ctree.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. inline void btrfs_init_path(struct btrfs_path *p)
  39. {
  40. memset(p, 0, sizeof(*p));
  41. }
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path) {
  47. btrfs_init_path(path);
  48. path->reada = 1;
  49. }
  50. return path;
  51. }
  52. /*
  53. * set all locked nodes in the path to blocking locks. This should
  54. * be done before scheduling
  55. */
  56. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57. {
  58. int i;
  59. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60. if (p->nodes[i] && p->locks[i])
  61. btrfs_set_lock_blocking(p->nodes[i]);
  62. }
  63. }
  64. /*
  65. * reset all the locked nodes in the patch to spinning locks.
  66. */
  67. noinline void btrfs_clear_path_blocking(struct btrfs_path *p)
  68. {
  69. int i;
  70. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  71. if (p->nodes[i] && p->locks[i])
  72. btrfs_clear_lock_blocking(p->nodes[i]);
  73. }
  74. }
  75. /* this also releases the path */
  76. void btrfs_free_path(struct btrfs_path *p)
  77. {
  78. btrfs_release_path(NULL, p);
  79. kmem_cache_free(btrfs_path_cachep, p);
  80. }
  81. /*
  82. * path release drops references on the extent buffers in the path
  83. * and it drops any locks held by this path
  84. *
  85. * It is safe to call this on paths that no locks or extent buffers held.
  86. */
  87. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  88. {
  89. int i;
  90. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  91. p->slots[i] = 0;
  92. if (!p->nodes[i])
  93. continue;
  94. if (p->locks[i]) {
  95. btrfs_tree_unlock(p->nodes[i]);
  96. p->locks[i] = 0;
  97. }
  98. free_extent_buffer(p->nodes[i]);
  99. p->nodes[i] = NULL;
  100. }
  101. }
  102. /*
  103. * safely gets a reference on the root node of a tree. A lock
  104. * is not taken, so a concurrent writer may put a different node
  105. * at the root of the tree. See btrfs_lock_root_node for the
  106. * looping required.
  107. *
  108. * The extent buffer returned by this has a reference taken, so
  109. * it won't disappear. It may stop being the root of the tree
  110. * at any time because there are no locks held.
  111. */
  112. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  113. {
  114. struct extent_buffer *eb;
  115. spin_lock(&root->node_lock);
  116. eb = root->node;
  117. extent_buffer_get(eb);
  118. spin_unlock(&root->node_lock);
  119. return eb;
  120. }
  121. /* loop around taking references on and locking the root node of the
  122. * tree until you end up with a lock on the root. A locked buffer
  123. * is returned, with a reference held.
  124. */
  125. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  126. {
  127. struct extent_buffer *eb;
  128. while (1) {
  129. eb = btrfs_root_node(root);
  130. btrfs_tree_lock(eb);
  131. spin_lock(&root->node_lock);
  132. if (eb == root->node) {
  133. spin_unlock(&root->node_lock);
  134. break;
  135. }
  136. spin_unlock(&root->node_lock);
  137. btrfs_tree_unlock(eb);
  138. free_extent_buffer(eb);
  139. }
  140. return eb;
  141. }
  142. /* cowonly root (everything not a reference counted cow subvolume), just get
  143. * put onto a simple dirty list. transaction.c walks this to make sure they
  144. * get properly updated on disk.
  145. */
  146. static void add_root_to_dirty_list(struct btrfs_root *root)
  147. {
  148. if (root->track_dirty && list_empty(&root->dirty_list)) {
  149. list_add(&root->dirty_list,
  150. &root->fs_info->dirty_cowonly_roots);
  151. }
  152. }
  153. /*
  154. * used by snapshot creation to make a copy of a root for a tree with
  155. * a given objectid. The buffer with the new root node is returned in
  156. * cow_ret, and this func returns zero on success or a negative error code.
  157. */
  158. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  159. struct btrfs_root *root,
  160. struct extent_buffer *buf,
  161. struct extent_buffer **cow_ret, u64 new_root_objectid)
  162. {
  163. struct extent_buffer *cow;
  164. u32 nritems;
  165. int ret = 0;
  166. int level;
  167. struct btrfs_root *new_root;
  168. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  169. if (!new_root)
  170. return -ENOMEM;
  171. memcpy(new_root, root, sizeof(*new_root));
  172. new_root->root_key.objectid = new_root_objectid;
  173. WARN_ON(root->ref_cows && trans->transid !=
  174. root->fs_info->running_transaction->transid);
  175. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  176. level = btrfs_header_level(buf);
  177. nritems = btrfs_header_nritems(buf);
  178. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  179. new_root_objectid, trans->transid,
  180. level, buf->start, 0);
  181. if (IS_ERR(cow)) {
  182. kfree(new_root);
  183. return PTR_ERR(cow);
  184. }
  185. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  186. btrfs_set_header_bytenr(cow, cow->start);
  187. btrfs_set_header_generation(cow, trans->transid);
  188. btrfs_set_header_owner(cow, new_root_objectid);
  189. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  190. write_extent_buffer(cow, root->fs_info->fsid,
  191. (unsigned long)btrfs_header_fsid(cow),
  192. BTRFS_FSID_SIZE);
  193. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  194. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  195. kfree(new_root);
  196. if (ret)
  197. return ret;
  198. btrfs_mark_buffer_dirty(cow);
  199. *cow_ret = cow;
  200. return 0;
  201. }
  202. /*
  203. * does the dirty work in cow of a single block. The parent block (if
  204. * supplied) is updated to point to the new cow copy. The new buffer is marked
  205. * dirty and returned locked. If you modify the block it needs to be marked
  206. * dirty again.
  207. *
  208. * search_start -- an allocation hint for the new block
  209. *
  210. * empty_size -- a hint that you plan on doing more cow. This is the size in
  211. * bytes the allocator should try to find free next to the block it returns.
  212. * This is just a hint and may be ignored by the allocator.
  213. *
  214. * prealloc_dest -- if you have already reserved a destination for the cow,
  215. * this uses that block instead of allocating a new one.
  216. * btrfs_alloc_reserved_extent is used to finish the allocation.
  217. */
  218. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  219. struct btrfs_root *root,
  220. struct extent_buffer *buf,
  221. struct extent_buffer *parent, int parent_slot,
  222. struct extent_buffer **cow_ret,
  223. u64 search_start, u64 empty_size,
  224. u64 prealloc_dest)
  225. {
  226. u64 parent_start;
  227. struct extent_buffer *cow;
  228. u32 nritems;
  229. int ret = 0;
  230. int level;
  231. int unlock_orig = 0;
  232. if (*cow_ret == buf)
  233. unlock_orig = 1;
  234. WARN_ON(!btrfs_tree_locked(buf));
  235. if (parent)
  236. parent_start = parent->start;
  237. else
  238. parent_start = 0;
  239. WARN_ON(root->ref_cows && trans->transid !=
  240. root->fs_info->running_transaction->transid);
  241. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  242. level = btrfs_header_level(buf);
  243. nritems = btrfs_header_nritems(buf);
  244. if (prealloc_dest) {
  245. struct btrfs_key ins;
  246. ins.objectid = prealloc_dest;
  247. ins.offset = buf->len;
  248. ins.type = BTRFS_EXTENT_ITEM_KEY;
  249. ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
  250. root->root_key.objectid,
  251. trans->transid, level, &ins);
  252. BUG_ON(ret);
  253. cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
  254. buf->len);
  255. } else {
  256. cow = btrfs_alloc_free_block(trans, root, buf->len,
  257. parent_start,
  258. root->root_key.objectid,
  259. trans->transid, level,
  260. search_start, empty_size);
  261. }
  262. if (IS_ERR(cow))
  263. return PTR_ERR(cow);
  264. /* cow is set to blocking by btrfs_init_new_buffer */
  265. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  266. btrfs_set_header_bytenr(cow, cow->start);
  267. btrfs_set_header_generation(cow, trans->transid);
  268. btrfs_set_header_owner(cow, root->root_key.objectid);
  269. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  270. write_extent_buffer(cow, root->fs_info->fsid,
  271. (unsigned long)btrfs_header_fsid(cow),
  272. BTRFS_FSID_SIZE);
  273. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  274. if (btrfs_header_generation(buf) != trans->transid) {
  275. u32 nr_extents;
  276. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  277. if (ret)
  278. return ret;
  279. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  280. WARN_ON(ret);
  281. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  282. /*
  283. * There are only two places that can drop reference to
  284. * tree blocks owned by living reloc trees, one is here,
  285. * the other place is btrfs_drop_subtree. In both places,
  286. * we check reference count while tree block is locked.
  287. * Furthermore, if reference count is one, it won't get
  288. * increased by someone else.
  289. */
  290. u32 refs;
  291. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  292. buf->len, &refs);
  293. BUG_ON(ret);
  294. if (refs == 1) {
  295. ret = btrfs_update_ref(trans, root, buf, cow,
  296. 0, nritems);
  297. clean_tree_block(trans, root, buf);
  298. } else {
  299. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  300. }
  301. BUG_ON(ret);
  302. } else {
  303. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  304. if (ret)
  305. return ret;
  306. clean_tree_block(trans, root, buf);
  307. }
  308. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  309. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  310. WARN_ON(ret);
  311. }
  312. if (buf == root->node) {
  313. WARN_ON(parent && parent != buf);
  314. spin_lock(&root->node_lock);
  315. root->node = cow;
  316. extent_buffer_get(cow);
  317. spin_unlock(&root->node_lock);
  318. if (buf != root->commit_root) {
  319. btrfs_free_extent(trans, root, buf->start,
  320. buf->len, buf->start,
  321. root->root_key.objectid,
  322. btrfs_header_generation(buf),
  323. level, 1);
  324. }
  325. free_extent_buffer(buf);
  326. add_root_to_dirty_list(root);
  327. } else {
  328. btrfs_set_node_blockptr(parent, parent_slot,
  329. cow->start);
  330. WARN_ON(trans->transid == 0);
  331. btrfs_set_node_ptr_generation(parent, parent_slot,
  332. trans->transid);
  333. btrfs_mark_buffer_dirty(parent);
  334. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  335. btrfs_free_extent(trans, root, buf->start, buf->len,
  336. parent_start, btrfs_header_owner(parent),
  337. btrfs_header_generation(parent), level, 1);
  338. }
  339. if (unlock_orig)
  340. btrfs_tree_unlock(buf);
  341. free_extent_buffer(buf);
  342. btrfs_mark_buffer_dirty(cow);
  343. *cow_ret = cow;
  344. return 0;
  345. }
  346. /*
  347. * cows a single block, see __btrfs_cow_block for the real work.
  348. * This version of it has extra checks so that a block isn't cow'd more than
  349. * once per transaction, as long as it hasn't been written yet
  350. */
  351. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  352. struct btrfs_root *root, struct extent_buffer *buf,
  353. struct extent_buffer *parent, int parent_slot,
  354. struct extent_buffer **cow_ret, u64 prealloc_dest)
  355. {
  356. u64 search_start;
  357. int ret;
  358. if (trans->transaction != root->fs_info->running_transaction) {
  359. printk(KERN_CRIT "trans %llu running %llu\n",
  360. (unsigned long long)trans->transid,
  361. (unsigned long long)
  362. root->fs_info->running_transaction->transid);
  363. WARN_ON(1);
  364. }
  365. if (trans->transid != root->fs_info->generation) {
  366. printk(KERN_CRIT "trans %llu running %llu\n",
  367. (unsigned long long)trans->transid,
  368. (unsigned long long)root->fs_info->generation);
  369. WARN_ON(1);
  370. }
  371. if (btrfs_header_generation(buf) == trans->transid &&
  372. btrfs_header_owner(buf) == root->root_key.objectid &&
  373. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  374. *cow_ret = buf;
  375. WARN_ON(prealloc_dest);
  376. return 0;
  377. }
  378. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  379. if (parent)
  380. btrfs_set_lock_blocking(parent);
  381. btrfs_set_lock_blocking(buf);
  382. ret = __btrfs_cow_block(trans, root, buf, parent,
  383. parent_slot, cow_ret, search_start, 0,
  384. prealloc_dest);
  385. return ret;
  386. }
  387. /*
  388. * helper function for defrag to decide if two blocks pointed to by a
  389. * node are actually close by
  390. */
  391. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  392. {
  393. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  394. return 1;
  395. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  396. return 1;
  397. return 0;
  398. }
  399. /*
  400. * compare two keys in a memcmp fashion
  401. */
  402. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  403. {
  404. struct btrfs_key k1;
  405. btrfs_disk_key_to_cpu(&k1, disk);
  406. if (k1.objectid > k2->objectid)
  407. return 1;
  408. if (k1.objectid < k2->objectid)
  409. return -1;
  410. if (k1.type > k2->type)
  411. return 1;
  412. if (k1.type < k2->type)
  413. return -1;
  414. if (k1.offset > k2->offset)
  415. return 1;
  416. if (k1.offset < k2->offset)
  417. return -1;
  418. return 0;
  419. }
  420. /*
  421. * same as comp_keys only with two btrfs_key's
  422. */
  423. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  424. {
  425. if (k1->objectid > k2->objectid)
  426. return 1;
  427. if (k1->objectid < k2->objectid)
  428. return -1;
  429. if (k1->type > k2->type)
  430. return 1;
  431. if (k1->type < k2->type)
  432. return -1;
  433. if (k1->offset > k2->offset)
  434. return 1;
  435. if (k1->offset < k2->offset)
  436. return -1;
  437. return 0;
  438. }
  439. /*
  440. * this is used by the defrag code to go through all the
  441. * leaves pointed to by a node and reallocate them so that
  442. * disk order is close to key order
  443. */
  444. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  445. struct btrfs_root *root, struct extent_buffer *parent,
  446. int start_slot, int cache_only, u64 *last_ret,
  447. struct btrfs_key *progress)
  448. {
  449. struct extent_buffer *cur;
  450. u64 blocknr;
  451. u64 gen;
  452. u64 search_start = *last_ret;
  453. u64 last_block = 0;
  454. u64 other;
  455. u32 parent_nritems;
  456. int end_slot;
  457. int i;
  458. int err = 0;
  459. int parent_level;
  460. int uptodate;
  461. u32 blocksize;
  462. int progress_passed = 0;
  463. struct btrfs_disk_key disk_key;
  464. parent_level = btrfs_header_level(parent);
  465. if (cache_only && parent_level != 1)
  466. return 0;
  467. if (trans->transaction != root->fs_info->running_transaction)
  468. WARN_ON(1);
  469. if (trans->transid != root->fs_info->generation)
  470. WARN_ON(1);
  471. parent_nritems = btrfs_header_nritems(parent);
  472. blocksize = btrfs_level_size(root, parent_level - 1);
  473. end_slot = parent_nritems;
  474. if (parent_nritems == 1)
  475. return 0;
  476. btrfs_set_lock_blocking(parent);
  477. for (i = start_slot; i < end_slot; i++) {
  478. int close = 1;
  479. if (!parent->map_token) {
  480. map_extent_buffer(parent,
  481. btrfs_node_key_ptr_offset(i),
  482. sizeof(struct btrfs_key_ptr),
  483. &parent->map_token, &parent->kaddr,
  484. &parent->map_start, &parent->map_len,
  485. KM_USER1);
  486. }
  487. btrfs_node_key(parent, &disk_key, i);
  488. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  489. continue;
  490. progress_passed = 1;
  491. blocknr = btrfs_node_blockptr(parent, i);
  492. gen = btrfs_node_ptr_generation(parent, i);
  493. if (last_block == 0)
  494. last_block = blocknr;
  495. if (i > 0) {
  496. other = btrfs_node_blockptr(parent, i - 1);
  497. close = close_blocks(blocknr, other, blocksize);
  498. }
  499. if (!close && i < end_slot - 2) {
  500. other = btrfs_node_blockptr(parent, i + 1);
  501. close = close_blocks(blocknr, other, blocksize);
  502. }
  503. if (close) {
  504. last_block = blocknr;
  505. continue;
  506. }
  507. if (parent->map_token) {
  508. unmap_extent_buffer(parent, parent->map_token,
  509. KM_USER1);
  510. parent->map_token = NULL;
  511. }
  512. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  513. if (cur)
  514. uptodate = btrfs_buffer_uptodate(cur, gen);
  515. else
  516. uptodate = 0;
  517. if (!cur || !uptodate) {
  518. if (cache_only) {
  519. free_extent_buffer(cur);
  520. continue;
  521. }
  522. if (!cur) {
  523. cur = read_tree_block(root, blocknr,
  524. blocksize, gen);
  525. } else if (!uptodate) {
  526. btrfs_read_buffer(cur, gen);
  527. }
  528. }
  529. if (search_start == 0)
  530. search_start = last_block;
  531. btrfs_tree_lock(cur);
  532. btrfs_set_lock_blocking(cur);
  533. err = __btrfs_cow_block(trans, root, cur, parent, i,
  534. &cur, search_start,
  535. min(16 * blocksize,
  536. (end_slot - i) * blocksize), 0);
  537. if (err) {
  538. btrfs_tree_unlock(cur);
  539. free_extent_buffer(cur);
  540. break;
  541. }
  542. search_start = cur->start;
  543. last_block = cur->start;
  544. *last_ret = search_start;
  545. btrfs_tree_unlock(cur);
  546. free_extent_buffer(cur);
  547. }
  548. if (parent->map_token) {
  549. unmap_extent_buffer(parent, parent->map_token,
  550. KM_USER1);
  551. parent->map_token = NULL;
  552. }
  553. return err;
  554. }
  555. /*
  556. * The leaf data grows from end-to-front in the node.
