i915_gem.c 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment, bool mappable);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  58. int nr_to_scan,
  59. gfp_t gfp_mask);
  60. /* some bookkeeping */
  61. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  62. size_t size)
  63. {
  64. dev_priv->mm.object_count++;
  65. dev_priv->mm.object_memory += size;
  66. }
  67. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  68. size_t size)
  69. {
  70. dev_priv->mm.object_count--;
  71. dev_priv->mm.object_memory -= size;
  72. }
  73. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  74. struct drm_gem_object *obj)
  75. {
  76. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  77. dev_priv->mm.gtt_count++;
  78. dev_priv->mm.gtt_memory += obj->size;
  79. if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  80. dev_priv->mm.mappable_gtt_used +=
  81. min_t(size_t, obj->size,
  82. dev_priv->mm.gtt_mappable_end
  83. - obj_priv->gtt_offset);
  84. }
  85. }
  86. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  87. struct drm_gem_object *obj)
  88. {
  89. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  90. dev_priv->mm.gtt_count--;
  91. dev_priv->mm.gtt_memory -= obj->size;
  92. if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  93. dev_priv->mm.mappable_gtt_used -=
  94. min_t(size_t, obj->size,
  95. dev_priv->mm.gtt_mappable_end
  96. - obj_priv->gtt_offset);
  97. }
  98. }
  99. /**
  100. * Update the mappable working set counters. Call _only_ when there is a change
  101. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  102. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  103. */
  104. static void
  105. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  106. struct drm_gem_object *obj,
  107. bool mappable)
  108. {
  109. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  110. if (mappable) {
  111. if (obj_priv->pin_mappable && obj_priv->fault_mappable)
  112. /* Combined state was already mappable. */
  113. return;
  114. dev_priv->mm.gtt_mappable_count++;
  115. dev_priv->mm.gtt_mappable_memory += obj->size;
  116. } else {
  117. if (obj_priv->pin_mappable || obj_priv->fault_mappable)
  118. /* Combined state still mappable. */
  119. return;
  120. dev_priv->mm.gtt_mappable_count--;
  121. dev_priv->mm.gtt_mappable_memory -= obj->size;
  122. }
  123. }
  124. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  125. struct drm_gem_object *obj,
  126. bool mappable)
  127. {
  128. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  129. dev_priv->mm.pin_count++;
  130. dev_priv->mm.pin_memory += obj->size;
  131. if (mappable) {
  132. obj_priv->pin_mappable = true;
  133. i915_gem_info_update_mappable(dev_priv, obj, true);
  134. }
  135. }
  136. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  137. struct drm_gem_object *obj)
  138. {
  139. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  140. dev_priv->mm.pin_count--;
  141. dev_priv->mm.pin_memory -= obj->size;
  142. if (obj_priv->pin_mappable) {
  143. obj_priv->pin_mappable = false;
  144. i915_gem_info_update_mappable(dev_priv, obj, false);
  145. }
  146. }
  147. int
  148. i915_gem_check_is_wedged(struct drm_device *dev)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. struct completion *x = &dev_priv->error_completion;
  152. unsigned long flags;
  153. int ret;
  154. if (!atomic_read(&dev_priv->mm.wedged))
  155. return 0;
  156. ret = wait_for_completion_interruptible(x);
  157. if (ret)
  158. return ret;
  159. /* Success, we reset the GPU! */
  160. if (!atomic_read(&dev_priv->mm.wedged))
  161. return 0;
  162. /* GPU is hung, bump the completion count to account for
  163. * the token we just consumed so that we never hit zero and
  164. * end up waiting upon a subsequent completion event that
  165. * will never happen.
  166. */
  167. spin_lock_irqsave(&x->wait.lock, flags);
  168. x->done++;
  169. spin_unlock_irqrestore(&x->wait.lock, flags);
  170. return -EIO;
  171. }
  172. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  173. {
  174. struct drm_i915_private *dev_priv = dev->dev_private;
  175. int ret;
  176. ret = i915_gem_check_is_wedged(dev);
  177. if (ret)
  178. return ret;
  179. ret = mutex_lock_interruptible(&dev->struct_mutex);
  180. if (ret)
  181. return ret;
  182. if (atomic_read(&dev_priv->mm.wedged)) {
  183. mutex_unlock(&dev->struct_mutex);
  184. return -EAGAIN;
  185. }
  186. WARN_ON(i915_verify_lists(dev));
  187. return 0;
  188. }
  189. static inline bool
  190. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  191. {
  192. return obj_priv->gtt_space &&
  193. !obj_priv->active &&
  194. obj_priv->pin_count == 0;
  195. }
  196. int i915_gem_do_init(struct drm_device *dev,
  197. unsigned long start,
  198. unsigned long mappable_end,
  199. unsigned long end)
  200. {
  201. drm_i915_private_t *dev_priv = dev->dev_private;
  202. if (start >= end ||
  203. (start & (PAGE_SIZE - 1)) != 0 ||
  204. (end & (PAGE_SIZE - 1)) != 0) {
  205. return -EINVAL;
  206. }
  207. drm_mm_init(&dev_priv->mm.gtt_space, start,
  208. end - start);
  209. dev_priv->mm.gtt_total = end - start;
  210. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  211. dev_priv->mm.gtt_mappable_end = mappable_end;
  212. return 0;
  213. }
  214. int
  215. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_init *args = data;
  219. int ret;
  220. mutex_lock(&dev->struct_mutex);
  221. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  222. mutex_unlock(&dev->struct_mutex);
  223. return ret;
  224. }
  225. int
  226. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  227. struct drm_file *file_priv)
  228. {
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. struct drm_i915_gem_get_aperture *args = data;
  231. if (!(dev->driver->driver_features & DRIVER_GEM))
  232. return -ENODEV;
  233. mutex_lock(&dev->struct_mutex);
  234. args->aper_size = dev_priv->mm.gtt_total;
  235. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  236. mutex_unlock(&dev->struct_mutex);
  237. return 0;
  238. }
  239. /**
  240. * Creates a new mm object and returns a handle to it.
  241. */
  242. int
  243. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  244. struct drm_file *file_priv)
  245. {
  246. struct drm_i915_gem_create *args = data;
  247. struct drm_gem_object *obj;
  248. int ret;
  249. u32 handle;
  250. args->size = roundup(args->size, PAGE_SIZE);
  251. /* Allocate the new object */
  252. obj = i915_gem_alloc_object(dev, args->size);
  253. if (obj == NULL)
  254. return -ENOMEM;
  255. ret = drm_gem_handle_create(file_priv, obj, &handle);
  256. if (ret) {
  257. drm_gem_object_release(obj);
  258. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  259. kfree(obj);
  260. return ret;
  261. }
  262. /* drop reference from allocate - handle holds it now */
  263. drm_gem_object_unreference(obj);
  264. trace_i915_gem_object_create(obj);
  265. args->handle = handle;
  266. return 0;
  267. }
  268. static bool
  269. i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
  270. {
  271. struct drm_device *dev = obj->base.dev;
  272. drm_i915_private_t *dev_priv = dev->dev_private;
  273. return obj->gtt_space == NULL ||
  274. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  275. }
  276. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  277. {
  278. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  279. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  280. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  281. obj_priv->tiling_mode != I915_TILING_NONE;
  282. }
  283. static inline void
  284. slow_shmem_copy(struct page *dst_page,
  285. int dst_offset,
  286. struct page *src_page,
  287. int src_offset,
  288. int length)
  289. {
  290. char *dst_vaddr, *src_vaddr;
  291. dst_vaddr = kmap(dst_page);
  292. src_vaddr = kmap(src_page);
  293. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  294. kunmap(src_page);
  295. kunmap(dst_page);
  296. }
  297. static inline void
  298. slow_shmem_bit17_copy(struct page *gpu_page,
  299. int gpu_offset,
  300. struct page *cpu_page,
  301. int cpu_offset,
  302. int length,
  303. int is_read)
  304. {
  305. char *gpu_vaddr, *cpu_vaddr;
  306. /* Use the unswizzled path if this page isn't affected. */
  307. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  308. if (is_read)
  309. return slow_shmem_copy(cpu_page, cpu_offset,
  310. gpu_page, gpu_offset, length);
  311. else
  312. return slow_shmem_copy(gpu_page, gpu_offset,
  313. cpu_page, cpu_offset, length);
  314. }
  315. gpu_vaddr = kmap(gpu_page);
  316. cpu_vaddr = kmap(cpu_page);
  317. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  318. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  319. */
  320. while (length > 0) {
  321. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  322. int this_length = min(cacheline_end - gpu_offset, length);
  323. int swizzled_gpu_offset = gpu_offset ^ 64;
  324. if (is_read) {
  325. memcpy(cpu_vaddr + cpu_offset,
  326. gpu_vaddr + swizzled_gpu_offset,
  327. this_length);
  328. } else {
  329. memcpy(gpu_vaddr + swizzled_gpu_offset,
  330. cpu_vaddr + cpu_offset,
  331. this_length);
  332. }
  333. cpu_offset += this_length;
  334. gpu_offset += this_length;
  335. length -= this_length;
  336. }
  337. kunmap(cpu_page);
  338. kunmap(gpu_page);
  339. }
  340. /**
  341. * This is the fast shmem pread path, which attempts to copy_from_user directly
  342. * from the backing pages of the object to the user's address space. On a
  343. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  344. */
  345. static int
  346. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  347. struct drm_i915_gem_pread *args,
  348. struct drm_file *file_priv)
  349. {
  350. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  351. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  352. ssize_t remain;
  353. loff_t offset;
  354. char __user *user_data;
  355. int page_offset, page_length;
  356. user_data = (char __user *) (uintptr_t) args->data_ptr;
  357. remain = args->size;
  358. obj_priv = to_intel_bo(obj);
  359. offset = args->offset;
  360. while (remain > 0) {
  361. struct page *page;
  362. char *vaddr;
  363. int ret;
  364. /* Operation in this page
  365. *
  366. * page_offset = offset within page
  367. * page_length = bytes to copy for this page
  368. */
  369. page_offset = offset & (PAGE_SIZE-1);
  370. page_length = remain;
  371. if ((page_offset + remain) > PAGE_SIZE)
  372. page_length = PAGE_SIZE - page_offset;
  373. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  374. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  375. if (IS_ERR(page))
  376. return PTR_ERR(page);
  377. vaddr = kmap_atomic(page);
  378. ret = __copy_to_user_inatomic(user_data,
  379. vaddr + page_offset,
  380. page_length);
  381. kunmap_atomic(vaddr);
  382. mark_page_accessed(page);
  383. page_cache_release(page);
  384. if (ret)
  385. return -EFAULT;
  386. remain -= page_length;
  387. user_data += page_length;
  388. offset += page_length;
  389. }
  390. return 0;
  391. }
  392. /**
  393. * This is the fallback shmem pread path, which allocates temporary storage
  394. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  395. * can copy out of the object's backing pages while holding the struct mutex
  396. * and not take page faults.
  397. */
  398. static int
  399. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  400. struct drm_i915_gem_pread *args,
  401. struct drm_file *file_priv)
  402. {
  403. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  404. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  405. struct mm_struct *mm = current->mm;
  406. struct page **user_pages;
  407. ssize_t remain;
  408. loff_t offset, pinned_pages, i;
  409. loff_t first_data_page, last_data_page, num_pages;
  410. int shmem_page_offset;
  411. int data_page_index, data_page_offset;
  412. int page_length;
  413. int ret;
  414. uint64_t data_ptr = args->data_ptr;
  415. int do_bit17_swizzling;
  416. remain = args->size;
  417. /* Pin the user pages containing the data. We can't fault while
  418. * holding the struct mutex, yet we want to hold it while
  419. * dereferencing the user data.
  420. */
  421. first_data_page = data_ptr / PAGE_SIZE;
  422. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  423. num_pages = last_data_page - first_data_page + 1;
  424. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  425. if (user_pages == NULL)
  426. return -ENOMEM;
  427. mutex_unlock(&dev->struct_mutex);
  428. down_read(&mm->mmap_sem);
  429. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  430. num_pages, 1, 0, user_pages, NULL);
  431. up_read(&mm->mmap_sem);
  432. mutex_lock(&dev->struct_mutex);
  433. if (pinned_pages < num_pages) {
  434. ret = -EFAULT;
  435. goto out;
  436. }
  437. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  438. args->offset,
  439. args->size);
  440. if (ret)
  441. goto out;
  442. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  443. obj_priv = to_intel_bo(obj);
  444. offset = args->offset;
  445. while (remain > 0) {
  446. struct page *page;
  447. /* Operation in this page
  448. *
  449. * shmem_page_offset = offset within page in shmem file
  450. * data_page_index = page number in get_user_pages return
  451. * data_page_offset = offset with data_page_index page.
  452. * page_length = bytes to copy for this page
  453. */
  454. shmem_page_offset = offset & ~PAGE_MASK;
  455. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  456. data_page_offset = data_ptr & ~PAGE_MASK;
  457. page_length = remain;
  458. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  459. page_length = PAGE_SIZE - shmem_page_offset;
  460. if ((data_page_offset + page_length) > PAGE_SIZE)
  461. page_length = PAGE_SIZE - data_page_offset;
  462. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  463. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  464. if (IS_ERR(page))
  465. return PTR_ERR(page);
  466. if (do_bit17_swizzling) {
  467. slow_shmem_bit17_copy(page,
  468. shmem_page_offset,
  469. user_pages[data_page_index],
  470. data_page_offset,
  471. page_length,
  472. 1);
  473. } else {
  474. slow_shmem_copy(user_pages[data_page_index],
  475. data_page_offset,
  476. page,
  477. shmem_page_offset,
  478. page_length);
  479. }
  480. mark_page_accessed(page);
  481. page_cache_release(page);
  482. remain -= page_length;
  483. data_ptr += page_length;
  484. offset += page_length;
  485. }
  486. out:
  487. for (i = 0; i < pinned_pages; i++) {
  488. SetPageDirty(user_pages[i]);
  489. mark_page_accessed(user_pages[i]);
  490. page_cache_release(user_pages[i]);
  491. }
  492. drm_free_large(user_pages);
  493. return ret;
  494. }
  495. /**
  496. * Reads data from the object referenced by handle.
  497. *
  498. * On error, the contents of *data are undefined.
  499. */
  500. int
  501. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  502. struct drm_file *file_priv)
  503. {
  504. struct drm_i915_gem_pread *args = data;
  505. struct drm_gem_object *obj;
  506. struct drm_i915_gem_object *obj_priv;
  507. int ret = 0;
  508. ret = i915_mutex_lock_interruptible(dev);
  509. if (ret)
  510. return ret;
  511. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  512. if (obj == NULL) {
  513. ret = -ENOENT;
  514. goto unlock;
  515. }
  516. obj_priv = to_intel_bo(obj);
  517. /* Bounds check source. */
  518. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  519. ret = -EINVAL;
  520. goto out;
  521. }
  522. if (args->size == 0)
  523. goto out;
  524. if (!access_ok(VERIFY_WRITE,
  525. (char __user *)(uintptr_t)args->data_ptr,
  526. args->size)) {
  527. ret = -EFAULT;
  528. goto out;
  529. }
  530. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  531. args->size);
  532. if (ret) {
  533. ret = -EFAULT;
  534. goto out;
  535. }
  536. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  537. args->offset,
  538. args->size);
  539. if (ret)
  540. goto out;
  541. ret = -EFAULT;
  542. if (!i915_gem_object_needs_bit17_swizzle(obj))
  543. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  544. if (ret == -EFAULT)
  545. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  546. out:
  547. drm_gem_object_unreference(obj);
  548. unlock:
  549. mutex_unlock(&dev->struct_mutex);
  550. return ret;
  551. }
  552. /* This is the fast write path which cannot handle
  553. * page faults in the source data
  554. */
  555. static inline int
  556. fast_user_write(struct io_mapping *mapping,
  557. loff_t page_base, int page_offset,
  558. char __user *user_data,
  559. int length)
  560. {
  561. char *vaddr_atomic;
  562. unsigned long unwritten;
  563. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  564. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  565. user_data, length);
  566. io_mapping_unmap_atomic(vaddr_atomic);
  567. return unwritten;
  568. }
  569. /* Here's the write path which can sleep for
  570. * page faults
  571. */
  572. static inline void
  573. slow_kernel_write(struct io_mapping *mapping,
  574. loff_t gtt_base, int gtt_offset,
  575. struct page *user_page, int user_offset,
  576. int length)
  577. {
  578. char __iomem *dst_vaddr;
  579. char *src_vaddr;
  580. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  581. src_vaddr = kmap(user_page);
  582. memcpy_toio(dst_vaddr + gtt_offset,
  583. src_vaddr + user_offset,
  584. length);
  585. kunmap(user_page);
  586. io_mapping_unmap(dst_vaddr);
  587. }
  588. /**
  589. * This is the fast pwrite path, where we copy the data directly from the
  590. * user into the GTT, uncached.
  591. */
  592. static int
  593. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  594. struct drm_i915_gem_pwrite *args,
  595. struct drm_file *file_priv)
  596. {
  597. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  598. drm_i915_private_t *dev_priv = dev->dev_private;
  599. ssize_t remain;
  600. loff_t offset, page_base;
  601. char __user *user_data;
  602. int page_offset, page_length;
  603. user_data = (char __user *) (uintptr_t) args->data_ptr;
  604. remain = args->size;
  605. obj_priv = to_intel_bo(obj);
  606. offset = obj_priv->gtt_offset + args->offset;
  607. while (remain > 0) {
  608. /* Operation in this page
  609. *
  610. * page_base = page offset within aperture
  611. * page_offset = offset within page
  612. * page_length = bytes to copy for this page
  613. */
  614. page_base = (offset & ~(PAGE_SIZE-1));
  615. page_offset = offset & (PAGE_SIZE-1);
  616. page_length = remain;
  617. if ((page_offset + remain) > PAGE_SIZE)
  618. page_length = PAGE_SIZE - page_offset;
  619. /* If we get a fault while copying data, then (presumably) our
  620. * source page isn't available. Return the error and we'll
  621. * retry in the slow path.
  622. */
  623. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  624. page_offset, user_data, page_length))
  625. return -EFAULT;
  626. remain -= page_length;
  627. user_data += page_length;
  628. offset += page_length;
  629. }
  630. return 0;
  631. }
  632. /**
  633. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  634. * the memory and maps it using kmap_atomic for copying.
