x86.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #define MAX_IO_MSRS 256
  43. #define CR0_RESERVED_BITS \
  44. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  45. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  46. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  47. #define CR4_RESERVED_BITS \
  48. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  49. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  50. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  51. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  52. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  53. /* EFER defaults:
  54. * - enable syscall per default because its emulated by KVM
  55. * - enable LME and LMA per default on 64 bit KVM
  56. */
  57. #ifdef CONFIG_X86_64
  58. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  59. #else
  60. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  61. #endif
  62. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  63. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  64. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  65. struct kvm_cpuid_entry2 __user *entries);
  66. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  67. u32 function, u32 index);
  68. struct kvm_x86_ops *kvm_x86_ops;
  69. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  70. struct kvm_stats_debugfs_item debugfs_entries[] = {
  71. { "pf_fixed", VCPU_STAT(pf_fixed) },
  72. { "pf_guest", VCPU_STAT(pf_guest) },
  73. { "tlb_flush", VCPU_STAT(tlb_flush) },
  74. { "invlpg", VCPU_STAT(invlpg) },
  75. { "exits", VCPU_STAT(exits) },
  76. { "io_exits", VCPU_STAT(io_exits) },
  77. { "mmio_exits", VCPU_STAT(mmio_exits) },
  78. { "signal_exits", VCPU_STAT(signal_exits) },
  79. { "irq_window", VCPU_STAT(irq_window_exits) },
  80. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  81. { "halt_exits", VCPU_STAT(halt_exits) },
  82. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  83. { "hypercalls", VCPU_STAT(hypercalls) },
  84. { "request_irq", VCPU_STAT(request_irq_exits) },
  85. { "irq_exits", VCPU_STAT(irq_exits) },
  86. { "host_state_reload", VCPU_STAT(host_state_reload) },
  87. { "efer_reload", VCPU_STAT(efer_reload) },
  88. { "fpu_reload", VCPU_STAT(fpu_reload) },
  89. { "insn_emulation", VCPU_STAT(insn_emulation) },
  90. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  91. { "irq_injections", VCPU_STAT(irq_injections) },
  92. { "nmi_injections", VCPU_STAT(nmi_injections) },
  93. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  94. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  95. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  96. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  97. { "mmu_flooded", VM_STAT(mmu_flooded) },
  98. { "mmu_recycled", VM_STAT(mmu_recycled) },
  99. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  100. { "mmu_unsync", VM_STAT(mmu_unsync) },
  101. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  102. { "largepages", VM_STAT(lpages) },
  103. { NULL }
  104. };
  105. unsigned long segment_base(u16 selector)
  106. {
  107. struct descriptor_table gdt;
  108. struct desc_struct *d;
  109. unsigned long table_base;
  110. unsigned long v;
  111. if (selector == 0)
  112. return 0;
  113. asm("sgdt %0" : "=m"(gdt));
  114. table_base = gdt.base;
  115. if (selector & 4) { /* from ldt */
  116. u16 ldt_selector;
  117. asm("sldt %0" : "=g"(ldt_selector));
  118. table_base = segment_base(ldt_selector);
  119. }
  120. d = (struct desc_struct *)(table_base + (selector & ~7));
  121. v = d->base0 | ((unsigned long)d->base1 << 16) |
  122. ((unsigned long)d->base2 << 24);
  123. #ifdef CONFIG_X86_64
  124. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  125. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  126. #endif
  127. return v;
  128. }
  129. EXPORT_SYMBOL_GPL(segment_base);
  130. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  131. {
  132. if (irqchip_in_kernel(vcpu->kvm))
  133. return vcpu->arch.apic_base;
  134. else
  135. return vcpu->arch.apic_base;
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  138. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  139. {
  140. /* TODO: reserve bits check */
  141. if (irqchip_in_kernel(vcpu->kvm))
  142. kvm_lapic_set_base(vcpu, data);
  143. else
  144. vcpu->arch.apic_base = data;
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  147. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  148. {
  149. WARN_ON(vcpu->arch.exception.pending);
  150. vcpu->arch.exception.pending = true;
  151. vcpu->arch.exception.has_error_code = false;
  152. vcpu->arch.exception.nr = nr;
  153. }
  154. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  155. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  156. u32 error_code)
  157. {
  158. ++vcpu->stat.pf_guest;
  159. if (vcpu->arch.exception.pending) {
  160. if (vcpu->arch.exception.nr == PF_VECTOR) {
  161. printk(KERN_DEBUG "kvm: inject_page_fault:"
  162. " double fault 0x%lx\n", addr);
  163. vcpu->arch.exception.nr = DF_VECTOR;
  164. vcpu->arch.exception.error_code = 0;
  165. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  166. /* triple fault -> shutdown */
  167. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  168. }
  169. return;
  170. }
  171. vcpu->arch.cr2 = addr;
  172. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  173. }
  174. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  175. {
  176. vcpu->arch.nmi_pending = 1;
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  179. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  180. {
  181. WARN_ON(vcpu->arch.exception.pending);
  182. vcpu->arch.exception.pending = true;
  183. vcpu->arch.exception.has_error_code = true;
  184. vcpu->arch.exception.nr = nr;
  185. vcpu->arch.exception.error_code = error_code;
  186. }
  187. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  188. static void __queue_exception(struct kvm_vcpu *vcpu)
  189. {
  190. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  191. vcpu->arch.exception.has_error_code,
  192. vcpu->arch.exception.error_code);
  193. }
  194. /*
  195. * Load the pae pdptrs. Return true is they are all valid.
  196. */
  197. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  198. {
  199. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  200. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  201. int i;
  202. int ret;
  203. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  204. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  205. offset * sizeof(u64), sizeof(pdpte));
  206. if (ret < 0) {
  207. ret = 0;
  208. goto out;
  209. }
  210. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  211. if (is_present_pte(pdpte[i]) &&
  212. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  213. ret = 0;
  214. goto out;
  215. }
  216. }
  217. ret = 1;
  218. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  219. out:
  220. return ret;
  221. }
  222. EXPORT_SYMBOL_GPL(load_pdptrs);
  223. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  224. {
  225. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  226. bool changed = true;
  227. int r;
  228. if (is_long_mode(vcpu) || !is_pae(vcpu))
  229. return false;
  230. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  231. if (r < 0)
  232. goto out;
  233. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  234. out:
  235. return changed;
  236. }
  237. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  238. {
  239. if (cr0 & CR0_RESERVED_BITS) {
  240. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  241. cr0, vcpu->arch.cr0);
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  246. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  247. kvm_inject_gp(vcpu, 0);
  248. return;
  249. }
  250. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  251. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  252. "and a clear PE flag\n");
  253. kvm_inject_gp(vcpu, 0);
  254. return;
  255. }
  256. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  257. #ifdef CONFIG_X86_64
  258. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  259. int cs_db, cs_l;
  260. if (!is_pae(vcpu)) {
  261. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  262. "in long mode while PAE is disabled\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  267. if (cs_l) {
  268. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  269. "in long mode while CS.L == 1\n");
  270. kvm_inject_gp(vcpu, 0);
  271. return;
  272. }
  273. } else
  274. #endif
  275. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  277. "reserved bits\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. }
  282. kvm_x86_ops->set_cr0(vcpu, cr0);
  283. vcpu->arch.cr0 = cr0;
  284. kvm_mmu_reset_context(vcpu);
  285. return;
  286. }
  287. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  288. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  289. {
  290. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  291. KVMTRACE_1D(LMSW, vcpu,
  292. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  293. handler);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_lmsw);
  296. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  297. {
  298. unsigned long old_cr4 = vcpu->arch.cr4;
  299. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  300. if (cr4 & CR4_RESERVED_BITS) {
  301. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  302. kvm_inject_gp(vcpu, 0);
  303. return;
  304. }
  305. if (is_long_mode(vcpu)) {
  306. if (!(cr4 & X86_CR4_PAE)) {
  307. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  308. "in long mode\n");
  309. kvm_inject_gp(vcpu, 0);
  310. return;
  311. }
  312. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  313. && ((cr4 ^ old_cr4) & pdptr_bits)
  314. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  315. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  316. kvm_inject_gp(vcpu, 0);
  317. return;
  318. }
  319. if (cr4 & X86_CR4_VMXE) {
  320. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  321. kvm_inject_gp(vcpu, 0);
  322. return;
  323. }
  324. kvm_x86_ops->set_cr4(vcpu, cr4);
  325. vcpu->arch.cr4 = cr4;
  326. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  327. kvm_mmu_reset_context(vcpu);
  328. }
  329. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  330. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  331. {
  332. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  333. kvm_mmu_sync_roots(vcpu);
  334. kvm_mmu_flush_tlb(vcpu);
  335. return;
  336. }
  337. if (is_long_mode(vcpu)) {
  338. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  339. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  340. kvm_inject_gp(vcpu, 0);
  341. return;
  342. }
  343. } else {
  344. if (is_pae(vcpu)) {
  345. if (cr3 & CR3_PAE_RESERVED_BITS) {
  346. printk(KERN_DEBUG
  347. "set_cr3: #GP, reserved bits\n");
  348. kvm_inject_gp(vcpu, 0);
  349. return;
  350. }
  351. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  352. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  353. "reserved bits\n");
  354. kvm_inject_gp(vcpu, 0);
  355. return;
  356. }
  357. }
  358. /*
  359. * We don't check reserved bits in nonpae mode, because
  360. * this isn't enforced, and VMware depends on this.
  361. */
  362. }
  363. /*
  364. * Does the new cr3 value map to physical memory? (Note, we
  365. * catch an invalid cr3 even in real-mode, because it would
  366. * cause trouble later on when we turn on paging anyway.)
  367. *
  368. * A real CPU would silently accept an invalid cr3 and would
  369. * attempt to use it - with largely undefined (and often hard
  370. * to debug) behavior on the guest side.
  371. */
  372. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  373. kvm_inject_gp(vcpu, 0);
  374. else {
  375. vcpu->arch.cr3 = cr3;
  376. vcpu->arch.mmu.new_cr3(vcpu);
  377. }
  378. }
  379. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  380. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  381. {
  382. if (cr8 & CR8_RESERVED_BITS) {
  383. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  384. kvm_inject_gp(vcpu, 0);
  385. return;
  386. }
  387. if (irqchip_in_kernel(vcpu->kvm))
  388. kvm_lapic_set_tpr(vcpu, cr8);
  389. else
  390. vcpu->arch.cr8 = cr8;
  391. }
  392. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  393. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  394. {
  395. if (irqchip_in_kernel(vcpu->kvm))
  396. return kvm_lapic_get_cr8(vcpu);
  397. else
  398. return vcpu->arch.cr8;
  399. }
  400. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  401. static inline u32 bit(int bitno)
  402. {
  403. return 1 << (bitno & 31);
  404. }
  405. /*
  406. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  407. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  408. *
  409. * This list is modified at module load time to reflect the
  410. * capabilities of the host cpu.
  411. */
  412. static u32 msrs_to_save[] = {
  413. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  414. MSR_K6_STAR,
  415. #ifdef CONFIG_X86_64
  416. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  417. #endif
  418. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  419. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  420. };
  421. static unsigned num_msrs_to_save;
  422. static u32 emulated_msrs[] = {
  423. MSR_IA32_MISC_ENABLE,
  424. };
  425. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  426. {
  427. if (efer & efer_reserved_bits) {
  428. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  429. efer);
  430. kvm_inject_gp(vcpu, 0);
  431. return;
  432. }
  433. if (is_paging(vcpu)
  434. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  435. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  436. kvm_inject_gp(vcpu, 0);
  437. return;
  438. }
  439. if (efer & EFER_FFXSR) {
  440. struct kvm_cpuid_entry2 *feat;
  441. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  442. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  443. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  444. kvm_inject_gp(vcpu, 0);
  445. return;
  446. }
  447. }
  448. if (efer & EFER_SVME) {
  449. struct kvm_cpuid_entry2 *feat;
  450. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  451. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  452. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. }
  457. kvm_x86_ops->set_efer(vcpu, efer);
  458. efer &= ~EFER_LMA;
  459. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  460. vcpu->arch.shadow_efer = efer;
  461. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  462. kvm_mmu_reset_context(vcpu);
  463. }
  464. void kvm_enable_efer_bits(u64 mask)
  465. {
  466. efer_reserved_bits &= ~mask;
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  469. /*
  470. * Writes msr value into into the appropriate "register".
  471. * Returns 0 on success, non-0 otherwise.
  472. * Assumes vcpu_load() was already called.
  473. */
  474. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  475. {
  476. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  477. }
  478. /*
  479. * Adapt set_msr() to msr_io()'s calling convention
  480. */
  481. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  482. {
  483. return kvm_set_msr(vcpu, index, *data);
  484. }
  485. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  486. {
  487. static int version;
  488. struct pvclock_wall_clock wc;
  489. struct timespec now, sys, boot;
  490. if (!wall_clock)
  491. return;
  492. version++;
  493. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  494. /*
  495. * The guest calculates current wall clock time by adding
  496. * system time (updated by kvm_write_guest_time below) to the
  497. * wall clock specified here. guest system time equals host
  498. * system time for us, thus we must fill in host boot time here.
  499. */
  500. now = current_kernel_time();
  501. ktime_get_ts(&sys);
  502. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  503. wc.sec = boot.tv_sec;
  504. wc.nsec = boot.tv_nsec;
  505. wc.version = version;
  506. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  507. version++;
  508. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  509. }
  510. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  511. {
  512. uint32_t quotient, remainder;
  513. /* Don't try to replace with do_div(), this one calculates
  514. * "(dividend << 32) / divisor" */
  515. __asm__ ( "divl %4"
  516. : "=a" (quotient), "=d" (remainder)
  517. : "0" (0), "1" (dividend), "r" (divisor) );
  518. return quotient;
  519. }
  520. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  521. {
  522. uint64_t nsecs = 1000000000LL;
  523. int32_t shift = 0;
  524. uint64_t tps64;
  525. uint32_t tps32;
  526. tps64 = tsc_khz * 1000LL;
  527. while (tps64 > nsecs*2) {
  528. tps64 >>= 1;
  529. shift--;
  530. }
  531. tps32 = (uint32_t)tps64;
  532. while (tps32 <= (uint32_t)nsecs) {
  533. tps32 <<= 1;
  534. shift++;
  535. }
  536. hv_clock->tsc_shift = shift;
  537. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  538. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  539. __func__, tsc_khz, hv_clock->tsc_shift,
  540. hv_clock->tsc_to_system_mul);
  541. }
  542. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  543. static void kvm_write_guest_time(struct kvm_vcpu *v)
  544. {
  545. struct timespec ts;
  546. unsigned long flags;
  547. struct kvm_vcpu_arch *vcpu = &v->arch;
  548. void *shared_kaddr;
  549. unsigned long this_tsc_khz;
  550. if ((!vcpu->time_page))
  551. return;
  552. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  553. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  554. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  555. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  556. }
  557. put_cpu_var(cpu_tsc_khz);
  558. /* Keep irq disabled to prevent changes to the clock */
  559. local_irq_save(flags);
  560. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  561. &vcpu->hv_clock.tsc_timestamp);
  562. ktime_get_ts(&ts);
  563. local_irq_restore(flags);
  564. /* With all the info we got, fill in the values */
  565. vcpu->hv_clock.system_time = ts.tv_nsec +
  566. (NSEC_PER_SEC * (u64)ts.tv_sec);
  567. /*
  568. * The interface expects us to write an even number signaling that the
  569. * update is finished. Since the guest won't see the intermediate
  570. * state, we just increase by 2 at the end.
