time.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/io.h>
  57. #include <asm/processor.h>
  58. #include <asm/nvram.h>
  59. #include <asm/cache.h>
  60. #include <asm/machdep.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/time.h>
  63. #include <asm/prom.h>
  64. #include <asm/irq.h>
  65. #include <asm/div64.h>
  66. #include <asm/smp.h>
  67. #include <asm/vdso_datapage.h>
  68. #include <asm/firmware.h>
  69. #include <asm/cputime.h>
  70. #ifdef CONFIG_PPC_ISERIES
  71. #include <asm/iseries/it_lp_queue.h>
  72. #include <asm/iseries/hv_call_xm.h>
  73. #endif
  74. /* powerpc clocksource/clockevent code */
  75. #include <linux/clockchips.h>
  76. #include <linux/clocksource.h>
  77. static cycle_t rtc_read(struct clocksource *);
  78. static struct clocksource clocksource_rtc = {
  79. .name = "rtc",
  80. .rating = 400,
  81. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  82. .mask = CLOCKSOURCE_MASK(64),
  83. .shift = 22,
  84. .mult = 0, /* To be filled in */
  85. .read = rtc_read,
  86. };
  87. static cycle_t timebase_read(struct clocksource *);
  88. static struct clocksource clocksource_timebase = {
  89. .name = "timebase",
  90. .rating = 400,
  91. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  92. .mask = CLOCKSOURCE_MASK(64),
  93. .shift = 22,
  94. .mult = 0, /* To be filled in */
  95. .read = timebase_read,
  96. };
  97. #define DECREMENTER_MAX 0x7fffffff
  98. static int decrementer_set_next_event(unsigned long evt,
  99. struct clock_event_device *dev);
  100. static void decrementer_set_mode(enum clock_event_mode mode,
  101. struct clock_event_device *dev);
  102. static struct clock_event_device decrementer_clockevent = {
  103. .name = "decrementer",
  104. .rating = 200,
  105. .shift = 0, /* To be filled in */
  106. .mult = 0, /* To be filled in */
  107. .irq = 0,
  108. .set_next_event = decrementer_set_next_event,
  109. .set_mode = decrementer_set_mode,
  110. .features = CLOCK_EVT_FEAT_ONESHOT,
  111. };
  112. struct decrementer_clock {
  113. struct clock_event_device event;
  114. u64 next_tb;
  115. };
  116. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  117. #ifdef CONFIG_PPC_ISERIES
  118. static unsigned long __initdata iSeries_recal_titan;
  119. static signed long __initdata iSeries_recal_tb;
  120. /* Forward declaration is only needed for iSereis compiles */
  121. static void __init clocksource_init(void);
  122. #endif
  123. #define XSEC_PER_SEC (1024*1024)
  124. #ifdef CONFIG_PPC64
  125. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  126. #else
  127. /* compute ((xsec << 12) * max) >> 32 */
  128. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  129. #endif
  130. unsigned long tb_ticks_per_jiffy;
  131. unsigned long tb_ticks_per_usec = 100; /* sane default */
  132. EXPORT_SYMBOL(tb_ticks_per_usec);
  133. unsigned long tb_ticks_per_sec;
  134. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  135. u64 tb_to_xs;
  136. unsigned tb_to_us;
  137. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  138. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  139. static u64 ticklen_to_xs; /* 0.64 fraction */
  140. /* If last_tick_len corresponds to about 1/HZ seconds, then
  141. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  142. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  143. DEFINE_SPINLOCK(rtc_lock);
  144. EXPORT_SYMBOL_GPL(rtc_lock);
  145. static u64 tb_to_ns_scale __read_mostly;
  146. static unsigned tb_to_ns_shift __read_mostly;
  147. static unsigned long boot_tb __read_mostly;
  148. extern struct timezone sys_tz;
  149. static long timezone_offset;
  150. unsigned long ppc_proc_freq;
  151. EXPORT_SYMBOL(ppc_proc_freq);
  152. unsigned long ppc_tb_freq;
  153. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  154. static DEFINE_PER_CPU(u64, last_jiffy);
  155. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  156. /*
  157. * Factors for converting from cputime_t (timebase ticks) to
  158. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  159. * These are all stored as 0.64 fixed-point binary fractions.
