perf_counter.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
  6. *
  7. * For licencing details see kernel-base/COPYING
  8. */
  9. #include <linux/perf_counter.h>
  10. #include <linux/capability.h>
  11. #include <linux/notifier.h>
  12. #include <linux/hardirq.h>
  13. #include <linux/kprobes.h>
  14. #include <linux/module.h>
  15. #include <linux/kdebug.h>
  16. #include <linux/sched.h>
  17. #include <asm/intel_arch_perfmon.h>
  18. #include <asm/apic.h>
  19. static bool perf_counters_initialized __read_mostly;
  20. /*
  21. * Number of (generic) HW counters:
  22. */
  23. static int nr_hw_counters __read_mostly;
  24. static u32 perf_counter_mask __read_mostly;
  25. /* No support for fixed function counters yet */
  26. #define MAX_HW_COUNTERS 8
  27. struct cpu_hw_counters {
  28. struct perf_counter *counters[MAX_HW_COUNTERS];
  29. unsigned long used[BITS_TO_LONGS(MAX_HW_COUNTERS)];
  30. };
  31. /*
  32. * Intel PerfMon v3. Used on Core2 and later.
  33. */
  34. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
  35. const int intel_perfmon_event_map[] =
  36. {
  37. [PERF_COUNT_CYCLES] = 0x003c,
  38. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  39. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  40. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  41. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  42. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  43. };
  44. const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map);
  45. /*
  46. * Setup the hardware configuration for a given hw_event_type
  47. */
  48. int hw_perf_counter_init(struct perf_counter *counter, s32 hw_event_type)
  49. {
  50. struct hw_perf_counter *hwc = &counter->hw;
  51. if (unlikely(!perf_counters_initialized))
  52. return -EINVAL;
  53. /*
  54. * Count user events, and generate PMC IRQs:
  55. * (keep 'enabled' bit clear for now)
  56. */
  57. hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT;
  58. /*
  59. * If privileged enough, count OS events too, and allow
  60. * NMI events as well:
  61. */
  62. hwc->nmi = 0;
  63. if (capable(CAP_SYS_ADMIN)) {
  64. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  65. if (hw_event_type & PERF_COUNT_NMI)
  66. hwc->nmi = 1;
  67. }
  68. hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0;
  69. hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0;
  70. hwc->irq_period = counter->__irq_period;
  71. /*
  72. * Intel PMCs cannot be accessed sanely above 32 bit width,
  73. * so we install an artificial 1<<31 period regardless of
  74. * the generic counter period:
  75. */
  76. if (!hwc->irq_period)
  77. hwc->irq_period = 0x7FFFFFFF;
  78. hwc->next_count = -((s32) hwc->irq_period);
  79. /*
  80. * Negative event types mean raw encoded event+umask values:
  81. */
  82. if (hw_event_type < 0) {
  83. counter->hw_event_type = -hw_event_type;
  84. counter->hw_event_type &= ~PERF_COUNT_NMI;
  85. } else {
  86. hw_event_type &= ~PERF_COUNT_NMI;
  87. if (hw_event_type >= max_intel_perfmon_events)
  88. return -EINVAL;
  89. /*
  90. * The generic map:
  91. */
  92. counter->hw_event_type = intel_perfmon_event_map[hw_event_type];
  93. }
  94. hwc->config |= counter->hw_event_type;
  95. counter->wakeup_pending = 0;
  96. return 0;
  97. }
  98. void hw_perf_enable_all(void)
  99. {
  100. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0);
  101. }
  102. void hw_perf_restore_ctrl(u64 ctrl)
  103. {
  104. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0);
  105. }
  106. EXPORT_SYMBOL_GPL(hw_perf_restore_ctrl);
  107. u64 hw_perf_disable_all(void)
  108. {
  109. u64 ctrl;
  110. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  111. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
  112. return ctrl;
  113. }
  114. EXPORT_SYMBOL_GPL(hw_perf_disable_all);
  115. static inline void
  116. __hw_perf_counter_disable(struct hw_perf_counter *hwc, unsigned int idx)
  117. {
  118. wrmsr(hwc->config_base + idx, hwc->config, 0);
  119. }
  120. static DEFINE_PER_CPU(u64, prev_next_count[MAX_HW_COUNTERS]);
  121. static void __hw_perf_counter_set_period(struct hw_perf_counter *hwc, int idx)