  571. */
  572. vcpu->hv_clock.version += 2;
  573. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  574. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  575. sizeof(vcpu->hv_clock));
  576. kunmap_atomic(shared_kaddr, KM_USER0);
  577. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  578. }
  579. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  580. {
  581. struct kvm_vcpu_arch *vcpu = &v->arch;
  582. if (!vcpu->time_page)
  583. return 0;
  584. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  585. return 1;
  586. }
  587. static bool msr_mtrr_valid(unsigned msr)
  588. {
  589. switch (msr) {
  590. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  591. case MSR_MTRRfix64K_00000:
  592. case MSR_MTRRfix16K_80000:
  593. case MSR_MTRRfix16K_A0000:
  594. case MSR_MTRRfix4K_C0000:
  595. case MSR_MTRRfix4K_C8000:
  596. case MSR_MTRRfix4K_D0000:
  597. case MSR_MTRRfix4K_D8000:
  598. case MSR_MTRRfix4K_E0000:
  599. case MSR_MTRRfix4K_E8000:
  600. case MSR_MTRRfix4K_F0000:
  601. case MSR_MTRRfix4K_F8000:
  602. case MSR_MTRRdefType:
  603. case MSR_IA32_CR_PAT:
  604. return true;
  605. case 0x2f8:
  606. return true;
  607. }
  608. return false;
  609. }
  610. static bool valid_pat_type(unsigned t)
  611. {
  612. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  613. }
  614. static bool valid_mtrr_type(unsigned t)
  615. {
  616. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  617. }
  618. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  619. {
  620. int i;
  621. if (!msr_mtrr_valid(msr))
  622. return false;
  623. if (msr == MSR_IA32_CR_PAT) {
  624. for (i = 0; i < 8; i++)
  625. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  626. return false;
  627. return true;
  628. } else if (msr == MSR_MTRRdefType) {
  629. if (data & ~0xcff)
  630. return false;
  631. return valid_mtrr_type(data & 0xff);
  632. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  633. for (i = 0; i < 8 ; i++)
  634. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  635. return false;
  636. return true;
  637. }
  638. /* variable MTRRs */
  639. return valid_mtrr_type(data & 0xff);
  640. }
  641. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  642. {
  643. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  644. if (!mtrr_valid(vcpu, msr, data))
  645. return 1;
  646. if (msr == MSR_MTRRdefType) {
  647. vcpu->arch.mtrr_state.def_type = data;
  648. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  649. } else if (msr == MSR_MTRRfix64K_00000)
  650. p[0] = data;
  651. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  652. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  653. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  654. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  655. else if (msr == MSR_IA32_CR_PAT)
  656. vcpu->arch.pat = data;
  657. else { /* Variable MTRRs */
  658. int idx, is_mtrr_mask;
  659. u64 *pt;
  660. idx = (msr - 0x200) / 2;
  661. is_mtrr_mask = msr - 0x200 - 2 * idx;
  662. if (!is_mtrr_mask)
  663. pt =
  664. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  665. else
  666. pt =
  667. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  668. *pt = data;
  669. }
  670. kvm_mmu_reset_context(vcpu);
  671. return 0;
  672. }
  673. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  674. {
  675. switch (msr) {
  676. case MSR_EFER:
  677. set_efer(vcpu, data);
  678. break;
  679. case MSR_IA32_MC0_STATUS:
  680. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  681. __func__, data);
  682. break;
  683. case MSR_IA32_MCG_STATUS:
  684. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  685. __func__, data);
  686. break;
  687. case MSR_IA32_MCG_CTL:
  688. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  689. __func__, data);
  690. break;
  691. case MSR_IA32_DEBUGCTLMSR:
  692. if (!data) {
  693. /* We support the non-activated case already */
  694. break;
  695. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  696. /* Values other than LBR and BTF are vendor-specific,
  697. thus reserved and should throw a #GP */
  698. return 1;
  699. }
  700. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  701. __func__, data);
  702. break;
  703. case MSR_IA32_UCODE_REV:
  704. case MSR_IA32_UCODE_WRITE:
  705. case MSR_VM_HSAVE_PA:
  706. break;
  707. case 0x200 ... 0x2ff:
  708. return set_msr_mtrr(vcpu, msr, data);
  709. case MSR_IA32_APICBASE:
  710. kvm_set_apic_base(vcpu, data);
  711. break;
  712. case MSR_IA32_MISC_ENABLE:
  713. vcpu->arch.ia32_misc_enable_msr = data;
  714. break;
  715. case MSR_KVM_WALL_CLOCK:
  716. vcpu->kvm->arch.wall_clock = data;
  717. kvm_write_wall_clock(vcpu->kvm, data);
  718. break;
  719. case MSR_KVM_SYSTEM_TIME: {
  720. if (vcpu->arch.time_page) {
  721. kvm_release_page_dirty(vcpu->arch.time_page);
  722. vcpu->arch.time_page = NULL;
  723. }
  724. vcpu->arch.time = data;
  725. /* we verify if the enable bit is set... */
  726. if (!(data & 1))
  727. break;
  728. /* ...but clean it before doing the actual write */
  729. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  730. vcpu->arch.time_page =
  731. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  732. if (is_error_page(vcpu->arch.time_page)) {
  733. kvm_release_page_clean(vcpu->arch.time_page);
  734. vcpu->arch.time_page = NULL;
  735. }
  736. kvm_request_guest_time_update(vcpu);
  737. break;
  738. }
  739. default:
  740. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  741. return 1;
  742. }
  743. return 0;
  744. }
  745. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  746. /*
  747. * Reads an msr value (of 'msr_index') into 'pdata'.
  748. * Returns 0 on success, non-0 otherwise.
  749. * Assumes vcpu_load() was already called.
  750. */
  751. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  752. {
  753. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  754. }
  755. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  756. {
  757. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  758. if (!msr_mtrr_valid(msr))
  759. return 1;
  760. if (msr == MSR_MTRRdefType)
  761. *pdata = vcpu->arch.mtrr_state.def_type +
  762. (vcpu->arch.mtrr_state.enabled << 10);
  763. else if (msr == MSR_MTRRfix64K_00000)
  764. *pdata = p[0];
  765. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  766. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  767. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  768. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  769. else if (msr == MSR_IA32_CR_PAT)
  770. *pdata = vcpu->arch.pat;
  771. else { /* Variable MTRRs */
  772. int idx, is_mtrr_mask;
  773. u64 *pt;
  774. idx = (msr - 0x200) / 2;
  775. is_mtrr_mask = msr - 0x200 - 2 * idx;
  776. if (!is_mtrr_mask)
  777. pt =
  778. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  779. else
  780. pt =
  781. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  782. *pdata = *pt;
  783. }
  784. return 0;
  785. }
  786. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  787. {
  788. u64 data;
  789. switch (msr) {
  790. case 0xc0010010: /* SYSCFG */
  791. case 0xc0010015: /* HWCR */
  792. case MSR_IA32_PLATFORM_ID:
  793. case MSR_IA32_P5_MC_ADDR:
  794. case MSR_IA32_P5_MC_TYPE:
  795. case MSR_IA32_MC0_CTL:
  796. case MSR_IA32_MCG_STATUS:
  797. case MSR_IA32_MCG_CAP:
  798. case MSR_IA32_MCG_CTL:
  799. case MSR_IA32_MC0_MISC:
  800. case MSR_IA32_MC0_MISC+4:
  801. case MSR_IA32_MC0_MISC+8:
  802. case MSR_IA32_MC0_MISC+12:
  803. case MSR_IA32_MC0_MISC+16:
  804. case MSR_IA32_MC0_MISC+20:
  805. case MSR_IA32_UCODE_REV:
  806. case MSR_IA32_EBL_CR_POWERON:
  807. case MSR_IA32_DEBUGCTLMSR:
  808. case MSR_IA32_LASTBRANCHFROMIP:
  809. case MSR_IA32_LASTBRANCHTOIP:
  810. case MSR_IA32_LASTINTFROMIP:
  811. case MSR_IA32_LASTINTTOIP:
  812. case MSR_VM_HSAVE_PA:
  813. case MSR_P6_EVNTSEL0:
  814. case MSR_P6_EVNTSEL1:
  815. case MSR_K7_EVNTSEL0:
  816. data = 0;
  817. break;
  818. case MSR_MTRRcap:
  819. data = 0x500 | KVM_NR_VAR_MTRR;
  820. break;
  821. case 0x200 ... 0x2ff:
  822. return get_msr_mtrr(vcpu, msr, pdata);
  823. case 0xcd: /* fsb frequency */
  824. data = 3;
  825. break;
  826. case MSR_IA32_APICBASE:
  827. data = kvm_get_apic_base(vcpu);
  828. break;
  829. case MSR_IA32_MISC_ENABLE:
  830. data = vcpu->arch.ia32_misc_enable_msr;
  831. break;
  832. case MSR_IA32_PERF_STATUS:
  833. /* TSC increment by tick */
  834. data = 1000ULL;
  835. /* CPU multiplier */
  836. data |= (((uint64_t)4ULL) << 40);
  837. break;
  838. case MSR_EFER:
  839. data = vcpu->arch.shadow_efer;
  840. break;
  841. case MSR_KVM_WALL_CLOCK:
  842. data = vcpu->kvm->arch.wall_clock;
  843. break;
  844. case MSR_KVM_SYSTEM_TIME:
  845. data = vcpu->arch.time;
  846. break;
  847. default:
  848. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  849. return 1;
  850. }
  851. *pdata = data;
  852. return 0;
  853. }
  854. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  855. /*
  856. * Read or write a bunch of msrs. All parameters are kernel addresses.
  857. *
  858. * @return number of msrs set successfully.
  859. */
  860. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  861. struct kvm_msr_entry *entries,
  862. int (*do_msr)(struct kvm_vcpu *vcpu,
  863. unsigned index, u64 *data))
  864. {
  865. int i;
  866. vcpu_load(vcpu);
  867. down_read(&vcpu->kvm->slots_lock);
  868. for (i = 0; i < msrs->nmsrs; ++i)
  869. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  870. break;
  871. up_read(&vcpu->kvm->slots_lock);
  872. vcpu_put(vcpu);
  873. return i;
  874. }
  875. /*
  876. * Read or write a bunch of msrs. Parameters are user addresses.
  877. *
  878. * @return number of msrs set successfully.
  879. */
  880. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  881. int (*do_msr)(struct kvm_vcpu *vcpu,
  882. unsigned index, u64 *data),
  883. int writeback)
  884. {
  885. struct kvm_msrs msrs;
  886. struct kvm_msr_entry *entries;
  887. int r, n;
  888. unsigned size;
  889. r = -EFAULT;
  890. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  891. goto out;
  892. r = -E2BIG;
  893. if (msrs.nmsrs >= MAX_IO_MSRS)
  894. goto out;
  895. r = -ENOMEM;
  896. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  897. entries = vmalloc(size);
  898. if (!entries)
  899. goto out;
  900. r = -EFAULT;
  901. if (copy_from_user(entries, user_msrs->entries, size))
  902. goto out_free;
  903. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  904. if (r < 0)
  905. goto out_free;
  906. r = -EFAULT;
  907. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  908. goto out_free;
  909. r = n;
  910. out_free:
  911. vfree(entries);
  912. out:
  913. return r;
  914. }
  915. int kvm_dev_ioctl_check_extension(long ext)
  916. {
  917. int r;
  918. switch (ext) {
  919. case KVM_CAP_IRQCHIP:
  920. case KVM_CAP_HLT:
  921. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  922. case KVM_CAP_SET_TSS_ADDR:
  923. case KVM_CAP_EXT_CPUID:
  924. case KVM_CAP_CLOCKSOURCE:
  925. case KVM_CAP_PIT:
  926. case KVM_CAP_NOP_IO_DELAY:
  927. case KVM_CAP_MP_STATE:
  928. case KVM_CAP_SYNC_MMU:
  929. case KVM_CAP_REINJECT_CONTROL:
  930. case KVM_CAP_IRQ_INJECT_STATUS:
  931. case KVM_CAP_ASSIGN_DEV_IRQ:
  932. r = 1;
  933. break;
  934. case KVM_CAP_COALESCED_MMIO:
  935. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  936. break;
  937. case KVM_CAP_VAPIC:
  938. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  939. break;
  940. case KVM_CAP_NR_VCPUS:
  941. r = KVM_MAX_VCPUS;
  942. break;
  943. case KVM_CAP_NR_MEMSLOTS:
  944. r = KVM_MEMORY_SLOTS;
  945. break;
  946. case KVM_CAP_PV_MMU:
  947. r = !tdp_enabled;
  948. break;
  949. case KVM_CAP_IOMMU:
  950. r = iommu_found();
  951. break;
  952. default:
  953. r = 0;
  954. break;
  955. }
  956. return r;
  957. }
  958. long kvm_arch_dev_ioctl(struct file *filp,
  959. unsigned int ioctl, unsigned long arg)
  960. {
  961. void __user *argp = (void __user *)arg;
  962. long r;
  963. switch (ioctl) {
  964. case KVM_GET_MSR_INDEX_LIST: {
  965. struct kvm_msr_list __user *user_msr_list = argp;
  966. struct kvm_msr_list msr_list;
  967. unsigned n;
  968. r = -EFAULT;
  969. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  970. goto out;
  971. n = msr_list.nmsrs;
  972. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  973. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  974. goto out;
  975. r = -E2BIG;
  976. if (n < msr_list.nmsrs)
  977. goto out;
  978. r = -EFAULT;
  979. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  980. num_msrs_to_save * sizeof(u32)))
  981. goto out;
  982. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  983. &emulated_msrs,
  984. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  985. goto out;
  986. r = 0;
  987. break;
  988. }
  989. case KVM_GET_SUPPORTED_CPUID: {
  990. struct kvm_cpuid2 __user *cpuid_arg = argp;
  991. struct kvm_cpuid2 cpuid;
  992. r = -EFAULT;
  993. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  994. goto out;
  995. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  996. cpuid_arg->entries);
  997. if (r)
  998. goto out;
  999. r = -EFAULT;
  1000. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1001. goto out;
  1002. r = 0;
  1003. break;
  1004. }
  1005. default:
  1006. r = -EINVAL;
  1007. }
  1008. out:
  1009. return r;
  1010. }
  1011. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1012. {
  1013. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1014. kvm_request_guest_time_update(vcpu);
  1015. }
  1016. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1017. {
  1018. kvm_x86_ops->vcpu_put(vcpu);
  1019. kvm_put_guest_fpu(vcpu);
  1020. }
  1021. static int is_efer_nx(void)
  1022. {
  1023. unsigned long long efer = 0;
  1024. rdmsrl_safe(MSR_EFER, &efer);
  1025. return efer & EFER_NX;
  1026. }
  1027. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1028. {
  1029. int i;
  1030. struct kvm_cpuid_entry2 *e, *entry;
  1031. entry = NULL;
  1032. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1033. e = &vcpu->arch.cpuid_entries[i];
  1034. if (e->function == 0x80000001) {
  1035. entry = e;
  1036. break;
  1037. }
  1038. }
  1039. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1040. entry->edx &= ~(1 << 20);
  1041. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1042. }
  1043. }
  1044. /* when an old userspace process fills a new kernel module */
  1045. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1046. struct kvm_cpuid *cpuid,
  1047. struct kvm_cpuid_entry __user *entries)
