kvm_main.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef CONFIG_X86
  47. #include <asm/msidef.h>
  48. #endif
  49. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  50. #include "coalesced_mmio.h"
  51. #endif
  52. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  53. #include <linux/pci.h>
  54. #include <linux/interrupt.h>
  55. #include "irq.h"
  56. #endif
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. static int msi2intx = 1;
  60. module_param(msi2intx, bool, 0);
  61. DEFINE_SPINLOCK(kvm_lock);
  62. LIST_HEAD(vm_list);
  63. static cpumask_t cpus_hardware_enabled;
  64. struct kmem_cache *kvm_vcpu_cache;
  65. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  66. static __read_mostly struct preempt_ops kvm_preempt_ops;
  67. struct dentry *kvm_debugfs_dir;
  68. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  69. unsigned long arg);
  70. static bool kvm_rebooting;
  71. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  72. #ifdef CONFIG_X86
  73. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
  74. {
  75. int vcpu_id;
  76. struct kvm_vcpu *vcpu;
  77. struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
  78. int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
  79. >> MSI_ADDR_DEST_ID_SHIFT;
  80. int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
  81. >> MSI_DATA_VECTOR_SHIFT;
  82. int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
  83. (unsigned long *)&dev->guest_msi.address_lo);
  84. int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
  85. (unsigned long *)&dev->guest_msi.data);
  86. int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
  87. (unsigned long *)&dev->guest_msi.data);
  88. u32 deliver_bitmask;
  89. BUG_ON(!ioapic);
  90. deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
  91. dest_id, dest_mode);
  92. /* IOAPIC delivery mode value is the same as MSI here */
  93. switch (delivery_mode) {
  94. case IOAPIC_LOWEST_PRIORITY:
  95. vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
  96. deliver_bitmask);
  97. if (vcpu != NULL)
  98. kvm_apic_set_irq(vcpu, vector, trig_mode);
  99. else
  100. printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
  101. break;
  102. case IOAPIC_FIXED:
  103. for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
  104. if (!(deliver_bitmask & (1 << vcpu_id)))
  105. continue;
  106. deliver_bitmask &= ~(1 << vcpu_id);
  107. vcpu = ioapic->kvm->vcpus[vcpu_id];
  108. if (vcpu)
  109. kvm_apic_set_irq(vcpu, vector, trig_mode);
  110. }
  111. break;
  112. default:
  113. printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
  114. }
  115. }
  116. #else
  117. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
  118. #endif
  119. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  120. int assigned_dev_id)
  121. {
  122. struct list_head *ptr;
  123. struct kvm_assigned_dev_kernel *match;
  124. list_for_each(ptr, head) {
  125. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  126. if (match->assigned_dev_id == assigned_dev_id)
  127. return match;
  128. }
  129. return NULL;
  130. }
  131. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  132. {
  133. struct kvm_assigned_dev_kernel *assigned_dev;
  134. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  135. interrupt_work);
  136. /* This is taken to safely inject irq inside the guest. When
  137. * the interrupt injection (or the ioapic code) uses a
  138. * finer-grained lock, update this
  139. */
  140. mutex_lock(&assigned_dev->kvm->lock);
  141. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
  142. kvm_set_irq(assigned_dev->kvm,
  143. assigned_dev->irq_source_id,
  144. assigned_dev->guest_irq, 1);
  145. else if (assigned_dev->irq_requested_type &
  146. KVM_ASSIGNED_DEV_GUEST_MSI) {
  147. assigned_device_msi_dispatch(assigned_dev);
  148. enable_irq(assigned_dev->host_irq);
  149. }
  150. mutex_unlock(&assigned_dev->kvm->lock);
  151. kvm_put_kvm(assigned_dev->kvm);
  152. }
  153. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  154. {
  155. struct kvm_assigned_dev_kernel *assigned_dev =
  156. (struct kvm_assigned_dev_kernel *) dev_id;
  157. kvm_get_kvm(assigned_dev->kvm);
  158. schedule_work(&assigned_dev->interrupt_work);
  159. disable_irq_nosync(irq);
  160. return IRQ_HANDLED;
  161. }
  162. /* Ack the irq line for an assigned device */
  163. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  164. {
  165. struct kvm_assigned_dev_kernel *dev;
  166. if (kian->gsi == -1)
  167. return;
  168. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  169. ack_notifier);
  170. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  171. enable_irq(dev->host_irq);
  172. }
  173. static void kvm_free_assigned_irq(struct kvm *kvm,
  174. struct kvm_assigned_dev_kernel *assigned_dev)
  175. {
  176. if (!irqchip_in_kernel(kvm))
  177. return;
  178. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  179. if (assigned_dev->irq_source_id != -1)
  180. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  181. assigned_dev->irq_source_id = -1;
  182. if (!assigned_dev->irq_requested_type)
  183. return;
  184. if (cancel_work_sync(&assigned_dev->interrupt_work))
  185. /* We had pending work. That means we will have to take
  186. * care of kvm_put_kvm.
  187. */
  188. kvm_put_kvm(kvm);
  189. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  190. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  191. pci_disable_msi(assigned_dev->dev);
  192. assigned_dev->irq_requested_type = 0;
  193. }
  194. static void kvm_free_assigned_device(struct kvm *kvm,
  195. struct kvm_assigned_dev_kernel
  196. *assigned_dev)
  197. {
  198. kvm_free_assigned_irq(kvm, assigned_dev);
  199. pci_reset_function(assigned_dev->dev);
  200. pci_release_regions(assigned_dev->dev);
  201. pci_disable_device(assigned_dev->dev);
  202. pci_dev_put(assigned_dev->dev);
  203. list_del(&assigned_dev->list);
  204. kfree(assigned_dev);
  205. }
  206. void kvm_free_all_assigned_devices(struct kvm *kvm)
  207. {
  208. struct list_head *ptr, *ptr2;
  209. struct kvm_assigned_dev_kernel *assigned_dev;
  210. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  211. assigned_dev = list_entry(ptr,
  212. struct kvm_assigned_dev_kernel,
  213. list);
  214. kvm_free_assigned_device(kvm, assigned_dev);
  215. }
  216. }
  217. static int assigned_device_update_intx(struct kvm *kvm,
  218. struct kvm_assigned_dev_kernel *adev,
  219. struct kvm_assigned_irq *airq)
  220. {
  221. adev->guest_irq = airq->guest_irq;
  222. adev->ack_notifier.gsi = airq->guest_irq;
  223. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
  224. return 0;
  225. if (irqchip_in_kernel(kvm)) {
  226. if (!msi2intx &&
  227. adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
  228. free_irq(adev->host_irq, (void *)kvm);
  229. pci_disable_msi(adev->dev);
  230. }
  231. if (!capable(CAP_SYS_RAWIO))
  232. return -EPERM;
  233. if (airq->host_irq)
  234. adev->host_irq = airq->host_irq;
  235. else
  236. adev->host_irq = adev->dev->irq;
  237. /* Even though this is PCI, we don't want to use shared
  238. * interrupts. Sharing host devices with guest-assigned devices
  239. * on the same interrupt line is not a happy situation: there
  240. * are going to be long delays in accepting, acking, etc.