  160. */
  161. u64 __cputime_jiffies_factor;
  162. EXPORT_SYMBOL(__cputime_jiffies_factor);
  163. u64 __cputime_msec_factor;
  164. EXPORT_SYMBOL(__cputime_msec_factor);
  165. u64 __cputime_sec_factor;
  166. EXPORT_SYMBOL(__cputime_sec_factor);
  167. u64 __cputime_clockt_factor;
  168. EXPORT_SYMBOL(__cputime_clockt_factor);
  169. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  170. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  171. cputime_t cputime_one_jiffy;
  172. static void calc_cputime_factors(void)
  173. {
  174. struct div_result res;
  175. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  176. __cputime_jiffies_factor = res.result_low;
  177. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  178. __cputime_msec_factor = res.result_low;
  179. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  180. __cputime_sec_factor = res.result_low;
  181. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  182. __cputime_clockt_factor = res.result_low;
  183. }
  184. /*
  185. * Read the PURR on systems that have it, otherwise the timebase.
  186. */
  187. static u64 read_purr(void)
  188. {
  189. if (cpu_has_feature(CPU_FTR_PURR))
  190. return mfspr(SPRN_PURR);
  191. return mftb();
  192. }
  193. /*
  194. * Read the SPURR on systems that have it, otherwise the purr
  195. */
  196. static u64 read_spurr(u64 purr)
  197. {
  198. /*
  199. * cpus without PURR won't have a SPURR
  200. * We already know the former when we use this, so tell gcc
  201. */
  202. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  203. return mfspr(SPRN_SPURR);
  204. return purr;
  205. }
  206. /*
  207. * Account time for a transition between system, hard irq
  208. * or soft irq state.
  209. */
  210. void account_system_vtime(struct task_struct *tsk)
  211. {
  212. u64 now, nowscaled, delta, deltascaled, sys_time;
  213. unsigned long flags;
  214. local_irq_save(flags);
  215. now = read_purr();
  216. nowscaled = read_spurr(now);
  217. delta = now - get_paca()->startpurr;
  218. deltascaled = nowscaled - get_paca()->startspurr;
  219. get_paca()->startpurr = now;
  220. get_paca()->startspurr = nowscaled;
  221. if (!in_interrupt()) {
  222. /* deltascaled includes both user and system time.
  223. * Hence scale it based on the purr ratio to estimate
  224. * the system time */
  225. sys_time = get_paca()->system_time;
  226. if (get_paca()->user_time)
  227. deltascaled = deltascaled * sys_time /
  228. (sys_time + get_paca()->user_time);
  229. delta += sys_time;
  230. get_paca()->system_time = 0;
  231. }
  232. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  233. account_system_time(tsk, 0, delta, deltascaled);
  234. else
  235. account_idle_time(delta);
  236. per_cpu(cputime_last_delta, smp_processor_id()) = delta;
  237. per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
  238. local_irq_restore(flags);
  239. }
  240. EXPORT_SYMBOL_GPL(account_system_vtime);
  241. /*
  242. * Transfer the user and system times accumulated in the paca
  243. * by the exception entry and exit code to the generic process
  244. * user and system time records.
  245. * Must be called with interrupts disabled.
  246. */
  247. void account_process_tick(struct task_struct *tsk, int user_tick)
  248. {
  249. cputime_t utime, utimescaled;
  250. utime = get_paca()->user_time;
  251. get_paca()->user_time = 0;
  252. utimescaled = cputime_to_scaled(utime);
  253. account_user_time(tsk, utime, utimescaled);
  254. }
  255. /*
  256. * Stuff for accounting stolen time.
  257. */
  258. struct cpu_purr_data {
  259. int initialized; /* thread is running */
  260. u64 tb; /* last TB value read */
  261. u64 purr; /* last PURR value read */
  262. u64 spurr; /* last SPURR value read */
  263. };
  264. /*
  265. * Each entry in the cpu_purr_data array is manipulated only by its
  266. * "owner" cpu -- usually in the timer interrupt but also occasionally
  267. * in process context for cpu online. As long as cpus do not touch
  268. * each others' cpu_purr_data, disabling local interrupts is
  269. * sufficient to serialize accesses.
  270. */
  271. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  272. static void snapshot_tb_and_purr(void *data)
  273. {
  274. unsigned long flags;
  275. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  276. local_irq_save(flags);
  277. p->tb = get_tb_or_rtc();
  278. p->purr = mfspr(SPRN_PURR);
  279. wmb();
  280. p->initialized = 1;
  281. local_irq_restore(flags);
  282. }
  283. /*
  284. * Called during boot when all cpus have come up.