  1048. {
  1049. int r, i;
  1050. struct kvm_cpuid_entry *cpuid_entries;
  1051. r = -E2BIG;
  1052. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1053. goto out;
  1054. r = -ENOMEM;
  1055. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1056. if (!cpuid_entries)
  1057. goto out;
  1058. r = -EFAULT;
  1059. if (copy_from_user(cpuid_entries, entries,
  1060. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1061. goto out_free;
  1062. for (i = 0; i < cpuid->nent; i++) {
  1063. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1064. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1065. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1066. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1067. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1068. vcpu->arch.cpuid_entries[i].index = 0;
  1069. vcpu->arch.cpuid_entries[i].flags = 0;
  1070. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1071. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1072. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1073. }
  1074. vcpu->arch.cpuid_nent = cpuid->nent;
  1075. cpuid_fix_nx_cap(vcpu);
  1076. r = 0;
  1077. out_free:
  1078. vfree(cpuid_entries);
  1079. out:
  1080. return r;
  1081. }
  1082. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1083. struct kvm_cpuid2 *cpuid,
  1084. struct kvm_cpuid_entry2 __user *entries)
  1085. {
  1086. int r;
  1087. r = -E2BIG;
  1088. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1089. goto out;
  1090. r = -EFAULT;
  1091. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1092. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1093. goto out;
  1094. vcpu->arch.cpuid_nent = cpuid->nent;
  1095. return 0;
  1096. out:
  1097. return r;
  1098. }
  1099. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1100. struct kvm_cpuid2 *cpuid,
  1101. struct kvm_cpuid_entry2 __user *entries)
  1102. {
  1103. int r;
  1104. r = -E2BIG;
  1105. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1106. goto out;
  1107. r = -EFAULT;
  1108. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1109. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1110. goto out;
  1111. return 0;
  1112. out:
  1113. cpuid->nent = vcpu->arch.cpuid_nent;
  1114. return r;
  1115. }
  1116. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1117. u32 index)
  1118. {
  1119. entry->function = function;
  1120. entry->index = index;
  1121. cpuid_count(entry->function, entry->index,
  1122. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1123. entry->flags = 0;
  1124. }
  1125. #define F(x) bit(X86_FEATURE_##x)
  1126. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1127. u32 index, int *nent, int maxnent)
  1128. {
  1129. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1130. #ifdef CONFIG_X86_64
  1131. unsigned f_lm = F(LM);
  1132. #else
  1133. unsigned f_lm = 0;
  1134. #endif
  1135. /* cpuid 1.edx */
  1136. const u32 kvm_supported_word0_x86_features =
  1137. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1138. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1139. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1140. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1141. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1142. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1143. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1144. 0 /* HTT, TM, Reserved, PBE */;
  1145. /* cpuid 0x80000001.edx */
  1146. const u32 kvm_supported_word1_x86_features =
  1147. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1148. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1149. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1150. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1151. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1152. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1153. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1154. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1155. /* cpuid 1.ecx */
  1156. const u32 kvm_supported_word4_x86_features =
  1157. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1158. 0 /* DS-CPL, VMX, SMX, EST */ |
  1159. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1160. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1161. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1162. F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
  1163. 0 /* Reserved, XSAVE, OSXSAVE */;
  1164. /* cpuid 0x80000001.ecx */
  1165. const u32 kvm_supported_word6_x86_features =
  1166. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1167. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1168. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1169. 0 /* SKINIT */ | 0 /* WDT */;
  1170. /* all calls to cpuid_count() should be made on the same cpu */
  1171. get_cpu();
  1172. do_cpuid_1_ent(entry, function, index);
  1173. ++*nent;
  1174. switch (function) {
  1175. case 0:
  1176. entry->eax = min(entry->eax, (u32)0xb);
  1177. break;
  1178. case 1:
  1179. entry->edx &= kvm_supported_word0_x86_features;
  1180. entry->ecx &= kvm_supported_word4_x86_features;
  1181. break;
  1182. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1183. * may return different values. This forces us to get_cpu() before
  1184. * issuing the first command, and also to emulate this annoying behavior
  1185. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1186. case 2: {
  1187. int t, times = entry->eax & 0xff;
  1188. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1189. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1190. for (t = 1; t < times && *nent < maxnent; ++t) {
  1191. do_cpuid_1_ent(&entry[t], function, 0);
  1192. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1193. ++*nent;
  1194. }
  1195. break;
  1196. }
  1197. /* function 4 and 0xb have additional index. */
  1198. case 4: {
  1199. int i, cache_type;
  1200. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1201. /* read more entries until cache_type is zero */
  1202. for (i = 1; *nent < maxnent; ++i) {
  1203. cache_type = entry[i - 1].eax & 0x1f;
  1204. if (!cache_type)
  1205. break;
  1206. do_cpuid_1_ent(&entry[i], function, i);
  1207. entry[i].flags |=
  1208. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1209. ++*nent;
  1210. }
  1211. break;
  1212. }
  1213. case 0xb: {
  1214. int i, level_type;
  1215. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1216. /* read more entries until level_type is zero */
  1217. for (i = 1; *nent < maxnent; ++i) {
  1218. level_type = entry[i - 1].ecx & 0xff00;
  1219. if (!level_type)
  1220. break;
  1221. do_cpuid_1_ent(&entry[i], function, i);
  1222. entry[i].flags |=
  1223. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1224. ++*nent;
  1225. }
  1226. break;
  1227. }
  1228. case 0x80000000:
  1229. entry->eax = min(entry->eax, 0x8000001a);
  1230. break;
  1231. case 0x80000001:
  1232. entry->edx &= kvm_supported_word1_x86_features;
  1233. entry->ecx &= kvm_supported_word6_x86_features;
  1234. break;
  1235. }
  1236. put_cpu();
  1237. }
  1238. #undef F
  1239. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1240. struct kvm_cpuid_entry2 __user *entries)
  1241. {
  1242. struct kvm_cpuid_entry2 *cpuid_entries;
  1243. int limit, nent = 0, r = -E2BIG;
  1244. u32 func;
  1245. if (cpuid->nent < 1)
  1246. goto out;
  1247. r = -ENOMEM;
  1248. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1249. if (!cpuid_entries)
  1250. goto out;
  1251. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1252. limit = cpuid_entries[0].eax;
  1253. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1254. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1255. &nent, cpuid->nent);
  1256. r = -E2BIG;
  1257. if (nent >= cpuid->nent)
  1258. goto out_free;
  1259. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1260. limit = cpuid_entries[nent - 1].eax;
  1261. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1262. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1263. &nent, cpuid->nent);
  1264. r = -EFAULT;
  1265. if (copy_to_user(entries, cpuid_entries,
  1266. nent * sizeof(struct kvm_cpuid_entry2)))
  1267. goto out_free;
  1268. cpuid->nent = nent;
  1269. r = 0;
  1270. out_free:
  1271. vfree(cpuid_entries);
  1272. out:
  1273. return r;
  1274. }
  1275. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1276. struct kvm_lapic_state *s)
  1277. {
  1278. vcpu_load(vcpu);
  1279. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1280. vcpu_put(vcpu);
  1281. return 0;
  1282. }
  1283. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1284. struct kvm_lapic_state *s)
  1285. {
  1286. vcpu_load(vcpu);
  1287. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1288. kvm_apic_post_state_restore(vcpu);
  1289. vcpu_put(vcpu);
  1290. return 0;
  1291. }
  1292. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1293. struct kvm_interrupt *irq)
  1294. {
  1295. if (irq->irq < 0 || irq->irq >= 256)
  1296. return -EINVAL;
  1297. if (irqchip_in_kernel(vcpu->kvm))
  1298. return -ENXIO;
  1299. vcpu_load(vcpu);
  1300. kvm_queue_interrupt(vcpu, irq->irq, false);
  1301. vcpu_put(vcpu);
  1302. return 0;
  1303. }
  1304. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1305. {
  1306. vcpu_load(vcpu);
  1307. kvm_inject_nmi(vcpu);
  1308. vcpu_put(vcpu);
  1309. return 0;
  1310. }
  1311. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1312. struct kvm_tpr_access_ctl *tac)
  1313. {
  1314. if (tac->flags)
  1315. return -EINVAL;
  1316. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1317. return 0;
  1318. }
  1319. long kvm_arch_vcpu_ioctl(struct file *filp,
  1320. unsigned int ioctl, unsigned long arg)
  1321. {
  1322. struct kvm_vcpu *vcpu = filp->private_data;
  1323. void __user *argp = (void __user *)arg;
  1324. int r;
  1325. struct kvm_lapic_state *lapic = NULL;
  1326. switch (ioctl) {
  1327. case KVM_GET_LAPIC: {
  1328. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1329. r = -ENOMEM;
  1330. if (!lapic)
  1331. goto out;
  1332. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1333. if (r)
  1334. goto out;
  1335. r = -EFAULT;
  1336. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1337. goto out;
  1338. r = 0;
  1339. break;
  1340. }
  1341. case KVM_SET_LAPIC: {
  1342. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1343. r = -ENOMEM;
  1344. if (!lapic)
  1345. goto out;
  1346. r = -EFAULT;
  1347. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1348. goto out;
  1349. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1350. if (r)
  1351. goto out;
  1352. r = 0;
  1353. break;
  1354. }
  1355. case KVM_INTERRUPT: {
  1356. struct kvm_interrupt irq;
  1357. r = -EFAULT;
  1358. if (copy_from_user(&irq, argp, sizeof irq))
  1359. goto out;
  1360. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1361. if (r)
  1362. goto out;
  1363. r = 0;
  1364. break;
  1365. }
  1366. case KVM_NMI: {
  1367. r = kvm_vcpu_ioctl_nmi(vcpu);
  1368. if (r)
  1369. goto out;
  1370. r = 0;
  1371. break;
  1372. }
  1373. case KVM_SET_CPUID: {
  1374. struct kvm_cpuid __user *cpuid_arg = argp;
  1375. struct kvm_cpuid cpuid;
  1376. r = -EFAULT;
  1377. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1378. goto out;
  1379. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1380. if (r)
  1381. goto out;
  1382. break;
  1383. }
  1384. case KVM_SET_CPUID2: {
  1385. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1386. struct kvm_cpuid2 cpuid;
  1387. r = -EFAULT;
  1388. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1389. goto out;
  1390. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1391. cpuid_arg->entries);
  1392. if (r)
  1393. goto out;
  1394. break;
  1395. }
  1396. case KVM_GET_CPUID2: {
  1397. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1398. struct kvm_cpuid2 cpuid;
  1399. r = -EFAULT;
  1400. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1401. goto out;
  1402. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1403. cpuid_arg->entries);
  1404. if (r)
  1405. goto out;
  1406. r = -EFAULT;
  1407. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1408. goto out;
  1409. r = 0;
  1410. break;
  1411. }
  1412. case KVM_GET_MSRS:
  1413. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1414. break;
  1415. case KVM_SET_MSRS:
  1416. r = msr_io(vcpu, argp, do_set_msr, 0);
  1417. break;
  1418. case KVM_TPR_ACCESS_REPORTING: {
  1419. struct kvm_tpr_access_ctl tac;
  1420. r = -EFAULT;
  1421. if (copy_from_user(&tac, argp, sizeof tac))
  1422. goto out;
  1423. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1424. if (r)
  1425. goto out;
  1426. r = -EFAULT;
  1427. if (copy_to_user(argp, &tac, sizeof tac))
  1428. goto out;
  1429. r = 0;
  1430. break;
  1431. };
  1432. case KVM_SET_VAPIC_ADDR: {
  1433. struct kvm_vapic_addr va;
  1434. r = -EINVAL;
  1435. if (!irqchip_in_kernel(vcpu->kvm))
  1436. goto out;
  1437. r = -EFAULT;
  1438. if (copy_from_user(&va, argp, sizeof va))
  1439. goto out;
  1440. r = 0;
  1441. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1442. break;
  1443. }
  1444. default:
  1445. r = -EINVAL;
  1446. }
  1447. out:
  1448. kfree(lapic);
  1449. return r;
  1450. }
  1451. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1452. {
  1453. int ret;
  1454. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1455. return -1;
  1456. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1457. return ret;
  1458. }
  1459. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1460. u32 kvm_nr_mmu_pages)
  1461. {
  1462. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1463. return -EINVAL;
  1464. down_write(&kvm->slots_lock);
  1465. spin_lock(&kvm->mmu_lock);
  1466. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1467. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1468. spin_unlock(&kvm->mmu_lock);
  1469. up_write(&kvm->slots_lock);
  1470. return 0;
  1471. }
  1472. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1473. {
  1474. return kvm->arch.n_alloc_mmu_pages;
  1475. }
  1476. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1477. {
  1478. int i;
  1479. struct kvm_mem_alias *alias;
  1480. for (i = 0; i < kvm->arch.naliases; ++i) {
  1481. alias = &kvm->arch.aliases[i];
  1482. if (gfn >= alias->base_gfn
  1483. && gfn < alias->base_gfn + alias->npages)
  1484. return alias->target_gfn + gfn - alias->base_gfn;
  1485. }
  1486. return gfn;
  1487. }
  1488. /*
  1489. * Set a new alias region. Aliases map a portion of physical memory into
  1490. * another portion. This is useful for memory windows, for example the PC
  1491. * VGA region.
