif
  352. /*
  353. * Define the bit shifts to access each section. For non-existant
  354. * sections we define the shift as 0; that plus a 0 mask ensures
  355. * the compiler will optimise away reference to them.
  356. */
  357. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  358. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  359. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  360. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  361. #ifdef NODE_NOT_IN_PAGEFLAGS
  362. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  363. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  364. SECTIONS_PGOFF : ZONES_PGOFF)
  365. #else
  366. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  367. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  368. NODES_PGOFF : ZONES_PGOFF)
  369. #endif
  370. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  371. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  372. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  373. #endif
  374. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  375. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  376. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  377. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  378. static inline enum zone_type page_zonenum(struct page *page)
  379. {
  380. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  381. }
  382. /*
  383. * The identification function is only used by the buddy allocator for
  384. * determining if two pages could be buddies. We are not really
  385. * identifying a zone since we could be using a the section number
  386. * id if we have not node id available in page flags.
  387. * We guarantee only that it will return the same value for two
  388. * combinable pages in a zone.
  389. */
  390. static inline int page_zone_id(struct page *page)
  391. {
  392. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  393. }
  394. static inline int zone_to_nid(struct zone *zone)
  395. {
  396. #ifdef CONFIG_NUMA
  397. return zone->node;
  398. #else
  399. return 0;
  400. #endif
  401. }
  402. #ifdef NODE_NOT_IN_PAGE_FLAGS
  403. extern int page_to_nid(struct page *page);
  404. #else
  405. static inline int page_to_nid(struct page *page)
  406. {
  407. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  408. }
  409. #endif
  410. static inline struct zone *page_zone(struct page *page)
  411. {
  412. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  413. }
  414. static inline unsigned long page_to_section(struct page *page)
  415. {
  416. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  417. }
  418. static inline void set_page_zone(struct page *page, enum zone_type zone)
  419. {
  420. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  421. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  422. }
  423. static inline void set_page_node(struct page *page, unsigned long node)
  424. {
  425. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  426. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  427. }
  428. static inline void set_page_section(struct page *page, unsigned long section)
  429. {
  430. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  431. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  432. }
  433. static inline void set_page_links(struct page *page, enum zone_type zone,
  434. unsigned long node, unsigned long pfn)
  435. {
  436. set_page_zone(page, zone);
  437. set_page_node(page, node);
  438. set_page_section(page, pfn_to_section_nr(pfn));
  439. }
  440. /*
  441. * Some inline functions in vmstat.h depend on page_zone()
  442. */
  443. #include <linux/vmstat.h>
  444. static __always_inline void *lowmem_page_address(struct page *page)
  445. {
  446. return __va(page_to_pfn(page) << PAGE_SHIFT);
  447. }
  448. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  449. #define HASHED_PAGE_VIRTUAL
  450. #endif
  451. #if defined(WANT_PAGE_VIRTUAL)
  452. #define page_address(page) ((page)->virtual)
  453. #define set_page_address(page, address) \
  454. do { \
  455. (page)->virtual = (address); \
  456. } while(0)
  457. #define page_address_init() do { } while(0)
  458. #endif
  459. #if defined(HASHED_PAGE_VIRTUAL)
  460. void *page_address(struct page *page);
  461. void set_page_address(struct page *page, void *virtual);
  462. void page_address_init(void);
  463. #endif
  464. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  465. #define page_address(page) lowmem_page_address(page)
  466. #define set_page_address(page, address) do { } while(0)
  467. #define page_address_init() do { } while(0)
  468. #endif
  469. /*
  470. * On an anonymous page mapped into a user virtual memory area,
  471. * page->mapping points to its anon_vma, not to a struct address_space;
  472. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  473. *
  474. * Please note that, confusingly, "page_mapping" refers to the inode
  475. * address_space which maps the page from disk; whereas "page_mapped"
  476. * refers to user virtual address space into which the page is mapped.