  557. * this returns the address of the start of the last item,
  558. * which is the stop of the leaf data stack
  559. */
  560. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  561. struct extent_buffer *leaf)
  562. {
  563. u32 nr = btrfs_header_nritems(leaf);
  564. if (nr == 0)
  565. return BTRFS_LEAF_DATA_SIZE(root);
  566. return btrfs_item_offset_nr(leaf, nr - 1);
  567. }
  568. /*
  569. * extra debugging checks to make sure all the items in a key are
  570. * well formed and in the proper order
  571. */
  572. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  573. int level)
  574. {
  575. struct extent_buffer *parent = NULL;
  576. struct extent_buffer *node = path->nodes[level];
  577. struct btrfs_disk_key parent_key;
  578. struct btrfs_disk_key node_key;
  579. int parent_slot;
  580. int slot;
  581. struct btrfs_key cpukey;
  582. u32 nritems = btrfs_header_nritems(node);
  583. if (path->nodes[level + 1])
  584. parent = path->nodes[level + 1];
  585. slot = path->slots[level];
  586. BUG_ON(nritems == 0);
  587. if (parent) {
  588. parent_slot = path->slots[level + 1];
  589. btrfs_node_key(parent, &parent_key, parent_slot);
  590. btrfs_node_key(node, &node_key, 0);
  591. BUG_ON(memcmp(&parent_key, &node_key,
  592. sizeof(struct btrfs_disk_key)));
  593. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  594. btrfs_header_bytenr(node));
  595. }
  596. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  597. if (slot != 0) {
  598. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  599. btrfs_node_key(node, &node_key, slot);
  600. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  601. }
  602. if (slot < nritems - 1) {
  603. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  604. btrfs_node_key(node, &node_key, slot);
  605. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  606. }
  607. return 0;
  608. }
  609. /*
  610. * extra checking to make sure all the items in a leaf are
  611. * well formed and in the proper order
  612. */
  613. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  614. int level)
  615. {
  616. struct extent_buffer *leaf = path->nodes[level];
  617. struct extent_buffer *parent = NULL;
  618. int parent_slot;
  619. struct btrfs_key cpukey;
  620. struct btrfs_disk_key parent_key;
  621. struct btrfs_disk_key leaf_key;
  622. int slot = path->slots[0];
  623. u32 nritems = btrfs_header_nritems(leaf);
  624. if (path->nodes[level + 1])
  625. parent = path->nodes[level + 1];
  626. if (nritems == 0)
  627. return 0;
  628. if (parent) {
  629. parent_slot = path->slots[level + 1];
  630. btrfs_node_key(parent, &parent_key, parent_slot);
  631. btrfs_item_key(leaf, &leaf_key, 0);
  632. BUG_ON(memcmp(&parent_key, &leaf_key,
  633. sizeof(struct btrfs_disk_key)));
  634. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  635. btrfs_header_bytenr(leaf));
  636. }
  637. if (slot != 0 && slot < nritems - 1) {
  638. btrfs_item_key(leaf, &leaf_key, slot);
  639. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  640. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  641. btrfs_print_leaf(root, leaf);
  642. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  643. BUG_ON(1);
  644. }
  645. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  646. btrfs_item_end_nr(leaf, slot)) {
  647. btrfs_print_leaf(root, leaf);
  648. printk(KERN_CRIT "slot %d offset bad\n", slot);
  649. BUG_ON(1);
  650. }
  651. }
  652. if (slot < nritems - 1) {
  653. btrfs_item_key(leaf, &leaf_key, slot);
  654. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  655. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  656. if (btrfs_item_offset_nr(leaf, slot) !=
  657. btrfs_item_end_nr(leaf, slot + 1)) {
  658. btrfs_print_leaf(root, leaf);
  659. printk(KERN_CRIT "slot %d offset bad\n", slot);
  660. BUG_ON(1);
  661. }
  662. }
  663. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  664. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  665. return 0;
  666. }
  667. static noinline int check_block(struct btrfs_root *root,
  668. struct btrfs_path *path, int level)
  669. {
  670. return 0;
  671. if (level == 0)
  672. return check_leaf(root, path, level);
  673. return check_node(root, path, level);
  674. }
  675. /*
  676. * search for key in the extent_buffer. The items start at offset p,
  677. * and they are item_size apart. There are 'max' items in p.
  678. *
  679. * the slot in the array is returned via slot, and it points to
  680. * the place where you would insert key if it is not found in
  681. * the array.
  682. *
  683. * slot may point to max if the key is bigger than all of the keys
  684. */
  685. static noinline int generic_bin_search(struct extent_buffer *eb,
  686. unsigned long p,
  687. int item_size, struct btrfs_key *key,
  688. int max, int *slot)
  689. {
  690. int low = 0;
  691. int high = max;
  692. int mid;
  693. int ret;
  694. struct btrfs_disk_key *tmp = NULL;
  695. struct btrfs_disk_key unaligned;
  696. unsigned long offset;
  697. char *map_token = NULL;
  698. char *kaddr = NULL;
  699. unsigned long map_start = 0;
  700. unsigned long map_len = 0;
  701. int err;
  702. while (low < high) {
  703. mid = (low + high) / 2;
  704. offset = p + mid * item_size;
  705. if (!map_token || offset < map_start ||
  706. (offset + sizeof(struct btrfs_disk_key)) >
  707. map_start + map_len) {
  708. if (map_token) {
  709. unmap_extent_buffer(eb, map_token, KM_USER0);
  710. map_token = NULL;
  711. }
  712. err = map_private_extent_buffer(eb, offset,
  713. sizeof(struct btrfs_disk_key),
  714. &map_token, &kaddr,
  715. &map_start, &map_len, KM_USER0);
  716. if (!err) {
  717. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  718. map_start);
  719. } else {
  720. read_extent_buffer(eb, &unaligned,
  721. offset, sizeof(unaligned));
  722. tmp = &unaligned;
  723. }
  724. } else {
  725. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  726. map_start);
  727. }
  728. ret = comp_keys(tmp, key);
  729. if (ret < 0)
  730. low = mid + 1;
  731. else if (ret > 0)
  732. high = mid;
  733. else {
  734. *slot = mid;
  735. if (map_token)
  736. unmap_extent_buffer(eb, map_token, KM_USER0);
  737. return 0;
  738. }
  739. }
  740. *slot = low;
  741. if (map_token)
  742. unmap_extent_buffer(eb, map_token, KM_USER0);
  743. return 1;
  744. }
  745. /*
  746. * simple bin_search frontend that does the right thing for
  747. * leaves vs nodes
  748. */
  749. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  750. int level, int *slot)
  751. {
  752. if (level == 0) {
  753. return generic_bin_search(eb,
  754. offsetof(struct btrfs_leaf, items),
  755. sizeof(struct btrfs_item),
  756. key, btrfs_header_nritems(eb),
  757. slot);
  758. } else {
  759. return generic_bin_search(eb,
  760. offsetof(struct btrfs_node, ptrs),
  761. sizeof(struct btrfs_key_ptr),
  762. key, btrfs_header_nritems(eb),
  763. slot);
  764. }
  765. return -1;
  766. }
  767. /* given a node and slot number, this reads the blocks it points to. The
  768. * extent buffer is returned with a reference taken (but unlocked).
  769. * NULL is returned on error.
  770. */
  771. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  772. struct extent_buffer *parent, int slot)
  773. {
  774. int level = btrfs_header_level(parent);
  775. if (slot < 0)
  776. return NULL;
  777. if (slot >= btrfs_header_nritems(parent))
  778. return NULL;
  779. BUG_ON(level == 0);
  780. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  781. btrfs_level_size(root, level - 1),
  782. btrfs_node_ptr_generation(parent, slot));
  783. }
  784. /*
  785. * node level balancing, used to make sure nodes are in proper order for
  786. * item deletion. We balance from the top down, so we have to make sure
  787. * that a deletion won't leave an node completely empty later on.
  788. */
  789. static noinline int balance_level(struct btrfs_trans_handle *trans,
  790. struct btrfs_root *root,
  791. struct btrfs_path *path, int level)
  792. {
  793. struct extent_buffer *right = NULL;
  794. struct extent_buffer *mid;
  795. struct extent_buffer *left = NULL;
  796. struct extent_buffer *parent = NULL;
  797. int ret = 0;
  798. int wret;
  799. int pslot;
  800. int orig_slot = path->slots[level];
  801. int err_on_enospc = 0;
  802. u64 orig_ptr;
  803. if (level == 0)
  804. return 0;
  805. mid = path->nodes[level];
  806. WARN_ON(!path->locks[level]);
  807. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  808. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  809. if (level < BTRFS_MAX_LEVEL - 1)
  810. parent = path->nodes[level + 1];
  811. pslot = path->slots[level + 1];
  812. /*
  813. * deal with the case where there is only one pointer in the root
  814. * by promoting the node below to a root
  815. */
  816. if (!parent) {
  817. struct extent_buffer *child;
  818. if (btrfs_header_nritems(mid) != 1)
  819. return 0;
  820. /* promote the child to a root */
  821. child = read_node_slot(root, mid, 0);
  822. btrfs_tree_lock(child);
  823. btrfs_set_lock_blocking(child);
  824. BUG_ON(!child);
  825. ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
  826. BUG_ON(ret);
  827. spin_lock(&root->node_lock);
  828. root->node = child;
  829. spin_unlock(&root->node_lock);
  830. ret = btrfs_update_extent_ref(trans, root, child->start,
  831. mid->start, child->start,
  832. root->root_key.objectid,
  833. trans->transid, level - 1);
  834. BUG_ON(ret);
  835. add_root_to_dirty_list(root);
  836. btrfs_tree_unlock(child);
  837. path->locks[level] = 0;
  838. path->nodes[level] = NULL;
  839. clean_tree_block(trans, root, mid);
  840. btrfs_tree_unlock(mid);
  841. /* once for the path */
  842. free_extent_buffer(mid);
  843. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  844. mid->start, root->root_key.objectid,
  845. btrfs_header_generation(mid),
  846. level, 1);
  847. /* once for the root ptr */
  848. free_extent_buffer(mid);
  849. return ret;
  850. }
  851. if (btrfs_header_nritems(mid) >
  852. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  853. return 0;
  854. if (btrfs_header_nritems(mid) < 2)
  855. err_on_enospc = 1;
  856. left = read_node_slot(root, parent, pslot - 1);
  857. if (left) {
  858. btrfs_tree_lock(left);
  859. btrfs_set_lock_blocking(left);
  860. wret = btrfs_cow_block(trans, root, left,
  861. parent, pslot - 1, &left, 0);
  862. if (wret) {
  863. ret = wret;
  864. goto enospc;
  865. }
  866. }
  867. right = read_node_slot(root, parent, pslot + 1);
  868. if (right) {
  869. btrfs_tree_lock(right);
  870. btrfs_set_lock_blocking(right);
  871. wret = btrfs_cow_block(trans, root, right,
  872. parent, pslot + 1, &right, 0);
  873. if (wret) {
  874. ret = wret;
  875. goto enospc;
  876. }
  877. }
  878. /* first, try to make some room in the middle buffer */
  879. if (left) {
  880. orig_slot += btrfs_header_nritems(left);
  881. wret = push_node_left(trans, root, left, mid, 1);
  882. if (wret < 0)
  883. ret = wret;
  884. if (btrfs_header_nritems(mid) < 2)
  885. err_on_enospc = 1;
  886. }
  887. /*
  888. * then try to empty the right most buffer into the middle
  889. */
  890. if (right) {
  891. wret = push_node_left(trans, root, mid, right, 1);
  892. if (wret < 0 && wret != -ENOSPC)
  893. ret = wret;
  894. if (btrfs_header_nritems(right) == 0) {
  895. u64 bytenr = right->start;
  896. u64 generation = btrfs_header_generation(parent);
  897. u32 blocksize = right->len;
  898. clean_tree_block(trans, root, right);
  899. btrfs_tree_unlock(right);
  900. free_extent_buffer(right);
  901. right = NULL;
  902. wret = del_ptr(trans, root, path, level + 1, pslot +
  903. 1);
  904. if (wret)
  905. ret = wret;
  906. wret = btrfs_free_extent(trans, root, bytenr,
  907. blocksize, parent->start,
  908. btrfs_header_owner(parent),
  909. generation, level, 1);
  910. if (wret)
  911. ret = wret;
  912. } else {
  913. struct btrfs_disk_key right_key;
  914. btrfs_node_key(right, &right_key, 0);
  915. btrfs_set_node_key(parent, &right_key, pslot + 1);
  916. btrfs_mark_buffer_dirty(parent);
  917. }
  918. }
  919. if (btrfs_header_nritems(mid) == 1) {
  920. /*
  921. * we're not allowed to leave a node with one item in the
  922. * tree during a delete. A deletion from lower in the tree
  923. * could try to delete the only pointer in this node.
  924. * So, pull some keys from the left.
  925. * There has to be a left pointer at this point because
  926. * otherwise we would have pulled some pointers from the
  927. * right
  928. */
  929. BUG_ON(!left);
  930. wret = balance_node_right(trans, root, mid, left);
  931. if (wret < 0) {
  932. ret = wret;
  933. goto enospc;
  934. }
  935. if (wret == 1) {
  936. wret = push_node_left(trans, root, left, mid, 1);
  937. if (wret < 0)
  938. ret = wret;
  939. }
  940. BUG_ON(wret == 1);
  941. }
  942. if (btrfs_header_nritems(mid) == 0) {
  943. /* we've managed to empty the middle node, drop it */
  944. u64 root_gen = btrfs_header_generation(parent);
  945. u64 bytenr = mid->start;
  946. u32 blocksize = mid->len;
  947. clean_tree_block(trans, root, mid);
  948. btrfs_tree_unlock(mid);
  949. free_extent_buffer(mid);
  950. mid = NULL;
  951. wret = del_ptr(trans, root, path, level + 1, pslot);
  952. if (wret)
  953. ret = wret;
  954. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  955. parent->start,
  956. btrfs_header_owner(parent),
  957. root_gen, level, 1);
  958. if (wret)
  959. ret = wret;
  960. } else {
  961. /* update the parent key to reflect our changes */
  962. struct btrfs_disk_key mid_key;
  963. btrfs_node_key(mid, &mid_key, 0);
  964. btrfs_set_node_key(parent, &mid_key, pslot);
  965. btrfs_mark_buffer_dirty(parent);
  966. }
  967. /* update the path */
  968. if (left) {
  969. if (btrfs_header_nritems(left) > orig_slot) {
  970. extent_buffer_get(left);
  971. /* left was locked after cow */
  972. path->nodes[level] = left;
  973. path->slots[level + 1] -= 1;
  974. path->slots[level] = orig_slot;
  975. if (mid) {
  976. btrfs_tree_unlock(mid);
  977. free_extent_buffer(mid);
  978. }
  979. } else {
  980. orig_slot -= btrfs_header_nritems(left);
  981. path->slots[level] = orig_slot;
  982. }
  983. }
  984. /* double check we haven't messed things up */
  985. check_block(root, path, level);
  986. if (orig_ptr !=
  987. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  988. BUG();
  989. enospc:
  990. if (right) {
  991. btrfs_tree_unlock(right);
  992. free_extent_buffer(right);
  993. }
  994. if (left) {
  995. if (path->nodes[level] != left)
  996. btrfs_tree_unlock(left);
  997. free_extent_buffer(left);
  998. }
  999. return ret;
  1000. }
  1001. /* Node balancing for insertion. Here we only split or push nodes around
  1002. * when they are completely full. This is also done top down, so we
  1003. * have to be pessimistic.