  1492. */
  1493. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1494. struct kvm_memory_alias *alias)
  1495. {
  1496. int r, n;
  1497. struct kvm_mem_alias *p;
  1498. r = -EINVAL;
  1499. /* General sanity checks */
  1500. if (alias->memory_size & (PAGE_SIZE - 1))
  1501. goto out;
  1502. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1503. goto out;
  1504. if (alias->slot >= KVM_ALIAS_SLOTS)
  1505. goto out;
  1506. if (alias->guest_phys_addr + alias->memory_size
  1507. < alias->guest_phys_addr)
  1508. goto out;
  1509. if (alias->target_phys_addr + alias->memory_size
  1510. < alias->target_phys_addr)
  1511. goto out;
  1512. down_write(&kvm->slots_lock);
  1513. spin_lock(&kvm->mmu_lock);
  1514. p = &kvm->arch.aliases[alias->slot];
  1515. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1516. p->npages = alias->memory_size >> PAGE_SHIFT;
  1517. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1518. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1519. if (kvm->arch.aliases[n - 1].npages)
  1520. break;
  1521. kvm->arch.naliases = n;
  1522. spin_unlock(&kvm->mmu_lock);
  1523. kvm_mmu_zap_all(kvm);
  1524. up_write(&kvm->slots_lock);
  1525. return 0;
  1526. out:
  1527. return r;
  1528. }
  1529. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1530. {
  1531. int r;
  1532. r = 0;
  1533. switch (chip->chip_id) {
  1534. case KVM_IRQCHIP_PIC_MASTER:
  1535. memcpy(&chip->chip.pic,
  1536. &pic_irqchip(kvm)->pics[0],
  1537. sizeof(struct kvm_pic_state));
  1538. break;
  1539. case KVM_IRQCHIP_PIC_SLAVE:
  1540. memcpy(&chip->chip.pic,
  1541. &pic_irqchip(kvm)->pics[1],
  1542. sizeof(struct kvm_pic_state));
  1543. break;
  1544. case KVM_IRQCHIP_IOAPIC:
  1545. memcpy(&chip->chip.ioapic,
  1546. ioapic_irqchip(kvm),
  1547. sizeof(struct kvm_ioapic_state));
  1548. break;
  1549. default:
  1550. r = -EINVAL;
  1551. break;
  1552. }
  1553. return r;
  1554. }
  1555. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1556. {
  1557. int r;
  1558. r = 0;
  1559. switch (chip->chip_id) {
  1560. case KVM_IRQCHIP_PIC_MASTER:
  1561. memcpy(&pic_irqchip(kvm)->pics[0],
  1562. &chip->chip.pic,
  1563. sizeof(struct kvm_pic_state));
  1564. break;
  1565. case KVM_IRQCHIP_PIC_SLAVE:
  1566. memcpy(&pic_irqchip(kvm)->pics[1],
  1567. &chip->chip.pic,
  1568. sizeof(struct kvm_pic_state));
  1569. break;
  1570. case KVM_IRQCHIP_IOAPIC:
  1571. memcpy(ioapic_irqchip(kvm),
  1572. &chip->chip.ioapic,
  1573. sizeof(struct kvm_ioapic_state));
  1574. break;
  1575. default:
  1576. r = -EINVAL;
  1577. break;
  1578. }
  1579. kvm_pic_update_irq(pic_irqchip(kvm));
  1580. return r;
  1581. }
  1582. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1583. {
  1584. int r = 0;
  1585. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1586. return r;
  1587. }
  1588. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1589. {
  1590. int r = 0;
  1591. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1592. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1593. return r;
  1594. }
  1595. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1596. struct kvm_reinject_control *control)
  1597. {
  1598. if (!kvm->arch.vpit)
  1599. return -ENXIO;
  1600. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1601. return 0;
  1602. }
  1603. /*
  1604. * Get (and clear) the dirty memory log for a memory slot.
  1605. */
  1606. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1607. struct kvm_dirty_log *log)
  1608. {
  1609. int r;
  1610. int n;
  1611. struct kvm_memory_slot *memslot;
  1612. int is_dirty = 0;
  1613. down_write(&kvm->slots_lock);
  1614. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1615. if (r)
  1616. goto out;
  1617. /* If nothing is dirty, don't bother messing with page tables. */
  1618. if (is_dirty) {
  1619. spin_lock(&kvm->mmu_lock);
  1620. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1621. spin_unlock(&kvm->mmu_lock);
  1622. kvm_flush_remote_tlbs(kvm);
  1623. memslot = &kvm->memslots[log->slot];
  1624. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1625. memset(memslot->dirty_bitmap, 0, n);
  1626. }
  1627. r = 0;
  1628. out:
  1629. up_write(&kvm->slots_lock);
  1630. return r;
  1631. }
  1632. long kvm_arch_vm_ioctl(struct file *filp,
  1633. unsigned int ioctl, unsigned long arg)
  1634. {
  1635. struct kvm *kvm = filp->private_data;
  1636. void __user *argp = (void __user *)arg;
  1637. int r = -EINVAL;
  1638. /*
  1639. * This union makes it completely explicit to gcc-3.x
  1640. * that these two variables' stack usage should be
  1641. * combined, not added together.
  1642. */
  1643. union {
  1644. struct kvm_pit_state ps;
  1645. struct kvm_memory_alias alias;
  1646. } u;
  1647. switch (ioctl) {
  1648. case KVM_SET_TSS_ADDR:
  1649. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1650. if (r < 0)
  1651. goto out;
  1652. break;
  1653. case KVM_SET_MEMORY_REGION: {
  1654. struct kvm_memory_region kvm_mem;
  1655. struct kvm_userspace_memory_region kvm_userspace_mem;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1658. goto out;
  1659. kvm_userspace_mem.slot = kvm_mem.slot;
  1660. kvm_userspace_mem.flags = kvm_mem.flags;
  1661. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1662. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1663. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1664. if (r)
  1665. goto out;
  1666. break;
  1667. }
  1668. case KVM_SET_NR_MMU_PAGES:
  1669. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1670. if (r)
  1671. goto out;
  1672. break;
  1673. case KVM_GET_NR_MMU_PAGES:
  1674. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1675. break;
  1676. case KVM_SET_MEMORY_ALIAS:
  1677. r = -EFAULT;
  1678. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1679. goto out;
  1680. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1681. if (r)
  1682. goto out;
  1683. break;
  1684. case KVM_CREATE_IRQCHIP:
  1685. r = -ENOMEM;
  1686. kvm->arch.vpic = kvm_create_pic(kvm);
  1687. if (kvm->arch.vpic) {
  1688. r = kvm_ioapic_init(kvm);
  1689. if (r) {
  1690. kfree(kvm->arch.vpic);
  1691. kvm->arch.vpic = NULL;
  1692. goto out;
  1693. }
  1694. } else
  1695. goto out;
  1696. r = kvm_setup_default_irq_routing(kvm);
  1697. if (r) {
  1698. kfree(kvm->arch.vpic);
  1699. kfree(kvm->arch.vioapic);
  1700. goto out;
  1701. }
  1702. break;
  1703. case KVM_CREATE_PIT:
  1704. mutex_lock(&kvm->lock);
  1705. r = -EEXIST;
  1706. if (kvm->arch.vpit)
  1707. goto create_pit_unlock;
  1708. r = -ENOMEM;
  1709. kvm->arch.vpit = kvm_create_pit(kvm);
  1710. if (kvm->arch.vpit)
  1711. r = 0;
  1712. create_pit_unlock:
  1713. mutex_unlock(&kvm->lock);
  1714. break;
  1715. case KVM_IRQ_LINE_STATUS:
  1716. case KVM_IRQ_LINE: {
  1717. struct kvm_irq_level irq_event;
  1718. r = -EFAULT;
  1719. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1720. goto out;
  1721. if (irqchip_in_kernel(kvm)) {
  1722. __s32 status;
  1723. mutex_lock(&kvm->lock);
  1724. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1725. irq_event.irq, irq_event.level);
  1726. mutex_unlock(&kvm->lock);
  1727. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1728. irq_event.status = status;
  1729. if (copy_to_user(argp, &irq_event,
  1730. sizeof irq_event))
  1731. goto out;
  1732. }
  1733. r = 0;
  1734. }
  1735. break;
  1736. }
  1737. case KVM_GET_IRQCHIP: {
  1738. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1739. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1740. r = -ENOMEM;
  1741. if (!chip)
  1742. goto out;
  1743. r = -EFAULT;
  1744. if (copy_from_user(chip, argp, sizeof *chip))
  1745. goto get_irqchip_out;
  1746. r = -ENXIO;
  1747. if (!irqchip_in_kernel(kvm))
  1748. goto get_irqchip_out;
  1749. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1750. if (r)
  1751. goto get_irqchip_out;
  1752. r = -EFAULT;
  1753. if (copy_to_user(argp, chip, sizeof *chip))
  1754. goto get_irqchip_out;
  1755. r = 0;
  1756. get_irqchip_out:
  1757. kfree(chip);
  1758. if (r)
  1759. goto out;
  1760. break;
  1761. }
  1762. case KVM_SET_IRQCHIP: {
  1763. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1764. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1765. r = -ENOMEM;
  1766. if (!chip)
  1767. goto out;
  1768. r = -EFAULT;
  1769. if (copy_from_user(chip, argp, sizeof *chip))
  1770. goto set_irqchip_out;
  1771. r = -ENXIO;
  1772. if (!irqchip_in_kernel(kvm))
  1773. goto set_irqchip_out;
  1774. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1775. if (r)
  1776. goto set_irqchip_out;
  1777. r = 0;
  1778. set_irqchip_out:
  1779. kfree(chip);
  1780. if (r)
  1781. goto out;
  1782. break;
  1783. }
  1784. case KVM_GET_PIT: {
  1785. r = -EFAULT;
  1786. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1787. goto out;
  1788. r = -ENXIO;
  1789. if (!kvm->arch.vpit)
  1790. goto out;
  1791. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1792. if (r)
  1793. goto out;
  1794. r = -EFAULT;
  1795. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1796. goto out;
  1797. r = 0;
  1798. break;
  1799. }
  1800. case KVM_SET_PIT: {
  1801. r = -EFAULT;
  1802. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1803. goto out;
  1804. r = -ENXIO;
  1805. if (!kvm->arch.vpit)
  1806. goto out;
  1807. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1808. if (r)
  1809. goto out;
  1810. r = 0;
  1811. break;
  1812. }
  1813. case KVM_REINJECT_CONTROL: {
  1814. struct kvm_reinject_control control;
  1815. r = -EFAULT;
  1816. if (copy_from_user(&control, argp, sizeof(control)))
  1817. goto out;
  1818. r = kvm_vm_ioctl_reinject(kvm, &control);
  1819. if (r)
  1820. goto out;
  1821. r = 0;
  1822. break;
  1823. }
  1824. default:
  1825. ;
  1826. }
  1827. out:
  1828. return r;
  1829. }
  1830. static void kvm_init_msr_list(void)
  1831. {
  1832. u32 dummy[2];
  1833. unsigned i, j;
  1834. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1835. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1836. continue;
  1837. if (j < i)
  1838. msrs_to_save[j] = msrs_to_save[i];
  1839. j++;
  1840. }
  1841. num_msrs_to_save = j;
  1842. }
  1843. /*
  1844. * Only apic need an MMIO device hook, so shortcut now..
  1845. */
  1846. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1847. gpa_t addr, int len,
  1848. int is_write)
  1849. {
  1850. struct kvm_io_device *dev;
  1851. if (vcpu->arch.apic) {
  1852. dev = &vcpu->arch.apic->dev;
  1853. if (dev->in_range(dev, addr, len, is_write))
  1854. return dev;
  1855. }
  1856. return NULL;
  1857. }
  1858. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1859. gpa_t addr, int len,
  1860. int is_write)
  1861. {
  1862. struct kvm_io_device *dev;
  1863. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1864. if (dev == NULL)
  1865. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1866. is_write);
  1867. return dev;
  1868. }
  1869. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1870. struct kvm_vcpu *vcpu)
  1871. {
  1872. void *data = val;
  1873. int r = X86EMUL_CONTINUE;
  1874. while (bytes) {
  1875. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1876. unsigned offset = addr & (PAGE_SIZE-1);
  1877. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  1878. int ret;
  1879. if (gpa == UNMAPPED_GVA) {
  1880. r = X86EMUL_PROPAGATE_FAULT;
  1881. goto out;
  1882. }
  1883. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  1884. if (ret < 0) {
  1885. r = X86EMUL_UNHANDLEABLE;
  1886. goto out;
  1887. }
  1888. bytes -= toread;
  1889. data += toread;
  1890. addr += toread;
  1891. }
  1892. out:
  1893. return r;
  1894. }
  1895. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1896. struct kvm_vcpu *vcpu)
  1897. {
  1898. void *data = val;
  1899. int r = X86EMUL_CONTINUE;
  1900. while (bytes) {
  1901. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1902. unsigned offset = addr & (PAGE_SIZE-1);
  1903. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  1904. int ret;
  1905. if (gpa == UNMAPPED_GVA) {
  1906. r = X86EMUL_PROPAGATE_FAULT;
  1907. goto out;
  1908. }
  1909. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  1910. if (ret < 0) {
  1911. r = X86EMUL_UNHANDLEABLE;
  1912. goto out;
  1913. }
  1914. bytes -= towrite;
  1915. data += towrite;
  1916. addr += towrite;
  1917. }
  1918. out:
  1919. return r;
  1920. }
  1921. static int emulator_read_emulated(unsigned long addr,
  1922. void *val,
  1923. unsigned int bytes,
  1924. struct kvm_vcpu *vcpu)
  1925. {
  1926. struct kvm_io_device *mmio_dev;
  1927. gpa_t gpa;
  1928. if (vcpu->mmio_read_completed) {
  1929. memcpy(val, vcpu->mmio_data, bytes);
  1930. vcpu->mmio_read_completed = 0;
  1931. return X86EMUL_CONTINUE;
  1932. }
  1933. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1934. /* For APIC access vmexit */
  1935. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1936. goto mmio;
  1937. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  1938. == X86EMUL_CONTINUE)
  1939. return X86EMUL_CONTINUE;
  1940. if (gpa == UNMAPPED_GVA)
  1941. return X86EMUL_PROPAGATE_FAULT;
  1942. mmio:
  1943. /*
  1944. * Is this MMIO handled locally?
  1945. */
  1946. mutex_lock(&vcpu->kvm->lock);
  1947. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1948. if (mmio_dev) {
  1949. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1950. mutex_unlock(&vcpu->kvm->lock);
  1951. return X86EMUL_CONTINUE;
  1952. }
  1953. mutex_unlock(&vcpu->kvm->lock);
  1954. vcpu->mmio_needed = 1;
  1955. vcpu->mmio_phys_addr = gpa;
  1956. vcpu->mmio_size = bytes;
  1957. vcpu->mmio_is_write = 0;
  1958. return X86EMUL_UNHANDLEABLE;
  1959. }
  1960. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1961. const void *val, int bytes)
  1962. {
  1963. int ret;
  1964. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1965. if (ret < 0)
  1966. return 0;
  1967. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1968. return 1;
  1969. }
  1970. static int emulator_write_emulated_onepage(unsigned long addr,
  1971. const void *val,
  1972. unsigned int bytes,
  1973. struct kvm_vcpu *vcpu)
  1974. {
  1975. struct kvm_io_device *mmio_dev;
  1976. gpa_t gpa;
  1977. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1978. if (gpa == UNMAPPED_GVA) {
  1979. kvm_inject_page_fault(vcpu, addr, 2);
  1980. return X86EMUL_PROPAGATE_FAULT;
  1981. }
  1982. /* For APIC access vmexit */
  1983. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1984. goto mmio;
  1985. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1986. return X86EMUL_CONTINUE;
  1987. mmio:
  1988. /*
  1989. * Is this MMIO handled locally?