  477. */
  478. #define PAGE_MAPPING_ANON 1
  479. extern struct address_space swapper_space;
  480. static inline struct address_space *page_mapping(struct page *page)
  481. {
  482. struct address_space *mapping = page->mapping;
  483. VM_BUG_ON(PageSlab(page));
  484. if (unlikely(PageSwapCache(page)))
  485. mapping = &swapper_space;
  486. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  487. mapping = NULL;
  488. return mapping;
  489. }
  490. static inline int PageAnon(struct page *page)
  491. {
  492. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  493. }
  494. /*
  495. * Return the pagecache index of the passed page. Regular pagecache pages
  496. * use ->index whereas swapcache pages use ->private
  497. */
  498. static inline pgoff_t page_index(struct page *page)
  499. {
  500. if (unlikely(PageSwapCache(page)))
  501. return page_private(page);
  502. return page->index;
  503. }
  504. /*
  505. * The atomic page->_mapcount, like _count, starts from -1:
  506. * so that transitions both from it and to it can be tracked,
  507. * using atomic_inc_and_test and atomic_add_negative(-1).
  508. */
  509. static inline void reset_page_mapcount(struct page *page)
  510. {
  511. atomic_set(&(page)->_mapcount, -1);
  512. }
  513. static inline int page_mapcount(struct page *page)
  514. {
  515. return atomic_read(&(page)->_mapcount) + 1;
  516. }
  517. /*
  518. * Return true if this page is mapped into pagetables.
  519. */
  520. static inline int page_mapped(struct page *page)
  521. {
  522. return atomic_read(&(page)->_mapcount) >= 0;
  523. }
  524. /*
  525. * Error return values for the *_nopage functions
  526. */
  527. #define NOPAGE_SIGBUS (NULL)
  528. #define NOPAGE_OOM ((struct page *) (-1))
  529. /*
  530. * Error return values for the *_nopfn functions
  531. */
  532. #define NOPFN_SIGBUS ((unsigned long) -1)
  533. #define NOPFN_OOM ((unsigned long) -2)
  534. #define NOPFN_REFAULT ((unsigned long) -3)
  535. /*
  536. * Different kinds of faults, as returned by handle_mm_fault().
  537. * Used to decide whether a process gets delivered SIGBUS or
  538. * just gets major/minor fault counters bumped up.
  539. */
  540. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  541. #define VM_FAULT_OOM 0x0001
  542. #define VM_FAULT_SIGBUS 0x0002
  543. #define VM_FAULT_MAJOR 0x0004
  544. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  545. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  546. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  547. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
  548. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  549. extern void show_free_areas(void);
  550. #ifdef CONFIG_SHMEM
  551. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  552. #else
  553. static inline int shmem_lock(struct file *file, int lock,
  554. struct user_struct *user)
  555. {
  556. return 0;
  557. }
  558. #endif
  559. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  560. int shmem_zero_setup(struct vm_area_struct *);
  561. #ifndef CONFIG_MMU
  562. extern unsigned long shmem_get_unmapped_area(struct file *file,
  563. unsigned long addr,
  564. unsigned long len,
  565. unsigned long pgoff,
  566. unsigned long flags);
  567. #endif
  568. extern int can_do_mlock(void);
  569. extern int user_shm_lock(size_t, struct user_struct *);
  570. extern void user_shm_unlock(size_t, struct user_struct *);
  571. /*
  572. * Parameter block passed down to zap_pte_range in exceptional cases.
  573. */
  574. struct zap_details {
  575. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  576. struct address_space *check_mapping; /* Check page->mapping if set */
  577. pgoff_t first_index; /* Lowest page->index to unmap */
  578. pgoff_t last_index; /* Highest page->index to unmap */
  579. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  580. unsigned long truncate_count; /* Compare vm_truncate_count */
  581. };
  582. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  583. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  584. unsigned long size, struct zap_details *);
  585. unsigned long unmap_vmas(struct mmu_gather **tlb,
  586. struct vm_area_struct *start_vma, unsigned long start_addr,
  587. unsigned long end_addr, unsigned long *nr_accounted,
  588. struct zap_details *);
  589. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  590. unsigned long end, unsigned long floor, unsigned long ceiling);
  591. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  592. unsigned long floor, unsigned long ceiling);
  593. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  594. struct vm_area_struct *vma);
  595. void unmap_mapping_range(struct address_space *mapping,
  596. loff_t const holebegin, loff_t const holelen, int even_cows);