  241. */
  242. if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
  243. 0, "kvm_assigned_intx_device", (void *)adev))
  244. return -EIO;
  245. }
  246. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
  247. KVM_ASSIGNED_DEV_HOST_INTX;
  248. return 0;
  249. }
  250. #ifdef CONFIG_X86
  251. static int assigned_device_update_msi(struct kvm *kvm,
  252. struct kvm_assigned_dev_kernel *adev,
  253. struct kvm_assigned_irq *airq)
  254. {
  255. int r;
  256. if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
  257. /* x86 don't care upper address of guest msi message addr */
  258. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
  259. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
  260. adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
  261. adev->guest_msi.data = airq->guest_msi.data;
  262. adev->ack_notifier.gsi = -1;
  263. } else if (msi2intx) {
  264. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
  265. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
  266. adev->guest_irq = airq->guest_irq;
  267. adev->ack_notifier.gsi = airq->guest_irq;
  268. }
  269. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  270. return 0;
  271. if (irqchip_in_kernel(kvm)) {
  272. if (!msi2intx) {
  273. if (adev->irq_requested_type &
  274. KVM_ASSIGNED_DEV_HOST_INTX)
  275. free_irq(adev->host_irq, (void *)adev);
  276. r = pci_enable_msi(adev->dev);
  277. if (r)
  278. return r;
  279. }
  280. adev->host_irq = adev->dev->irq;
  281. if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
  282. "kvm_assigned_msi_device", (void *)adev))
  283. return -EIO;
  284. }
  285. if (!msi2intx)
  286. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
  287. adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
  288. return 0;
  289. }
  290. #endif
  291. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  292. struct kvm_assigned_irq
  293. *assigned_irq)
  294. {
  295. int r = 0;
  296. struct kvm_assigned_dev_kernel *match;
  297. mutex_lock(&kvm->lock);
  298. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  299. assigned_irq->assigned_dev_id);
  300. if (!match) {
  301. mutex_unlock(&kvm->lock);
  302. return -EINVAL;
  303. }
  304. if (!match->irq_requested_type) {
  305. INIT_WORK(&match->interrupt_work,
  306. kvm_assigned_dev_interrupt_work_handler);
  307. if (irqchip_in_kernel(kvm)) {
  308. /* Register ack nofitier */
  309. match->ack_notifier.gsi = -1;
  310. match->ack_notifier.irq_acked =
  311. kvm_assigned_dev_ack_irq;
  312. kvm_register_irq_ack_notifier(kvm,
  313. &match->ack_notifier);
  314. /* Request IRQ source ID */
  315. r = kvm_request_irq_source_id(kvm);
  316. if (r < 0)
  317. goto out_release;
  318. else
  319. match->irq_source_id = r;
  320. #ifdef CONFIG_X86
  321. /* Determine host device irq type, we can know the
  322. * result from dev->msi_enabled */
  323. if (msi2intx)
  324. pci_enable_msi(match->dev);
  325. #endif
  326. }
  327. }
  328. if ((!msi2intx &&
  329. (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
  330. (msi2intx && match->dev->msi_enabled)) {
  331. #ifdef CONFIG_X86
  332. r = assigned_device_update_msi(kvm, match, assigned_irq);
  333. if (r) {
  334. printk(KERN_WARNING "kvm: failed to enable "
  335. "MSI device!\n");
  336. goto out_release;
  337. }
  338. #else
  339. r = -ENOTTY;
  340. #endif
  341. } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
  342. /* Host device IRQ 0 means don't support INTx */
  343. if (!msi2intx) {
  344. printk(KERN_WARNING
  345. "kvm: wait device to enable MSI!\n");
  346. r = 0;
  347. } else {
  348. printk(KERN_WARNING
  349. "kvm: failed to enable MSI device!\n");
  350. r = -ENOTTY;
  351. goto out_release;
  352. }
  353. } else {
  354. /* Non-sharing INTx mode */
  355. r = assigned_device_update_intx(kvm, match, assigned_irq);
  356. if (r) {
  357. printk(KERN_WARNING "kvm: failed to enable "
  358. "INTx device!\n");
  359. goto out_release;
  360. }
  361. }
  362. mutex_unlock(&kvm->lock);
  363. return r;
  364. out_release:
  365. mutex_unlock(&kvm->lock);
  366. kvm_free_assigned_device(kvm, match);
  367. return r;
  368. }
  369. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  370. struct kvm_assigned_pci_dev *assigned_dev)
  371. {
  372. int r = 0;
  373. struct kvm_assigned_dev_kernel *match;
  374. struct pci_dev *dev;
  375. mutex_lock(&kvm->lock);
  376. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  377. assigned_dev->assigned_dev_id);
  378. if (match) {
  379. /* device already assigned */
  380. r = -EINVAL;
  381. goto out;
  382. }
  383. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  384. if (match == NULL) {
  385. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  386. __func__);
  387. r = -ENOMEM;
  388. goto out;
  389. }
  390. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  391. assigned_dev->devfn);
  392. if (!dev) {
  393. printk(KERN_INFO "%s: host device not found\n", __func__);
  394. r = -EINVAL;
  395. goto out_free;
  396. }
  397. if (pci_enable_device(dev)) {
  398. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  399. r = -EBUSY;
  400. goto out_put;
  401. }
  402. r = pci_request_regions(dev, "kvm_assigned_device");
  403. if (r) {
  404. printk(KERN_INFO "%s: Could not get access to device regions\n",
  405. __func__);
  406. goto out_disable;
  407. }
  408. pci_reset_function(dev);
  409. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  410. match->host_busnr = assigned_dev->busnr;
  411. match->host_devfn = assigned_dev->devfn;
  412. match->dev = dev;
  413. match->irq_source_id = -1;
  414. match->kvm = kvm;
  415. list_add(&match->list, &kvm->arch.assigned_dev_head);
  416. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  417. r = kvm_iommu_map_guest(kvm, match);
  418. if (r)
  419. goto out_list_del;
  420. }
  421. out:
  422. mutex_unlock(&kvm->lock);
  423. return r;
  424. out_list_del:
  425. list_del(&match->list);
  426. pci_release_regions(dev);
  427. out_disable:
  428. pci_disable_device(dev);
  429. out_put:
  430. pci_dev_put(dev);
  431. out_free:
  432. kfree(match);
  433. mutex_unlock(&kvm->lock);
  434. return r;
  435. }
  436. #endif
  437. static inline int valid_vcpu(int n)
  438. {
  439. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  440. }
  441. inline int kvm_is_mmio_pfn(pfn_t pfn)
  442. {
  443. if (pfn_valid(pfn))
  444. return PageReserved(pfn_to_page(pfn));
  445. return true;
  446. }
  447. /*
  448. * Switches to specified vcpu, until a matching vcpu_put()
  449. */
  450. void vcpu_load(struct kvm_vcpu *vcpu)
  451. {
  452. int cpu;
  453. mutex_lock(&vcpu->mutex);
  454. cpu = get_cpu();
  455. preempt_notifier_register(&vcpu->preempt_notifier);
  456. kvm_arch_vcpu_load(vcpu, cpu);
  457. put_cpu();
  458. }
  459. void vcpu_put(struct kvm_vcpu *vcpu)
  460. {
  461. preempt_disable();
  462. kvm_arch_vcpu_put(vcpu);
  463. preempt_notifier_unregister(&vcpu->preempt_notifier);
  464. preempt_enable();
  465. mutex_unlock(&vcpu->mutex);
  466. }
  467. static void ack_flush(void *_completed)
  468. {
  469. }
  470. void kvm_flush_remote_tlbs(struct kvm *kvm)
  471. {
  472. int i, cpu, me;
  473. cpumask_t cpus;
  474. struct kvm_vcpu *vcpu;
  475. me = get_cpu();
  476. cpus_clear(cpus);
  477. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  478. vcpu = kvm->vcpus[i];
  479. if (!vcpu)
  480. continue;
  481. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  482. continue;
  483. cpu = vcpu->cpu;
  484. if (cpu != -1 && cpu != me)
  485. cpu_set(cpu, cpus);
  486. }
  487. if (cpus_empty(cpus))
  488. goto out;
  489. ++kvm->stat.remote_tlb_flush;
  490. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  491. out:
  492. put_cpu();
  493. }
  494. void kvm_reload_remote_mmus(struct kvm *kvm)
  495. {
  496. int i, cpu, me;
  497. cpumask_t cpus;
  498. struct kvm_vcpu *vcpu;
  499. me = get_cpu();
  500. cpus_clear(cpus);
  501. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  502. vcpu = kvm->vcpus[i];
  503. if (!vcpu)
  504. continue;
  505. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  506. continue;
  507. cpu = vcpu->cpu;
  508. if (cpu != -1 && cpu != me)
  509. cpu_set(cpu, cpus);
  510. }
  511. if (cpus_empty(cpus))
  512. goto out;
  513. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  514. out:
  515. put_cpu();
  516. }
  517. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  518. {
  519. struct page *page;
  520. int r;
  521. mutex_init(&vcpu->mutex);
  522. vcpu->cpu = -1;
  523. vcpu->kvm = kvm;
  524. vcpu->vcpu_id = id;
  525. init_waitqueue_head(&vcpu->wq);
  526. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  527. if (!page) {
  528. r = -ENOMEM;
  529. goto fail;
  530. }
  531. vcpu->run = page_address(page);
  532. r = kvm_arch_vcpu_init(vcpu);
  533. if (r < 0)
  534. goto fail_free_run;
  535. return 0;
  536. fail_free_run:
  537. free_page((unsigned long)vcpu->run);
  538. fail:
  539. return r;
  540. }
  541. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  542. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  543. {
  544. kvm_arch_vcpu_uninit(vcpu);
  545. free_page((unsigned long)vcpu->run);
  546. }
  547. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  548. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  549. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  550. {
  551. return container_of(mn, struct kvm, mmu_notifier);
  552. }
  553. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  554. struct mm_struct *mm,
  555. unsigned long address)
  556. {
  557. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  558. int need_tlb_flush;
  559. /*
  560. * When ->invalidate_page runs, the linux pte has been zapped
  561. * already but the page is still allocated until
  562. * ->invalidate_page returns. So if we increase the sequence
  563. * here the kvm page fault will notice if the spte can't be
  564. * established because the page is going to be freed. If
  565. * instead the kvm page fault establishes the spte before
  566. * ->invalidate_page runs, kvm_unmap_hva will release it
  567. * before returning.
