cfq-iosched.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* number of requests that are on the dispatch list or inside driver */
  118. int dispatched;
  119. /* io prio of this group */
  120. unsigned short ioprio, org_ioprio;
  121. unsigned short ioprio_class;
  122. pid_t pid;
  123. u32 seek_history;
  124. sector_t last_request_pos;
  125. struct cfq_rb_root *service_tree;
  126. struct cfq_queue *new_cfqq;
  127. struct cfq_group *cfqg;
  128. /* Number of sectors dispatched from queue in single dispatch round */
  129. unsigned long nr_sectors;
  130. };
  131. /*
  132. * First index in the service_trees.
  133. * IDLE is handled separately, so it has negative index
  134. */
  135. enum wl_prio_t {
  136. BE_WORKLOAD = 0,
  137. RT_WORKLOAD = 1,
  138. IDLE_WORKLOAD = 2,
  139. CFQ_PRIO_NR,
  140. };
  141. /*
  142. * Second index in the service_trees.
  143. */
  144. enum wl_type_t {
  145. ASYNC_WORKLOAD = 0,
  146. SYNC_NOIDLE_WORKLOAD = 1,
  147. SYNC_WORKLOAD = 2
  148. };
  149. /* This is per cgroup per device grouping structure */
  150. struct cfq_group {
  151. /* group service_tree member */
  152. struct rb_node rb_node;
  153. /* group service_tree key */
  154. u64 vdisktime;
  155. unsigned int weight;
  156. unsigned int new_weight;
  157. bool needs_update;
  158. /* number of cfqq currently on this group */
  159. int nr_cfqq;
  160. /*
  161. * Per group busy queues average. Useful for workload slice calc. We
  162. * create the array for each prio class but at run time it is used
  163. * only for RT and BE class and slot for IDLE class remains unused.
  164. * This is primarily done to avoid confusion and a gcc warning.
  165. */
  166. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  167. /*
  168. * rr lists of queues with requests. We maintain service trees for
  169. * RT and BE classes. These trees are subdivided in subclasses
  170. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  171. * class there is no subclassification and all the cfq queues go on
  172. * a single tree service_tree_idle.
  173. * Counts are embedded in the cfq_rb_root
  174. */
  175. struct cfq_rb_root service_trees[2][3];
  176. struct cfq_rb_root service_tree_idle;
  177. unsigned long saved_workload_slice;
  178. enum wl_type_t saved_workload;
  179. enum wl_prio_t saved_serving_prio;
  180. struct blkio_group blkg;
  181. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  182. struct hlist_node cfqd_node;
  183. int ref;
  184. #endif
  185. /* number of requests that are on the dispatch list or inside driver */
  186. int dispatched;
  187. };
  188. /*
  189. * Per block device queue structure
  190. */
  191. struct cfq_data {
  192. struct request_queue *queue;
  193. /* Root service tree for cfq_groups */
  194. struct cfq_rb_root grp_service_tree;
  195. struct cfq_group root_group;
  196. /*
  197. * The priority currently being served
  198. */
  199. enum wl_prio_t serving_prio;
  200. enum wl_type_t serving_type;
  201. unsigned long workload_expires;
  202. struct cfq_group *serving_group;
  203. /*
  204. * Each priority tree is sorted by next_request position. These
  205. * trees are used when determining if two or more queues are
  206. * interleaving requests (see cfq_close_cooperator).
  207. */
  208. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  209. unsigned int busy_queues;
  210. unsigned int busy_sync_queues;
  211. int rq_in_driver;
  212. int rq_in_flight[2];
  213. /*
  214. * queue-depth detection
  215. */
  216. int rq_queued;
  217. int hw_tag;
  218. /*
  219. * hw_tag can be
  220. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  221. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  222. * 0 => no NCQ
  223. */
  224. int hw_tag_est_depth;
  225. unsigned int hw_tag_samples;
  226. /*
  227. * idle window management
  228. */
  229. struct timer_list idle_slice_timer;
  230. struct work_struct unplug_work;
  231. struct cfq_queue *active_queue;
  232. struct cfq_io_context *active_cic;
  233. /*
  234. * async queue for each priority case
  235. */
  236. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  237. struct cfq_queue *async_idle_cfqq;
  238. sector_t last_position;
  239. /*
  240. * tunables, see top of file
  241. */
  242. unsigned int cfq_quantum;
  243. unsigned int cfq_fifo_expire[2];
  244. unsigned int cfq_back_penalty;
  245. unsigned int cfq_back_max;
  246. unsigned int cfq_slice[2];
  247. unsigned int cfq_slice_async_rq;
  248. unsigned int cfq_slice_idle;
  249. unsigned int cfq_group_idle;
  250. unsigned int cfq_latency;
  251. unsigned int cic_index;
  252. struct list_head cic_list;
  253. /*
  254. * Fallback dummy cfqq for extreme OOM conditions
  255. */
  256. struct cfq_queue oom_cfqq;
  257. unsigned long last_delayed_sync;
  258. /* List of cfq groups being managed on this device*/
  259. struct hlist_head cfqg_list;
  260. /* Number of groups which are on blkcg->blkg_list */
  261. unsigned int nr_blkcg_linked_grps;
  262. };
  263. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  264. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  265. enum wl_prio_t prio,
  266. enum wl_type_t type)
  267. {
  268. if (!cfqg)
  269. return NULL;
  270. if (prio == IDLE_WORKLOAD)
  271. return &cfqg->service_tree_idle;
  272. return &cfqg->service_trees[prio][type];
  273. }
  274. enum cfqq_state_flags {
  275. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  276. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  277. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  278. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  279. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  280. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  281. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  282. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  283. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  284. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  285. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  286. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  287. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  288. };
  289. #define CFQ_CFQQ_FNS(name) \
  290. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  291. { \
  292. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  293. } \
  294. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  295. { \
  296. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  297. } \
  298. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  299. { \
  300. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  301. }
  302. CFQ_CFQQ_FNS(on_rr);
  303. CFQ_CFQQ_FNS(wait_request);
  304. CFQ_CFQQ_FNS(must_dispatch);
  305. CFQ_CFQQ_FNS(must_alloc_slice);
  306. CFQ_CFQQ_FNS(fifo_expire);
  307. CFQ_CFQQ_FNS(idle_window);
  308. CFQ_CFQQ_FNS(prio_changed);
  309. CFQ_CFQQ_FNS(slice_new);
  310. CFQ_CFQQ_FNS(sync);
  311. CFQ_CFQQ_FNS(coop);
  312. CFQ_CFQQ_FNS(split_coop);
  313. CFQ_CFQQ_FNS(deep);
  314. CFQ_CFQQ_FNS(wait_busy);
  315. #undef CFQ_CFQQ_FNS
  316. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  317. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  318. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  319. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  320. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  321. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  322. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  323. blkg_path(&(cfqg)->blkg), ##args) \
  324. #else
  325. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  326. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  327. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  328. #endif
  329. #define cfq_log(cfqd, fmt, args...) \
  330. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  331. /* Traverses through cfq group service trees */
  332. #define for_each_cfqg_st(cfqg, i, j, st) \
  333. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  334. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  335. : &cfqg->service_tree_idle; \
  336. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  337. (i == IDLE_WORKLOAD && j == 0); \
  338. j++, st = i < IDLE_WORKLOAD ? \
  339. &cfqg->service_trees[i][j]: NULL) \
  340. static inline bool iops_mode(struct cfq_data *cfqd)
  341. {
  342. /*
  343. * If we are not idling on queues and it is a NCQ drive, parallel
  344. * execution of requests is on and measuring time is not possible
  345. * in most of the cases until and unless we drive shallower queue
  346. * depths and that becomes a performance bottleneck. In such cases
  347. * switch to start providing fairness in terms of number of IOs.
  348. */
  349. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  350. return true;
  351. else
  352. return false;
  353. }
  354. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  355. {
  356. if (cfq_class_idle(cfqq))
  357. return IDLE_WORKLOAD;
  358. if (cfq_class_rt(cfqq))
  359. return RT_WORKLOAD;
  360. return BE_WORKLOAD;
  361. }
  362. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  363. {
  364. if (!cfq_cfqq_sync(cfqq))
  365. return ASYNC_WORKLOAD;
  366. if (!cfq_cfqq_idle_window(cfqq))
  367. return SYNC_NOIDLE_WORKLOAD;
  368. return SYNC_WORKLOAD;
  369. }
  370. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  371. struct cfq_data *cfqd,
  372. struct cfq_group *cfqg)
  373. {
  374. if (wl == IDLE_WORKLOAD)
  375. return cfqg->service_tree_idle.count;
  376. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  379. }
  380. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  381. struct cfq_group *cfqg)
  382. {
  383. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  384. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  385. }
  386. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  387. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  388. struct io_context *, gfp_t);
  389. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  390. struct io_context *);
  391. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  392. bool is_sync)
  393. {
  394. return cic->cfqq[is_sync];
  395. }
  396. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  397. struct cfq_queue *cfqq, bool is_sync)
  398. {
  399. cic->cfqq[is_sync] = cfqq;
  400. }
  401. #define CIC_DEAD_KEY 1ul
  402. #define CIC_DEAD_INDEX_SHIFT 1
  403. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  404. {
  405. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  406. }
  407. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  408. {
  409. struct cfq_data *cfqd = cic->key;
  410. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  411. return NULL;
  412. return cfqd;
  413. }
  414. /*
  415. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  416. * set (in which case it could also be direct WRITE).
  417. */
  418. static inline bool cfq_bio_sync(struct bio *bio)
  419. {
  420. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  421. }
  422. /*
  423. * scheduler run of queue, if there are requests pending and no one in the
  424. * driver that will restart queueing
  425. */
  426. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  427. {
  428. if (cfqd->busy_queues) {
  429. cfq_log(cfqd, "schedule dispatch");
  430. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  431. }
  432. }
  433. /*
  434. * Scale schedule slice based on io priority. Use the sync time slice only
  435. * if a queue is marked sync and has sync io queued. A sync queue with async
  436. * io only, should not get full sync slice length.
  437. */
  438. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  439. unsigned short prio)
  440. {
  441. const int base_slice = cfqd->cfq_slice[sync];
  442. WARN_ON(prio >= IOPRIO_BE_NR);
  443. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  444. }
  445. static inline int
  446. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  447. {
  448. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  449. }
  450. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  451. {
  452. u64 d = delta << CFQ_SERVICE_SHIFT;
  453. d = d * BLKIO_WEIGHT_DEFAULT;
  454. do_div(d, cfqg->weight);
  455. return d;
  456. }
  457. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  458. {
  459. s64 delta = (s64)(vdisktime - min_vdisktime);
  460. if (delta > 0)
  461. min_vdisktime = vdisktime;
  462. return min_vdisktime;
  463. }
  464. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  465. {
  466. s64 delta = (s64)(vdisktime - min_vdisktime);
  467. if (delta < 0)
  468. min_vdisktime = vdisktime;
  469. return min_vdisktime;
  470. }
  471. static void update_min_vdisktime(struct cfq_rb_root *st)
  472. {
  473. struct cfq_group *cfqg;
  474. if (st->left) {
  475. cfqg = rb_entry_cfqg(st->left);
  476. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  477. cfqg->vdisktime);
  478. }
  479. }
  480. /*
  481. * get averaged number of queues of RT/BE priority.
  482. * average is updated, with a formula that gives more weight to higher numbers,
  483. * to quickly follows sudden increases and decrease slowly
  484. */
  485. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  486. struct cfq_group *cfqg, bool rt)
  487. {
  488. unsigned min_q, max_q;
  489. unsigned mult = cfq_hist_divisor - 1;
  490. unsigned round = cfq_hist_divisor / 2;
  491. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  492. min_q = min(cfqg->busy_queues_avg[rt], busy);
  493. max_q = max(cfqg->busy_queues_avg[rt], busy);
  494. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  495. cfq_hist_divisor;
  496. return cfqg->busy_queues_avg[rt];
  497. }
  498. static inline unsigned
  499. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  500. {
  501. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  502. return cfq_target_latency * cfqg->weight / st->total_weight;
  503. }
  504. static inline unsigned
  505. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  506. {
  507. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  508. if (cfqd->cfq_latency) {
  509. /*
  510. * interested queues (we consider only the ones with the same
  511. * priority class in the cfq group)
  512. */
  513. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  514. cfq_class_rt(cfqq));
  515. unsigned sync_slice = cfqd->cfq_slice[1];
  516. unsigned expect_latency = sync_slice * iq;
  517. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  518. if (expect_latency > group_slice) {
  519. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  520. /* scale low_slice according to IO priority
  521. * and sync vs async */
  522. unsigned low_slice =
  523. min(slice, base_low_slice * slice / sync_slice);
  524. /* the adapted slice value is scaled to fit all iqs
  525. * into the target latency */
  526. slice = max(slice * group_slice / expect_latency,
  527. low_slice);
  528. }
  529. }
  530. return slice;
  531. }
  532. static inline void
  533. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  534. {
  535. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  536. cfqq->slice_start = jiffies;
  537. cfqq->slice_end = jiffies + slice;
  538. cfqq->allocated_slice = slice;
  539. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  540. }
  541. /*
  542. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  543. * isn't valid until the first request from the dispatch is activated
  544. * and the slice time set.
  545. */
  546. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  547. {
  548. if (cfq_cfqq_slice_new(cfqq))
  549. return false;
  550. if (time_before(jiffies, cfqq->slice_end))
  551. return false;
  552. return true;
  553. }
  554. /*
  555. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  556. * We choose the request that is closest to the head right now. Distance
  557. * behind the head is penalized and only allowed to a certain extent.
  558. */
  559. static struct request *
  560. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  561. {
  562. sector_t s1, s2, d1 = 0, d2 = 0;
  563. unsigned long back_max;
  564. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  565. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  566. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  567. if (rq1 == NULL || rq1 == rq2)
  568. return rq2;
  569. if (rq2 == NULL)
  570. return rq1;
  571. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  572. return rq_is_sync(rq1) ? rq1 : rq2;
  573. s1 = blk_rq_pos(rq1);
  574. s2 = blk_rq_pos(rq2);
  575. /*
  576. * by definition, 1KiB is 2 sectors
  577. */
  578. back_max = cfqd->cfq_back_max * 2;
  579. /*
  580. * Strict one way elevator _except_ in the case where we allow
  581. * short backward seeks which are biased as twice the cost of a
  582. * similar forward seek.