  1004. */
  1005. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1006. struct btrfs_root *root,
  1007. struct btrfs_path *path, int level)
  1008. {
  1009. struct extent_buffer *right = NULL;
  1010. struct extent_buffer *mid;
  1011. struct extent_buffer *left = NULL;
  1012. struct extent_buffer *parent = NULL;
  1013. int ret = 0;
  1014. int wret;
  1015. int pslot;
  1016. int orig_slot = path->slots[level];
  1017. u64 orig_ptr;
  1018. if (level == 0)
  1019. return 1;
  1020. mid = path->nodes[level];
  1021. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1022. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1023. if (level < BTRFS_MAX_LEVEL - 1)
  1024. parent = path->nodes[level + 1];
  1025. pslot = path->slots[level + 1];
  1026. if (!parent)
  1027. return 1;
  1028. left = read_node_slot(root, parent, pslot - 1);
  1029. /* first, try to make some room in the middle buffer */
  1030. if (left) {
  1031. u32 left_nr;
  1032. btrfs_tree_lock(left);
  1033. btrfs_set_lock_blocking(left);
  1034. left_nr = btrfs_header_nritems(left);
  1035. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1036. wret = 1;
  1037. } else {
  1038. ret = btrfs_cow_block(trans, root, left, parent,
  1039. pslot - 1, &left, 0);
  1040. if (ret)
  1041. wret = 1;
  1042. else {
  1043. wret = push_node_left(trans, root,
  1044. left, mid, 0);
  1045. }
  1046. }
  1047. if (wret < 0)
  1048. ret = wret;
  1049. if (wret == 0) {
  1050. struct btrfs_disk_key disk_key;
  1051. orig_slot += left_nr;
  1052. btrfs_node_key(mid, &disk_key, 0);
  1053. btrfs_set_node_key(parent, &disk_key, pslot);
  1054. btrfs_mark_buffer_dirty(parent);
  1055. if (btrfs_header_nritems(left) > orig_slot) {
  1056. path->nodes[level] = left;
  1057. path->slots[level + 1] -= 1;
  1058. path->slots[level] = orig_slot;
  1059. btrfs_tree_unlock(mid);
  1060. free_extent_buffer(mid);
  1061. } else {
  1062. orig_slot -=
  1063. btrfs_header_nritems(left);
  1064. path->slots[level] = orig_slot;
  1065. btrfs_tree_unlock(left);
  1066. free_extent_buffer(left);
  1067. }
  1068. return 0;
  1069. }
  1070. btrfs_tree_unlock(left);
  1071. free_extent_buffer(left);
  1072. }
  1073. right = read_node_slot(root, parent, pslot + 1);
  1074. /*
  1075. * then try to empty the right most buffer into the middle
  1076. */
  1077. if (right) {
  1078. u32 right_nr;
  1079. btrfs_tree_lock(right);
  1080. btrfs_set_lock_blocking(right);
  1081. right_nr = btrfs_header_nritems(right);
  1082. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1083. wret = 1;
  1084. } else {
  1085. ret = btrfs_cow_block(trans, root, right,
  1086. parent, pslot + 1,
  1087. &right, 0);
  1088. if (ret)
  1089. wret = 1;
  1090. else {
  1091. wret = balance_node_right(trans, root,
  1092. right, mid);
  1093. }
  1094. }
  1095. if (wret < 0)
  1096. ret = wret;
  1097. if (wret == 0) {
  1098. struct btrfs_disk_key disk_key;
  1099. btrfs_node_key(right, &disk_key, 0);
  1100. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1101. btrfs_mark_buffer_dirty(parent);
  1102. if (btrfs_header_nritems(mid) <= orig_slot) {
  1103. path->nodes[level] = right;
  1104. path->slots[level + 1] += 1;
  1105. path->slots[level] = orig_slot -
  1106. btrfs_header_nritems(mid);
  1107. btrfs_tree_unlock(mid);
  1108. free_extent_buffer(mid);
  1109. } else {
  1110. btrfs_tree_unlock(right);
  1111. free_extent_buffer(right);
  1112. }
  1113. return 0;
  1114. }
  1115. btrfs_tree_unlock(right);
  1116. free_extent_buffer(right);
  1117. }
  1118. return 1;
  1119. }
  1120. /*
  1121. * readahead one full node of leaves, finding things that are close
  1122. * to the block in 'slot', and triggering ra on them.
  1123. */
  1124. static noinline void reada_for_search(struct btrfs_root *root,
  1125. struct btrfs_path *path,
  1126. int level, int slot, u64 objectid)
  1127. {
  1128. struct extent_buffer *node;
  1129. struct btrfs_disk_key disk_key;
  1130. u32 nritems;
  1131. u64 search;
  1132. u64 target;
  1133. u64 nread = 0;
  1134. int direction = path->reada;
  1135. struct extent_buffer *eb;
  1136. u32 nr;
  1137. u32 blocksize;
  1138. u32 nscan = 0;
  1139. if (level != 1)
  1140. return;
  1141. if (!path->nodes[level])
  1142. return;
  1143. node = path->nodes[level];
  1144. search = btrfs_node_blockptr(node, slot);
  1145. blocksize = btrfs_level_size(root, level - 1);
  1146. eb = btrfs_find_tree_block(root, search, blocksize);
  1147. if (eb) {
  1148. free_extent_buffer(eb);
  1149. return;
  1150. }
  1151. target = search;
  1152. nritems = btrfs_header_nritems(node);
  1153. nr = slot;
  1154. while (1) {
  1155. if (direction < 0) {
  1156. if (nr == 0)
  1157. break;
  1158. nr--;
  1159. } else if (direction > 0) {
  1160. nr++;
  1161. if (nr >= nritems)
  1162. break;
  1163. }
  1164. if (path->reada < 0 && objectid) {
  1165. btrfs_node_key(node, &disk_key, nr);
  1166. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1167. break;
  1168. }
  1169. search = btrfs_node_blockptr(node, nr);
  1170. if ((search <= target && target - search <= 65536) ||
  1171. (search > target && search - target <= 65536)) {
  1172. readahead_tree_block(root, search, blocksize,
  1173. btrfs_node_ptr_generation(node, nr));
  1174. nread += blocksize;
  1175. }
  1176. nscan++;
  1177. if ((nread > 65536 || nscan > 32))
  1178. break;
  1179. }
  1180. }
  1181. /*
  1182. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1183. * cache
  1184. */
  1185. static noinline int reada_for_balance(struct btrfs_root *root,
  1186. struct btrfs_path *path, int level)
  1187. {
  1188. int slot;
  1189. int nritems;
  1190. struct extent_buffer *parent;
  1191. struct extent_buffer *eb;
  1192. u64 gen;
  1193. u64 block1 = 0;
  1194. u64 block2 = 0;
  1195. int ret = 0;
  1196. int blocksize;
  1197. parent = path->nodes[level - 1];
  1198. if (!parent)
  1199. return 0;
  1200. nritems = btrfs_header_nritems(parent);
  1201. slot = path->slots[level];
  1202. blocksize = btrfs_level_size(root, level);
  1203. if (slot > 0) {
  1204. block1 = btrfs_node_blockptr(parent, slot - 1);
  1205. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1206. eb = btrfs_find_tree_block(root, block1, blocksize);
  1207. if (eb && btrfs_buffer_uptodate(eb, gen))
  1208. block1 = 0;
  1209. free_extent_buffer(eb);
  1210. }
  1211. if (slot < nritems) {
  1212. block2 = btrfs_node_blockptr(parent, slot + 1);
  1213. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1214. eb = btrfs_find_tree_block(root, block2, blocksize);
  1215. if (eb && btrfs_buffer_uptodate(eb, gen))
  1216. block2 = 0;
  1217. free_extent_buffer(eb);
  1218. }
  1219. if (block1 || block2) {
  1220. ret = -EAGAIN;
  1221. btrfs_release_path(root, path);
  1222. if (block1)
  1223. readahead_tree_block(root, block1, blocksize, 0);
  1224. if (block2)
  1225. readahead_tree_block(root, block2, blocksize, 0);
  1226. if (block1) {
  1227. eb = read_tree_block(root, block1, blocksize, 0);
  1228. free_extent_buffer(eb);
  1229. }
  1230. if (block1) {
  1231. eb = read_tree_block(root, block2, blocksize, 0);
  1232. free_extent_buffer(eb);
  1233. }
  1234. }
  1235. return ret;
  1236. }
  1237. /*
  1238. * when we walk down the tree, it is usually safe to unlock the higher layers
  1239. * in the tree. The exceptions are when our path goes through slot 0, because
  1240. * operations on the tree might require changing key pointers higher up in the
  1241. * tree.
  1242. *
  1243. * callers might also have set path->keep_locks, which tells this code to keep
  1244. * the lock if the path points to the last slot in the block. This is part of
  1245. * walking through the tree, and selecting the next slot in the higher block.
  1246. *
  1247. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1248. * if lowest_unlock is 1, level 0 won't be unlocked
  1249. */
  1250. static noinline void unlock_up(struct btrfs_path *path, int level,
  1251. int lowest_unlock)
  1252. {
  1253. int i;
  1254. int skip_level = level;
  1255. int no_skips = 0;
  1256. struct extent_buffer *t;
  1257. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1258. if (!path->nodes[i])
  1259. break;
  1260. if (!path->locks[i])
  1261. break;
  1262. if (!no_skips && path->slots[i] == 0) {
  1263. skip_level = i + 1;
  1264. continue;
  1265. }
  1266. if (!no_skips && path->keep_locks) {
  1267. u32 nritems;
  1268. t = path->nodes[i];
  1269. nritems = btrfs_header_nritems(t);
  1270. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1271. skip_level = i + 1;
  1272. continue;
  1273. }
  1274. }
  1275. if (skip_level < i && i >= lowest_unlock)
  1276. no_skips = 1;
  1277. t = path->nodes[i];
  1278. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1279. btrfs_tree_unlock(t);
  1280. path->locks[i] = 0;
  1281. }
  1282. }
  1283. }
  1284. /*
  1285. * This releases any locks held in the path starting at level and
  1286. * going all the way up to the root.
  1287. *
  1288. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1289. * corner cases, such as COW of the block at slot zero in the node. This
  1290. * ignores those rules, and it should only be called when there are no
  1291. * more updates to be done higher up in the tree.
  1292. */
  1293. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1294. {
  1295. int i;
  1296. if (path->keep_locks || path->lowest_level)
  1297. return;
  1298. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1299. if (!path->nodes[i])
  1300. continue;
  1301. if (!path->locks[i])
  1302. continue;
  1303. btrfs_tree_unlock(path->nodes[i]);
  1304. path->locks[i] = 0;
  1305. }
  1306. }
  1307. /*
  1308. * look for key in the tree. path is filled in with nodes along the way
  1309. * if key is found, we return zero and you can find the item in the leaf
  1310. * level of the path (level 0)
  1311. *
  1312. * If the key isn't found, the path points to the slot where it should
  1313. * be inserted, and 1 is returned. If there are other errors during the
  1314. * search a negative error number is returned.
  1315. *
  1316. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1317. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1318. * possible)
  1319. */
  1320. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1321. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1322. ins_len, int cow)
  1323. {
  1324. struct extent_buffer *b;
  1325. struct extent_buffer *tmp;
  1326. int slot;
  1327. int ret;
  1328. int level;
  1329. int should_reada = p->reada;
  1330. int lowest_unlock = 1;
  1331. int blocksize;
  1332. u8 lowest_level = 0;
  1333. u64 blocknr;
  1334. u64 gen;
  1335. struct btrfs_key prealloc_block;
  1336. lowest_level = p->lowest_level;
  1337. WARN_ON(lowest_level && ins_len > 0);
  1338. WARN_ON(p->nodes[0] != NULL);
  1339. if (ins_len < 0)
  1340. lowest_unlock = 2;
  1341. prealloc_block.objectid = 0;
  1342. again:
  1343. if (p->skip_locking)
  1344. b = btrfs_root_node(root);
  1345. else
  1346. b = btrfs_lock_root_node(root);
  1347. while (b) {
  1348. level = btrfs_header_level(b);
  1349. /*
  1350. * setup the path here so we can release it under lock
  1351. * contention with the cow code
  1352. */
  1353. p->nodes[level] = b;
  1354. if (!p->skip_locking)
  1355. p->locks[level] = 1;
  1356. if (cow) {
  1357. int wret;
  1358. /* is a cow on this block not required */
  1359. if (btrfs_header_generation(b) == trans->transid &&
  1360. btrfs_header_owner(b) == root->root_key.objectid &&
  1361. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1362. goto cow_done;
  1363. }
  1364. /* ok, we have to cow, is our old prealloc the right
  1365. * size?
  1366. */
  1367. if (prealloc_block.objectid &&
  1368. prealloc_block.offset != b->len) {
  1369. btrfs_release_path(root, p);
  1370. btrfs_free_reserved_extent(root,
  1371. prealloc_block.objectid,
  1372. prealloc_block.offset);
  1373. prealloc_block.objectid = 0;
  1374. goto again;
  1375. }
  1376. /*
  1377. * for higher level blocks, try not to allocate blocks
  1378. * with the block and the parent locks held.
  1379. */
  1380. if (level > 0 && !prealloc_block.objectid &&
  1381. btrfs_path_lock_waiting(p, level)) {
  1382. u32 size = b->len;
  1383. u64 hint = b->start;
  1384. btrfs_release_path(root, p);
  1385. ret = btrfs_reserve_extent(trans, root,
  1386. size, size, 0,
  1387. hint, (u64)-1,
  1388. &prealloc_block, 0);
  1389. BUG_ON(ret);
  1390. goto again;
  1391. }
  1392. btrfs_set_path_blocking(p);
  1393. wret = btrfs_cow_block(trans, root, b,
  1394. p->nodes[level + 1],
  1395. p->slots[level + 1],
  1396. &b, prealloc_block.objectid);
  1397. prealloc_block.objectid = 0;
  1398. if (wret) {
  1399. free_extent_buffer(b);
  1400. ret = wret;
  1401. goto done;
  1402. }
  1403. }
  1404. cow_done:
  1405. BUG_ON(!cow && ins_len);
  1406. if (level != btrfs_header_level(b))
  1407. WARN_ON(1);
  1408. level = btrfs_header_level(b);
  1409. p->nodes[level] = b;
  1410. if (!p->skip_locking)
  1411. p->locks[level] = 1;
  1412. btrfs_clear_path_blocking(p);
  1413. /*
  1414. * we have a lock on b and as long as we aren't changing
  1415. * the tree, there is no way to for the items in b to change.
  1416. * It is safe to drop the lock on our parent before we
  1417. * go through the expensive btree search on b.
  1418. *
  1419. * If cow is true, then we might be changing slot zero,
  1420. * which may require changing the parent. So, we can't
  1421. * drop the lock until after we know which slot we're
  1422. * operating on.