  635. *
  636. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  637. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  638. */
  639. static int
  640. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  641. struct drm_i915_gem_pwrite *args,
  642. struct drm_file *file_priv)
  643. {
  644. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  645. drm_i915_private_t *dev_priv = dev->dev_private;
  646. ssize_t remain;
  647. loff_t gtt_page_base, offset;
  648. loff_t first_data_page, last_data_page, num_pages;
  649. loff_t pinned_pages, i;
  650. struct page **user_pages;
  651. struct mm_struct *mm = current->mm;
  652. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  653. int ret;
  654. uint64_t data_ptr = args->data_ptr;
  655. remain = args->size;
  656. /* Pin the user pages containing the data. We can't fault while
  657. * holding the struct mutex, and all of the pwrite implementations
  658. * want to hold it while dereferencing the user data.
  659. */
  660. first_data_page = data_ptr / PAGE_SIZE;
  661. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  662. num_pages = last_data_page - first_data_page + 1;
  663. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  664. if (user_pages == NULL)
  665. return -ENOMEM;
  666. mutex_unlock(&dev->struct_mutex);
  667. down_read(&mm->mmap_sem);
  668. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  669. num_pages, 0, 0, user_pages, NULL);
  670. up_read(&mm->mmap_sem);
  671. mutex_lock(&dev->struct_mutex);
  672. if (pinned_pages < num_pages) {
  673. ret = -EFAULT;
  674. goto out_unpin_pages;
  675. }
  676. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  677. if (ret)
  678. goto out_unpin_pages;
  679. obj_priv = to_intel_bo(obj);
  680. offset = obj_priv->gtt_offset + args->offset;
  681. while (remain > 0) {
  682. /* Operation in this page
  683. *
  684. * gtt_page_base = page offset within aperture
  685. * gtt_page_offset = offset within page in aperture
  686. * data_page_index = page number in get_user_pages return
  687. * data_page_offset = offset with data_page_index page.
  688. * page_length = bytes to copy for this page
  689. */
  690. gtt_page_base = offset & PAGE_MASK;
  691. gtt_page_offset = offset & ~PAGE_MASK;
  692. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  693. data_page_offset = data_ptr & ~PAGE_MASK;
  694. page_length = remain;
  695. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  696. page_length = PAGE_SIZE - gtt_page_offset;
  697. if ((data_page_offset + page_length) > PAGE_SIZE)
  698. page_length = PAGE_SIZE - data_page_offset;
  699. slow_kernel_write(dev_priv->mm.gtt_mapping,
  700. gtt_page_base, gtt_page_offset,
  701. user_pages[data_page_index],
  702. data_page_offset,
  703. page_length);
  704. remain -= page_length;
  705. offset += page_length;
  706. data_ptr += page_length;
  707. }
  708. out_unpin_pages:
  709. for (i = 0; i < pinned_pages; i++)
  710. page_cache_release(user_pages[i]);
  711. drm_free_large(user_pages);
  712. return ret;
  713. }
  714. /**
  715. * This is the fast shmem pwrite path, which attempts to directly
  716. * copy_from_user into the kmapped pages backing the object.
  717. */
  718. static int
  719. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  720. struct drm_i915_gem_pwrite *args,
  721. struct drm_file *file_priv)
  722. {
  723. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  724. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  725. ssize_t remain;
  726. loff_t offset;
  727. char __user *user_data;
  728. int page_offset, page_length;
  729. user_data = (char __user *) (uintptr_t) args->data_ptr;
  730. remain = args->size;
  731. obj_priv = to_intel_bo(obj);
  732. offset = args->offset;
  733. obj_priv->dirty = 1;
  734. while (remain > 0) {
  735. struct page *page;
  736. char *vaddr;
  737. int ret;
  738. /* Operation in this page
  739. *
  740. * page_offset = offset within page
  741. * page_length = bytes to copy for this page
  742. */
  743. page_offset = offset & (PAGE_SIZE-1);
  744. page_length = remain;
  745. if ((page_offset + remain) > PAGE_SIZE)
  746. page_length = PAGE_SIZE - page_offset;
  747. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  748. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  749. if (IS_ERR(page))
  750. return PTR_ERR(page);
  751. vaddr = kmap_atomic(page, KM_USER0);
  752. ret = __copy_from_user_inatomic(vaddr + page_offset,
  753. user_data,
  754. page_length);
  755. kunmap_atomic(vaddr, KM_USER0);
  756. set_page_dirty(page);
  757. mark_page_accessed(page);
  758. page_cache_release(page);
  759. /* If we get a fault while copying data, then (presumably) our
  760. * source page isn't available. Return the error and we'll
  761. * retry in the slow path.
  762. */
  763. if (ret)
  764. return -EFAULT;
  765. remain -= page_length;
  766. user_data += page_length;
  767. offset += page_length;
  768. }
  769. return 0;
  770. }
  771. /**
  772. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  773. * the memory and maps it using kmap_atomic for copying.
  774. *
  775. * This avoids taking mmap_sem for faulting on the user's address while the
  776. * struct_mutex is held.
  777. */
  778. static int
  779. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  780. struct drm_i915_gem_pwrite *args,
  781. struct drm_file *file_priv)
  782. {
  783. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  784. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  785. struct mm_struct *mm = current->mm;
  786. struct page **user_pages;
  787. ssize_t remain;
  788. loff_t offset, pinned_pages, i;
  789. loff_t first_data_page, last_data_page, num_pages;
  790. int shmem_page_offset;
  791. int data_page_index, data_page_offset;
  792. int page_length;
  793. int ret;
  794. uint64_t data_ptr = args->data_ptr;
  795. int do_bit17_swizzling;
  796. remain = args->size;
  797. /* Pin the user pages containing the data. We can't fault while
  798. * holding the struct mutex, and all of the pwrite implementations
  799. * want to hold it while dereferencing the user data.
  800. */
  801. first_data_page = data_ptr / PAGE_SIZE;
  802. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  803. num_pages = last_data_page - first_data_page + 1;
  804. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  805. if (user_pages == NULL)
  806. return -ENOMEM;
  807. mutex_unlock(&dev->struct_mutex);
  808. down_read(&mm->mmap_sem);
  809. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  810. num_pages, 0, 0, user_pages, NULL);
  811. up_read(&mm->mmap_sem);
  812. mutex_lock(&dev->struct_mutex);
  813. if (pinned_pages < num_pages) {
  814. ret = -EFAULT;
  815. goto out;
  816. }
  817. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  818. if (ret)
  819. goto out;
  820. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  821. obj_priv = to_intel_bo(obj);
  822. offset = args->offset;
  823. obj_priv->dirty = 1;
  824. while (remain > 0) {
  825. struct page *page;
  826. /* Operation in this page
  827. *
  828. * shmem_page_offset = offset within page in shmem file
  829. * data_page_index = page number in get_user_pages return
  830. * data_page_offset = offset with data_page_index page.
  831. * page_length = bytes to copy for this page
  832. */
  833. shmem_page_offset = offset & ~PAGE_MASK;
  834. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  835. data_page_offset = data_ptr & ~PAGE_MASK;
  836. page_length = remain;
  837. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  838. page_length = PAGE_SIZE - shmem_page_offset;
  839. if ((data_page_offset + page_length) > PAGE_SIZE)
  840. page_length = PAGE_SIZE - data_page_offset;
  841. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  842. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  843. if (IS_ERR(page)) {
  844. ret = PTR_ERR(page);
  845. goto out;
  846. }
  847. if (do_bit17_swizzling) {
  848. slow_shmem_bit17_copy(page,
  849. shmem_page_offset,
  850. user_pages[data_page_index],
  851. data_page_offset,
  852. page_length,
  853. 0);
  854. } else {
  855. slow_shmem_copy(page,
  856. shmem_page_offset,
  857. user_pages[data_page_index],
  858. data_page_offset,
  859. page_length);
  860. }
  861. set_page_dirty(page);
  862. mark_page_accessed(page);
  863. page_cache_release(page);
  864. remain -= page_length;
  865. data_ptr += page_length;
  866. offset += page_length;
  867. }
  868. out:
  869. for (i = 0; i < pinned_pages; i++)
  870. page_cache_release(user_pages[i]);
  871. drm_free_large(user_pages);
  872. return ret;
  873. }
  874. /**
  875. * Writes data to the object referenced by handle.
  876. *
  877. * On error, the contents of the buffer that were to be modified are undefined.
  878. */
  879. int
  880. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  881. struct drm_file *file)
  882. {
  883. struct drm_i915_gem_pwrite *args = data;
  884. struct drm_gem_object *obj;
  885. struct drm_i915_gem_object *obj_priv;
  886. int ret = 0;
  887. ret = i915_mutex_lock_interruptible(dev);
  888. if (ret)
  889. return ret;
  890. obj = drm_gem_object_lookup(dev, file, args->handle);
  891. if (obj == NULL) {
  892. ret = -ENOENT;
  893. goto unlock;
  894. }
  895. obj_priv = to_intel_bo(obj);
  896. /* Bounds check destination. */
  897. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  898. ret = -EINVAL;
  899. goto out;
  900. }
  901. if (args->size == 0)
  902. goto out;
  903. if (!access_ok(VERIFY_READ,
  904. (char __user *)(uintptr_t)args->data_ptr,
  905. args->size)) {
  906. ret = -EFAULT;
  907. goto out;
  908. }
  909. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  910. args->size);
  911. if (ret) {
  912. ret = -EFAULT;
  913. goto out;
  914. }
  915. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  916. * it would end up going through the fenced access, and we'll get
  917. * different detiling behavior between reading and writing.
  918. * pread/pwrite currently are reading and writing from the CPU
  919. * perspective, requiring manual detiling by the client.
  920. */
  921. if (obj_priv->phys_obj)
  922. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  923. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  924. obj_priv->gtt_space &&
  925. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  926. ret = i915_gem_object_pin(obj, 0, true);
  927. if (ret)
  928. goto out;
  929. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  930. if (ret)
  931. goto out_unpin;
  932. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  933. if (ret == -EFAULT)
  934. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  935. out_unpin:
  936. i915_gem_object_unpin(obj);
  937. } else {
  938. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  939. if (ret)
  940. goto out;
  941. ret = -EFAULT;
  942. if (!i915_gem_object_needs_bit17_swizzle(obj))
  943. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  944. if (ret == -EFAULT)
  945. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  946. }
  947. out:
  948. drm_gem_object_unreference(obj);
  949. unlock:
  950. mutex_unlock(&dev->struct_mutex);
  951. return ret;
  952. }
  953. /**
  954. * Called when user space prepares to use an object with the CPU, either
  955. * through the mmap ioctl's mapping or a GTT mapping.
  956. */
  957. int
  958. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  959. struct drm_file *file_priv)
  960. {
  961. struct drm_i915_private *dev_priv = dev->dev_private;
  962. struct drm_i915_gem_set_domain *args = data;
  963. struct drm_gem_object *obj;
  964. struct drm_i915_gem_object *obj_priv;
  965. uint32_t read_domains = args->read_domains;
  966. uint32_t write_domain = args->write_domain;
  967. int ret;
  968. if (!(dev->driver->driver_features & DRIVER_GEM))
  969. return -ENODEV;
  970. /* Only handle setting domains to types used by the CPU. */
  971. if (write_domain & I915_GEM_GPU_DOMAINS)
  972. return -EINVAL;
  973. if (read_domains & I915_GEM_GPU_DOMAINS)
  974. return -EINVAL;
  975. /* Having something in the write domain implies it's in the read
  976. * domain, and only that read domain. Enforce that in the request.
  977. */
  978. if (write_domain != 0 && read_domains != write_domain)
  979. return -EINVAL;
  980. ret = i915_mutex_lock_interruptible(dev);
  981. if (ret)
  982. return ret;
  983. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  984. if (obj == NULL) {
  985. ret = -ENOENT;
  986. goto unlock;
  987. }
  988. obj_priv = to_intel_bo(obj);
  989. intel_mark_busy(dev, obj);
  990. if (read_domains & I915_GEM_DOMAIN_GTT) {
  991. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  992. /* Update the LRU on the fence for the CPU access that's
  993. * about to occur.
  994. */
  995. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  996. struct drm_i915_fence_reg *reg =
  997. &dev_priv->fence_regs[obj_priv->fence_reg];
  998. list_move_tail(&reg->lru_list,
  999. &dev_priv->mm.fence_list);
  1000. }
  1001. /* Silently promote "you're not bound, there was nothing to do"
  1002. * to success, since the client was just asking us to
  1003. * make sure everything was done.
  1004. */
  1005. if (ret == -EINVAL)
  1006. ret = 0;
  1007. } else {
  1008. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1009. }
  1010. /* Maintain LRU order of "inactive" objects */
  1011. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1012. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1013. drm_gem_object_unreference(obj);
  1014. unlock:
  1015. mutex_unlock(&dev->struct_mutex);
  1016. return ret;
  1017. }
  1018. /**
  1019. * Called when user space has done writes to this buffer
  1020. */
  1021. int
  1022. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1023. struct drm_file *file_priv)
  1024. {
  1025. struct drm_i915_gem_sw_finish *args = data;
  1026. struct drm_gem_object *obj;
  1027. int ret = 0;
  1028. if (!(dev->driver->driver_features & DRIVER_GEM))
  1029. return -ENODEV;
  1030. ret = i915_mutex_lock_interruptible(dev);
  1031. if (ret)
  1032. return ret;
  1033. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1034. if (obj == NULL) {
  1035. ret = -ENOENT;
  1036. goto unlock;
  1037. }
  1038. /* Pinned buffers may be scanout, so flush the cache */
  1039. if (to_intel_bo(obj)->pin_count)
  1040. i915_gem_object_flush_cpu_write_domain(obj);
  1041. drm_gem_object_unreference(obj);
  1042. unlock:
  1043. mutex_unlock(&dev->struct_mutex);
  1044. return ret;
  1045. }
  1046. /**
  1047. * Maps the contents of an object, returning the address it is mapped
  1048. * into.
  1049. *
  1050. * While the mapping holds a reference on the contents of the object, it doesn't
  1051. * imply a ref on the object itself.
  1052. */
  1053. int
  1054. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1055. struct drm_file *file_priv)
  1056. {
  1057. struct drm_i915_private *dev_priv = dev->dev_private;
  1058. struct drm_i915_gem_mmap *args = data;
  1059. struct drm_gem_object *obj;
  1060. loff_t offset;
  1061. unsigned long addr;
  1062. if (!(dev->driver->driver_features & DRIVER_GEM))
  1063. return -ENODEV;
  1064. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1065. if (obj == NULL)
  1066. return -ENOENT;
  1067. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1068. drm_gem_object_unreference_unlocked(obj);
  1069. return -E2BIG;
  1070. }
  1071. offset = args->offset;
  1072. down_write(&current->mm->mmap_sem);
  1073. addr = do_mmap(obj->filp, 0, args->size,
  1074. PROT_READ | PROT_WRITE, MAP_SHARED,
  1075. args->offset);
  1076. up_write(&current->mm->mmap_sem);
  1077. drm_gem_object_unreference_unlocked(obj);
  1078. if (IS_ERR((void *)addr))
  1079. return addr;
  1080. args->addr_ptr = (uint64_t) addr;
  1081. return 0;
  1082. }
  1083. /**
  1084. * i915_gem_fault - fault a page into the GTT
  1085. * vma: VMA in question
  1086. * vmf: fault info
  1087. *
  1088. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1089. * from userspace. The fault handler takes care of binding the object to
  1090. * the GTT (if needed), allocating and programming a fence register (again,
  1091. * only if needed based on whether the old reg is still valid or the object
  1092. * is tiled) and inserting a new PTE into the faulting process.
  1093. *
  1094. * Note that the faulting process may involve evicting existing objects
  1095. * from the GTT and/or fence registers to make room. So performance may
  1096. * suffer if the GTT working set is large or there are few fence registers
  1097. * left.
  1098. */
  1099. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1100. {
  1101. struct drm_gem_object *obj = vma->vm_private_data;
  1102. struct drm_device *dev = obj->dev;
  1103. drm_i915_private_t *dev_priv = dev->dev_private;
  1104. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1105. pgoff_t page_offset;
  1106. unsigned long pfn;
  1107. int ret = 0;
  1108. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1109. /* We don't use vmf->pgoff since that has the fake offset */
  1110. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1111. PAGE_SHIFT;
  1112. /* Now bind it into the GTT if needed */
  1113. mutex_lock(&dev->struct_mutex);
  1114. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1115. if (!i915_gem_object_cpu_accessible(obj_priv))
  1116. i915_gem_object_unbind(obj);
  1117. if (!obj_priv->gtt_space) {
  1118. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1119. if (ret)
  1120. goto unlock;
  1121. }
  1122. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1123. if (ret)
  1124. goto unlock;
  1125. if (!obj_priv->fault_mappable) {
  1126. obj_priv->fault_mappable = true;
  1127. i915_gem_info_update_mappable(dev_priv, obj, true);
  1128. }
  1129. /* Need a new fence register? */
  1130. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1131. ret = i915_gem_object_get_fence_reg(obj, true);
  1132. if (ret)
  1133. goto unlock;
  1134. }
  1135. if (i915_gem_object_is_inactive(obj_priv))
  1136. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1137. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1138. page_offset;
  1139. /* Finally, remap it using the new GTT offset */
  1140. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1141. unlock:
  1142. mutex_unlock(&dev->struct_mutex);
  1143. switch (ret) {
  1144. case 0:
  1145. case -ERESTARTSYS:
  1146. return VM_FAULT_NOPAGE;
  1147. case -ENOMEM:
  1148. case -EAGAIN:
  1149. return VM_FAULT_OOM;
  1150. default:
  1151. return VM_FAULT_SIGBUS;
  1152. }
  1153. }
  1154. /**
  1155. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1156. * @obj: obj in question
  1157. *
  1158. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1159. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1160. * up the object based on the offset and sets up the various memory mapping
  1161. * structures.
  1162. *
  1163. * This routine allocates and attaches a fake offset for @obj.