  568. *
  569. * The sequence increase only need to be seen at spin_unlock
  570. * time, and not at spin_lock time.
  571. *
  572. * Increasing the sequence after the spin_unlock would be
  573. * unsafe because the kvm page fault could then establish the
  574. * pte after kvm_unmap_hva returned, without noticing the page
  575. * is going to be freed.
  576. */
  577. spin_lock(&kvm->mmu_lock);
  578. kvm->mmu_notifier_seq++;
  579. need_tlb_flush = kvm_unmap_hva(kvm, address);
  580. spin_unlock(&kvm->mmu_lock);
  581. /* we've to flush the tlb before the pages can be freed */
  582. if (need_tlb_flush)
  583. kvm_flush_remote_tlbs(kvm);
  584. }
  585. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  586. struct mm_struct *mm,
  587. unsigned long start,
  588. unsigned long end)
  589. {
  590. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  591. int need_tlb_flush = 0;
  592. spin_lock(&kvm->mmu_lock);
  593. /*
  594. * The count increase must become visible at unlock time as no
  595. * spte can be established without taking the mmu_lock and
  596. * count is also read inside the mmu_lock critical section.
  597. */
  598. kvm->mmu_notifier_count++;
  599. for (; start < end; start += PAGE_SIZE)
  600. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  601. spin_unlock(&kvm->mmu_lock);
  602. /* we've to flush the tlb before the pages can be freed */
  603. if (need_tlb_flush)
  604. kvm_flush_remote_tlbs(kvm);
  605. }
  606. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  607. struct mm_struct *mm,
  608. unsigned long start,
  609. unsigned long end)
  610. {
  611. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  612. spin_lock(&kvm->mmu_lock);
  613. /*
  614. * This sequence increase will notify the kvm page fault that
  615. * the page that is going to be mapped in the spte could have
  616. * been freed.
  617. */
  618. kvm->mmu_notifier_seq++;
  619. /*
  620. * The above sequence increase must be visible before the
  621. * below count decrease but both values are read by the kvm
  622. * page fault under mmu_lock spinlock so we don't need to add
  623. * a smb_wmb() here in between the two.
  624. */
  625. kvm->mmu_notifier_count--;
  626. spin_unlock(&kvm->mmu_lock);
  627. BUG_ON(kvm->mmu_notifier_count < 0);
  628. }
  629. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  630. struct mm_struct *mm,
  631. unsigned long address)
  632. {
  633. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  634. int young;
  635. spin_lock(&kvm->mmu_lock);
  636. young = kvm_age_hva(kvm, address);
  637. spin_unlock(&kvm->mmu_lock);
  638. if (young)
  639. kvm_flush_remote_tlbs(kvm);
  640. return young;
  641. }
  642. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  643. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  644. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  645. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  646. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  647. };
  648. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  649. static struct kvm *kvm_create_vm(void)
  650. {
  651. struct kvm *kvm = kvm_arch_create_vm();
  652. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  653. struct page *page;
  654. #endif
  655. if (IS_ERR(kvm))
  656. goto out;
  657. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  658. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  659. if (!page) {
  660. kfree(kvm);
  661. return ERR_PTR(-ENOMEM);
  662. }
  663. kvm->coalesced_mmio_ring =
  664. (struct kvm_coalesced_mmio_ring *)page_address(page);
  665. #endif
  666. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  667. {
  668. int err;
  669. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  670. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  671. if (err) {
  672. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  673. put_page(page);
  674. #endif
  675. kfree(kvm);
  676. return ERR_PTR(err);
  677. }
  678. }
  679. #endif
  680. kvm->mm = current->mm;
  681. atomic_inc(&kvm->mm->mm_count);
  682. spin_lock_init(&kvm->mmu_lock);
  683. kvm_io_bus_init(&kvm->pio_bus);
  684. mutex_init(&kvm->lock);
  685. kvm_io_bus_init(&kvm->mmio_bus);
  686. init_rwsem(&kvm->slots_lock);
  687. atomic_set(&kvm->users_count, 1);
  688. spin_lock(&kvm_lock);
  689. list_add(&kvm->vm_list, &vm_list);
  690. spin_unlock(&kvm_lock);
  691. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  692. kvm_coalesced_mmio_init(kvm);
  693. #endif
  694. out:
  695. return kvm;
  696. }
  697. /*
  698. * Free any memory in @free but not in @dont.
  699. */
  700. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  701. struct kvm_memory_slot *dont)
  702. {
  703. if (!dont || free->rmap != dont->rmap)
  704. vfree(free->rmap);
  705. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  706. vfree(free->dirty_bitmap);
  707. if (!dont || free->lpage_info != dont->lpage_info)
  708. vfree(free->lpage_info);
  709. free->npages = 0;
  710. free->dirty_bitmap = NULL;
  711. free->rmap = NULL;
  712. free->lpage_info = NULL;
  713. }
  714. void kvm_free_physmem(struct kvm *kvm)
  715. {
  716. int i;
  717. for (i = 0; i < kvm->nmemslots; ++i)
  718. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  719. }
  720. static void kvm_destroy_vm(struct kvm *kvm)
  721. {
  722. struct mm_struct *mm = kvm->mm;
  723. spin_lock(&kvm_lock);
  724. list_del(&kvm->vm_list);
  725. spin_unlock(&kvm_lock);
  726. kvm_io_bus_destroy(&kvm->pio_bus);
  727. kvm_io_bus_destroy(&kvm->mmio_bus);
  728. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  729. if (kvm->coalesced_mmio_ring != NULL)
  730. free_page((unsigned long)kvm->coalesced_mmio_ring);
  731. #endif
  732. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  733. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  734. #endif
  735. kvm_arch_destroy_vm(kvm);
  736. mmdrop(mm);
  737. }
  738. void kvm_get_kvm(struct kvm *kvm)
  739. {
  740. atomic_inc(&kvm->users_count);
  741. }
  742. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  743. void kvm_put_kvm(struct kvm *kvm)
  744. {
  745. if (atomic_dec_and_test(&kvm->users_count))
  746. kvm_destroy_vm(kvm);
  747. }
  748. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  749. static int kvm_vm_release(struct inode *inode, struct file *filp)
  750. {
  751. struct kvm *kvm = filp->private_data;
  752. kvm_put_kvm(kvm);
  753. return 0;
  754. }
  755. /*
  756. * Allocate some memory and give it an address in the guest physical address
  757. * space.
