arm_arch_timer.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/of_irq.h>
  20. #include <linux/of_address.h>
  21. #include <linux/io.h>
  22. #include <linux/slab.h>
  23. #include <linux/sched_clock.h>
  24. #include <asm/arch_timer.h>
  25. #include <asm/virt.h>
  26. #include <clocksource/arm_arch_timer.h>
  27. #define CNTTIDR 0x08
  28. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  29. #define CNTVCT_LO 0x08
  30. #define CNTVCT_HI 0x0c
  31. #define CNTFRQ 0x10
  32. #define CNTP_TVAL 0x28
  33. #define CNTP_CTL 0x2c
  34. #define CNTV_TVAL 0x38
  35. #define CNTV_CTL 0x3c
  36. #define ARCH_CP15_TIMER BIT(0)
  37. #define ARCH_MEM_TIMER BIT(1)
  38. static unsigned arch_timers_present __initdata;
  39. static void __iomem *arch_counter_base;
  40. struct arch_timer {
  41. void __iomem *base;
  42. struct clock_event_device evt;
  43. };
  44. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  45. static u32 arch_timer_rate;
  46. enum ppi_nr {
  47. PHYS_SECURE_PPI,
  48. PHYS_NONSECURE_PPI,
  49. VIRT_PPI,
  50. HYP_PPI,
  51. MAX_TIMER_PPI
  52. };
  53. static int arch_timer_ppi[MAX_TIMER_PPI];
  54. static struct clock_event_device __percpu *arch_timer_evt;
  55. static bool arch_timer_use_virtual = true;
  56. static bool arch_timer_mem_use_virtual;
  57. /*
  58. * Architected system timer support.
  59. */
  60. static __always_inline
  61. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  62. struct clock_event_device *clk)
  63. {
  64. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  65. struct arch_timer *timer = to_arch_timer(clk);
  66. switch (reg) {
  67. case ARCH_TIMER_REG_CTRL:
  68. writel_relaxed(val, timer->base + CNTP_CTL);
  69. break;
  70. case ARCH_TIMER_REG_TVAL:
  71. writel_relaxed(val, timer->base + CNTP_TVAL);
  72. break;
  73. }
  74. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  75. struct arch_timer *timer = to_arch_timer(clk);
  76. switch (reg) {
  77. case ARCH_TIMER_REG_CTRL:
  78. writel_relaxed(val, timer->base + CNTV_CTL);
  79. break;
  80. case ARCH_TIMER_REG_TVAL:
  81. writel_relaxed(val, timer->base + CNTV_TVAL);
  82. break;
  83. }
  84. } else {
  85. arch_timer_reg_write_cp15(access, reg, val);
  86. }
  87. }
  88. static __always_inline
  89. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  90. struct clock_event_device *clk)
  91. {
  92. u32 val;
  93. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  94. struct arch_timer *timer = to_arch_timer(clk);
  95. switch (reg) {
  96. case ARCH_TIMER_REG_CTRL:
  97. val = readl_relaxed(timer->base + CNTP_CTL);
  98. break;
  99. case ARCH_TIMER_REG_TVAL:
  100. val = readl_relaxed(timer->base + CNTP_TVAL);
  101. break;
  102. }
  103. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  104. struct arch_timer *timer = to_arch_timer(clk);
  105. switch (reg) {
  106. case ARCH_TIMER_REG_CTRL:
  107. val = readl_relaxed(timer->base + CNTV_CTL);
  108. break;
  109. case ARCH_TIMER_REG_TVAL:
  110. val = readl_relaxed(timer->base + CNTV_TVAL);
  111. break;
  112. }
  113. } else {
  114. val = arch_timer_reg_read_cp15(access, reg);
  115. }
  116. return val;
  117. }
  118. static __always_inline irqreturn_t timer_handler(const int access,
  119. struct clock_event_device *evt)
  120. {
  121. unsigned long ctrl;
  122. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  123. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  124. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  125. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  126. evt->event_handler(evt);
  127. return IRQ_HANDLED;
  128. }
  129. return IRQ_NONE;
  130. }
  131. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  132. {
  133. struct clock_event_device *evt = dev_id;
  134. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  135. }
  136. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  137. {
  138. struct clock_event_device *evt = dev_id;
  139. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  140. }
  141. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  142. {
  143. struct clock_event_device *evt = dev_id;
  144. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  145. }
  146. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  147. {