  597. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  598. loff_t const holebegin, loff_t const holelen)
  599. {
  600. unmap_mapping_range(mapping, holebegin, holelen, 0);
  601. }
  602. extern int vmtruncate(struct inode * inode, loff_t offset);
  603. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  604. #ifdef CONFIG_MMU
  605. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  606. unsigned long address, int write_access);
  607. #else
  608. static inline int handle_mm_fault(struct mm_struct *mm,
  609. struct vm_area_struct *vma, unsigned long address,
  610. int write_access)
  611. {
  612. /* should never happen if there's no MMU */
  613. BUG();
  614. return VM_FAULT_SIGBUS;
  615. }
  616. #endif
  617. extern int make_pages_present(unsigned long addr, unsigned long end);
  618. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  619. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  620. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  621. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  622. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  623. extern void do_invalidatepage(struct page *page, unsigned long offset);
  624. int __set_page_dirty_nobuffers(struct page *page);
  625. int __set_page_dirty_no_writeback(struct page *page);
  626. int redirty_page_for_writepage(struct writeback_control *wbc,
  627. struct page *page);
  628. int FASTCALL(set_page_dirty(struct page *page));
  629. int set_page_dirty_lock(struct page *page);
  630. int clear_page_dirty_for_io(struct page *page);
  631. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  632. unsigned long old_addr, struct vm_area_struct *new_vma,
  633. unsigned long new_addr, unsigned long len);
  634. extern unsigned long do_mremap(unsigned long addr,
  635. unsigned long old_len, unsigned long new_len,
  636. unsigned long flags, unsigned long new_addr);
  637. extern int mprotect_fixup(struct vm_area_struct *vma,
  638. struct vm_area_struct **pprev, unsigned long start,
  639. unsigned long end, unsigned long newflags);
  640. /*
  641. * A callback you can register to apply pressure to ageable caches.
  642. *
  643. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  644. * look through the least-recently-used 'nr_to_scan' entries and
  645. * attempt to free them up. It should return the number of objects
  646. * which remain in the cache. If it returns -1, it means it cannot do
  647. * any scanning at this time (eg. there is a risk of deadlock).
  648. *
  649. * The 'gfpmask' refers to the allocation we are currently trying to
  650. * fulfil.
  651. *
  652. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  653. * querying the cache size, so a fastpath for that case is appropriate.
  654. */
  655. struct shrinker {
  656. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  657. int seeks; /* seeks to recreate an obj */
  658. /* These are for internal use */
  659. struct list_head list;
  660. long nr; /* objs pending delete */
  661. };
  662. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  663. extern void register_shrinker(struct shrinker *);
  664. extern void unregister_shrinker(struct shrinker *);
  665. int vma_wants_writenotify(struct vm_area_struct *vma);
  666. extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
  667. #ifdef __PAGETABLE_PUD_FOLDED
  668. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  669. unsigned long address)
  670. {
  671. return 0;
  672. }
  673. #else
  674. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  675. #endif
  676. #ifdef __PAGETABLE_PMD_FOLDED
  677. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  678. unsigned long address)
  679. {
  680. return 0;
  681. }
  682. #else
  683. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  684. #endif
  685. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  686. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  687. /*
  688. * The following ifdef needed to get the 4level-fixup.h header to work.
  689. * Remove it when 4level-fixup.h has been removed.
  690. */
  691. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  692. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  693. {
  694. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  695. NULL: pud_offset(pgd, address);
  696. }
  697. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  698. {
  699. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  700. NULL: pmd_offset(pud, address);
  701. }
  702. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  703. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  704. /*
  705. * We tuck a spinlock to guard each pagetable page into its struct page,
  706. * at page->private, with BUILD_BUG_ON to make sure that this will not
  707. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  708. * When freeing, reset page->mapping so free_pages_check won't complain.