  285. */
  286. void snapshot_timebases(void)
  287. {
  288. if (!cpu_has_feature(CPU_FTR_PURR))
  289. return;
  290. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  291. }
  292. /*
  293. * Must be called with interrupts disabled.
  294. */
  295. void calculate_steal_time(void)
  296. {
  297. u64 tb, purr;
  298. s64 stolen;
  299. struct cpu_purr_data *pme;
  300. pme = &__get_cpu_var(cpu_purr_data);
  301. if (!pme->initialized)
  302. return; /* !CPU_FTR_PURR or early in early boot */
  303. tb = mftb();
  304. purr = mfspr(SPRN_PURR);
  305. stolen = (tb - pme->tb) - (purr - pme->purr);
  306. if (stolen > 0) {
  307. if (idle_task(smp_processor_id()) != current)
  308. account_steal_time(stolen);
  309. else
  310. account_idle_time(stolen);
  311. }
  312. pme->tb = tb;
  313. pme->purr = purr;
  314. }
  315. #ifdef CONFIG_PPC_SPLPAR
  316. /*
  317. * Must be called before the cpu is added to the online map when
  318. * a cpu is being brought up at runtime.
  319. */
  320. static void snapshot_purr(void)
  321. {
  322. struct cpu_purr_data *pme;
  323. unsigned long flags;
  324. if (!cpu_has_feature(CPU_FTR_PURR))
  325. return;
  326. local_irq_save(flags);
  327. pme = &__get_cpu_var(cpu_purr_data);
  328. pme->tb = mftb();
  329. pme->purr = mfspr(SPRN_PURR);
  330. pme->initialized = 1;
  331. local_irq_restore(flags);
  332. }
  333. #endif /* CONFIG_PPC_SPLPAR */
  334. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  335. #define calc_cputime_factors()
  336. #define calculate_steal_time() do { } while (0)
  337. #endif
  338. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  339. #define snapshot_purr() do { } while (0)
  340. #endif
  341. /*
  342. * Called when a cpu comes up after the system has finished booting,
  343. * i.e. as a result of a hotplug cpu action.
  344. */
  345. void snapshot_timebase(void)
  346. {
  347. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  348. snapshot_purr();
  349. }
  350. void __delay(unsigned long loops)
  351. {
  352. unsigned long start;
  353. int diff;
  354. if (__USE_RTC()) {
  355. start = get_rtcl();
  356. do {
  357. /* the RTCL register wraps at 1000000000 */
  358. diff = get_rtcl() - start;
  359. if (diff < 0)
  360. diff += 1000000000;
  361. } while (diff < loops);
  362. } else {
  363. start = get_tbl();
  364. while (get_tbl() - start < loops)
  365. HMT_low();
  366. HMT_medium();
  367. }
  368. }
  369. EXPORT_SYMBOL(__delay);
  370. void udelay(unsigned long usecs)
  371. {
  372. __delay(tb_ticks_per_usec * usecs);
  373. }
  374. EXPORT_SYMBOL(udelay);
  375. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  376. u64 new_tb_to_xs)
  377. {
  378. /*
  379. * tb_update_count is used to allow the userspace gettimeofday code
  380. * to assure itself that it sees a consistent view of the tb_to_xs and
  381. * stamp_xsec variables. It reads the tb_update_count, then reads
  382. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  383. * the two values of tb_update_count match and are even then the
  384. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  385. * loops back and reads them again until this criteria is met.
  386. * We expect the caller to have done the first increment of
  387. * vdso_data->tb_update_count already.
  388. */
  389. vdso_data->tb_orig_stamp = new_tb_stamp;
  390. vdso_data->stamp_xsec = new_stamp_xsec;
  391. vdso_data->tb_to_xs = new_tb_to_xs;
  392. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  393. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  394. vdso_data->stamp_xtime = xtime;
  395. smp_wmb();
  396. ++(vdso_data->tb_update_count);
  397. }
  398. #ifdef CONFIG_SMP
  399. unsigned long profile_pc(struct pt_regs *regs)
  400. {
  401. unsigned long pc = instruction_pointer(regs);
  402. if (in_lock_functions(pc))
  403. return regs->link;
  404. return pc;
  405. }
  406. EXPORT_SYMBOL(profile_pc);
  407. #endif
  408. #ifdef CONFIG_PPC_ISERIES
  409. /*
  410. * This function recalibrates the timebase based on the 49-bit time-of-day
  411. * value in the Titan chip. The Titan is much more accurate than the value
  412. * returned by the service processor for the timebase frequency.