  148. struct clock_event_device *evt = dev_id;
  149. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  150. }
  151. static __always_inline void timer_set_mode(const int access, int mode,
  152. struct clock_event_device *clk)
  153. {
  154. unsigned long ctrl;
  155. switch (mode) {
  156. case CLOCK_EVT_MODE_UNUSED:
  157. case CLOCK_EVT_MODE_SHUTDOWN:
  158. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  159. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  160. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  161. break;
  162. default:
  163. break;
  164. }
  165. }
  166. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  167. struct clock_event_device *clk)
  168. {
  169. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  170. }
  171. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  172. struct clock_event_device *clk)
  173. {
  174. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  175. }
  176. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  177. struct clock_event_device *clk)
  178. {
  179. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  180. }
  181. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  182. struct clock_event_device *clk)
  183. {
  184. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  185. }
  186. static __always_inline void set_next_event(const int access, unsigned long evt,
  187. struct clock_event_device *clk)
  188. {
  189. unsigned long ctrl;
  190. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  191. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  192. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  193. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  194. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  195. }
  196. static int arch_timer_set_next_event_virt(unsigned long evt,
  197. struct clock_event_device *clk)
  198. {
  199. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  200. return 0;
  201. }
  202. static int arch_timer_set_next_event_phys(unsigned long evt,
  203. struct clock_event_device *clk)
  204. {
  205. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  206. return 0;
  207. }
  208. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  209. struct clock_event_device *clk)
  210. {
  211. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  212. return 0;
  213. }
  214. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  215. struct clock_event_device *clk)
  216. {
  217. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  218. return 0;
  219. }
  220. static void __arch_timer_setup(unsigned type,
  221. struct clock_event_device *clk)
  222. {
  223. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  224. if (type == ARCH_CP15_TIMER) {
  225. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  226. clk->name = "arch_sys_timer";
  227. clk->rating = 450;
  228. clk->cpumask = cpumask_of(smp_processor_id());
  229. if (arch_timer_use_virtual) {
  230. clk->irq = arch_timer_ppi[VIRT_PPI];
  231. clk->set_mode = arch_timer_set_mode_virt;
  232. clk->set_next_event = arch_timer_set_next_event_virt;
  233. } else {
  234. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  235. clk->set_mode = arch_timer_set_mode_phys;
  236. clk->set_next_event = arch_timer_set_next_event_phys;
  237. }
  238. } else {
  239. clk->name = "arch_mem_timer";
  240. clk->rating = 400;
  241. clk->cpumask = cpu_all_mask;
  242. if (arch_timer_mem_use_virtual) {
  243. clk->set_mode = arch_timer_set_mode_virt_mem;
  244. clk->set_next_event =
  245. arch_timer_set_next_event_virt_mem;
  246. } else {
  247. clk->set_mode = arch_timer_set_mode_phys_mem;
  248. clk->set_next_event =
  249. arch_timer_set_next_event_phys_mem;
  250. }
  251. }
  252. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  253. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  254. }
  255. static void arch_timer_configure_evtstream(void)
  256. {
  257. int evt_stream_div, pos;
  258. /* Find the closest power of two to the divisor */
  259. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  260. pos = fls(evt_stream_div);
  261. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  262. pos--;
  263. /* enable event stream */
  264. arch_timer_evtstrm_enable(min(pos, 15));