  758. *
  759. * Discontiguous memory is allowed, mostly for framebuffers.
  760. *
  761. * Must be called holding mmap_sem for write.
  762. */
  763. int __kvm_set_memory_region(struct kvm *kvm,
  764. struct kvm_userspace_memory_region *mem,
  765. int user_alloc)
  766. {
  767. int r;
  768. gfn_t base_gfn;
  769. unsigned long npages;
  770. unsigned long i;
  771. struct kvm_memory_slot *memslot;
  772. struct kvm_memory_slot old, new;
  773. r = -EINVAL;
  774. /* General sanity checks */
  775. if (mem->memory_size & (PAGE_SIZE - 1))
  776. goto out;
  777. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  778. goto out;
  779. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  780. goto out;
  781. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  782. goto out;
  783. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  784. goto out;
  785. memslot = &kvm->memslots[mem->slot];
  786. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  787. npages = mem->memory_size >> PAGE_SHIFT;
  788. if (!npages)
  789. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  790. new = old = *memslot;
  791. new.base_gfn = base_gfn;
  792. new.npages = npages;
  793. new.flags = mem->flags;
  794. /* Disallow changing a memory slot's size. */
  795. r = -EINVAL;
  796. if (npages && old.npages && npages != old.npages)
  797. goto out_free;
  798. /* Check for overlaps */
  799. r = -EEXIST;
  800. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  801. struct kvm_memory_slot *s = &kvm->memslots[i];
  802. if (s == memslot)
  803. continue;
  804. if (!((base_gfn + npages <= s->base_gfn) ||
  805. (base_gfn >= s->base_gfn + s->npages)))
  806. goto out_free;
  807. }
  808. /* Free page dirty bitmap if unneeded */
  809. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  810. new.dirty_bitmap = NULL;
  811. r = -ENOMEM;
  812. /* Allocate if a slot is being created */
  813. #ifndef CONFIG_S390
  814. if (npages && !new.rmap) {
  815. new.rmap = vmalloc(npages * sizeof(struct page *));
  816. if (!new.rmap)
  817. goto out_free;
  818. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  819. new.user_alloc = user_alloc;
  820. /*
  821. * hva_to_rmmap() serialzies with the mmu_lock and to be
  822. * safe it has to ignore memslots with !user_alloc &&
  823. * !userspace_addr.
  824. */
  825. if (user_alloc)
  826. new.userspace_addr = mem->userspace_addr;
  827. else
  828. new.userspace_addr = 0;
  829. }
  830. if (npages && !new.lpage_info) {
  831. int largepages = npages / KVM_PAGES_PER_HPAGE;
  832. if (npages % KVM_PAGES_PER_HPAGE)
  833. largepages++;
  834. if (base_gfn % KVM_PAGES_PER_HPAGE)
  835. largepages++;
  836. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  837. if (!new.lpage_info)
  838. goto out_free;
  839. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  840. if (base_gfn % KVM_PAGES_PER_HPAGE)
  841. new.lpage_info[0].write_count = 1;
  842. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  843. new.lpage_info[largepages-1].write_count = 1;
  844. }
  845. /* Allocate page dirty bitmap if needed */
  846. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  847. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  848. new.dirty_bitmap = vmalloc(dirty_bytes);
  849. if (!new.dirty_bitmap)
  850. goto out_free;
  851. memset(new.dirty_bitmap, 0, dirty_bytes);
  852. }
  853. #endif /* not defined CONFIG_S390 */
  854. if (!npages)
  855. kvm_arch_flush_shadow(kvm);
  856. spin_lock(&kvm->mmu_lock);
  857. if (mem->slot >= kvm->nmemslots)
  858. kvm->nmemslots = mem->slot + 1;
  859. *memslot = new;
  860. spin_unlock(&kvm->mmu_lock);
  861. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  862. if (r) {
  863. spin_lock(&kvm->mmu_lock);
  864. *memslot = old;
  865. spin_unlock(&kvm->mmu_lock);
  866. goto out_free;
  867. }
  868. kvm_free_physmem_slot(&old, &new);
  869. #ifdef CONFIG_DMAR
  870. /* map the pages in iommu page table */
  871. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  872. if (r)
  873. goto out;
  874. #endif
  875. return 0;
  876. out_free:
  877. kvm_free_physmem_slot(&new, &old);
  878. out:
  879. return r;
  880. }
  881. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  882. int kvm_set_memory_region(struct kvm *kvm,
  883. struct kvm_userspace_memory_region *mem,
  884. int user_alloc)
  885. {
  886. int r;
  887. down_write(&kvm->slots_lock);
  888. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  889. up_write(&kvm->slots_lock);
  890. return r;
  891. }
  892. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  893. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  894. struct
  895. kvm_userspace_memory_region *mem,
  896. int user_alloc)
  897. {
  898. if (mem->slot >= KVM_MEMORY_SLOTS)
  899. return -EINVAL;
  900. return kvm_set_memory_region(kvm, mem, user_alloc);
  901. }
  902. int kvm_get_dirty_log(struct kvm *kvm,
  903. struct kvm_dirty_log *log, int *is_dirty)
  904. {
  905. struct kvm_memory_slot *memslot;
  906. int r, i;
  907. int n;
  908. unsigned long any = 0;
  909. r = -EINVAL;
  910. if (log->slot >= KVM_MEMORY_SLOTS)
  911. goto out;
  912. memslot = &kvm->memslots[log->slot];
  913. r = -ENOENT;
  914. if (!memslot->dirty_bitmap)
  915. goto out;
  916. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  917. for (i = 0; !any && i < n/sizeof(long); ++i)
  918. any = memslot->dirty_bitmap[i];
  919. r = -EFAULT;
  920. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  921. goto out;
  922. if (any)
  923. *is_dirty = 1;
  924. r = 0;
  925. out:
  926. return r;
  927. }
  928. int is_error_page(struct page *page)
  929. {
  930. return page == bad_page;
  931. }
  932. EXPORT_SYMBOL_GPL(is_error_page);
  933. int is_error_pfn(pfn_t pfn)
  934. {
  935. return pfn == bad_pfn;
  936. }
  937. EXPORT_SYMBOL_GPL(is_error_pfn);
  938. static inline unsigned long bad_hva(void)
  939. {
  940. return PAGE_OFFSET;
  941. }
  942. int kvm_is_error_hva(unsigned long addr)
  943. {
  944. return addr == bad_hva();
  945. }
  946. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  947. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  948. {
  949. int i;
  950. for (i = 0; i < kvm->nmemslots; ++i) {
  951. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  952. if (gfn >= memslot->base_gfn
  953. && gfn < memslot->base_gfn + memslot->npages)
  954. return memslot;
  955. }
  956. return NULL;
  957. }
  958. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  959. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  960. {
  961. gfn = unalias_gfn(kvm, gfn);
  962. return gfn_to_memslot_unaliased(kvm, gfn);
  963. }
  964. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  965. {
  966. int i;
  967. gfn = unalias_gfn(kvm, gfn);
  968. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  969. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  970. if (gfn >= memslot->base_gfn
  971. && gfn < memslot->base_gfn + memslot->npages)
  972. return 1;
  973. }
  974. return 0;
  975. }
  976. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  977. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  978. {
  979. struct kvm_memory_slot *slot;
  980. gfn = unalias_gfn(kvm, gfn);
  981. slot = gfn_to_memslot_unaliased(kvm, gfn);
  982. if (!slot)
  983. return bad_hva();
  984. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  985. }
  986. EXPORT_SYMBOL_GPL(gfn_to_hva);
  987. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  988. {
  989. struct page *page[1];
  990. unsigned long addr;
  991. int npages;
  992. pfn_t pfn;
  993. might_sleep();
  994. addr = gfn_to_hva(kvm, gfn);
  995. if (kvm_is_error_hva(addr)) {
  996. get_page(bad_page);
  997. return page_to_pfn(bad_page);
  998. }
  999. npages = get_user_pages_fast(addr, 1, 1, page);
  1000. if (unlikely(npages != 1)) {
  1001. struct vm_area_struct *vma;
  1002. down_read(&current->mm->mmap_sem);
  1003. vma = find_vma(current->mm, addr);
  1004. if (vma == NULL || addr < vma->vm_start ||
  1005. !(vma->vm_flags & VM_PFNMAP)) {
  1006. up_read(&current->mm->mmap_sem);
  1007. get_page(bad_page);