  413. */
  414. static int __init iSeries_tb_recal(void)
  415. {
  416. struct div_result divres;
  417. unsigned long titan, tb;
  418. /* Make sure we only run on iSeries */
  419. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  420. return -ENODEV;
  421. tb = get_tb();
  422. titan = HvCallXm_loadTod();
  423. if ( iSeries_recal_titan ) {
  424. unsigned long tb_ticks = tb - iSeries_recal_tb;
  425. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  426. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  427. unsigned long new_tb_ticks_per_jiffy =
  428. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  429. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  430. char sign = '+';
  431. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  432. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  433. if ( tick_diff < 0 ) {
  434. tick_diff = -tick_diff;
  435. sign = '-';
  436. }
  437. if ( tick_diff ) {
  438. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  439. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  440. new_tb_ticks_per_jiffy, sign, tick_diff );
  441. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  442. tb_ticks_per_sec = new_tb_ticks_per_sec;
  443. calc_cputime_factors();
  444. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  445. tb_to_xs = divres.result_low;
  446. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  447. vdso_data->tb_to_xs = tb_to_xs;
  448. setup_cputime_one_jiffy();
  449. }
  450. else {
  451. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  452. " new tb_ticks_per_jiffy = %lu\n"
  453. " old tb_ticks_per_jiffy = %lu\n",
  454. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  455. }
  456. }
  457. }
  458. iSeries_recal_titan = titan;
  459. iSeries_recal_tb = tb;
  460. /* Called here as now we know accurate values for the timebase */
  461. clocksource_init();
  462. return 0;
  463. }
  464. late_initcall(iSeries_tb_recal);
  465. /* Called from platform early init */
  466. void __init iSeries_time_init_early(void)
  467. {
  468. iSeries_recal_tb = get_tb();
  469. iSeries_recal_titan = HvCallXm_loadTod();
  470. }
  471. #endif /* CONFIG_PPC_ISERIES */
  472. #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
  473. DEFINE_PER_CPU(u8, perf_event_pending);
  474. void set_perf_event_pending(void)
  475. {
  476. get_cpu_var(perf_event_pending) = 1;
  477. set_dec(1);
  478. put_cpu_var(perf_event_pending);
  479. }
  480. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  481. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  482. #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  483. #define test_perf_event_pending() 0
  484. #define clear_perf_event_pending()
  485. #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  486. /*
  487. * For iSeries shared processors, we have to let the hypervisor
  488. * set the hardware decrementer. We set a virtual decrementer
  489. * in the lppaca and call the hypervisor if the virtual
  490. * decrementer is less than the current value in the hardware
  491. * decrementer. (almost always the new decrementer value will
  492. * be greater than the current hardware decementer so the hypervisor
  493. * call will not be needed)
  494. */
  495. /*
  496. * timer_interrupt - gets called when the decrementer overflows,
  497. * with interrupts disabled.
  498. */
  499. void timer_interrupt(struct pt_regs * regs)
  500. {
  501. struct pt_regs *old_regs;
  502. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  503. struct clock_event_device *evt = &decrementer->event;
  504. u64 now;
  505. /* Ensure a positive value is written to the decrementer, or else
  506. * some CPUs will continuue to take decrementer exceptions */
  507. set_dec(DECREMENTER_MAX);
  508. #ifdef CONFIG_PPC32
  509. if (test_perf_event_pending()) {
  510. clear_perf_event_pending();
  511. perf_event_do_pending();
  512. }
  513. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  514. do_IRQ(regs);
  515. #endif
  516. now = get_tb_or_rtc();
  517. if (now < decrementer->next_tb) {
  518. /* not time for this event yet */
  519. now = decrementer->next_tb - now;
  520. if (now <= DECREMENTER_MAX)
  521. set_dec((int)now);
  522. return;
  523. }
  524. old_regs = set_irq_regs(regs);
  525. irq_enter();
  526. calculate_steal_time();
  527. #ifdef CONFIG_PPC_ISERIES
  528. if (firmware_has_feature(FW_FEATURE_ISERIES))
  529. get_lppaca()->int_dword.fields.decr_int = 0;
  530. #endif
  531. if (evt->event_handler)
  532. evt->event_handler(evt);
  533. #ifdef CONFIG_PPC_ISERIES
  534. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  535. process_hvlpevents();
  536. #endif
  537. #ifdef CONFIG_PPC64
  538. /* collect purr register values often, for accurate calculations */
  539. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  540. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  541. cu->current_tb = mfspr(SPRN_PURR);
  542. }
  543. #endif
  544. irq_exit();
  545. set_irq_regs(old_regs);
  546. }
  547. void wakeup_decrementer(void)
  548. {
  549. unsigned long ticks;
  550. /*
  551. * The timebase gets saved on sleep and restored on wakeup,
  552. * so all we need to do is to reset the decrementer.