  1990. */
  1991. mutex_lock(&vcpu->kvm->lock);
  1992. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1993. if (mmio_dev) {
  1994. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1995. mutex_unlock(&vcpu->kvm->lock);
  1996. return X86EMUL_CONTINUE;
  1997. }
  1998. mutex_unlock(&vcpu->kvm->lock);
  1999. vcpu->mmio_needed = 1;
  2000. vcpu->mmio_phys_addr = gpa;
  2001. vcpu->mmio_size = bytes;
  2002. vcpu->mmio_is_write = 1;
  2003. memcpy(vcpu->mmio_data, val, bytes);
  2004. return X86EMUL_CONTINUE;
  2005. }
  2006. int emulator_write_emulated(unsigned long addr,
  2007. const void *val,
  2008. unsigned int bytes,
  2009. struct kvm_vcpu *vcpu)
  2010. {
  2011. /* Crossing a page boundary? */
  2012. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2013. int rc, now;
  2014. now = -addr & ~PAGE_MASK;
  2015. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2016. if (rc != X86EMUL_CONTINUE)
  2017. return rc;
  2018. addr += now;
  2019. val += now;
  2020. bytes -= now;
  2021. }
  2022. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2023. }
  2024. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2025. static int emulator_cmpxchg_emulated(unsigned long addr,
  2026. const void *old,
  2027. const void *new,
  2028. unsigned int bytes,
  2029. struct kvm_vcpu *vcpu)
  2030. {
  2031. static int reported;
  2032. if (!reported) {
  2033. reported = 1;
  2034. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2035. }
  2036. #ifndef CONFIG_X86_64
  2037. /* guests cmpxchg8b have to be emulated atomically */
  2038. if (bytes == 8) {
  2039. gpa_t gpa;
  2040. struct page *page;
  2041. char *kaddr;
  2042. u64 val;
  2043. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2044. if (gpa == UNMAPPED_GVA ||
  2045. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2046. goto emul_write;
  2047. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2048. goto emul_write;
  2049. val = *(u64 *)new;
  2050. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2051. kaddr = kmap_atomic(page, KM_USER0);
  2052. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2053. kunmap_atomic(kaddr, KM_USER0);
  2054. kvm_release_page_dirty(page);
  2055. }
  2056. emul_write:
  2057. #endif
  2058. return emulator_write_emulated(addr, new, bytes, vcpu);
  2059. }
  2060. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2061. {
  2062. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2063. }
  2064. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2065. {
  2066. kvm_mmu_invlpg(vcpu, address);
  2067. return X86EMUL_CONTINUE;
  2068. }
  2069. int emulate_clts(struct kvm_vcpu *vcpu)
  2070. {
  2071. KVMTRACE_0D(CLTS, vcpu, handler);
  2072. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2073. return X86EMUL_CONTINUE;
  2074. }
  2075. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2076. {
  2077. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2078. switch (dr) {
  2079. case 0 ... 3:
  2080. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2081. return X86EMUL_CONTINUE;
  2082. default:
  2083. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2084. return X86EMUL_UNHANDLEABLE;
  2085. }
  2086. }
  2087. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2088. {
  2089. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2090. int exception;
  2091. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2092. if (exception) {
  2093. /* FIXME: better handling */
  2094. return X86EMUL_UNHANDLEABLE;
  2095. }
  2096. return X86EMUL_CONTINUE;
  2097. }
  2098. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2099. {
  2100. u8 opcodes[4];
  2101. unsigned long rip = kvm_rip_read(vcpu);
  2102. unsigned long rip_linear;
  2103. if (!printk_ratelimit())
  2104. return;
  2105. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2106. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2107. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2108. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2109. }
  2110. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2111. static struct x86_emulate_ops emulate_ops = {
  2112. .read_std = kvm_read_guest_virt,
  2113. .read_emulated = emulator_read_emulated,
  2114. .write_emulated = emulator_write_emulated,
  2115. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2116. };
  2117. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2118. {
  2119. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2120. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2121. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2122. vcpu->arch.regs_dirty = ~0;
  2123. }
  2124. int emulate_instruction(struct kvm_vcpu *vcpu,
  2125. struct kvm_run *run,
  2126. unsigned long cr2,
  2127. u16 error_code,
  2128. int emulation_type)
  2129. {
  2130. int r, shadow_mask;
  2131. struct decode_cache *c;
  2132. kvm_clear_exception_queue(vcpu);
  2133. vcpu->arch.mmio_fault_cr2 = cr2;
  2134. /*
  2135. * TODO: fix x86_emulate.c to use guest_read/write_register
  2136. * instead of direct ->regs accesses, can save hundred cycles
  2137. * on Intel for instructions that don't read/change RSP, for
  2138. * for example.
  2139. */
  2140. cache_all_regs(vcpu);
  2141. vcpu->mmio_is_write = 0;
  2142. vcpu->arch.pio.string = 0;
  2143. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2144. int cs_db, cs_l;
  2145. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2146. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2147. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2148. vcpu->arch.emulate_ctxt.mode =
  2149. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2150. ? X86EMUL_MODE_REAL : cs_l
  2151. ? X86EMUL_MODE_PROT64 : cs_db
  2152. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2153. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2154. /* Reject the instructions other than VMCALL/VMMCALL when
  2155. * try to emulate invalid opcode */
  2156. c = &vcpu->arch.emulate_ctxt.decode;
  2157. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2158. (!(c->twobyte && c->b == 0x01 &&
  2159. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2160. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2161. return EMULATE_FAIL;
  2162. ++vcpu->stat.insn_emulation;
  2163. if (r) {
  2164. ++vcpu->stat.insn_emulation_fail;
  2165. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2166. return EMULATE_DONE;
  2167. return EMULATE_FAIL;
  2168. }
  2169. }
  2170. if (emulation_type & EMULTYPE_SKIP) {
  2171. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2172. return EMULATE_DONE;
  2173. }
  2174. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2175. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2176. if (r == 0)
  2177. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2178. if (vcpu->arch.pio.string)
  2179. return EMULATE_DO_MMIO;
  2180. if ((r || vcpu->mmio_is_write) && run) {
  2181. run->exit_reason = KVM_EXIT_MMIO;
  2182. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2183. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2184. run->mmio.len = vcpu->mmio_size;
  2185. run->mmio.is_write = vcpu->mmio_is_write;
  2186. }
  2187. if (r) {
  2188. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2189. return EMULATE_DONE;
  2190. if (!vcpu->mmio_needed) {
  2191. kvm_report_emulation_failure(vcpu, "mmio");
  2192. return EMULATE_FAIL;
  2193. }
  2194. return EMULATE_DO_MMIO;
  2195. }
  2196. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2197. if (vcpu->mmio_is_write) {
  2198. vcpu->mmio_needed = 0;
  2199. return EMULATE_DO_MMIO;
  2200. }
  2201. return EMULATE_DONE;
  2202. }
  2203. EXPORT_SYMBOL_GPL(emulate_instruction);
  2204. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2205. {
  2206. void *p = vcpu->arch.pio_data;
  2207. gva_t q = vcpu->arch.pio.guest_gva;
  2208. unsigned bytes;
  2209. int ret;
  2210. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2211. if (vcpu->arch.pio.in)
  2212. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2213. else
  2214. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2215. return ret;
  2216. }
  2217. int complete_pio(struct kvm_vcpu *vcpu)
  2218. {
  2219. struct kvm_pio_request *io = &vcpu->arch.pio;
  2220. long delta;
  2221. int r;
  2222. unsigned long val;
  2223. if (!io->string) {
  2224. if (io->in) {
  2225. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2226. memcpy(&val, vcpu->arch.pio_data, io->size);
  2227. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2228. }
  2229. } else {
  2230. if (io->in) {
  2231. r = pio_copy_data(vcpu);
  2232. if (r)
  2233. return r;
  2234. }
  2235. delta = 1;
  2236. if (io->rep) {
  2237. delta *= io->cur_count;
  2238. /*
  2239. * The size of the register should really depend on
  2240. * current address size.
  2241. */
  2242. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2243. val -= delta;
  2244. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2245. }
  2246. if (io->down)
  2247. delta = -delta;
  2248. delta *= io->size;
  2249. if (io->in) {
  2250. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2251. val += delta;
  2252. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2253. } else {
  2254. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2255. val += delta;
  2256. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2257. }
  2258. }
  2259. io->count -= io->cur_count;
  2260. io->cur_count = 0;
  2261. return 0;
  2262. }
  2263. static void kernel_pio(struct kvm_io_device *pio_dev,
  2264. struct kvm_vcpu *vcpu,
  2265. void *pd)
  2266. {
  2267. /* TODO: String I/O for in kernel device */
  2268. mutex_lock(&vcpu->kvm->lock);
  2269. if (vcpu->arch.pio.in)
  2270. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2271. vcpu->arch.pio.size,
  2272. pd);
  2273. else
  2274. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2275. vcpu->arch.pio.size,
  2276. pd);
  2277. mutex_unlock(&vcpu->kvm->lock);
  2278. }
  2279. static void pio_string_write(struct kvm_io_device *pio_dev,
  2280. struct kvm_vcpu *vcpu)
  2281. {
  2282. struct kvm_pio_request *io = &vcpu->arch.pio;
  2283. void *pd = vcpu->arch.pio_data;
  2284. int i;
  2285. mutex_lock(&vcpu->kvm->lock);
  2286. for (i = 0; i < io->cur_count; i++) {
  2287. kvm_iodevice_write(pio_dev, io->port,
  2288. io->size,
  2289. pd);
  2290. pd += io->size;
  2291. }
  2292. mutex_unlock(&vcpu->kvm->lock);
  2293. }
  2294. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2295. gpa_t addr, int len,
  2296. int is_write)
  2297. {
  2298. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2299. }
  2300. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2301. int size, unsigned port)
  2302. {
  2303. struct kvm_io_device *pio_dev;
  2304. unsigned long val;
  2305. vcpu->run->exit_reason = KVM_EXIT_IO;
  2306. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2307. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2308. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2309. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2310. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2311. vcpu->arch.pio.in = in;
  2312. vcpu->arch.pio.string = 0;
  2313. vcpu->arch.pio.down = 0;
  2314. vcpu->arch.pio.rep = 0;
  2315. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2316. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2317. handler);
  2318. else
  2319. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2320. handler);
  2321. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2322. memcpy(vcpu->arch.pio_data, &val, 4);
  2323. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2324. if (pio_dev) {
  2325. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2326. complete_pio(vcpu);
  2327. return 1;
  2328. }
  2329. return 0;
  2330. }
  2331. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2332. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2333. int size, unsigned long count, int down,
  2334. gva_t address, int rep, unsigned port)
  2335. {
  2336. unsigned now, in_page;
  2337. int ret = 0;
  2338. struct kvm_io_device *pio_dev;
  2339. vcpu->run->exit_reason = KVM_EXIT_IO;
  2340. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2341. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2342. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2343. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2344. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2345. vcpu->arch.pio.in = in;
  2346. vcpu->arch.pio.string = 1;
  2347. vcpu->arch.pio.down = down;
  2348. vcpu->arch.pio.rep = rep;
  2349. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2350. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2351. handler);
  2352. else
  2353. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2354. handler);
  2355. if (!count) {
  2356. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2357. return 1;
  2358. }
  2359. if (!down)
  2360. in_page = PAGE_SIZE - offset_in_page(address);
  2361. else
  2362. in_page = offset_in_page(address) + size;
  2363. now = min(count, (unsigned long)in_page / size);
  2364. if (!now)
  2365. now = 1;
  2366. if (down) {
  2367. /*
  2368. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2369. */
  2370. pr_unimpl(vcpu, "guest string pio down\n");
  2371. kvm_inject_gp(vcpu, 0);
  2372. return 1;
  2373. }
  2374. vcpu->run->io.count = now;
  2375. vcpu->arch.pio.cur_count = now;
  2376. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2377. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2378. vcpu->arch.pio.guest_gva = address;
  2379. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2380. vcpu->arch.pio.cur_count,
  2381. !vcpu->arch.pio.in);
  2382. if (!vcpu->arch.pio.in) {
  2383. /* string PIO write */
  2384. ret = pio_copy_data(vcpu);
  2385. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2386. kvm_inject_gp(vcpu, 0);
  2387. return 1;
  2388. }
  2389. if (ret == 0 && pio_dev) {
  2390. pio_string_write(pio_dev, vcpu);
  2391. complete_pio(vcpu);
  2392. if (vcpu->arch.pio.count == 0)
  2393. ret = 1;
  2394. }
  2395. } else if (pio_dev)
  2396. pr_unimpl(vcpu, "no string pio read support yet, "
  2397. "port %x size %d count %ld\n",
  2398. port, size, count);
  2399. return ret;
  2400. }
  2401. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2402. static void bounce_off(void *info)
  2403. {
  2404. /* nothing */
  2405. }
  2406. static unsigned int ref_freq;
  2407. static unsigned long tsc_khz_ref;
  2408. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2409. void *data)
  2410. {
  2411. struct cpufreq_freqs *freq = data;
  2412. struct kvm *kvm;
  2413. struct kvm_vcpu *vcpu;
  2414. int i, send_ipi = 0;
  2415. if (!ref_freq)
  2416. ref_freq = freq->old;
  2417. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2418. return 0;
  2419. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2420. return 0;
  2421. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2422. spin_lock(&kvm_lock);
  2423. list_for_each_entry(kvm, &vm_list, vm_list) {
  2424. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2425. vcpu = kvm->vcpus[i];
  2426. if (!vcpu)
  2427. continue;
  2428. if (vcpu->cpu != freq->cpu)
  2429. continue;
  2430. if (!kvm_request_guest_time_update(vcpu))
  2431. continue;
  2432. if (vcpu->cpu != smp_processor_id())
  2433. send_ipi++;
  2434. }
  2435. }
  2436. spin_unlock(&kvm_lock);
  2437. if (freq->old < freq->new && send_ipi) {
  2438. /*
  2439. * We upscale the frequency. Must make the guest
  2440. * doesn't see old kvmclock values while running with
  2441. * the new frequency, otherwise we risk the guest sees
  2442. * time go backwards.
  2443. *
  2444. * In case we update the frequency for another cpu
  2445. * (which might be in guest context) send an interrupt
  2446. * to kick the cpu out of guest context. Next time
  2447. * guest context is entered kvmclock will be updated,
  2448. * so the guest will not see stale values.