  1008. return page_to_pfn(bad_page);
  1009. }
  1010. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1011. up_read(&current->mm->mmap_sem);
  1012. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1013. } else
  1014. pfn = page_to_pfn(page[0]);
  1015. return pfn;
  1016. }
  1017. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1018. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1019. {
  1020. pfn_t pfn;
  1021. pfn = gfn_to_pfn(kvm, gfn);
  1022. if (!kvm_is_mmio_pfn(pfn))
  1023. return pfn_to_page(pfn);
  1024. WARN_ON(kvm_is_mmio_pfn(pfn));
  1025. get_page(bad_page);
  1026. return bad_page;
  1027. }
  1028. EXPORT_SYMBOL_GPL(gfn_to_page);
  1029. void kvm_release_page_clean(struct page *page)
  1030. {
  1031. kvm_release_pfn_clean(page_to_pfn(page));
  1032. }
  1033. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1034. void kvm_release_pfn_clean(pfn_t pfn)
  1035. {
  1036. if (!kvm_is_mmio_pfn(pfn))
  1037. put_page(pfn_to_page(pfn));
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1040. void kvm_release_page_dirty(struct page *page)
  1041. {
  1042. kvm_release_pfn_dirty(page_to_pfn(page));
  1043. }
  1044. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1045. void kvm_release_pfn_dirty(pfn_t pfn)
  1046. {
  1047. kvm_set_pfn_dirty(pfn);
  1048. kvm_release_pfn_clean(pfn);
  1049. }
  1050. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1051. void kvm_set_page_dirty(struct page *page)
  1052. {
  1053. kvm_set_pfn_dirty(page_to_pfn(page));
  1054. }
  1055. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1056. void kvm_set_pfn_dirty(pfn_t pfn)
  1057. {
  1058. if (!kvm_is_mmio_pfn(pfn)) {
  1059. struct page *page = pfn_to_page(pfn);
  1060. if (!PageReserved(page))
  1061. SetPageDirty(page);
  1062. }
  1063. }
  1064. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1065. void kvm_set_pfn_accessed(pfn_t pfn)
  1066. {
  1067. if (!kvm_is_mmio_pfn(pfn))
  1068. mark_page_accessed(pfn_to_page(pfn));
  1069. }
  1070. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1071. void kvm_get_pfn(pfn_t pfn)
  1072. {
  1073. if (!kvm_is_mmio_pfn(pfn))
  1074. get_page(pfn_to_page(pfn));
  1075. }
  1076. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1077. static int next_segment(unsigned long len, int offset)
  1078. {
  1079. if (len > PAGE_SIZE - offset)
  1080. return PAGE_SIZE - offset;
  1081. else
  1082. return len;
  1083. }
  1084. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1085. int len)
  1086. {
  1087. int r;
  1088. unsigned long addr;
  1089. addr = gfn_to_hva(kvm, gfn);
  1090. if (kvm_is_error_hva(addr))
  1091. return -EFAULT;
  1092. r = copy_from_user(data, (void __user *)addr + offset, len);
  1093. if (r)
  1094. return -EFAULT;
  1095. return 0;
  1096. }
  1097. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1098. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1099. {
  1100. gfn_t gfn = gpa >> PAGE_SHIFT;
  1101. int seg;
  1102. int offset = offset_in_page(gpa);
  1103. int ret;
  1104. while ((seg = next_segment(len, offset)) != 0) {
  1105. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1106. if (ret < 0)
  1107. return ret;
  1108. offset = 0;
  1109. len -= seg;
  1110. data += seg;
  1111. ++gfn;
  1112. }
  1113. return 0;
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1116. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1117. unsigned long len)
  1118. {
  1119. int r;
  1120. unsigned long addr;
  1121. gfn_t gfn = gpa >> PAGE_SHIFT;
  1122. int offset = offset_in_page(gpa);
  1123. addr = gfn_to_hva(kvm, gfn);
  1124. if (kvm_is_error_hva(addr))
  1125. return -EFAULT;
  1126. pagefault_disable();
  1127. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1128. pagefault_enable();
  1129. if (r)
  1130. return -EFAULT;
  1131. return 0;
  1132. }
  1133. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1134. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1135. int offset, int len)
  1136. {
  1137. int r;
  1138. unsigned long addr;
  1139. addr = gfn_to_hva(kvm, gfn);
  1140. if (kvm_is_error_hva(addr))
  1141. return -EFAULT;
  1142. r = copy_to_user((void __user *)addr + offset, data, len);
  1143. if (r)
  1144. return -EFAULT;
  1145. mark_page_dirty(kvm, gfn);
  1146. return 0;
  1147. }
  1148. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1149. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1150. unsigned long len)
  1151. {
  1152. gfn_t gfn = gpa >> PAGE_SHIFT;
  1153. int seg;
  1154. int offset = offset_in_page(gpa);
  1155. int ret;
  1156. while ((seg = next_segment(len, offset)) != 0) {
  1157. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1158. if (ret < 0)
  1159. return ret;
  1160. offset = 0;
  1161. len -= seg;
  1162. data += seg;
  1163. ++gfn;
  1164. }
  1165. return 0;
  1166. }
  1167. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1168. {
  1169. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1170. }
  1171. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1172. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1173. {
  1174. gfn_t gfn = gpa >> PAGE_SHIFT;
  1175. int seg;
  1176. int offset = offset_in_page(gpa);
  1177. int ret;
  1178. while ((seg = next_segment(len, offset)) != 0) {
  1179. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1180. if (ret < 0)
  1181. return ret;
  1182. offset = 0;
  1183. len -= seg;
  1184. ++gfn;
  1185. }
  1186. return 0;
  1187. }
  1188. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1189. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1190. {
  1191. struct kvm_memory_slot *memslot;
  1192. gfn = unalias_gfn(kvm, gfn);
  1193. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1194. if (memslot && memslot->dirty_bitmap) {
  1195. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1196. /* avoid RMW */
  1197. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1198. set_bit(rel_gfn, memslot->dirty_bitmap);
  1199. }
  1200. }
  1201. /*
  1202. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1203. */
  1204. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1205. {
  1206. DEFINE_WAIT(wait);
  1207. for (;;) {
  1208. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1209. if (kvm_cpu_has_interrupt(vcpu) ||
  1210. kvm_cpu_has_pending_timer(vcpu) ||
  1211. kvm_arch_vcpu_runnable(vcpu)) {
  1212. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1213. break;
  1214. }
  1215. if (signal_pending(current))
  1216. break;
  1217. vcpu_put(vcpu);
  1218. schedule();
  1219. vcpu_load(vcpu);
  1220. }
  1221. finish_wait(&vcpu->wq, &wait);
  1222. }
  1223. void kvm_resched(struct kvm_vcpu *vcpu)
  1224. {
  1225. if (!need_resched())
  1226. return;
  1227. cond_resched();
  1228. }
  1229. EXPORT_SYMBOL_GPL(kvm_resched);
  1230. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1231. {
  1232. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1233. struct page *page;
  1234. if (vmf->pgoff == 0)
  1235. page = virt_to_page(vcpu->run);
  1236. #ifdef CONFIG_X86
  1237. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1238. page = virt_to_page(vcpu->arch.pio_data);
  1239. #endif
  1240. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1241. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1242. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1243. #endif
  1244. else
  1245. return VM_FAULT_SIGBUS;
  1246. get_page(page);
  1247. vmf->page = page;
  1248. return 0;
  1249. }
  1250. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1251. .fault = kvm_vcpu_fault,
  1252. };
  1253. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1254. {
  1255. vma->vm_ops = &kvm_vcpu_vm_ops;
  1256. return 0;
  1257. }
  1258. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1259. {
  1260. struct kvm_vcpu *vcpu = filp->private_data;
  1261. kvm_put_kvm(vcpu->kvm);
  1262. return 0;
  1263. }
  1264. static const struct file_operations kvm_vcpu_fops = {
  1265. .release = kvm_vcpu_release,
  1266. .unlocked_ioctl = kvm_vcpu_ioctl,
  1267. .compat_ioctl = kvm_vcpu_ioctl,
  1268. .mmap = kvm_vcpu_mmap,
  1269. };
  1270. /*
  1271. * Allocates an inode for the vcpu.