  583. */
  584. if (s1 >= last)
  585. d1 = s1 - last;
  586. else if (s1 + back_max >= last)
  587. d1 = (last - s1) * cfqd->cfq_back_penalty;
  588. else
  589. wrap |= CFQ_RQ1_WRAP;
  590. if (s2 >= last)
  591. d2 = s2 - last;
  592. else if (s2 + back_max >= last)
  593. d2 = (last - s2) * cfqd->cfq_back_penalty;
  594. else
  595. wrap |= CFQ_RQ2_WRAP;
  596. /* Found required data */
  597. /*
  598. * By doing switch() on the bit mask "wrap" we avoid having to
  599. * check two variables for all permutations: --> faster!
  600. */
  601. switch (wrap) {
  602. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  603. if (d1 < d2)
  604. return rq1;
  605. else if (d2 < d1)
  606. return rq2;
  607. else {
  608. if (s1 >= s2)
  609. return rq1;
  610. else
  611. return rq2;
  612. }
  613. case CFQ_RQ2_WRAP:
  614. return rq1;
  615. case CFQ_RQ1_WRAP:
  616. return rq2;
  617. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  618. default:
  619. /*
  620. * Since both rqs are wrapped,
  621. * start with the one that's further behind head
  622. * (--> only *one* back seek required),
  623. * since back seek takes more time than forward.
  624. */
  625. if (s1 <= s2)
  626. return rq1;
  627. else
  628. return rq2;
  629. }
  630. }
  631. /*
  632. * The below is leftmost cache rbtree addon
  633. */
  634. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  635. {
  636. /* Service tree is empty */
  637. if (!root->count)
  638. return NULL;
  639. if (!root->left)
  640. root->left = rb_first(&root->rb);
  641. if (root->left)
  642. return rb_entry(root->left, struct cfq_queue, rb_node);
  643. return NULL;
  644. }
  645. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  646. {
  647. if (!root->left)
  648. root->left = rb_first(&root->rb);
  649. if (root->left)
  650. return rb_entry_cfqg(root->left);
  651. return NULL;
  652. }
  653. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  654. {
  655. rb_erase(n, root);
  656. RB_CLEAR_NODE(n);
  657. }
  658. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  659. {
  660. if (root->left == n)
  661. root->left = NULL;
  662. rb_erase_init(n, &root->rb);
  663. --root->count;
  664. }
  665. /*
  666. * would be nice to take fifo expire time into account as well
  667. */
  668. static struct request *
  669. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  670. struct request *last)
  671. {
  672. struct rb_node *rbnext = rb_next(&last->rb_node);
  673. struct rb_node *rbprev = rb_prev(&last->rb_node);
  674. struct request *next = NULL, *prev = NULL;
  675. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  676. if (rbprev)
  677. prev = rb_entry_rq(rbprev);
  678. if (rbnext)
  679. next = rb_entry_rq(rbnext);
  680. else {
  681. rbnext = rb_first(&cfqq->sort_list);
  682. if (rbnext && rbnext != &last->rb_node)
  683. next = rb_entry_rq(rbnext);
  684. }
  685. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  686. }
  687. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  688. struct cfq_queue *cfqq)
  689. {
  690. /*
  691. * just an approximation, should be ok.
  692. */
  693. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  694. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  695. }
  696. static inline s64
  697. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  698. {
  699. return cfqg->vdisktime - st->min_vdisktime;
  700. }
  701. static void
  702. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  703. {
  704. struct rb_node **node = &st->rb.rb_node;
  705. struct rb_node *parent = NULL;
  706. struct cfq_group *__cfqg;
  707. s64 key = cfqg_key(st, cfqg);
  708. int left = 1;
  709. while (*node != NULL) {
  710. parent = *node;
  711. __cfqg = rb_entry_cfqg(parent);
  712. if (key < cfqg_key(st, __cfqg))
  713. node = &parent->rb_left;
  714. else {
  715. node = &parent->rb_right;
  716. left = 0;
  717. }
  718. }
  719. if (left)
  720. st->left = &cfqg->rb_node;
  721. rb_link_node(&cfqg->rb_node, parent, node);
  722. rb_insert_color(&cfqg->rb_node, &st->rb);
  723. }
  724. static void
  725. cfq_update_group_weight(struct cfq_group *cfqg)
  726. {
  727. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  728. if (cfqg->needs_update) {
  729. cfqg->weight = cfqg->new_weight;
  730. cfqg->needs_update = false;
  731. }
  732. }
  733. static void
  734. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  735. {
  736. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  737. cfq_update_group_weight(cfqg);
  738. __cfq_group_service_tree_add(st, cfqg);
  739. st->total_weight += cfqg->weight;
  740. }
  741. static void
  742. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  743. {
  744. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  745. struct cfq_group *__cfqg;
  746. struct rb_node *n;
  747. cfqg->nr_cfqq++;
  748. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  749. return;
  750. /*
  751. * Currently put the group at the end. Later implement something
  752. * so that groups get lesser vtime based on their weights, so that
  753. * if group does not loose all if it was not continuously backlogged.
  754. */
  755. n = rb_last(&st->rb);
  756. if (n) {
  757. __cfqg = rb_entry_cfqg(n);
  758. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  759. } else
  760. cfqg->vdisktime = st->min_vdisktime;
  761. cfq_group_service_tree_add(st, cfqg);
  762. }
  763. static void
  764. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  765. {
  766. st->total_weight -= cfqg->weight;
  767. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  768. cfq_rb_erase(&cfqg->rb_node, st);
  769. }
  770. static void
  771. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  772. {
  773. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  774. BUG_ON(cfqg->nr_cfqq < 1);
  775. cfqg->nr_cfqq--;
  776. /* If there are other cfq queues under this group, don't delete it */
  777. if (cfqg->nr_cfqq)
  778. return;
  779. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  780. cfq_group_service_tree_del(st, cfqg);
  781. cfqg->saved_workload_slice = 0;
  782. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  783. }
  784. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  785. unsigned int *unaccounted_time)
  786. {
  787. unsigned int slice_used;
  788. /*
  789. * Queue got expired before even a single request completed or
  790. * got expired immediately after first request completion.
  791. */
  792. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  793. /*
  794. * Also charge the seek time incurred to the group, otherwise
  795. * if there are mutiple queues in the group, each can dispatch
  796. * a single request on seeky media and cause lots of seek time
  797. * and group will never know it.
  798. */
  799. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  800. 1);
  801. } else {
  802. slice_used = jiffies - cfqq->slice_start;
  803. if (slice_used > cfqq->allocated_slice) {
  804. *unaccounted_time = slice_used - cfqq->allocated_slice;
  805. slice_used = cfqq->allocated_slice;
  806. }
  807. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  808. *unaccounted_time += cfqq->slice_start -
  809. cfqq->dispatch_start;
  810. }
  811. return slice_used;
  812. }
  813. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  814. struct cfq_queue *cfqq)
  815. {
  816. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  817. unsigned int used_sl, charge, unaccounted_sl = 0;
  818. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  819. - cfqg->service_tree_idle.count;
  820. BUG_ON(nr_sync < 0);
  821. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  822. if (iops_mode(cfqd))
  823. charge = cfqq->slice_dispatch;
  824. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  825. charge = cfqq->allocated_slice;
  826. /* Can't update vdisktime while group is on service tree */
  827. cfq_group_service_tree_del(st, cfqg);
  828. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  829. /* If a new weight was requested, update now, off tree */
  830. cfq_group_service_tree_add(st, cfqg);
  831. /* This group is being expired. Save the context */
  832. if (time_after(cfqd->workload_expires, jiffies)) {
  833. cfqg->saved_workload_slice = cfqd->workload_expires
  834. - jiffies;
  835. cfqg->saved_workload = cfqd->serving_type;
  836. cfqg->saved_serving_prio = cfqd->serving_prio;
  837. } else
  838. cfqg->saved_workload_slice = 0;
  839. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  840. st->min_vdisktime);
  841. cfq_log_cfqq(cfqq->cfqd, cfqq,
  842. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  843. used_sl, cfqq->slice_dispatch, charge,
  844. iops_mode(cfqd), cfqq->nr_sectors);
  845. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  846. unaccounted_sl);
  847. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  848. }
  849. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  850. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  851. {
  852. if (blkg)
  853. return container_of(blkg, struct cfq_group, blkg);
  854. return NULL;
  855. }
  856. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  857. unsigned int weight)
  858. {
  859. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  860. cfqg->new_weight = weight;
  861. cfqg->needs_update = true;
  862. }
  863. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  864. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  865. {
  866. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  867. unsigned int major, minor;
  868. /*
  869. * Add group onto cgroup list. It might happen that bdi->dev is
  870. * not initialized yet. Initialize this new group without major
  871. * and minor info and this info will be filled in once a new thread
  872. * comes for IO.
  873. */
  874. if (bdi->dev) {
  875. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  876. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  877. (void *)cfqd, MKDEV(major, minor));
  878. } else
  879. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  880. (void *)cfqd, 0);
  881. cfqd->nr_blkcg_linked_grps++;
  882. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  883. /* Add group on cfqd list */
  884. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  885. }
  886. /*
  887. * Should be called from sleepable context. No request queue lock as per
  888. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  889. * from sleepable context.
  890. */
  891. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  892. {
  893. struct cfq_group *cfqg = NULL;
  894. int i, j, ret;
  895. struct cfq_rb_root *st;
  896. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  897. if (!cfqg)
  898. return NULL;
  899. for_each_cfqg_st(cfqg, i, j, st)
  900. *st = CFQ_RB_ROOT;
  901. RB_CLEAR_NODE(&cfqg->rb_node);
  902. /*
  903. * Take the initial reference that will be released on destroy
  904. * This can be thought of a joint reference by cgroup and
  905. * elevator which will be dropped by either elevator exit
  906. * or cgroup deletion path depending on who is exiting first.
  907. */
  908. cfqg->ref = 1;
  909. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  910. if (ret) {
  911. kfree(cfqg);
  912. return NULL;
  913. }
  914. return cfqg;
  915. }
  916. static struct cfq_group *
  917. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  918. {
  919. struct cfq_group *cfqg = NULL;
  920. void *key = cfqd;
  921. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  922. unsigned int major, minor;
  923. /*
  924. * This is the common case when there are no blkio cgroups.
  925. * Avoid lookup in this case
  926. */
  927. if (blkcg == &blkio_root_cgroup)
  928. cfqg = &cfqd->root_group;
  929. else
  930. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  931. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  932. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  933. cfqg->blkg.dev = MKDEV(major, minor);
  934. }
  935. return cfqg;
  936. }
  937. /*
  938. * Search for the cfq group current task belongs to. request_queue lock must
  939. * be held.
  940. */
  941. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  942. {
  943. struct blkio_cgroup *blkcg;
  944. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  945. struct request_queue *q = cfqd->queue;
  946. rcu_read_lock();
  947. blkcg = task_blkio_cgroup(current);
  948. cfqg = cfq_find_cfqg(cfqd, blkcg);
  949. if (cfqg) {
  950. rcu_read_unlock();
  951. return cfqg;
  952. }
  953. /*
  954. * Need to allocate a group. Allocation of group also needs allocation
  955. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  956. * we need to drop rcu lock and queue_lock before we call alloc.
  957. *
  958. * Not taking any queue reference here and assuming that queue is
  959. * around by the time we return. CFQ queue allocation code does
  960. * the same. It might be racy though.
  961. */
  962. rcu_read_unlock();
  963. spin_unlock_irq(q->queue_lock);
  964. cfqg = cfq_alloc_cfqg(cfqd);
  965. spin_lock_irq(q->queue_lock);
  966. rcu_read_lock();
  967. blkcg = task_blkio_cgroup(current);
  968. /*
  969. * If some other thread already allocated the group while we were
  970. * not holding queue lock, free up the group
  971. */
  972. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  973. if (__cfqg) {
  974. kfree(cfqg);
  975. rcu_read_unlock();
  976. return __cfqg;
  977. }
  978. if (!cfqg)
  979. cfqg = &cfqd->root_group;
  980. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  981. rcu_read_unlock();
  982. return cfqg;
  983. }
  984. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  985. {
  986. cfqg->ref++;
  987. return cfqg;
  988. }
  989. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  990. {
  991. /* Currently, all async queues are mapped to root group */
  992. if (!cfq_cfqq_sync(cfqq))
  993. cfqg = &cfqq->cfqd->root_group;
  994. cfqq->cfqg = cfqg;
  995. /* cfqq reference on cfqg */
  996. cfqq->cfqg->ref++;
  997. }
  998. static void cfq_put_cfqg(struct cfq_group *cfqg)
  999. {
  1000. struct cfq_rb_root *st;
  1001. int i, j;
  1002. BUG_ON(cfqg->ref <= 0);
  1003. cfqg->ref--;
  1004. if (cfqg->ref)
  1005. return;
  1006. for_each_cfqg_st(cfqg, i, j, st)
  1007. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1008. free_percpu(cfqg->blkg.stats_cpu);
  1009. kfree(cfqg);
  1010. }
  1011. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1012. {
  1013. /* Something wrong if we are trying to remove same group twice */
  1014. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1015. hlist_del_init(&cfqg->cfqd_node);
  1016. /*
  1017. * Put the reference taken at the time of creation so that when all
  1018. * queues are gone, group can be destroyed.
  1019. */
  1020. cfq_put_cfqg(cfqg);
  1021. }
  1022. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1023. {
  1024. struct hlist_node *pos, *n;
  1025. struct cfq_group *cfqg;
  1026. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1027. /*
  1028. * If cgroup removal path got to blk_group first and removed
  1029. * it from cgroup list, then it will take care of destroying
  1030. * cfqg also.
  1031. */
  1032. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1033. cfq_destroy_cfqg(cfqd, cfqg);
  1034. }
  1035. }
  1036. /*
  1037. * Blk cgroup controller notification saying that blkio_group object is being
  1038. * delinked as associated cgroup object is going away. That also means that
  1039. * no new IO will come in this group. So get rid of this group as soon as
  1040. * any pending IO in the group is finished.