  553. */
  554. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  555. if (ticks < tb_ticks_per_jiffy)
  556. ticks = tb_ticks_per_jiffy - ticks;
  557. else
  558. ticks = 1;
  559. set_dec(ticks);
  560. }
  561. #ifdef CONFIG_SUSPEND
  562. void generic_suspend_disable_irqs(void)
  563. {
  564. preempt_disable();
  565. /* Disable the decrementer, so that it doesn't interfere
  566. * with suspending.
  567. */
  568. set_dec(0x7fffffff);
  569. local_irq_disable();
  570. set_dec(0x7fffffff);
  571. }
  572. void generic_suspend_enable_irqs(void)
  573. {
  574. wakeup_decrementer();
  575. local_irq_enable();
  576. preempt_enable();
  577. }
  578. /* Overrides the weak version in kernel/power/main.c */
  579. void arch_suspend_disable_irqs(void)
  580. {
  581. if (ppc_md.suspend_disable_irqs)
  582. ppc_md.suspend_disable_irqs();
  583. generic_suspend_disable_irqs();
  584. }
  585. /* Overrides the weak version in kernel/power/main.c */
  586. void arch_suspend_enable_irqs(void)
  587. {
  588. generic_suspend_enable_irqs();
  589. if (ppc_md.suspend_enable_irqs)
  590. ppc_md.suspend_enable_irqs();
  591. }
  592. #endif
  593. #ifdef CONFIG_SMP
  594. void __init smp_space_timers(unsigned int max_cpus)
  595. {
  596. int i;
  597. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  598. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  599. previous_tb -= tb_ticks_per_jiffy;
  600. for_each_possible_cpu(i) {
  601. if (i == boot_cpuid)
  602. continue;
  603. per_cpu(last_jiffy, i) = previous_tb;
  604. }
  605. }
  606. #endif
  607. /*
  608. * Scheduler clock - returns current time in nanosec units.
  609. *
  610. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  611. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  612. * are 64-bit unsigned numbers.
  613. */
  614. unsigned long long sched_clock(void)
  615. {
  616. if (__USE_RTC())
  617. return get_rtc();
  618. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  619. }
  620. static int __init get_freq(char *name, int cells, unsigned long *val)
  621. {
  622. struct device_node *cpu;
  623. const unsigned int *fp;
  624. int found = 0;
  625. /* The cpu node should have timebase and clock frequency properties */
  626. cpu = of_find_node_by_type(NULL, "cpu");
  627. if (cpu) {
  628. fp = of_get_property(cpu, name, NULL);
  629. if (fp) {
  630. found = 1;
  631. *val = of_read_ulong(fp, cells);
  632. }
  633. of_node_put(cpu);
  634. }
  635. return found;
  636. }
  637. /* should become __cpuinit when secondary_cpu_time_init also is */
  638. void start_cpu_decrementer(void)
  639. {
  640. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  641. /* Clear any pending timer interrupts */
  642. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  643. /* Enable decrementer interrupt */
  644. mtspr(SPRN_TCR, TCR_DIE);
  645. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  646. }
  647. void __init generic_calibrate_decr(void)
  648. {
  649. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  650. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  651. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  652. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  653. "(not found)\n");
  654. }
  655. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  656. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  657. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  658. printk(KERN_ERR "WARNING: Estimating processor frequency "
  659. "(not found)\n");
  660. }
  661. }
  662. int update_persistent_clock(struct timespec now)
  663. {
  664. struct rtc_time tm;
  665. if (!ppc_md.set_rtc_time)
  666. return 0;
  667. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  668. tm.tm_year -= 1900;
  669. tm.tm_mon -= 1;
  670. return ppc_md.set_rtc_time(&tm);
  671. }
  672. void read_persistent_clock(struct timespec *ts)
  673. {
  674. struct rtc_time tm;
  675. static int first = 1;
  676. ts->tv_nsec = 0;
  677. /* XXX this is a litle fragile but will work okay in the short term */
  678. if (first) {
  679. first = 0;
  680. if (ppc_md.time_init)
  681. timezone_offset = ppc_md.time_init();
  682. /* get_boot_time() isn't guaranteed to be safe to call late */
  683. if (ppc_md.get_boot_time) {
  684. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  685. return;
  686. }
  687. }
  688. if (!ppc_md.get_rtc_time) {
  689. ts->tv_sec = 0;
  690. return;
  691. }
  692. ppc_md.get_rtc_time(&tm);
  693. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  694. tm.tm_hour, tm.tm_min, tm.tm_sec);
  695. }
  696. /* clocksource code */
  697. static cycle_t rtc_read(struct clocksource *cs)
  698. {
  699. return (cycle_t)get_rtc();
  700. }