  1272. */
  1273. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1274. {
  1275. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1276. if (fd < 0)
  1277. kvm_put_kvm(vcpu->kvm);
  1278. return fd;
  1279. }
  1280. /*
  1281. * Creates some virtual cpus. Good luck creating more than one.
  1282. */
  1283. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1284. {
  1285. int r;
  1286. struct kvm_vcpu *vcpu;
  1287. if (!valid_vcpu(n))
  1288. return -EINVAL;
  1289. vcpu = kvm_arch_vcpu_create(kvm, n);
  1290. if (IS_ERR(vcpu))
  1291. return PTR_ERR(vcpu);
  1292. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1293. r = kvm_arch_vcpu_setup(vcpu);
  1294. if (r)
  1295. return r;
  1296. mutex_lock(&kvm->lock);
  1297. if (kvm->vcpus[n]) {
  1298. r = -EEXIST;
  1299. goto vcpu_destroy;
  1300. }
  1301. kvm->vcpus[n] = vcpu;
  1302. mutex_unlock(&kvm->lock);
  1303. /* Now it's all set up, let userspace reach it */
  1304. kvm_get_kvm(kvm);
  1305. r = create_vcpu_fd(vcpu);
  1306. if (r < 0)
  1307. goto unlink;
  1308. return r;
  1309. unlink:
  1310. mutex_lock(&kvm->lock);
  1311. kvm->vcpus[n] = NULL;
  1312. vcpu_destroy:
  1313. mutex_unlock(&kvm->lock);
  1314. kvm_arch_vcpu_destroy(vcpu);
  1315. return r;
  1316. }
  1317. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1318. {
  1319. if (sigset) {
  1320. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1321. vcpu->sigset_active = 1;
  1322. vcpu->sigset = *sigset;
  1323. } else
  1324. vcpu->sigset_active = 0;
  1325. return 0;
  1326. }
  1327. static long kvm_vcpu_ioctl(struct file *filp,
  1328. unsigned int ioctl, unsigned long arg)
  1329. {
  1330. struct kvm_vcpu *vcpu = filp->private_data;
  1331. void __user *argp = (void __user *)arg;
  1332. int r;
  1333. struct kvm_fpu *fpu = NULL;
  1334. struct kvm_sregs *kvm_sregs = NULL;
  1335. if (vcpu->kvm->mm != current->mm)
  1336. return -EIO;
  1337. switch (ioctl) {
  1338. case KVM_RUN:
  1339. r = -EINVAL;
  1340. if (arg)
  1341. goto out;
  1342. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1343. break;
  1344. case KVM_GET_REGS: {
  1345. struct kvm_regs *kvm_regs;
  1346. r = -ENOMEM;
  1347. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1348. if (!kvm_regs)
  1349. goto out;
  1350. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1351. if (r)
  1352. goto out_free1;
  1353. r = -EFAULT;
  1354. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1355. goto out_free1;
  1356. r = 0;
  1357. out_free1:
  1358. kfree(kvm_regs);
  1359. break;
  1360. }
  1361. case KVM_SET_REGS: {
  1362. struct kvm_regs *kvm_regs;
  1363. r = -ENOMEM;
  1364. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1365. if (!kvm_regs)
  1366. goto out;
  1367. r = -EFAULT;
  1368. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1369. goto out_free2;
  1370. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1371. if (r)
  1372. goto out_free2;
  1373. r = 0;
  1374. out_free2:
  1375. kfree(kvm_regs);
  1376. break;
  1377. }
  1378. case KVM_GET_SREGS: {
  1379. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1380. r = -ENOMEM;
  1381. if (!kvm_sregs)
  1382. goto out;
  1383. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1384. if (r)
  1385. goto out;
  1386. r = -EFAULT;
  1387. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1388. goto out;
  1389. r = 0;
  1390. break;
  1391. }
  1392. case KVM_SET_SREGS: {
  1393. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1394. r = -ENOMEM;
  1395. if (!kvm_sregs)
  1396. goto out;
  1397. r = -EFAULT;
  1398. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1399. goto out;
  1400. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1401. if (r)
  1402. goto out;
  1403. r = 0;
  1404. break;
  1405. }
  1406. case KVM_GET_MP_STATE: {
  1407. struct kvm_mp_state mp_state;
  1408. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1409. if (r)
  1410. goto out;
  1411. r = -EFAULT;
  1412. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1413. goto out;
  1414. r = 0;
  1415. break;
  1416. }
  1417. case KVM_SET_MP_STATE: {
  1418. struct kvm_mp_state mp_state;
  1419. r = -EFAULT;
  1420. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1421. goto out;
  1422. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1423. if (r)
  1424. goto out;
  1425. r = 0;
  1426. break;
  1427. }
  1428. case KVM_TRANSLATE: {
  1429. struct kvm_translation tr;
  1430. r = -EFAULT;
  1431. if (copy_from_user(&tr, argp, sizeof tr))
  1432. goto out;
  1433. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1434. if (r)
  1435. goto out;
  1436. r = -EFAULT;
  1437. if (copy_to_user(argp, &tr, sizeof tr))
  1438. goto out;
  1439. r = 0;
  1440. break;
  1441. }
  1442. case KVM_DEBUG_GUEST: {
  1443. struct kvm_debug_guest dbg;
  1444. r = -EFAULT;
  1445. if (copy_from_user(&dbg, argp, sizeof dbg))
  1446. goto out;
  1447. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1448. if (r)
  1449. goto out;
  1450. r = 0;
  1451. break;
  1452. }
  1453. case KVM_SET_SIGNAL_MASK: {
  1454. struct kvm_signal_mask __user *sigmask_arg = argp;
  1455. struct kvm_signal_mask kvm_sigmask;
  1456. sigset_t sigset, *p;
  1457. p = NULL;
  1458. if (argp) {
  1459. r = -EFAULT;
  1460. if (copy_from_user(&kvm_sigmask, argp,
  1461. sizeof kvm_sigmask))
  1462. goto out;
  1463. r = -EINVAL;
  1464. if (kvm_sigmask.len != sizeof sigset)
  1465. goto out;
  1466. r = -EFAULT;
  1467. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1468. sizeof sigset))
  1469. goto out;
  1470. p = &sigset;
  1471. }
  1472. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1473. break;
  1474. }
  1475. case KVM_GET_FPU: {
  1476. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1477. r = -ENOMEM;
  1478. if (!fpu)
  1479. goto out;
  1480. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1481. if (r)
  1482. goto out;
  1483. r = -EFAULT;
  1484. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1485. goto out;
  1486. r = 0;
  1487. break;
  1488. }
  1489. case KVM_SET_FPU: {
  1490. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1491. r = -ENOMEM;
  1492. if (!fpu)
  1493. goto out;
  1494. r = -EFAULT;
  1495. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1496. goto out;
  1497. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1498. if (r)
  1499. goto out;
  1500. r = 0;
  1501. break;
  1502. }
  1503. default:
  1504. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1505. }
  1506. out:
  1507. kfree(fpu);
  1508. kfree(kvm_sregs);
  1509. return r;
  1510. }
  1511. static long kvm_vm_ioctl(struct file *filp,
  1512. unsigned int ioctl, unsigned long arg)
  1513. {
  1514. struct kvm *kvm = filp->private_data;
  1515. void __user *argp = (void __user *)arg;
  1516. int r;
  1517. if (kvm->mm != current->mm)