  1041. *
  1042. * This function is called under rcu_read_lock(). key is the rcu protected
  1043. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1044. * read lock.
  1045. *
  1046. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1047. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1048. * path got to it first.
  1049. */
  1050. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1051. {
  1052. unsigned long flags;
  1053. struct cfq_data *cfqd = key;
  1054. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1055. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1056. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1057. }
  1058. #else /* GROUP_IOSCHED */
  1059. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1060. {
  1061. return &cfqd->root_group;
  1062. }
  1063. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1064. {
  1065. return cfqg;
  1066. }
  1067. static inline void
  1068. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1069. cfqq->cfqg = cfqg;
  1070. }
  1071. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1072. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1073. #endif /* GROUP_IOSCHED */
  1074. /*
  1075. * The cfqd->service_trees holds all pending cfq_queue's that have
  1076. * requests waiting to be processed. It is sorted in the order that
  1077. * we will service the queues.
  1078. */
  1079. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1080. bool add_front)
  1081. {
  1082. struct rb_node **p, *parent;
  1083. struct cfq_queue *__cfqq;
  1084. unsigned long rb_key;
  1085. struct cfq_rb_root *service_tree;
  1086. int left;
  1087. int new_cfqq = 1;
  1088. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1089. cfqq_type(cfqq));
  1090. if (cfq_class_idle(cfqq)) {
  1091. rb_key = CFQ_IDLE_DELAY;
  1092. parent = rb_last(&service_tree->rb);
  1093. if (parent && parent != &cfqq->rb_node) {
  1094. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1095. rb_key += __cfqq->rb_key;
  1096. } else
  1097. rb_key += jiffies;
  1098. } else if (!add_front) {
  1099. /*
  1100. * Get our rb key offset. Subtract any residual slice
  1101. * value carried from last service. A negative resid
  1102. * count indicates slice overrun, and this should position
  1103. * the next service time further away in the tree.
  1104. */
  1105. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1106. rb_key -= cfqq->slice_resid;
  1107. cfqq->slice_resid = 0;
  1108. } else {
  1109. rb_key = -HZ;
  1110. __cfqq = cfq_rb_first(service_tree);
  1111. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1112. }
  1113. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1114. new_cfqq = 0;
  1115. /*
  1116. * same position, nothing more to do
  1117. */
  1118. if (rb_key == cfqq->rb_key &&
  1119. cfqq->service_tree == service_tree)
  1120. return;
  1121. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1122. cfqq->service_tree = NULL;
  1123. }
  1124. left = 1;
  1125. parent = NULL;
  1126. cfqq->service_tree = service_tree;
  1127. p = &service_tree->rb.rb_node;
  1128. while (*p) {
  1129. struct rb_node **n;
  1130. parent = *p;
  1131. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1132. /*
  1133. * sort by key, that represents service time.
  1134. */
  1135. if (time_before(rb_key, __cfqq->rb_key))
  1136. n = &(*p)->rb_left;
  1137. else {
  1138. n = &(*p)->rb_right;
  1139. left = 0;
  1140. }
  1141. p = n;
  1142. }
  1143. if (left)
  1144. service_tree->left = &cfqq->rb_node;
  1145. cfqq->rb_key = rb_key;
  1146. rb_link_node(&cfqq->rb_node, parent, p);
  1147. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1148. service_tree->count++;
  1149. if (add_front || !new_cfqq)
  1150. return;
  1151. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1152. }
  1153. static struct cfq_queue *
  1154. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1155. sector_t sector, struct rb_node **ret_parent,
  1156. struct rb_node ***rb_link)
  1157. {
  1158. struct rb_node **p, *parent;
  1159. struct cfq_queue *cfqq = NULL;
  1160. parent = NULL;
  1161. p = &root->rb_node;
  1162. while (*p) {
  1163. struct rb_node **n;
  1164. parent = *p;
  1165. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1166. /*
  1167. * Sort strictly based on sector. Smallest to the left,
  1168. * largest to the right.
  1169. */
  1170. if (sector > blk_rq_pos(cfqq->next_rq))
  1171. n = &(*p)->rb_right;
  1172. else if (sector < blk_rq_pos(cfqq->next_rq))
  1173. n = &(*p)->rb_left;
  1174. else
  1175. break;
  1176. p = n;
  1177. cfqq = NULL;
  1178. }
  1179. *ret_parent = parent;
  1180. if (rb_link)
  1181. *rb_link = p;
  1182. return cfqq;
  1183. }
  1184. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1185. {
  1186. struct rb_node **p, *parent;
  1187. struct cfq_queue *__cfqq;
  1188. if (cfqq->p_root) {
  1189. rb_erase(&cfqq->p_node, cfqq->p_root);
  1190. cfqq->p_root = NULL;
  1191. }
  1192. if (cfq_class_idle(cfqq))
  1193. return;
  1194. if (!cfqq->next_rq)
  1195. return;
  1196. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1197. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1198. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1199. if (!__cfqq) {
  1200. rb_link_node(&cfqq->p_node, parent, p);
  1201. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1202. } else
  1203. cfqq->p_root = NULL;
  1204. }
  1205. /*
  1206. * Update cfqq's position in the service tree.
  1207. */
  1208. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1209. {
  1210. /*
  1211. * Resorting requires the cfqq to be on the RR list already.
  1212. */
  1213. if (cfq_cfqq_on_rr(cfqq)) {
  1214. cfq_service_tree_add(cfqd, cfqq, 0);
  1215. cfq_prio_tree_add(cfqd, cfqq);
  1216. }
  1217. }
  1218. /*
  1219. * add to busy list of queues for service, trying to be fair in ordering
  1220. * the pending list according to last request service
  1221. */
  1222. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1223. {
  1224. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1225. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1226. cfq_mark_cfqq_on_rr(cfqq);
  1227. cfqd->busy_queues++;
  1228. if (cfq_cfqq_sync(cfqq))
  1229. cfqd->busy_sync_queues++;
  1230. cfq_resort_rr_list(cfqd, cfqq);
  1231. }
  1232. /*
  1233. * Called when the cfqq no longer has requests pending, remove it from
  1234. * the service tree.
  1235. */
  1236. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1237. {
  1238. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1239. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1240. cfq_clear_cfqq_on_rr(cfqq);
  1241. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1242. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1243. cfqq->service_tree = NULL;
  1244. }
  1245. if (cfqq->p_root) {
  1246. rb_erase(&cfqq->p_node, cfqq->p_root);
  1247. cfqq->p_root = NULL;
  1248. }
  1249. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1250. BUG_ON(!cfqd->busy_queues);
  1251. cfqd->busy_queues--;
  1252. if (cfq_cfqq_sync(cfqq))
  1253. cfqd->busy_sync_queues--;
  1254. }
  1255. /*
  1256. * rb tree support functions
  1257. */
  1258. static void cfq_del_rq_rb(struct request *rq)
  1259. {
  1260. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1261. const int sync = rq_is_sync(rq);
  1262. BUG_ON(!cfqq->queued[sync]);
  1263. cfqq->queued[sync]--;
  1264. elv_rb_del(&cfqq->sort_list, rq);
  1265. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1266. /*
  1267. * Queue will be deleted from service tree when we actually
  1268. * expire it later. Right now just remove it from prio tree
  1269. * as it is empty.
  1270. */
  1271. if (cfqq->p_root) {
  1272. rb_erase(&cfqq->p_node, cfqq->p_root);
  1273. cfqq->p_root = NULL;
  1274. }
  1275. }
  1276. }
  1277. static void cfq_add_rq_rb(struct request *rq)
  1278. {
  1279. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1280. struct cfq_data *cfqd = cfqq->cfqd;
  1281. struct request *prev;
  1282. cfqq->queued[rq_is_sync(rq)]++;
  1283. elv_rb_add(&cfqq->sort_list, rq);
  1284. if (!cfq_cfqq_on_rr(cfqq))
  1285. cfq_add_cfqq_rr(cfqd, cfqq);
  1286. /*
  1287. * check if this request is a better next-serve candidate
  1288. */
  1289. prev = cfqq->next_rq;
  1290. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1291. /*
  1292. * adjust priority tree position, if ->next_rq changes
  1293. */
  1294. if (prev != cfqq->next_rq)
  1295. cfq_prio_tree_add(cfqd, cfqq);
  1296. BUG_ON(!cfqq->next_rq);
  1297. }
  1298. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1299. {
  1300. elv_rb_del(&cfqq->sort_list, rq);
  1301. cfqq->queued[rq_is_sync(rq)]--;
  1302. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1303. rq_data_dir(rq), rq_is_sync(rq));
  1304. cfq_add_rq_rb(rq);
  1305. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1306. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1307. rq_is_sync(rq));
  1308. }
  1309. static struct request *
  1310. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1311. {
  1312. struct task_struct *tsk = current;
  1313. struct cfq_io_context *cic;
  1314. struct cfq_queue *cfqq;
  1315. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1316. if (!cic)
  1317. return NULL;
  1318. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1319. if (cfqq) {
  1320. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1321. return elv_rb_find(&cfqq->sort_list, sector);
  1322. }
  1323. return NULL;
  1324. }
  1325. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1326. {
  1327. struct cfq_data *cfqd = q->elevator->elevator_data;
  1328. cfqd->rq_in_driver++;
  1329. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1330. cfqd->rq_in_driver);
  1331. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1332. }
  1333. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1334. {
  1335. struct cfq_data *cfqd = q->elevator->elevator_data;
  1336. WARN_ON(!cfqd->rq_in_driver);
  1337. cfqd->rq_in_driver--;
  1338. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1339. cfqd->rq_in_driver);
  1340. }
  1341. static void cfq_remove_request(struct request *rq)
  1342. {
  1343. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1344. if (cfqq->next_rq == rq)
  1345. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1346. list_del_init(&rq->queuelist);
  1347. cfq_del_rq_rb(rq);
  1348. cfqq->cfqd->rq_queued--;
  1349. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1350. rq_data_dir(rq), rq_is_sync(rq));
  1351. }
  1352. static int cfq_merge(struct request_queue *q, struct request **req,
  1353. struct bio *bio)
  1354. {
  1355. struct cfq_data *cfqd = q->elevator->elevator_data;
  1356. struct request *__rq;
  1357. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1358. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1359. *req = __rq;
  1360. return ELEVATOR_FRONT_MERGE;
  1361. }
  1362. return ELEVATOR_NO_MERGE;
  1363. }
  1364. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1365. int type)
  1366. {
  1367. if (type == ELEVATOR_FRONT_MERGE) {
  1368. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1369. cfq_reposition_rq_rb(cfqq, req);
  1370. }
  1371. }
  1372. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1373. struct bio *bio)
  1374. {
  1375. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1376. bio_data_dir(bio), cfq_bio_sync(bio));
  1377. }
  1378. static void
  1379. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1380. struct request *next)
  1381. {
  1382. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1383. /*
  1384. * reposition in fifo if next is older than rq
  1385. */
  1386. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1387. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1388. list_move(&rq->queuelist, &next->queuelist);
  1389. rq_set_fifo_time(rq, rq_fifo_time(next));
  1390. }
  1391. if (cfqq->next_rq == next)
  1392. cfqq->next_rq = rq;
  1393. cfq_remove_request(next);
  1394. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1395. rq_data_dir(next), rq_is_sync(next));
  1396. }
  1397. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1398. struct bio *bio)
  1399. {
  1400. struct cfq_data *cfqd = q->elevator->elevator_data;
  1401. struct cfq_io_context *cic;
  1402. struct cfq_queue *cfqq;
  1403. /*
  1404. * Disallow merge of a sync bio into an async request.
  1405. */
  1406. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1407. return false;
  1408. /*
  1409. * Lookup the cfqq that this bio will be queued with. Allow
  1410. * merge only if rq is queued there.
  1411. */
  1412. cic = cfq_cic_lookup(cfqd, current->io_context);
  1413. if (!cic)
  1414. return false;
  1415. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1416. return cfqq == RQ_CFQQ(rq);
  1417. }
  1418. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1419. {
  1420. del_timer(&cfqd->idle_slice_timer);
  1421. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1422. }
  1423. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1424. struct cfq_queue *cfqq)
  1425. {
  1426. if (cfqq) {
  1427. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1428. cfqd->serving_prio, cfqd->serving_type);
  1429. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1430. cfqq->slice_start = 0;
  1431. cfqq->dispatch_start = jiffies;
  1432. cfqq->allocated_slice = 0;
  1433. cfqq->slice_end = 0;
  1434. cfqq->slice_dispatch = 0;
  1435. cfqq->nr_sectors = 0;
  1436. cfq_clear_cfqq_wait_request(cfqq);
  1437. cfq_clear_cfqq_must_dispatch(cfqq);
  1438. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1439. cfq_clear_cfqq_fifo_expire(cfqq);
  1440. cfq_mark_cfqq_slice_new(cfqq);
  1441. cfq_del_timer(cfqd, cfqq);
  1442. }
  1443. cfqd->active_queue = cfqq;
  1444. }
  1445. /*
  1446. * current cfqq expired its slice (or was too idle), select new one
  1447. */
  1448. static void
  1449. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1450. bool timed_out)
  1451. {
  1452. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1453. if (cfq_cfqq_wait_request(cfqq))
  1454. cfq_del_timer(cfqd, cfqq);
  1455. cfq_clear_cfqq_wait_request(cfqq);
  1456. cfq_clear_cfqq_wait_busy(cfqq);
  1457. /*
  1458. * If this cfqq is shared between multiple processes, check to
  1459. * make sure that those processes are still issuing I/Os within
  1460. * the mean seek distance. If not, it may be time to break the
  1461. * queues apart again.