  265. }
  266. static int arch_timer_setup(struct clock_event_device *clk)
  267. {
  268. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  269. if (arch_timer_use_virtual)
  270. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  271. else {
  272. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  273. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  274. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  275. }
  276. arch_counter_set_user_access();
  277. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  278. arch_timer_configure_evtstream();
  279. return 0;
  280. }
  281. static void
  282. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  283. {
  284. /* Who has more than one independent system counter? */
  285. if (arch_timer_rate)
  286. return;
  287. /* Try to determine the frequency from the device tree or CNTFRQ */
  288. if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  289. if (cntbase)
  290. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  291. else
  292. arch_timer_rate = arch_timer_get_cntfrq();
  293. }
  294. /* Check the timer frequency. */
  295. if (arch_timer_rate == 0)
  296. pr_warn("Architected timer frequency not available\n");
  297. }
  298. static void arch_timer_banner(unsigned type)
  299. {
  300. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  301. type & ARCH_CP15_TIMER ? "cp15" : "",
  302. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  303. type & ARCH_MEM_TIMER ? "mmio" : "",
  304. (unsigned long)arch_timer_rate / 1000000,
  305. (unsigned long)(arch_timer_rate / 10000) % 100,
  306. type & ARCH_CP15_TIMER ?
  307. arch_timer_use_virtual ? "virt" : "phys" :
  308. "",
  309. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  310. type & ARCH_MEM_TIMER ?
  311. arch_timer_mem_use_virtual ? "virt" : "phys" :
  312. "");
  313. }
  314. u32 arch_timer_get_rate(void)
  315. {
  316. return arch_timer_rate;
  317. }
  318. static u64 arch_counter_get_cntvct_mem(void)
  319. {
  320. u32 vct_lo, vct_hi, tmp_hi;
  321. do {
  322. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  323. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  324. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  325. } while (vct_hi != tmp_hi);
  326. return ((u64) vct_hi << 32) | vct_lo;
  327. }
  328. /*
  329. * Default to cp15 based access because arm64 uses this function for
  330. * sched_clock() before DT is probed and the cp15 method is guaranteed
  331. * to exist on arm64. arm doesn't use this before DT is probed so even
  332. * if we don't have the cp15 accessors we won't have a problem.
  333. */
  334. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  335. static cycle_t arch_counter_read(struct clocksource *cs)
  336. {
  337. return arch_timer_read_counter();
  338. }
  339. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  340. {
  341. return arch_timer_read_counter();
  342. }
  343. static struct clocksource clocksource_counter = {
  344. .name = "arch_sys_counter",
  345. .rating = 400,
  346. .read = arch_counter_read,
  347. .mask = CLOCKSOURCE_MASK(56),
  348. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  349. };
  350. static struct cyclecounter cyclecounter = {
  351. .read = arch_counter_read_cc,
  352. .mask = CLOCKSOURCE_MASK(56),
  353. };
  354. static struct timecounter timecounter;
  355. struct timecounter *arch_timer_get_timecounter(void)
  356. {
  357. return &timecounter;
  358. }
  359. static void __init arch_counter_register(unsigned type)
  360. {
  361. u64 start_count;
  362. /* Register the CP15 based counter if we have one */
  363. if (type & ARCH_CP15_TIMER)
  364. arch_timer_read_counter = arch_counter_get_cntvct;
  365. else
  366. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  367. start_count = arch_timer_read_counter();
  368. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  369. cyclecounter.mult = clocksource_counter.mult;
  370. cyclecounter.shift = clocksource_counter.shift;
  371. timecounter_init(&timecounter, &cyclecounter, start_count);
  372. /* 56 bits minimum, so we assume worst case rollover */
  373. sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  374. }
  375. static void arch_timer_stop(struct clock_event_device *clk)