  122. {
  123. per_cpu(prev_next_count[idx], smp_processor_id()) = hwc->next_count;
  124. wrmsr(hwc->counter_base + idx, hwc->next_count, 0);
  125. }
  126. static void __hw_perf_counter_enable(struct hw_perf_counter *hwc, int idx)
  127. {
  128. wrmsr(hwc->config_base + idx,
  129. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0);
  130. }
  131. void hw_perf_counter_enable(struct perf_counter *counter)
  132. {
  133. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  134. struct hw_perf_counter *hwc = &counter->hw;
  135. int idx = hwc->idx;
  136. /* Try to get the previous counter again */
  137. if (test_and_set_bit(idx, cpuc->used)) {
  138. idx = find_first_zero_bit(cpuc->used, nr_hw_counters);
  139. set_bit(idx, cpuc->used);
  140. hwc->idx = idx;
  141. }
  142. perf_counters_lapic_init(hwc->nmi);
  143. __hw_perf_counter_disable(hwc, idx);
  144. cpuc->counters[idx] = counter;
  145. __hw_perf_counter_set_period(hwc, idx);
  146. __hw_perf_counter_enable(hwc, idx);
  147. }
  148. #ifdef CONFIG_X86_64
  149. static inline void atomic64_counter_set(struct perf_counter *counter, u64 val)
  150. {
  151. atomic64_set(&counter->count, val);
  152. }
  153. static inline u64 atomic64_counter_read(struct perf_counter *counter)
  154. {
  155. return atomic64_read(&counter->count);
  156. }
  157. #else
  158. /*
  159. * Todo: add proper atomic64_t support to 32-bit x86:
  160. */
  161. static inline void atomic64_counter_set(struct perf_counter *counter, u64 val64)
  162. {
  163. u32 *val32 = (void *)&val64;
  164. atomic_set(counter->count32 + 0, *(val32 + 0));
  165. atomic_set(counter->count32 + 1, *(val32 + 1));
  166. }
  167. static inline u64 atomic64_counter_read(struct perf_counter *counter)
  168. {
  169. return atomic_read(counter->count32 + 0) |
  170. (u64) atomic_read(counter->count32 + 1) << 32;
  171. }
  172. #endif
  173. static void __hw_perf_save_counter(struct perf_counter *counter,
  174. struct hw_perf_counter *hwc, int idx)
  175. {
  176. s64 raw = -1;
  177. s64 delta;
  178. /*
  179. * Get the raw hw counter value:
  180. */
  181. rdmsrl(hwc->counter_base + idx, raw);
  182. /*
  183. * Rebase it to zero (it started counting at -irq_period),
  184. * to see the delta since ->prev_count:
  185. */
  186. delta = (s64)hwc->irq_period + (s64)(s32)raw;
  187. atomic64_counter_set(counter, hwc->prev_count + delta);
  188. /*
  189. * Adjust the ->prev_count offset - if we went beyond
  190. * irq_period of units, then we got an IRQ and the counter
  191. * was set back to -irq_period:
  192. */
  193. while (delta >= (s64)hwc->irq_period) {
  194. hwc->prev_count += hwc->irq_period;
  195. delta -= (s64)hwc->irq_period;
  196. }
  197. /*
  198. * Calculate the next raw counter value we'll write into
  199. * the counter at the next sched-in time:
  200. */
  201. delta -= (s64)hwc->irq_period;
  202. hwc->next_count = (s32)delta;
  203. }
  204. void perf_counter_print_debug(void)
  205. {
  206. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, next_count;
  207. int cpu, idx;
  208. if (!nr_hw_counters)
  209. return;
  210. local_irq_disable();
  211. cpu = smp_processor_id();
  212. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  213. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  214. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  215. printk(KERN_INFO "\n");
  216. printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  217. printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status);
  218. printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow);
  219. for (idx = 0; idx < nr_hw_counters; idx++) {
  220. rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
  221. rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count);
  222. next_count = per_cpu(prev_next_count[idx], cpu);
  223. printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n",
  224. cpu, idx, pmc_ctrl);
  225. printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n",
  226. cpu, idx, pmc_count);
  227. printk(KERN_INFO "CPU#%d: PMC%d next: %016llx\n",
  228. cpu, idx, next_count);
  229. }
  230. local_irq_enable();
  231. }