  1462. */
  1463. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1464. cfq_mark_cfqq_split_coop(cfqq);
  1465. /*
  1466. * store what was left of this slice, if the queue idled/timed out
  1467. */
  1468. if (timed_out) {
  1469. if (cfq_cfqq_slice_new(cfqq))
  1470. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1471. else
  1472. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1473. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1474. }
  1475. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1476. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1477. cfq_del_cfqq_rr(cfqd, cfqq);
  1478. cfq_resort_rr_list(cfqd, cfqq);
  1479. if (cfqq == cfqd->active_queue)
  1480. cfqd->active_queue = NULL;
  1481. if (cfqd->active_cic) {
  1482. put_io_context(cfqd->active_cic->ioc);
  1483. cfqd->active_cic = NULL;
  1484. }
  1485. }
  1486. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1487. {
  1488. struct cfq_queue *cfqq = cfqd->active_queue;
  1489. if (cfqq)
  1490. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1491. }
  1492. /*
  1493. * Get next queue for service. Unless we have a queue preemption,
  1494. * we'll simply select the first cfqq in the service tree.
  1495. */
  1496. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1497. {
  1498. struct cfq_rb_root *service_tree =
  1499. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1500. cfqd->serving_type);
  1501. if (!cfqd->rq_queued)
  1502. return NULL;
  1503. /* There is nothing to dispatch */
  1504. if (!service_tree)
  1505. return NULL;
  1506. if (RB_EMPTY_ROOT(&service_tree->rb))
  1507. return NULL;
  1508. return cfq_rb_first(service_tree);
  1509. }
  1510. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1511. {
  1512. struct cfq_group *cfqg;
  1513. struct cfq_queue *cfqq;
  1514. int i, j;
  1515. struct cfq_rb_root *st;
  1516. if (!cfqd->rq_queued)
  1517. return NULL;
  1518. cfqg = cfq_get_next_cfqg(cfqd);
  1519. if (!cfqg)
  1520. return NULL;
  1521. for_each_cfqg_st(cfqg, i, j, st)
  1522. if ((cfqq = cfq_rb_first(st)) != NULL)
  1523. return cfqq;
  1524. return NULL;
  1525. }
  1526. /*
  1527. * Get and set a new active queue for service.
  1528. */
  1529. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1530. struct cfq_queue *cfqq)
  1531. {
  1532. if (!cfqq)
  1533. cfqq = cfq_get_next_queue(cfqd);
  1534. __cfq_set_active_queue(cfqd, cfqq);
  1535. return cfqq;
  1536. }
  1537. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1538. struct request *rq)
  1539. {
  1540. if (blk_rq_pos(rq) >= cfqd->last_position)
  1541. return blk_rq_pos(rq) - cfqd->last_position;
  1542. else
  1543. return cfqd->last_position - blk_rq_pos(rq);
  1544. }
  1545. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1546. struct request *rq)
  1547. {
  1548. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1549. }
  1550. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1551. struct cfq_queue *cur_cfqq)
  1552. {
  1553. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1554. struct rb_node *parent, *node;
  1555. struct cfq_queue *__cfqq;
  1556. sector_t sector = cfqd->last_position;
  1557. if (RB_EMPTY_ROOT(root))
  1558. return NULL;
  1559. /*
  1560. * First, if we find a request starting at the end of the last
  1561. * request, choose it.
  1562. */
  1563. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1564. if (__cfqq)
  1565. return __cfqq;
  1566. /*
  1567. * If the exact sector wasn't found, the parent of the NULL leaf
  1568. * will contain the closest sector.
  1569. */
  1570. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1571. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1572. return __cfqq;
  1573. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1574. node = rb_next(&__cfqq->p_node);
  1575. else
  1576. node = rb_prev(&__cfqq->p_node);
  1577. if (!node)
  1578. return NULL;
  1579. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1580. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1581. return __cfqq;
  1582. return NULL;
  1583. }
  1584. /*
  1585. * cfqd - obvious
  1586. * cur_cfqq - passed in so that we don't decide that the current queue is
  1587. * closely cooperating with itself.
  1588. *
  1589. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1590. * one request, and that cfqd->last_position reflects a position on the disk
  1591. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1592. * assumption.
  1593. */
  1594. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1595. struct cfq_queue *cur_cfqq)
  1596. {
  1597. struct cfq_queue *cfqq;
  1598. if (cfq_class_idle(cur_cfqq))
  1599. return NULL;
  1600. if (!cfq_cfqq_sync(cur_cfqq))
  1601. return NULL;
  1602. if (CFQQ_SEEKY(cur_cfqq))
  1603. return NULL;
  1604. /*
  1605. * Don't search priority tree if it's the only queue in the group.
  1606. */
  1607. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1608. return NULL;
  1609. /*
  1610. * We should notice if some of the queues are cooperating, eg
  1611. * working closely on the same area of the disk. In that case,
  1612. * we can group them together and don't waste time idling.
  1613. */
  1614. cfqq = cfqq_close(cfqd, cur_cfqq);
  1615. if (!cfqq)
  1616. return NULL;
  1617. /* If new queue belongs to different cfq_group, don't choose it */
  1618. if (cur_cfqq->cfqg != cfqq->cfqg)
  1619. return NULL;
  1620. /*
  1621. * It only makes sense to merge sync queues.
  1622. */
  1623. if (!cfq_cfqq_sync(cfqq))
  1624. return NULL;
  1625. if (CFQQ_SEEKY(cfqq))
  1626. return NULL;
  1627. /*
  1628. * Do not merge queues of different priority classes
  1629. */
  1630. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1631. return NULL;
  1632. return cfqq;
  1633. }
  1634. /*
  1635. * Determine whether we should enforce idle window for this queue.
  1636. */
  1637. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1638. {
  1639. enum wl_prio_t prio = cfqq_prio(cfqq);
  1640. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1641. BUG_ON(!service_tree);
  1642. BUG_ON(!service_tree->count);
  1643. if (!cfqd->cfq_slice_idle)
  1644. return false;
  1645. /* We never do for idle class queues. */
  1646. if (prio == IDLE_WORKLOAD)
  1647. return false;
  1648. /* We do for queues that were marked with idle window flag. */
  1649. if (cfq_cfqq_idle_window(cfqq) &&
  1650. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1651. return true;
  1652. /*
  1653. * Otherwise, we do only if they are the last ones
  1654. * in their service tree.
  1655. */
  1656. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1657. return true;
  1658. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1659. service_tree->count);
  1660. return false;
  1661. }
  1662. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1663. {
  1664. struct cfq_queue *cfqq = cfqd->active_queue;
  1665. struct cfq_io_context *cic;
  1666. unsigned long sl, group_idle = 0;
  1667. /*
  1668. * SSD device without seek penalty, disable idling. But only do so
  1669. * for devices that support queuing, otherwise we still have a problem
  1670. * with sync vs async workloads.
  1671. */
  1672. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1673. return;
  1674. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1675. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1676. /*
  1677. * idle is disabled, either manually or by past process history
  1678. */
  1679. if (!cfq_should_idle(cfqd, cfqq)) {
  1680. /* no queue idling. Check for group idling */
  1681. if (cfqd->cfq_group_idle)
  1682. group_idle = cfqd->cfq_group_idle;
  1683. else
  1684. return;
  1685. }
  1686. /*
  1687. * still active requests from this queue, don't idle
  1688. */
  1689. if (cfqq->dispatched)
  1690. return;
  1691. /*
  1692. * task has exited, don't wait
  1693. */
  1694. cic = cfqd->active_cic;
  1695. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1696. return;
  1697. /*
  1698. * If our average think time is larger than the remaining time
  1699. * slice, then don't idle. This avoids overrunning the allotted
  1700. * time slice.
  1701. */
  1702. if (sample_valid(cic->ttime_samples) &&
  1703. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1704. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1705. cic->ttime_mean);
  1706. return;
  1707. }
  1708. /* There are other queues in the group, don't do group idle */
  1709. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1710. return;
  1711. cfq_mark_cfqq_wait_request(cfqq);
  1712. if (group_idle)
  1713. sl = cfqd->cfq_group_idle;
  1714. else
  1715. sl = cfqd->cfq_slice_idle;
  1716. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1717. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1718. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1719. group_idle ? 1 : 0);
  1720. }
  1721. /*
  1722. * Move request from internal lists to the request queue dispatch list.
  1723. */
  1724. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1725. {
  1726. struct cfq_data *cfqd = q->elevator->elevator_data;
  1727. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1728. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1729. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1730. cfq_remove_request(rq);
  1731. cfqq->dispatched++;
  1732. (RQ_CFQG(rq))->dispatched++;
  1733. elv_dispatch_sort(q, rq);
  1734. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1735. cfqq->nr_sectors += blk_rq_sectors(rq);
  1736. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1737. rq_data_dir(rq), rq_is_sync(rq));
  1738. }
  1739. /*
  1740. * return expired entry, or NULL to just start from scratch in rbtree
  1741. */
  1742. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1743. {
  1744. struct request *rq = NULL;
  1745. if (cfq_cfqq_fifo_expire(cfqq))
  1746. return NULL;
  1747. cfq_mark_cfqq_fifo_expire(cfqq);
  1748. if (list_empty(&cfqq->fifo))
  1749. return NULL;
  1750. rq = rq_entry_fifo(cfqq->fifo.next);
  1751. if (time_before(jiffies, rq_fifo_time(rq)))
  1752. rq = NULL;
  1753. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1754. return rq;
  1755. }
  1756. static inline int
  1757. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1758. {
  1759. const int base_rq = cfqd->cfq_slice_async_rq;
  1760. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1761. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1762. }
  1763. /*
  1764. * Must be called with the queue_lock held.
  1765. */
  1766. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1767. {
  1768. int process_refs, io_refs;
  1769. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1770. process_refs = cfqq->ref - io_refs;
  1771. BUG_ON(process_refs < 0);
  1772. return process_refs;
  1773. }
  1774. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1775. {
  1776. int process_refs, new_process_refs;
  1777. struct cfq_queue *__cfqq;
  1778. /*
  1779. * If there are no process references on the new_cfqq, then it is
  1780. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1781. * chain may have dropped their last reference (not just their
  1782. * last process reference).
  1783. */
  1784. if (!cfqq_process_refs(new_cfqq))
  1785. return;
  1786. /* Avoid a circular list and skip interim queue merges */
  1787. while ((__cfqq = new_cfqq->new_cfqq)) {
  1788. if (__cfqq == cfqq)
  1789. return;
  1790. new_cfqq = __cfqq;
  1791. }
  1792. process_refs = cfqq_process_refs(cfqq);
  1793. new_process_refs = cfqq_process_refs(new_cfqq);
  1794. /*
  1795. * If the process for the cfqq has gone away, there is no
  1796. * sense in merging the queues.
  1797. */
  1798. if (process_refs == 0 || new_process_refs == 0)
  1799. return;
  1800. /*
  1801. * Merge in the direction of the lesser amount of work.
  1802. */
  1803. if (new_process_refs >= process_refs) {
  1804. cfqq->new_cfqq = new_cfqq;
  1805. new_cfqq->ref += process_refs;
  1806. } else {
  1807. new_cfqq->new_cfqq = cfqq;
  1808. cfqq->ref += new_process_refs;
  1809. }
  1810. }
  1811. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1812. struct cfq_group *cfqg, enum wl_prio_t prio)
  1813. {
  1814. struct cfq_queue *queue;
  1815. int i;
  1816. bool key_valid = false;
  1817. unsigned long lowest_key = 0;
  1818. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1819. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1820. /* select the one with lowest rb_key */
  1821. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1822. if (queue &&
  1823. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1824. lowest_key = queue->rb_key;
  1825. cur_best = i;
  1826. key_valid = true;
  1827. }
  1828. }
  1829. return cur_best;
  1830. }
  1831. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1832. {
  1833. unsigned slice;
  1834. unsigned count;
  1835. struct cfq_rb_root *st;
  1836. unsigned group_slice;
  1837. enum wl_prio_t original_prio = cfqd->serving_prio;
  1838. /* Choose next priority. RT > BE > IDLE */
  1839. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1840. cfqd->serving_prio = RT_WORKLOAD;
  1841. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1842. cfqd->serving_prio = BE_WORKLOAD;
  1843. else {
  1844. cfqd->serving_prio = IDLE_WORKLOAD;
  1845. cfqd->workload_expires = jiffies + 1;
  1846. return;
  1847. }
  1848. if (original_prio != cfqd->serving_prio)
  1849. goto new_workload;
  1850. /*
  1851. * For RT and BE, we have to choose also the type
  1852. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1853. * expiration time
  1854. */
  1855. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1856. count = st->count;
  1857. /*
  1858. * check workload expiration, and that we still have other queues ready
  1859. */
  1860. if (count && !time_after(jiffies, cfqd->workload_expires))
  1861. return;
  1862. new_workload:
  1863. /* otherwise select new workload type */
  1864. cfqd->serving_type =
  1865. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1866. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1867. count = st->count;
  1868. /*
  1869. * the workload slice is computed as a fraction of target latency
  1870. * proportional to the number of queues in that workload, over
  1871. * all the queues in the same priority class
  1872. */
  1873. group_slice = cfq_group_slice(cfqd, cfqg);
  1874. slice = group_slice * count /
  1875. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1876. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1877. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1878. unsigned int tmp;
  1879. /*
  1880. * Async queues are currently system wide. Just taking
  1881. * proportion of queues with-in same group will lead to higher
  1882. * async ratio system wide as generally root group is going
  1883. * to have higher weight. A more accurate thing would be to
  1884. * calculate system wide asnc/sync ratio.
  1885. */
  1886. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1887. tmp = tmp/cfqd->busy_queues;
  1888. slice = min_t(unsigned, slice, tmp);
  1889. /* async workload slice is scaled down according to
  1890. * the sync/async slice ratio. */
  1891. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1892. } else
  1893. /* sync workload slice is at least 2 * cfq_slice_idle */
  1894. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1895. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1896. cfq_log(cfqd, "workload slice:%d", slice);
  1897. cfqd->workload_expires = jiffies + slice;
  1898. }
  1899. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1900. {
  1901. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1902. struct cfq_group *cfqg;
  1903. if (RB_EMPTY_ROOT(&st->rb))
  1904. return NULL;
  1905. cfqg = cfq_rb_first_group(st);
  1906. update_min_vdisktime(st);
  1907. return cfqg;
  1908. }
  1909. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1910. {
  1911. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1912. cfqd->serving_group = cfqg;
  1913. /* Restore the workload type data */
  1914. if (cfqg->saved_workload_slice) {
  1915. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1916. cfqd->serving_type = cfqg->saved_workload;
  1917. cfqd->serving_prio = cfqg->saved_serving_prio;
  1918. } else
  1919. cfqd->workload_expires = jiffies - 1;
  1920. choose_service_tree(cfqd, cfqg);
  1921. }
  1922. /*
  1923. * Select a queue for service. If we have a current active queue,
  1924. * check whether to continue servicing it, or retrieve and set a new one.