  1164. */
  1165. static int
  1166. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1167. {
  1168. struct drm_device *dev = obj->dev;
  1169. struct drm_gem_mm *mm = dev->mm_private;
  1170. struct drm_map_list *list;
  1171. struct drm_local_map *map;
  1172. int ret = 0;
  1173. /* Set the object up for mmap'ing */
  1174. list = &obj->map_list;
  1175. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1176. if (!list->map)
  1177. return -ENOMEM;
  1178. map = list->map;
  1179. map->type = _DRM_GEM;
  1180. map->size = obj->size;
  1181. map->handle = obj;
  1182. /* Get a DRM GEM mmap offset allocated... */
  1183. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1184. obj->size / PAGE_SIZE, 0, 0);
  1185. if (!list->file_offset_node) {
  1186. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1187. ret = -ENOSPC;
  1188. goto out_free_list;
  1189. }
  1190. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1191. obj->size / PAGE_SIZE, 0);
  1192. if (!list->file_offset_node) {
  1193. ret = -ENOMEM;
  1194. goto out_free_list;
  1195. }
  1196. list->hash.key = list->file_offset_node->start;
  1197. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1198. if (ret) {
  1199. DRM_ERROR("failed to add to map hash\n");
  1200. goto out_free_mm;
  1201. }
  1202. return 0;
  1203. out_free_mm:
  1204. drm_mm_put_block(list->file_offset_node);
  1205. out_free_list:
  1206. kfree(list->map);
  1207. list->map = NULL;
  1208. return ret;
  1209. }
  1210. /**
  1211. * i915_gem_release_mmap - remove physical page mappings
  1212. * @obj: obj in question
  1213. *
  1214. * Preserve the reservation of the mmapping with the DRM core code, but
  1215. * relinquish ownership of the pages back to the system.
  1216. *
  1217. * It is vital that we remove the page mapping if we have mapped a tiled
  1218. * object through the GTT and then lose the fence register due to
  1219. * resource pressure. Similarly if the object has been moved out of the
  1220. * aperture, than pages mapped into userspace must be revoked. Removing the
  1221. * mapping will then trigger a page fault on the next user access, allowing
  1222. * fixup by i915_gem_fault().
  1223. */
  1224. void
  1225. i915_gem_release_mmap(struct drm_gem_object *obj)
  1226. {
  1227. struct drm_device *dev = obj->dev;
  1228. struct drm_i915_private *dev_priv = dev->dev_private;
  1229. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1230. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1231. unmap_mapping_range(dev->dev_mapping,
  1232. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1233. obj->size, 1);
  1234. if (obj_priv->fault_mappable) {
  1235. obj_priv->fault_mappable = false;
  1236. i915_gem_info_update_mappable(dev_priv, obj, false);
  1237. }
  1238. }
  1239. static void
  1240. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1241. {
  1242. struct drm_device *dev = obj->dev;
  1243. struct drm_gem_mm *mm = dev->mm_private;
  1244. struct drm_map_list *list = &obj->map_list;
  1245. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1246. drm_mm_put_block(list->file_offset_node);
  1247. kfree(list->map);
  1248. list->map = NULL;
  1249. }
  1250. /**
  1251. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1252. * @obj: object to check
  1253. *
  1254. * Return the required GTT alignment for an object, taking into account
  1255. * potential fence register mapping if needed.
  1256. */
  1257. static uint32_t
  1258. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1259. {
  1260. struct drm_device *dev = obj->dev;
  1261. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1262. int start, i;
  1263. /*
  1264. * Minimum alignment is 4k (GTT page size), but might be greater
  1265. * if a fence register is needed for the object.
  1266. */
  1267. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1268. return 4096;
  1269. /*
  1270. * Previous chips need to be aligned to the size of the smallest
  1271. * fence register that can contain the object.
  1272. */
  1273. if (INTEL_INFO(dev)->gen == 3)
  1274. start = 1024*1024;
  1275. else
  1276. start = 512*1024;
  1277. for (i = start; i < obj->size; i <<= 1)
  1278. ;
  1279. return i;
  1280. }
  1281. /**
  1282. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1283. * @dev: DRM device
  1284. * @data: GTT mapping ioctl data
  1285. * @file_priv: GEM object info
  1286. *
  1287. * Simply returns the fake offset to userspace so it can mmap it.
  1288. * The mmap call will end up in drm_gem_mmap(), which will set things
  1289. * up so we can get faults in the handler above.
  1290. *
  1291. * The fault handler will take care of binding the object into the GTT
  1292. * (since it may have been evicted to make room for something), allocating
  1293. * a fence register, and mapping the appropriate aperture address into
  1294. * userspace.
  1295. */
  1296. int
  1297. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1298. struct drm_file *file_priv)
  1299. {
  1300. struct drm_i915_private *dev_priv = dev->dev_private;
  1301. struct drm_i915_gem_mmap_gtt *args = data;
  1302. struct drm_gem_object *obj;
  1303. struct drm_i915_gem_object *obj_priv;
  1304. int ret;
  1305. if (!(dev->driver->driver_features & DRIVER_GEM))
  1306. return -ENODEV;
  1307. ret = i915_mutex_lock_interruptible(dev);
  1308. if (ret)
  1309. return ret;
  1310. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1311. if (obj == NULL) {
  1312. ret = -ENOENT;
  1313. goto unlock;
  1314. }
  1315. obj_priv = to_intel_bo(obj);
  1316. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1317. ret = -E2BIG;
  1318. goto unlock;
  1319. }
  1320. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1321. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1322. ret = -EINVAL;
  1323. goto out;
  1324. }
  1325. if (!obj->map_list.map) {
  1326. ret = i915_gem_create_mmap_offset(obj);
  1327. if (ret)
  1328. goto out;
  1329. }
  1330. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1331. out:
  1332. drm_gem_object_unreference(obj);
  1333. unlock:
  1334. mutex_unlock(&dev->struct_mutex);
  1335. return ret;
  1336. }
  1337. static int
  1338. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1339. gfp_t gfpmask)
  1340. {
  1341. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1342. int page_count, i;
  1343. struct address_space *mapping;
  1344. struct inode *inode;
  1345. struct page *page;
  1346. /* Get the list of pages out of our struct file. They'll be pinned
  1347. * at this point until we release them.
  1348. */
  1349. page_count = obj->size / PAGE_SIZE;
  1350. BUG_ON(obj_priv->pages != NULL);
  1351. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1352. if (obj_priv->pages == NULL)
  1353. return -ENOMEM;
  1354. inode = obj->filp->f_path.dentry->d_inode;
  1355. mapping = inode->i_mapping;
  1356. for (i = 0; i < page_count; i++) {
  1357. page = read_cache_page_gfp(mapping, i,
  1358. GFP_HIGHUSER |
  1359. __GFP_COLD |
  1360. __GFP_RECLAIMABLE |
  1361. gfpmask);
  1362. if (IS_ERR(page))
  1363. goto err_pages;
  1364. obj_priv->pages[i] = page;
  1365. }
  1366. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1367. i915_gem_object_do_bit_17_swizzle(obj);
  1368. return 0;
  1369. err_pages:
  1370. while (i--)
  1371. page_cache_release(obj_priv->pages[i]);
  1372. drm_free_large(obj_priv->pages);
  1373. obj_priv->pages = NULL;
  1374. return PTR_ERR(page);
  1375. }
  1376. static void
  1377. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1378. {
  1379. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1380. int page_count = obj->size / PAGE_SIZE;
  1381. int i;
  1382. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1383. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1384. i915_gem_object_save_bit_17_swizzle(obj);
  1385. if (obj_priv->madv == I915_MADV_DONTNEED)
  1386. obj_priv->dirty = 0;
  1387. for (i = 0; i < page_count; i++) {
  1388. if (obj_priv->dirty)
  1389. set_page_dirty(obj_priv->pages[i]);
  1390. if (obj_priv->madv == I915_MADV_WILLNEED)
  1391. mark_page_accessed(obj_priv->pages[i]);
  1392. page_cache_release(obj_priv->pages[i]);
  1393. }
  1394. obj_priv->dirty = 0;
  1395. drm_free_large(obj_priv->pages);
  1396. obj_priv->pages = NULL;
  1397. }
  1398. static uint32_t
  1399. i915_gem_next_request_seqno(struct drm_device *dev,
  1400. struct intel_ring_buffer *ring)
  1401. {
  1402. drm_i915_private_t *dev_priv = dev->dev_private;
  1403. ring->outstanding_lazy_request = true;
  1404. return dev_priv->next_seqno;
  1405. }
  1406. static void
  1407. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1408. struct intel_ring_buffer *ring)
  1409. {
  1410. struct drm_device *dev = obj->dev;
  1411. struct drm_i915_private *dev_priv = dev->dev_private;
  1412. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1413. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1414. BUG_ON(ring == NULL);
  1415. obj_priv->ring = ring;
  1416. /* Add a reference if we're newly entering the active list. */
  1417. if (!obj_priv->active) {
  1418. drm_gem_object_reference(obj);
  1419. obj_priv->active = 1;
  1420. }
  1421. /* Move from whatever list we were on to the tail of execution. */
  1422. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1423. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1424. obj_priv->last_rendering_seqno = seqno;
  1425. }
  1426. static void
  1427. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1428. {
  1429. struct drm_device *dev = obj->dev;
  1430. drm_i915_private_t *dev_priv = dev->dev_private;
  1431. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1432. BUG_ON(!obj_priv->active);
  1433. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1434. list_del_init(&obj_priv->ring_list);
  1435. obj_priv->last_rendering_seqno = 0;
  1436. }
  1437. /* Immediately discard the backing storage */
  1438. static void
  1439. i915_gem_object_truncate(struct drm_gem_object *obj)
  1440. {
  1441. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1442. struct inode *inode;
  1443. /* Our goal here is to return as much of the memory as
  1444. * is possible back to the system as we are called from OOM.
  1445. * To do this we must instruct the shmfs to drop all of its
  1446. * backing pages, *now*. Here we mirror the actions taken
  1447. * when by shmem_delete_inode() to release the backing store.
  1448. */
  1449. inode = obj->filp->f_path.dentry->d_inode;
  1450. truncate_inode_pages(inode->i_mapping, 0);
  1451. if (inode->i_op->truncate_range)
  1452. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1453. obj_priv->madv = __I915_MADV_PURGED;
  1454. }
  1455. static inline int
  1456. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1457. {
  1458. return obj_priv->madv == I915_MADV_DONTNEED;
  1459. }
  1460. static void
  1461. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1462. {
  1463. struct drm_device *dev = obj->dev;
  1464. drm_i915_private_t *dev_priv = dev->dev_private;
  1465. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1466. if (obj_priv->pin_count != 0)
  1467. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1468. else
  1469. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1470. list_del_init(&obj_priv->ring_list);
  1471. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1472. obj_priv->last_rendering_seqno = 0;
  1473. obj_priv->ring = NULL;
  1474. if (obj_priv->active) {
  1475. obj_priv->active = 0;
  1476. drm_gem_object_unreference(obj);
  1477. }
  1478. WARN_ON(i915_verify_lists(dev));
  1479. }
  1480. static void
  1481. i915_gem_process_flushing_list(struct drm_device *dev,
  1482. uint32_t flush_domains,
  1483. struct intel_ring_buffer *ring)
  1484. {
  1485. drm_i915_private_t *dev_priv = dev->dev_private;
  1486. struct drm_i915_gem_object *obj_priv, *next;
  1487. list_for_each_entry_safe(obj_priv, next,
  1488. &ring->gpu_write_list,
  1489. gpu_write_list) {
  1490. struct drm_gem_object *obj = &obj_priv->base;
  1491. if (obj->write_domain & flush_domains) {
  1492. uint32_t old_write_domain = obj->write_domain;
  1493. obj->write_domain = 0;
  1494. list_del_init(&obj_priv->gpu_write_list);
  1495. i915_gem_object_move_to_active(obj, ring);
  1496. /* update the fence lru list */
  1497. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1498. struct drm_i915_fence_reg *reg =
  1499. &dev_priv->fence_regs[obj_priv->fence_reg];
  1500. list_move_tail(&reg->lru_list,
  1501. &dev_priv->mm.fence_list);
  1502. }
  1503. trace_i915_gem_object_change_domain(obj,
  1504. obj->read_domains,
  1505. old_write_domain);
  1506. }
  1507. }
  1508. }
  1509. int
  1510. i915_add_request(struct drm_device *dev,
  1511. struct drm_file *file,
  1512. struct drm_i915_gem_request *request,
  1513. struct intel_ring_buffer *ring)
  1514. {
  1515. drm_i915_private_t *dev_priv = dev->dev_private;
  1516. struct drm_i915_file_private *file_priv = NULL;
  1517. uint32_t seqno;
  1518. int was_empty;
  1519. int ret;
  1520. BUG_ON(request == NULL);
  1521. if (file != NULL)
  1522. file_priv = file->driver_priv;
  1523. ret = ring->add_request(ring, &seqno);
  1524. if (ret)
  1525. return ret;
  1526. ring->outstanding_lazy_request = false;
  1527. request->seqno = seqno;
  1528. request->ring = ring;
  1529. request->emitted_jiffies = jiffies;
  1530. was_empty = list_empty(&ring->request_list);
  1531. list_add_tail(&request->list, &ring->request_list);
  1532. if (file_priv) {
  1533. spin_lock(&file_priv->mm.lock);
  1534. request->file_priv = file_priv;
  1535. list_add_tail(&request->client_list,
  1536. &file_priv->mm.request_list);
  1537. spin_unlock(&file_priv->mm.lock);
  1538. }
  1539. if (!dev_priv->mm.suspended) {
  1540. mod_timer(&dev_priv->hangcheck_timer,
  1541. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1542. if (was_empty)
  1543. queue_delayed_work(dev_priv->wq,
  1544. &dev_priv->mm.retire_work, HZ);
  1545. }
  1546. return 0;
  1547. }
  1548. /**
  1549. * Command execution barrier
  1550. *
  1551. * Ensures that all commands in the ring are finished
  1552. * before signalling the CPU
  1553. */
  1554. static void
  1555. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1556. {
  1557. uint32_t flush_domains = 0;
  1558. /* The sampler always gets flushed on i965 (sigh) */
  1559. if (INTEL_INFO(dev)->gen >= 4)
  1560. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1561. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1562. }
  1563. static inline void
  1564. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1565. {
  1566. struct drm_i915_file_private *file_priv = request->file_priv;
  1567. if (!file_priv)
  1568. return;
  1569. spin_lock(&file_priv->mm.lock);
  1570. list_del(&request->client_list);
  1571. request->file_priv = NULL;
  1572. spin_unlock(&file_priv->mm.lock);
  1573. }
  1574. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1575. struct intel_ring_buffer *ring)
  1576. {
  1577. while (!list_empty(&ring->request_list)) {
  1578. struct drm_i915_gem_request *request;
  1579. request = list_first_entry(&ring->request_list,
  1580. struct drm_i915_gem_request,
  1581. list);
  1582. list_del(&request->list);
  1583. i915_gem_request_remove_from_client(request);
  1584. kfree(request);
  1585. }
  1586. while (!list_empty(&ring->active_list)) {
  1587. struct drm_i915_gem_object *obj_priv;
  1588. obj_priv = list_first_entry(&ring->active_list,
  1589. struct drm_i915_gem_object,
  1590. ring_list);
  1591. obj_priv->base.write_domain = 0;
  1592. list_del_init(&obj_priv->gpu_write_list);
  1593. i915_gem_object_move_to_inactive(&obj_priv->base);
  1594. }
  1595. }
  1596. void i915_gem_reset(struct drm_device *dev)
  1597. {
  1598. struct drm_i915_private *dev_priv = dev->dev_private;
  1599. struct drm_i915_gem_object *obj_priv;
  1600. int i;
  1601. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1602. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1603. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1604. /* Remove anything from the flushing lists. The GPU cache is likely
  1605. * to be lost on reset along with the data, so simply move the
  1606. * lost bo to the inactive list.
  1607. */
  1608. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1609. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1610. struct drm_i915_gem_object,
  1611. mm_list);
  1612. obj_priv->base.write_domain = 0;
  1613. list_del_init(&obj_priv->gpu_write_list);
  1614. i915_gem_object_move_to_inactive(&obj_priv->base);
  1615. }
  1616. /* Move everything out of the GPU domains to ensure we do any
  1617. * necessary invalidation upon reuse.
  1618. */
  1619. list_for_each_entry(obj_priv,
  1620. &dev_priv->mm.inactive_list,
  1621. mm_list)
  1622. {
  1623. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1624. }
  1625. /* The fence registers are invalidated so clear them out */
  1626. for (i = 0; i < 16; i++) {
  1627. struct drm_i915_fence_reg *reg;
  1628. reg = &dev_priv->fence_regs[i];
  1629. if (!reg->obj)
  1630. continue;
  1631. i915_gem_clear_fence_reg(reg->obj);
  1632. }
  1633. }
  1634. /**
  1635. * This function clears the request list as sequence numbers are passed.
  1636. */
  1637. static void
  1638. i915_gem_retire_requests_ring(struct drm_device *dev,
  1639. struct intel_ring_buffer *ring)
  1640. {
  1641. drm_i915_private_t *dev_priv = dev->dev_private;
  1642. uint32_t seqno;
  1643. if (!ring->status_page.page_addr ||
  1644. list_empty(&ring->request_list))
  1645. return;
  1646. WARN_ON(i915_verify_lists(dev));
  1647. seqno = ring->get_seqno(ring);
  1648. while (!list_empty(&ring->request_list)) {
  1649. struct drm_i915_gem_request *request;
  1650. request = list_first_entry(&ring->request_list,
  1651. struct drm_i915_gem_request,
  1652. list);
  1653. if (!i915_seqno_passed(seqno, request->seqno))
  1654. break;
  1655. trace_i915_gem_request_retire(dev, request->seqno);
  1656. list_del(&request->list);
  1657. i915_gem_request_remove_from_client(request);
  1658. kfree(request);
  1659. }
  1660. /* Move any buffers on the active list that are no longer referenced
  1661. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1662. */
  1663. while (!list_empty(&ring->active_list)) {
  1664. struct drm_gem_object *obj;
  1665. struct drm_i915_gem_object *obj_priv;
  1666. obj_priv = list_first_entry(&ring->active_list,
  1667. struct drm_i915_gem_object,
  1668. ring_list);
  1669. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1670. break;
  1671. obj = &obj_priv->base;
  1672. if (obj->write_domain != 0)
  1673. i915_gem_object_move_to_flushing(obj);
  1674. else
  1675. i915_gem_object_move_to_inactive(obj);
  1676. }
  1677. if (unlikely (dev_priv->trace_irq_seqno &&
  1678. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1679. ring->user_irq_put(ring);
  1680. dev_priv->trace_irq_seqno = 0;
  1681. }
  1682. WARN_ON(i915_verify_lists(dev));
  1683. }
  1684. void
  1685. i915_gem_retire_requests(struct drm_device *dev)
  1686. {
  1687. drm_i915_private_t *dev_priv = dev->dev_private;
  1688. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1689. struct drm_i915_gem_object *obj_priv, *tmp;
  1690. /* We must be careful that during unbind() we do not
  1691. * accidentally infinitely recurse into retire requests.