  1423. */
  1424. if (!cow)
  1425. btrfs_unlock_up_safe(p, level + 1);
  1426. ret = check_block(root, p, level);
  1427. if (ret) {
  1428. ret = -1;
  1429. goto done;
  1430. }
  1431. ret = bin_search(b, key, level, &slot);
  1432. if (level != 0) {
  1433. if (ret && slot > 0)
  1434. slot -= 1;
  1435. p->slots[level] = slot;
  1436. if ((p->search_for_split || ins_len > 0) &&
  1437. btrfs_header_nritems(b) >=
  1438. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1439. int sret;
  1440. sret = reada_for_balance(root, p, level);
  1441. if (sret)
  1442. goto again;
  1443. btrfs_set_path_blocking(p);
  1444. sret = split_node(trans, root, p, level);
  1445. btrfs_clear_path_blocking(p);
  1446. BUG_ON(sret > 0);
  1447. if (sret) {
  1448. ret = sret;
  1449. goto done;
  1450. }
  1451. b = p->nodes[level];
  1452. slot = p->slots[level];
  1453. } else if (ins_len < 0 &&
  1454. btrfs_header_nritems(b) <
  1455. BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
  1456. int sret;
  1457. sret = reada_for_balance(root, p, level);
  1458. if (sret)
  1459. goto again;
  1460. btrfs_set_path_blocking(p);
  1461. sret = balance_level(trans, root, p, level);
  1462. btrfs_clear_path_blocking(p);
  1463. if (sret) {
  1464. ret = sret;
  1465. goto done;
  1466. }
  1467. b = p->nodes[level];
  1468. if (!b) {
  1469. btrfs_release_path(NULL, p);
  1470. goto again;
  1471. }
  1472. slot = p->slots[level];
  1473. BUG_ON(btrfs_header_nritems(b) == 1);
  1474. }
  1475. unlock_up(p, level, lowest_unlock);
  1476. /* this is only true while dropping a snapshot */
  1477. if (level == lowest_level) {
  1478. ret = 0;
  1479. goto done;
  1480. }
  1481. blocknr = btrfs_node_blockptr(b, slot);
  1482. gen = btrfs_node_ptr_generation(b, slot);
  1483. blocksize = btrfs_level_size(root, level - 1);
  1484. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1485. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1486. b = tmp;
  1487. } else {
  1488. /*
  1489. * reduce lock contention at high levels
  1490. * of the btree by dropping locks before
  1491. * we read.
  1492. */
  1493. if (level > 0) {
  1494. btrfs_release_path(NULL, p);
  1495. if (tmp)
  1496. free_extent_buffer(tmp);
  1497. if (should_reada)
  1498. reada_for_search(root, p,
  1499. level, slot,
  1500. key->objectid);
  1501. tmp = read_tree_block(root, blocknr,
  1502. blocksize, gen);
  1503. if (tmp)
  1504. free_extent_buffer(tmp);
  1505. goto again;
  1506. } else {
  1507. btrfs_set_path_blocking(p);
  1508. if (tmp)
  1509. free_extent_buffer(tmp);
  1510. if (should_reada)
  1511. reada_for_search(root, p,
  1512. level, slot,
  1513. key->objectid);
  1514. b = read_node_slot(root, b, slot);
  1515. }
  1516. }
  1517. if (!p->skip_locking) {
  1518. int lret;
  1519. btrfs_clear_path_blocking(p);
  1520. lret = btrfs_try_spin_lock(b);
  1521. if (!lret) {
  1522. btrfs_set_path_blocking(p);
  1523. btrfs_tree_lock(b);
  1524. btrfs_clear_path_blocking(p);
  1525. }
  1526. }
  1527. } else {
  1528. p->slots[level] = slot;
  1529. if (ins_len > 0 &&
  1530. btrfs_leaf_free_space(root, b) < ins_len) {
  1531. int sret;
  1532. btrfs_set_path_blocking(p);
  1533. sret = split_leaf(trans, root, key,
  1534. p, ins_len, ret == 0);
  1535. btrfs_clear_path_blocking(p);
  1536. BUG_ON(sret > 0);
  1537. if (sret) {
  1538. ret = sret;
  1539. goto done;
  1540. }
  1541. }
  1542. if (!p->search_for_split)
  1543. unlock_up(p, level, lowest_unlock);
  1544. goto done;
  1545. }
  1546. }
  1547. ret = 1;
  1548. done:
  1549. /*
  1550. * we don't really know what they plan on doing with the path
  1551. * from here on, so for now just mark it as blocking
  1552. */
  1553. btrfs_set_path_blocking(p);
  1554. if (prealloc_block.objectid) {
  1555. btrfs_free_reserved_extent(root,
  1556. prealloc_block.objectid,
  1557. prealloc_block.offset);
  1558. }
  1559. return ret;
  1560. }
  1561. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1562. struct btrfs_root *root,
  1563. struct btrfs_key *node_keys,
  1564. u64 *nodes, int lowest_level)
  1565. {
  1566. struct extent_buffer *eb;
  1567. struct extent_buffer *parent;
  1568. struct btrfs_key key;
  1569. u64 bytenr;
  1570. u64 generation;
  1571. u32 blocksize;
  1572. int level;
  1573. int slot;
  1574. int key_match;
  1575. int ret;
  1576. eb = btrfs_lock_root_node(root);
  1577. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
  1578. BUG_ON(ret);
  1579. btrfs_set_lock_blocking(eb);
  1580. parent = eb;
  1581. while (1) {
  1582. level = btrfs_header_level(parent);
  1583. if (level == 0 || level <= lowest_level)
  1584. break;
  1585. ret = bin_search(parent, &node_keys[lowest_level], level,
  1586. &slot);
  1587. if (ret && slot > 0)
  1588. slot--;
  1589. bytenr = btrfs_node_blockptr(parent, slot);
  1590. if (nodes[level - 1] == bytenr)
  1591. break;
  1592. blocksize = btrfs_level_size(root, level - 1);
  1593. generation = btrfs_node_ptr_generation(parent, slot);
  1594. btrfs_node_key_to_cpu(eb, &key, slot);
  1595. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1596. if (generation == trans->transid) {
  1597. eb = read_tree_block(root, bytenr, blocksize,
  1598. generation);
  1599. btrfs_tree_lock(eb);
  1600. btrfs_set_lock_blocking(eb);
  1601. }
  1602. /*
  1603. * if node keys match and node pointer hasn't been modified
  1604. * in the running transaction, we can merge the path. for
  1605. * blocks owened by reloc trees, the node pointer check is
  1606. * skipped, this is because these blocks are fully controlled
  1607. * by the space balance code, no one else can modify them.
  1608. */
  1609. if (!nodes[level - 1] || !key_match ||
  1610. (generation == trans->transid &&
  1611. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1612. if (level == 1 || level == lowest_level + 1) {
  1613. if (generation == trans->transid) {
  1614. btrfs_tree_unlock(eb);
  1615. free_extent_buffer(eb);
  1616. }
  1617. break;
  1618. }
  1619. if (generation != trans->transid) {
  1620. eb = read_tree_block(root, bytenr, blocksize,
  1621. generation);
  1622. btrfs_tree_lock(eb);
  1623. btrfs_set_lock_blocking(eb);
  1624. }
  1625. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1626. &eb, 0);
  1627. BUG_ON(ret);
  1628. if (root->root_key.objectid ==
  1629. BTRFS_TREE_RELOC_OBJECTID) {
  1630. if (!nodes[level - 1]) {
  1631. nodes[level - 1] = eb->start;
  1632. memcpy(&node_keys[level - 1], &key,
  1633. sizeof(node_keys[0]));
  1634. } else {
  1635. WARN_ON(1);
  1636. }
  1637. }
  1638. btrfs_tree_unlock(parent);
  1639. free_extent_buffer(parent);
  1640. parent = eb;
  1641. continue;
  1642. }
  1643. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1644. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1645. btrfs_mark_buffer_dirty(parent);
  1646. ret = btrfs_inc_extent_ref(trans, root,
  1647. nodes[level - 1],
  1648. blocksize, parent->start,
  1649. btrfs_header_owner(parent),
  1650. btrfs_header_generation(parent),
  1651. level - 1);
  1652. BUG_ON(ret);
  1653. /*
  1654. * If the block was created in the running transaction,
  1655. * it's possible this is the last reference to it, so we
  1656. * should drop the subtree.
  1657. */
  1658. if (generation == trans->transid) {
  1659. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1660. BUG_ON(ret);
  1661. btrfs_tree_unlock(eb);
  1662. free_extent_buffer(eb);
  1663. } else {
  1664. ret = btrfs_free_extent(trans, root, bytenr,
  1665. blocksize, parent->start,
  1666. btrfs_header_owner(parent),
  1667. btrfs_header_generation(parent),
  1668. level - 1, 1);
  1669. BUG_ON(ret);
  1670. }
  1671. break;
  1672. }
  1673. btrfs_tree_unlock(parent);
  1674. free_extent_buffer(parent);
  1675. return 0;
  1676. }
  1677. /*
  1678. * adjust the pointers going up the tree, starting at level
  1679. * making sure the right key of each node is points to 'key'.
  1680. * This is used after shifting pointers to the left, so it stops
  1681. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1682. * higher levels
  1683. *
  1684. * If this fails to write a tree block, it returns -1, but continues
  1685. * fixing up the blocks in ram so the tree is consistent.
  1686. */
  1687. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1688. struct btrfs_root *root, struct btrfs_path *path,
  1689. struct btrfs_disk_key *key, int level)
  1690. {
  1691. int i;
  1692. int ret = 0;
  1693. struct extent_buffer *t;
  1694. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1695. int tslot = path->slots[i];
  1696. if (!path->nodes[i])
  1697. break;
  1698. t = path->nodes[i];
  1699. btrfs_set_node_key(t, key, tslot);
  1700. btrfs_mark_buffer_dirty(path->nodes[i]);
  1701. if (tslot != 0)
  1702. break;
  1703. }
  1704. return ret;
  1705. }
  1706. /*
  1707. * update item key.
  1708. *
  1709. * This function isn't completely safe. It's the caller's responsibility
  1710. * that the new key won't break the order
  1711. */
  1712. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1713. struct btrfs_root *root, struct btrfs_path *path,
  1714. struct btrfs_key *new_key)
  1715. {
  1716. struct btrfs_disk_key disk_key;
  1717. struct extent_buffer *eb;
  1718. int slot;
  1719. eb = path->nodes[0];
  1720. slot = path->slots[0];
  1721. if (slot > 0) {
  1722. btrfs_item_key(eb, &disk_key, slot - 1);
  1723. if (comp_keys(&disk_key, new_key) >= 0)
  1724. return -1;
  1725. }
  1726. if (slot < btrfs_header_nritems(eb) - 1) {
  1727. btrfs_item_key(eb, &disk_key, slot + 1);
  1728. if (comp_keys(&disk_key, new_key) <= 0)
  1729. return -1;
  1730. }
  1731. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1732. btrfs_set_item_key(eb, &disk_key, slot);
  1733. btrfs_mark_buffer_dirty(eb);
  1734. if (slot == 0)
  1735. fixup_low_keys(trans, root, path, &disk_key, 1);
  1736. return 0;
  1737. }
  1738. /*
  1739. * try to push data from one node into the next node left in the
  1740. * tree.
  1741. *
  1742. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1743. * error, and > 0 if there was no room in the left hand block.
  1744. */
  1745. static int push_node_left(struct btrfs_trans_handle *trans,
  1746. struct btrfs_root *root, struct extent_buffer *dst,
  1747. struct extent_buffer *src, int empty)
  1748. {
  1749. int push_items = 0;
  1750. int src_nritems;
  1751. int dst_nritems;
  1752. int ret = 0;
  1753. src_nritems = btrfs_header_nritems(src);
  1754. dst_nritems = btrfs_header_nritems(dst);
  1755. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1756. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1757. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1758. if (!empty && src_nritems <= 8)
  1759. return 1;
  1760. if (push_items <= 0)
  1761. return 1;
  1762. if (empty) {
  1763. push_items = min(src_nritems, push_items);
  1764. if (push_items < src_nritems) {
  1765. /* leave at least 8 pointers in the node if
  1766. * we aren't going to empty it
  1767. */
  1768. if (src_nritems - push_items < 8) {
  1769. if (push_items <= 8)
  1770. return 1;
  1771. push_items -= 8;
  1772. }
  1773. }
  1774. } else
  1775. push_items = min(src_nritems - 8, push_items);
  1776. copy_extent_buffer(dst, src,
  1777. btrfs_node_key_ptr_offset(dst_nritems),
  1778. btrfs_node_key_ptr_offset(0),
  1779. push_items * sizeof(struct btrfs_key_ptr));
  1780. if (push_items < src_nritems) {
  1781. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1782. btrfs_node_key_ptr_offset(push_items),
  1783. (src_nritems - push_items) *
  1784. sizeof(struct btrfs_key_ptr));
  1785. }
  1786. btrfs_set_header_nritems(src, src_nritems - push_items);
  1787. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1788. btrfs_mark_buffer_dirty(src);
  1789. btrfs_mark_buffer_dirty(dst);
  1790. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1791. BUG_ON(ret);
  1792. return ret;
  1793. }
  1794. /*
  1795. * try to push data from one node into the next node right in the
  1796. * tree.
  1797. *
  1798. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1799. * error, and > 0 if there was no room in the right hand block.
  1800. *
  1801. * this will only push up to 1/2 the contents of the left node over
  1802. */
  1803. static int balance_node_right(struct btrfs_trans_handle *trans,
  1804. struct btrfs_root *root,
  1805. struct extent_buffer *dst,
  1806. struct extent_buffer *src)
  1807. {
  1808. int push_items = 0;
  1809. int max_push;
  1810. int src_nritems;
  1811. int dst_nritems;
  1812. int ret = 0;
  1813. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1814. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1815. src_nritems = btrfs_header_nritems(src);
  1816. dst_nritems = btrfs_header_nritems(dst);
  1817. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1818. if (push_items <= 0)
  1819. return 1;
  1820. if (src_nritems < 4)
  1821. return 1;
  1822. max_push = src_nritems / 2 + 1;
  1823. /* don't try to empty the node */
  1824. if (max_push >= src_nritems)
  1825. return 1;
  1826. if (max_push < push_items)
  1827. push_items = max_push;
  1828. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1829. btrfs_node_key_ptr_offset(0),
  1830. (dst_nritems) *
  1831. sizeof(struct btrfs_key_ptr));
  1832. copy_extent_buffer(dst, src,
  1833. btrfs_node_key_ptr_offset(0),
  1834. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1835. push_items * sizeof(struct btrfs_key_ptr));
  1836. btrfs_set_header_nritems(src, src_nritems - push_items);
  1837. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1838. btrfs_mark_buffer_dirty(src);
  1839. btrfs_mark_buffer_dirty(dst);
  1840. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1841. BUG_ON(ret);
  1842. return ret;
  1843. }
  1844. /*
  1845. * helper function to insert a new root level in the tree.
  1846. * A new node is allocated, and a single item is inserted to
  1847. * point to the existing root
  1848. *
  1849. * returns zero on success or < 0 on failure.
  1850. */
  1851. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1852. struct btrfs_root *root,
  1853. struct btrfs_path *path, int level)
  1854. {
  1855. u64 lower_gen;
  1856. struct extent_buffer *lower;
  1857. struct extent_buffer *c;
  1858. struct extent_buffer *old;
  1859. struct btrfs_disk_key lower_key;
  1860. int ret;
  1861. BUG_ON(path->nodes[level]);
  1862. BUG_ON(path->nodes[level-1] != root->node);
  1863. lower = path->nodes[level-1];
  1864. if (level == 1)
  1865. btrfs_item_key(lower, &lower_key, 0);
  1866. else
  1867. btrfs_node_key(lower, &lower_key, 0);
  1868. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1869. root->root_key.objectid, trans->transid,
  1870. level, root->node->start, 0);
  1871. if (IS_ERR(c))
  1872. return PTR_ERR(c);
  1873. memset_extent_buffer(c, 0, 0, root->nodesize);
  1874. btrfs_set_header_nritems(c, 1);
  1875. btrfs_set_header_level(c, level);
  1876. btrfs_set_header_bytenr(c, c->start);
  1877. btrfs_set_header_generation(c, trans->transid);
  1878. btrfs_set_header_owner(c, root->root_key.objectid);
  1879. write_extent_buffer(c, root->fs_info->fsid,
  1880. (unsigned long)btrfs_header_fsid(c),
  1881. BTRFS_FSID_SIZE);
  1882. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1883. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1884. BTRFS_UUID_SIZE);
  1885. btrfs_set_node_key(c, &lower_key, 0);
  1886. btrfs_set_node_blockptr(c, 0, lower->start);
  1887. lower_gen = btrfs_header_generation(lower);
  1888. WARN_ON(lower_gen != trans->transid);
  1889. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1890. btrfs_mark_buffer_dirty(c);
  1891. spin_lock(&root->node_lock);
  1892. old = root->node;
  1893. root->node = c;
  1894. spin_unlock(&root->node_lock);
  1895. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1896. lower->start, c->start,
  1897. root->root_key.objectid,
  1898. trans->transid, level - 1);
  1899. BUG_ON(ret);
  1900. /* the super has an extra ref to root->node */
  1901. free_extent_buffer(old);
  1902. add_root_to_dirty_list(root);
  1903. extent_buffer_get(c);
  1904. path->nodes[level] = c;
  1905. path->locks[level] = 1;
  1906. path->slots[level] = 0;
  1907. return 0;
  1908. }
  1909. /*
  1910. * worker function to insert a single pointer in a node.