  1925. */
  1926. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1927. {
  1928. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1929. cfqq = cfqd->active_queue;
  1930. if (!cfqq)
  1931. goto new_queue;
  1932. if (!cfqd->rq_queued)
  1933. return NULL;
  1934. /*
  1935. * We were waiting for group to get backlogged. Expire the queue
  1936. */
  1937. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1938. goto expire;
  1939. /*
  1940. * The active queue has run out of time, expire it and select new.
  1941. */
  1942. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1943. /*
  1944. * If slice had not expired at the completion of last request
  1945. * we might not have turned on wait_busy flag. Don't expire
  1946. * the queue yet. Allow the group to get backlogged.
  1947. *
  1948. * The very fact that we have used the slice, that means we
  1949. * have been idling all along on this queue and it should be
  1950. * ok to wait for this request to complete.
  1951. */
  1952. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1953. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1954. cfqq = NULL;
  1955. goto keep_queue;
  1956. } else
  1957. goto check_group_idle;
  1958. }
  1959. /*
  1960. * The active queue has requests and isn't expired, allow it to
  1961. * dispatch.
  1962. */
  1963. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1964. goto keep_queue;
  1965. /*
  1966. * If another queue has a request waiting within our mean seek
  1967. * distance, let it run. The expire code will check for close
  1968. * cooperators and put the close queue at the front of the service
  1969. * tree. If possible, merge the expiring queue with the new cfqq.
  1970. */
  1971. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1972. if (new_cfqq) {
  1973. if (!cfqq->new_cfqq)
  1974. cfq_setup_merge(cfqq, new_cfqq);
  1975. goto expire;
  1976. }
  1977. /*
  1978. * No requests pending. If the active queue still has requests in
  1979. * flight or is idling for a new request, allow either of these
  1980. * conditions to happen (or time out) before selecting a new queue.
  1981. */
  1982. if (timer_pending(&cfqd->idle_slice_timer)) {
  1983. cfqq = NULL;
  1984. goto keep_queue;
  1985. }
  1986. /*
  1987. * This is a deep seek queue, but the device is much faster than
  1988. * the queue can deliver, don't idle
  1989. **/
  1990. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1991. (cfq_cfqq_slice_new(cfqq) ||
  1992. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1993. cfq_clear_cfqq_deep(cfqq);
  1994. cfq_clear_cfqq_idle_window(cfqq);
  1995. }
  1996. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1997. cfqq = NULL;
  1998. goto keep_queue;
  1999. }
  2000. /*
  2001. * If group idle is enabled and there are requests dispatched from
  2002. * this group, wait for requests to complete.
  2003. */
  2004. check_group_idle:
  2005. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  2006. && cfqq->cfqg->dispatched) {
  2007. cfqq = NULL;
  2008. goto keep_queue;
  2009. }
  2010. expire:
  2011. cfq_slice_expired(cfqd, 0);
  2012. new_queue:
  2013. /*
  2014. * Current queue expired. Check if we have to switch to a new
  2015. * service tree
  2016. */
  2017. if (!new_cfqq)
  2018. cfq_choose_cfqg(cfqd);
  2019. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2020. keep_queue:
  2021. return cfqq;
  2022. }
  2023. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2024. {
  2025. int dispatched = 0;
  2026. while (cfqq->next_rq) {
  2027. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2028. dispatched++;
  2029. }
  2030. BUG_ON(!list_empty(&cfqq->fifo));
  2031. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2032. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2033. return dispatched;
  2034. }
  2035. /*
  2036. * Drain our current requests. Used for barriers and when switching
  2037. * io schedulers on-the-fly.
  2038. */
  2039. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2040. {
  2041. struct cfq_queue *cfqq;
  2042. int dispatched = 0;
  2043. /* Expire the timeslice of the current active queue first */
  2044. cfq_slice_expired(cfqd, 0);
  2045. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2046. __cfq_set_active_queue(cfqd, cfqq);
  2047. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2048. }
  2049. BUG_ON(cfqd->busy_queues);
  2050. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2051. return dispatched;
  2052. }
  2053. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2054. struct cfq_queue *cfqq)
  2055. {
  2056. /* the queue hasn't finished any request, can't estimate */
  2057. if (cfq_cfqq_slice_new(cfqq))
  2058. return true;
  2059. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2060. cfqq->slice_end))
  2061. return true;
  2062. return false;
  2063. }
  2064. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2065. {
  2066. unsigned int max_dispatch;
  2067. /*
  2068. * Drain async requests before we start sync IO
  2069. */
  2070. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2071. return false;
  2072. /*
  2073. * If this is an async queue and we have sync IO in flight, let it wait
  2074. */
  2075. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2076. return false;
  2077. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2078. if (cfq_class_idle(cfqq))
  2079. max_dispatch = 1;
  2080. /*
  2081. * Does this cfqq already have too much IO in flight?
  2082. */
  2083. if (cfqq->dispatched >= max_dispatch) {
  2084. bool promote_sync = false;
  2085. /*
  2086. * idle queue must always only have a single IO in flight
  2087. */
  2088. if (cfq_class_idle(cfqq))
  2089. return false;
  2090. /*
  2091. * If there is only one sync queue
  2092. * we can ignore async queue here and give the sync
  2093. * queue no dispatch limit. The reason is a sync queue can
  2094. * preempt async queue, limiting the sync queue doesn't make
  2095. * sense. This is useful for aiostress test.
  2096. */
  2097. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2098. promote_sync = true;
  2099. /*
  2100. * We have other queues, don't allow more IO from this one
  2101. */
  2102. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2103. !promote_sync)
  2104. return false;
  2105. /*
  2106. * Sole queue user, no limit
  2107. */
  2108. if (cfqd->busy_queues == 1 || promote_sync)
  2109. max_dispatch = -1;
  2110. else
  2111. /*
  2112. * Normally we start throttling cfqq when cfq_quantum/2
  2113. * requests have been dispatched. But we can drive
  2114. * deeper queue depths at the beginning of slice
  2115. * subjected to upper limit of cfq_quantum.
  2116. * */
  2117. max_dispatch = cfqd->cfq_quantum;
  2118. }
  2119. /*
  2120. * Async queues must wait a bit before being allowed dispatch.
  2121. * We also ramp up the dispatch depth gradually for async IO,
  2122. * based on the last sync IO we serviced
  2123. */
  2124. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2125. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2126. unsigned int depth;
  2127. depth = last_sync / cfqd->cfq_slice[1];
  2128. if (!depth && !cfqq->dispatched)
  2129. depth = 1;
  2130. if (depth < max_dispatch)
  2131. max_dispatch = depth;
  2132. }
  2133. /*
  2134. * If we're below the current max, allow a dispatch
  2135. */
  2136. return cfqq->dispatched < max_dispatch;
  2137. }
  2138. /*
  2139. * Dispatch a request from cfqq, moving them to the request queue
  2140. * dispatch list.
  2141. */
  2142. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2143. {
  2144. struct request *rq;
  2145. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2146. if (!cfq_may_dispatch(cfqd, cfqq))
  2147. return false;
  2148. /*
  2149. * follow expired path, else get first next available
  2150. */
  2151. rq = cfq_check_fifo(cfqq);
  2152. if (!rq)
  2153. rq = cfqq->next_rq;
  2154. /*
  2155. * insert request into driver dispatch list
  2156. */
  2157. cfq_dispatch_insert(cfqd->queue, rq);
  2158. if (!cfqd->active_cic) {
  2159. struct cfq_io_context *cic = RQ_CIC(rq);
  2160. atomic_long_inc(&cic->ioc->refcount);
  2161. cfqd->active_cic = cic;
  2162. }
  2163. return true;
  2164. }
  2165. /*
  2166. * Find the cfqq that we need to service and move a request from that to the
  2167. * dispatch list
  2168. */
  2169. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2170. {
  2171. struct cfq_data *cfqd = q->elevator->elevator_data;
  2172. struct cfq_queue *cfqq;
  2173. if (!cfqd->busy_queues)
  2174. return 0;
  2175. if (unlikely(force))
  2176. return cfq_forced_dispatch(cfqd);
  2177. cfqq = cfq_select_queue(cfqd);
  2178. if (!cfqq)
  2179. return 0;
  2180. /*
  2181. * Dispatch a request from this cfqq, if it is allowed
  2182. */
  2183. if (!cfq_dispatch_request(cfqd, cfqq))
  2184. return 0;
  2185. cfqq->slice_dispatch++;
  2186. cfq_clear_cfqq_must_dispatch(cfqq);
  2187. /*
  2188. * expire an async queue immediately if it has used up its slice. idle
  2189. * queue always expire after 1 dispatch round.
  2190. */
  2191. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2192. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2193. cfq_class_idle(cfqq))) {
  2194. cfqq->slice_end = jiffies + 1;
  2195. cfq_slice_expired(cfqd, 0);
  2196. }
  2197. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2198. return 1;
  2199. }
  2200. /*
  2201. * task holds one reference to the queue, dropped when task exits. each rq
  2202. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2203. *
  2204. * Each cfq queue took a reference on the parent group. Drop it now.
  2205. * queue lock must be held here.
  2206. */
  2207. static void cfq_put_queue(struct cfq_queue *cfqq)
  2208. {
  2209. struct cfq_data *cfqd = cfqq->cfqd;
  2210. struct cfq_group *cfqg;
  2211. BUG_ON(cfqq->ref <= 0);
  2212. cfqq->ref--;
  2213. if (cfqq->ref)
  2214. return;
  2215. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2216. BUG_ON(rb_first(&cfqq->sort_list));
  2217. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2218. cfqg = cfqq->cfqg;
  2219. if (unlikely(cfqd->active_queue == cfqq)) {
  2220. __cfq_slice_expired(cfqd, cfqq, 0);
  2221. cfq_schedule_dispatch(cfqd);
  2222. }
  2223. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2224. kmem_cache_free(cfq_pool, cfqq);
  2225. cfq_put_cfqg(cfqg);
  2226. }
  2227. /*
  2228. * Call func for each cic attached to this ioc.
  2229. */
  2230. static void
  2231. call_for_each_cic(struct io_context *ioc,
  2232. void (*func)(struct io_context *, struct cfq_io_context *))
  2233. {
  2234. struct cfq_io_context *cic;
  2235. struct hlist_node *n;
  2236. rcu_read_lock();
  2237. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2238. func(ioc, cic);
  2239. rcu_read_unlock();
  2240. }
  2241. static void cfq_cic_free_rcu(struct rcu_head *head)
  2242. {
  2243. struct cfq_io_context *cic;
  2244. cic = container_of(head, struct cfq_io_context, rcu_head);
  2245. kmem_cache_free(cfq_ioc_pool, cic);
  2246. elv_ioc_count_dec(cfq_ioc_count);
  2247. if (ioc_gone) {
  2248. /*
  2249. * CFQ scheduler is exiting, grab exit lock and check
  2250. * the pending io context count. If it hits zero,
  2251. * complete ioc_gone and set it back to NULL
  2252. */
  2253. spin_lock(&ioc_gone_lock);
  2254. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2255. complete(ioc_gone);
  2256. ioc_gone = NULL;
  2257. }
  2258. spin_unlock(&ioc_gone_lock);
  2259. }
  2260. }
  2261. static void cfq_cic_free(struct cfq_io_context *cic)
  2262. {
  2263. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2264. }
  2265. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2266. {
  2267. unsigned long flags;
  2268. unsigned long dead_key = (unsigned long) cic->key;
  2269. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2270. spin_lock_irqsave(&ioc->lock, flags);
  2271. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2272. hlist_del_rcu(&cic->cic_list);
  2273. spin_unlock_irqrestore(&ioc->lock, flags);
  2274. cfq_cic_free(cic);
  2275. }
  2276. /*
  2277. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2278. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2279. * and ->trim() which is called with the task lock held
  2280. */
  2281. static void cfq_free_io_context(struct io_context *ioc)
  2282. {
  2283. /*
  2284. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2285. * so no more cic's are allowed to be linked into this ioc. So it
  2286. * should be ok to iterate over the known list, we will see all cic's
  2287. * since no new ones are added.
  2288. */
  2289. call_for_each_cic(ioc, cic_free_func);
  2290. }
  2291. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2292. {
  2293. struct cfq_queue *__cfqq, *next;
  2294. /*
  2295. * If this queue was scheduled to merge with another queue, be
  2296. * sure to drop the reference taken on that queue (and others in
  2297. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2298. */
  2299. __cfqq = cfqq->new_cfqq;
  2300. while (__cfqq) {
  2301. if (__cfqq == cfqq) {
  2302. WARN(1, "cfqq->new_cfqq loop detected\n");
  2303. break;
  2304. }
  2305. next = __cfqq->new_cfqq;
  2306. cfq_put_queue(__cfqq);
  2307. __cfqq = next;
  2308. }
  2309. }
  2310. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2311. {
  2312. if (unlikely(cfqq == cfqd->active_queue)) {
  2313. __cfq_slice_expired(cfqd, cfqq, 0);
  2314. cfq_schedule_dispatch(cfqd);
  2315. }
  2316. cfq_put_cooperator(cfqq);
  2317. cfq_put_queue(cfqq);
  2318. }
  2319. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2320. struct cfq_io_context *cic)
  2321. {
  2322. struct io_context *ioc = cic->ioc;
  2323. list_del_init(&cic->queue_list);
  2324. /*
  2325. * Make sure dead mark is seen for dead queues
  2326. */
  2327. smp_wmb();
  2328. cic->key = cfqd_dead_key(cfqd);
  2329. rcu_read_lock();
  2330. if (rcu_dereference(ioc->ioc_data) == cic) {
  2331. rcu_read_unlock();
  2332. spin_lock(&ioc->lock);
  2333. rcu_assign_pointer(ioc->ioc_data, NULL);
  2334. spin_unlock(&ioc->lock);
  2335. } else
  2336. rcu_read_unlock();
  2337. if (cic->cfqq[BLK_RW_ASYNC]) {
  2338. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2339. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2340. }
  2341. if (cic->cfqq[BLK_RW_SYNC]) {
  2342. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2343. cic->cfqq[BLK_RW_SYNC] = NULL;
  2344. }
  2345. }
  2346. static void cfq_exit_single_io_context(struct io_context *ioc,
  2347. struct cfq_io_context *cic)
  2348. {
  2349. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2350. if (cfqd) {
  2351. struct request_queue *q = cfqd->queue;
  2352. unsigned long flags;
  2353. spin_lock_irqsave(q->queue_lock, flags);
  2354. /*
  2355. * Ensure we get a fresh copy of the ->key to prevent
  2356. * race between exiting task and queue
  2357. */
  2358. smp_read_barrier_depends();
  2359. if (cic->key == cfqd)
  2360. __cfq_exit_single_io_context(cfqd, cic);
  2361. spin_unlock_irqrestore(q->queue_lock, flags);
  2362. }
  2363. }
  2364. /*
  2365. * The process that ioc belongs to has exited, we need to clean up
  2366. * and put the internal structures we have that belongs to that process.