  1692. * Currently:
  1693. * retire -> free -> unbind -> wait -> retire_ring
  1694. */
  1695. list_for_each_entry_safe(obj_priv, tmp,
  1696. &dev_priv->mm.deferred_free_list,
  1697. mm_list)
  1698. i915_gem_free_object_tail(&obj_priv->base);
  1699. }
  1700. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1701. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1702. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1703. }
  1704. static void
  1705. i915_gem_retire_work_handler(struct work_struct *work)
  1706. {
  1707. drm_i915_private_t *dev_priv;
  1708. struct drm_device *dev;
  1709. dev_priv = container_of(work, drm_i915_private_t,
  1710. mm.retire_work.work);
  1711. dev = dev_priv->dev;
  1712. /* Come back later if the device is busy... */
  1713. if (!mutex_trylock(&dev->struct_mutex)) {
  1714. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1715. return;
  1716. }
  1717. i915_gem_retire_requests(dev);
  1718. if (!dev_priv->mm.suspended &&
  1719. (!list_empty(&dev_priv->render_ring.request_list) ||
  1720. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1721. !list_empty(&dev_priv->blt_ring.request_list)))
  1722. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1723. mutex_unlock(&dev->struct_mutex);
  1724. }
  1725. int
  1726. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1727. bool interruptible, struct intel_ring_buffer *ring)
  1728. {
  1729. drm_i915_private_t *dev_priv = dev->dev_private;
  1730. u32 ier;
  1731. int ret = 0;
  1732. BUG_ON(seqno == 0);
  1733. if (atomic_read(&dev_priv->mm.wedged))
  1734. return -EAGAIN;
  1735. if (ring->outstanding_lazy_request) {
  1736. struct drm_i915_gem_request *request;
  1737. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1738. if (request == NULL)
  1739. return -ENOMEM;
  1740. ret = i915_add_request(dev, NULL, request, ring);
  1741. if (ret) {
  1742. kfree(request);
  1743. return ret;
  1744. }
  1745. seqno = request->seqno;
  1746. }
  1747. BUG_ON(seqno == dev_priv->next_seqno);
  1748. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1749. if (HAS_PCH_SPLIT(dev))
  1750. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1751. else
  1752. ier = I915_READ(IER);
  1753. if (!ier) {
  1754. DRM_ERROR("something (likely vbetool) disabled "
  1755. "interrupts, re-enabling\n");
  1756. i915_driver_irq_preinstall(dev);
  1757. i915_driver_irq_postinstall(dev);
  1758. }
  1759. trace_i915_gem_request_wait_begin(dev, seqno);
  1760. ring->waiting_seqno = seqno;
  1761. ring->user_irq_get(ring);
  1762. if (interruptible)
  1763. ret = wait_event_interruptible(ring->irq_queue,
  1764. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1765. || atomic_read(&dev_priv->mm.wedged));
  1766. else
  1767. wait_event(ring->irq_queue,
  1768. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1769. || atomic_read(&dev_priv->mm.wedged));
  1770. ring->user_irq_put(ring);
  1771. ring->waiting_seqno = 0;
  1772. trace_i915_gem_request_wait_end(dev, seqno);
  1773. }
  1774. if (atomic_read(&dev_priv->mm.wedged))
  1775. ret = -EAGAIN;
  1776. if (ret && ret != -ERESTARTSYS)
  1777. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1778. __func__, ret, seqno, ring->get_seqno(ring),
  1779. dev_priv->next_seqno);
  1780. /* Directly dispatch request retiring. While we have the work queue
  1781. * to handle this, the waiter on a request often wants an associated
  1782. * buffer to have made it to the inactive list, and we would need
  1783. * a separate wait queue to handle that.
  1784. */
  1785. if (ret == 0)
  1786. i915_gem_retire_requests_ring(dev, ring);
  1787. return ret;
  1788. }
  1789. /**
  1790. * Waits for a sequence number to be signaled, and cleans up the
  1791. * request and object lists appropriately for that event.
  1792. */
  1793. static int
  1794. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1795. struct intel_ring_buffer *ring)
  1796. {
  1797. return i915_do_wait_request(dev, seqno, 1, ring);
  1798. }
  1799. static void
  1800. i915_gem_flush_ring(struct drm_device *dev,
  1801. struct drm_file *file_priv,
  1802. struct intel_ring_buffer *ring,
  1803. uint32_t invalidate_domains,
  1804. uint32_t flush_domains)
  1805. {
  1806. ring->flush(ring, invalidate_domains, flush_domains);
  1807. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1808. }
  1809. static void
  1810. i915_gem_flush(struct drm_device *dev,
  1811. struct drm_file *file_priv,
  1812. uint32_t invalidate_domains,
  1813. uint32_t flush_domains,
  1814. uint32_t flush_rings)
  1815. {
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1818. drm_agp_chipset_flush(dev);
  1819. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1820. if (flush_rings & RING_RENDER)
  1821. i915_gem_flush_ring(dev, file_priv,
  1822. &dev_priv->render_ring,
  1823. invalidate_domains, flush_domains);
  1824. if (flush_rings & RING_BSD)
  1825. i915_gem_flush_ring(dev, file_priv,
  1826. &dev_priv->bsd_ring,
  1827. invalidate_domains, flush_domains);
  1828. if (flush_rings & RING_BLT)
  1829. i915_gem_flush_ring(dev, file_priv,
  1830. &dev_priv->blt_ring,
  1831. invalidate_domains, flush_domains);
  1832. }
  1833. }
  1834. /**
  1835. * Ensures that all rendering to the object has completed and the object is
  1836. * safe to unbind from the GTT or access from the CPU.
  1837. */
  1838. static int
  1839. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1840. bool interruptible)
  1841. {
  1842. struct drm_device *dev = obj->dev;
  1843. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1844. int ret;
  1845. /* This function only exists to support waiting for existing rendering,
  1846. * not for emitting required flushes.
  1847. */
  1848. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1849. /* If there is rendering queued on the buffer being evicted, wait for
  1850. * it.
  1851. */
  1852. if (obj_priv->active) {
  1853. ret = i915_do_wait_request(dev,
  1854. obj_priv->last_rendering_seqno,
  1855. interruptible,
  1856. obj_priv->ring);
  1857. if (ret)
  1858. return ret;
  1859. }
  1860. return 0;
  1861. }
  1862. /**
  1863. * Unbinds an object from the GTT aperture.
  1864. */
  1865. int
  1866. i915_gem_object_unbind(struct drm_gem_object *obj)
  1867. {
  1868. struct drm_device *dev = obj->dev;
  1869. struct drm_i915_private *dev_priv = dev->dev_private;
  1870. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1871. int ret = 0;
  1872. if (obj_priv->gtt_space == NULL)
  1873. return 0;
  1874. if (obj_priv->pin_count != 0) {
  1875. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1876. return -EINVAL;
  1877. }
  1878. /* blow away mappings if mapped through GTT */
  1879. i915_gem_release_mmap(obj);
  1880. /* Move the object to the CPU domain to ensure that
  1881. * any possible CPU writes while it's not in the GTT
  1882. * are flushed when we go to remap it. This will
  1883. * also ensure that all pending GPU writes are finished
  1884. * before we unbind.
  1885. */
  1886. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1887. if (ret == -ERESTARTSYS)
  1888. return ret;
  1889. /* Continue on if we fail due to EIO, the GPU is hung so we
  1890. * should be safe and we need to cleanup or else we might
  1891. * cause memory corruption through use-after-free.
  1892. */
  1893. if (ret) {
  1894. i915_gem_clflush_object(obj);
  1895. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1896. }
  1897. /* release the fence reg _after_ flushing */
  1898. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1899. i915_gem_clear_fence_reg(obj);
  1900. drm_unbind_agp(obj_priv->agp_mem);
  1901. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1902. i915_gem_object_put_pages_gtt(obj);
  1903. i915_gem_info_remove_gtt(dev_priv, obj);
  1904. list_del_init(&obj_priv->mm_list);
  1905. drm_mm_put_block(obj_priv->gtt_space);
  1906. obj_priv->gtt_space = NULL;
  1907. obj_priv->gtt_offset = 0;
  1908. if (i915_gem_object_is_purgeable(obj_priv))
  1909. i915_gem_object_truncate(obj);
  1910. trace_i915_gem_object_unbind(obj);
  1911. return ret;
  1912. }
  1913. static int i915_ring_idle(struct drm_device *dev,
  1914. struct intel_ring_buffer *ring)
  1915. {
  1916. if (list_empty(&ring->gpu_write_list))
  1917. return 0;
  1918. i915_gem_flush_ring(dev, NULL, ring,
  1919. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1920. return i915_wait_request(dev,
  1921. i915_gem_next_request_seqno(dev, ring),
  1922. ring);
  1923. }
  1924. int
  1925. i915_gpu_idle(struct drm_device *dev)
  1926. {
  1927. drm_i915_private_t *dev_priv = dev->dev_private;
  1928. bool lists_empty;
  1929. int ret;
  1930. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1931. list_empty(&dev_priv->render_ring.active_list) &&
  1932. list_empty(&dev_priv->bsd_ring.active_list) &&
  1933. list_empty(&dev_priv->blt_ring.active_list));
  1934. if (lists_empty)
  1935. return 0;
  1936. /* Flush everything onto the inactive list. */
  1937. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1938. if (ret)
  1939. return ret;
  1940. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1941. if (ret)
  1942. return ret;
  1943. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1944. if (ret)
  1945. return ret;
  1946. return 0;
  1947. }
  1948. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1949. {
  1950. struct drm_gem_object *obj = reg->obj;
  1951. struct drm_device *dev = obj->dev;
  1952. drm_i915_private_t *dev_priv = dev->dev_private;
  1953. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1954. int regnum = obj_priv->fence_reg;
  1955. uint64_t val;
  1956. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1957. 0xfffff000) << 32;
  1958. val |= obj_priv->gtt_offset & 0xfffff000;
  1959. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1960. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1961. if (obj_priv->tiling_mode == I915_TILING_Y)
  1962. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1963. val |= I965_FENCE_REG_VALID;
  1964. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1965. }
  1966. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1967. {
  1968. struct drm_gem_object *obj = reg->obj;
  1969. struct drm_device *dev = obj->dev;
  1970. drm_i915_private_t *dev_priv = dev->dev_private;
  1971. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1972. int regnum = obj_priv->fence_reg;
  1973. uint64_t val;
  1974. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1975. 0xfffff000) << 32;
  1976. val |= obj_priv->gtt_offset & 0xfffff000;
  1977. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1978. if (obj_priv->tiling_mode == I915_TILING_Y)
  1979. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1980. val |= I965_FENCE_REG_VALID;
  1981. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1982. }
  1983. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1984. {
  1985. struct drm_gem_object *obj = reg->obj;
  1986. struct drm_device *dev = obj->dev;
  1987. drm_i915_private_t *dev_priv = dev->dev_private;
  1988. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1989. int regnum = obj_priv->fence_reg;
  1990. int tile_width;
  1991. uint32_t fence_reg, val;
  1992. uint32_t pitch_val;
  1993. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1994. (obj_priv->gtt_offset & (obj->size - 1))) {
  1995. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1996. __func__, obj_priv->gtt_offset, obj->size);
  1997. return;
  1998. }
  1999. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2000. HAS_128_BYTE_Y_TILING(dev))
  2001. tile_width = 128;
  2002. else
  2003. tile_width = 512;
  2004. /* Note: pitch better be a power of two tile widths */
  2005. pitch_val = obj_priv->stride / tile_width;
  2006. pitch_val = ffs(pitch_val) - 1;
  2007. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2008. HAS_128_BYTE_Y_TILING(dev))
  2009. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2010. else
  2011. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2012. val = obj_priv->gtt_offset;
  2013. if (obj_priv->tiling_mode == I915_TILING_Y)
  2014. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2015. val |= I915_FENCE_SIZE_BITS(obj->size);
  2016. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2017. val |= I830_FENCE_REG_VALID;
  2018. if (regnum < 8)
  2019. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  2020. else
  2021. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  2022. I915_WRITE(fence_reg, val);
  2023. }
  2024. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  2025. {
  2026. struct drm_gem_object *obj = reg->obj;
  2027. struct drm_device *dev = obj->dev;
  2028. drm_i915_private_t *dev_priv = dev->dev_private;
  2029. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2030. int regnum = obj_priv->fence_reg;
  2031. uint32_t val;
  2032. uint32_t pitch_val;
  2033. uint32_t fence_size_bits;
  2034. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2035. (obj_priv->gtt_offset & (obj->size - 1))) {
  2036. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2037. __func__, obj_priv->gtt_offset);
  2038. return;
  2039. }
  2040. pitch_val = obj_priv->stride / 128;
  2041. pitch_val = ffs(pitch_val) - 1;
  2042. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2043. val = obj_priv->gtt_offset;
  2044. if (obj_priv->tiling_mode == I915_TILING_Y)
  2045. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2046. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2047. WARN_ON(fence_size_bits & ~0x00000f00);
  2048. val |= fence_size_bits;
  2049. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2050. val |= I830_FENCE_REG_VALID;
  2051. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2052. }
  2053. static int i915_find_fence_reg(struct drm_device *dev,
  2054. bool interruptible)
  2055. {
  2056. struct drm_i915_fence_reg *reg = NULL;
  2057. struct drm_i915_gem_object *obj_priv = NULL;
  2058. struct drm_i915_private *dev_priv = dev->dev_private;
  2059. struct drm_gem_object *obj = NULL;
  2060. int i, avail, ret;
  2061. /* First try to find a free reg */
  2062. avail = 0;
  2063. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2064. reg = &dev_priv->fence_regs[i];
  2065. if (!reg->obj)
  2066. return i;
  2067. obj_priv = to_intel_bo(reg->obj);
  2068. if (!obj_priv->pin_count)
  2069. avail++;
  2070. }
  2071. if (avail == 0)
  2072. return -ENOSPC;
  2073. /* None available, try to steal one or wait for a user to finish */
  2074. i = I915_FENCE_REG_NONE;
  2075. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2076. lru_list) {
  2077. obj = reg->obj;
  2078. obj_priv = to_intel_bo(obj);
  2079. if (obj_priv->pin_count)
  2080. continue;
  2081. /* found one! */
  2082. i = obj_priv->fence_reg;
  2083. break;
  2084. }
  2085. BUG_ON(i == I915_FENCE_REG_NONE);
  2086. /* We only have a reference on obj from the active list. put_fence_reg
  2087. * might drop that one, causing a use-after-free in it. So hold a
  2088. * private reference to obj like the other callers of put_fence_reg
  2089. * (set_tiling ioctl) do. */
  2090. drm_gem_object_reference(obj);
  2091. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2092. drm_gem_object_unreference(obj);
  2093. if (ret != 0)
  2094. return ret;
  2095. return i;
  2096. }
  2097. /**
  2098. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2099. * @obj: object to map through a fence reg
  2100. *
  2101. * When mapping objects through the GTT, userspace wants to be able to write
  2102. * to them without having to worry about swizzling if the object is tiled.
  2103. *
  2104. * This function walks the fence regs looking for a free one for @obj,
  2105. * stealing one if it can't find any.
  2106. *
  2107. * It then sets up the reg based on the object's properties: address, pitch
  2108. * and tiling format.
  2109. */
  2110. int
  2111. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2112. bool interruptible)
  2113. {
  2114. struct drm_device *dev = obj->dev;
  2115. struct drm_i915_private *dev_priv = dev->dev_private;
  2116. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2117. struct drm_i915_fence_reg *reg = NULL;
  2118. int ret;
  2119. /* Just update our place in the LRU if our fence is getting used. */
  2120. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2121. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2122. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2123. return 0;
  2124. }
  2125. switch (obj_priv->tiling_mode) {
  2126. case I915_TILING_NONE:
  2127. WARN(1, "allocating a fence for non-tiled object?\n");
  2128. break;
  2129. case I915_TILING_X:
  2130. if (!obj_priv->stride)
  2131. return -EINVAL;
  2132. WARN((obj_priv->stride & (512 - 1)),
  2133. "object 0x%08x is X tiled but has non-512B pitch\n",
  2134. obj_priv->gtt_offset);
  2135. break;
  2136. case I915_TILING_Y:
  2137. if (!obj_priv->stride)
  2138. return -EINVAL;
  2139. WARN((obj_priv->stride & (128 - 1)),
  2140. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2141. obj_priv->gtt_offset);
  2142. break;
  2143. }
  2144. ret = i915_find_fence_reg(dev, interruptible);
  2145. if (ret < 0)
  2146. return ret;
  2147. obj_priv->fence_reg = ret;
  2148. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2149. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2150. reg->obj = obj;
  2151. switch (INTEL_INFO(dev)->gen) {
  2152. case 6:
  2153. sandybridge_write_fence_reg(reg);
  2154. break;
  2155. case 5:
  2156. case 4:
  2157. i965_write_fence_reg(reg);
  2158. break;
  2159. case 3:
  2160. i915_write_fence_reg(reg);
  2161. break;
  2162. case 2:
  2163. i830_write_fence_reg(reg);
  2164. break;
  2165. }
  2166. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2167. obj_priv->tiling_mode);
  2168. return 0;
  2169. }
  2170. /**
  2171. * i915_gem_clear_fence_reg - clear out fence register info
  2172. * @obj: object to clear
  2173. *
  2174. * Zeroes out the fence register itself and clears out the associated
  2175. * data structures in dev_priv and obj_priv.