  2449. */
  2450. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2451. }
  2452. return 0;
  2453. }
  2454. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2455. .notifier_call = kvmclock_cpufreq_notifier
  2456. };
  2457. int kvm_arch_init(void *opaque)
  2458. {
  2459. int r, cpu;
  2460. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2461. if (kvm_x86_ops) {
  2462. printk(KERN_ERR "kvm: already loaded the other module\n");
  2463. r = -EEXIST;
  2464. goto out;
  2465. }
  2466. if (!ops->cpu_has_kvm_support()) {
  2467. printk(KERN_ERR "kvm: no hardware support\n");
  2468. r = -EOPNOTSUPP;
  2469. goto out;
  2470. }
  2471. if (ops->disabled_by_bios()) {
  2472. printk(KERN_ERR "kvm: disabled by bios\n");
  2473. r = -EOPNOTSUPP;
  2474. goto out;
  2475. }
  2476. r = kvm_mmu_module_init();
  2477. if (r)
  2478. goto out;
  2479. kvm_init_msr_list();
  2480. kvm_x86_ops = ops;
  2481. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2482. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2483. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2484. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2485. for_each_possible_cpu(cpu)
  2486. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2487. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2488. tsc_khz_ref = tsc_khz;
  2489. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2490. CPUFREQ_TRANSITION_NOTIFIER);
  2491. }
  2492. return 0;
  2493. out:
  2494. return r;
  2495. }
  2496. void kvm_arch_exit(void)
  2497. {
  2498. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2499. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2500. CPUFREQ_TRANSITION_NOTIFIER);
  2501. kvm_x86_ops = NULL;
  2502. kvm_mmu_module_exit();
  2503. }
  2504. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2505. {
  2506. ++vcpu->stat.halt_exits;
  2507. KVMTRACE_0D(HLT, vcpu, handler);
  2508. if (irqchip_in_kernel(vcpu->kvm)) {
  2509. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2510. return 1;
  2511. } else {
  2512. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2513. return 0;
  2514. }
  2515. }
  2516. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2517. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2518. unsigned long a1)
  2519. {
  2520. if (is_long_mode(vcpu))
  2521. return a0;
  2522. else
  2523. return a0 | ((gpa_t)a1 << 32);
  2524. }
  2525. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2526. {
  2527. unsigned long nr, a0, a1, a2, a3, ret;
  2528. int r = 1;
  2529. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2530. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2531. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2532. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2533. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2534. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2535. if (!is_long_mode(vcpu)) {
  2536. nr &= 0xFFFFFFFF;
  2537. a0 &= 0xFFFFFFFF;
  2538. a1 &= 0xFFFFFFFF;
  2539. a2 &= 0xFFFFFFFF;
  2540. a3 &= 0xFFFFFFFF;
  2541. }
  2542. switch (nr) {
  2543. case KVM_HC_VAPIC_POLL_IRQ:
  2544. ret = 0;
  2545. break;
  2546. case KVM_HC_MMU_OP:
  2547. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2548. break;
  2549. default:
  2550. ret = -KVM_ENOSYS;
  2551. break;
  2552. }
  2553. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2554. ++vcpu->stat.hypercalls;
  2555. return r;
  2556. }
  2557. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2558. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2559. {
  2560. char instruction[3];
  2561. int ret = 0;
  2562. unsigned long rip = kvm_rip_read(vcpu);
  2563. /*
  2564. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2565. * to ensure that the updated hypercall appears atomically across all
  2566. * VCPUs.
  2567. */
  2568. kvm_mmu_zap_all(vcpu->kvm);
  2569. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2570. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2571. != X86EMUL_CONTINUE)
  2572. ret = -EFAULT;
  2573. return ret;
  2574. }
  2575. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2576. {
  2577. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2578. }
  2579. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2580. {
  2581. struct descriptor_table dt = { limit, base };
  2582. kvm_x86_ops->set_gdt(vcpu, &dt);
  2583. }
  2584. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2585. {
  2586. struct descriptor_table dt = { limit, base };
  2587. kvm_x86_ops->set_idt(vcpu, &dt);
  2588. }
  2589. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2590. unsigned long *rflags)
  2591. {
  2592. kvm_lmsw(vcpu, msw);
  2593. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2594. }
  2595. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2596. {
  2597. unsigned long value;
  2598. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2599. switch (cr) {
  2600. case 0:
  2601. value = vcpu->arch.cr0;
  2602. break;
  2603. case 2:
  2604. value = vcpu->arch.cr2;
  2605. break;
  2606. case 3:
  2607. value = vcpu->arch.cr3;
  2608. break;
  2609. case 4:
  2610. value = vcpu->arch.cr4;
  2611. break;
  2612. case 8:
  2613. value = kvm_get_cr8(vcpu);
  2614. break;
  2615. default:
  2616. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2617. return 0;
  2618. }
  2619. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2620. (u32)((u64)value >> 32), handler);
  2621. return value;
  2622. }
  2623. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2624. unsigned long *rflags)
  2625. {
  2626. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2627. (u32)((u64)val >> 32), handler);
  2628. switch (cr) {
  2629. case 0:
  2630. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2631. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2632. break;
  2633. case 2:
  2634. vcpu->arch.cr2 = val;
  2635. break;
  2636. case 3:
  2637. kvm_set_cr3(vcpu, val);
  2638. break;
  2639. case 4:
  2640. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2641. break;
  2642. case 8:
  2643. kvm_set_cr8(vcpu, val & 0xfUL);
  2644. break;
  2645. default:
  2646. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2647. }
  2648. }
  2649. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2650. {
  2651. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2652. int j, nent = vcpu->arch.cpuid_nent;
  2653. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2654. /* when no next entry is found, the current entry[i] is reselected */
  2655. for (j = i + 1; ; j = (j + 1) % nent) {
  2656. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2657. if (ej->function == e->function) {
  2658. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2659. return j;
  2660. }
  2661. }
  2662. return 0; /* silence gcc, even though control never reaches here */
  2663. }
  2664. /* find an entry with matching function, matching index (if needed), and that
  2665. * should be read next (if it's stateful) */
  2666. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2667. u32 function, u32 index)
  2668. {
  2669. if (e->function != function)
  2670. return 0;
  2671. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2672. return 0;
  2673. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2674. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2675. return 0;
  2676. return 1;
  2677. }
  2678. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2679. u32 function, u32 index)
  2680. {
  2681. int i;
  2682. struct kvm_cpuid_entry2 *best = NULL;
  2683. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2684. struct kvm_cpuid_entry2 *e;
  2685. e = &vcpu->arch.cpuid_entries[i];
  2686. if (is_matching_cpuid_entry(e, function, index)) {
  2687. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2688. move_to_next_stateful_cpuid_entry(vcpu, i);
  2689. best = e;
  2690. break;
  2691. }
  2692. /*
  2693. * Both basic or both extended?
  2694. */
  2695. if (((e->function ^ function) & 0x80000000) == 0)
  2696. if (!best || e->function > best->function)
  2697. best = e;
  2698. }
  2699. return best;
  2700. }
  2701. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2702. {
  2703. struct kvm_cpuid_entry2 *best;
  2704. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2705. if (best)
  2706. return best->eax & 0xff;
  2707. return 36;
  2708. }
  2709. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2710. {
  2711. u32 function, index;
  2712. struct kvm_cpuid_entry2 *best;
  2713. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2714. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2715. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2716. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2717. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2718. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2719. best = kvm_find_cpuid_entry(vcpu, function, index);
  2720. if (best) {
  2721. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2722. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2723. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2724. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2725. }
  2726. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2727. KVMTRACE_5D(CPUID, vcpu, function,
  2728. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2729. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2730. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2731. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2732. }
  2733. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2734. /*
  2735. * Check if userspace requested an interrupt window, and that the
  2736. * interrupt window is open.
  2737. *
  2738. * No need to exit to userspace if we already have an interrupt queued.
  2739. */
  2740. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2741. struct kvm_run *kvm_run)
  2742. {
  2743. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2744. kvm_run->request_interrupt_window &&
  2745. kvm_arch_interrupt_allowed(vcpu));
  2746. }
  2747. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2748. struct kvm_run *kvm_run)
  2749. {
  2750. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2751. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2752. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2753. if (irqchip_in_kernel(vcpu->kvm))
  2754. kvm_run->ready_for_interrupt_injection = 1;
  2755. else
  2756. kvm_run->ready_for_interrupt_injection =
  2757. kvm_arch_interrupt_allowed(vcpu) &&
  2758. !kvm_cpu_has_interrupt(vcpu) &&
  2759. !kvm_event_needs_reinjection(vcpu);
  2760. }
  2761. static void vapic_enter(struct kvm_vcpu *vcpu)
  2762. {
  2763. struct kvm_lapic *apic = vcpu->arch.apic;
  2764. struct page *page;
  2765. if (!apic || !apic->vapic_addr)
  2766. return;
  2767. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2768. vcpu->arch.apic->vapic_page = page;
  2769. }
  2770. static void vapic_exit(struct kvm_vcpu *vcpu)
  2771. {
  2772. struct kvm_lapic *apic = vcpu->arch.apic;
  2773. if (!apic || !apic->vapic_addr)
  2774. return;
  2775. down_read(&vcpu->kvm->slots_lock);
  2776. kvm_release_page_dirty(apic->vapic_page);
  2777. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2778. up_read(&vcpu->kvm->slots_lock);
  2779. }
  2780. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2781. {
  2782. int max_irr, tpr;
  2783. if (!kvm_x86_ops->update_cr8_intercept)
  2784. return;
  2785. if (!vcpu->arch.apic->vapic_addr)
  2786. max_irr = kvm_lapic_find_highest_irr(vcpu);
  2787. else
  2788. max_irr = -1;
  2789. if (max_irr != -1)
  2790. max_irr >>= 4;
  2791. tpr = kvm_lapic_get_cr8(vcpu);
  2792. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  2793. }
  2794. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2795. {
  2796. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2797. kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
  2798. /* try to reinject previous events if any */
  2799. if (vcpu->arch.nmi_injected) {
  2800. kvm_x86_ops->set_nmi(vcpu);
  2801. return;
  2802. }
  2803. if (vcpu->arch.interrupt.pending) {
  2804. kvm_x86_ops->set_irq(vcpu);
  2805. return;
  2806. }
  2807. /* try to inject new event if pending */
  2808. if (vcpu->arch.nmi_pending) {
  2809. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  2810. vcpu->arch.nmi_pending = false;
  2811. vcpu->arch.nmi_injected = true;
  2812. kvm_x86_ops->set_nmi(vcpu);
  2813. }
  2814. } else if (kvm_cpu_has_interrupt(vcpu)) {
  2815. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  2816. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  2817. false);
  2818. kvm_x86_ops->set_irq(vcpu);
  2819. }
  2820. }
  2821. }
  2822. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2823. {
  2824. int r;
  2825. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  2826. kvm_run->request_interrupt_window;
  2827. if (vcpu->requests)
  2828. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2829. kvm_mmu_unload(vcpu);
  2830. r = kvm_mmu_reload(vcpu);
  2831. if (unlikely(r))
  2832. goto out;
  2833. if (vcpu->requests) {
  2834. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2835. __kvm_migrate_timers(vcpu);
  2836. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  2837. kvm_write_guest_time(vcpu);
  2838. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2839. kvm_mmu_sync_roots(vcpu);
  2840. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2841. kvm_x86_ops->tlb_flush(vcpu);
  2842. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2843. &vcpu->requests)) {
  2844. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2845. r = 0;
  2846. goto out;
  2847. }
  2848. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2849. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2850. r = 0;
  2851. goto out;
  2852. }
  2853. }
  2854. preempt_disable();
  2855. kvm_x86_ops->prepare_guest_switch(vcpu);
  2856. kvm_load_guest_fpu(vcpu);
  2857. local_irq_disable();
  2858. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  2859. smp_mb__after_clear_bit();
  2860. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2861. local_irq_enable();
  2862. preempt_enable();
  2863. r = 1;
  2864. goto out;
  2865. }
  2866. if (vcpu->arch.exception.pending)
  2867. __queue_exception(vcpu);
  2868. else
  2869. inject_pending_irq(vcpu, kvm_run);
  2870. /* enable NMI/IRQ window open exits if needed */
  2871. if (vcpu->arch.nmi_pending)
  2872. kvm_x86_ops->enable_nmi_window(vcpu);
  2873. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  2874. kvm_x86_ops->enable_irq_window(vcpu);
  2875. if (kvm_lapic_enabled(vcpu)) {
  2876. update_cr8_intercept(vcpu);
  2877. kvm_lapic_sync_to_vapic(vcpu);
  2878. }
  2879. up_read(&vcpu->kvm->slots_lock);
  2880. kvm_guest_enter();
  2881. get_debugreg(vcpu->arch.host_dr6, 6);
  2882. get_debugreg(vcpu->arch.host_dr7, 7);
  2883. if (unlikely(vcpu->arch.switch_db_regs)) {
  2884. get_debugreg(vcpu->arch.host_db[0], 0);
  2885. get_debugreg(vcpu->arch.host_db[1], 1);
  2886. get_debugreg(vcpu->arch.host_db[2], 2);
  2887. get_debugreg(vcpu->arch.host_db[3], 3);
  2888. set_debugreg(0, 7);
  2889. set_debugreg(vcpu->arch.eff_db[0], 0);
  2890. set_debugreg(vcpu->arch.eff_db[1], 1);
  2891. set_debugreg(vcpu->arch.eff_db[2], 2);
  2892. set_debugreg(vcpu->arch.eff_db[3], 3);
  2893. }
  2894. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2895. kvm_x86_ops->run(vcpu, kvm_run);
  2896. if (unlikely(vcpu->arch.switch_db_regs)) {
  2897. set_debugreg(0, 7);
  2898. set_debugreg(vcpu->arch.host_db[0], 0);
  2899. set_debugreg(vcpu->arch.host_db[1], 1);
  2900. set_debugreg(vcpu->arch.host_db[2], 2);
  2901. set_debugreg(vcpu->arch.host_db[3], 3);
  2902. }
  2903. set_debugreg(vcpu->arch.host_dr6, 6);
  2904. set_debugreg(vcpu->arch.host_dr7, 7);
  2905. set_bit(KVM_REQ_KICK, &vcpu->requests);
  2906. local_irq_enable();
  2907. ++vcpu->stat.exits;
  2908. /*
  2909. * We must have an instruction between local_irq_enable() and
  2910. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2911. * the interrupt shadow. The stat.exits increment will do nicely.
  2912. * But we need to prevent reordering, hence this barrier():
  2913. */
  2914. barrier();
  2915. kvm_guest_exit();
  2916. preempt_enable();
  2917. down_read(&vcpu->kvm->slots_lock);
  2918. /*
  2919. * Profile KVM exit RIPs:
  2920. */
  2921. if (unlikely(prof_on == KVM_PROFILING)) {
  2922. unsigned long rip = kvm_rip_read(vcpu);
  2923. profile_hit(KVM_PROFILING, (void *)rip);
  2924. }
  2925. kvm_lapic_sync_from_vapic(vcpu);
  2926. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2927. out:
  2928. return r;
  2929. }
  2930. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2931. {
  2932. int r;
  2933. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2934. pr_debug("vcpu %d received sipi with vector # %x\n",
  2935. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2936. kvm_lapic_reset(vcpu);
  2937. r = kvm_arch_vcpu_reset(vcpu);
  2938. if (r)
  2939. return r;
  2940. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2941. }
  2942. down_read(&vcpu->kvm->slots_lock);
  2943. vapic_enter(vcpu);
  2944. r = 1;
  2945. while (r > 0) {
  2946. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2947. r = vcpu_enter_guest(vcpu, kvm_run);
  2948. else {
  2949. up_read(&vcpu->kvm->slots_lock);
  2950. kvm_vcpu_block(vcpu);
  2951. down_read(&vcpu->kvm->slots_lock);
  2952. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2953. {
  2954. switch(vcpu->arch.mp_state) {
  2955. case KVM_MP_STATE_HALTED:
  2956. vcpu->arch.mp_state =
  2957. KVM_MP_STATE_RUNNABLE;
  2958. case KVM_MP_STATE_RUNNABLE:
  2959. break;
  2960. case KVM_MP_STATE_SIPI_RECEIVED:
  2961. default:
  2962. r = -EINTR;
  2963. break;
  2964. }
  2965. }
  2966. }
  2967. if (r <= 0)
  2968. break;
  2969. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2970. if (kvm_cpu_has_pending_timer(vcpu))
  2971. kvm_inject_pending_timer_irqs(vcpu);
  2972. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2973. r = -EINTR;
  2974. kvm_run->exit_reason = KVM_EXIT_INTR;
  2975. ++vcpu->stat.request_irq_exits;
  2976. }
  2977. if (signal_pending(current)) {
  2978. r = -EINTR;
  2979. kvm_run->exit_reason = KVM_EXIT_INTR;
  2980. ++vcpu->stat.signal_exits;
  2981. }
  2982. if (need_resched()) {
  2983. up_read(&vcpu->kvm->slots_lock);
  2984. kvm_resched(vcpu);
  2985. down_read(&vcpu->kvm->slots_lock);
  2986. }
  2987. }
  2988. up_read(&vcpu->kvm->slots_lock);
  2989. post_kvm_run_save(vcpu, kvm_run);
  2990. vapic_exit(vcpu);
  2991. return r;
  2992. }
  2993. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2994. {
  2995. int r;
  2996. sigset_t sigsaved;
  2997. vcpu_load(vcpu);
  2998. if (vcpu->sigset_active)
  2999. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3000. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3001. kvm_vcpu_block(vcpu);
  3002. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3003. r = -EAGAIN;
  3004. goto out;
  3005. }
  3006. /* re-sync apic's tpr */
  3007. if (!irqchip_in_kernel(vcpu->kvm))
  3008. kvm_set_cr8(vcpu, kvm_run->cr8);
  3009. if (vcpu->arch.pio.cur_count) {
  3010. r = complete_pio(vcpu);
  3011. if (r)
  3012. goto out;
  3013. }
  3014. #if CONFIG_HAS_IOMEM
  3015. if (vcpu->mmio_needed) {
  3016. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3017. vcpu->mmio_read_completed = 1;
  3018. vcpu->mmio_needed = 0;
  3019. down_read(&vcpu->kvm->slots_lock);
  3020. r = emulate_instruction(vcpu, kvm_run,
  3021. vcpu->arch.mmio_fault_cr2, 0,
  3022. EMULTYPE_NO_DECODE);
  3023. up_read(&vcpu->kvm->slots_lock);
  3024. if (r == EMULATE_DO_MMIO) {
  3025. /*
  3026. * Read-modify-write. Back to userspace.