  376. {
  377. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  378. clk->irq, smp_processor_id());
  379. if (arch_timer_use_virtual)
  380. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  381. else {
  382. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  383. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  384. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  385. }
  386. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  387. }
  388. static int arch_timer_cpu_notify(struct notifier_block *self,
  389. unsigned long action, void *hcpu)
  390. {
  391. /*
  392. * Grab cpu pointer in each case to avoid spurious
  393. * preemptible warnings
  394. */
  395. switch (action & ~CPU_TASKS_FROZEN) {
  396. case CPU_STARTING:
  397. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  398. break;
  399. case CPU_DYING:
  400. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  401. break;
  402. }
  403. return NOTIFY_OK;
  404. }
  405. static struct notifier_block arch_timer_cpu_nb = {
  406. .notifier_call = arch_timer_cpu_notify,
  407. };
  408. #ifdef CONFIG_CPU_PM
  409. static unsigned int saved_cntkctl;
  410. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  411. unsigned long action, void *hcpu)
  412. {
  413. if (action == CPU_PM_ENTER)
  414. saved_cntkctl = arch_timer_get_cntkctl();
  415. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  416. arch_timer_set_cntkctl(saved_cntkctl);
  417. return NOTIFY_OK;
  418. }
  419. static struct notifier_block arch_timer_cpu_pm_notifier = {
  420. .notifier_call = arch_timer_cpu_pm_notify,
  421. };
  422. static int __init arch_timer_cpu_pm_init(void)
  423. {
  424. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  425. }
  426. #else
  427. static int __init arch_timer_cpu_pm_init(void)
  428. {
  429. return 0;
  430. }
  431. #endif
  432. static int __init arch_timer_register(void)
  433. {
  434. int err;
  435. int ppi;
  436. arch_timer_evt = alloc_percpu(struct clock_event_device);
  437. if (!arch_timer_evt) {
  438. err = -ENOMEM;
  439. goto out;
  440. }
  441. if (arch_timer_use_virtual) {
  442. ppi = arch_timer_ppi[VIRT_PPI];
  443. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  444. "arch_timer", arch_timer_evt);
  445. } else {
  446. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  447. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  448. "arch_timer", arch_timer_evt);
  449. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  450. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  451. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  452. "arch_timer", arch_timer_evt);
  453. if (err)
  454. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  455. arch_timer_evt);
  456. }
  457. }
  458. if (err) {
  459. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  460. ppi, err);
  461. goto out_free;
  462. }
  463. err = register_cpu_notifier(&arch_timer_cpu_nb);
  464. if (err)
  465. goto out_free_irq;
  466. err = arch_timer_cpu_pm_init();
  467. if (err)
  468. goto out_unreg_notify;
  469. /* Immediately configure the timer on the boot CPU */
  470. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  471. return 0;
  472. out_unreg_notify:
  473. unregister_cpu_notifier(&arch_timer_cpu_nb);
  474. out_free_irq:
  475. if (arch_timer_use_virtual)
  476. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  477. else {
  478. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  479. arch_timer_evt);
  480. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  481. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  482. arch_timer_evt);
  483. }
  484. out_free:
  485. free_percpu(arch_timer_evt);
  486. out:
  487. return err;
  488. }
  489. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  490. {
  491. int ret;
  492. irq_handler_t func;
  493. struct arch_timer *t;
  494. t = kzalloc(sizeof(*t), GFP_KERNEL);
  495. if (!t)
  496. return -ENOMEM;
  497. t->base = base;
  498. t->evt.irq = irq;
  499. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  500. if (arch_timer_mem_use_virtual)
  501. func = arch_timer_handler_virt_mem;
  502. else
  503. func = arch_timer_handler_phys_mem;