  2176. */
  2177. static void
  2178. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2179. {
  2180. struct drm_device *dev = obj->dev;
  2181. drm_i915_private_t *dev_priv = dev->dev_private;
  2182. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2183. struct drm_i915_fence_reg *reg =
  2184. &dev_priv->fence_regs[obj_priv->fence_reg];
  2185. uint32_t fence_reg;
  2186. switch (INTEL_INFO(dev)->gen) {
  2187. case 6:
  2188. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2189. (obj_priv->fence_reg * 8), 0);
  2190. break;
  2191. case 5:
  2192. case 4:
  2193. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2194. break;
  2195. case 3:
  2196. if (obj_priv->fence_reg >= 8)
  2197. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2198. else
  2199. case 2:
  2200. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2201. I915_WRITE(fence_reg, 0);
  2202. break;
  2203. }
  2204. reg->obj = NULL;
  2205. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2206. list_del_init(&reg->lru_list);
  2207. }
  2208. /**
  2209. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2210. * to the buffer to finish, and then resets the fence register.
  2211. * @obj: tiled object holding a fence register.
  2212. * @bool: whether the wait upon the fence is interruptible
  2213. *
  2214. * Zeroes out the fence register itself and clears out the associated
  2215. * data structures in dev_priv and obj_priv.
  2216. */
  2217. int
  2218. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2219. bool interruptible)
  2220. {
  2221. struct drm_device *dev = obj->dev;
  2222. struct drm_i915_private *dev_priv = dev->dev_private;
  2223. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2224. struct drm_i915_fence_reg *reg;
  2225. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2226. return 0;
  2227. /* If we've changed tiling, GTT-mappings of the object
  2228. * need to re-fault to ensure that the correct fence register
  2229. * setup is in place.
  2230. */
  2231. i915_gem_release_mmap(obj);
  2232. /* On the i915, GPU access to tiled buffers is via a fence,
  2233. * therefore we must wait for any outstanding access to complete
  2234. * before clearing the fence.
  2235. */
  2236. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2237. if (reg->gpu) {
  2238. int ret;
  2239. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2240. if (ret)
  2241. return ret;
  2242. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2243. if (ret)
  2244. return ret;
  2245. reg->gpu = false;
  2246. }
  2247. i915_gem_object_flush_gtt_write_domain(obj);
  2248. i915_gem_clear_fence_reg(obj);
  2249. return 0;
  2250. }
  2251. /**
  2252. * Finds free space in the GTT aperture and binds the object there.
  2253. */
  2254. static int
  2255. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2256. unsigned alignment,
  2257. bool mappable)
  2258. {
  2259. struct drm_device *dev = obj->dev;
  2260. drm_i915_private_t *dev_priv = dev->dev_private;
  2261. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2262. struct drm_mm_node *free_space;
  2263. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2264. int ret;
  2265. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2266. DRM_ERROR("Attempting to bind a purgeable object\n");
  2267. return -EINVAL;
  2268. }
  2269. if (alignment == 0)
  2270. alignment = i915_gem_get_gtt_alignment(obj);
  2271. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2272. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2273. return -EINVAL;
  2274. }
  2275. /* If the object is bigger than the entire aperture, reject it early
  2276. * before evicting everything in a vain attempt to find space.
  2277. */
  2278. if (obj->size >
  2279. (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2280. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2281. return -E2BIG;
  2282. }
  2283. search_free:
  2284. if (mappable)
  2285. free_space =
  2286. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2287. obj->size, alignment, 0,
  2288. dev_priv->mm.gtt_mappable_end,
  2289. 0);
  2290. else
  2291. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2292. obj->size, alignment, 0);
  2293. if (free_space != NULL) {
  2294. if (mappable)
  2295. obj_priv->gtt_space =
  2296. drm_mm_get_block_range_generic(free_space,
  2297. obj->size,
  2298. alignment, 0,
  2299. dev_priv->mm.gtt_mappable_end,
  2300. 0);
  2301. else
  2302. obj_priv->gtt_space =
  2303. drm_mm_get_block(free_space, obj->size,
  2304. alignment);
  2305. }
  2306. if (obj_priv->gtt_space == NULL) {
  2307. /* If the gtt is empty and we're still having trouble
  2308. * fitting our object in, we're out of memory.
  2309. */
  2310. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2311. mappable);
  2312. if (ret)
  2313. return ret;
  2314. goto search_free;
  2315. }
  2316. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2317. if (ret) {
  2318. drm_mm_put_block(obj_priv->gtt_space);
  2319. obj_priv->gtt_space = NULL;
  2320. if (ret == -ENOMEM) {
  2321. /* first try to clear up some space from the GTT */
  2322. ret = i915_gem_evict_something(dev, obj->size,
  2323. alignment, mappable);
  2324. if (ret) {
  2325. /* now try to shrink everyone else */
  2326. if (gfpmask) {
  2327. gfpmask = 0;
  2328. goto search_free;
  2329. }
  2330. return ret;
  2331. }
  2332. goto search_free;
  2333. }
  2334. return ret;
  2335. }
  2336. /* Create an AGP memory structure pointing at our pages, and bind it
  2337. * into the GTT.
  2338. */
  2339. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2340. obj_priv->pages,
  2341. obj->size >> PAGE_SHIFT,
  2342. obj_priv->gtt_space->start,
  2343. obj_priv->agp_type);
  2344. if (obj_priv->agp_mem == NULL) {
  2345. i915_gem_object_put_pages_gtt(obj);
  2346. drm_mm_put_block(obj_priv->gtt_space);
  2347. obj_priv->gtt_space = NULL;
  2348. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2349. mappable);
  2350. if (ret)
  2351. return ret;
  2352. goto search_free;
  2353. }
  2354. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2355. /* keep track of bounds object by adding it to the inactive list */
  2356. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2357. i915_gem_info_add_gtt(dev_priv, obj);
  2358. /* Assert that the object is not currently in any GPU domain. As it
  2359. * wasn't in the GTT, there shouldn't be any way it could have been in
  2360. * a GPU cache
  2361. */
  2362. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2363. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2364. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
  2365. return 0;
  2366. }
  2367. void
  2368. i915_gem_clflush_object(struct drm_gem_object *obj)
  2369. {
  2370. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2371. /* If we don't have a page list set up, then we're not pinned
  2372. * to GPU, and we can ignore the cache flush because it'll happen
  2373. * again at bind time.
  2374. */
  2375. if (obj_priv->pages == NULL)
  2376. return;
  2377. trace_i915_gem_object_clflush(obj);
  2378. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2379. }
  2380. /** Flushes any GPU write domain for the object if it's dirty. */
  2381. static int
  2382. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2383. bool pipelined)
  2384. {
  2385. struct drm_device *dev = obj->dev;
  2386. uint32_t old_write_domain;
  2387. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2388. return 0;
  2389. /* Queue the GPU write cache flushing we need. */
  2390. old_write_domain = obj->write_domain;
  2391. i915_gem_flush_ring(dev, NULL,
  2392. to_intel_bo(obj)->ring,
  2393. 0, obj->write_domain);
  2394. BUG_ON(obj->write_domain);
  2395. trace_i915_gem_object_change_domain(obj,
  2396. obj->read_domains,
  2397. old_write_domain);
  2398. if (pipelined)
  2399. return 0;
  2400. return i915_gem_object_wait_rendering(obj, true);
  2401. }
  2402. /** Flushes the GTT write domain for the object if it's dirty. */
  2403. static void
  2404. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2405. {
  2406. uint32_t old_write_domain;
  2407. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2408. return;
  2409. /* No actual flushing is required for the GTT write domain. Writes
  2410. * to it immediately go to main memory as far as we know, so there's
  2411. * no chipset flush. It also doesn't land in render cache.
  2412. */
  2413. i915_gem_release_mmap(obj);
  2414. old_write_domain = obj->write_domain;
  2415. obj->write_domain = 0;
  2416. trace_i915_gem_object_change_domain(obj,
  2417. obj->read_domains,
  2418. old_write_domain);
  2419. }
  2420. /** Flushes the CPU write domain for the object if it's dirty. */
  2421. static void
  2422. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2423. {
  2424. struct drm_device *dev = obj->dev;
  2425. uint32_t old_write_domain;
  2426. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2427. return;
  2428. i915_gem_clflush_object(obj);
  2429. drm_agp_chipset_flush(dev);
  2430. old_write_domain = obj->write_domain;
  2431. obj->write_domain = 0;
  2432. trace_i915_gem_object_change_domain(obj,
  2433. obj->read_domains,
  2434. old_write_domain);
  2435. }
  2436. /**
  2437. * Moves a single object to the GTT read, and possibly write domain.
  2438. *
  2439. * This function returns when the move is complete, including waiting on
  2440. * flushes to occur.
  2441. */
  2442. int
  2443. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2444. {
  2445. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2446. uint32_t old_write_domain, old_read_domains;
  2447. int ret;
  2448. /* Not valid to be called on unbound objects. */
  2449. if (obj_priv->gtt_space == NULL)
  2450. return -EINVAL;
  2451. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2452. if (ret != 0)
  2453. return ret;
  2454. i915_gem_object_flush_cpu_write_domain(obj);
  2455. if (write) {
  2456. ret = i915_gem_object_wait_rendering(obj, true);
  2457. if (ret)
  2458. return ret;
  2459. }
  2460. old_write_domain = obj->write_domain;
  2461. old_read_domains = obj->read_domains;
  2462. /* It should now be out of any other write domains, and we can update
  2463. * the domain values for our changes.
  2464. */
  2465. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2466. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2467. if (write) {
  2468. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2469. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2470. obj_priv->dirty = 1;
  2471. }
  2472. trace_i915_gem_object_change_domain(obj,
  2473. old_read_domains,
  2474. old_write_domain);
  2475. return 0;
  2476. }
  2477. /*
  2478. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2479. * wait, as in modesetting process we're not supposed to be interrupted.
  2480. */
  2481. int
  2482. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2483. bool pipelined)
  2484. {
  2485. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2486. uint32_t old_read_domains;
  2487. int ret;
  2488. /* Not valid to be called on unbound objects. */
  2489. if (obj_priv->gtt_space == NULL)
  2490. return -EINVAL;
  2491. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2492. if (ret)
  2493. return ret;
  2494. /* Currently, we are always called from an non-interruptible context. */
  2495. if (!pipelined) {
  2496. ret = i915_gem_object_wait_rendering(obj, false);
  2497. if (ret)
  2498. return ret;
  2499. }
  2500. i915_gem_object_flush_cpu_write_domain(obj);
  2501. old_read_domains = obj->read_domains;
  2502. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2503. trace_i915_gem_object_change_domain(obj,
  2504. old_read_domains,
  2505. obj->write_domain);
  2506. return 0;
  2507. }
  2508. /**
  2509. * Moves a single object to the CPU read, and possibly write domain.
  2510. *
  2511. * This function returns when the move is complete, including waiting on
  2512. * flushes to occur.
  2513. */
  2514. static int
  2515. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2516. {
  2517. uint32_t old_write_domain, old_read_domains;
  2518. int ret;
  2519. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2520. if (ret != 0)
  2521. return ret;
  2522. i915_gem_object_flush_gtt_write_domain(obj);
  2523. /* If we have a partially-valid cache of the object in the CPU,
  2524. * finish invalidating it and free the per-page flags.
  2525. */
  2526. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2527. if (write) {
  2528. ret = i915_gem_object_wait_rendering(obj, true);
  2529. if (ret)
  2530. return ret;
  2531. }
  2532. old_write_domain = obj->write_domain;
  2533. old_read_domains = obj->read_domains;
  2534. /* Flush the CPU cache if it's still invalid. */
  2535. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2536. i915_gem_clflush_object(obj);
  2537. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2538. }
  2539. /* It should now be out of any other write domains, and we can update
  2540. * the domain values for our changes.
  2541. */
  2542. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2543. /* If we're writing through the CPU, then the GPU read domains will
  2544. * need to be invalidated at next use.
  2545. */
  2546. if (write) {
  2547. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2548. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2549. }
  2550. trace_i915_gem_object_change_domain(obj,
  2551. old_read_domains,
  2552. old_write_domain);
  2553. return 0;
  2554. }
  2555. /*
  2556. * Set the next domain for the specified object. This
  2557. * may not actually perform the necessary flushing/invaliding though,
  2558. * as that may want to be batched with other set_domain operations
  2559. *
  2560. * This is (we hope) the only really tricky part of gem. The goal
  2561. * is fairly simple -- track which caches hold bits of the object
  2562. * and make sure they remain coherent. A few concrete examples may
  2563. * help to explain how it works. For shorthand, we use the notation
  2564. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2565. * a pair of read and write domain masks.
  2566. *
  2567. * Case 1: the batch buffer
  2568. *
  2569. * 1. Allocated
  2570. * 2. Written by CPU
  2571. * 3. Mapped to GTT
  2572. * 4. Read by GPU
  2573. * 5. Unmapped from GTT
  2574. * 6. Freed
  2575. *
  2576. * Let's take these a step at a time
  2577. *
  2578. * 1. Allocated
  2579. * Pages allocated from the kernel may still have
  2580. * cache contents, so we set them to (CPU, CPU) always.
  2581. * 2. Written by CPU (using pwrite)
  2582. * The pwrite function calls set_domain (CPU, CPU) and
  2583. * this function does nothing (as nothing changes)
  2584. * 3. Mapped by GTT
  2585. * This function asserts that the object is not
  2586. * currently in any GPU-based read or write domains
  2587. * 4. Read by GPU
  2588. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2589. * As write_domain is zero, this function adds in the
  2590. * current read domains (CPU+COMMAND, 0).
  2591. * flush_domains is set to CPU.
  2592. * invalidate_domains is set to COMMAND
  2593. * clflush is run to get data out of the CPU caches
  2594. * then i915_dev_set_domain calls i915_gem_flush to
  2595. * emit an MI_FLUSH and drm_agp_chipset_flush
  2596. * 5. Unmapped from GTT
  2597. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2598. * flush_domains and invalidate_domains end up both zero
  2599. * so no flushing/invalidating happens
  2600. * 6. Freed
  2601. * yay, done
  2602. *
  2603. * Case 2: The shared render buffer
  2604. *
  2605. * 1. Allocated
  2606. * 2. Mapped to GTT
  2607. * 3. Read/written by GPU
  2608. * 4. set_domain to (CPU,CPU)
  2609. * 5. Read/written by CPU
  2610. * 6. Read/written by GPU
  2611. *
  2612. * 1. Allocated
  2613. * Same as last example, (CPU, CPU)
  2614. * 2. Mapped to GTT
  2615. * Nothing changes (assertions find that it is not in the GPU)
  2616. * 3. Read/written by GPU
  2617. * execbuffer calls set_domain (RENDER, RENDER)
  2618. * flush_domains gets CPU
  2619. * invalidate_domains gets GPU
  2620. * clflush (obj)
  2621. * MI_FLUSH and drm_agp_chipset_flush
  2622. * 4. set_domain (CPU, CPU)
  2623. * flush_domains gets GPU
  2624. * invalidate_domains gets CPU
  2625. * wait_rendering (obj) to make sure all drawing is complete.
  2626. * This will include an MI_FLUSH to get the data from GPU
  2627. * to memory
  2628. * clflush (obj) to invalidate the CPU cache
  2629. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2630. * 5. Read/written by CPU
  2631. * cache lines are loaded and dirtied
  2632. * 6. Read written by GPU
  2633. * Same as last GPU access
  2634. *
  2635. * Case 3: The constant buffer
  2636. *
  2637. * 1. Allocated
  2638. * 2. Written by CPU
  2639. * 3. Read by GPU
  2640. * 4. Updated (written) by CPU again
  2641. * 5. Read by GPU
  2642. *
  2643. * 1. Allocated
  2644. * (CPU, CPU)
  2645. * 2. Written by CPU
  2646. * (CPU, CPU)
  2647. * 3. Read by GPU
  2648. * (CPU+RENDER, 0)
  2649. * flush_domains = CPU
  2650. * invalidate_domains = RENDER
  2651. * clflush (obj)
  2652. * MI_FLUSH
  2653. * drm_agp_chipset_flush
  2654. * 4. Updated (written) by CPU again
  2655. * (CPU, CPU)
  2656. * flush_domains = 0 (no previous write domain)
  2657. * invalidate_domains = 0 (no new read domains)
  2658. * 5. Read by GPU
  2659. * (CPU+RENDER, 0)
  2660. * flush_domains = CPU
  2661. * invalidate_domains = RENDER
  2662. * clflush (obj)
  2663. * MI_FLUSH
  2664. * drm_agp_chipset_flush
  2665. */
  2666. static void
  2667. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2668. struct intel_ring_buffer *ring)
  2669. {
  2670. struct drm_device *dev = obj->dev;
  2671. struct drm_i915_private *dev_priv = dev->dev_private;
  2672. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2673. uint32_t invalidate_domains = 0;
  2674. uint32_t flush_domains = 0;
  2675. /*
  2676. * If the object isn't moving to a new write domain,
  2677. * let the object stay in multiple read domains
  2678. */
  2679. if (obj->pending_write_domain == 0)
  2680. obj->pending_read_domains |= obj->read_domains;
  2681. /*
  2682. * Flush the current write domain if
  2683. * the new read domains don't match. Invalidate
  2684. * any read domains which differ from the old
  2685. * write domain
  2686. */
  2687. if (obj->write_domain &&
  2688. obj->write_domain != obj->pending_read_domains) {
  2689. flush_domains |= obj->write_domain;
  2690. invalidate_domains |=
  2691. obj->pending_read_domains & ~obj->write_domain;
  2692. }
  2693. /*
  2694. * Invalidate any read caches which may have
  2695. * stale data. That is, any new read domains.
  2696. */
  2697. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2698. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2699. i915_gem_clflush_object(obj);
  2700. /* blow away mappings if mapped through GTT */
  2701. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2702. i915_gem_release_mmap(obj);
  2703. /* The actual obj->write_domain will be updated with
  2704. * pending_write_domain after we emit the accumulated flush for all
  2705. * of our domain changes in execbuffers (which clears objects'
  2706. * write_domains). So if we have a current write domain that we
  2707. * aren't changing, set pending_write_domain to that.
  2708. */
  2709. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2710. obj->pending_write_domain = obj->write_domain;
  2711. dev->invalidate_domains |= invalidate_domains;
  2712. dev->flush_domains |= flush_domains;
  2713. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2714. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2715. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2716. dev_priv->mm.flush_rings |= ring->id;
  2717. }
  2718. /**
  2719. * Moves the object from a partially CPU read to a full one.