  1518. return -EIO;
  1519. switch (ioctl) {
  1520. case KVM_CREATE_VCPU:
  1521. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1522. if (r < 0)
  1523. goto out;
  1524. break;
  1525. case KVM_SET_USER_MEMORY_REGION: {
  1526. struct kvm_userspace_memory_region kvm_userspace_mem;
  1527. r = -EFAULT;
  1528. if (copy_from_user(&kvm_userspace_mem, argp,
  1529. sizeof kvm_userspace_mem))
  1530. goto out;
  1531. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1532. if (r)
  1533. goto out;
  1534. break;
  1535. }
  1536. case KVM_GET_DIRTY_LOG: {
  1537. struct kvm_dirty_log log;
  1538. r = -EFAULT;
  1539. if (copy_from_user(&log, argp, sizeof log))
  1540. goto out;
  1541. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1542. if (r)
  1543. goto out;
  1544. break;
  1545. }
  1546. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1547. case KVM_REGISTER_COALESCED_MMIO: {
  1548. struct kvm_coalesced_mmio_zone zone;
  1549. r = -EFAULT;
  1550. if (copy_from_user(&zone, argp, sizeof zone))
  1551. goto out;
  1552. r = -ENXIO;
  1553. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1554. if (r)
  1555. goto out;
  1556. r = 0;
  1557. break;
  1558. }
  1559. case KVM_UNREGISTER_COALESCED_MMIO: {
  1560. struct kvm_coalesced_mmio_zone zone;
  1561. r = -EFAULT;
  1562. if (copy_from_user(&zone, argp, sizeof zone))
  1563. goto out;
  1564. r = -ENXIO;
  1565. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1566. if (r)
  1567. goto out;
  1568. r = 0;
  1569. break;
  1570. }
  1571. #endif
  1572. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1573. case KVM_ASSIGN_PCI_DEVICE: {
  1574. struct kvm_assigned_pci_dev assigned_dev;
  1575. r = -EFAULT;
  1576. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1577. goto out;
  1578. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1579. if (r)
  1580. goto out;
  1581. break;
  1582. }
  1583. case KVM_ASSIGN_IRQ: {
  1584. struct kvm_assigned_irq assigned_irq;
  1585. r = -EFAULT;
  1586. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1587. goto out;
  1588. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1589. if (r)
  1590. goto out;
  1591. break;
  1592. }
  1593. #endif
  1594. default:
  1595. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1596. }
  1597. out:
  1598. return r;
  1599. }
  1600. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1601. {
  1602. struct page *page[1];
  1603. unsigned long addr;
  1604. int npages;
  1605. gfn_t gfn = vmf->pgoff;
  1606. struct kvm *kvm = vma->vm_file->private_data;
  1607. addr = gfn_to_hva(kvm, gfn);
  1608. if (kvm_is_error_hva(addr))
  1609. return VM_FAULT_SIGBUS;
  1610. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1611. NULL);
  1612. if (unlikely(npages != 1))
  1613. return VM_FAULT_SIGBUS;
  1614. vmf->page = page[0];
  1615. return 0;
  1616. }
  1617. static struct vm_operations_struct kvm_vm_vm_ops = {
  1618. .fault = kvm_vm_fault,
  1619. };
  1620. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1621. {
  1622. vma->vm_ops = &kvm_vm_vm_ops;
  1623. return 0;
  1624. }
  1625. static const struct file_operations kvm_vm_fops = {
  1626. .release = kvm_vm_release,
  1627. .unlocked_ioctl = kvm_vm_ioctl,
  1628. .compat_ioctl = kvm_vm_ioctl,
  1629. .mmap = kvm_vm_mmap,
  1630. };
  1631. static int kvm_dev_ioctl_create_vm(void)
  1632. {
  1633. int fd;
  1634. struct kvm *kvm;
  1635. kvm = kvm_create_vm();
  1636. if (IS_ERR(kvm))
  1637. return PTR_ERR(kvm);
  1638. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1639. if (fd < 0)
  1640. kvm_put_kvm(kvm);
  1641. return fd;
  1642. }
  1643. static long kvm_dev_ioctl(struct file *filp,
  1644. unsigned int ioctl, unsigned long arg)
  1645. {
  1646. long r = -EINVAL;
  1647. switch (ioctl) {
  1648. case KVM_GET_API_VERSION:
  1649. r = -EINVAL;
  1650. if (arg)
  1651. goto out;
  1652. r = KVM_API_VERSION;
  1653. break;
  1654. case KVM_CREATE_VM:
  1655. r = -EINVAL;
  1656. if (arg)
  1657. goto out;
  1658. r = kvm_dev_ioctl_create_vm();
  1659. break;
  1660. case KVM_CHECK_EXTENSION:
  1661. r = kvm_dev_ioctl_check_extension(arg);
  1662. break;
  1663. case KVM_GET_VCPU_MMAP_SIZE:
  1664. r = -EINVAL;
  1665. if (arg)
  1666. goto out;
  1667. r = PAGE_SIZE; /* struct kvm_run */
  1668. #ifdef CONFIG_X86
  1669. r += PAGE_SIZE; /* pio data page */
  1670. #endif
  1671. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1672. r += PAGE_SIZE; /* coalesced mmio ring page */
  1673. #endif
  1674. break;
  1675. case KVM_TRACE_ENABLE:
  1676. case KVM_TRACE_PAUSE:
  1677. case KVM_TRACE_DISABLE:
  1678. r = kvm_trace_ioctl(ioctl, arg);
  1679. break;
  1680. default:
  1681. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1682. }
  1683. out:
  1684. return r;
  1685. }
  1686. static struct file_operations kvm_chardev_ops = {
  1687. .unlocked_ioctl = kvm_dev_ioctl,
  1688. .compat_ioctl = kvm_dev_ioctl,
  1689. };
  1690. static struct miscdevice kvm_dev = {
  1691. KVM_MINOR,
  1692. "kvm",
  1693. &kvm_chardev_ops,
  1694. };
  1695. static void hardware_enable(void *junk)
  1696. {
  1697. int cpu = raw_smp_processor_id();
  1698. if (cpu_isset(cpu, cpus_hardware_enabled))
  1699. return;
  1700. cpu_set(cpu, cpus_hardware_enabled);
  1701. kvm_arch_hardware_enable(NULL);
  1702. }
  1703. static void hardware_disable(void *junk)
  1704. {
  1705. int cpu = raw_smp_processor_id();
  1706. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1707. return;
  1708. cpu_clear(cpu, cpus_hardware_enabled);
  1709. kvm_arch_hardware_disable(NULL);
  1710. }
  1711. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1712. void *v)
  1713. {
  1714. int cpu = (long)v;
  1715. val &= ~CPU_TASKS_FROZEN;
  1716. switch (val) {
  1717. case CPU_DYING:
  1718. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1719. cpu);
  1720. hardware_disable(NULL);
  1721. break;
  1722. case CPU_UP_CANCELED:
  1723. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1724. cpu);
  1725. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1726. break;
  1727. case CPU_ONLINE:
  1728. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1729. cpu);
  1730. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1731. break;
  1732. }
  1733. return NOTIFY_OK;
  1734. }
  1735. asmlinkage void kvm_handle_fault_on_reboot(void)
  1736. {
  1737. if (kvm_rebooting)
  1738. /* spin while reset goes on */
  1739. while (true)
  1740. ;
  1741. /* Fault while not rebooting. We want the trace. */
  1742. BUG();
  1743. }
  1744. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1745. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1746. void *v)
  1747. {
  1748. if (val == SYS_RESTART) {
  1749. /*
  1750. * Some (well, at least mine) BIOSes hang on reboot if
  1751. * in vmx root mode.