  701. static cycle_t timebase_read(struct clocksource *cs)
  702. {
  703. return (cycle_t)get_tb();
  704. }
  705. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  706. {
  707. u64 t2x, stamp_xsec;
  708. if (clock != &clocksource_timebase)
  709. return;
  710. /* Make userspace gettimeofday spin until we're done. */
  711. ++vdso_data->tb_update_count;
  712. smp_mb();
  713. /* XXX this assumes clock->shift == 22 */
  714. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  715. t2x = (u64) clock->mult * 4611686018ULL;
  716. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  717. do_div(stamp_xsec, 1000000000);
  718. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  719. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  720. }
  721. void update_vsyscall_tz(void)
  722. {
  723. /* Make userspace gettimeofday spin until we're done. */
  724. ++vdso_data->tb_update_count;
  725. smp_mb();
  726. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  727. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  728. smp_mb();
  729. ++vdso_data->tb_update_count;
  730. }
  731. static void __init clocksource_init(void)
  732. {
  733. struct clocksource *clock;
  734. if (__USE_RTC())
  735. clock = &clocksource_rtc;
  736. else
  737. clock = &clocksource_timebase;
  738. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  739. if (clocksource_register(clock)) {
  740. printk(KERN_ERR "clocksource: %s is already registered\n",
  741. clock->name);
  742. return;
  743. }
  744. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  745. clock->name, clock->mult, clock->shift);
  746. }
  747. static int decrementer_set_next_event(unsigned long evt,
  748. struct clock_event_device *dev)
  749. {
  750. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  751. set_dec(evt);
  752. return 0;
  753. }
  754. static void decrementer_set_mode(enum clock_event_mode mode,
  755. struct clock_event_device *dev)
  756. {
  757. if (mode != CLOCK_EVT_MODE_ONESHOT)
  758. decrementer_set_next_event(DECREMENTER_MAX, dev);
  759. }
  760. static void __init setup_clockevent_multiplier(unsigned long hz)
  761. {
  762. u64 mult, shift = 32;
  763. while (1) {
  764. mult = div_sc(hz, NSEC_PER_SEC, shift);
  765. if (mult && (mult >> 32UL) == 0UL)
  766. break;
  767. shift--;
  768. }
  769. decrementer_clockevent.shift = shift;
  770. decrementer_clockevent.mult = mult;
  771. }
  772. static void register_decrementer_clockevent(int cpu)
  773. {
  774. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  775. *dec = decrementer_clockevent;
  776. dec->cpumask = cpumask_of(cpu);
  777. printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  778. dec->name, dec->mult, dec->shift, cpu);
  779. clockevents_register_device(dec);
  780. }
  781. static void __init init_decrementer_clockevent(void)
  782. {
  783. int cpu = smp_processor_id();
  784. setup_clockevent_multiplier(ppc_tb_freq);
  785. decrementer_clockevent.max_delta_ns =
  786. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  787. decrementer_clockevent.min_delta_ns =
  788. clockevent_delta2ns(2, &decrementer_clockevent);
  789. register_decrementer_clockevent(cpu);
  790. }
  791. void secondary_cpu_time_init(void)
  792. {
  793. /* Start the decrementer on CPUs that have manual control
  794. * such as BookE
  795. */
  796. start_cpu_decrementer();
  797. /* FIME: Should make unrelatred change to move snapshot_timebase
  798. * call here ! */
  799. register_decrementer_clockevent(smp_processor_id());
  800. }
  801. /* This function is only called on the boot processor */
  802. void __init time_init(void)
  803. {
  804. unsigned long flags;
  805. struct div_result res;
  806. u64 scale, x;
  807. unsigned shift;
  808. if (__USE_RTC()) {
  809. /* 601 processor: dec counts down by 128 every 128ns */
  810. ppc_tb_freq = 1000000000;
  811. tb_last_jiffy = get_rtcl();
  812. } else {
  813. /* Normal PowerPC with timebase register */
  814. ppc_md.calibrate_decr();
  815. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  816. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  817. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  818. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  819. tb_last_jiffy = get_tb();
  820. }
  821. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  822. tb_ticks_per_sec = ppc_tb_freq;
  823. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  824. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  825. calc_cputime_factors();
  826. setup_cputime_one_jiffy();
  827. /*
  828. * Calculate the length of each tick in ns. It will not be
  829. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  830. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  831. * rounded up.