  504. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  505. if (ret) {
  506. pr_err("arch_timer: Failed to request mem timer irq\n");
  507. kfree(t);
  508. }
  509. return ret;
  510. }
  511. static const struct of_device_id arch_timer_of_match[] __initconst = {
  512. { .compatible = "arm,armv7-timer", },
  513. { .compatible = "arm,armv8-timer", },
  514. {},
  515. };
  516. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  517. { .compatible = "arm,armv7-timer-mem", },
  518. {},
  519. };
  520. static void __init arch_timer_common_init(void)
  521. {
  522. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  523. /* Wait until both nodes are probed if we have two timers */
  524. if ((arch_timers_present & mask) != mask) {
  525. if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
  526. !(arch_timers_present & ARCH_MEM_TIMER))
  527. return;
  528. if (of_find_matching_node(NULL, arch_timer_of_match) &&
  529. !(arch_timers_present & ARCH_CP15_TIMER))
  530. return;
  531. }
  532. arch_timer_banner(arch_timers_present);
  533. arch_counter_register(arch_timers_present);
  534. arch_timer_arch_init();
  535. }
  536. static void __init arch_timer_init(struct device_node *np)
  537. {
  538. int i;
  539. if (arch_timers_present & ARCH_CP15_TIMER) {
  540. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  541. return;
  542. }
  543. arch_timers_present |= ARCH_CP15_TIMER;
  544. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  545. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  546. arch_timer_detect_rate(NULL, np);
  547. /*
  548. * If HYP mode is available, we know that the physical timer
  549. * has been configured to be accessible from PL1. Use it, so
  550. * that a guest can use the virtual timer instead.
  551. *
  552. * If no interrupt provided for virtual timer, we'll have to
  553. * stick to the physical timer. It'd better be accessible...
  554. */
  555. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  556. arch_timer_use_virtual = false;
  557. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  558. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  559. pr_warn("arch_timer: No interrupt available, giving up\n");
  560. return;
  561. }
  562. }
  563. arch_timer_register();
  564. arch_timer_common_init();
  565. }
  566. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  567. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
  568. static void __init arch_timer_mem_init(struct device_node *np)
  569. {
  570. struct device_node *frame, *best_frame = NULL;
  571. void __iomem *cntctlbase, *base;
  572. unsigned int irq;
  573. u32 cnttidr;
  574. arch_timers_present |= ARCH_MEM_TIMER;
  575. cntctlbase = of_iomap(np, 0);
  576. if (!cntctlbase) {
  577. pr_err("arch_timer: Can't find CNTCTLBase\n");
  578. return;
  579. }
  580. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  581. iounmap(cntctlbase);
  582. /*
  583. * Try to find a virtual capable frame. Otherwise fall back to a
  584. * physical capable frame.
  585. */
  586. for_each_available_child_of_node(np, frame) {
  587. int n;
  588. if (of_property_read_u32(frame, "frame-number", &n)) {
  589. pr_err("arch_timer: Missing frame-number\n");
  590. of_node_put(best_frame);
  591. of_node_put(frame);
  592. return;
  593. }
  594. if (cnttidr & CNTTIDR_VIRT(n)) {
  595. of_node_put(best_frame);
  596. best_frame = frame;
  597. arch_timer_mem_use_virtual = true;
  598. break;
  599. }
  600. of_node_put(best_frame);
  601. best_frame = of_node_get(frame);
  602. }
  603. base = arch_counter_base = of_iomap(best_frame, 0);
  604. if (!base) {
  605. pr_err("arch_timer: Can't map frame's registers\n");
  606. of_node_put(best_frame);
  607. return;
  608. }
  609. if (arch_timer_mem_use_virtual)
  610. irq = irq_of_parse_and_map(best_frame, 1);
  611. else
  612. irq = irq_of_parse_and_map(best_frame, 0);
  613. of_node_put(best_frame);
  614. if (!irq) {
  615. pr_err("arch_timer: Frame missing %s irq",
  616. arch_timer_mem_use_virtual ? "virt" : "phys");
  617. return;
  618. }
  619. arch_timer_detect_rate(base, np);
  620. arch_timer_mem_register(base, irq);
  621. arch_timer_common_init();
  622. }
  623. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  624. arch_timer_mem_init);