  3027. */
  3028. r = 0;
  3029. goto out;
  3030. }
  3031. }
  3032. #endif
  3033. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3034. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3035. kvm_run->hypercall.ret);
  3036. r = __vcpu_run(vcpu, kvm_run);
  3037. out:
  3038. if (vcpu->sigset_active)
  3039. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3040. vcpu_put(vcpu);
  3041. return r;
  3042. }
  3043. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3044. {
  3045. vcpu_load(vcpu);
  3046. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3047. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3048. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3049. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3050. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3051. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3052. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3053. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3054. #ifdef CONFIG_X86_64
  3055. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3056. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3057. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3058. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3059. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3060. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3061. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3062. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3063. #endif
  3064. regs->rip = kvm_rip_read(vcpu);
  3065. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3066. /*
  3067. * Don't leak debug flags in case they were set for guest debugging
  3068. */
  3069. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3070. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3071. vcpu_put(vcpu);
  3072. return 0;
  3073. }
  3074. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3075. {
  3076. vcpu_load(vcpu);
  3077. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3078. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3079. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3080. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3081. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3082. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3083. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3084. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3085. #ifdef CONFIG_X86_64
  3086. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3087. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3088. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3089. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3090. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3091. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3092. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3093. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3094. #endif
  3095. kvm_rip_write(vcpu, regs->rip);
  3096. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3097. vcpu->arch.exception.pending = false;
  3098. vcpu_put(vcpu);
  3099. return 0;
  3100. }
  3101. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3102. struct kvm_segment *var, int seg)
  3103. {
  3104. kvm_x86_ops->get_segment(vcpu, var, seg);
  3105. }
  3106. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3107. {
  3108. struct kvm_segment cs;
  3109. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3110. *db = cs.db;
  3111. *l = cs.l;
  3112. }
  3113. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3114. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3115. struct kvm_sregs *sregs)
  3116. {
  3117. struct descriptor_table dt;
  3118. vcpu_load(vcpu);
  3119. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3120. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3121. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3122. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3123. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3124. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3125. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3126. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3127. kvm_x86_ops->get_idt(vcpu, &dt);
  3128. sregs->idt.limit = dt.limit;
  3129. sregs->idt.base = dt.base;
  3130. kvm_x86_ops->get_gdt(vcpu, &dt);
  3131. sregs->gdt.limit = dt.limit;
  3132. sregs->gdt.base = dt.base;
  3133. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3134. sregs->cr0 = vcpu->arch.cr0;
  3135. sregs->cr2 = vcpu->arch.cr2;
  3136. sregs->cr3 = vcpu->arch.cr3;
  3137. sregs->cr4 = vcpu->arch.cr4;
  3138. sregs->cr8 = kvm_get_cr8(vcpu);
  3139. sregs->efer = vcpu->arch.shadow_efer;
  3140. sregs->apic_base = kvm_get_apic_base(vcpu);
  3141. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3142. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3143. set_bit(vcpu->arch.interrupt.nr,
  3144. (unsigned long *)sregs->interrupt_bitmap);
  3145. vcpu_put(vcpu);
  3146. return 0;
  3147. }
  3148. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3149. struct kvm_mp_state *mp_state)
  3150. {
  3151. vcpu_load(vcpu);
  3152. mp_state->mp_state = vcpu->arch.mp_state;
  3153. vcpu_put(vcpu);
  3154. return 0;
  3155. }
  3156. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3157. struct kvm_mp_state *mp_state)
  3158. {
  3159. vcpu_load(vcpu);
  3160. vcpu->arch.mp_state = mp_state->mp_state;
  3161. vcpu_put(vcpu);
  3162. return 0;
  3163. }
  3164. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3165. struct kvm_segment *var, int seg)
  3166. {
  3167. kvm_x86_ops->set_segment(vcpu, var, seg);
  3168. }
  3169. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3170. struct kvm_segment *kvm_desct)
  3171. {
  3172. kvm_desct->base = seg_desc->base0;
  3173. kvm_desct->base |= seg_desc->base1 << 16;
  3174. kvm_desct->base |= seg_desc->base2 << 24;
  3175. kvm_desct->limit = seg_desc->limit0;
  3176. kvm_desct->limit |= seg_desc->limit << 16;
  3177. if (seg_desc->g) {
  3178. kvm_desct->limit <<= 12;
  3179. kvm_desct->limit |= 0xfff;
  3180. }
  3181. kvm_desct->selector = selector;
  3182. kvm_desct->type = seg_desc->type;
  3183. kvm_desct->present = seg_desc->p;
  3184. kvm_desct->dpl = seg_desc->dpl;
  3185. kvm_desct->db = seg_desc->d;
  3186. kvm_desct->s = seg_desc->s;
  3187. kvm_desct->l = seg_desc->l;
  3188. kvm_desct->g = seg_desc->g;
  3189. kvm_desct->avl = seg_desc->avl;
  3190. if (!selector)
  3191. kvm_desct->unusable = 1;
  3192. else
  3193. kvm_desct->unusable = 0;
  3194. kvm_desct->padding = 0;
  3195. }
  3196. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3197. u16 selector,
  3198. struct descriptor_table *dtable)
  3199. {
  3200. if (selector & 1 << 2) {
  3201. struct kvm_segment kvm_seg;
  3202. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3203. if (kvm_seg.unusable)
  3204. dtable->limit = 0;
  3205. else
  3206. dtable->limit = kvm_seg.limit;
  3207. dtable->base = kvm_seg.base;
  3208. }
  3209. else
  3210. kvm_x86_ops->get_gdt(vcpu, dtable);
  3211. }
  3212. /* allowed just for 8 bytes segments */
  3213. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3214. struct desc_struct *seg_desc)
  3215. {
  3216. gpa_t gpa;
  3217. struct descriptor_table dtable;
  3218. u16 index = selector >> 3;
  3219. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3220. if (dtable.limit < index * 8 + 7) {
  3221. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3222. return 1;
  3223. }
  3224. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3225. gpa += index * 8;
  3226. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3227. }
  3228. /* allowed just for 8 bytes segments */
  3229. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3230. struct desc_struct *seg_desc)
  3231. {
  3232. gpa_t gpa;
  3233. struct descriptor_table dtable;
  3234. u16 index = selector >> 3;
  3235. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3236. if (dtable.limit < index * 8 + 7)
  3237. return 1;
  3238. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3239. gpa += index * 8;
  3240. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3241. }
  3242. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3243. struct desc_struct *seg_desc)
  3244. {
  3245. u32 base_addr;
  3246. base_addr = seg_desc->base0;
  3247. base_addr |= (seg_desc->base1 << 16);
  3248. base_addr |= (seg_desc->base2 << 24);
  3249. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3250. }
  3251. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3252. {
  3253. struct kvm_segment kvm_seg;
  3254. kvm_get_segment(vcpu, &kvm_seg, seg);
  3255. return kvm_seg.selector;
  3256. }
  3257. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3258. u16 selector,
  3259. struct kvm_segment *kvm_seg)
  3260. {
  3261. struct desc_struct seg_desc;
  3262. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3263. return 1;
  3264. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3265. return 0;
  3266. }
  3267. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3268. {
  3269. struct kvm_segment segvar = {
  3270. .base = selector << 4,
  3271. .limit = 0xffff,
  3272. .selector = selector,
  3273. .type = 3,
  3274. .present = 1,
  3275. .dpl = 3,
  3276. .db = 0,
  3277. .s = 1,
  3278. .l = 0,
  3279. .g = 0,
  3280. .avl = 0,
  3281. .unusable = 0,
  3282. };
  3283. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3284. return 0;
  3285. }
  3286. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3287. int type_bits, int seg)
  3288. {
  3289. struct kvm_segment kvm_seg;
  3290. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3291. return kvm_load_realmode_segment(vcpu, selector, seg);
  3292. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3293. return 1;
  3294. kvm_seg.type |= type_bits;
  3295. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3296. seg != VCPU_SREG_LDTR)
  3297. if (!kvm_seg.s)
  3298. kvm_seg.unusable = 1;
  3299. kvm_set_segment(vcpu, &kvm_seg, seg);
  3300. return 0;
  3301. }
  3302. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3303. struct tss_segment_32 *tss)
  3304. {
  3305. tss->cr3 = vcpu->arch.cr3;
  3306. tss->eip = kvm_rip_read(vcpu);
  3307. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3308. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3309. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3310. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3311. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3312. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3313. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3314. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3315. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3316. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3317. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3318. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3319. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3320. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3321. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3322. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3323. }
  3324. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3325. struct tss_segment_32 *tss)
  3326. {
  3327. kvm_set_cr3(vcpu, tss->cr3);
  3328. kvm_rip_write(vcpu, tss->eip);
  3329. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3330. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3331. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3332. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3333. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3334. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3335. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3336. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3337. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3338. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3339. return 1;
  3340. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3341. return 1;
  3342. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3343. return 1;
  3344. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3345. return 1;
  3346. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3347. return 1;
  3348. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3349. return 1;
  3350. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3351. return 1;
  3352. return 0;
  3353. }
  3354. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3355. struct tss_segment_16 *tss)
  3356. {
  3357. tss->ip = kvm_rip_read(vcpu);
  3358. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3359. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3360. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3361. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3362. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3363. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3364. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3365. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3366. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3367. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3368. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3369. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3370. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3371. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3372. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3373. }
  3374. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3375. struct tss_segment_16 *tss)
  3376. {
  3377. kvm_rip_write(vcpu, tss->ip);
  3378. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3379. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3380. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3381. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3382. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3383. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3384. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3385. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3386. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3387. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3388. return 1;
  3389. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3390. return 1;
  3391. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3392. return 1;
  3393. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3394. return 1;
  3395. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3396. return 1;
  3397. return 0;
  3398. }
  3399. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3400. u16 old_tss_sel, u32 old_tss_base,
  3401. struct desc_struct *nseg_desc)
  3402. {
  3403. struct tss_segment_16 tss_segment_16;
  3404. int ret = 0;
  3405. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3406. sizeof tss_segment_16))
  3407. goto out;
  3408. save_state_to_tss16(vcpu, &tss_segment_16);
  3409. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3410. sizeof tss_segment_16))
  3411. goto out;
  3412. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3413. &tss_segment_16, sizeof tss_segment_16))
  3414. goto out;
  3415. if (old_tss_sel != 0xffff) {
  3416. tss_segment_16.prev_task_link = old_tss_sel;
  3417. if (kvm_write_guest(vcpu->kvm,
  3418. get_tss_base_addr(vcpu, nseg_desc),
  3419. &tss_segment_16.prev_task_link,
  3420. sizeof tss_segment_16.prev_task_link))
  3421. goto out;
  3422. }
  3423. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3424. goto out;
  3425. ret = 1;
  3426. out:
  3427. return ret;
  3428. }
  3429. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3430. u16 old_tss_sel, u32 old_tss_base,
  3431. struct desc_struct *nseg_desc)
  3432. {
  3433. struct tss_segment_32 tss_segment_32;
  3434. int ret = 0;
  3435. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3436. sizeof tss_segment_32))
  3437. goto out;
  3438. save_state_to_tss32(vcpu, &tss_segment_32);
  3439. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3440. sizeof tss_segment_32))
  3441. goto out;
  3442. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3443. &tss_segment_32, sizeof tss_segment_32))
  3444. goto out;
  3445. if (old_tss_sel != 0xffff) {
  3446. tss_segment_32.prev_task_link = old_tss_sel;
  3447. if (kvm_write_guest(vcpu->kvm,
  3448. get_tss_base_addr(vcpu, nseg_desc),
  3449. &tss_segment_32.prev_task_link,
  3450. sizeof tss_segment_32.prev_task_link))
  3451. goto out;
  3452. }
  3453. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3454. goto out;
  3455. ret = 1;
  3456. out:
  3457. return ret;
  3458. }
  3459. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3460. {
  3461. struct kvm_segment tr_seg;
  3462. struct desc_struct cseg_desc;
  3463. struct desc_struct nseg_desc;
  3464. int ret = 0;
  3465. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3466. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3467. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3468. /* FIXME: Handle errors. Failure to read either TSS or their
  3469. * descriptors should generate a pagefault.