  1911. * the node should have enough room for the pointer already
  1912. *
  1913. * slot and level indicate where you want the key to go, and
  1914. * blocknr is the block the key points to.
  1915. *
  1916. * returns zero on success and < 0 on any error
  1917. */
  1918. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1919. *root, struct btrfs_path *path, struct btrfs_disk_key
  1920. *key, u64 bytenr, int slot, int level)
  1921. {
  1922. struct extent_buffer *lower;
  1923. int nritems;
  1924. BUG_ON(!path->nodes[level]);
  1925. lower = path->nodes[level];
  1926. nritems = btrfs_header_nritems(lower);
  1927. if (slot > nritems)
  1928. BUG();
  1929. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1930. BUG();
  1931. if (slot != nritems) {
  1932. memmove_extent_buffer(lower,
  1933. btrfs_node_key_ptr_offset(slot + 1),
  1934. btrfs_node_key_ptr_offset(slot),
  1935. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1936. }
  1937. btrfs_set_node_key(lower, key, slot);
  1938. btrfs_set_node_blockptr(lower, slot, bytenr);
  1939. WARN_ON(trans->transid == 0);
  1940. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1941. btrfs_set_header_nritems(lower, nritems + 1);
  1942. btrfs_mark_buffer_dirty(lower);
  1943. return 0;
  1944. }
  1945. /*
  1946. * split the node at the specified level in path in two.
  1947. * The path is corrected to point to the appropriate node after the split
  1948. *
  1949. * Before splitting this tries to make some room in the node by pushing
  1950. * left and right, if either one works, it returns right away.
  1951. *
  1952. * returns 0 on success and < 0 on failure
  1953. */
  1954. static noinline int split_node(struct btrfs_trans_handle *trans,
  1955. struct btrfs_root *root,
  1956. struct btrfs_path *path, int level)
  1957. {
  1958. struct extent_buffer *c;
  1959. struct extent_buffer *split;
  1960. struct btrfs_disk_key disk_key;
  1961. int mid;
  1962. int ret;
  1963. int wret;
  1964. u32 c_nritems;
  1965. c = path->nodes[level];
  1966. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1967. if (c == root->node) {
  1968. /* trying to split the root, lets make a new one */
  1969. ret = insert_new_root(trans, root, path, level + 1);
  1970. if (ret)
  1971. return ret;
  1972. } else {
  1973. ret = push_nodes_for_insert(trans, root, path, level);
  1974. c = path->nodes[level];
  1975. if (!ret && btrfs_header_nritems(c) <
  1976. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1977. return 0;
  1978. if (ret < 0)
  1979. return ret;
  1980. }
  1981. c_nritems = btrfs_header_nritems(c);
  1982. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1983. path->nodes[level + 1]->start,
  1984. root->root_key.objectid,
  1985. trans->transid, level, c->start, 0);
  1986. if (IS_ERR(split))
  1987. return PTR_ERR(split);
  1988. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1989. btrfs_set_header_level(split, btrfs_header_level(c));
  1990. btrfs_set_header_bytenr(split, split->start);
  1991. btrfs_set_header_generation(split, trans->transid);
  1992. btrfs_set_header_owner(split, root->root_key.objectid);
  1993. btrfs_set_header_flags(split, 0);
  1994. write_extent_buffer(split, root->fs_info->fsid,
  1995. (unsigned long)btrfs_header_fsid(split),
  1996. BTRFS_FSID_SIZE);
  1997. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1998. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1999. BTRFS_UUID_SIZE);
  2000. mid = (c_nritems + 1) / 2;
  2001. copy_extent_buffer(split, c,
  2002. btrfs_node_key_ptr_offset(0),
  2003. btrfs_node_key_ptr_offset(mid),
  2004. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2005. btrfs_set_header_nritems(split, c_nritems - mid);
  2006. btrfs_set_header_nritems(c, mid);
  2007. ret = 0;
  2008. btrfs_mark_buffer_dirty(c);
  2009. btrfs_mark_buffer_dirty(split);
  2010. btrfs_node_key(split, &disk_key, 0);
  2011. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2012. path->slots[level + 1] + 1,
  2013. level + 1);
  2014. if (wret)
  2015. ret = wret;
  2016. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  2017. BUG_ON(ret);
  2018. if (path->slots[level] >= mid) {
  2019. path->slots[level] -= mid;
  2020. btrfs_tree_unlock(c);
  2021. free_extent_buffer(c);
  2022. path->nodes[level] = split;
  2023. path->slots[level + 1] += 1;
  2024. } else {
  2025. btrfs_tree_unlock(split);
  2026. free_extent_buffer(split);
  2027. }
  2028. return ret;
  2029. }
  2030. /*
  2031. * how many bytes are required to store the items in a leaf. start
  2032. * and nr indicate which items in the leaf to check. This totals up the
  2033. * space used both by the item structs and the item data
  2034. */
  2035. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2036. {
  2037. int data_len;
  2038. int nritems = btrfs_header_nritems(l);
  2039. int end = min(nritems, start + nr) - 1;
  2040. if (!nr)
  2041. return 0;
  2042. data_len = btrfs_item_end_nr(l, start);
  2043. data_len = data_len - btrfs_item_offset_nr(l, end);
  2044. data_len += sizeof(struct btrfs_item) * nr;
  2045. WARN_ON(data_len < 0);
  2046. return data_len;
  2047. }
  2048. /*
  2049. * The space between the end of the leaf items and
  2050. * the start of the leaf data. IOW, how much room
  2051. * the leaf has left for both items and data
  2052. */
  2053. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2054. struct extent_buffer *leaf)
  2055. {
  2056. int nritems = btrfs_header_nritems(leaf);
  2057. int ret;
  2058. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2059. if (ret < 0) {
  2060. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2061. "used %d nritems %d\n",
  2062. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2063. leaf_space_used(leaf, 0, nritems), nritems);
  2064. }
  2065. return ret;
  2066. }
  2067. /*
  2068. * push some data in the path leaf to the right, trying to free up at
  2069. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2070. *
  2071. * returns 1 if the push failed because the other node didn't have enough
  2072. * room, 0 if everything worked out and < 0 if there were major errors.
  2073. */
  2074. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2075. *root, struct btrfs_path *path, int data_size,
  2076. int empty)
  2077. {
  2078. struct extent_buffer *left = path->nodes[0];
  2079. struct extent_buffer *right;
  2080. struct extent_buffer *upper;
  2081. struct btrfs_disk_key disk_key;
  2082. int slot;
  2083. u32 i;
  2084. int free_space;
  2085. int push_space = 0;
  2086. int push_items = 0;
  2087. struct btrfs_item *item;
  2088. u32 left_nritems;
  2089. u32 nr;
  2090. u32 right_nritems;
  2091. u32 data_end;
  2092. u32 this_item_size;
  2093. int ret;
  2094. slot = path->slots[1];
  2095. if (!path->nodes[1])
  2096. return 1;
  2097. upper = path->nodes[1];
  2098. if (slot >= btrfs_header_nritems(upper) - 1)
  2099. return 1;
  2100. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2101. right = read_node_slot(root, upper, slot + 1);
  2102. btrfs_tree_lock(right);
  2103. btrfs_set_lock_blocking(right);
  2104. free_space = btrfs_leaf_free_space(root, right);
  2105. if (free_space < data_size)
  2106. goto out_unlock;
  2107. /* cow and double check */
  2108. ret = btrfs_cow_block(trans, root, right, upper,
  2109. slot + 1, &right, 0);
  2110. if (ret)
  2111. goto out_unlock;
  2112. free_space = btrfs_leaf_free_space(root, right);
  2113. if (free_space < data_size)
  2114. goto out_unlock;
  2115. left_nritems = btrfs_header_nritems(left);
  2116. if (left_nritems == 0)
  2117. goto out_unlock;
  2118. if (empty)
  2119. nr = 0;
  2120. else
  2121. nr = 1;
  2122. if (path->slots[0] >= left_nritems)
  2123. push_space += data_size;
  2124. i = left_nritems - 1;
  2125. while (i >= nr) {
  2126. item = btrfs_item_nr(left, i);
  2127. if (!empty && push_items > 0) {
  2128. if (path->slots[0] > i)
  2129. break;
  2130. if (path->slots[0] == i) {
  2131. int space = btrfs_leaf_free_space(root, left);
  2132. if (space + push_space * 2 > free_space)
  2133. break;
  2134. }
  2135. }
  2136. if (path->slots[0] == i)
  2137. push_space += data_size;
  2138. if (!left->map_token) {
  2139. map_extent_buffer(left, (unsigned long)item,
  2140. sizeof(struct btrfs_item),
  2141. &left->map_token, &left->kaddr,
  2142. &left->map_start, &left->map_len,
  2143. KM_USER1);
  2144. }
  2145. this_item_size = btrfs_item_size(left, item);
  2146. if (this_item_size + sizeof(*item) + push_space > free_space)
  2147. break;
  2148. push_items++;
  2149. push_space += this_item_size + sizeof(*item);
  2150. if (i == 0)
  2151. break;
  2152. i--;
  2153. }
  2154. if (left->map_token) {
  2155. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2156. left->map_token = NULL;
  2157. }
  2158. if (push_items == 0)
  2159. goto out_unlock;
  2160. if (!empty && push_items == left_nritems)
  2161. WARN_ON(1);
  2162. /* push left to right */
  2163. right_nritems = btrfs_header_nritems(right);
  2164. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2165. push_space -= leaf_data_end(root, left);
  2166. /* make room in the right data area */
  2167. data_end = leaf_data_end(root, right);
  2168. memmove_extent_buffer(right,
  2169. btrfs_leaf_data(right) + data_end - push_space,
  2170. btrfs_leaf_data(right) + data_end,
  2171. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2172. /* copy from the left data area */
  2173. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2174. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2175. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2176. push_space);
  2177. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2178. btrfs_item_nr_offset(0),
  2179. right_nritems * sizeof(struct btrfs_item));
  2180. /* copy the items from left to right */
  2181. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2182. btrfs_item_nr_offset(left_nritems - push_items),
  2183. push_items * sizeof(struct btrfs_item));
  2184. /* update the item pointers */
  2185. right_nritems += push_items;
  2186. btrfs_set_header_nritems(right, right_nritems);
  2187. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2188. for (i = 0; i < right_nritems; i++) {
  2189. item = btrfs_item_nr(right, i);
  2190. if (!right->map_token) {
  2191. map_extent_buffer(right, (unsigned long)item,
  2192. sizeof(struct btrfs_item),
  2193. &right->map_token, &right->kaddr,
  2194. &right->map_start, &right->map_len,
  2195. KM_USER1);
  2196. }
  2197. push_space -= btrfs_item_size(right, item);
  2198. btrfs_set_item_offset(right, item, push_space);
  2199. }
  2200. if (right->map_token) {
  2201. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2202. right->map_token = NULL;
  2203. }
  2204. left_nritems -= push_items;
  2205. btrfs_set_header_nritems(left, left_nritems);
  2206. if (left_nritems)
  2207. btrfs_mark_buffer_dirty(left);
  2208. btrfs_mark_buffer_dirty(right);
  2209. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2210. BUG_ON(ret);
  2211. btrfs_item_key(right, &disk_key, 0);
  2212. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2213. btrfs_mark_buffer_dirty(upper);
  2214. /* then fixup the leaf pointer in the path */
  2215. if (path->slots[0] >= left_nritems) {
  2216. path->slots[0] -= left_nritems;
  2217. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2218. clean_tree_block(trans, root, path->nodes[0]);
  2219. btrfs_tree_unlock(path->nodes[0]);
  2220. free_extent_buffer(path->nodes[0]);
  2221. path->nodes[0] = right;
  2222. path->slots[1] += 1;
  2223. } else {
  2224. btrfs_tree_unlock(right);
  2225. free_extent_buffer(right);
  2226. }
  2227. return 0;
  2228. out_unlock:
  2229. btrfs_tree_unlock(right);
  2230. free_extent_buffer(right);
  2231. return 1;
  2232. }
  2233. /*
  2234. * push some data in the path leaf to the left, trying to free up at
  2235. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2236. */
  2237. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2238. *root, struct btrfs_path *path, int data_size,
  2239. int empty)
  2240. {
  2241. struct btrfs_disk_key disk_key;
  2242. struct extent_buffer *right = path->nodes[0];
  2243. struct extent_buffer *left;
  2244. int slot;
  2245. int i;
  2246. int free_space;
  2247. int push_space = 0;
  2248. int push_items = 0;
  2249. struct btrfs_item *item;
  2250. u32 old_left_nritems;
  2251. u32 right_nritems;
  2252. u32 nr;
  2253. int ret = 0;
  2254. int wret;
  2255. u32 this_item_size;
  2256. u32 old_left_item_size;
  2257. slot = path->slots[1];
  2258. if (slot == 0)
  2259. return 1;
  2260. if (!path->nodes[1])
  2261. return 1;
  2262. right_nritems = btrfs_header_nritems(right);
  2263. if (right_nritems == 0)
  2264. return 1;
  2265. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2266. left = read_node_slot(root, path->nodes[1], slot - 1);
  2267. btrfs_tree_lock(left);
  2268. btrfs_set_lock_blocking(left);
  2269. free_space = btrfs_leaf_free_space(root, left);
  2270. if (free_space < data_size) {
  2271. ret = 1;
  2272. goto out;
  2273. }
  2274. /* cow and double check */
  2275. ret = btrfs_cow_block(trans, root, left,
  2276. path->nodes[1], slot - 1, &left, 0);
  2277. if (ret) {
  2278. /* we hit -ENOSPC, but it isn't fatal here */
  2279. ret = 1;
  2280. goto out;
  2281. }
  2282. free_space = btrfs_leaf_free_space(root, left);
  2283. if (free_space < data_size) {
  2284. ret = 1;
  2285. goto out;
  2286. }
  2287. if (empty)
  2288. nr = right_nritems;
  2289. else
  2290. nr = right_nritems - 1;
  2291. for (i = 0; i < nr; i++) {
  2292. item = btrfs_item_nr(right, i);
  2293. if (!right->map_token) {
  2294. map_extent_buffer(right, (unsigned long)item,
  2295. sizeof(struct btrfs_item),
  2296. &right->map_token, &right->kaddr,
  2297. &right->map_start, &right->map_len,
  2298. KM_USER1);
  2299. }
  2300. if (!empty && push_items > 0) {
  2301. if (path->slots[0] < i)
  2302. break;
  2303. if (path->slots[0] == i) {
  2304. int space = btrfs_leaf_free_space(root, right);
  2305. if (space + push_space * 2 > free_space)
  2306. break;
  2307. }
  2308. }
  2309. if (path->slots[0] == i)
  2310. push_space += data_size;
  2311. this_item_size = btrfs_item_size(right, item);
  2312. if (this_item_size + sizeof(*item) + push_space > free_space)
  2313. break;
  2314. push_items++;
  2315. push_space += this_item_size + sizeof(*item);
  2316. }
  2317. if (right->map_token) {
  2318. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2319. right->map_token = NULL;
  2320. }
  2321. if (push_items == 0) {
  2322. ret = 1;
  2323. goto out;
  2324. }
  2325. if (!empty && push_items == btrfs_header_nritems(right))
  2326. WARN_ON(1);
  2327. /* push data from right to left */
  2328. copy_extent_buffer(left, right,
  2329. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2330. btrfs_item_nr_offset(0),
  2331. push_items * sizeof(struct btrfs_item));
  2332. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2333. btrfs_item_offset_nr(right, push_items - 1);
  2334. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2335. leaf_data_end(root, left) - push_space,
  2336. btrfs_leaf_data(right) +
  2337. btrfs_item_offset_nr(right, push_items - 1),
  2338. push_space);
  2339. old_left_nritems = btrfs_header_nritems(left);
  2340. BUG_ON(old_left_nritems <= 0);
  2341. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2342. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2343. u32 ioff;
  2344. item = btrfs_item_nr(left, i);
  2345. if (!left->map_token) {
  2346. map_extent_buffer(left, (unsigned long)item,
  2347. sizeof(struct btrfs_item),
  2348. &left->map_token, &left->kaddr,
  2349. &left->map_start, &left->map_len,
  2350. KM_USER1);
  2351. }
  2352. ioff = btrfs_item_offset(left, item);
  2353. btrfs_set_item_offset(left, item,
  2354. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2355. }
  2356. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2357. if (left->map_token) {
  2358. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2359. left->map_token = NULL;
  2360. }
  2361. /* fixup right node */
  2362. if (push_items > right_nritems) {
  2363. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2364. right_nritems);
  2365. WARN_ON(1);
  2366. }
  2367. if (push_items < right_nritems) {
  2368. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2369. leaf_data_end(root, right);
  2370. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2371. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2372. btrfs_leaf_data(right) +
  2373. leaf_data_end(root, right), push_space);
  2374. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2375. btrfs_item_nr_offset(push_items),
  2376. (btrfs_header_nritems(right) - push_items) *
  2377. sizeof(struct btrfs_item));
  2378. }
  2379. right_nritems -= push_items;
  2380. btrfs_set_header_nritems(right, right_nritems);
  2381. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2382. for (i = 0; i < right_nritems; i++) {
  2383. item = btrfs_item_nr(right, i);
  2384. if (!right->map_token) {
  2385. map_extent_buffer(right, (unsigned long)item,
  2386. sizeof(struct btrfs_item),
  2387. &right->map_token, &right->kaddr,
  2388. &right->map_start, &right->map_len,
  2389. KM_USER1);
  2390. }
  2391. push_space = push_space - btrfs_item_size(right, item);
  2392. btrfs_set_item_offset(right, item, push_space);
  2393. }
  2394. if (right->map_token) {
  2395. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2396. right->map_token = NULL;
  2397. }
  2398. btrfs_mark_buffer_dirty(left);
  2399. if (right_nritems)
  2400. btrfs_mark_buffer_dirty(right);
  2401. ret = btrfs_update_ref(trans, root, right, left,
  2402. old_left_nritems, push_items);
  2403. BUG_ON(ret);
  2404. btrfs_item_key(right, &disk_key, 0);
  2405. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2406. if (wret)
  2407. ret = wret;
  2408. /* then fixup the leaf pointer in the path */
  2409. if (path->slots[0] < push_items) {
  2410. path->slots[0] += old_left_nritems;
  2411. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2412. clean_tree_block(trans, root, path->nodes[0]);
  2413. btrfs_tree_unlock(path->nodes[0]);
  2414. free_extent_buffer(path->nodes[0]);
  2415. path->nodes[0] = left;
  2416. path->slots[1] -= 1;
  2417. } else {
  2418. btrfs_tree_unlock(left);
  2419. free_extent_buffer(left);
  2420. path->slots[0] -= push_items;
  2421. }
  2422. BUG_ON(path->slots[0] < 0);
  2423. return ret;
  2424. out:
  2425. btrfs_tree_unlock(left);
  2426. free_extent_buffer(left);
  2427. return ret;
  2428. }
  2429. /*
  2430. * split the path's leaf in two, making sure there is at least data_size
  2431. * available for the resulting leaf level of the path.
