sched_fair.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * The idea is to set a period in which each task runs once.
  276. *
  277. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  278. * this period because otherwise the slices get too small.
  279. *
  280. * p = (nr <= nl) ? l : l*nr/nl
  281. */
  282. static u64 __sched_period(unsigned long nr_running)
  283. {
  284. u64 period = sysctl_sched_latency;
  285. unsigned long nr_latency = sched_nr_latency;
  286. if (unlikely(nr_running > nr_latency)) {
  287. period = sysctl_sched_min_granularity;
  288. period *= nr_running;
  289. }
  290. return period;
  291. }
  292. /*
  293. * We calculate the wall-time slice from the period by taking a part
  294. * proportional to the weight.
  295. *
  296. * s = p*w/rw
  297. */
  298. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  299. {
  300. u64 slice = __sched_period(cfs_rq->nr_running);
  301. for_each_sched_entity(se) {
  302. cfs_rq = cfs_rq_of(se);
  303. slice *= se->load.weight;
  304. do_div(slice, cfs_rq->load.weight);
  305. }
  306. return slice;
  307. }
  308. /*
  309. * We calculate the vruntime slice of a to be inserted task
  310. *
  311. * vs = s/w = p/rw
  312. */
  313. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  314. {
  315. unsigned long nr_running = cfs_rq->nr_running;
  316. unsigned long weight;
  317. u64 vslice;
  318. if (!se->on_rq)
  319. nr_running++;
  320. vslice = __sched_period(nr_running);
  321. for_each_sched_entity(se) {
  322. cfs_rq = cfs_rq_of(se);
  323. weight = cfs_rq->load.weight;
  324. if (!se->on_rq)
  325. weight += se->load.weight;
  326. vslice *= NICE_0_LOAD;
  327. do_div(vslice, weight);
  328. }
  329. return vslice;
  330. }
  331. /*
  332. * Update the current task's runtime statistics. Skip current tasks that
  333. * are not in our scheduling class.
  334. */
  335. static inline void
  336. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  337. unsigned long delta_exec)
  338. {
  339. unsigned long delta_exec_weighted;
  340. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  341. curr->sum_exec_runtime += delta_exec;
  342. schedstat_add(cfs_rq, exec_clock, delta_exec);
  343. delta_exec_weighted = delta_exec;
  344. if (unlikely(curr->load.weight != NICE_0_LOAD)) {
  345. delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
  346. &curr->load);
  347. }
  348. curr->vruntime += delta_exec_weighted;
  349. }
  350. static void update_curr(struct cfs_rq *cfs_rq)
  351. {
  352. struct sched_entity *curr = cfs_rq->curr;
  353. u64 now = rq_of(cfs_rq)->clock;
  354. unsigned long delta_exec;
  355. if (unlikely(!curr))
  356. return;
  357. /*
  358. * Get the amount of time the current task was running
  359. * since the last time we changed load (this cannot
  360. * overflow on 32 bits):
  361. */
  362. delta_exec = (unsigned long)(now - curr->exec_start);
  363. __update_curr(cfs_rq, curr, delta_exec);
  364. curr->exec_start = now;
  365. if (entity_is_task(curr)) {
  366. struct task_struct *curtask = task_of(curr);
  367. cpuacct_charge(curtask, delta_exec);
  368. }
  369. }
  370. static inline void
  371. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  372. {
  373. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  374. }
  375. /*
  376. * Task is being enqueued - update stats:
  377. */
  378. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  379. {
  380. /*
  381. * Are we enqueueing a waiting task? (for current tasks
  382. * a dequeue/enqueue event is a NOP)
  383. */
  384. if (se != cfs_rq->curr)
  385. update_stats_wait_start(cfs_rq, se);
  386. }
  387. static void
  388. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  389. {
  390. schedstat_set(se->wait_max, max(se->wait_max,
  391. rq_of(cfs_rq)->clock - se->wait_start));
  392. schedstat_set(se->wait_count, se->wait_count + 1);
  393. schedstat_set(se->wait_sum, se->wait_sum +
  394. rq_of(cfs_rq)->clock - se->wait_start);
  395. schedstat_set(se->wait_start, 0);
  396. }
  397. static inline void
  398. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  399. {
  400. /*
  401. * Mark the end of the wait period if dequeueing a
  402. * waiting task:
  403. */
  404. if (se != cfs_rq->curr)
  405. update_stats_wait_end(cfs_rq, se);
  406. }
  407. /*