  1752. */
  1753. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1754. kvm_rebooting = true;
  1755. on_each_cpu(hardware_disable, NULL, 1);
  1756. }
  1757. return NOTIFY_OK;
  1758. }
  1759. static struct notifier_block kvm_reboot_notifier = {
  1760. .notifier_call = kvm_reboot,
  1761. .priority = 0,
  1762. };
  1763. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1764. {
  1765. memset(bus, 0, sizeof(*bus));
  1766. }
  1767. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1768. {
  1769. int i;
  1770. for (i = 0; i < bus->dev_count; i++) {
  1771. struct kvm_io_device *pos = bus->devs[i];
  1772. kvm_iodevice_destructor(pos);
  1773. }
  1774. }
  1775. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1776. gpa_t addr, int len, int is_write)
  1777. {
  1778. int i;
  1779. for (i = 0; i < bus->dev_count; i++) {
  1780. struct kvm_io_device *pos = bus->devs[i];
  1781. if (pos->in_range(pos, addr, len, is_write))
  1782. return pos;
  1783. }
  1784. return NULL;
  1785. }
  1786. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1787. {
  1788. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1789. bus->devs[bus->dev_count++] = dev;
  1790. }
  1791. static struct notifier_block kvm_cpu_notifier = {
  1792. .notifier_call = kvm_cpu_hotplug,
  1793. .priority = 20, /* must be > scheduler priority */
  1794. };
  1795. static int vm_stat_get(void *_offset, u64 *val)
  1796. {
  1797. unsigned offset = (long)_offset;
  1798. struct kvm *kvm;
  1799. *val = 0;
  1800. spin_lock(&kvm_lock);
  1801. list_for_each_entry(kvm, &vm_list, vm_list)
  1802. *val += *(u32 *)((void *)kvm + offset);
  1803. spin_unlock(&kvm_lock);
  1804. return 0;
  1805. }
  1806. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1807. static int vcpu_stat_get(void *_offset, u64 *val)
  1808. {
  1809. unsigned offset = (long)_offset;
  1810. struct kvm *kvm;
  1811. struct kvm_vcpu *vcpu;
  1812. int i;
  1813. *val = 0;
  1814. spin_lock(&kvm_lock);
  1815. list_for_each_entry(kvm, &vm_list, vm_list)
  1816. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1817. vcpu = kvm->vcpus[i];
  1818. if (vcpu)
  1819. *val += *(u32 *)((void *)vcpu + offset);
  1820. }
  1821. spin_unlock(&kvm_lock);
  1822. return 0;
  1823. }
  1824. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1825. static struct file_operations *stat_fops[] = {
  1826. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1827. [KVM_STAT_VM] = &vm_stat_fops,
  1828. };
  1829. static void kvm_init_debug(void)
  1830. {
  1831. struct kvm_stats_debugfs_item *p;
  1832. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1833. for (p = debugfs_entries; p->name; ++p)
  1834. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1835. (void *)(long)p->offset,
  1836. stat_fops[p->kind]);
  1837. }
  1838. static void kvm_exit_debug(void)
  1839. {
  1840. struct kvm_stats_debugfs_item *p;
  1841. for (p = debugfs_entries; p->name; ++p)
  1842. debugfs_remove(p->dentry);
  1843. debugfs_remove(kvm_debugfs_dir);
  1844. }
  1845. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1846. {
  1847. hardware_disable(NULL);
  1848. return 0;
  1849. }
  1850. static int kvm_resume(struct sys_device *dev)
  1851. {
  1852. hardware_enable(NULL);
  1853. return 0;
  1854. }
  1855. static struct sysdev_class kvm_sysdev_class = {
  1856. .name = "kvm",
  1857. .suspend = kvm_suspend,
  1858. .resume = kvm_resume,
  1859. };
  1860. static struct sys_device kvm_sysdev = {
  1861. .id = 0,
  1862. .cls = &kvm_sysdev_class,
  1863. };
  1864. struct page *bad_page;
  1865. pfn_t bad_pfn;
  1866. static inline
  1867. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1868. {
  1869. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1870. }
  1871. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1872. {
  1873. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1874. kvm_arch_vcpu_load(vcpu, cpu);
  1875. }
  1876. static void kvm_sched_out(struct preempt_notifier *pn,
  1877. struct task_struct *next)
  1878. {
  1879. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1880. kvm_arch_vcpu_put(vcpu);
  1881. }
  1882. int kvm_init(void *opaque, unsigned int vcpu_size,
  1883. struct module *module)
  1884. {
  1885. int r;
  1886. int cpu;
  1887. kvm_init_debug();
  1888. r = kvm_arch_init(opaque);
  1889. if (r)
  1890. goto out_fail;
  1891. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1892. if (bad_page == NULL) {
  1893. r = -ENOMEM;
  1894. goto out;
  1895. }
  1896. bad_pfn = page_to_pfn(bad_page);
  1897. r = kvm_arch_hardware_setup();
  1898. if (r < 0)
  1899. goto out_free_0;
  1900. for_each_online_cpu(cpu) {
  1901. smp_call_function_single(cpu,
  1902. kvm_arch_check_processor_compat,
  1903. &r, 1);
  1904. if (r < 0)
  1905. goto out_free_1;
  1906. }
  1907. on_each_cpu(hardware_enable, NULL, 1);
  1908. r = register_cpu_notifier(&kvm_cpu_notifier);
  1909. if (r)
  1910. goto out_free_2;
  1911. register_reboot_notifier(&kvm_reboot_notifier);
  1912. r = sysdev_class_register(&kvm_sysdev_class);
  1913. if (r)
  1914. goto out_free_3;
  1915. r = sysdev_register(&kvm_sysdev);
  1916. if (r)
  1917. goto out_free_4;
  1918. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1919. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1920. __alignof__(struct kvm_vcpu),
  1921. 0, NULL);
  1922. if (!kvm_vcpu_cache) {
  1923. r = -ENOMEM;
  1924. goto out_free_5;
  1925. }
  1926. kvm_chardev_ops.owner = module;
  1927. r = misc_register(&kvm_dev);
  1928. if (r) {
  1929. printk(KERN_ERR "kvm: misc device register failed\n");
  1930. goto out_free;
  1931. }
  1932. kvm_preempt_ops.sched_in = kvm_sched_in;
  1933. kvm_preempt_ops.sched_out = kvm_sched_out;
  1934. #ifndef CONFIG_X86
  1935. msi2intx = 0;
  1936. #endif
  1937. return 0;
  1938. out_free:
  1939. kmem_cache_destroy(kvm_vcpu_cache);
  1940. out_free_5:
  1941. sysdev_unregister(&kvm_sysdev);
  1942. out_free_4:
  1943. sysdev_class_unregister(&kvm_sysdev_class);
  1944. out_free_3:
  1945. unregister_reboot_notifier(&kvm_reboot_notifier);
  1946. unregister_cpu_notifier(&kvm_cpu_notifier);
  1947. out_free_2:
  1948. on_each_cpu(hardware_disable, NULL, 1);
  1949. out_free_1:
  1950. kvm_arch_hardware_unsetup();
  1951. out_free_0:
  1952. __free_page(bad_page);
  1953. out:
  1954. kvm_arch_exit();
  1955. kvm_exit_debug();
  1956. out_fail:
  1957. return r;
  1958. }
  1959. EXPORT_SYMBOL_GPL(kvm_init);
  1960. void kvm_exit(void)
  1961. {
  1962. kvm_trace_cleanup();
  1963. misc_deregister(&kvm_dev);
  1964. kmem_cache_destroy(kvm_vcpu_cache);
  1965. sysdev_unregister(&kvm_sysdev);
  1966. sysdev_class_unregister(&kvm_sysdev_class);
  1967. unregister_reboot_notifier(&kvm_reboot_notifier);
  1968. unregister_cpu_notifier(&kvm_cpu_notifier);
  1969. on_each_cpu(hardware_disable, NULL, 1);
  1970. kvm_arch_hardware_unsetup();
  1971. kvm_arch_exit();
  1972. kvm_exit_debug();
  1973. __free_page(bad_page);
  1974. }
  1975. EXPORT_SYMBOL_GPL(kvm_exit);