  832. */
  833. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  834. do_div(x, ppc_tb_freq);
  835. tick_nsec = x;
  836. last_tick_len = x << TICKLEN_SCALE;
  837. /*
  838. * Compute ticklen_to_xs, which is a factor which gets multiplied
  839. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  840. * It is computed as:
  841. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  842. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  843. * which turns out to be N = 51 - SHIFT_HZ.
  844. * This gives the result as a 0.64 fixed-point fraction.
  845. * That value is reduced by an offset amounting to 1 xsec per
  846. * 2^31 timebase ticks to avoid problems with time going backwards
  847. * by 1 xsec when we do timer_recalc_offset due to losing the
  848. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  849. * since there are 2^20 xsec in a second.
  850. */
  851. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  852. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  853. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  854. ticklen_to_xs = res.result_low;
  855. /* Compute tb_to_xs from tick_nsec */
  856. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  857. /*
  858. * Compute scale factor for sched_clock.
  859. * The calibrate_decr() function has set tb_ticks_per_sec,
  860. * which is the timebase frequency.
  861. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  862. * the 128-bit result as a 64.64 fixed-point number.
  863. * We then shift that number right until it is less than 1.0,
  864. * giving us the scale factor and shift count to use in
  865. * sched_clock().
  866. */
  867. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  868. scale = res.result_low;
  869. for (shift = 0; res.result_high != 0; ++shift) {
  870. scale = (scale >> 1) | (res.result_high << 63);
  871. res.result_high >>= 1;
  872. }
  873. tb_to_ns_scale = scale;
  874. tb_to_ns_shift = shift;
  875. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  876. boot_tb = get_tb_or_rtc();
  877. write_seqlock_irqsave(&xtime_lock, flags);
  878. /* If platform provided a timezone (pmac), we correct the time */
  879. if (timezone_offset) {
  880. sys_tz.tz_minuteswest = -timezone_offset / 60;
  881. sys_tz.tz_dsttime = 0;
  882. }
  883. vdso_data->tb_orig_stamp = tb_last_jiffy;
  884. vdso_data->tb_update_count = 0;
  885. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  886. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  887. vdso_data->tb_to_xs = tb_to_xs;
  888. write_sequnlock_irqrestore(&xtime_lock, flags);
  889. /* Start the decrementer on CPUs that have manual control
  890. * such as BookE
  891. */
  892. start_cpu_decrementer();
  893. /* Register the clocksource, if we're not running on iSeries */
  894. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  895. clocksource_init();
  896. init_decrementer_clockevent();
  897. }
  898. #define FEBRUARY 2
  899. #define STARTOFTIME 1970
  900. #define SECDAY 86400L
  901. #define SECYR (SECDAY * 365)
  902. #define leapyear(year) ((year) % 4 == 0 && \
  903. ((year) % 100 != 0 || (year) % 400 == 0))
  904. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  905. #define days_in_month(a) (month_days[(a) - 1])
  906. static int month_days[12] = {
  907. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  908. };
  909. /*
  910. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  911. */
  912. void GregorianDay(struct rtc_time * tm)
  913. {
  914. int leapsToDate;
  915. int lastYear;
  916. int day;
  917. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  918. lastYear = tm->tm_year - 1;
  919. /*
  920. * Number of leap corrections to apply up to end of last year
  921. */
  922. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  923. /*
  924. * This year is a leap year if it is divisible by 4 except when it is