  3470. */
  3471. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3472. goto out;
  3473. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3474. goto out;
  3475. if (reason != TASK_SWITCH_IRET) {
  3476. int cpl;
  3477. cpl = kvm_x86_ops->get_cpl(vcpu);
  3478. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3479. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3480. return 1;
  3481. }
  3482. }
  3483. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3484. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3485. return 1;
  3486. }
  3487. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3488. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3489. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3490. }
  3491. if (reason == TASK_SWITCH_IRET) {
  3492. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3493. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3494. }
  3495. /* set back link to prev task only if NT bit is set in eflags
  3496. note that old_tss_sel is not used afetr this point */
  3497. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3498. old_tss_sel = 0xffff;
  3499. /* set back link to prev task only if NT bit is set in eflags
  3500. note that old_tss_sel is not used afetr this point */
  3501. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3502. old_tss_sel = 0xffff;
  3503. if (nseg_desc.type & 8)
  3504. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3505. old_tss_base, &nseg_desc);
  3506. else
  3507. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3508. old_tss_base, &nseg_desc);
  3509. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3510. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3511. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3512. }
  3513. if (reason != TASK_SWITCH_IRET) {
  3514. nseg_desc.type |= (1 << 1);
  3515. save_guest_segment_descriptor(vcpu, tss_selector,
  3516. &nseg_desc);
  3517. }
  3518. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3519. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3520. tr_seg.type = 11;
  3521. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3522. out:
  3523. return ret;
  3524. }
  3525. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3526. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3527. struct kvm_sregs *sregs)
  3528. {
  3529. int mmu_reset_needed = 0;
  3530. int pending_vec, max_bits;
  3531. struct descriptor_table dt;
  3532. vcpu_load(vcpu);
  3533. dt.limit = sregs->idt.limit;
  3534. dt.base = sregs->idt.base;
  3535. kvm_x86_ops->set_idt(vcpu, &dt);
  3536. dt.limit = sregs->gdt.limit;
  3537. dt.base = sregs->gdt.base;
  3538. kvm_x86_ops->set_gdt(vcpu, &dt);
  3539. vcpu->arch.cr2 = sregs->cr2;
  3540. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3541. down_read(&vcpu->kvm->slots_lock);
  3542. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3543. vcpu->arch.cr3 = sregs->cr3;
  3544. else
  3545. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3546. up_read(&vcpu->kvm->slots_lock);
  3547. kvm_set_cr8(vcpu, sregs->cr8);
  3548. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3549. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3550. kvm_set_apic_base(vcpu, sregs->apic_base);
  3551. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3552. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3553. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3554. vcpu->arch.cr0 = sregs->cr0;
  3555. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3556. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3557. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3558. load_pdptrs(vcpu, vcpu->arch.cr3);
  3559. if (mmu_reset_needed)
  3560. kvm_mmu_reset_context(vcpu);
  3561. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3562. pending_vec = find_first_bit(
  3563. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3564. if (pending_vec < max_bits) {
  3565. kvm_queue_interrupt(vcpu, pending_vec, false);
  3566. pr_debug("Set back pending irq %d\n", pending_vec);
  3567. if (irqchip_in_kernel(vcpu->kvm))
  3568. kvm_pic_clear_isr_ack(vcpu->kvm);
  3569. }
  3570. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3571. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3572. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3573. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3574. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3575. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3576. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3577. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3578. /* Older userspace won't unhalt the vcpu on reset. */
  3579. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3580. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3581. !(vcpu->arch.cr0 & X86_CR0_PE))
  3582. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3583. vcpu_put(vcpu);
  3584. return 0;
  3585. }
  3586. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3587. struct kvm_guest_debug *dbg)
  3588. {
  3589. int i, r;
  3590. vcpu_load(vcpu);
  3591. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3592. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3593. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3594. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3595. vcpu->arch.switch_db_regs =
  3596. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3597. } else {
  3598. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3599. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3600. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3601. }
  3602. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3603. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3604. kvm_queue_exception(vcpu, DB_VECTOR);
  3605. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3606. kvm_queue_exception(vcpu, BP_VECTOR);
  3607. vcpu_put(vcpu);
  3608. return r;
  3609. }
  3610. /*
  3611. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3612. * we have asm/x86/processor.h
  3613. */
  3614. struct fxsave {
  3615. u16 cwd;
  3616. u16 swd;
  3617. u16 twd;
  3618. u16 fop;
  3619. u64 rip;
  3620. u64 rdp;
  3621. u32 mxcsr;
  3622. u32 mxcsr_mask;
  3623. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3624. #ifdef CONFIG_X86_64
  3625. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3626. #else
  3627. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3628. #endif
  3629. };
  3630. /*
  3631. * Translate a guest virtual address to a guest physical address.
  3632. */
  3633. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3634. struct kvm_translation *tr)
  3635. {
  3636. unsigned long vaddr = tr->linear_address;
  3637. gpa_t gpa;
  3638. vcpu_load(vcpu);
  3639. down_read(&vcpu->kvm->slots_lock);
  3640. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3641. up_read(&vcpu->kvm->slots_lock);
  3642. tr->physical_address = gpa;
  3643. tr->valid = gpa != UNMAPPED_GVA;
  3644. tr->writeable = 1;
  3645. tr->usermode = 0;
  3646. vcpu_put(vcpu);
  3647. return 0;
  3648. }
  3649. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3650. {
  3651. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3652. vcpu_load(vcpu);
  3653. memcpy(fpu->fpr, fxsave->st_space, 128);
  3654. fpu->fcw = fxsave->cwd;
  3655. fpu->fsw = fxsave->swd;
  3656. fpu->ftwx = fxsave->twd;
  3657. fpu->last_opcode = fxsave->fop;
  3658. fpu->last_ip = fxsave->rip;
  3659. fpu->last_dp = fxsave->rdp;
  3660. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3661. vcpu_put(vcpu);
  3662. return 0;
  3663. }
  3664. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3665. {
  3666. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3667. vcpu_load(vcpu);
  3668. memcpy(fxsave->st_space, fpu->fpr, 128);
  3669. fxsave->cwd = fpu->fcw;
  3670. fxsave->swd = fpu->fsw;
  3671. fxsave->twd = fpu->ftwx;
  3672. fxsave->fop = fpu->last_opcode;
  3673. fxsave->rip = fpu->last_ip;
  3674. fxsave->rdp = fpu->last_dp;
  3675. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3676. vcpu_put(vcpu);
  3677. return 0;
  3678. }
  3679. void fx_init(struct kvm_vcpu *vcpu)
  3680. {
  3681. unsigned after_mxcsr_mask;
  3682. /*
  3683. * Touch the fpu the first time in non atomic context as if
  3684. * this is the first fpu instruction the exception handler
  3685. * will fire before the instruction returns and it'll have to
  3686. * allocate ram with GFP_KERNEL.
  3687. */
  3688. if (!used_math())
  3689. kvm_fx_save(&vcpu->arch.host_fx_image);
  3690. /* Initialize guest FPU by resetting ours and saving into guest's */
  3691. preempt_disable();
  3692. kvm_fx_save(&vcpu->arch.host_fx_image);
  3693. kvm_fx_finit();
  3694. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3695. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3696. preempt_enable();
  3697. vcpu->arch.cr0 |= X86_CR0_ET;
  3698. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3699. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3700. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3701. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3702. }
  3703. EXPORT_SYMBOL_GPL(fx_init);
  3704. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3705. {
  3706. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3707. return;
  3708. vcpu->guest_fpu_loaded = 1;
  3709. kvm_fx_save(&vcpu->arch.host_fx_image);
  3710. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3711. }
  3712. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3713. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3714. {
  3715. if (!vcpu->guest_fpu_loaded)
  3716. return;
  3717. vcpu->guest_fpu_loaded = 0;
  3718. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3719. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3720. ++vcpu->stat.fpu_reload;
  3721. }
  3722. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3723. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3724. {
  3725. if (vcpu->arch.time_page) {
  3726. kvm_release_page_dirty(vcpu->arch.time_page);
  3727. vcpu->arch.time_page = NULL;
  3728. }
  3729. kvm_x86_ops->vcpu_free(vcpu);
  3730. }
  3731. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3732. unsigned int id)
  3733. {
  3734. return kvm_x86_ops->vcpu_create(kvm, id);
  3735. }
  3736. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3737. {
  3738. int r;
  3739. /* We do fxsave: this must be aligned. */
  3740. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3741. vcpu->arch.mtrr_state.have_fixed = 1;
  3742. vcpu_load(vcpu);
  3743. r = kvm_arch_vcpu_reset(vcpu);
  3744. if (r == 0)
  3745. r = kvm_mmu_setup(vcpu);
  3746. vcpu_put(vcpu);
  3747. if (r < 0)
  3748. goto free_vcpu;
  3749. return 0;
  3750. free_vcpu:
  3751. kvm_x86_ops->vcpu_free(vcpu);
  3752. return r;
  3753. }
  3754. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3755. {
  3756. vcpu_load(vcpu);
  3757. kvm_mmu_unload(vcpu);
  3758. vcpu_put(vcpu);
  3759. kvm_x86_ops->vcpu_free(vcpu);
  3760. }
  3761. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3762. {
  3763. vcpu->arch.nmi_pending = false;
  3764. vcpu->arch.nmi_injected = false;
  3765. vcpu->arch.switch_db_regs = 0;
  3766. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3767. vcpu->arch.dr6 = DR6_FIXED_1;
  3768. vcpu->arch.dr7 = DR7_FIXED_1;
  3769. return kvm_x86_ops->vcpu_reset(vcpu);
  3770. }
  3771. void kvm_arch_hardware_enable(void *garbage)
  3772. {
  3773. kvm_x86_ops->hardware_enable(garbage);
  3774. }
  3775. void kvm_arch_hardware_disable(void *garbage)
  3776. {
  3777. kvm_x86_ops->hardware_disable(garbage);
  3778. }
  3779. int kvm_arch_hardware_setup(void)
  3780. {
  3781. return kvm_x86_ops->hardware_setup();
  3782. }
  3783. void kvm_arch_hardware_unsetup(void)
  3784. {
  3785. kvm_x86_ops->hardware_unsetup();
  3786. }
  3787. void kvm_arch_check_processor_compat(void *rtn)
  3788. {
  3789. kvm_x86_ops->check_processor_compatibility(rtn);
  3790. }
  3791. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3792. {
  3793. struct page *page;
  3794. struct kvm *kvm;
  3795. int r;
  3796. BUG_ON(vcpu->kvm == NULL);
  3797. kvm = vcpu->kvm;
  3798. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3799. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3800. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3801. else
  3802. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3803. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3804. if (!page) {
  3805. r = -ENOMEM;
  3806. goto fail;
  3807. }
  3808. vcpu->arch.pio_data = page_address(page);
  3809. r = kvm_mmu_create(vcpu);
  3810. if (r < 0)
  3811. goto fail_free_pio_data;
  3812. if (irqchip_in_kernel(kvm)) {
  3813. r = kvm_create_lapic(vcpu);
  3814. if (r < 0)
  3815. goto fail_mmu_destroy;
  3816. }
  3817. return 0;
  3818. fail_mmu_destroy:
  3819. kvm_mmu_destroy(vcpu);
  3820. fail_free_pio_data:
  3821. free_page((unsigned long)vcpu->arch.pio_data);
  3822. fail:
  3823. return r;
  3824. }
  3825. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3826. {
  3827. kvm_free_lapic(vcpu);
  3828. down_read(&vcpu->kvm->slots_lock);
  3829. kvm_mmu_destroy(vcpu);
  3830. up_read(&vcpu->kvm->slots_lock);
  3831. free_page((unsigned long)vcpu->arch.pio_data);
  3832. }
  3833. struct kvm *kvm_arch_create_vm(void)
  3834. {
  3835. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3836. if (!kvm)
  3837. return ERR_PTR(-ENOMEM);
  3838. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3839. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3840. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3841. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3842. rdtscll(kvm->arch.vm_init_tsc);
  3843. return kvm;
  3844. }
  3845. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3846. {
  3847. vcpu_load(vcpu);
  3848. kvm_mmu_unload(vcpu);
  3849. vcpu_put(vcpu);
  3850. }
  3851. static void kvm_free_vcpus(struct kvm *kvm)
  3852. {
  3853. unsigned int i;
  3854. /*
  3855. * Unpin any mmu pages first.
  3856. */
  3857. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3858. if (kvm->vcpus[i])
  3859. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3860. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3861. if (kvm->vcpus[i]) {
  3862. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3863. kvm->vcpus[i] = NULL;
  3864. }
  3865. }
  3866. }
  3867. void kvm_arch_sync_events(struct kvm *kvm)
  3868. {
  3869. kvm_free_all_assigned_devices(kvm);
  3870. }
  3871. void kvm_arch_destroy_vm(struct kvm *kvm)
  3872. {
  3873. kvm_iommu_unmap_guest(kvm);
  3874. kvm_free_pit(kvm);
  3875. kfree(kvm->arch.vpic);
  3876. kfree(kvm->arch.vioapic);
  3877. kvm_free_vcpus(kvm);
  3878. kvm_free_physmem(kvm);
  3879. if (kvm->arch.apic_access_page)
  3880. put_page(kvm->arch.apic_access_page);
  3881. if (kvm->arch.ept_identity_pagetable)
  3882. put_page(kvm->arch.ept_identity_pagetable);
  3883. kfree(kvm);
  3884. }
  3885. int kvm_arch_set_memory_region(struct kvm *kvm,
  3886. struct kvm_userspace_memory_region *mem,
  3887. struct kvm_memory_slot old,
  3888. int user_alloc)
  3889. {
  3890. int npages = mem->memory_size >> PAGE_SHIFT;
  3891. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3892. /*To keep backward compatibility with older userspace,
  3893. *x86 needs to hanlde !user_alloc case.
  3894. */
  3895. if (!user_alloc) {
  3896. if (npages && !old.rmap) {
  3897. unsigned long userspace_addr;
  3898. down_write(&current->mm->mmap_sem);
  3899. userspace_addr = do_mmap(NULL, 0,
  3900. npages * PAGE_SIZE,
  3901. PROT_READ | PROT_WRITE,
  3902. MAP_PRIVATE | MAP_ANONYMOUS,
  3903. 0);
  3904. up_write(&current->mm->mmap_sem);
  3905. if (IS_ERR((void *)userspace_addr))
  3906. return PTR_ERR((void *)userspace_addr);
  3907. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3908. spin_lock(&kvm->mmu_lock);
  3909. memslot->userspace_addr = userspace_addr;
  3910. spin_unlock(&kvm->mmu_lock);
  3911. } else {
  3912. if (!old.user_alloc && old.rmap) {
  3913. int ret;
  3914. down_write(&current->mm->mmap_sem);
  3915. ret = do_munmap(current->mm, old.userspace_addr,
  3916. old.npages * PAGE_SIZE);
  3917. up_write(&current->mm->mmap_sem);
  3918. if (ret < 0)
  3919. printk(KERN_WARNING
  3920. "kvm_vm_ioctl_set_memory_region: "
  3921. "failed to munmap memory\n");
  3922. }
  3923. }
  3924. }
  3925. spin_lock(&kvm->mmu_lock);
  3926. if (!kvm->arch.n_requested_mmu_pages) {
  3927. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3928. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3929. }
  3930. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3931. spin_unlock(&kvm->mmu_lock);
  3932. kvm_flush_remote_tlbs(kvm);
  3933. return 0;
  3934. }
  3935. void kvm_arch_flush_shadow(struct kvm *kvm)
  3936. {
  3937. kvm_mmu_zap_all(kvm);
  3938. kvm_reload_remote_mmus(kvm);
  3939. }
  3940. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3941. {
  3942. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3943. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3944. || vcpu->arch.nmi_pending;
  3945. }
  3946. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3947. {
  3948. int me;
  3949. int cpu = vcpu->cpu;
  3950. if (waitqueue_active(&vcpu->wq)) {
  3951. wake_up_interruptible(&vcpu->wq);
  3952. ++vcpu->stat.halt_wakeup;
  3953. }
  3954. me = get_cpu();
  3955. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  3956. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  3957. smp_send_reschedule(cpu);
  3958. put_cpu();
  3959. }
  3960. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  3961. {
  3962. return kvm_x86_ops->interrupt_allowed(vcpu);
  3963. }