  2720. *
  2721. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2722. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2723. */
  2724. static void
  2725. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2726. {
  2727. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2728. if (!obj_priv->page_cpu_valid)
  2729. return;
  2730. /* If we're partially in the CPU read domain, finish moving it in.
  2731. */
  2732. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2733. int i;
  2734. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2735. if (obj_priv->page_cpu_valid[i])
  2736. continue;
  2737. drm_clflush_pages(obj_priv->pages + i, 1);
  2738. }
  2739. }
  2740. /* Free the page_cpu_valid mappings which are now stale, whether
  2741. * or not we've got I915_GEM_DOMAIN_CPU.
  2742. */
  2743. kfree(obj_priv->page_cpu_valid);
  2744. obj_priv->page_cpu_valid = NULL;
  2745. }
  2746. /**
  2747. * Set the CPU read domain on a range of the object.
  2748. *
  2749. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2750. * not entirely valid. The page_cpu_valid member of the object flags which
  2751. * pages have been flushed, and will be respected by
  2752. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2753. * of the whole object.
  2754. *
  2755. * This function returns when the move is complete, including waiting on
  2756. * flushes to occur.
  2757. */
  2758. static int
  2759. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2760. uint64_t offset, uint64_t size)
  2761. {
  2762. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2763. uint32_t old_read_domains;
  2764. int i, ret;
  2765. if (offset == 0 && size == obj->size)
  2766. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2767. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2768. if (ret != 0)
  2769. return ret;
  2770. i915_gem_object_flush_gtt_write_domain(obj);
  2771. /* If we're already fully in the CPU read domain, we're done. */
  2772. if (obj_priv->page_cpu_valid == NULL &&
  2773. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2774. return 0;
  2775. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2776. * newly adding I915_GEM_DOMAIN_CPU
  2777. */
  2778. if (obj_priv->page_cpu_valid == NULL) {
  2779. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2780. GFP_KERNEL);
  2781. if (obj_priv->page_cpu_valid == NULL)
  2782. return -ENOMEM;
  2783. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2784. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2785. /* Flush the cache on any pages that are still invalid from the CPU's
  2786. * perspective.
  2787. */
  2788. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2789. i++) {
  2790. if (obj_priv->page_cpu_valid[i])
  2791. continue;
  2792. drm_clflush_pages(obj_priv->pages + i, 1);
  2793. obj_priv->page_cpu_valid[i] = 1;
  2794. }
  2795. /* It should now be out of any other write domains, and we can update
  2796. * the domain values for our changes.
  2797. */
  2798. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2799. old_read_domains = obj->read_domains;
  2800. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2801. trace_i915_gem_object_change_domain(obj,
  2802. old_read_domains,
  2803. obj->write_domain);
  2804. return 0;
  2805. }
  2806. /**
  2807. * Pin an object to the GTT and evaluate the relocations landing in it.
  2808. */
  2809. static int
  2810. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2811. struct drm_file *file_priv,
  2812. struct drm_i915_gem_exec_object2 *entry)
  2813. {
  2814. struct drm_device *dev = obj->base.dev;
  2815. drm_i915_private_t *dev_priv = dev->dev_private;
  2816. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2817. struct drm_gem_object *target_obj = NULL;
  2818. uint32_t target_handle = 0;
  2819. int i, ret = 0;
  2820. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2821. for (i = 0; i < entry->relocation_count; i++) {
  2822. struct drm_i915_gem_relocation_entry reloc;
  2823. uint32_t target_offset;
  2824. if (__copy_from_user_inatomic(&reloc,
  2825. user_relocs+i,
  2826. sizeof(reloc))) {
  2827. ret = -EFAULT;
  2828. break;
  2829. }
  2830. if (reloc.target_handle != target_handle) {
  2831. drm_gem_object_unreference(target_obj);
  2832. target_obj = drm_gem_object_lookup(dev, file_priv,
  2833. reloc.target_handle);
  2834. if (target_obj == NULL) {
  2835. ret = -ENOENT;
  2836. break;
  2837. }
  2838. target_handle = reloc.target_handle;
  2839. }
  2840. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2841. #if WATCH_RELOC
  2842. DRM_INFO("%s: obj %p offset %08x target %d "
  2843. "read %08x write %08x gtt %08x "
  2844. "presumed %08x delta %08x\n",
  2845. __func__,
  2846. obj,
  2847. (int) reloc.offset,
  2848. (int) reloc.target_handle,
  2849. (int) reloc.read_domains,
  2850. (int) reloc.write_domain,
  2851. (int) target_offset,
  2852. (int) reloc.presumed_offset,
  2853. reloc.delta);
  2854. #endif
  2855. /* The target buffer should have appeared before us in the
  2856. * exec_object list, so it should have a GTT space bound by now.
  2857. */
  2858. if (target_offset == 0) {
  2859. DRM_ERROR("No GTT space found for object %d\n",
  2860. reloc.target_handle);
  2861. ret = -EINVAL;
  2862. break;
  2863. }
  2864. /* Validate that the target is in a valid r/w GPU domain */
  2865. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2866. DRM_ERROR("reloc with multiple write domains: "
  2867. "obj %p target %d offset %d "
  2868. "read %08x write %08x",
  2869. obj, reloc.target_handle,
  2870. (int) reloc.offset,
  2871. reloc.read_domains,
  2872. reloc.write_domain);
  2873. ret = -EINVAL;
  2874. break;
  2875. }
  2876. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2877. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2878. DRM_ERROR("reloc with read/write CPU domains: "
  2879. "obj %p target %d offset %d "
  2880. "read %08x write %08x",
  2881. obj, reloc.target_handle,
  2882. (int) reloc.offset,
  2883. reloc.read_domains,
  2884. reloc.write_domain);
  2885. ret = -EINVAL;
  2886. break;
  2887. }
  2888. if (reloc.write_domain && target_obj->pending_write_domain &&
  2889. reloc.write_domain != target_obj->pending_write_domain) {
  2890. DRM_ERROR("Write domain conflict: "
  2891. "obj %p target %d offset %d "
  2892. "new %08x old %08x\n",
  2893. obj, reloc.target_handle,
  2894. (int) reloc.offset,
  2895. reloc.write_domain,
  2896. target_obj->pending_write_domain);
  2897. ret = -EINVAL;
  2898. break;
  2899. }
  2900. target_obj->pending_read_domains |= reloc.read_domains;
  2901. target_obj->pending_write_domain |= reloc.write_domain;
  2902. /* If the relocation already has the right value in it, no
  2903. * more work needs to be done.
  2904. */
  2905. if (target_offset == reloc.presumed_offset)
  2906. continue;
  2907. /* Check that the relocation address is valid... */
  2908. if (reloc.offset > obj->base.size - 4) {
  2909. DRM_ERROR("Relocation beyond object bounds: "
  2910. "obj %p target %d offset %d size %d.\n",
  2911. obj, reloc.target_handle,
  2912. (int) reloc.offset, (int) obj->base.size);
  2913. ret = -EINVAL;
  2914. break;
  2915. }
  2916. if (reloc.offset & 3) {
  2917. DRM_ERROR("Relocation not 4-byte aligned: "
  2918. "obj %p target %d offset %d.\n",
  2919. obj, reloc.target_handle,
  2920. (int) reloc.offset);
  2921. ret = -EINVAL;
  2922. break;
  2923. }
  2924. /* and points to somewhere within the target object. */
  2925. if (reloc.delta >= target_obj->size) {
  2926. DRM_ERROR("Relocation beyond target object bounds: "
  2927. "obj %p target %d delta %d size %d.\n",
  2928. obj, reloc.target_handle,
  2929. (int) reloc.delta, (int) target_obj->size);
  2930. ret = -EINVAL;
  2931. break;
  2932. }
  2933. reloc.delta += target_offset;
  2934. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2935. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2936. char *vaddr;
  2937. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2938. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2939. kunmap_atomic(vaddr);
  2940. } else {
  2941. uint32_t __iomem *reloc_entry;
  2942. void __iomem *reloc_page;
  2943. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2944. if (ret)
  2945. break;
  2946. /* Map the page containing the relocation we're going to perform. */
  2947. reloc.offset += obj->gtt_offset;
  2948. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2949. reloc.offset & PAGE_MASK);
  2950. reloc_entry = (uint32_t __iomem *)
  2951. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2952. iowrite32(reloc.delta, reloc_entry);
  2953. io_mapping_unmap_atomic(reloc_page);
  2954. }
  2955. /* and update the user's relocation entry */
  2956. reloc.presumed_offset = target_offset;
  2957. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2958. &reloc.presumed_offset,
  2959. sizeof(reloc.presumed_offset))) {
  2960. ret = -EFAULT;
  2961. break;
  2962. }
  2963. }
  2964. drm_gem_object_unreference(target_obj);
  2965. return ret;
  2966. }
  2967. static int
  2968. i915_gem_execbuffer_pin(struct drm_device *dev,
  2969. struct drm_file *file,
  2970. struct drm_gem_object **object_list,
  2971. struct drm_i915_gem_exec_object2 *exec_list,
  2972. int count)
  2973. {
  2974. struct drm_i915_private *dev_priv = dev->dev_private;
  2975. int ret, i, retry;
  2976. /* attempt to pin all of the buffers into the GTT */
  2977. for (retry = 0; retry < 2; retry++) {
  2978. ret = 0;
  2979. for (i = 0; i < count; i++) {
  2980. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2981. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  2982. bool need_fence =
  2983. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2984. obj->tiling_mode != I915_TILING_NONE;
  2985. /* g33/pnv can't fence buffers in the unmappable part */
  2986. bool need_mappable =
  2987. entry->relocation_count ? true : need_fence;
  2988. /* Check fence reg constraints and rebind if necessary */
  2989. if (need_fence &&
  2990. !i915_gem_object_fence_offset_ok(&obj->base,
  2991. obj->tiling_mode)) {
  2992. ret = i915_gem_object_unbind(&obj->base);
  2993. if (ret)
  2994. break;
  2995. }
  2996. ret = i915_gem_object_pin(&obj->base,
  2997. entry->alignment,
  2998. need_mappable);
  2999. if (ret)
  3000. break;
  3001. /*
  3002. * Pre-965 chips need a fence register set up in order
  3003. * to properly handle blits to/from tiled surfaces.
  3004. */
  3005. if (need_fence) {
  3006. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3007. if (ret) {
  3008. i915_gem_object_unpin(&obj->base);
  3009. break;
  3010. }
  3011. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3012. }
  3013. entry->offset = obj->gtt_offset;
  3014. }
  3015. while (i--)
  3016. i915_gem_object_unpin(object_list[i]);
  3017. if (ret == 0)
  3018. break;
  3019. if (ret != -ENOSPC || retry)
  3020. return ret;
  3021. ret = i915_gem_evict_everything(dev);
  3022. if (ret)
  3023. return ret;
  3024. }
  3025. return 0;
  3026. }
  3027. /* Throttle our rendering by waiting until the ring has completed our requests
  3028. * emitted over 20 msec ago.
  3029. *
  3030. * Note that if we were to use the current jiffies each time around the loop,
  3031. * we wouldn't escape the function with any frames outstanding if the time to
  3032. * render a frame was over 20ms.
  3033. *
  3034. * This should get us reasonable parallelism between CPU and GPU but also
  3035. * relatively low latency when blocking on a particular request to finish.
  3036. */
  3037. static int
  3038. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3039. {
  3040. struct drm_i915_private *dev_priv = dev->dev_private;
  3041. struct drm_i915_file_private *file_priv = file->driver_priv;
  3042. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3043. struct drm_i915_gem_request *request;
  3044. struct intel_ring_buffer *ring = NULL;
  3045. u32 seqno = 0;
  3046. int ret;
  3047. spin_lock(&file_priv->mm.lock);
  3048. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3049. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3050. break;
  3051. ring = request->ring;
  3052. seqno = request->seqno;
  3053. }
  3054. spin_unlock(&file_priv->mm.lock);
  3055. if (seqno == 0)
  3056. return 0;
  3057. ret = 0;
  3058. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3059. /* And wait for the seqno passing without holding any locks and
  3060. * causing extra latency for others. This is safe as the irq
  3061. * generation is designed to be run atomically and so is
  3062. * lockless.
  3063. */
  3064. ring->user_irq_get(ring);
  3065. ret = wait_event_interruptible(ring->irq_queue,
  3066. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3067. || atomic_read(&dev_priv->mm.wedged));
  3068. ring->user_irq_put(ring);
  3069. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3070. ret = -EIO;
  3071. }
  3072. if (ret == 0)
  3073. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3074. return ret;
  3075. }
  3076. static int
  3077. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3078. uint64_t exec_offset)
  3079. {
  3080. uint32_t exec_start, exec_len;
  3081. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3082. exec_len = (uint32_t) exec->batch_len;
  3083. if ((exec_start | exec_len) & 0x7)
  3084. return -EINVAL;
  3085. if (!exec_start)
  3086. return -EINVAL;
  3087. return 0;
  3088. }
  3089. static int
  3090. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3091. int count)
  3092. {
  3093. int i;
  3094. for (i = 0; i < count; i++) {
  3095. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3096. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3097. if (!access_ok(VERIFY_READ, ptr, length))
  3098. return -EFAULT;
  3099. /* we may also need to update the presumed offsets */
  3100. if (!access_ok(VERIFY_WRITE, ptr, length))
  3101. return -EFAULT;
  3102. if (fault_in_pages_readable(ptr, length))
  3103. return -EFAULT;
  3104. }
  3105. return 0;
  3106. }
  3107. static int
  3108. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3109. struct drm_file *file,
  3110. struct drm_i915_gem_execbuffer2 *args,
  3111. struct drm_i915_gem_exec_object2 *exec_list)
  3112. {
  3113. drm_i915_private_t *dev_priv = dev->dev_private;
  3114. struct drm_gem_object **object_list = NULL;
  3115. struct drm_gem_object *batch_obj;
  3116. struct drm_clip_rect *cliprects = NULL;
  3117. struct drm_i915_gem_request *request = NULL;
  3118. int ret, i, flips;
  3119. uint64_t exec_offset;
  3120. struct intel_ring_buffer *ring = NULL;
  3121. ret = i915_gem_check_is_wedged(dev);
  3122. if (ret)
  3123. return ret;
  3124. ret = validate_exec_list(exec_list, args->buffer_count);
  3125. if (ret)
  3126. return ret;
  3127. #if WATCH_EXEC
  3128. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3129. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3130. #endif
  3131. switch (args->flags & I915_EXEC_RING_MASK) {
  3132. case I915_EXEC_DEFAULT:
  3133. case I915_EXEC_RENDER:
  3134. ring = &dev_priv->render_ring;
  3135. break;
  3136. case I915_EXEC_BSD:
  3137. if (!HAS_BSD(dev)) {
  3138. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3139. return -EINVAL;
  3140. }
  3141. ring = &dev_priv->bsd_ring;
  3142. break;
  3143. case I915_EXEC_BLT:
  3144. if (!HAS_BLT(dev)) {
  3145. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3146. return -EINVAL;
  3147. }
  3148. ring = &dev_priv->blt_ring;
  3149. break;
  3150. default:
  3151. DRM_ERROR("execbuf with unknown ring: %d\n",
  3152. (int)(args->flags & I915_EXEC_RING_MASK));
  3153. return -EINVAL;
  3154. }
  3155. if (args->buffer_count < 1) {
  3156. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3157. return -EINVAL;
  3158. }
  3159. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3160. if (object_list == NULL) {
  3161. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3162. args->buffer_count);
  3163. ret = -ENOMEM;
  3164. goto pre_mutex_err;
  3165. }
  3166. if (args->num_cliprects != 0) {
  3167. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3168. GFP_KERNEL);
  3169. if (cliprects == NULL) {
  3170. ret = -ENOMEM;
  3171. goto pre_mutex_err;
  3172. }
  3173. ret = copy_from_user(cliprects,
  3174. (struct drm_clip_rect __user *)
  3175. (uintptr_t) args->cliprects_ptr,
  3176. sizeof(*cliprects) * args->num_cliprects);
  3177. if (ret != 0) {
  3178. DRM_ERROR("copy %d cliprects failed: %d\n",
  3179. args->num_cliprects, ret);
  3180. ret = -EFAULT;
  3181. goto pre_mutex_err;
  3182. }
  3183. }
  3184. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3185. if (request == NULL) {
  3186. ret = -ENOMEM;
  3187. goto pre_mutex_err;
  3188. }
  3189. ret = i915_mutex_lock_interruptible(dev);
  3190. if (ret)
  3191. goto pre_mutex_err;
  3192. if (dev_priv->mm.suspended) {
  3193. mutex_unlock(&dev->struct_mutex);
  3194. ret = -EBUSY;
  3195. goto pre_mutex_err;
  3196. }
  3197. /* Look up object handles */
  3198. for (i = 0; i < args->buffer_count; i++) {
  3199. struct drm_i915_gem_object *obj_priv;
  3200. object_list[i] = drm_gem_object_lookup(dev, file,
  3201. exec_list[i].handle);
  3202. if (object_list[i] == NULL) {
  3203. DRM_ERROR("Invalid object handle %d at index %d\n",
  3204. exec_list[i].handle, i);
  3205. /* prevent error path from reading uninitialized data */
  3206. args->buffer_count = i + 1;
  3207. ret = -ENOENT;
  3208. goto err;
  3209. }
  3210. obj_priv = to_intel_bo(object_list[i]);
  3211. if (obj_priv->in_execbuffer) {
  3212. DRM_ERROR("Object %p appears more than once in object list\n",
  3213. object_list[i]);
  3214. /* prevent error path from reading uninitialized data */
  3215. args->buffer_count = i + 1;
  3216. ret = -EINVAL;
  3217. goto err;
  3218. }
  3219. obj_priv->in_execbuffer = true;
  3220. }
  3221. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3222. ret = i915_gem_execbuffer_pin(dev, file,
  3223. object_list, exec_list,
  3224. args->buffer_count);
  3225. if (ret)
  3226. goto err;
  3227. /* The objects are in their final locations, apply the relocations. */
  3228. for (i = 0; i < args->buffer_count; i++) {
  3229. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3230. obj->base.pending_read_domains = 0;
  3231. obj->base.pending_write_domain = 0;
  3232. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3233. if (ret)
  3234. goto err;
  3235. }
  3236. /* Set the pending read domains for the batch buffer to COMMAND */
  3237. batch_obj = object_list[args->buffer_count-1];
  3238. if (batch_obj->pending_write_domain) {
  3239. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3240. ret = -EINVAL;
  3241. goto err;
  3242. }
  3243. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3244. /* Sanity check the batch buffer */
  3245. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3246. ret = i915_gem_check_execbuffer(args, exec_offset);
  3247. if (ret != 0) {
  3248. DRM_ERROR("execbuf with invalid offset/length\n");
  3249. goto err;
  3250. }
  3251. /* Zero the global flush/invalidate flags. These
  3252. * will be modified as new domains are computed
  3253. * for each object
  3254. */
  3255. dev->invalidate_domains = 0;
  3256. dev->flush_domains = 0;
  3257. dev_priv->mm.flush_rings = 0;
  3258. for (i = 0; i < args->buffer_count; i++)
  3259. i915_gem_object_set_to_gpu_domain(object_list[i], ring);
  3260. if (dev->invalidate_domains | dev->flush_domains) {
  3261. #if WATCH_EXEC
  3262. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3263. __func__,
  3264. dev->invalidate_domains,
  3265. dev->flush_domains);
  3266. #endif
  3267. i915_gem_flush(dev, file,
  3268. dev->invalidate_domains,
  3269. dev->flush_domains,
  3270. dev_priv->mm.flush_rings);
  3271. }
  3272. #if WATCH_COHERENCY
  3273. for (i = 0; i < args->buffer_count; i++) {
  3274. i915_gem_object_check_coherency(object_list[i],
  3275. exec_list[i].handle);
  3276. }
  3277. #endif
  3278. #if WATCH_EXEC
  3279. i915_gem_dump_object(batch_obj,
  3280. args->batch_len,
  3281. __func__,
  3282. ~0);
  3283. #endif
  3284. /* Check for any pending flips. As we only maintain a flip queue depth
  3285. * of 1, we can simply insert a WAIT for the next display flip prior
  3286. * to executing the batch and avoid stalling the CPU.