  232. void hw_perf_counter_disable(struct perf_counter *counter)
  233. {
  234. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  235. struct hw_perf_counter *hwc = &counter->hw;
  236. unsigned int idx = hwc->idx;
  237. __hw_perf_counter_disable(hwc, idx);
  238. clear_bit(idx, cpuc->used);
  239. cpuc->counters[idx] = NULL;
  240. __hw_perf_save_counter(counter, hwc, idx);
  241. }
  242. void hw_perf_counter_read(struct perf_counter *counter)
  243. {
  244. struct hw_perf_counter *hwc = &counter->hw;
  245. unsigned long addr = hwc->counter_base + hwc->idx;
  246. s64 offs, val = -1LL;
  247. s32 val32;
  248. /* Careful: NMI might modify the counter offset */
  249. do {
  250. offs = hwc->prev_count;
  251. rdmsrl(addr, val);
  252. } while (offs != hwc->prev_count);
  253. val32 = (s32) val;
  254. val = (s64)hwc->irq_period + (s64)val32;
  255. atomic64_counter_set(counter, hwc->prev_count + val);
  256. }
  257. static void perf_store_irq_data(struct perf_counter *counter, u64 data)
  258. {
  259. struct perf_data *irqdata = counter->irqdata;
  260. if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
  261. irqdata->overrun++;
  262. } else {
  263. u64 *p = (u64 *) &irqdata->data[irqdata->len];
  264. *p = data;
  265. irqdata->len += sizeof(u64);
  266. }
  267. }
  268. /*
  269. * NMI-safe enable method:
  270. */
  271. static void perf_save_and_restart(struct perf_counter *counter)
  272. {
  273. struct hw_perf_counter *hwc = &counter->hw;
  274. int idx = hwc->idx;
  275. u64 pmc_ctrl;
  276. rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
  277. __hw_perf_save_counter(counter, hwc, idx);
  278. __hw_perf_counter_set_period(hwc, idx);
  279. if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE)
  280. __hw_perf_counter_enable(hwc, idx);
  281. }
  282. static void
  283. perf_handle_group(struct perf_counter *leader, u64 *status, u64 *overflown)
  284. {
  285. struct perf_counter_context *ctx = leader->ctx;
  286. struct perf_counter *counter;
  287. int bit;
  288. list_for_each_entry(counter, &ctx->counters, list) {
  289. if (counter->record_type != PERF_RECORD_SIMPLE ||
  290. counter == leader)
  291. continue;
  292. if (counter->active) {
  293. /*
  294. * When counter was not in the overflow mask, we have to
  295. * read it from hardware. We read it as well, when it
  296. * has not been read yet and clear the bit in the
  297. * status mask.
  298. */
  299. bit = counter->hw.idx;
  300. if (!test_bit(bit, (unsigned long *) overflown) ||
  301. test_bit(bit, (unsigned long *) status)) {
  302. clear_bit(bit, (unsigned long *) status);
  303. perf_save_and_restart(counter);
  304. }
  305. }
  306. perf_store_irq_data(leader, counter->hw_event_type);
  307. perf_store_irq_data(leader, atomic64_counter_read(counter));
  308. }
  309. }
  310. /*
  311. * This handler is triggered by the local APIC, so the APIC IRQ handling
  312. * rules apply:
  313. */
  314. static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi)
  315. {
  316. int bit, cpu = smp_processor_id();
  317. u64 ack, status, saved_global;
  318. struct cpu_hw_counters *cpuc;
  319. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global);
  320. /* Disable counters globally */
  321. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
  322. ack_APIC_irq();
  323. cpuc = &per_cpu(cpu_hw_counters, cpu);
  324. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  325. if (!status)
  326. goto out;
  327. again:
  328. ack = status;
  329. for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) {
  330. struct perf_counter *counter = cpuc->counters[bit];
  331. clear_bit(bit, (unsigned long *) &status);
  332. if (!counter)
  333. continue;
  334. perf_save_and_restart(counter);
  335. switch (counter->record_type) {
  336. case PERF_RECORD_SIMPLE:
  337. continue;
  338. case PERF_RECORD_IRQ:
  339. perf_store_irq_data(counter, instruction_pointer(regs));
  340. break;
  341. case PERF_RECORD_GROUP:
  342. perf_store_irq_data(counter, counter->hw_event_type);
  343. perf_store_irq_data(counter,
  344. atomic64_counter_read(counter));
  345. perf_handle_group(counter, &status, &ack);
  346. break;