  408. * We are picking a new current task - update its stats:
  409. */
  410. static inline void
  411. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  412. {
  413. /*
  414. * We are starting a new run period:
  415. */
  416. se->exec_start = rq_of(cfs_rq)->clock;
  417. }
  418. /**************************************************
  419. * Scheduling class queueing methods:
  420. */
  421. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  422. static void
  423. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  424. {
  425. cfs_rq->task_weight += weight;
  426. }
  427. #else
  428. static inline void
  429. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  430. {
  431. }
  432. #endif
  433. static void
  434. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  435. {
  436. update_load_add(&cfs_rq->load, se->load.weight);
  437. if (!parent_entity(se))
  438. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  439. if (entity_is_task(se))
  440. add_cfs_task_weight(cfs_rq, se->load.weight);
  441. cfs_rq->nr_running++;
  442. se->on_rq = 1;
  443. list_add(&se->group_node, &cfs_rq->tasks);
  444. }
  445. static void
  446. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  447. {
  448. update_load_sub(&cfs_rq->load, se->load.weight);
  449. if (!parent_entity(se))
  450. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  451. if (entity_is_task(se))
  452. add_cfs_task_weight(cfs_rq, -se->load.weight);
  453. cfs_rq->nr_running--;
  454. se->on_rq = 0;
  455. list_del_init(&se->group_node);
  456. }
  457. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  458. {
  459. #ifdef CONFIG_SCHEDSTATS
  460. if (se->sleep_start) {
  461. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  462. struct task_struct *tsk = task_of(se);
  463. if ((s64)delta < 0)
  464. delta = 0;
  465. if (unlikely(delta > se->sleep_max))
  466. se->sleep_max = delta;
  467. se->sleep_start = 0;
  468. se->sum_sleep_runtime += delta;
  469. account_scheduler_latency(tsk, delta >> 10, 1);
  470. }
  471. if (se->block_start) {
  472. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  473. struct task_struct *tsk = task_of(se);
  474. if ((s64)delta < 0)
  475. delta = 0;
  476. if (unlikely(delta > se->block_max))
  477. se->block_max = delta;
  478. se->block_start = 0;
  479. se->sum_sleep_runtime += delta;
  480. /*
  481. * Blocking time is in units of nanosecs, so shift by 20 to
  482. * get a milliseconds-range estimation of the amount of
  483. * time that the task spent sleeping:
  484. */
  485. if (unlikely(prof_on == SLEEP_PROFILING)) {
  486. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  487. delta >> 20);
  488. }
  489. account_scheduler_latency(tsk, delta >> 10, 0);
  490. }
  491. #endif
  492. }
  493. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  494. {
  495. #ifdef CONFIG_SCHED_DEBUG
  496. s64 d = se->vruntime - cfs_rq->min_vruntime;
  497. if (d < 0)
  498. d = -d;
  499. if (d > 3*sysctl_sched_latency)
  500. schedstat_inc(cfs_rq, nr_spread_over);
  501. #endif
  502. }
  503. static void
  504. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  505. {
  506. u64 vruntime;
  507. if (first_fair(cfs_rq)) {
  508. vruntime = min_vruntime(cfs_rq->min_vruntime,
  509. __pick_next_entity(cfs_rq)->vruntime);
  510. } else
  511. vruntime = cfs_rq->min_vruntime;
  512. /*
  513. * The 'current' period is already promised to the current tasks,
  514. * however the extra weight of the new task will slow them down a
  515. * little, place the new task so that it fits in the slot that
  516. * stays open at the end.
  517. */
  518. if (initial && sched_feat(START_DEBIT))
  519. vruntime += sched_vslice_add(cfs_rq, se);
  520. if (!initial) {
  521. /* sleeps upto a single latency don't count. */
  522. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  523. if (sched_feat(NORMALIZED_SLEEPER))
  524. vruntime -= calc_delta_fair(sysctl_sched_latency,
  525. &cfs_rq->load);
  526. else
  527. vruntime -= sysctl_sched_latency;
  528. }
  529. /* ensure we never gain time by being placed backwards. */
  530. vruntime = max_vruntime(se->vruntime, vruntime);
  531. }
  532. se->vruntime = vruntime;
  533. }
  534. static void
  535. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  536. {
  537. /*
  538. * Update run-time statistics of the 'current'.