  3287. */
  3288. flips = 0;
  3289. for (i = 0; i < args->buffer_count; i++) {
  3290. if (object_list[i]->write_domain)
  3291. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3292. }
  3293. if (flips) {
  3294. int plane, flip_mask;
  3295. for (plane = 0; flips >> plane; plane++) {
  3296. if (((flips >> plane) & 1) == 0)
  3297. continue;
  3298. if (plane)
  3299. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3300. else
  3301. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3302. ret = intel_ring_begin(ring, 2);
  3303. if (ret)
  3304. goto err;
  3305. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3306. intel_ring_emit(ring, MI_NOOP);
  3307. intel_ring_advance(ring);
  3308. }
  3309. }
  3310. /* Exec the batchbuffer */
  3311. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3312. if (ret) {
  3313. DRM_ERROR("dispatch failed %d\n", ret);
  3314. goto err;
  3315. }
  3316. for (i = 0; i < args->buffer_count; i++) {
  3317. struct drm_gem_object *obj = object_list[i];
  3318. obj->read_domains = obj->pending_read_domains;
  3319. obj->write_domain = obj->pending_write_domain;
  3320. i915_gem_object_move_to_active(obj, ring);
  3321. if (obj->write_domain) {
  3322. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3323. obj_priv->dirty = 1;
  3324. list_move_tail(&obj_priv->gpu_write_list,
  3325. &ring->gpu_write_list);
  3326. intel_mark_busy(dev, obj);
  3327. }
  3328. trace_i915_gem_object_change_domain(obj,
  3329. obj->read_domains,
  3330. obj->write_domain);
  3331. }
  3332. /*
  3333. * Ensure that the commands in the batch buffer are
  3334. * finished before the interrupt fires
  3335. */
  3336. i915_retire_commands(dev, ring);
  3337. if (i915_add_request(dev, file, request, ring))
  3338. ring->outstanding_lazy_request = true;
  3339. else
  3340. request = NULL;
  3341. err:
  3342. for (i = 0; i < args->buffer_count; i++) {
  3343. if (object_list[i] == NULL)
  3344. break;
  3345. to_intel_bo(object_list[i])->in_execbuffer = false;
  3346. drm_gem_object_unreference(object_list[i]);
  3347. }
  3348. mutex_unlock(&dev->struct_mutex);
  3349. pre_mutex_err:
  3350. drm_free_large(object_list);
  3351. kfree(cliprects);
  3352. kfree(request);
  3353. return ret;
  3354. }
  3355. /*
  3356. * Legacy execbuffer just creates an exec2 list from the original exec object
  3357. * list array and passes it to the real function.
  3358. */
  3359. int
  3360. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3361. struct drm_file *file_priv)
  3362. {
  3363. struct drm_i915_gem_execbuffer *args = data;
  3364. struct drm_i915_gem_execbuffer2 exec2;
  3365. struct drm_i915_gem_exec_object *exec_list = NULL;
  3366. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3367. int ret, i;
  3368. #if WATCH_EXEC
  3369. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3370. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3371. #endif
  3372. if (args->buffer_count < 1) {
  3373. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3374. return -EINVAL;
  3375. }
  3376. /* Copy in the exec list from userland */
  3377. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3378. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3379. if (exec_list == NULL || exec2_list == NULL) {
  3380. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3381. args->buffer_count);
  3382. drm_free_large(exec_list);
  3383. drm_free_large(exec2_list);
  3384. return -ENOMEM;
  3385. }
  3386. ret = copy_from_user(exec_list,
  3387. (struct drm_i915_relocation_entry __user *)
  3388. (uintptr_t) args->buffers_ptr,
  3389. sizeof(*exec_list) * args->buffer_count);
  3390. if (ret != 0) {
  3391. DRM_ERROR("copy %d exec entries failed %d\n",
  3392. args->buffer_count, ret);
  3393. drm_free_large(exec_list);
  3394. drm_free_large(exec2_list);
  3395. return -EFAULT;
  3396. }
  3397. for (i = 0; i < args->buffer_count; i++) {
  3398. exec2_list[i].handle = exec_list[i].handle;
  3399. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3400. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3401. exec2_list[i].alignment = exec_list[i].alignment;
  3402. exec2_list[i].offset = exec_list[i].offset;
  3403. if (INTEL_INFO(dev)->gen < 4)
  3404. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3405. else
  3406. exec2_list[i].flags = 0;
  3407. }
  3408. exec2.buffers_ptr = args->buffers_ptr;
  3409. exec2.buffer_count = args->buffer_count;
  3410. exec2.batch_start_offset = args->batch_start_offset;
  3411. exec2.batch_len = args->batch_len;
  3412. exec2.DR1 = args->DR1;
  3413. exec2.DR4 = args->DR4;
  3414. exec2.num_cliprects = args->num_cliprects;
  3415. exec2.cliprects_ptr = args->cliprects_ptr;
  3416. exec2.flags = I915_EXEC_RENDER;
  3417. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3418. if (!ret) {
  3419. /* Copy the new buffer offsets back to the user's exec list. */
  3420. for (i = 0; i < args->buffer_count; i++)
  3421. exec_list[i].offset = exec2_list[i].offset;
  3422. /* ... and back out to userspace */
  3423. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3424. (uintptr_t) args->buffers_ptr,
  3425. exec_list,
  3426. sizeof(*exec_list) * args->buffer_count);
  3427. if (ret) {
  3428. ret = -EFAULT;
  3429. DRM_ERROR("failed to copy %d exec entries "
  3430. "back to user (%d)\n",
  3431. args->buffer_count, ret);
  3432. }
  3433. }
  3434. drm_free_large(exec_list);
  3435. drm_free_large(exec2_list);
  3436. return ret;
  3437. }
  3438. int
  3439. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3440. struct drm_file *file_priv)
  3441. {
  3442. struct drm_i915_gem_execbuffer2 *args = data;
  3443. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3444. int ret;
  3445. #if WATCH_EXEC
  3446. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3447. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3448. #endif
  3449. if (args->buffer_count < 1) {
  3450. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3451. return -EINVAL;
  3452. }
  3453. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3454. if (exec2_list == NULL) {
  3455. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3456. args->buffer_count);
  3457. return -ENOMEM;
  3458. }
  3459. ret = copy_from_user(exec2_list,
  3460. (struct drm_i915_relocation_entry __user *)
  3461. (uintptr_t) args->buffers_ptr,
  3462. sizeof(*exec2_list) * args->buffer_count);
  3463. if (ret != 0) {
  3464. DRM_ERROR("copy %d exec entries failed %d\n",
  3465. args->buffer_count, ret);
  3466. drm_free_large(exec2_list);
  3467. return -EFAULT;
  3468. }
  3469. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3470. if (!ret) {
  3471. /* Copy the new buffer offsets back to the user's exec list. */
  3472. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3473. (uintptr_t) args->buffers_ptr,
  3474. exec2_list,
  3475. sizeof(*exec2_list) * args->buffer_count);
  3476. if (ret) {
  3477. ret = -EFAULT;
  3478. DRM_ERROR("failed to copy %d exec entries "
  3479. "back to user (%d)\n",
  3480. args->buffer_count, ret);
  3481. }
  3482. }
  3483. drm_free_large(exec2_list);
  3484. return ret;
  3485. }
  3486. int
  3487. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3488. bool mappable)
  3489. {
  3490. struct drm_device *dev = obj->dev;
  3491. struct drm_i915_private *dev_priv = dev->dev_private;
  3492. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3493. int ret;
  3494. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3495. WARN_ON(i915_verify_lists(dev));
  3496. if (obj_priv->gtt_space != NULL) {
  3497. if (alignment == 0)
  3498. alignment = i915_gem_get_gtt_alignment(obj);
  3499. if (obj_priv->gtt_offset & (alignment - 1) ||
  3500. (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
  3501. WARN(obj_priv->pin_count,
  3502. "bo is already pinned with incorrect alignment:"
  3503. " offset=%x, req.alignment=%x\n",
  3504. obj_priv->gtt_offset, alignment);
  3505. ret = i915_gem_object_unbind(obj);
  3506. if (ret)
  3507. return ret;
  3508. }
  3509. }
  3510. if (obj_priv->gtt_space == NULL) {
  3511. ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
  3512. if (ret)
  3513. return ret;
  3514. }
  3515. obj_priv->pin_count++;
  3516. /* If the object is not active and not pending a flush,
  3517. * remove it from the inactive list
  3518. */
  3519. if (obj_priv->pin_count == 1) {
  3520. i915_gem_info_add_pin(dev_priv, obj, mappable);
  3521. if (!obj_priv->active)
  3522. list_move_tail(&obj_priv->mm_list,
  3523. &dev_priv->mm.pinned_list);
  3524. }
  3525. BUG_ON(!obj_priv->pin_mappable && mappable);
  3526. WARN_ON(i915_verify_lists(dev));
  3527. return 0;
  3528. }
  3529. void
  3530. i915_gem_object_unpin(struct drm_gem_object *obj)
  3531. {
  3532. struct drm_device *dev = obj->dev;
  3533. drm_i915_private_t *dev_priv = dev->dev_private;
  3534. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3535. WARN_ON(i915_verify_lists(dev));
  3536. obj_priv->pin_count--;
  3537. BUG_ON(obj_priv->pin_count < 0);
  3538. BUG_ON(obj_priv->gtt_space == NULL);
  3539. /* If the object is no longer pinned, and is
  3540. * neither active nor being flushed, then stick it on
  3541. * the inactive list
  3542. */
  3543. if (obj_priv->pin_count == 0) {
  3544. if (!obj_priv->active)
  3545. list_move_tail(&obj_priv->mm_list,
  3546. &dev_priv->mm.inactive_list);
  3547. i915_gem_info_remove_pin(dev_priv, obj);
  3548. }
  3549. WARN_ON(i915_verify_lists(dev));
  3550. }
  3551. int
  3552. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3553. struct drm_file *file_priv)
  3554. {
  3555. struct drm_i915_gem_pin *args = data;
  3556. struct drm_gem_object *obj;
  3557. struct drm_i915_gem_object *obj_priv;
  3558. int ret;
  3559. ret = i915_mutex_lock_interruptible(dev);
  3560. if (ret)
  3561. return ret;
  3562. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3563. if (obj == NULL) {
  3564. ret = -ENOENT;
  3565. goto unlock;
  3566. }
  3567. obj_priv = to_intel_bo(obj);
  3568. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3569. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3570. ret = -EINVAL;
  3571. goto out;
  3572. }
  3573. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3574. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3575. args->handle);
  3576. ret = -EINVAL;
  3577. goto out;
  3578. }
  3579. obj_priv->user_pin_count++;
  3580. obj_priv->pin_filp = file_priv;
  3581. if (obj_priv->user_pin_count == 1) {
  3582. ret = i915_gem_object_pin(obj, args->alignment, true);
  3583. if (ret)
  3584. goto out;
  3585. }
  3586. /* XXX - flush the CPU caches for pinned objects
  3587. * as the X server doesn't manage domains yet
  3588. */
  3589. i915_gem_object_flush_cpu_write_domain(obj);
  3590. args->offset = obj_priv->gtt_offset;
  3591. out:
  3592. drm_gem_object_unreference(obj);
  3593. unlock:
  3594. mutex_unlock(&dev->struct_mutex);
  3595. return ret;
  3596. }
  3597. int
  3598. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3599. struct drm_file *file_priv)
  3600. {
  3601. struct drm_i915_gem_pin *args = data;
  3602. struct drm_gem_object *obj;
  3603. struct drm_i915_gem_object *obj_priv;
  3604. int ret;
  3605. ret = i915_mutex_lock_interruptible(dev);
  3606. if (ret)
  3607. return ret;
  3608. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3609. if (obj == NULL) {
  3610. ret = -ENOENT;
  3611. goto unlock;
  3612. }
  3613. obj_priv = to_intel_bo(obj);
  3614. if (obj_priv->pin_filp != file_priv) {
  3615. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3616. args->handle);
  3617. ret = -EINVAL;
  3618. goto out;
  3619. }
  3620. obj_priv->user_pin_count--;
  3621. if (obj_priv->user_pin_count == 0) {
  3622. obj_priv->pin_filp = NULL;
  3623. i915_gem_object_unpin(obj);
  3624. }
  3625. out:
  3626. drm_gem_object_unreference(obj);
  3627. unlock:
  3628. mutex_unlock(&dev->struct_mutex);
  3629. return ret;
  3630. }
  3631. int
  3632. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3633. struct drm_file *file_priv)
  3634. {
  3635. struct drm_i915_gem_busy *args = data;
  3636. struct drm_gem_object *obj;
  3637. struct drm_i915_gem_object *obj_priv;
  3638. int ret;
  3639. ret = i915_mutex_lock_interruptible(dev);
  3640. if (ret)
  3641. return ret;
  3642. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3643. if (obj == NULL) {
  3644. ret = -ENOENT;
  3645. goto unlock;
  3646. }
  3647. obj_priv = to_intel_bo(obj);
  3648. /* Count all active objects as busy, even if they are currently not used
  3649. * by the gpu. Users of this interface expect objects to eventually
  3650. * become non-busy without any further actions, therefore emit any
  3651. * necessary flushes here.
  3652. */
  3653. args->busy = obj_priv->active;
  3654. if (args->busy) {
  3655. /* Unconditionally flush objects, even when the gpu still uses this
  3656. * object. Userspace calling this function indicates that it wants to
  3657. * use this buffer rather sooner than later, so issuing the required
  3658. * flush earlier is beneficial.
  3659. */
  3660. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3661. i915_gem_flush_ring(dev, file_priv,
  3662. obj_priv->ring,
  3663. 0, obj->write_domain);
  3664. /* Update the active list for the hardware's current position.
  3665. * Otherwise this only updates on a delayed timer or when irqs
  3666. * are actually unmasked, and our working set ends up being
  3667. * larger than required.
  3668. */
  3669. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3670. args->busy = obj_priv->active;
  3671. }
  3672. drm_gem_object_unreference(obj);
  3673. unlock:
  3674. mutex_unlock(&dev->struct_mutex);
  3675. return ret;
  3676. }
  3677. int
  3678. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3679. struct drm_file *file_priv)
  3680. {
  3681. return i915_gem_ring_throttle(dev, file_priv);
  3682. }
  3683. int
  3684. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3685. struct drm_file *file_priv)
  3686. {
  3687. struct drm_i915_gem_madvise *args = data;
  3688. struct drm_gem_object *obj;
  3689. struct drm_i915_gem_object *obj_priv;
  3690. int ret;
  3691. switch (args->madv) {
  3692. case I915_MADV_DONTNEED:
  3693. case I915_MADV_WILLNEED:
  3694. break;
  3695. default:
  3696. return -EINVAL;
  3697. }
  3698. ret = i915_mutex_lock_interruptible(dev);
  3699. if (ret)
  3700. return ret;
  3701. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3702. if (obj == NULL) {
  3703. ret = -ENOENT;
  3704. goto unlock;
  3705. }
  3706. obj_priv = to_intel_bo(obj);
  3707. if (obj_priv->pin_count) {
  3708. ret = -EINVAL;
  3709. goto out;
  3710. }
  3711. if (obj_priv->madv != __I915_MADV_PURGED)
  3712. obj_priv->madv = args->madv;
  3713. /* if the object is no longer bound, discard its backing storage */
  3714. if (i915_gem_object_is_purgeable(obj_priv) &&
  3715. obj_priv->gtt_space == NULL)
  3716. i915_gem_object_truncate(obj);
  3717. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3718. out:
  3719. drm_gem_object_unreference(obj);
  3720. unlock:
  3721. mutex_unlock(&dev->struct_mutex);
  3722. return ret;
  3723. }
  3724. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3725. size_t size)
  3726. {
  3727. struct drm_i915_private *dev_priv = dev->dev_private;
  3728. struct drm_i915_gem_object *obj;
  3729. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3730. if (obj == NULL)
  3731. return NULL;
  3732. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3733. kfree(obj);
  3734. return NULL;
  3735. }
  3736. i915_gem_info_add_obj(dev_priv, size);
  3737. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3738. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3739. obj->agp_type = AGP_USER_MEMORY;
  3740. obj->base.driver_private = NULL;
  3741. obj->fence_reg = I915_FENCE_REG_NONE;
  3742. INIT_LIST_HEAD(&obj->mm_list);
  3743. INIT_LIST_HEAD(&obj->ring_list);
  3744. INIT_LIST_HEAD(&obj->gpu_write_list);
  3745. obj->madv = I915_MADV_WILLNEED;
  3746. return &obj->base;
  3747. }
  3748. int i915_gem_init_object(struct drm_gem_object *obj)
  3749. {
  3750. BUG();
  3751. return 0;
  3752. }
  3753. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3754. {
  3755. struct drm_device *dev = obj->dev;
  3756. drm_i915_private_t *dev_priv = dev->dev_private;
  3757. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3758. int ret;
  3759. ret = i915_gem_object_unbind(obj);
  3760. if (ret == -ERESTARTSYS) {
  3761. list_move(&obj_priv->mm_list,
  3762. &dev_priv->mm.deferred_free_list);
  3763. return;
  3764. }
  3765. if (obj->map_list.map)
  3766. i915_gem_free_mmap_offset(obj);
  3767. drm_gem_object_release(obj);
  3768. i915_gem_info_remove_obj(dev_priv, obj->size);
  3769. kfree(obj_priv->page_cpu_valid);
  3770. kfree(obj_priv->bit_17);
  3771. kfree(obj_priv);
  3772. }
  3773. void i915_gem_free_object(struct drm_gem_object *obj)
  3774. {
  3775. struct drm_device *dev = obj->dev;
  3776. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3777. trace_i915_gem_object_destroy(obj);
  3778. while (obj_priv->pin_count > 0)
  3779. i915_gem_object_unpin(obj);
  3780. if (obj_priv->phys_obj)
  3781. i915_gem_detach_phys_object(dev, obj);
  3782. i915_gem_free_object_tail(obj);
  3783. }
  3784. int
  3785. i915_gem_idle(struct drm_device *dev)
  3786. {
  3787. drm_i915_private_t *dev_priv = dev->dev_private;
  3788. int ret;
  3789. mutex_lock(&dev->struct_mutex);
  3790. if (dev_priv->mm.suspended) {
  3791. mutex_unlock(&dev->struct_mutex);
  3792. return 0;
  3793. }
  3794. ret = i915_gpu_idle(dev);
  3795. if (ret) {
  3796. mutex_unlock(&dev->struct_mutex);
  3797. return ret;
  3798. }
  3799. /* Under UMS, be paranoid and evict. */
  3800. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3801. ret = i915_gem_evict_inactive(dev);
  3802. if (ret) {
  3803. mutex_unlock(&dev->struct_mutex);
  3804. return ret;
  3805. }
  3806. }
  3807. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3808. * We need to replace this with a semaphore, or something.