  347. }
  348. /*
  349. * From NMI context we cannot call into the scheduler to
  350. * do a task wakeup - but we mark these counters as
  351. * wakeup_pending and initate a wakeup callback:
  352. */
  353. if (nmi) {
  354. counter->wakeup_pending = 1;
  355. set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
  356. } else {
  357. wake_up(&counter->waitq);
  358. }
  359. }
  360. wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0);
  361. /*
  362. * Repeat if there is more work to be done:
  363. */
  364. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  365. if (status)
  366. goto again;
  367. out:
  368. /*
  369. * Restore - do not reenable when global enable is off:
  370. */
  371. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0);
  372. }
  373. void smp_perf_counter_interrupt(struct pt_regs *regs)
  374. {
  375. irq_enter();
  376. #ifdef CONFIG_X86_64
  377. add_pda(apic_perf_irqs, 1);
  378. #else
  379. per_cpu(irq_stat, smp_processor_id()).apic_perf_irqs++;
  380. #endif
  381. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  382. __smp_perf_counter_interrupt(regs, 0);
  383. irq_exit();
  384. }
  385. /*
  386. * This handler is triggered by NMI contexts:
  387. */
  388. void perf_counter_notify(struct pt_regs *regs)
  389. {
  390. struct cpu_hw_counters *cpuc;
  391. unsigned long flags;
  392. int bit, cpu;
  393. local_irq_save(flags);
  394. cpu = smp_processor_id();
  395. cpuc = &per_cpu(cpu_hw_counters, cpu);
  396. for_each_bit(bit, cpuc->used, nr_hw_counters) {
  397. struct perf_counter *counter = cpuc->counters[bit];
  398. if (!counter)
  399. continue;
  400. if (counter->wakeup_pending) {
  401. counter->wakeup_pending = 0;
  402. wake_up(&counter->waitq);
  403. }
  404. }
  405. local_irq_restore(flags);
  406. }
  407. void __cpuinit perf_counters_lapic_init(int nmi)
  408. {
  409. u32 apic_val;
  410. if (!perf_counters_initialized)
  411. return;
  412. /*
  413. * Enable the performance counter vector in the APIC LVT:
  414. */
  415. apic_val = apic_read(APIC_LVTERR);
  416. apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
  417. if (nmi)
  418. apic_write(APIC_LVTPC, APIC_DM_NMI);
  419. else
  420. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  421. apic_write(APIC_LVTERR, apic_val);
  422. }
  423. static int __kprobes
  424. perf_counter_nmi_handler(struct notifier_block *self,
  425. unsigned long cmd, void *__args)
  426. {
  427. struct die_args *args = __args;
  428. struct pt_regs *regs;
  429. if (likely(cmd != DIE_NMI_IPI))
  430. return NOTIFY_DONE;
  431. regs = args->regs;
  432. apic_write(APIC_LVTPC, APIC_DM_NMI);
  433. __smp_perf_counter_interrupt(regs, 1);
  434. return NOTIFY_STOP;
  435. }
  436. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  437. .notifier_call = perf_counter_nmi_handler
  438. };
  439. void __init init_hw_perf_counters(void)
  440. {
  441. union cpuid10_eax eax;
  442. unsigned int unused;
  443. unsigned int ebx;
  444. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  445. return;
  446. /*
  447. * Check whether the Architectural PerfMon supports
  448. * Branch Misses Retired Event or not.
  449. */
  450. cpuid(10, &(eax.full), &ebx, &unused, &unused);
  451. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  452. return;
  453. printk(KERN_INFO "Intel Performance Monitoring support detected.\n");
  454. printk(KERN_INFO "... version: %d\n", eax.split.version_id);
  455. printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters);
  456. nr_hw_counters = eax.split.num_counters;
  457. if (nr_hw_counters > MAX_HW_COUNTERS) {
  458. nr_hw_counters = MAX_HW_COUNTERS;
  459. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  460. nr_hw_counters, MAX_HW_COUNTERS);
  461. }
  462. perf_counter_mask = (1 << nr_hw_counters) - 1;
  463. perf_max_counters = nr_hw_counters;
  464. printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width);
  465. printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length);
  466. perf_counters_lapic_init(0);
  467. register_die_notifier(&perf_counter_nmi_notifier);
  468. perf_counters_initialized = true;
  469. }