  539. */
  540. update_curr(cfs_rq);
  541. if (wakeup) {
  542. place_entity(cfs_rq, se, 0);
  543. enqueue_sleeper(cfs_rq, se);
  544. }
  545. update_stats_enqueue(cfs_rq, se);
  546. check_spread(cfs_rq, se);
  547. if (se != cfs_rq->curr)
  548. __enqueue_entity(cfs_rq, se);
  549. account_entity_enqueue(cfs_rq, se);
  550. }
  551. static void update_avg(u64 *avg, u64 sample)
  552. {
  553. s64 diff = sample - *avg;
  554. *avg += diff >> 3;
  555. }
  556. static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
  557. {
  558. if (!se->last_wakeup)
  559. return;
  560. update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
  561. se->last_wakeup = 0;
  562. }
  563. static void
  564. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  565. {
  566. /*
  567. * Update run-time statistics of the 'current'.
  568. */
  569. update_curr(cfs_rq);
  570. update_stats_dequeue(cfs_rq, se);
  571. if (sleep) {
  572. update_avg_stats(cfs_rq, se);
  573. #ifdef CONFIG_SCHEDSTATS
  574. if (entity_is_task(se)) {
  575. struct task_struct *tsk = task_of(se);
  576. if (tsk->state & TASK_INTERRUPTIBLE)
  577. se->sleep_start = rq_of(cfs_rq)->clock;
  578. if (tsk->state & TASK_UNINTERRUPTIBLE)
  579. se->block_start = rq_of(cfs_rq)->clock;
  580. }
  581. #endif
  582. }
  583. if (se != cfs_rq->curr)
  584. __dequeue_entity(cfs_rq, se);
  585. account_entity_dequeue(cfs_rq, se);
  586. }
  587. /*
  588. * Preempt the current task with a newly woken task if needed:
  589. */
  590. static void
  591. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  592. {
  593. unsigned long ideal_runtime, delta_exec;
  594. ideal_runtime = sched_slice(cfs_rq, curr);
  595. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  596. if (delta_exec > ideal_runtime)
  597. resched_task(rq_of(cfs_rq)->curr);
  598. }
  599. static void
  600. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  601. {
  602. /* 'current' is not kept within the tree. */
  603. if (se->on_rq) {
  604. /*
  605. * Any task has to be enqueued before it get to execute on
  606. * a CPU. So account for the time it spent waiting on the
  607. * runqueue.
  608. */
  609. update_stats_wait_end(cfs_rq, se);
  610. __dequeue_entity(cfs_rq, se);
  611. }
  612. update_stats_curr_start(cfs_rq, se);
  613. cfs_rq->curr = se;
  614. #ifdef CONFIG_SCHEDSTATS
  615. /*
  616. * Track our maximum slice length, if the CPU's load is at
  617. * least twice that of our own weight (i.e. dont track it
  618. * when there are only lesser-weight tasks around):
  619. */
  620. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  621. se->slice_max = max(se->slice_max,
  622. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  623. }
  624. #endif
  625. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  626. }
  627. static int
  628. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  629. static struct sched_entity *
  630. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  631. {
  632. if (!cfs_rq->next)
  633. return se;
  634. if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
  635. return se;
  636. return cfs_rq->next;
  637. }
  638. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  639. {
  640. struct sched_entity *se = NULL;
  641. if (first_fair(cfs_rq)) {
  642. se = __pick_next_entity(cfs_rq);
  643. se = pick_next(cfs_rq, se);
  644. set_next_entity(cfs_rq, se);
  645. }
  646. return se;
  647. }
  648. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  649. {
  650. /*
  651. * If still on the runqueue then deactivate_task()
  652. * was not called and update_curr() has to be done:
  653. */
  654. if (prev->on_rq)
  655. update_curr(cfs_rq);
  656. check_spread(cfs_rq, prev);
  657. if (prev->on_rq) {
  658. update_stats_wait_start(cfs_rq, prev);
  659. /* Put 'current' back into the tree. */
  660. __enqueue_entity(cfs_rq, prev);
  661. }
  662. cfs_rq->curr = NULL;
  663. }
  664. static void
  665. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  666. {
  667. /*
  668. * Update run-time statistics of the 'current'.
  669. */
  670. update_curr(cfs_rq);
  671. #ifdef CONFIG_SCHED_HRTICK
  672. /*
  673. * queued ticks are scheduled to match the slice, so don't bother
  674. * validating it and just reschedule.