  709. */
  710. #define __pte_lockptr(page) &((page)->ptl)
  711. #define pte_lock_init(_page) do { \
  712. spin_lock_init(__pte_lockptr(_page)); \
  713. } while (0)
  714. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  715. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  716. #else
  717. /*
  718. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  719. */
  720. #define pte_lock_init(page) do {} while (0)
  721. #define pte_lock_deinit(page) do {} while (0)
  722. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  723. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  724. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  725. ({ \
  726. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  727. pte_t *__pte = pte_offset_map(pmd, address); \
  728. *(ptlp) = __ptl; \
  729. spin_lock(__ptl); \
  730. __pte; \
  731. })
  732. #define pte_unmap_unlock(pte, ptl) do { \
  733. spin_unlock(ptl); \
  734. pte_unmap(pte); \
  735. } while (0)
  736. #define pte_alloc_map(mm, pmd, address) \
  737. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  738. NULL: pte_offset_map(pmd, address))
  739. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  740. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  741. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  742. #define pte_alloc_kernel(pmd, address) \
  743. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  744. NULL: pte_offset_kernel(pmd, address))
  745. extern void free_area_init(unsigned long * zones_size);
  746. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  747. unsigned long * zones_size, unsigned long zone_start_pfn,
  748. unsigned long *zholes_size);
  749. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  750. /*
  751. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  752. * zones, allocate the backing mem_map and account for memory holes in a more
  753. * architecture independent manner. This is a substitute for creating the
  754. * zone_sizes[] and zholes_size[] arrays and passing them to
  755. * free_area_init_node()
  756. *
  757. * An architecture is expected to register range of page frames backed by
  758. * physical memory with add_active_range() before calling
  759. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  760. * usage, an architecture is expected to do something like
  761. *
  762. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  763. * max_highmem_pfn};
  764. * for_each_valid_physical_page_range()
  765. * add_active_range(node_id, start_pfn, end_pfn)
  766. * free_area_init_nodes(max_zone_pfns);
  767. *
  768. * If the architecture guarantees that there are no holes in the ranges
  769. * registered with add_active_range(), free_bootmem_active_regions()
  770. * will call free_bootmem_node() for each registered physical page range.
  771. * Similarly sparse_memory_present_with_active_regions() calls
  772. * memory_present() for each range when SPARSEMEM is enabled.
  773. *
  774. * See mm/page_alloc.c for more information on each function exposed by
  775. * CONFIG_ARCH_POPULATES_NODE_MAP
  776. */
  777. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  778. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  779. unsigned long end_pfn);
  780. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  781. unsigned long new_end_pfn);
  782. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  783. unsigned long end_pfn);
  784. extern void remove_all_active_ranges(void);
  785. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  786. unsigned long end_pfn);
  787. extern void get_pfn_range_for_nid(unsigned int nid,
  788. unsigned long *start_pfn, unsigned long *end_pfn);
  789. extern unsigned long find_min_pfn_with_active_regions(void);
  790. extern unsigned long find_max_pfn_with_active_regions(void);
  791. extern void free_bootmem_with_active_regions(int nid,
  792. unsigned long max_low_pfn);
  793. extern void sparse_memory_present_with_active_regions(int nid);
  794. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  795. extern int early_pfn_to_nid(unsigned long pfn);
  796. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  797. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  798. extern void set_dma_reserve(unsigned long new_dma_reserve);
  799. extern void memmap_init_zone(unsigned long, int, unsigned long,
  800. unsigned long, enum memmap_context);
  801. extern void setup_per_zone_pages_min(void);
  802. extern void mem_init(void);
  803. extern void show_mem(void);
  804. extern void si_meminfo(struct sysinfo * val);
  805. extern void si_meminfo_node(struct sysinfo *val, int nid);
  806. #ifdef CONFIG_NUMA
  807. extern void setup_per_cpu_pageset(void);
  808. #else
  809. static inline void setup_per_cpu_pageset(void) {}
  810. #endif
  811. /* prio_tree.c */
  812. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  813. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  814. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  815. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  816. struct prio_tree_iter *iter);
  817. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  818. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  819. (vma = vma_prio_tree_next(vma, iter)); )
  820. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  821. struct list_head *list)
  822. {
  823. vma->shared.vm_set.parent = NULL;
  824. list_add_tail(&vma->shared.vm_set.list, list);
  825. }
  826. /* mmap.c */
  827. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  828. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  829. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  830. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  831. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  832. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  833. struct mempolicy *);
  834. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  835. extern int split_vma(struct mm_struct *,
  836. struct vm_area_struct *, unsigned long addr, int new_below);
  837. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  838. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  839. struct rb_node **, struct rb_node *);
  840. extern void unlink_file_vma(struct vm_area_struct *);
  841. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  842. unsigned long addr, unsigned long len, pgoff_t pgoff);