  2432. *
  2433. * returns 0 if all went well and < 0 on failure.
  2434. */
  2435. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2436. struct btrfs_root *root,
  2437. struct btrfs_key *ins_key,
  2438. struct btrfs_path *path, int data_size,
  2439. int extend)
  2440. {
  2441. struct extent_buffer *l;
  2442. u32 nritems;
  2443. int mid;
  2444. int slot;
  2445. struct extent_buffer *right;
  2446. int data_copy_size;
  2447. int rt_data_off;
  2448. int i;
  2449. int ret = 0;
  2450. int wret;
  2451. int double_split;
  2452. int num_doubles = 0;
  2453. struct btrfs_disk_key disk_key;
  2454. /* first try to make some room by pushing left and right */
  2455. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2456. wret = push_leaf_right(trans, root, path, data_size, 0);
  2457. if (wret < 0)
  2458. return wret;
  2459. if (wret) {
  2460. wret = push_leaf_left(trans, root, path, data_size, 0);
  2461. if (wret < 0)
  2462. return wret;
  2463. }
  2464. l = path->nodes[0];
  2465. /* did the pushes work? */
  2466. if (btrfs_leaf_free_space(root, l) >= data_size)
  2467. return 0;
  2468. }
  2469. if (!path->nodes[1]) {
  2470. ret = insert_new_root(trans, root, path, 1);
  2471. if (ret)
  2472. return ret;
  2473. }
  2474. again:
  2475. double_split = 0;
  2476. l = path->nodes[0];
  2477. slot = path->slots[0];
  2478. nritems = btrfs_header_nritems(l);
  2479. mid = (nritems + 1) / 2;
  2480. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2481. path->nodes[1]->start,
  2482. root->root_key.objectid,
  2483. trans->transid, 0, l->start, 0);
  2484. if (IS_ERR(right)) {
  2485. BUG_ON(1);
  2486. return PTR_ERR(right);
  2487. }
  2488. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2489. btrfs_set_header_bytenr(right, right->start);
  2490. btrfs_set_header_generation(right, trans->transid);
  2491. btrfs_set_header_owner(right, root->root_key.objectid);
  2492. btrfs_set_header_level(right, 0);
  2493. write_extent_buffer(right, root->fs_info->fsid,
  2494. (unsigned long)btrfs_header_fsid(right),
  2495. BTRFS_FSID_SIZE);
  2496. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2497. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2498. BTRFS_UUID_SIZE);
  2499. if (mid <= slot) {
  2500. if (nritems == 1 ||
  2501. leaf_space_used(l, mid, nritems - mid) + data_size >
  2502. BTRFS_LEAF_DATA_SIZE(root)) {
  2503. if (slot >= nritems) {
  2504. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2505. btrfs_set_header_nritems(right, 0);
  2506. wret = insert_ptr(trans, root, path,
  2507. &disk_key, right->start,
  2508. path->slots[1] + 1, 1);
  2509. if (wret)
  2510. ret = wret;
  2511. btrfs_tree_unlock(path->nodes[0]);
  2512. free_extent_buffer(path->nodes[0]);
  2513. path->nodes[0] = right;
  2514. path->slots[0] = 0;
  2515. path->slots[1] += 1;
  2516. btrfs_mark_buffer_dirty(right);
  2517. return ret;
  2518. }
  2519. mid = slot;
  2520. if (mid != nritems &&
  2521. leaf_space_used(l, mid, nritems - mid) +
  2522. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2523. double_split = 1;
  2524. }
  2525. }
  2526. } else {
  2527. if (leaf_space_used(l, 0, mid) + data_size >
  2528. BTRFS_LEAF_DATA_SIZE(root)) {
  2529. if (!extend && data_size && slot == 0) {
  2530. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2531. btrfs_set_header_nritems(right, 0);
  2532. wret = insert_ptr(trans, root, path,
  2533. &disk_key,
  2534. right->start,
  2535. path->slots[1], 1);
  2536. if (wret)
  2537. ret = wret;
  2538. btrfs_tree_unlock(path->nodes[0]);
  2539. free_extent_buffer(path->nodes[0]);
  2540. path->nodes[0] = right;
  2541. path->slots[0] = 0;
  2542. if (path->slots[1] == 0) {
  2543. wret = fixup_low_keys(trans, root,
  2544. path, &disk_key, 1);
  2545. if (wret)
  2546. ret = wret;
  2547. }
  2548. btrfs_mark_buffer_dirty(right);
  2549. return ret;
  2550. } else if ((extend || !data_size) && slot == 0) {
  2551. mid = 1;
  2552. } else {
  2553. mid = slot;
  2554. if (mid != nritems &&
  2555. leaf_space_used(l, mid, nritems - mid) +
  2556. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2557. double_split = 1;
  2558. }
  2559. }
  2560. }
  2561. }
  2562. nritems = nritems - mid;
  2563. btrfs_set_header_nritems(right, nritems);
  2564. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2565. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2566. btrfs_item_nr_offset(mid),
  2567. nritems * sizeof(struct btrfs_item));
  2568. copy_extent_buffer(right, l,
  2569. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2570. data_copy_size, btrfs_leaf_data(l) +
  2571. leaf_data_end(root, l), data_copy_size);
  2572. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2573. btrfs_item_end_nr(l, mid);
  2574. for (i = 0; i < nritems; i++) {
  2575. struct btrfs_item *item = btrfs_item_nr(right, i);
  2576. u32 ioff;
  2577. if (!right->map_token) {
  2578. map_extent_buffer(right, (unsigned long)item,
  2579. sizeof(struct btrfs_item),
  2580. &right->map_token, &right->kaddr,
  2581. &right->map_start, &right->map_len,
  2582. KM_USER1);
  2583. }
  2584. ioff = btrfs_item_offset(right, item);
  2585. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2586. }
  2587. if (right->map_token) {
  2588. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2589. right->map_token = NULL;
  2590. }
  2591. btrfs_set_header_nritems(l, mid);
  2592. ret = 0;
  2593. btrfs_item_key(right, &disk_key, 0);
  2594. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2595. path->slots[1] + 1, 1);
  2596. if (wret)
  2597. ret = wret;
  2598. btrfs_mark_buffer_dirty(right);
  2599. btrfs_mark_buffer_dirty(l);
  2600. BUG_ON(path->slots[0] != slot);
  2601. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2602. BUG_ON(ret);
  2603. if (mid <= slot) {
  2604. btrfs_tree_unlock(path->nodes[0]);
  2605. free_extent_buffer(path->nodes[0]);
  2606. path->nodes[0] = right;
  2607. path->slots[0] -= mid;
  2608. path->slots[1] += 1;
  2609. } else {
  2610. btrfs_tree_unlock(right);
  2611. free_extent_buffer(right);
  2612. }
  2613. BUG_ON(path->slots[0] < 0);
  2614. if (double_split) {
  2615. BUG_ON(num_doubles != 0);
  2616. num_doubles++;
  2617. goto again;
  2618. }
  2619. return ret;
  2620. }
  2621. /*
  2622. * This function splits a single item into two items,
  2623. * giving 'new_key' to the new item and splitting the
  2624. * old one at split_offset (from the start of the item).
  2625. *
  2626. * The path may be released by this operation. After
  2627. * the split, the path is pointing to the old item. The
  2628. * new item is going to be in the same node as the old one.
  2629. *
  2630. * Note, the item being split must be smaller enough to live alone on
  2631. * a tree block with room for one extra struct btrfs_item
  2632. *
  2633. * This allows us to split the item in place, keeping a lock on the
  2634. * leaf the entire time.
  2635. */
  2636. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2637. struct btrfs_root *root,
  2638. struct btrfs_path *path,
  2639. struct btrfs_key *new_key,
  2640. unsigned long split_offset)
  2641. {
  2642. u32 item_size;
  2643. struct extent_buffer *leaf;
  2644. struct btrfs_key orig_key;
  2645. struct btrfs_item *item;
  2646. struct btrfs_item *new_item;
  2647. int ret = 0;
  2648. int slot;
  2649. u32 nritems;
  2650. u32 orig_offset;
  2651. struct btrfs_disk_key disk_key;
  2652. char *buf;
  2653. leaf = path->nodes[0];
  2654. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2655. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2656. goto split;
  2657. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2658. btrfs_release_path(root, path);
  2659. path->search_for_split = 1;
  2660. path->keep_locks = 1;
  2661. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2662. path->search_for_split = 0;
  2663. /* if our item isn't there or got smaller, return now */
  2664. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2665. path->slots[0])) {
  2666. path->keep_locks = 0;
  2667. return -EAGAIN;
  2668. }
  2669. ret = split_leaf(trans, root, &orig_key, path,
  2670. sizeof(struct btrfs_item), 1);
  2671. path->keep_locks = 0;
  2672. BUG_ON(ret);
  2673. /*
  2674. * make sure any changes to the path from split_leaf leave it
  2675. * in a blocking state
  2676. */
  2677. btrfs_set_path_blocking(path);
  2678. leaf = path->nodes[0];
  2679. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2680. split:
  2681. item = btrfs_item_nr(leaf, path->slots[0]);
  2682. orig_offset = btrfs_item_offset(leaf, item);
  2683. item_size = btrfs_item_size(leaf, item);
  2684. buf = kmalloc(item_size, GFP_NOFS);
  2685. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2686. path->slots[0]), item_size);
  2687. slot = path->slots[0] + 1;
  2688. leaf = path->nodes[0];
  2689. nritems = btrfs_header_nritems(leaf);
  2690. if (slot != nritems) {
  2691. /* shift the items */
  2692. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2693. btrfs_item_nr_offset(slot),
  2694. (nritems - slot) * sizeof(struct btrfs_item));
  2695. }
  2696. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2697. btrfs_set_item_key(leaf, &disk_key, slot);
  2698. new_item = btrfs_item_nr(leaf, slot);
  2699. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2700. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2701. btrfs_set_item_offset(leaf, item,
  2702. orig_offset + item_size - split_offset);
  2703. btrfs_set_item_size(leaf, item, split_offset);
  2704. btrfs_set_header_nritems(leaf, nritems + 1);
  2705. /* write the data for the start of the original item */
  2706. write_extent_buffer(leaf, buf,
  2707. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2708. split_offset);
  2709. /* write the data for the new item */
  2710. write_extent_buffer(leaf, buf + split_offset,
  2711. btrfs_item_ptr_offset(leaf, slot),
  2712. item_size - split_offset);
  2713. btrfs_mark_buffer_dirty(leaf);
  2714. ret = 0;
  2715. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2716. btrfs_print_leaf(root, leaf);
  2717. BUG();
  2718. }
  2719. kfree(buf);
  2720. return ret;
  2721. }
  2722. /*
  2723. * make the item pointed to by the path smaller. new_size indicates
  2724. * how small to make it, and from_end tells us if we just chop bytes
  2725. * off the end of the item or if we shift the item to chop bytes off
  2726. * the front.