  675. */
  676. if (queued)
  677. return resched_task(rq_of(cfs_rq)->curr);
  678. /*
  679. * don't let the period tick interfere with the hrtick preemption
  680. */
  681. if (!sched_feat(DOUBLE_TICK) &&
  682. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  683. return;
  684. #endif
  685. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  686. check_preempt_tick(cfs_rq, curr);
  687. }
  688. /**************************************************
  689. * CFS operations on tasks:
  690. */
  691. #ifdef CONFIG_SCHED_HRTICK
  692. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  693. {
  694. int requeue = rq->curr == p;
  695. struct sched_entity *se = &p->se;
  696. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  697. WARN_ON(task_rq(p) != rq);
  698. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  699. u64 slice = sched_slice(cfs_rq, se);
  700. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  701. s64 delta = slice - ran;
  702. if (delta < 0) {
  703. if (rq->curr == p)
  704. resched_task(p);
  705. return;
  706. }
  707. /*
  708. * Don't schedule slices shorter than 10000ns, that just
  709. * doesn't make sense. Rely on vruntime for fairness.
  710. */
  711. if (!requeue)
  712. delta = max(10000LL, delta);
  713. hrtick_start(rq, delta, requeue);
  714. }
  715. }
  716. #else
  717. static inline void
  718. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  719. {
  720. }
  721. #endif
  722. /*
  723. * The enqueue_task method is called before nr_running is
  724. * increased. Here we update the fair scheduling stats and
  725. * then put the task into the rbtree:
  726. */
  727. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  728. {
  729. struct cfs_rq *cfs_rq;
  730. struct sched_entity *se = &p->se;
  731. for_each_sched_entity(se) {
  732. if (se->on_rq)
  733. break;
  734. cfs_rq = cfs_rq_of(se);
  735. enqueue_entity(cfs_rq, se, wakeup);
  736. wakeup = 1;
  737. }
  738. hrtick_start_fair(rq, rq->curr);
  739. }
  740. /*
  741. * The dequeue_task method is called before nr_running is
  742. * decreased. We remove the task from the rbtree and
  743. * update the fair scheduling stats:
  744. */
  745. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  746. {
  747. struct cfs_rq *cfs_rq;
  748. struct sched_entity *se = &p->se;
  749. for_each_sched_entity(se) {
  750. cfs_rq = cfs_rq_of(se);
  751. dequeue_entity(cfs_rq, se, sleep);
  752. /* Don't dequeue parent if it has other entities besides us */
  753. if (cfs_rq->load.weight)
  754. break;
  755. sleep = 1;
  756. }
  757. hrtick_start_fair(rq, rq->curr);
  758. }
  759. /*
  760. * sched_yield() support is very simple - we dequeue and enqueue.
  761. *
  762. * If compat_yield is turned on then we requeue to the end of the tree.
  763. */
  764. static void yield_task_fair(struct rq *rq)
  765. {
  766. struct task_struct *curr = rq->curr;
  767. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  768. struct sched_entity *rightmost, *se = &curr->se;
  769. /*
  770. * Are we the only task in the tree?
  771. */
  772. if (unlikely(cfs_rq->nr_running == 1))
  773. return;
  774. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  775. __update_rq_clock(rq);
  776. /*
  777. * Update run-time statistics of the 'current'.
  778. */
  779. update_curr(cfs_rq);
  780. return;
  781. }
  782. /*
  783. * Find the rightmost entry in the rbtree:
  784. */
  785. rightmost = __pick_last_entity(cfs_rq);
  786. /*
  787. * Already in the rightmost position?
  788. */
  789. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  790. return;
  791. /*
  792. * Minimally necessary key value to be last in the tree:
  793. * Upon rescheduling, sched_class::put_prev_task() will place
  794. * 'current' within the tree based on its new key value.
  795. */
  796. se->vruntime = rightmost->vruntime + 1;
  797. }
  798. /*
  799. * wake_idle() will wake a task on an idle cpu if task->cpu is
  800. * not idle and an idle cpu is available. The span of cpus to
  801. * search starts with cpus closest then further out as needed,
  802. * so we always favor a closer, idle cpu.
  803. *
  804. * Returns the CPU we should wake onto.
  805. */
  806. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  807. static int wake_idle(int cpu, struct task_struct *p)
  808. {
  809. cpumask_t tmp;
  810. struct sched_domain *sd;
  811. int i;
  812. /*
  813. * If it is idle, then it is the best cpu to run this task.
  814. *
  815. * This cpu is also the best, if it has more than one task already.
  816. * Siblings must be also busy(in most cases) as they didn't already
  817. * pickup the extra load from this cpu and hence we need not check
  818. * sibling runqueue info. This will avoid the checks and cache miss
  819. * penalities associated with that.