  843. extern void exit_mmap(struct mm_struct *);
  844. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  845. extern int install_special_mapping(struct mm_struct *mm,
  846. unsigned long addr, unsigned long len,
  847. unsigned long flags, struct page **pages);
  848. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  849. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  850. unsigned long len, unsigned long prot,
  851. unsigned long flag, unsigned long pgoff);
  852. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  853. unsigned long len, unsigned long flags,
  854. unsigned int vm_flags, unsigned long pgoff,
  855. int accountable);
  856. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  857. unsigned long len, unsigned long prot,
  858. unsigned long flag, unsigned long offset)
  859. {
  860. unsigned long ret = -EINVAL;
  861. if ((offset + PAGE_ALIGN(len)) < offset)
  862. goto out;
  863. if (!(offset & ~PAGE_MASK))
  864. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  865. out:
  866. return ret;
  867. }
  868. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  869. extern unsigned long do_brk(unsigned long, unsigned long);
  870. /* filemap.c */
  871. extern unsigned long page_unuse(struct page *);
  872. extern void truncate_inode_pages(struct address_space *, loff_t);
  873. extern void truncate_inode_pages_range(struct address_space *,
  874. loff_t lstart, loff_t lend);
  875. /* generic vm_area_ops exported for stackable file systems */
  876. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  877. /* mm/page-writeback.c */
  878. int write_one_page(struct page *page, int wait);
  879. /* readahead.c */
  880. #define VM_MAX_READAHEAD 128 /* kbytes */
  881. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  882. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  883. pgoff_t offset, unsigned long nr_to_read);
  884. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  885. pgoff_t offset, unsigned long nr_to_read);
  886. void page_cache_sync_readahead(struct address_space *mapping,
  887. struct file_ra_state *ra,
  888. struct file *filp,
  889. pgoff_t offset,
  890. unsigned long size);
  891. void page_cache_async_readahead(struct address_space *mapping,
  892. struct file_ra_state *ra,
  893. struct file *filp,
  894. struct page *pg,
  895. pgoff_t offset,
  896. unsigned long size);
  897. unsigned long max_sane_readahead(unsigned long nr);
  898. /* Do stack extension */
  899. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  900. #ifdef CONFIG_IA64
  901. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  902. #endif
  903. extern int expand_stack_downwards(struct vm_area_struct *vma,
  904. unsigned long address);
  905. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  906. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  907. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  908. struct vm_area_struct **pprev);
  909. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  910. NULL if none. Assume start_addr < end_addr. */
  911. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  912. {
  913. struct vm_area_struct * vma = find_vma(mm,start_addr);
  914. if (vma && end_addr <= vma->vm_start)
  915. vma = NULL;
  916. return vma;
  917. }
  918. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  919. {
  920. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  921. }
  922. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  923. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  924. struct page *vmalloc_to_page(void *addr);
  925. unsigned long vmalloc_to_pfn(void *addr);
  926. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  927. unsigned long pfn, unsigned long size, pgprot_t);
  928. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  929. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  930. unsigned long pfn);
  931. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  932. unsigned int foll_flags);
  933. #define FOLL_WRITE 0x01 /* check pte is writable */
  934. #define FOLL_TOUCH 0x02 /* mark page accessed */
  935. #define FOLL_GET 0x04 /* do get_page on page */
  936. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  937. typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
  938. void *data);
  939. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  940. unsigned long size, pte_fn_t fn, void *data);
  941. #ifdef CONFIG_PROC_FS
  942. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  943. #else
  944. static inline void vm_stat_account(struct mm_struct *mm,
  945. unsigned long flags, struct file *file, long pages)
  946. {
  947. }
  948. #endif /* CONFIG_PROC_FS */
  949. #ifndef CONFIG_DEBUG_PAGEALLOC
  950. static inline void
  951. kernel_map_pages(struct page *page, int numpages, int enable) {}
  952. #endif
  953. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  954. #ifdef __HAVE_ARCH_GATE_AREA
  955. int in_gate_area_no_task(unsigned long addr);
  956. int in_gate_area(struct task_struct *task, unsigned long addr);
  957. #else
  958. int in_gate_area_no_task(unsigned long addr);
  959. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  960. #endif /* __HAVE_ARCH_GATE_AREA */
  961. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  962. void __user *, size_t *, loff_t *);
  963. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  964. unsigned long lru_pages);
  965. void drop_pagecache(void);
  966. void drop_slab(void);
  967. #ifndef CONFIG_MMU
  968. #define randomize_va_space 0
  969. #else
  970. extern int randomize_va_space;
  971. #endif
  972. const char * arch_vma_name(struct vm_area_struct *vma);
  973. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  974. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  975. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  976. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  977. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  978. void *vmemmap_alloc_block(unsigned long size, int node);
  979. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  980. int vmemmap_populate_basepages(struct page *start_page,
  981. unsigned long pages, int node);
  982. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  983. #endif /* __KERNEL__ */
  984. #endif /* _LINUX_MM_H */