  2367. */
  2368. static void cfq_exit_io_context(struct io_context *ioc)
  2369. {
  2370. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2371. }
  2372. static struct cfq_io_context *
  2373. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2374. {
  2375. struct cfq_io_context *cic;
  2376. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2377. cfqd->queue->node);
  2378. if (cic) {
  2379. cic->last_end_request = jiffies;
  2380. INIT_LIST_HEAD(&cic->queue_list);
  2381. INIT_HLIST_NODE(&cic->cic_list);
  2382. cic->dtor = cfq_free_io_context;
  2383. cic->exit = cfq_exit_io_context;
  2384. elv_ioc_count_inc(cfq_ioc_count);
  2385. }
  2386. return cic;
  2387. }
  2388. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2389. {
  2390. struct task_struct *tsk = current;
  2391. int ioprio_class;
  2392. if (!cfq_cfqq_prio_changed(cfqq))
  2393. return;
  2394. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2395. switch (ioprio_class) {
  2396. default:
  2397. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2398. case IOPRIO_CLASS_NONE:
  2399. /*
  2400. * no prio set, inherit CPU scheduling settings
  2401. */
  2402. cfqq->ioprio = task_nice_ioprio(tsk);
  2403. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2404. break;
  2405. case IOPRIO_CLASS_RT:
  2406. cfqq->ioprio = task_ioprio(ioc);
  2407. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2408. break;
  2409. case IOPRIO_CLASS_BE:
  2410. cfqq->ioprio = task_ioprio(ioc);
  2411. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2412. break;
  2413. case IOPRIO_CLASS_IDLE:
  2414. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2415. cfqq->ioprio = 7;
  2416. cfq_clear_cfqq_idle_window(cfqq);
  2417. break;
  2418. }
  2419. /*
  2420. * keep track of original prio settings in case we have to temporarily
  2421. * elevate the priority of this queue
  2422. */
  2423. cfqq->org_ioprio = cfqq->ioprio;
  2424. cfq_clear_cfqq_prio_changed(cfqq);
  2425. }
  2426. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2427. {
  2428. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2429. struct cfq_queue *cfqq;
  2430. unsigned long flags;
  2431. if (unlikely(!cfqd))
  2432. return;
  2433. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2434. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2435. if (cfqq) {
  2436. struct cfq_queue *new_cfqq;
  2437. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2438. GFP_ATOMIC);
  2439. if (new_cfqq) {
  2440. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2441. cfq_put_queue(cfqq);
  2442. }
  2443. }
  2444. cfqq = cic->cfqq[BLK_RW_SYNC];
  2445. if (cfqq)
  2446. cfq_mark_cfqq_prio_changed(cfqq);
  2447. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2448. }
  2449. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2450. {
  2451. call_for_each_cic(ioc, changed_ioprio);
  2452. ioc->ioprio_changed = 0;
  2453. }
  2454. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2455. pid_t pid, bool is_sync)
  2456. {
  2457. RB_CLEAR_NODE(&cfqq->rb_node);
  2458. RB_CLEAR_NODE(&cfqq->p_node);
  2459. INIT_LIST_HEAD(&cfqq->fifo);
  2460. cfqq->ref = 0;
  2461. cfqq->cfqd = cfqd;
  2462. cfq_mark_cfqq_prio_changed(cfqq);
  2463. if (is_sync) {
  2464. if (!cfq_class_idle(cfqq))
  2465. cfq_mark_cfqq_idle_window(cfqq);
  2466. cfq_mark_cfqq_sync(cfqq);
  2467. }
  2468. cfqq->pid = pid;
  2469. }
  2470. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2471. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2472. {
  2473. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2474. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2475. unsigned long flags;
  2476. struct request_queue *q;
  2477. if (unlikely(!cfqd))
  2478. return;
  2479. q = cfqd->queue;
  2480. spin_lock_irqsave(q->queue_lock, flags);
  2481. if (sync_cfqq) {
  2482. /*
  2483. * Drop reference to sync queue. A new sync queue will be
  2484. * assigned in new group upon arrival of a fresh request.
  2485. */
  2486. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2487. cic_set_cfqq(cic, NULL, 1);
  2488. cfq_put_queue(sync_cfqq);
  2489. }
  2490. spin_unlock_irqrestore(q->queue_lock, flags);
  2491. }
  2492. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2493. {
  2494. call_for_each_cic(ioc, changed_cgroup);
  2495. ioc->cgroup_changed = 0;
  2496. }
  2497. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2498. static struct cfq_queue *
  2499. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2500. struct io_context *ioc, gfp_t gfp_mask)
  2501. {
  2502. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2503. struct cfq_io_context *cic;
  2504. struct cfq_group *cfqg;
  2505. retry:
  2506. cfqg = cfq_get_cfqg(cfqd);
  2507. cic = cfq_cic_lookup(cfqd, ioc);
  2508. /* cic always exists here */
  2509. cfqq = cic_to_cfqq(cic, is_sync);
  2510. /*
  2511. * Always try a new alloc if we fell back to the OOM cfqq
  2512. * originally, since it should just be a temporary situation.
  2513. */
  2514. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2515. cfqq = NULL;
  2516. if (new_cfqq) {
  2517. cfqq = new_cfqq;
  2518. new_cfqq = NULL;
  2519. } else if (gfp_mask & __GFP_WAIT) {
  2520. spin_unlock_irq(cfqd->queue->queue_lock);
  2521. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2522. gfp_mask | __GFP_ZERO,
  2523. cfqd->queue->node);
  2524. spin_lock_irq(cfqd->queue->queue_lock);
  2525. if (new_cfqq)
  2526. goto retry;
  2527. } else {
  2528. cfqq = kmem_cache_alloc_node(cfq_pool,
  2529. gfp_mask | __GFP_ZERO,
  2530. cfqd->queue->node);
  2531. }
  2532. if (cfqq) {
  2533. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2534. cfq_init_prio_data(cfqq, ioc);
  2535. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2536. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2537. } else
  2538. cfqq = &cfqd->oom_cfqq;
  2539. }
  2540. if (new_cfqq)
  2541. kmem_cache_free(cfq_pool, new_cfqq);
  2542. return cfqq;
  2543. }
  2544. static struct cfq_queue **
  2545. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2546. {
  2547. switch (ioprio_class) {
  2548. case IOPRIO_CLASS_RT:
  2549. return &cfqd->async_cfqq[0][ioprio];
  2550. case IOPRIO_CLASS_BE:
  2551. return &cfqd->async_cfqq[1][ioprio];
  2552. case IOPRIO_CLASS_IDLE:
  2553. return &cfqd->async_idle_cfqq;
  2554. default:
  2555. BUG();
  2556. }
  2557. }
  2558. static struct cfq_queue *
  2559. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2560. gfp_t gfp_mask)
  2561. {
  2562. const int ioprio = task_ioprio(ioc);
  2563. const int ioprio_class = task_ioprio_class(ioc);
  2564. struct cfq_queue **async_cfqq = NULL;
  2565. struct cfq_queue *cfqq = NULL;
  2566. if (!is_sync) {
  2567. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2568. cfqq = *async_cfqq;
  2569. }
  2570. if (!cfqq)
  2571. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2572. /*
  2573. * pin the queue now that it's allocated, scheduler exit will prune it
  2574. */
  2575. if (!is_sync && !(*async_cfqq)) {
  2576. cfqq->ref++;
  2577. *async_cfqq = cfqq;
  2578. }
  2579. cfqq->ref++;
  2580. return cfqq;
  2581. }
  2582. /*
  2583. * We drop cfq io contexts lazily, so we may find a dead one.
  2584. */
  2585. static void
  2586. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2587. struct cfq_io_context *cic)
  2588. {
  2589. unsigned long flags;
  2590. WARN_ON(!list_empty(&cic->queue_list));
  2591. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2592. spin_lock_irqsave(&ioc->lock, flags);
  2593. BUG_ON(rcu_dereference_check(ioc->ioc_data,
  2594. lockdep_is_held(&ioc->lock)) == cic);
  2595. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2596. hlist_del_rcu(&cic->cic_list);
  2597. spin_unlock_irqrestore(&ioc->lock, flags);
  2598. cfq_cic_free(cic);
  2599. }
  2600. static struct cfq_io_context *
  2601. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2602. {
  2603. struct cfq_io_context *cic;
  2604. unsigned long flags;
  2605. if (unlikely(!ioc))
  2606. return NULL;
  2607. rcu_read_lock();
  2608. /*
  2609. * we maintain a last-hit cache, to avoid browsing over the tree
  2610. */
  2611. cic = rcu_dereference(ioc->ioc_data);
  2612. if (cic && cic->key == cfqd) {
  2613. rcu_read_unlock();
  2614. return cic;
  2615. }
  2616. do {
  2617. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2618. rcu_read_unlock();
  2619. if (!cic)
  2620. break;
  2621. if (unlikely(cic->key != cfqd)) {
  2622. cfq_drop_dead_cic(cfqd, ioc, cic);
  2623. rcu_read_lock();
  2624. continue;
  2625. }
  2626. spin_lock_irqsave(&ioc->lock, flags);
  2627. rcu_assign_pointer(ioc->ioc_data, cic);
  2628. spin_unlock_irqrestore(&ioc->lock, flags);
  2629. break;
  2630. } while (1);
  2631. return cic;
  2632. }
  2633. /*
  2634. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2635. * the process specific cfq io context when entered from the block layer.
  2636. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2637. */
  2638. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2639. struct cfq_io_context *cic, gfp_t gfp_mask)
  2640. {
  2641. unsigned long flags;
  2642. int ret;
  2643. ret = radix_tree_preload(gfp_mask);
  2644. if (!ret) {
  2645. cic->ioc = ioc;
  2646. cic->key = cfqd;
  2647. spin_lock_irqsave(&ioc->lock, flags);
  2648. ret = radix_tree_insert(&ioc->radix_root,
  2649. cfqd->cic_index, cic);
  2650. if (!ret)
  2651. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2652. spin_unlock_irqrestore(&ioc->lock, flags);
  2653. radix_tree_preload_end();
  2654. if (!ret) {
  2655. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2656. list_add(&cic->queue_list, &cfqd->cic_list);
  2657. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2658. }
  2659. }
  2660. if (ret)
  2661. printk(KERN_ERR "cfq: cic link failed!\n");
  2662. return ret;
  2663. }
  2664. /*
  2665. * Setup general io context and cfq io context. There can be several cfq
  2666. * io contexts per general io context, if this process is doing io to more
  2667. * than one device managed by cfq.
  2668. */
  2669. static struct cfq_io_context *
  2670. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2671. {
  2672. struct io_context *ioc = NULL;
  2673. struct cfq_io_context *cic;
  2674. might_sleep_if(gfp_mask & __GFP_WAIT);
  2675. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2676. if (!ioc)
  2677. return NULL;
  2678. cic = cfq_cic_lookup(cfqd, ioc);
  2679. if (cic)
  2680. goto out;
  2681. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2682. if (cic == NULL)
  2683. goto err;
  2684. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2685. goto err_free;
  2686. out:
  2687. smp_read_barrier_depends();
  2688. if (unlikely(ioc->ioprio_changed))
  2689. cfq_ioc_set_ioprio(ioc);
  2690. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2691. if (unlikely(ioc->cgroup_changed))
  2692. cfq_ioc_set_cgroup(ioc);
  2693. #endif
  2694. return cic;
  2695. err_free:
  2696. cfq_cic_free(cic);
  2697. err:
  2698. put_io_context(ioc);
  2699. return NULL;
  2700. }
  2701. static void
  2702. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2703. {
  2704. unsigned long elapsed = jiffies - cic->last_end_request;
  2705. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2706. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2707. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2708. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2709. }
  2710. static void
  2711. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2712. struct request *rq)
  2713. {
  2714. sector_t sdist = 0;
  2715. sector_t n_sec = blk_rq_sectors(rq);
  2716. if (cfqq->last_request_pos) {
  2717. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2718. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2719. else
  2720. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2721. }
  2722. cfqq->seek_history <<= 1;
  2723. if (blk_queue_nonrot(cfqd->queue))
  2724. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2725. else
  2726. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2727. }
  2728. /*
  2729. * Disable idle window if the process thinks too long or seeks so much that
  2730. * it doesn't matter
  2731. */
  2732. static void
  2733. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2734. struct cfq_io_context *cic)
  2735. {
  2736. int old_idle, enable_idle;
  2737. /*
  2738. * Don't idle for async or idle io prio class
  2739. */
  2740. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2741. return;
  2742. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2743. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2744. cfq_mark_cfqq_deep(cfqq);
  2745. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2746. enable_idle = 0;
  2747. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2748. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2749. enable_idle = 0;
  2750. else if (sample_valid(cic->ttime_samples)) {
  2751. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2752. enable_idle = 0;
  2753. else
  2754. enable_idle = 1;
  2755. }
  2756. if (old_idle != enable_idle) {
  2757. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2758. if (enable_idle)
  2759. cfq_mark_cfqq_idle_window(cfqq);
  2760. else
  2761. cfq_clear_cfqq_idle_window(cfqq);
  2762. }
  2763. }
  2764. /*
  2765. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2766. * no or if we aren't sure, a 1 will cause a preempt.