  820. */
  821. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  822. return cpu;
  823. for_each_domain(cpu, sd) {
  824. if ((sd->flags & SD_WAKE_IDLE)
  825. || ((sd->flags & SD_WAKE_IDLE_FAR)
  826. && !task_hot(p, task_rq(p)->clock, sd))) {
  827. cpus_and(tmp, sd->span, p->cpus_allowed);
  828. for_each_cpu_mask(i, tmp) {
  829. if (idle_cpu(i)) {
  830. if (i != task_cpu(p)) {
  831. schedstat_inc(p,
  832. se.nr_wakeups_idle);
  833. }
  834. return i;
  835. }
  836. }
  837. } else {
  838. break;
  839. }
  840. }
  841. return cpu;
  842. }
  843. #else
  844. static inline int wake_idle(int cpu, struct task_struct *p)
  845. {
  846. return cpu;
  847. }
  848. #endif
  849. #ifdef CONFIG_SMP
  850. static const struct sched_class fair_sched_class;
  851. static int
  852. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  853. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  854. int idx, unsigned long load, unsigned long this_load,
  855. unsigned int imbalance)
  856. {
  857. struct task_struct *curr = this_rq->curr;
  858. unsigned long tl = this_load;
  859. unsigned long tl_per_task;
  860. if (!(this_sd->flags & SD_WAKE_AFFINE))
  861. return 0;
  862. /*
  863. * If the currently running task will sleep within
  864. * a reasonable amount of time then attract this newly
  865. * woken task:
  866. */
  867. if (sync && curr->sched_class == &fair_sched_class) {
  868. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  869. p->se.avg_overlap < sysctl_sched_migration_cost)
  870. return 1;
  871. }
  872. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  873. tl_per_task = cpu_avg_load_per_task(this_cpu);
  874. /*
  875. * If sync wakeup then subtract the (maximum possible)
  876. * effect of the currently running task from the load
  877. * of the current CPU:
  878. */
  879. if (sync)
  880. tl -= current->se.load.weight;
  881. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  882. 100*(tl + p->se.load.weight) <= imbalance*load) {
  883. /*
  884. * This domain has SD_WAKE_AFFINE and
  885. * p is cache cold in this domain, and
  886. * there is no bad imbalance.
  887. */
  888. schedstat_inc(this_sd, ttwu_move_affine);
  889. schedstat_inc(p, se.nr_wakeups_affine);
  890. return 1;
  891. }
  892. return 0;
  893. }
  894. static int select_task_rq_fair(struct task_struct *p, int sync)
  895. {
  896. struct sched_domain *sd, *this_sd = NULL;
  897. int prev_cpu, this_cpu, new_cpu;
  898. unsigned long load, this_load;
  899. struct rq *rq, *this_rq;
  900. unsigned int imbalance;
  901. int idx;
  902. prev_cpu = task_cpu(p);
  903. rq = task_rq(p);
  904. this_cpu = smp_processor_id();
  905. this_rq = cpu_rq(this_cpu);
  906. new_cpu = prev_cpu;
  907. /*
  908. * 'this_sd' is the first domain that both
  909. * this_cpu and prev_cpu are present in:
  910. */
  911. for_each_domain(this_cpu, sd) {
  912. if (cpu_isset(prev_cpu, sd->span)) {
  913. this_sd = sd;
  914. break;
  915. }
  916. }
  917. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  918. goto out;
  919. /*
  920. * Check for affine wakeup and passive balancing possibilities.
  921. */
  922. if (!this_sd)
  923. goto out;
  924. idx = this_sd->wake_idx;
  925. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  926. load = source_load(prev_cpu, idx);
  927. this_load = target_load(this_cpu, idx);
  928. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  929. load, this_load, imbalance))
  930. return this_cpu;
  931. if (prev_cpu == this_cpu)
  932. goto out;
  933. /*
  934. * Start passive balancing when half the imbalance_pct
  935. * limit is reached.
  936. */
  937. if (this_sd->flags & SD_WAKE_BALANCE) {
  938. if (imbalance*this_load <= 100*load) {
  939. schedstat_inc(this_sd, ttwu_move_balance);
  940. schedstat_inc(p, se.nr_wakeups_passive);
  941. return this_cpu;
  942. }
  943. }
  944. out:
  945. return wake_idle(new_cpu, p);
  946. }
  947. #endif /* CONFIG_SMP */
  948. static unsigned long wakeup_gran(struct sched_entity *se)
  949. {
  950. unsigned long gran = sysctl_sched_wakeup_granularity;
  951. /*
  952. * More easily preempt - nice tasks, while not making
  953. * it harder for + nice tasks.
  954. */
  955. if (unlikely(se->load.weight > NICE_0_LOAD))
  956. gran = calc_delta_fair(gran, &se->load);
  957. return gran;
  958. }
  959. /*
  960. * Should 'se' preempt 'curr'.