  2727. */
  2728. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2729. struct btrfs_root *root,
  2730. struct btrfs_path *path,
  2731. u32 new_size, int from_end)
  2732. {
  2733. int ret = 0;
  2734. int slot;
  2735. int slot_orig;
  2736. struct extent_buffer *leaf;
  2737. struct btrfs_item *item;
  2738. u32 nritems;
  2739. unsigned int data_end;
  2740. unsigned int old_data_start;
  2741. unsigned int old_size;
  2742. unsigned int size_diff;
  2743. int i;
  2744. slot_orig = path->slots[0];
  2745. leaf = path->nodes[0];
  2746. slot = path->slots[0];
  2747. old_size = btrfs_item_size_nr(leaf, slot);
  2748. if (old_size == new_size)
  2749. return 0;
  2750. nritems = btrfs_header_nritems(leaf);
  2751. data_end = leaf_data_end(root, leaf);
  2752. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2753. size_diff = old_size - new_size;
  2754. BUG_ON(slot < 0);
  2755. BUG_ON(slot >= nritems);
  2756. /*
  2757. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2758. */
  2759. /* first correct the data pointers */
  2760. for (i = slot; i < nritems; i++) {
  2761. u32 ioff;
  2762. item = btrfs_item_nr(leaf, i);
  2763. if (!leaf->map_token) {
  2764. map_extent_buffer(leaf, (unsigned long)item,
  2765. sizeof(struct btrfs_item),
  2766. &leaf->map_token, &leaf->kaddr,
  2767. &leaf->map_start, &leaf->map_len,
  2768. KM_USER1);
  2769. }
  2770. ioff = btrfs_item_offset(leaf, item);
  2771. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2772. }
  2773. if (leaf->map_token) {
  2774. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2775. leaf->map_token = NULL;
  2776. }
  2777. /* shift the data */
  2778. if (from_end) {
  2779. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2780. data_end + size_diff, btrfs_leaf_data(leaf) +
  2781. data_end, old_data_start + new_size - data_end);
  2782. } else {
  2783. struct btrfs_disk_key disk_key;
  2784. u64 offset;
  2785. btrfs_item_key(leaf, &disk_key, slot);
  2786. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2787. unsigned long ptr;
  2788. struct btrfs_file_extent_item *fi;
  2789. fi = btrfs_item_ptr(leaf, slot,
  2790. struct btrfs_file_extent_item);
  2791. fi = (struct btrfs_file_extent_item *)(
  2792. (unsigned long)fi - size_diff);
  2793. if (btrfs_file_extent_type(leaf, fi) ==
  2794. BTRFS_FILE_EXTENT_INLINE) {
  2795. ptr = btrfs_item_ptr_offset(leaf, slot);
  2796. memmove_extent_buffer(leaf, ptr,
  2797. (unsigned long)fi,
  2798. offsetof(struct btrfs_file_extent_item,
  2799. disk_bytenr));
  2800. }
  2801. }
  2802. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2803. data_end + size_diff, btrfs_leaf_data(leaf) +
  2804. data_end, old_data_start - data_end);
  2805. offset = btrfs_disk_key_offset(&disk_key);
  2806. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2807. btrfs_set_item_key(leaf, &disk_key, slot);
  2808. if (slot == 0)
  2809. fixup_low_keys(trans, root, path, &disk_key, 1);
  2810. }
  2811. item = btrfs_item_nr(leaf, slot);
  2812. btrfs_set_item_size(leaf, item, new_size);
  2813. btrfs_mark_buffer_dirty(leaf);
  2814. ret = 0;
  2815. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2816. btrfs_print_leaf(root, leaf);
  2817. BUG();
  2818. }
  2819. return ret;
  2820. }
  2821. /*
  2822. * make the item pointed to by the path bigger, data_size is the new size.
  2823. */
  2824. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2825. struct btrfs_root *root, struct btrfs_path *path,
  2826. u32 data_size)
  2827. {
  2828. int ret = 0;
  2829. int slot;
  2830. int slot_orig;
  2831. struct extent_buffer *leaf;
  2832. struct btrfs_item *item;
  2833. u32 nritems;
  2834. unsigned int data_end;
  2835. unsigned int old_data;
  2836. unsigned int old_size;
  2837. int i;
  2838. slot_orig = path->slots[0];
  2839. leaf = path->nodes[0];
  2840. nritems = btrfs_header_nritems(leaf);
  2841. data_end = leaf_data_end(root, leaf);
  2842. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2843. btrfs_print_leaf(root, leaf);
  2844. BUG();
  2845. }
  2846. slot = path->slots[0];
  2847. old_data = btrfs_item_end_nr(leaf, slot);
  2848. BUG_ON(slot < 0);
  2849. if (slot >= nritems) {
  2850. btrfs_print_leaf(root, leaf);
  2851. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2852. slot, nritems);
  2853. BUG_ON(1);
  2854. }
  2855. /*
  2856. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2857. */
  2858. /* first correct the data pointers */
  2859. for (i = slot; i < nritems; i++) {
  2860. u32 ioff;
  2861. item = btrfs_item_nr(leaf, i);
  2862. if (!leaf->map_token) {
  2863. map_extent_buffer(leaf, (unsigned long)item,
  2864. sizeof(struct btrfs_item),
  2865. &leaf->map_token, &leaf->kaddr,
  2866. &leaf->map_start, &leaf->map_len,
  2867. KM_USER1);
  2868. }
  2869. ioff = btrfs_item_offset(leaf, item);
  2870. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2871. }
  2872. if (leaf->map_token) {
  2873. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2874. leaf->map_token = NULL;
  2875. }
  2876. /* shift the data */
  2877. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2878. data_end - data_size, btrfs_leaf_data(leaf) +
  2879. data_end, old_data - data_end);
  2880. data_end = old_data;
  2881. old_size = btrfs_item_size_nr(leaf, slot);
  2882. item = btrfs_item_nr(leaf, slot);
  2883. btrfs_set_item_size(leaf, item, old_size + data_size);
  2884. btrfs_mark_buffer_dirty(leaf);
  2885. ret = 0;
  2886. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2887. btrfs_print_leaf(root, leaf);
  2888. BUG();
  2889. }
  2890. return ret;
  2891. }
  2892. /*
  2893. * Given a key and some data, insert items into the tree.
  2894. * This does all the path init required, making room in the tree if needed.
  2895. * Returns the number of keys that were inserted.
  2896. */
  2897. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2898. struct btrfs_root *root,
  2899. struct btrfs_path *path,
  2900. struct btrfs_key *cpu_key, u32 *data_size,
  2901. int nr)
  2902. {
  2903. struct extent_buffer *leaf;
  2904. struct btrfs_item *item;
  2905. int ret = 0;
  2906. int slot;
  2907. int i;
  2908. u32 nritems;
  2909. u32 total_data = 0;
  2910. u32 total_size = 0;
  2911. unsigned int data_end;
  2912. struct btrfs_disk_key disk_key;
  2913. struct btrfs_key found_key;
  2914. for (i = 0; i < nr; i++) {
  2915. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2916. BTRFS_LEAF_DATA_SIZE(root)) {
  2917. break;
  2918. nr = i;
  2919. }
  2920. total_data += data_size[i];
  2921. total_size += data_size[i] + sizeof(struct btrfs_item);
  2922. }
  2923. BUG_ON(nr == 0);
  2924. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2925. if (ret == 0)
  2926. return -EEXIST;
  2927. if (ret < 0)
  2928. goto out;
  2929. leaf = path->nodes[0];
  2930. nritems = btrfs_header_nritems(leaf);
  2931. data_end = leaf_data_end(root, leaf);
  2932. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2933. for (i = nr; i >= 0; i--) {
  2934. total_data -= data_size[i];
  2935. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2936. if (total_size < btrfs_leaf_free_space(root, leaf))
  2937. break;
  2938. }
  2939. nr = i;
  2940. }
  2941. slot = path->slots[0];
  2942. BUG_ON(slot < 0);
  2943. if (slot != nritems) {
  2944. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2945. item = btrfs_item_nr(leaf, slot);
  2946. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2947. /* figure out how many keys we can insert in here */
  2948. total_data = data_size[0];
  2949. for (i = 1; i < nr; i++) {
  2950. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2951. break;
  2952. total_data += data_size[i];
  2953. }
  2954. nr = i;
  2955. if (old_data < data_end) {
  2956. btrfs_print_leaf(root, leaf);
  2957. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2958. slot, old_data, data_end);
  2959. BUG_ON(1);
  2960. }
  2961. /*
  2962. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2963. */
  2964. /* first correct the data pointers */
  2965. WARN_ON(leaf->map_token);
  2966. for (i = slot; i < nritems; i++) {
  2967. u32 ioff;
  2968. item = btrfs_item_nr(leaf, i);
  2969. if (!leaf->map_token) {
  2970. map_extent_buffer(leaf, (unsigned long)item,
  2971. sizeof(struct btrfs_item),
  2972. &leaf->map_token, &leaf->kaddr,
  2973. &leaf->map_start, &leaf->map_len,
  2974. KM_USER1);
  2975. }
  2976. ioff = btrfs_item_offset(leaf, item);
  2977. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2978. }
  2979. if (leaf->map_token) {
  2980. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2981. leaf->map_token = NULL;
  2982. }
  2983. /* shift the items */
  2984. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2985. btrfs_item_nr_offset(slot),
  2986. (nritems - slot) * sizeof(struct btrfs_item));
  2987. /* shift the data */
  2988. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2989. data_end - total_data, btrfs_leaf_data(leaf) +
  2990. data_end, old_data - data_end);
  2991. data_end = old_data;
  2992. } else {
  2993. /*
  2994. * this sucks but it has to be done, if we are inserting at
  2995. * the end of the leaf only insert 1 of the items, since we
  2996. * have no way of knowing whats on the next leaf and we'd have
  2997. * to drop our current locks to figure it out
  2998. */
  2999. nr = 1;
  3000. }
  3001. /* setup the item for the new data */
  3002. for (i = 0; i < nr; i++) {
  3003. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3004. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3005. item = btrfs_item_nr(leaf, slot + i);
  3006. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3007. data_end -= data_size[i];
  3008. btrfs_set_item_size(leaf, item, data_size[i]);
  3009. }
  3010. btrfs_set_header_nritems(leaf, nritems + nr);
  3011. btrfs_mark_buffer_dirty(leaf);
  3012. ret = 0;
  3013. if (slot == 0) {
  3014. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3015. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3016. }
  3017. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3018. btrfs_print_leaf(root, leaf);
  3019. BUG();
  3020. }
  3021. out:
  3022. if (!ret)
  3023. ret = nr;
  3024. return ret;
  3025. }
  3026. /*
  3027. * Given a key and some data, insert items into the tree.
  3028. * This does all the path init required, making room in the tree if needed.
  3029. */
  3030. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3031. struct btrfs_root *root,
  3032. struct btrfs_path *path,
  3033. struct btrfs_key *cpu_key, u32 *data_size,
  3034. int nr)
  3035. {
  3036. struct extent_buffer *leaf;
  3037. struct btrfs_item *item;
  3038. int ret = 0;
  3039. int slot;
  3040. int slot_orig;
  3041. int i;
  3042. u32 nritems;
  3043. u32 total_size = 0;
  3044. u32 total_data = 0;
  3045. unsigned int data_end;
  3046. struct btrfs_disk_key disk_key;
  3047. for (i = 0; i < nr; i++)
  3048. total_data += data_size[i];
  3049. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3050. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3051. if (ret == 0)
  3052. return -EEXIST;
  3053. if (ret < 0)
  3054. goto out;
  3055. slot_orig = path->slots[0];
  3056. leaf = path->nodes[0];
  3057. nritems = btrfs_header_nritems(leaf);
  3058. data_end = leaf_data_end(root, leaf);
  3059. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3060. btrfs_print_leaf(root, leaf);
  3061. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3062. total_size, btrfs_leaf_free_space(root, leaf));
  3063. BUG();
  3064. }
  3065. slot = path->slots[0];
  3066. BUG_ON(slot < 0);
  3067. if (slot != nritems) {
  3068. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3069. if (old_data < data_end) {
  3070. btrfs_print_leaf(root, leaf);
  3071. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3072. slot, old_data, data_end);
  3073. BUG_ON(1);
  3074. }
  3075. /*
  3076. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3077. */
  3078. /* first correct the data pointers */
  3079. WARN_ON(leaf->map_token);
  3080. for (i = slot; i < nritems; i++) {
  3081. u32 ioff;
  3082. item = btrfs_item_nr(leaf, i);
  3083. if (!leaf->map_token) {
  3084. map_extent_buffer(leaf, (unsigned long)item,
  3085. sizeof(struct btrfs_item),
  3086. &leaf->map_token, &leaf->kaddr,
  3087. &leaf->map_start, &leaf->map_len,
  3088. KM_USER1);
  3089. }
  3090. ioff = btrfs_item_offset(leaf, item);
  3091. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3092. }
  3093. if (leaf->map_token) {
  3094. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3095. leaf->map_token = NULL;
  3096. }
  3097. /* shift the items */
  3098. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3099. btrfs_item_nr_offset(slot),
  3100. (nritems - slot) * sizeof(struct btrfs_item));
  3101. /* shift the data */
  3102. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3103. data_end - total_data, btrfs_leaf_data(leaf) +
  3104. data_end, old_data - data_end);
  3105. data_end = old_data;
  3106. }
  3107. /* setup the item for the new data */
  3108. for (i = 0; i < nr; i++) {
  3109. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3110. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3111. item = btrfs_item_nr(leaf, slot + i);
  3112. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3113. data_end -= data_size[i];
  3114. btrfs_set_item_size(leaf, item, data_size[i]);
  3115. }
  3116. btrfs_set_header_nritems(leaf, nritems + nr);
  3117. btrfs_mark_buffer_dirty(leaf);
  3118. ret = 0;
  3119. if (slot == 0) {
  3120. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3121. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3122. }
  3123. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3124. btrfs_print_leaf(root, leaf);
  3125. BUG();
  3126. }
  3127. out:
  3128. btrfs_unlock_up_safe(path, 1);
  3129. return ret;
  3130. }
  3131. /*
  3132. * Given a key and some data, insert an item into the tree.
  3133. * This does all the path init required, making room in the tree if needed.
  3134. */
  3135. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3136. *root, struct btrfs_key *cpu_key, void *data, u32
  3137. data_size)
  3138. {
  3139. int ret = 0;
  3140. struct btrfs_path *path;
  3141. struct extent_buffer *leaf;
  3142. unsigned long ptr;
  3143. path = btrfs_alloc_path();
  3144. BUG_ON(!path);
  3145. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3146. if (!ret) {
  3147. leaf = path->nodes[0];
  3148. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3149. write_extent_buffer(leaf, data, ptr, data_size);
  3150. btrfs_mark_buffer_dirty(leaf);
  3151. }
  3152. btrfs_free_path(path);
  3153. return ret;
  3154. }
  3155. /*
  3156. * delete the pointer from a given node.
  3157. *
  3158. * the tree should have been previously balanced so the deletion does not
  3159. * empty a node.
  3160. */
  3161. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3162. struct btrfs_path *path, int level, int slot)
  3163. {
  3164. struct extent_buffer *parent = path->nodes[level];
  3165. u32 nritems;
  3166. int ret = 0;
  3167. int wret;
  3168. nritems = btrfs_header_nritems(parent);
  3169. if (slot != nritems - 1) {
  3170. memmove_extent_buffer(parent,
  3171. btrfs_node_key_ptr_offset(slot),
  3172. btrfs_node_key_ptr_offset(slot + 1),
  3173. sizeof(struct btrfs_key_ptr) *
  3174. (nritems - slot - 1));
  3175. }
  3176. nritems--;
  3177. btrfs_set_header_nritems(parent, nritems);
  3178. if (nritems == 0 && parent == root->node) {
  3179. BUG_ON(btrfs_header_level(root->node) != 1);
  3180. /* just turn the root into a leaf and break */
  3181. btrfs_set_header_level(root->node, 0);
  3182. } else if (slot == 0) {
  3183. struct btrfs_disk_key disk_key;
  3184. btrfs_node_key(parent, &disk_key, 0);
  3185. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3186. if (wret)
  3187. ret = wret;
  3188. }
  3189. btrfs_mark_buffer_dirty(parent);
  3190. return ret;
  3191. }
  3192. /*
  3193. * a helper function to delete the leaf pointed to by path->slots[1] and
  3194. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3195. * already know it, it is faster to have them pass it down than to
  3196. * read it out of the node again.
  3197. *
  3198. * This deletes the pointer in path->nodes[1] and frees the leaf
  3199. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3200. *
  3201. * The path must have already been setup for deleting the leaf, including
  3202. * all the proper balancing. path->nodes[1] must be locked.