  2767. */
  2768. static bool
  2769. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2770. struct request *rq)
  2771. {
  2772. struct cfq_queue *cfqq;
  2773. cfqq = cfqd->active_queue;
  2774. if (!cfqq)
  2775. return false;
  2776. if (cfq_class_idle(new_cfqq))
  2777. return false;
  2778. if (cfq_class_idle(cfqq))
  2779. return true;
  2780. /*
  2781. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2782. */
  2783. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2784. return false;
  2785. /*
  2786. * if the new request is sync, but the currently running queue is
  2787. * not, let the sync request have priority.
  2788. */
  2789. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2790. return true;
  2791. if (new_cfqq->cfqg != cfqq->cfqg)
  2792. return false;
  2793. if (cfq_slice_used(cfqq))
  2794. return true;
  2795. /* Allow preemption only if we are idling on sync-noidle tree */
  2796. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2797. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2798. new_cfqq->service_tree->count == 2 &&
  2799. RB_EMPTY_ROOT(&cfqq->sort_list))
  2800. return true;
  2801. /*
  2802. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2803. */
  2804. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2805. return true;
  2806. /* An idle queue should not be idle now for some reason */
  2807. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2808. return true;
  2809. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2810. return false;
  2811. /*
  2812. * if this request is as-good as one we would expect from the
  2813. * current cfqq, let it preempt
  2814. */
  2815. if (cfq_rq_close(cfqd, cfqq, rq))
  2816. return true;
  2817. return false;
  2818. }
  2819. /*
  2820. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2821. * let it have half of its nominal slice.
  2822. */
  2823. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2824. {
  2825. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2826. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2827. cfq_slice_expired(cfqd, 1);
  2828. /*
  2829. * workload type is changed, don't save slice, otherwise preempt
  2830. * doesn't happen
  2831. */
  2832. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2833. cfqq->cfqg->saved_workload_slice = 0;
  2834. /*
  2835. * Put the new queue at the front of the of the current list,
  2836. * so we know that it will be selected next.
  2837. */
  2838. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2839. cfq_service_tree_add(cfqd, cfqq, 1);
  2840. cfqq->slice_end = 0;
  2841. cfq_mark_cfqq_slice_new(cfqq);
  2842. }
  2843. /*
  2844. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2845. * something we should do about it
  2846. */
  2847. static void
  2848. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2849. struct request *rq)
  2850. {
  2851. struct cfq_io_context *cic = RQ_CIC(rq);
  2852. cfqd->rq_queued++;
  2853. cfq_update_io_thinktime(cfqd, cic);
  2854. cfq_update_io_seektime(cfqd, cfqq, rq);
  2855. cfq_update_idle_window(cfqd, cfqq, cic);
  2856. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2857. if (cfqq == cfqd->active_queue) {
  2858. /*
  2859. * Remember that we saw a request from this process, but
  2860. * don't start queuing just yet. Otherwise we risk seeing lots
  2861. * of tiny requests, because we disrupt the normal plugging
  2862. * and merging. If the request is already larger than a single
  2863. * page, let it rip immediately. For that case we assume that
  2864. * merging is already done. Ditto for a busy system that
  2865. * has other work pending, don't risk delaying until the
  2866. * idle timer unplug to continue working.
  2867. */
  2868. if (cfq_cfqq_wait_request(cfqq)) {
  2869. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2870. cfqd->busy_queues > 1) {
  2871. cfq_del_timer(cfqd, cfqq);
  2872. cfq_clear_cfqq_wait_request(cfqq);
  2873. __blk_run_queue(cfqd->queue);
  2874. } else {
  2875. cfq_blkiocg_update_idle_time_stats(
  2876. &cfqq->cfqg->blkg);
  2877. cfq_mark_cfqq_must_dispatch(cfqq);
  2878. }
  2879. }
  2880. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2881. /*
  2882. * not the active queue - expire current slice if it is
  2883. * idle and has expired it's mean thinktime or this new queue
  2884. * has some old slice time left and is of higher priority or
  2885. * this new queue is RT and the current one is BE
  2886. */
  2887. cfq_preempt_queue(cfqd, cfqq);
  2888. __blk_run_queue(cfqd->queue);
  2889. }
  2890. }
  2891. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2892. {
  2893. struct cfq_data *cfqd = q->elevator->elevator_data;
  2894. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2895. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2896. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2897. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2898. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2899. cfq_add_rq_rb(rq);
  2900. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2901. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2902. rq_is_sync(rq));
  2903. cfq_rq_enqueued(cfqd, cfqq, rq);
  2904. }
  2905. /*
  2906. * Update hw_tag based on peak queue depth over 50 samples under
  2907. * sufficient load.
  2908. */
  2909. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2910. {
  2911. struct cfq_queue *cfqq = cfqd->active_queue;
  2912. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2913. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2914. if (cfqd->hw_tag == 1)
  2915. return;
  2916. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2917. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2918. return;
  2919. /*
  2920. * If active queue hasn't enough requests and can idle, cfq might not
  2921. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2922. * case
  2923. */
  2924. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2925. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2926. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2927. return;
  2928. if (cfqd->hw_tag_samples++ < 50)
  2929. return;
  2930. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2931. cfqd->hw_tag = 1;
  2932. else
  2933. cfqd->hw_tag = 0;
  2934. }
  2935. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2936. {
  2937. struct cfq_io_context *cic = cfqd->active_cic;
  2938. /* If the queue already has requests, don't wait */
  2939. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2940. return false;
  2941. /* If there are other queues in the group, don't wait */
  2942. if (cfqq->cfqg->nr_cfqq > 1)
  2943. return false;
  2944. if (cfq_slice_used(cfqq))
  2945. return true;
  2946. /* if slice left is less than think time, wait busy */
  2947. if (cic && sample_valid(cic->ttime_samples)
  2948. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2949. return true;
  2950. /*
  2951. * If think times is less than a jiffy than ttime_mean=0 and above
  2952. * will not be true. It might happen that slice has not expired yet
  2953. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2954. * case where think time is less than a jiffy, mark the queue wait
  2955. * busy if only 1 jiffy is left in the slice.
  2956. */
  2957. if (cfqq->slice_end - jiffies == 1)
  2958. return true;
  2959. return false;
  2960. }
  2961. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2962. {
  2963. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2964. struct cfq_data *cfqd = cfqq->cfqd;
  2965. const int sync = rq_is_sync(rq);
  2966. unsigned long now;
  2967. now = jiffies;
  2968. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2969. !!(rq->cmd_flags & REQ_NOIDLE));
  2970. cfq_update_hw_tag(cfqd);
  2971. WARN_ON(!cfqd->rq_in_driver);
  2972. WARN_ON(!cfqq->dispatched);
  2973. cfqd->rq_in_driver--;
  2974. cfqq->dispatched--;
  2975. (RQ_CFQG(rq))->dispatched--;
  2976. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2977. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2978. rq_data_dir(rq), rq_is_sync(rq));
  2979. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2980. if (sync) {
  2981. RQ_CIC(rq)->last_end_request = now;
  2982. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2983. cfqd->last_delayed_sync = now;
  2984. }
  2985. /*
  2986. * If this is the active queue, check if it needs to be expired,
  2987. * or if we want to idle in case it has no pending requests.
  2988. */
  2989. if (cfqd->active_queue == cfqq) {
  2990. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2991. if (cfq_cfqq_slice_new(cfqq)) {
  2992. cfq_set_prio_slice(cfqd, cfqq);
  2993. cfq_clear_cfqq_slice_new(cfqq);
  2994. }
  2995. /*
  2996. * Should we wait for next request to come in before we expire
  2997. * the queue.
  2998. */
  2999. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3000. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3001. if (!cfqd->cfq_slice_idle)
  3002. extend_sl = cfqd->cfq_group_idle;
  3003. cfqq->slice_end = jiffies + extend_sl;
  3004. cfq_mark_cfqq_wait_busy(cfqq);
  3005. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3006. }
  3007. /*
  3008. * Idling is not enabled on:
  3009. * - expired queues
  3010. * - idle-priority queues
  3011. * - async queues
  3012. * - queues with still some requests queued
  3013. * - when there is a close cooperator
  3014. */
  3015. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3016. cfq_slice_expired(cfqd, 1);
  3017. else if (sync && cfqq_empty &&
  3018. !cfq_close_cooperator(cfqd, cfqq)) {
  3019. cfq_arm_slice_timer(cfqd);
  3020. }
  3021. }
  3022. if (!cfqd->rq_in_driver)
  3023. cfq_schedule_dispatch(cfqd);
  3024. }
  3025. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3026. {
  3027. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3028. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3029. return ELV_MQUEUE_MUST;
  3030. }
  3031. return ELV_MQUEUE_MAY;
  3032. }
  3033. static int cfq_may_queue(struct request_queue *q, int rw)
  3034. {
  3035. struct cfq_data *cfqd = q->elevator->elevator_data;
  3036. struct task_struct *tsk = current;
  3037. struct cfq_io_context *cic;
  3038. struct cfq_queue *cfqq;
  3039. /*
  3040. * don't force setup of a queue from here, as a call to may_queue
  3041. * does not necessarily imply that a request actually will be queued.
  3042. * so just lookup a possibly existing queue, or return 'may queue'
  3043. * if that fails
  3044. */
  3045. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3046. if (!cic)
  3047. return ELV_MQUEUE_MAY;
  3048. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3049. if (cfqq) {
  3050. cfq_init_prio_data(cfqq, cic->ioc);
  3051. return __cfq_may_queue(cfqq);
  3052. }
  3053. return ELV_MQUEUE_MAY;
  3054. }
  3055. /*
  3056. * queue lock held here
  3057. */
  3058. static void cfq_put_request(struct request *rq)
  3059. {
  3060. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3061. if (cfqq) {
  3062. const int rw = rq_data_dir(rq);
  3063. BUG_ON(!cfqq->allocated[rw]);
  3064. cfqq->allocated[rw]--;
  3065. put_io_context(RQ_CIC(rq)->ioc);
  3066. rq->elevator_private[0] = NULL;
  3067. rq->elevator_private[1] = NULL;
  3068. /* Put down rq reference on cfqg */
  3069. cfq_put_cfqg(RQ_CFQG(rq));
  3070. rq->elevator_private[2] = NULL;
  3071. cfq_put_queue(cfqq);
  3072. }
  3073. }
  3074. static struct cfq_queue *
  3075. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3076. struct cfq_queue *cfqq)
  3077. {
  3078. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3079. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3080. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3081. cfq_put_queue(cfqq);
  3082. return cic_to_cfqq(cic, 1);
  3083. }
  3084. /*
  3085. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3086. * was the last process referring to said cfqq.
  3087. */
  3088. static struct cfq_queue *
  3089. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3090. {
  3091. if (cfqq_process_refs(cfqq) == 1) {
  3092. cfqq->pid = current->pid;
  3093. cfq_clear_cfqq_coop(cfqq);
  3094. cfq_clear_cfqq_split_coop(cfqq);
  3095. return cfqq;
  3096. }
  3097. cic_set_cfqq(cic, NULL, 1);
  3098. cfq_put_cooperator(cfqq);
  3099. cfq_put_queue(cfqq);
  3100. return NULL;
  3101. }
  3102. /*
  3103. * Allocate cfq data structures associated with this request.
  3104. */
  3105. static int
  3106. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3107. {
  3108. struct cfq_data *cfqd = q->elevator->elevator_data;
  3109. struct cfq_io_context *cic;
  3110. const int rw = rq_data_dir(rq);
  3111. const bool is_sync = rq_is_sync(rq);
  3112. struct cfq_queue *cfqq;
  3113. unsigned long flags;
  3114. might_sleep_if(gfp_mask & __GFP_WAIT);
  3115. cic = cfq_get_io_context(cfqd, gfp_mask);
  3116. spin_lock_irqsave(q->queue_lock, flags);
  3117. if (!cic)
  3118. goto queue_fail;
  3119. new_queue:
  3120. cfqq = cic_to_cfqq(cic, is_sync);
  3121. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3122. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3123. cic_set_cfqq(cic, cfqq, is_sync);
  3124. } else {
  3125. /*
  3126. * If the queue was seeky for too long, break it apart.
  3127. */
  3128. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3129. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3130. cfqq = split_cfqq(cic, cfqq);
  3131. if (!cfqq)
  3132. goto new_queue;
  3133. }
  3134. /*
  3135. * Check to see if this queue is scheduled to merge with
  3136. * another, closely cooperating queue. The merging of
  3137. * queues happens here as it must be done in process context.
  3138. * The reference on new_cfqq was taken in merge_cfqqs.