  961. *
  962. * |s1
  963. * |s2
  964. * |s3
  965. * g
  966. * |<--->|c
  967. *
  968. * w(c, s1) = -1
  969. * w(c, s2) = 0
  970. * w(c, s3) = 1
  971. *
  972. */
  973. static int
  974. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  975. {
  976. s64 gran, vdiff = curr->vruntime - se->vruntime;
  977. if (vdiff < 0)
  978. return -1;
  979. gran = wakeup_gran(curr);
  980. if (vdiff > gran)
  981. return 1;
  982. return 0;
  983. }
  984. /* return depth at which a sched entity is present in the hierarchy */
  985. static inline int depth_se(struct sched_entity *se)
  986. {
  987. int depth = 0;
  988. for_each_sched_entity(se)
  989. depth++;
  990. return depth;
  991. }
  992. /*
  993. * Preempt the current task with a newly woken task if needed:
  994. */
  995. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  996. {
  997. struct task_struct *curr = rq->curr;
  998. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  999. struct sched_entity *se = &curr->se, *pse = &p->se;
  1000. int se_depth, pse_depth;
  1001. if (unlikely(rt_prio(p->prio))) {
  1002. update_rq_clock(rq);
  1003. update_curr(cfs_rq);
  1004. resched_task(curr);
  1005. return;
  1006. }
  1007. se->last_wakeup = se->sum_exec_runtime;
  1008. if (unlikely(se == pse))
  1009. return;
  1010. cfs_rq_of(pse)->next = pse;
  1011. /*
  1012. * Batch tasks do not preempt (their preemption is driven by
  1013. * the tick):
  1014. */
  1015. if (unlikely(p->policy == SCHED_BATCH))
  1016. return;
  1017. if (!sched_feat(WAKEUP_PREEMPT))
  1018. return;
  1019. /*
  1020. * preemption test can be made between sibling entities who are in the
  1021. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  1022. * both tasks until we find their ancestors who are siblings of common
  1023. * parent.
  1024. */
  1025. /* First walk up until both entities are at same depth */
  1026. se_depth = depth_se(se);
  1027. pse_depth = depth_se(pse);
  1028. while (se_depth > pse_depth) {
  1029. se_depth--;
  1030. se = parent_entity(se);
  1031. }
  1032. while (pse_depth > se_depth) {
  1033. pse_depth--;
  1034. pse = parent_entity(pse);
  1035. }
  1036. while (!is_same_group(se, pse)) {
  1037. se = parent_entity(se);
  1038. pse = parent_entity(pse);
  1039. }
  1040. if (wakeup_preempt_entity(se, pse) == 1)
  1041. resched_task(curr);
  1042. }
  1043. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1044. {
  1045. struct task_struct *p;
  1046. struct cfs_rq *cfs_rq = &rq->cfs;
  1047. struct sched_entity *se;
  1048. if (unlikely(!cfs_rq->nr_running))
  1049. return NULL;
  1050. do {
  1051. se = pick_next_entity(cfs_rq);
  1052. cfs_rq = group_cfs_rq(se);
  1053. } while (cfs_rq);
  1054. p = task_of(se);
  1055. hrtick_start_fair(rq, p);
  1056. return p;
  1057. }
  1058. /*
  1059. * Account for a descheduled task:
  1060. */
  1061. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1062. {
  1063. struct sched_entity *se = &prev->se;
  1064. struct cfs_rq *cfs_rq;
  1065. for_each_sched_entity(se) {
  1066. cfs_rq = cfs_rq_of(se);
  1067. put_prev_entity(cfs_rq, se);
  1068. }
  1069. }
  1070. #ifdef CONFIG_SMP
  1071. /**************************************************
  1072. * Fair scheduling class load-balancing methods:
  1073. */
  1074. /*
  1075. * Load-balancing iterator. Note: while the runqueue stays locked
  1076. * during the whole iteration, the current task might be
  1077. * dequeued so the iterator has to be dequeue-safe. Here we
  1078. * achieve that by always pre-iterating before returning
  1079. * the current task:
  1080. */
  1081. static struct task_struct *
  1082. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1083. {
  1084. struct task_struct *p = NULL;
  1085. struct sched_entity *se;
  1086. if (next == &cfs_rq->tasks)
  1087. return NULL;
  1088. /* Skip over entities that are not tasks */
  1089. do {
  1090. se = list_entry(next, struct sched_entity, group_node);
  1091. next = next->next;
  1092. } while (next != &cfs_rq->tasks && !entity_is_task(se));
  1093. if (next == &cfs_rq->tasks)
  1094. return NULL;
  1095. cfs_rq->balance_iterator = next;
  1096. if (entity_is_task(se))
  1097. p = task_of(se);
  1098. return p;
  1099. }
  1100. static struct task_struct *load_balance_start_fair(void *arg)
  1101. {
  1102. struct cfs_rq *cfs_rq = arg;