  925. * divisible by 100 unless it is divisible by 400
  926. *
  927. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  928. */
  929. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  930. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  931. tm->tm_mday;
  932. tm->tm_wday = day % 7;
  933. }
  934. void to_tm(int tim, struct rtc_time * tm)
  935. {
  936. register int i;
  937. register long hms, day;
  938. day = tim / SECDAY;
  939. hms = tim % SECDAY;
  940. /* Hours, minutes, seconds are easy */
  941. tm->tm_hour = hms / 3600;
  942. tm->tm_min = (hms % 3600) / 60;
  943. tm->tm_sec = (hms % 3600) % 60;
  944. /* Number of years in days */
  945. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  946. day -= days_in_year(i);
  947. tm->tm_year = i;
  948. /* Number of months in days left */
  949. if (leapyear(tm->tm_year))
  950. days_in_month(FEBRUARY) = 29;
  951. for (i = 1; day >= days_in_month(i); i++)
  952. day -= days_in_month(i);
  953. days_in_month(FEBRUARY) = 28;
  954. tm->tm_mon = i;
  955. /* Days are what is left over (+1) from all that. */
  956. tm->tm_mday = day + 1;
  957. /*
  958. * Determine the day of week
  959. */
  960. GregorianDay(tm);
  961. }
  962. /* Auxiliary function to compute scaling factors */
  963. /* Actually the choice of a timebase running at 1/4 the of the bus
  964. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  965. * It makes this computation very precise (27-28 bits typically) which
  966. * is optimistic considering the stability of most processor clock
  967. * oscillators and the precision with which the timebase frequency
  968. * is measured but does not harm.
  969. */
  970. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  971. {
  972. unsigned mlt=0, tmp, err;
  973. /* No concern for performance, it's done once: use a stupid
  974. * but safe and compact method to find the multiplier.
  975. */
  976. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  977. if (mulhwu(inscale, mlt|tmp) < outscale)
  978. mlt |= tmp;
  979. }
  980. /* We might still be off by 1 for the best approximation.
  981. * A side effect of this is that if outscale is too large
  982. * the returned value will be zero.
  983. * Many corner cases have been checked and seem to work,
  984. * some might have been forgotten in the test however.
  985. */
  986. err = inscale * (mlt+1);
  987. if (err <= inscale/2)
  988. mlt++;
  989. return mlt;
  990. }
  991. /*
  992. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  993. * result.
  994. */
  995. void div128_by_32(u64 dividend_high, u64 dividend_low,
  996. unsigned divisor, struct div_result *dr)
  997. {
  998. unsigned long a, b, c, d;
  999. unsigned long w, x, y, z;
  1000. u64 ra, rb, rc;
  1001. a = dividend_high >> 32;
  1002. b = dividend_high & 0xffffffff;
  1003. c = dividend_low >> 32;
  1004. d = dividend_low & 0xffffffff;
  1005. w = a / divisor;
  1006. ra = ((u64)(a - (w * divisor)) << 32) + b;
  1007. rb = ((u64) do_div(ra, divisor) << 32) + c;
  1008. x = ra;
  1009. rc = ((u64) do_div(rb, divisor) << 32) + d;
  1010. y = rb;
  1011. do_div(rc, divisor);
  1012. z = rc;
  1013. dr->result_high = ((u64)w << 32) + x;
  1014. dr->result_low = ((u64)y << 32) + z;
  1015. }
  1016. /* We don't need to calibrate delay, we use the CPU timebase for that */
  1017. void calibrate_delay(void)
  1018. {
  1019. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  1020. * as the number of __delay(1) in a jiffy, so make it so
  1021. */
  1022. loops_per_jiffy = tb_ticks_per_jiffy;
  1023. }
  1024. static int __init rtc_init(void)
  1025. {
  1026. struct platform_device *pdev;
  1027. if (!ppc_md.get_rtc_time)
  1028. return -ENODEV;
  1029. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  1030. if (IS_ERR(pdev))
  1031. return PTR_ERR(pdev);
  1032. return 0;
  1033. }
  1034. module_init(rtc_init);