  3139. */
  3140. if (cfqq->new_cfqq)
  3141. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3142. }
  3143. cfqq->allocated[rw]++;
  3144. cfqq->ref++;
  3145. rq->elevator_private[0] = cic;
  3146. rq->elevator_private[1] = cfqq;
  3147. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3148. spin_unlock_irqrestore(q->queue_lock, flags);
  3149. return 0;
  3150. queue_fail:
  3151. cfq_schedule_dispatch(cfqd);
  3152. spin_unlock_irqrestore(q->queue_lock, flags);
  3153. cfq_log(cfqd, "set_request fail");
  3154. return 1;
  3155. }
  3156. static void cfq_kick_queue(struct work_struct *work)
  3157. {
  3158. struct cfq_data *cfqd =
  3159. container_of(work, struct cfq_data, unplug_work);
  3160. struct request_queue *q = cfqd->queue;
  3161. spin_lock_irq(q->queue_lock);
  3162. __blk_run_queue(cfqd->queue);
  3163. spin_unlock_irq(q->queue_lock);
  3164. }
  3165. /*
  3166. * Timer running if the active_queue is currently idling inside its time slice
  3167. */
  3168. static void cfq_idle_slice_timer(unsigned long data)
  3169. {
  3170. struct cfq_data *cfqd = (struct cfq_data *) data;
  3171. struct cfq_queue *cfqq;
  3172. unsigned long flags;
  3173. int timed_out = 1;
  3174. cfq_log(cfqd, "idle timer fired");
  3175. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3176. cfqq = cfqd->active_queue;
  3177. if (cfqq) {
  3178. timed_out = 0;
  3179. /*
  3180. * We saw a request before the queue expired, let it through
  3181. */
  3182. if (cfq_cfqq_must_dispatch(cfqq))
  3183. goto out_kick;
  3184. /*
  3185. * expired
  3186. */
  3187. if (cfq_slice_used(cfqq))
  3188. goto expire;
  3189. /*
  3190. * only expire and reinvoke request handler, if there are
  3191. * other queues with pending requests
  3192. */
  3193. if (!cfqd->busy_queues)
  3194. goto out_cont;
  3195. /*
  3196. * not expired and it has a request pending, let it dispatch
  3197. */
  3198. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3199. goto out_kick;
  3200. /*
  3201. * Queue depth flag is reset only when the idle didn't succeed
  3202. */
  3203. cfq_clear_cfqq_deep(cfqq);
  3204. }
  3205. expire:
  3206. cfq_slice_expired(cfqd, timed_out);
  3207. out_kick:
  3208. cfq_schedule_dispatch(cfqd);
  3209. out_cont:
  3210. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3211. }
  3212. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3213. {
  3214. del_timer_sync(&cfqd->idle_slice_timer);
  3215. cancel_work_sync(&cfqd->unplug_work);
  3216. }
  3217. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3218. {
  3219. int i;
  3220. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3221. if (cfqd->async_cfqq[0][i])
  3222. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3223. if (cfqd->async_cfqq[1][i])
  3224. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3225. }
  3226. if (cfqd->async_idle_cfqq)
  3227. cfq_put_queue(cfqd->async_idle_cfqq);
  3228. }
  3229. static void cfq_exit_queue(struct elevator_queue *e)
  3230. {
  3231. struct cfq_data *cfqd = e->elevator_data;
  3232. struct request_queue *q = cfqd->queue;
  3233. bool wait = false;
  3234. cfq_shutdown_timer_wq(cfqd);
  3235. spin_lock_irq(q->queue_lock);
  3236. if (cfqd->active_queue)
  3237. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3238. while (!list_empty(&cfqd->cic_list)) {
  3239. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3240. struct cfq_io_context,
  3241. queue_list);
  3242. __cfq_exit_single_io_context(cfqd, cic);
  3243. }
  3244. cfq_put_async_queues(cfqd);
  3245. cfq_release_cfq_groups(cfqd);
  3246. /*
  3247. * If there are groups which we could not unlink from blkcg list,
  3248. * wait for a rcu period for them to be freed.
  3249. */
  3250. if (cfqd->nr_blkcg_linked_grps)
  3251. wait = true;
  3252. spin_unlock_irq(q->queue_lock);
  3253. cfq_shutdown_timer_wq(cfqd);
  3254. spin_lock(&cic_index_lock);
  3255. ida_remove(&cic_index_ida, cfqd->cic_index);
  3256. spin_unlock(&cic_index_lock);
  3257. /*
  3258. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3259. * Do this wait only if there are other unlinked groups out
  3260. * there. This can happen if cgroup deletion path claimed the
  3261. * responsibility of cleaning up a group before queue cleanup code
  3262. * get to the group.
  3263. *
  3264. * Do not call synchronize_rcu() unconditionally as there are drivers
  3265. * which create/delete request queue hundreds of times during scan/boot
  3266. * and synchronize_rcu() can take significant time and slow down boot.
  3267. */
  3268. if (wait)
  3269. synchronize_rcu();
  3270. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3271. /* Free up per cpu stats for root group */
  3272. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3273. #endif
  3274. kfree(cfqd);
  3275. }
  3276. static int cfq_alloc_cic_index(void)
  3277. {
  3278. int index, error;
  3279. do {
  3280. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3281. return -ENOMEM;
  3282. spin_lock(&cic_index_lock);
  3283. error = ida_get_new(&cic_index_ida, &index);
  3284. spin_unlock(&cic_index_lock);
  3285. if (error && error != -EAGAIN)
  3286. return error;
  3287. } while (error);
  3288. return index;
  3289. }
  3290. static void *cfq_init_queue(struct request_queue *q)
  3291. {
  3292. struct cfq_data *cfqd;
  3293. int i, j;
  3294. struct cfq_group *cfqg;
  3295. struct cfq_rb_root *st;
  3296. i = cfq_alloc_cic_index();
  3297. if (i < 0)
  3298. return NULL;
  3299. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3300. if (!cfqd) {
  3301. spin_lock(&cic_index_lock);
  3302. ida_remove(&cic_index_ida, i);
  3303. spin_unlock(&cic_index_lock);
  3304. return NULL;
  3305. }
  3306. /*
  3307. * Don't need take queue_lock in the routine, since we are
  3308. * initializing the ioscheduler, and nobody is using cfqd
  3309. */
  3310. cfqd->cic_index = i;
  3311. /* Init root service tree */
  3312. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3313. /* Init root group */
  3314. cfqg = &cfqd->root_group;
  3315. for_each_cfqg_st(cfqg, i, j, st)
  3316. *st = CFQ_RB_ROOT;
  3317. RB_CLEAR_NODE(&cfqg->rb_node);
  3318. /* Give preference to root group over other groups */
  3319. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3320. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3321. /*
  3322. * Set root group reference to 2. One reference will be dropped when
  3323. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3324. * Other reference will remain there as we don't want to delete this
  3325. * group as it is statically allocated and gets destroyed when
  3326. * throtl_data goes away.
  3327. */
  3328. cfqg->ref = 2;
  3329. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3330. kfree(cfqg);
  3331. kfree(cfqd);
  3332. return NULL;
  3333. }
  3334. rcu_read_lock();
  3335. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3336. (void *)cfqd, 0);
  3337. rcu_read_unlock();
  3338. cfqd->nr_blkcg_linked_grps++;
  3339. /* Add group on cfqd->cfqg_list */
  3340. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3341. #endif
  3342. /*
  3343. * Not strictly needed (since RB_ROOT just clears the node and we
  3344. * zeroed cfqd on alloc), but better be safe in case someone decides
  3345. * to add magic to the rb code
  3346. */
  3347. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3348. cfqd->prio_trees[i] = RB_ROOT;
  3349. /*
  3350. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3351. * Grab a permanent reference to it, so that the normal code flow
  3352. * will not attempt to free it.
  3353. */
  3354. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3355. cfqd->oom_cfqq.ref++;
  3356. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3357. INIT_LIST_HEAD(&cfqd->cic_list);
  3358. cfqd->queue = q;
  3359. init_timer(&cfqd->idle_slice_timer);
  3360. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3361. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3362. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3363. cfqd->cfq_quantum = cfq_quantum;
  3364. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3365. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3366. cfqd->cfq_back_max = cfq_back_max;
  3367. cfqd->cfq_back_penalty = cfq_back_penalty;
  3368. cfqd->cfq_slice[0] = cfq_slice_async;
  3369. cfqd->cfq_slice[1] = cfq_slice_sync;
  3370. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3371. cfqd->cfq_slice_idle = cfq_slice_idle;
  3372. cfqd->cfq_group_idle = cfq_group_idle;
  3373. cfqd->cfq_latency = 1;
  3374. cfqd->hw_tag = -1;
  3375. /*
  3376. * we optimistically start assuming sync ops weren't delayed in last
  3377. * second, in order to have larger depth for async operations.
  3378. */
  3379. cfqd->last_delayed_sync = jiffies - HZ;
  3380. return cfqd;
  3381. }
  3382. static void cfq_slab_kill(void)
  3383. {
  3384. /*
  3385. * Caller already ensured that pending RCU callbacks are completed,
  3386. * so we should have no busy allocations at this point.
  3387. */
  3388. if (cfq_pool)
  3389. kmem_cache_destroy(cfq_pool);
  3390. if (cfq_ioc_pool)
  3391. kmem_cache_destroy(cfq_ioc_pool);
  3392. }
  3393. static int __init cfq_slab_setup(void)
  3394. {
  3395. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3396. if (!cfq_pool)
  3397. goto fail;
  3398. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3399. if (!cfq_ioc_pool)
  3400. goto fail;
  3401. return 0;
  3402. fail:
  3403. cfq_slab_kill();
  3404. return -ENOMEM;
  3405. }
  3406. /*
  3407. * sysfs parts below -->
  3408. */
  3409. static ssize_t
  3410. cfq_var_show(unsigned int var, char *page)
  3411. {
  3412. return sprintf(page, "%d\n", var);
  3413. }
  3414. static ssize_t
  3415. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3416. {
  3417. char *p = (char *) page;
  3418. *var = simple_strtoul(p, &p, 10);
  3419. return count;
  3420. }
  3421. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3422. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3423. { \
  3424. struct cfq_data *cfqd = e->elevator_data; \
  3425. unsigned int __data = __VAR; \
  3426. if (__CONV) \
  3427. __data = jiffies_to_msecs(__data); \
  3428. return cfq_var_show(__data, (page)); \
  3429. }
  3430. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3431. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3432. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3433. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3434. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3435. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3436. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3437. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3438. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3439. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3440. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3441. #undef SHOW_FUNCTION
  3442. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3443. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3444. { \
  3445. struct cfq_data *cfqd = e->elevator_data; \
  3446. unsigned int __data; \
  3447. int ret = cfq_var_store(&__data, (page), count); \
  3448. if (__data < (MIN)) \
  3449. __data = (MIN); \
  3450. else if (__data > (MAX)) \
  3451. __data = (MAX); \
  3452. if (__CONV) \
  3453. *(__PTR) = msecs_to_jiffies(__data); \
  3454. else \
  3455. *(__PTR) = __data; \
  3456. return ret; \
  3457. }
  3458. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3459. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3460. UINT_MAX, 1);
  3461. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3462. UINT_MAX, 1);
  3463. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3464. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3465. UINT_MAX, 0);
  3466. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3467. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3468. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3469. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3470. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3471. UINT_MAX, 0);
  3472. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3473. #undef STORE_FUNCTION
  3474. #define CFQ_ATTR(name) \
  3475. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3476. static struct elv_fs_entry cfq_attrs[] = {
  3477. CFQ_ATTR(quantum),
  3478. CFQ_ATTR(fifo_expire_sync),
  3479. CFQ_ATTR(fifo_expire_async),
  3480. CFQ_ATTR(back_seek_max),
  3481. CFQ_ATTR(back_seek_penalty),
  3482. CFQ_ATTR(slice_sync),
  3483. CFQ_ATTR(slice_async),
  3484. CFQ_ATTR(slice_async_rq),
  3485. CFQ_ATTR(slice_idle),
  3486. CFQ_ATTR(group_idle),
  3487. CFQ_ATTR(low_latency),
  3488. __ATTR_NULL
  3489. };
  3490. static struct elevator_type iosched_cfq = {
  3491. .ops = {
  3492. .elevator_merge_fn = cfq_merge,
  3493. .elevator_merged_fn = cfq_merged_request,
  3494. .elevator_merge_req_fn = cfq_merged_requests,
  3495. .elevator_allow_merge_fn = cfq_allow_merge,
  3496. .elevator_bio_merged_fn = cfq_bio_merged,
  3497. .elevator_dispatch_fn = cfq_dispatch_requests,
  3498. .elevator_add_req_fn = cfq_insert_request,
  3499. .elevator_activate_req_fn = cfq_activate_request,
  3500. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3501. .elevator_completed_req_fn = cfq_completed_request,
  3502. .elevator_former_req_fn = elv_rb_former_request,
  3503. .elevator_latter_req_fn = elv_rb_latter_request,
  3504. .elevator_set_req_fn = cfq_set_request,
  3505. .elevator_put_req_fn = cfq_put_request,
  3506. .elevator_may_queue_fn = cfq_may_queue,
  3507. .elevator_init_fn = cfq_init_queue,
  3508. .elevator_exit_fn = cfq_exit_queue,
  3509. .trim = cfq_free_io_context,
  3510. },
  3511. .elevator_attrs = cfq_attrs,
  3512. .elevator_name = "cfq",
  3513. .elevator_owner = THIS_MODULE,
  3514. };
  3515. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3516. static struct blkio_policy_type blkio_policy_cfq = {
  3517. .ops = {
  3518. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3519. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3520. },
  3521. .plid = BLKIO_POLICY_PROP,
  3522. };
  3523. #else
  3524. static struct blkio_policy_type blkio_policy_cfq;
  3525. #endif
  3526. static int __init cfq_init(void)
  3527. {
  3528. /*
  3529. * could be 0 on HZ < 1000 setups
  3530. */
  3531. if (!cfq_slice_async)
  3532. cfq_slice_async = 1;
  3533. if (!cfq_slice_idle)
  3534. cfq_slice_idle = 1;
  3535. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3536. if (!cfq_group_idle)
  3537. cfq_group_idle = 1;
  3538. #else
  3539. cfq_group_idle = 0;
  3540. #endif
  3541. if (cfq_slab_setup())
  3542. return -ENOMEM;
  3543. elv_register(&iosched_cfq);
  3544. blkio_policy_register(&blkio_policy_cfq);
  3545. return 0;
  3546. }
  3547. static void __exit cfq_exit(void)
  3548. {
  3549. DECLARE_COMPLETION_ONSTACK(all_gone);
  3550. blkio_policy_unregister(&blkio_policy_cfq);
  3551. elv_unregister(&iosched_cfq);
  3552. ioc_gone = &all_gone;
  3553. /* ioc_gone's update must be visible before reading ioc_count */
  3554. smp_wmb();
  3555. /*
  3556. * this also protects us from entering cfq_slab_kill() with
  3557. * pending RCU callbacks
  3558. */
  3559. if (elv_ioc_count_read(cfq_ioc_count))
  3560. wait_for_completion(&all_gone);
  3561. ida_destroy(&cic_index_ida);
  3562. cfq_slab_kill();
  3563. }
  3564. module_init(cfq_init);
  3565. module_exit(cfq_exit);
  3566. MODULE_AUTHOR("Jens Axboe");
  3567. MODULE_LICENSE("GPL");
  3568. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");