  1103. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1104. }
  1105. static struct task_struct *load_balance_next_fair(void *arg)
  1106. {
  1107. struct cfs_rq *cfs_rq = arg;
  1108. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1109. }
  1110. static unsigned long
  1111. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1112. unsigned long max_load_move, struct sched_domain *sd,
  1113. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1114. struct cfs_rq *cfs_rq)
  1115. {
  1116. struct rq_iterator cfs_rq_iterator;
  1117. cfs_rq_iterator.start = load_balance_start_fair;
  1118. cfs_rq_iterator.next = load_balance_next_fair;
  1119. cfs_rq_iterator.arg = cfs_rq;
  1120. return balance_tasks(this_rq, this_cpu, busiest,
  1121. max_load_move, sd, idle, all_pinned,
  1122. this_best_prio, &cfs_rq_iterator);
  1123. }
  1124. #ifdef CONFIG_FAIR_GROUP_SCHED
  1125. static unsigned long
  1126. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1127. unsigned long max_load_move,
  1128. struct sched_domain *sd, enum cpu_idle_type idle,
  1129. int *all_pinned, int *this_best_prio)
  1130. {
  1131. long rem_load_move = max_load_move;
  1132. int busiest_cpu = cpu_of(busiest);
  1133. struct task_group *tg;
  1134. rcu_read_lock();
  1135. list_for_each_entry(tg, &task_groups, list) {
  1136. long imbalance;
  1137. unsigned long this_weight, busiest_weight;
  1138. long rem_load, max_load, moved_load;
  1139. /*
  1140. * empty group
  1141. */
  1142. if (!aggregate(tg, sd)->task_weight)
  1143. continue;
  1144. rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
  1145. rem_load /= aggregate(tg, sd)->load + 1;
  1146. this_weight = tg->cfs_rq[this_cpu]->task_weight;
  1147. busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
  1148. imbalance = (busiest_weight - this_weight) / 2;
  1149. if (imbalance < 0)
  1150. imbalance = busiest_weight;
  1151. max_load = max(rem_load, imbalance);
  1152. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1153. max_load, sd, idle, all_pinned, this_best_prio,
  1154. tg->cfs_rq[busiest_cpu]);
  1155. if (!moved_load)
  1156. continue;
  1157. move_group_shares(tg, sd, busiest_cpu, this_cpu);
  1158. moved_load *= aggregate(tg, sd)->load;
  1159. moved_load /= aggregate(tg, sd)->rq_weight + 1;
  1160. rem_load_move -= moved_load;
  1161. if (rem_load_move < 0)
  1162. break;
  1163. }
  1164. rcu_read_unlock();
  1165. return max_load_move - rem_load_move;
  1166. }
  1167. #else
  1168. static unsigned long
  1169. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1170. unsigned long max_load_move,
  1171. struct sched_domain *sd, enum cpu_idle_type idle,
  1172. int *all_pinned, int *this_best_prio)
  1173. {
  1174. return __load_balance_fair(this_rq, this_cpu, busiest,
  1175. max_load_move, sd, idle, all_pinned,
  1176. this_best_prio, &busiest->cfs);
  1177. }
  1178. #endif
  1179. static int
  1180. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. struct sched_domain *sd, enum cpu_idle_type idle)
  1182. {
  1183. struct cfs_rq *busy_cfs_rq;
  1184. struct rq_iterator cfs_rq_iterator;
  1185. cfs_rq_iterator.start = load_balance_start_fair;
  1186. cfs_rq_iterator.next = load_balance_next_fair;
  1187. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1188. /*
  1189. * pass busy_cfs_rq argument into
  1190. * load_balance_[start|next]_fair iterators
  1191. */
  1192. cfs_rq_iterator.arg = busy_cfs_rq;
  1193. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1194. &cfs_rq_iterator))
  1195. return 1;
  1196. }
  1197. return 0;
  1198. }
  1199. #endif
  1200. /*
  1201. * scheduler tick hitting a task of our scheduling class:
  1202. */
  1203. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1204. {
  1205. struct cfs_rq *cfs_rq;
  1206. struct sched_entity *se = &curr->se;
  1207. for_each_sched_entity(se) {
  1208. cfs_rq = cfs_rq_of(se);
  1209. entity_tick(cfs_rq, se, queued);
  1210. }
  1211. }
  1212. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1213. /*
  1214. * Share the fairness runtime between parent and child, thus the
  1215. * total amount of pressure for CPU stays equal - new tasks
  1216. * get a chance to run but frequent forkers are not allowed to
  1217. * monopolize the CPU. Note: the parent runqueue is locked,
  1218. * the child is not running yet.