  3809. * And not confound mm.suspended!
  3810. */
  3811. dev_priv->mm.suspended = 1;
  3812. del_timer_sync(&dev_priv->hangcheck_timer);
  3813. i915_kernel_lost_context(dev);
  3814. i915_gem_cleanup_ringbuffer(dev);
  3815. mutex_unlock(&dev->struct_mutex);
  3816. /* Cancel the retire work handler, which should be idle now. */
  3817. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3818. return 0;
  3819. }
  3820. /*
  3821. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3822. * over cache flushing.
  3823. */
  3824. static int
  3825. i915_gem_init_pipe_control(struct drm_device *dev)
  3826. {
  3827. drm_i915_private_t *dev_priv = dev->dev_private;
  3828. struct drm_gem_object *obj;
  3829. struct drm_i915_gem_object *obj_priv;
  3830. int ret;
  3831. obj = i915_gem_alloc_object(dev, 4096);
  3832. if (obj == NULL) {
  3833. DRM_ERROR("Failed to allocate seqno page\n");
  3834. ret = -ENOMEM;
  3835. goto err;
  3836. }
  3837. obj_priv = to_intel_bo(obj);
  3838. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3839. ret = i915_gem_object_pin(obj, 4096, true);
  3840. if (ret)
  3841. goto err_unref;
  3842. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3843. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3844. if (dev_priv->seqno_page == NULL)
  3845. goto err_unpin;
  3846. dev_priv->seqno_obj = obj;
  3847. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3848. return 0;
  3849. err_unpin:
  3850. i915_gem_object_unpin(obj);
  3851. err_unref:
  3852. drm_gem_object_unreference(obj);
  3853. err:
  3854. return ret;
  3855. }
  3856. static void
  3857. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3858. {
  3859. drm_i915_private_t *dev_priv = dev->dev_private;
  3860. struct drm_gem_object *obj;
  3861. struct drm_i915_gem_object *obj_priv;
  3862. obj = dev_priv->seqno_obj;
  3863. obj_priv = to_intel_bo(obj);
  3864. kunmap(obj_priv->pages[0]);
  3865. i915_gem_object_unpin(obj);
  3866. drm_gem_object_unreference(obj);
  3867. dev_priv->seqno_obj = NULL;
  3868. dev_priv->seqno_page = NULL;
  3869. }
  3870. int
  3871. i915_gem_init_ringbuffer(struct drm_device *dev)
  3872. {
  3873. drm_i915_private_t *dev_priv = dev->dev_private;
  3874. int ret;
  3875. if (HAS_PIPE_CONTROL(dev)) {
  3876. ret = i915_gem_init_pipe_control(dev);
  3877. if (ret)
  3878. return ret;
  3879. }
  3880. ret = intel_init_render_ring_buffer(dev);
  3881. if (ret)
  3882. goto cleanup_pipe_control;
  3883. if (HAS_BSD(dev)) {
  3884. ret = intel_init_bsd_ring_buffer(dev);
  3885. if (ret)
  3886. goto cleanup_render_ring;
  3887. }
  3888. if (HAS_BLT(dev)) {
  3889. ret = intel_init_blt_ring_buffer(dev);
  3890. if (ret)
  3891. goto cleanup_bsd_ring;
  3892. }
  3893. dev_priv->next_seqno = 1;
  3894. return 0;
  3895. cleanup_bsd_ring:
  3896. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3897. cleanup_render_ring:
  3898. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3899. cleanup_pipe_control:
  3900. if (HAS_PIPE_CONTROL(dev))
  3901. i915_gem_cleanup_pipe_control(dev);
  3902. return ret;
  3903. }
  3904. void
  3905. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3906. {
  3907. drm_i915_private_t *dev_priv = dev->dev_private;
  3908. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3909. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3910. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3911. if (HAS_PIPE_CONTROL(dev))
  3912. i915_gem_cleanup_pipe_control(dev);
  3913. }
  3914. int
  3915. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3916. struct drm_file *file_priv)
  3917. {
  3918. drm_i915_private_t *dev_priv = dev->dev_private;
  3919. int ret;
  3920. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3921. return 0;
  3922. if (atomic_read(&dev_priv->mm.wedged)) {
  3923. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3924. atomic_set(&dev_priv->mm.wedged, 0);
  3925. }
  3926. mutex_lock(&dev->struct_mutex);
  3927. dev_priv->mm.suspended = 0;
  3928. ret = i915_gem_init_ringbuffer(dev);
  3929. if (ret != 0) {
  3930. mutex_unlock(&dev->struct_mutex);
  3931. return ret;
  3932. }
  3933. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3934. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3935. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3936. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3937. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3938. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3939. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3940. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3941. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3942. mutex_unlock(&dev->struct_mutex);
  3943. ret = drm_irq_install(dev);
  3944. if (ret)
  3945. goto cleanup_ringbuffer;
  3946. return 0;
  3947. cleanup_ringbuffer:
  3948. mutex_lock(&dev->struct_mutex);
  3949. i915_gem_cleanup_ringbuffer(dev);
  3950. dev_priv->mm.suspended = 1;
  3951. mutex_unlock(&dev->struct_mutex);
  3952. return ret;
  3953. }
  3954. int
  3955. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3956. struct drm_file *file_priv)
  3957. {
  3958. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3959. return 0;
  3960. drm_irq_uninstall(dev);
  3961. return i915_gem_idle(dev);
  3962. }
  3963. void
  3964. i915_gem_lastclose(struct drm_device *dev)
  3965. {
  3966. int ret;
  3967. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3968. return;
  3969. ret = i915_gem_idle(dev);
  3970. if (ret)
  3971. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3972. }
  3973. static void
  3974. init_ring_lists(struct intel_ring_buffer *ring)
  3975. {
  3976. INIT_LIST_HEAD(&ring->active_list);
  3977. INIT_LIST_HEAD(&ring->request_list);
  3978. INIT_LIST_HEAD(&ring->gpu_write_list);
  3979. }
  3980. void
  3981. i915_gem_load(struct drm_device *dev)
  3982. {
  3983. int i;
  3984. drm_i915_private_t *dev_priv = dev->dev_private;
  3985. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3986. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3987. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3988. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3989. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3990. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3991. init_ring_lists(&dev_priv->render_ring);
  3992. init_ring_lists(&dev_priv->bsd_ring);
  3993. init_ring_lists(&dev_priv->blt_ring);
  3994. for (i = 0; i < 16; i++)
  3995. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3996. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3997. i915_gem_retire_work_handler);
  3998. init_completion(&dev_priv->error_completion);
  3999. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4000. if (IS_GEN3(dev)) {
  4001. u32 tmp = I915_READ(MI_ARB_STATE);
  4002. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4003. /* arb state is a masked write, so set bit + bit in mask */
  4004. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4005. I915_WRITE(MI_ARB_STATE, tmp);
  4006. }
  4007. }
  4008. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4009. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4010. dev_priv->fence_reg_start = 3;
  4011. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4012. dev_priv->num_fence_regs = 16;
  4013. else
  4014. dev_priv->num_fence_regs = 8;
  4015. /* Initialize fence registers to zero */
  4016. switch (INTEL_INFO(dev)->gen) {
  4017. case 6:
  4018. for (i = 0; i < 16; i++)
  4019. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4020. break;
  4021. case 5:
  4022. case 4:
  4023. for (i = 0; i < 16; i++)
  4024. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4025. break;
  4026. case 3:
  4027. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4028. for (i = 0; i < 8; i++)
  4029. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4030. case 2:
  4031. for (i = 0; i < 8; i++)
  4032. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4033. break;
  4034. }
  4035. i915_gem_detect_bit_6_swizzle(dev);
  4036. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4037. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4038. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4039. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4040. }
  4041. /*
  4042. * Create a physically contiguous memory object for this object
  4043. * e.g. for cursor + overlay regs
  4044. */
  4045. static int i915_gem_init_phys_object(struct drm_device *dev,
  4046. int id, int size, int align)
  4047. {
  4048. drm_i915_private_t *dev_priv = dev->dev_private;
  4049. struct drm_i915_gem_phys_object *phys_obj;
  4050. int ret;
  4051. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4052. return 0;
  4053. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4054. if (!phys_obj)
  4055. return -ENOMEM;
  4056. phys_obj->id = id;
  4057. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4058. if (!phys_obj->handle) {
  4059. ret = -ENOMEM;
  4060. goto kfree_obj;
  4061. }
  4062. #ifdef CONFIG_X86
  4063. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4064. #endif
  4065. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4066. return 0;
  4067. kfree_obj:
  4068. kfree(phys_obj);
  4069. return ret;
  4070. }
  4071. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4072. {
  4073. drm_i915_private_t *dev_priv = dev->dev_private;
  4074. struct drm_i915_gem_phys_object *phys_obj;
  4075. if (!dev_priv->mm.phys_objs[id - 1])
  4076. return;
  4077. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4078. if (phys_obj->cur_obj) {
  4079. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4080. }
  4081. #ifdef CONFIG_X86
  4082. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4083. #endif
  4084. drm_pci_free(dev, phys_obj->handle);
  4085. kfree(phys_obj);
  4086. dev_priv->mm.phys_objs[id - 1] = NULL;
  4087. }
  4088. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4089. {
  4090. int i;
  4091. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4092. i915_gem_free_phys_object(dev, i);
  4093. }
  4094. void i915_gem_detach_phys_object(struct drm_device *dev,
  4095. struct drm_gem_object *obj)
  4096. {
  4097. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4098. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4099. char *vaddr;
  4100. int i;
  4101. int page_count;
  4102. if (!obj_priv->phys_obj)
  4103. return;
  4104. vaddr = obj_priv->phys_obj->handle->vaddr;
  4105. page_count = obj->size / PAGE_SIZE;
  4106. for (i = 0; i < page_count; i++) {
  4107. struct page *page = read_cache_page_gfp(mapping, i,
  4108. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4109. if (!IS_ERR(page)) {
  4110. char *dst = kmap_atomic(page);
  4111. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4112. kunmap_atomic(dst);
  4113. drm_clflush_pages(&page, 1);
  4114. set_page_dirty(page);
  4115. mark_page_accessed(page);
  4116. page_cache_release(page);
  4117. }
  4118. }
  4119. drm_agp_chipset_flush(dev);
  4120. obj_priv->phys_obj->cur_obj = NULL;
  4121. obj_priv->phys_obj = NULL;
  4122. }
  4123. int
  4124. i915_gem_attach_phys_object(struct drm_device *dev,
  4125. struct drm_gem_object *obj,
  4126. int id,
  4127. int align)
  4128. {
  4129. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4130. drm_i915_private_t *dev_priv = dev->dev_private;
  4131. struct drm_i915_gem_object *obj_priv;
  4132. int ret = 0;
  4133. int page_count;
  4134. int i;
  4135. if (id > I915_MAX_PHYS_OBJECT)
  4136. return -EINVAL;
  4137. obj_priv = to_intel_bo(obj);
  4138. if (obj_priv->phys_obj) {
  4139. if (obj_priv->phys_obj->id == id)
  4140. return 0;
  4141. i915_gem_detach_phys_object(dev, obj);
  4142. }
  4143. /* create a new object */
  4144. if (!dev_priv->mm.phys_objs[id - 1]) {
  4145. ret = i915_gem_init_phys_object(dev, id,
  4146. obj->size, align);
  4147. if (ret) {
  4148. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4149. return ret;
  4150. }
  4151. }
  4152. /* bind to the object */
  4153. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4154. obj_priv->phys_obj->cur_obj = obj;
  4155. page_count = obj->size / PAGE_SIZE;
  4156. for (i = 0; i < page_count; i++) {
  4157. struct page *page;
  4158. char *dst, *src;
  4159. page = read_cache_page_gfp(mapping, i,
  4160. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4161. if (IS_ERR(page))
  4162. return PTR_ERR(page);
  4163. src = kmap_atomic(obj_priv->pages[i]);
  4164. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4165. memcpy(dst, src, PAGE_SIZE);
  4166. kunmap_atomic(src);
  4167. mark_page_accessed(page);
  4168. page_cache_release(page);
  4169. }
  4170. return 0;
  4171. }
  4172. static int
  4173. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4174. struct drm_i915_gem_pwrite *args,
  4175. struct drm_file *file_priv)
  4176. {
  4177. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4178. void *obj_addr;
  4179. int ret;
  4180. char __user *user_data;
  4181. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4182. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4183. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4184. ret = copy_from_user(obj_addr, user_data, args->size);
  4185. if (ret)
  4186. return -EFAULT;
  4187. drm_agp_chipset_flush(dev);
  4188. return 0;
  4189. }
  4190. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4191. {
  4192. struct drm_i915_file_private *file_priv = file->driver_priv;
  4193. /* Clean up our request list when the client is going away, so that
  4194. * later retire_requests won't dereference our soon-to-be-gone
  4195. * file_priv.
  4196. */
  4197. spin_lock(&file_priv->mm.lock);
  4198. while (!list_empty(&file_priv->mm.request_list)) {
  4199. struct drm_i915_gem_request *request;
  4200. request = list_first_entry(&file_priv->mm.request_list,
  4201. struct drm_i915_gem_request,
  4202. client_list);
  4203. list_del(&request->client_list);
  4204. request->file_priv = NULL;
  4205. }
  4206. spin_unlock(&file_priv->mm.lock);
  4207. }
  4208. static int
  4209. i915_gpu_is_active(struct drm_device *dev)
  4210. {
  4211. drm_i915_private_t *dev_priv = dev->dev_private;
  4212. int lists_empty;
  4213. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4214. list_empty(&dev_priv->mm.active_list);
  4215. return !lists_empty;
  4216. }
  4217. static int
  4218. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4219. int nr_to_scan,
  4220. gfp_t gfp_mask)
  4221. {
  4222. struct drm_i915_private *dev_priv =
  4223. container_of(shrinker,
  4224. struct drm_i915_private,
  4225. mm.inactive_shrinker);
  4226. struct drm_device *dev = dev_priv->dev;
  4227. struct drm_i915_gem_object *obj, *next;
  4228. int cnt;
  4229. if (!mutex_trylock(&dev->struct_mutex))
  4230. return nr_to_scan ? 0 : -1;
  4231. /* "fast-path" to count number of available objects */
  4232. if (nr_to_scan == 0) {
  4233. cnt = 0;
  4234. list_for_each_entry(obj,
  4235. &dev_priv->mm.inactive_list,
  4236. mm_list)
  4237. cnt++;
  4238. mutex_unlock(&dev->struct_mutex);
  4239. return cnt / 100 * sysctl_vfs_cache_pressure;
  4240. }
  4241. rescan:
  4242. /* first scan for clean buffers */
  4243. i915_gem_retire_requests(dev);
  4244. list_for_each_entry_safe(obj, next,
  4245. &dev_priv->mm.inactive_list,
  4246. mm_list) {
  4247. if (i915_gem_object_is_purgeable(obj)) {
  4248. i915_gem_object_unbind(&obj->base);
  4249. if (--nr_to_scan == 0)
  4250. break;
  4251. }
  4252. }
  4253. /* second pass, evict/count anything still on the inactive list */
  4254. cnt = 0;
  4255. list_for_each_entry_safe(obj, next,
  4256. &dev_priv->mm.inactive_list,
  4257. mm_list) {
  4258. if (nr_to_scan) {
  4259. i915_gem_object_unbind(&obj->base);
  4260. nr_to_scan--;
  4261. } else
  4262. cnt++;
  4263. }
  4264. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4265. /*
  4266. * We are desperate for pages, so as a last resort, wait
  4267. * for the GPU to finish and discard whatever we can.
  4268. * This has a dramatic impact to reduce the number of
  4269. * OOM-killer events whilst running the GPU aggressively.
  4270. */
  4271. if (i915_gpu_idle(dev) == 0)
  4272. goto rescan;
  4273. }
  4274. mutex_unlock(&dev->struct_mutex);
  4275. return cnt / 100 * sysctl_vfs_cache_pressure;
  4276. }