  3203. */
  3204. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3205. struct btrfs_root *root,
  3206. struct btrfs_path *path, u64 bytenr)
  3207. {
  3208. int ret;
  3209. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3210. u64 parent_start = path->nodes[1]->start;
  3211. u64 parent_owner = btrfs_header_owner(path->nodes[1]);
  3212. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3213. if (ret)
  3214. return ret;
  3215. /*
  3216. * btrfs_free_extent is expensive, we want to make sure we
  3217. * aren't holding any locks when we call it
  3218. */
  3219. btrfs_unlock_up_safe(path, 0);
  3220. ret = btrfs_free_extent(trans, root, bytenr,
  3221. btrfs_level_size(root, 0),
  3222. parent_start, parent_owner,
  3223. root_gen, 0, 1);
  3224. return ret;
  3225. }
  3226. /*
  3227. * delete the item at the leaf level in path. If that empties
  3228. * the leaf, remove it from the tree
  3229. */
  3230. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3231. struct btrfs_path *path, int slot, int nr)
  3232. {
  3233. struct extent_buffer *leaf;
  3234. struct btrfs_item *item;
  3235. int last_off;
  3236. int dsize = 0;
  3237. int ret = 0;
  3238. int wret;
  3239. int i;
  3240. u32 nritems;
  3241. leaf = path->nodes[0];
  3242. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3243. for (i = 0; i < nr; i++)
  3244. dsize += btrfs_item_size_nr(leaf, slot + i);
  3245. nritems = btrfs_header_nritems(leaf);
  3246. if (slot + nr != nritems) {
  3247. int data_end = leaf_data_end(root, leaf);
  3248. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3249. data_end + dsize,
  3250. btrfs_leaf_data(leaf) + data_end,
  3251. last_off - data_end);
  3252. for (i = slot + nr; i < nritems; i++) {
  3253. u32 ioff;
  3254. item = btrfs_item_nr(leaf, i);
  3255. if (!leaf->map_token) {
  3256. map_extent_buffer(leaf, (unsigned long)item,
  3257. sizeof(struct btrfs_item),
  3258. &leaf->map_token, &leaf->kaddr,
  3259. &leaf->map_start, &leaf->map_len,
  3260. KM_USER1);
  3261. }
  3262. ioff = btrfs_item_offset(leaf, item);
  3263. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3264. }
  3265. if (leaf->map_token) {
  3266. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3267. leaf->map_token = NULL;
  3268. }
  3269. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3270. btrfs_item_nr_offset(slot + nr),
  3271. sizeof(struct btrfs_item) *
  3272. (nritems - slot - nr));
  3273. }
  3274. btrfs_set_header_nritems(leaf, nritems - nr);
  3275. nritems -= nr;
  3276. /* delete the leaf if we've emptied it */
  3277. if (nritems == 0) {
  3278. if (leaf == root->node) {
  3279. btrfs_set_header_level(leaf, 0);
  3280. } else {
  3281. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3282. BUG_ON(ret);
  3283. }
  3284. } else {
  3285. int used = leaf_space_used(leaf, 0, nritems);
  3286. if (slot == 0) {
  3287. struct btrfs_disk_key disk_key;
  3288. btrfs_item_key(leaf, &disk_key, 0);
  3289. wret = fixup_low_keys(trans, root, path,
  3290. &disk_key, 1);
  3291. if (wret)
  3292. ret = wret;
  3293. }
  3294. /* delete the leaf if it is mostly empty */
  3295. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  3296. /* push_leaf_left fixes the path.
  3297. * make sure the path still points to our leaf
  3298. * for possible call to del_ptr below
  3299. */
  3300. slot = path->slots[1];
  3301. extent_buffer_get(leaf);
  3302. wret = push_leaf_left(trans, root, path, 1, 1);
  3303. if (wret < 0 && wret != -ENOSPC)
  3304. ret = wret;
  3305. if (path->nodes[0] == leaf &&
  3306. btrfs_header_nritems(leaf)) {
  3307. wret = push_leaf_right(trans, root, path, 1, 1);
  3308. if (wret < 0 && wret != -ENOSPC)
  3309. ret = wret;
  3310. }
  3311. if (btrfs_header_nritems(leaf) == 0) {
  3312. path->slots[1] = slot;
  3313. ret = btrfs_del_leaf(trans, root, path,
  3314. leaf->start);
  3315. BUG_ON(ret);
  3316. free_extent_buffer(leaf);
  3317. } else {
  3318. /* if we're still in the path, make sure
  3319. * we're dirty. Otherwise, one of the
  3320. * push_leaf functions must have already
  3321. * dirtied this buffer
  3322. */
  3323. if (path->nodes[0] == leaf)
  3324. btrfs_mark_buffer_dirty(leaf);
  3325. free_extent_buffer(leaf);
  3326. }
  3327. } else {
  3328. btrfs_mark_buffer_dirty(leaf);
  3329. }
  3330. }
  3331. return ret;
  3332. }
  3333. /*
  3334. * search the tree again to find a leaf with lesser keys
  3335. * returns 0 if it found something or 1 if there are no lesser leaves.
  3336. * returns < 0 on io errors.
  3337. *
  3338. * This may release the path, and so you may lose any locks held at the
  3339. * time you call it.
  3340. */
  3341. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3342. {
  3343. struct btrfs_key key;
  3344. struct btrfs_disk_key found_key;
  3345. int ret;
  3346. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3347. if (key.offset > 0)
  3348. key.offset--;
  3349. else if (key.type > 0)
  3350. key.type--;
  3351. else if (key.objectid > 0)
  3352. key.objectid--;
  3353. else
  3354. return 1;
  3355. btrfs_release_path(root, path);
  3356. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3357. if (ret < 0)
  3358. return ret;
  3359. btrfs_item_key(path->nodes[0], &found_key, 0);
  3360. ret = comp_keys(&found_key, &key);
  3361. if (ret < 0)
  3362. return 0;
  3363. return 1;
  3364. }
  3365. /*
  3366. * A helper function to walk down the tree starting at min_key, and looking
  3367. * for nodes or leaves that are either in cache or have a minimum
  3368. * transaction id. This is used by the btree defrag code, and tree logging
  3369. *
  3370. * This does not cow, but it does stuff the starting key it finds back
  3371. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3372. * key and get a writable path.
  3373. *
  3374. * This does lock as it descends, and path->keep_locks should be set
  3375. * to 1 by the caller.
  3376. *
  3377. * This honors path->lowest_level to prevent descent past a given level
  3378. * of the tree.
  3379. *
  3380. * min_trans indicates the oldest transaction that you are interested
  3381. * in walking through. Any nodes or leaves older than min_trans are
  3382. * skipped over (without reading them).
  3383. *
  3384. * returns zero if something useful was found, < 0 on error and 1 if there
  3385. * was nothing in the tree that matched the search criteria.
  3386. */
  3387. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3388. struct btrfs_key *max_key,
  3389. struct btrfs_path *path, int cache_only,
  3390. u64 min_trans)
  3391. {
  3392. struct extent_buffer *cur;
  3393. struct btrfs_key found_key;
  3394. int slot;
  3395. int sret;
  3396. u32 nritems;
  3397. int level;
  3398. int ret = 1;
  3399. WARN_ON(!path->keep_locks);
  3400. again:
  3401. cur = btrfs_lock_root_node(root);
  3402. level = btrfs_header_level(cur);
  3403. WARN_ON(path->nodes[level]);
  3404. path->nodes[level] = cur;
  3405. path->locks[level] = 1;
  3406. if (btrfs_header_generation(cur) < min_trans) {
  3407. ret = 1;
  3408. goto out;
  3409. }
  3410. while (1) {
  3411. nritems = btrfs_header_nritems(cur);
  3412. level = btrfs_header_level(cur);
  3413. sret = bin_search(cur, min_key, level, &slot);
  3414. /* at the lowest level, we're done, setup the path and exit */
  3415. if (level == path->lowest_level) {
  3416. if (slot >= nritems)
  3417. goto find_next_key;
  3418. ret = 0;
  3419. path->slots[level] = slot;
  3420. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3421. goto out;
  3422. }
  3423. if (sret && slot > 0)
  3424. slot--;
  3425. /*
  3426. * check this node pointer against the cache_only and
  3427. * min_trans parameters. If it isn't in cache or is too
  3428. * old, skip to the next one.
  3429. */
  3430. while (slot < nritems) {
  3431. u64 blockptr;
  3432. u64 gen;
  3433. struct extent_buffer *tmp;
  3434. struct btrfs_disk_key disk_key;
  3435. blockptr = btrfs_node_blockptr(cur, slot);
  3436. gen = btrfs_node_ptr_generation(cur, slot);
  3437. if (gen < min_trans) {
  3438. slot++;
  3439. continue;
  3440. }
  3441. if (!cache_only)
  3442. break;
  3443. if (max_key) {
  3444. btrfs_node_key(cur, &disk_key, slot);
  3445. if (comp_keys(&disk_key, max_key) >= 0) {
  3446. ret = 1;
  3447. goto out;
  3448. }
  3449. }
  3450. tmp = btrfs_find_tree_block(root, blockptr,
  3451. btrfs_level_size(root, level - 1));
  3452. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3453. free_extent_buffer(tmp);
  3454. break;
  3455. }
  3456. if (tmp)
  3457. free_extent_buffer(tmp);
  3458. slot++;
  3459. }
  3460. find_next_key:
  3461. /*
  3462. * we didn't find a candidate key in this node, walk forward
  3463. * and find another one
  3464. */
  3465. if (slot >= nritems) {
  3466. path->slots[level] = slot;
  3467. btrfs_set_path_blocking(path);
  3468. sret = btrfs_find_next_key(root, path, min_key, level,
  3469. cache_only, min_trans);
  3470. if (sret == 0) {
  3471. btrfs_release_path(root, path);
  3472. goto again;
  3473. } else {
  3474. btrfs_clear_path_blocking(path);
  3475. goto out;
  3476. }
  3477. }
  3478. /* save our key for returning back */
  3479. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3480. path->slots[level] = slot;
  3481. if (level == path->lowest_level) {
  3482. ret = 0;
  3483. unlock_up(path, level, 1);
  3484. goto out;
  3485. }
  3486. btrfs_set_path_blocking(path);
  3487. cur = read_node_slot(root, cur, slot);
  3488. btrfs_tree_lock(cur);
  3489. path->locks[level - 1] = 1;
  3490. path->nodes[level - 1] = cur;
  3491. unlock_up(path, level, 1);
  3492. btrfs_clear_path_blocking(path);
  3493. }
  3494. out:
  3495. if (ret == 0)
  3496. memcpy(min_key, &found_key, sizeof(found_key));
  3497. btrfs_set_path_blocking(path);
  3498. return ret;
  3499. }
  3500. /*
  3501. * this is similar to btrfs_next_leaf, but does not try to preserve
  3502. * and fixup the path. It looks for and returns the next key in the
  3503. * tree based on the current path and the cache_only and min_trans
  3504. * parameters.
  3505. *
  3506. * 0 is returned if another key is found, < 0 if there are any errors
  3507. * and 1 is returned if there are no higher keys in the tree
  3508. *
  3509. * path->keep_locks should be set to 1 on the search made before
  3510. * calling this function.
  3511. */
  3512. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3513. struct btrfs_key *key, int lowest_level,
  3514. int cache_only, u64 min_trans)
  3515. {
  3516. int level = lowest_level;
  3517. int slot;
  3518. struct extent_buffer *c;
  3519. WARN_ON(!path->keep_locks);
  3520. while (level < BTRFS_MAX_LEVEL) {
  3521. if (!path->nodes[level])
  3522. return 1;
  3523. slot = path->slots[level] + 1;
  3524. c = path->nodes[level];
  3525. next:
  3526. if (slot >= btrfs_header_nritems(c)) {
  3527. level++;
  3528. if (level == BTRFS_MAX_LEVEL)
  3529. return 1;
  3530. continue;
  3531. }
  3532. if (level == 0)
  3533. btrfs_item_key_to_cpu(c, key, slot);
  3534. else {
  3535. u64 blockptr = btrfs_node_blockptr(c, slot);
  3536. u64 gen = btrfs_node_ptr_generation(c, slot);
  3537. if (cache_only) {
  3538. struct extent_buffer *cur;
  3539. cur = btrfs_find_tree_block(root, blockptr,
  3540. btrfs_level_size(root, level - 1));
  3541. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3542. slot++;
  3543. if (cur)
  3544. free_extent_buffer(cur);
  3545. goto next;
  3546. }
  3547. free_extent_buffer(cur);
  3548. }
  3549. if (gen < min_trans) {
  3550. slot++;
  3551. goto next;
  3552. }
  3553. btrfs_node_key_to_cpu(c, key, slot);
  3554. }
  3555. return 0;
  3556. }
  3557. return 1;
  3558. }
  3559. /*
  3560. * search the tree again to find a leaf with greater keys
  3561. * returns 0 if it found something or 1 if there are no greater leaves.
  3562. * returns < 0 on io errors.
  3563. */
  3564. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3565. {
  3566. int slot;
  3567. int level = 1;
  3568. struct extent_buffer *c;
  3569. struct extent_buffer *next = NULL;
  3570. struct btrfs_key key;
  3571. u32 nritems;
  3572. int ret;
  3573. nritems = btrfs_header_nritems(path->nodes[0]);
  3574. if (nritems == 0)
  3575. return 1;
  3576. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3577. btrfs_release_path(root, path);
  3578. path->keep_locks = 1;
  3579. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3580. path->keep_locks = 0;
  3581. if (ret < 0)
  3582. return ret;
  3583. btrfs_set_path_blocking(path);
  3584. nritems = btrfs_header_nritems(path->nodes[0]);
  3585. /*
  3586. * by releasing the path above we dropped all our locks. A balance
  3587. * could have added more items next to the key that used to be
  3588. * at the very end of the block. So, check again here and
  3589. * advance the path if there are now more items available.
  3590. */
  3591. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3592. path->slots[0]++;
  3593. goto done;
  3594. }
  3595. while (level < BTRFS_MAX_LEVEL) {
  3596. if (!path->nodes[level])
  3597. return 1;
  3598. slot = path->slots[level] + 1;
  3599. c = path->nodes[level];
  3600. if (slot >= btrfs_header_nritems(c)) {
  3601. level++;
  3602. if (level == BTRFS_MAX_LEVEL)
  3603. return 1;
  3604. continue;
  3605. }
  3606. if (next) {
  3607. btrfs_tree_unlock(next);
  3608. free_extent_buffer(next);
  3609. }
  3610. /* the path was set to blocking above */
  3611. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3612. path->reada)
  3613. reada_for_search(root, path, level, slot, 0);
  3614. next = read_node_slot(root, c, slot);
  3615. if (!path->skip_locking) {
  3616. WARN_ON(!btrfs_tree_locked(c));
  3617. btrfs_tree_lock(next);
  3618. btrfs_set_lock_blocking(next);
  3619. }
  3620. break;
  3621. }
  3622. path->slots[level] = slot;
  3623. while (1) {
  3624. level--;
  3625. c = path->nodes[level];
  3626. if (path->locks[level])
  3627. btrfs_tree_unlock(c);
  3628. free_extent_buffer(c);
  3629. path->nodes[level] = next;
  3630. path->slots[level] = 0;
  3631. if (!path->skip_locking)
  3632. path->locks[level] = 1;
  3633. if (!level)
  3634. break;
  3635. btrfs_set_path_blocking(path);
  3636. if (level == 1 && path->locks[1] && path->reada)
  3637. reada_for_search(root, path, level, slot, 0);
  3638. next = read_node_slot(root, next, 0);
  3639. if (!path->skip_locking) {
  3640. WARN_ON(!btrfs_tree_locked(path->nodes[level]));
  3641. btrfs_tree_lock(next);
  3642. btrfs_set_lock_blocking(next);
  3643. }
  3644. }
  3645. done:
  3646. unlock_up(path, 0, 1);
  3647. return 0;
  3648. }
  3649. /*
  3650. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3651. * searching until it gets past min_objectid or finds an item of 'type'
  3652. *
  3653. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3654. */
  3655. int btrfs_previous_item(struct btrfs_root *root,
  3656. struct btrfs_path *path, u64 min_objectid,
  3657. int type)
  3658. {
  3659. struct btrfs_key found_key;
  3660. struct extent_buffer *leaf;
  3661. u32 nritems;
  3662. int ret;
  3663. while (1) {
  3664. if (path->slots[0] == 0) {
  3665. btrfs_set_path_blocking(path);
  3666. ret = btrfs_prev_leaf(root, path);
  3667. if (ret != 0)
  3668. return ret;
  3669. } else {
  3670. path->slots[0]--;
  3671. }
  3672. leaf = path->nodes[0];
  3673. nritems = btrfs_header_nritems(leaf);
  3674. if (nritems == 0)
  3675. return 1;
  3676. if (path->slots[0] == nritems)
  3677. path->slots[0]--;
  3678. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3679. if (found_key.type == type)
  3680. return 0;
  3681. if (found_key.objectid < min_objectid)
  3682. break;
  3683. if (found_key.objectid == min_objectid &&
  3684. found_key.type < type)
  3685. break;
  3686. }
  3687. return 1;
  3688. }