  1219. */
  1220. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1221. {
  1222. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1223. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1224. int this_cpu = smp_processor_id();
  1225. sched_info_queued(p);
  1226. update_curr(cfs_rq);
  1227. place_entity(cfs_rq, se, 1);
  1228. /* 'curr' will be NULL if the child belongs to a different group */
  1229. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1230. curr && curr->vruntime < se->vruntime) {
  1231. /*
  1232. * Upon rescheduling, sched_class::put_prev_task() will place
  1233. * 'current' within the tree based on its new key value.
  1234. */
  1235. swap(curr->vruntime, se->vruntime);
  1236. }
  1237. enqueue_task_fair(rq, p, 0);
  1238. resched_task(rq->curr);
  1239. }
  1240. /*
  1241. * Priority of the task has changed. Check to see if we preempt
  1242. * the current task.
  1243. */
  1244. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1245. int oldprio, int running)
  1246. {
  1247. /*
  1248. * Reschedule if we are currently running on this runqueue and
  1249. * our priority decreased, or if we are not currently running on
  1250. * this runqueue and our priority is higher than the current's
  1251. */
  1252. if (running) {
  1253. if (p->prio > oldprio)
  1254. resched_task(rq->curr);
  1255. } else
  1256. check_preempt_curr(rq, p);
  1257. }
  1258. /*
  1259. * We switched to the sched_fair class.
  1260. */
  1261. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1262. int running)
  1263. {
  1264. /*
  1265. * We were most likely switched from sched_rt, so
  1266. * kick off the schedule if running, otherwise just see
  1267. * if we can still preempt the current task.
  1268. */
  1269. if (running)
  1270. resched_task(rq->curr);
  1271. else
  1272. check_preempt_curr(rq, p);
  1273. }
  1274. /* Account for a task changing its policy or group.
  1275. *
  1276. * This routine is mostly called to set cfs_rq->curr field when a task
  1277. * migrates between groups/classes.
  1278. */
  1279. static void set_curr_task_fair(struct rq *rq)
  1280. {
  1281. struct sched_entity *se = &rq->curr->se;
  1282. for_each_sched_entity(se)
  1283. set_next_entity(cfs_rq_of(se), se);
  1284. }
  1285. #ifdef CONFIG_FAIR_GROUP_SCHED
  1286. static void moved_group_fair(struct task_struct *p)
  1287. {
  1288. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1289. update_curr(cfs_rq);
  1290. place_entity(cfs_rq, &p->se, 1);
  1291. }
  1292. #endif
  1293. /*
  1294. * All the scheduling class methods:
  1295. */
  1296. static const struct sched_class fair_sched_class = {
  1297. .next = &idle_sched_class,
  1298. .enqueue_task = enqueue_task_fair,
  1299. .dequeue_task = dequeue_task_fair,
  1300. .yield_task = yield_task_fair,
  1301. #ifdef CONFIG_SMP
  1302. .select_task_rq = select_task_rq_fair,
  1303. #endif /* CONFIG_SMP */
  1304. .check_preempt_curr = check_preempt_wakeup,
  1305. .pick_next_task = pick_next_task_fair,
  1306. .put_prev_task = put_prev_task_fair,
  1307. #ifdef CONFIG_SMP
  1308. .load_balance = load_balance_fair,
  1309. .move_one_task = move_one_task_fair,
  1310. #endif
  1311. .set_curr_task = set_curr_task_fair,
  1312. .task_tick = task_tick_fair,
  1313. .task_new = task_new_fair,
  1314. .prio_changed = prio_changed_fair,
  1315. .switched_to = switched_to_fair,
  1316. #ifdef CONFIG_FAIR_GROUP_SCHED
  1317. .moved_group = moved_group_fair,
  1318. #endif
  1319. };
  1320. #ifdef CONFIG_SCHED_DEBUG
  1321. static void print_cfs_stats(struct seq_file *m, int cpu)
  1322. {
  1323. struct cfs_rq *cfs_rq;
  1324. rcu_read_lock();
  1325. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1326. print_cfs_rq(m, cpu, cfs_rq);
  1327. rcu_read_unlock();
  1328. }
  1329. #endif